
AusDTO Discovery Layer
Release 0.0.1-pre-alpha

Commonwealth of Australia, Digital Transformation Office

September 07, 2015

Contents

1 Overview 1
1.1 Copyright . 1
1.2 Introduction . 1
1.3 Development . 2

2 Design 3
2.1 Activities . 3
2.2 Interfaces . 7
2.3 Components . 8

3 Code 13
3.1 Package: disco_service . 13
3.2 Package: crawler . 13
3.3 Package: metadata . 14
3.4 Package: govservices . 15

4 Indices and tables 17

Python Module Index 19

i

ii

CHAPTER 1

Overview

1.1 Copyright

This documentation is protected by copyright.

With the exception of any material protected by trademark, all material included in this document is licensed under
a Creative Commons Attribution 3.0 Australia licence.

The CC BY 3.0 AU Licence is a standard form license agreement that allows you to copy, distribute, transmit
and adapt material in this publication provided that you attribute the work. Further details of the relevant licence
conditions are available on the Creative Commons website (accessible using the links provided) as is the full legal
code for the CC BY 3.0 AU licence.

The form of attribution for any permitted use of any materials from this publication (and any material sourced
from it) is:

Source: Licensed from the Commonwealth of Australia under a Creative Commons Attribution 3.0 Australia
Licence. The Commonwealth of Australia does not necessarily endorse the content of this publication.

1.2 Introduction

These are technical documents, they are only concerned with what and how. Specifics of who and when are
contained in the git logs. This blog post explains why and where:

https://www.dto.gov.au/news-media/blog/making-government-discoverable

The user discovery later aims to provide useful features that enable users and 3rd party applications to discover
government resources. It is currently in pre-ALPHA status, meaning a working technical assessment, not yet
considered suitable for public use (even by “early-adopters”).

1

http://creativecommons.org/licenses/by/3.0/au/
http://creativecommons.org/licenses/by/3.0/au/legalcode
https://www.dto.gov.au/news-media/blog/making-government-discoverable

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

discovery service

supporting tools

user
interface

reverse
proxy

API

worker backing
services

apps

crawler

metadata
management

public
data

TODO: define each box in the above diagram

1.3 Development

Discovery service:

• http://github.com/AusDTO/discoveryLayer Code

• http://github.com/AusDTO/discoveryLayer/issues Discussion

• http://waffle.io/AusDTO/discoveryLayer Kanban

• http://ausdto-discovery-layer.readthedocs.org/ Documentation

Crawler:

• http://github.com/AusDTO/disco_crawler Code

• http://github.com/AusDTO/disco_crawler/issues Discussion

• http://ausdto-disco-crawler.readthedocs.org/ Documentation

Metadata management (currently service catalogue):

• http://github.com/AusDTO/serviceCatalogue Code

• http://github.com/AusDTO/serviceCatalogue/issues Discussion

• http://ausdto-service-catalogue.readthedocs.org/ Documentation

2 Chapter 1. Overview

http://github.com/AusDTO/discoveryLayer
http://github.com/AusDTO/discoveryLayer/issues
http://waffle.io/AusDTO/discoveryLayer
http://ausdto-discovery-layer.readthedocs.org/
http://github.com/AusDTO/disco_crawler
http://github.com/AusDTO/disco_crawler/issues
http://ausdto-disco-crawler.readthedocs.org/
http://github.com/AusDTO/serviceCatalogue
http://github.com/AusDTO/serviceCatalogue/issues
http://ausdto-service-catalogue.readthedocs.org/

CHAPTER 2

Design

The discovery layer is designed using the “pipeline” pattern. It processes public data (including all Commonwealth
web sites) to produce a search indexes of enriched content metadata. These search indexes provide a public, low-
level (native) search API, which is used by the discovery service to power user interface and high-level API
features.

1.
crawl

all the
Commonwealth

web

database of all
the content

content
metadata

public
data

3.
enrich

metadata

2.
extract

information

4.
maintain
indexes

search
indexes

low-level
search API

discovery
services

high-level
API

user
interface

Pipeline:

1. Crawl a database of content from the Commonwealth web.

2. Extract information into a metadata repository, from the content database.

3. Enrich content metadata using public data.

4. Maintain search indexes from content metadata.

2.1 Activities

In the above diagram, white ellipses represent activities performed by discovery layer components.

3

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

2.1.1 Crawling content

The crawler component is a stand-alone product located in it’s own GitHub repository
(https://github.com/AusDTO/disco_crawler). It suits our needs OK right now, but at some point we may
replace it with a more sophistocated turnkey system such as apache nutch.

crawl

all the
Commonwealth

web

database of all
the content

The crawler only visits Commonwealth resources (.gov.au domains, excluding state subdomains). The result of
all that is that the database fills up with “all the Commonwealth resources”, those resources are checked on a
regulalar schedule and the database is updated when they change.

2.1.2 Information Extraction

The information extraction step is currently very simple. It ignores everything except html resources, and performs
a simple “article extraction” using the python Goose library (https://pypi.python.org/pypi/goose-extractor).

database of all
the content

content
metadata

extract
information

PDF article extraction is yet to be implemented, but shelling-out to the pdftotxt tool from Xpdf
(http://www.foolabs.com/xpdf/download.html) might work OK. Encourageing results have been obtained from
scanned PDF documents using Teseract (https://github.com/tesseract-ocr/tesseract),

The DBPedia open source project has some much more sophistocated information extraction features
(http://dbpedia.org/services-resources/documentation/extractor) which may be relevent as new requirements
emerge in this step. Specifically, their distributed extraction framework (https://github.com/dbpedia/distributed-
extraction-framework) using Apache Spark seems pretty cool. This might be relevant to us if we wanted to try and

4 Chapter 2. Design

https://github.com/AusDTO/disco_crawler
https://pypi.python.org/pypi/goose-extractor
http://www.foolabs.com/xpdf/download.html
https://github.com/tesseract-ocr/tesseract
http://dbpedia.org/services-resources/documentation/extractor
https://github.com/dbpedia/distributed-extraction-framework
https://github.com/dbpedia/distributed-extraction-framework

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

migrate or syncicate Commonwealth web content(however, this might not be fesible doe to the diversity of page
structures that would need to be modelled).

2.1.3 Metadata enrichment

The metadata enrichment step combines the extracted information with aditional data from public sources. Cur-
rently this is limited to “information about government services” sourced from the service catalogue component.

content
metadata

public
data

enrich
metadata

The design intent is that this enrichment step would draw on rich sources of knowledge about government services
- essentially, releaving users of the burden of having to understand how the government is structured to access it’s
content.

Technically this would be when faceting data is incorporated; user journeys (scenarios), information archi-
tecture models, web site/page tagging and classification schemes, etc. This metadata might be manually cu-
rated/maintained (e.g. web site classification), automatically produced (e.g. natural language processing, auto-
mated clustering, web traffic analysis, semantic analysis, etc) or even folksonomically managed. AGLS metadata
(enriched with synonyms?) might also be used to produce potentialy useful facets.

Given a feedback loops from passive behavior analysis (web traffic) or navigation choice-decision experiments
(A-B split testing, ANOVA/MANOVA designs etc), information extraction could be treated as a behavior labori-
tory for creating value in search-oriented architecture at other layers. Different information extraction schemes
(treatments) could be operated to produce/maintain parallel indexes, and discovery-layer nodes could be randomly
assigned to indexes.

2.1.4 Index maintainance

The search indexes are maintained using the excellent django-haystack library (http://haystacksearch.org/). Specif-
ically, using the asynchronous celery_haystack module (https://github.com/django-haystack/celery-haystack).

2.1. Activities 5

http://haystacksearch.org/
https://github.com/django-haystack/celery-haystack

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

content
metadata

maintain
indexes

search
indexes

Using celery_haystack, index-management tasks are triggered by “save” signals on the ORM model that the
index is based on. Because the crawler is NOT using the ORM, inserts/updates/deleted by the crawler do not
automatically trigger these tasks. Instead, scheduled jobs compare content hash fields in the drawler’s database
and the metadata to detect differences and dispatch metadata updates apropriately.

Note: The US Digital GovSearch service is trying out a search index management feature called i14y (Beta,
http://search.digitalgov.gov/developer/) to push CMS content changes to their search layer for reindexing.

That’s a nice idea here too; furnish a callback API that dispatches change to the crawler schedule and metadata
maintenance. Possibly the GovCMS solr inegration hooks could be extended...

6 Chapter 2. Design

http://search.digitalgov.gov/developer/

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

2.2 Interfaces

search
indexes

low-level
search API

discovery
services

high-level
API

user
interface

In the above diagram, green ellipses represent interfaces. The colour green is used to indicate that the items are
open for public access.

2.2.1 User interface

The discovery service user interface is a mobile-friendly web application. It is a place to impliment “consierge
service” type features, that assist people locate government resources. The DEV team consideres it least likely to
be important over the long term, but likely to be useful for demonstrations and proofs of concept.

These are imagined to be user-friendly features for finding (searching and/or browsing) Australian Government
online resources. The current pre-ALPHA product does not have significant features here yet, because we are just
entering “discovery phase” on that project (we are in the process of gathering evidence and analysing user needs).

In adition to conventional search features, the “search oriented architecture” paradigm contains a number of pat-
terns (such as faceted browsing) that are likely to be worthy of experiment during ALPHA and BETA stages of
development.

2.2.2 High-level API

The discovery service high-level API is a REST integration surface, designed to support/enable discoverability
features in other applications (such as Commonwealth web sites). They are essentially wrappers that exploit the
power of the low-level search API in a way that is convenient to users. The DEV team considers it highly-likely
that signifacant value could be added at this layer.

2.2. Interfaces 7

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

Two kinds of high-level API features are considered likely to prove useful.

• Machine-consumable equivalents of the user-interface features

• Framework for content analysis

The first type of high-level API is simply a REST endpoint supporting json or xml format, 1:1 exact mapping of
functionality. It should be useful for integrating 3rd party software with the discovery layer infrastructure.

The second type of high-level API is the python language interface provided by django-haystack, the framework
used to interface and manage the search indexes. This API is used internally to make the first kind of API and the
user interfaces. It’s also potentially useful for extending the service with new functionality, and analytic use-cases
(as evidenced by ipython notebook content analysis, TODO).

2.2.3 Low-level search API

The low-level search API is simply the read-only part of the native elasticsearch interface. It’s our post-processed
data, derived from public web pages and open data, using our open source code. We don’t know if or how other
people might use this interface, but would be delighted if that happened.

The search index backing service has a REST interface for GETing, POSTing, PUTing and DELETEing the
contents of the index. The GET verbs of this interface is published directly through the reverse-proxy component
of the discovery layer interface, allowing 3rd parties to reuse our search index (either with code based on our
high-level python API, or any other software that supports the same kind of search index).

BETA version of the discovery layer probably requires throttling and/or other forms of protection from queries
that would potentially degrade performance.

2.3 Components

In the diagrams on this page, ellipses are “verbish” (interfaces and activities) and rectangles are “nounish” (com-
ponents of the discovery layer system).

2.3.1 Content database

Pipeline:

• Crawl a database of content from the Commonwealth web.

• Extract information into a metadata repository, from the content database.

crawl

database of all
the content

extract
information

8 Chapter 2. Design

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

The content_database is shared with the disco_crawler component. Access from python is via the ORM wrapper
in /crawler/models.py. See also crawler/tasks.py for the synchronisation jobs that drive information extraction
process.

2.3.2 Content metadata

Pipeline:

• Extract information into a metadata repository, from the content database.

• Enrich content metadata using public data.

• Maintain search indexes from content metadata.

content
metadata

extract
information

enrich
metadata

maintain
indexes

Content metadata is managed from python code through the django ORM layer (see <app>/models.py in the
repo), primarially by asynchronous worker processes (celery tasks, see <app>/tasks.py).

2.3.3 Public data

Pipeline:

• Enrich content metadata using public data.

2.3. Components 9

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

public
data

enrich
metadata

content
metadata

The initial design intent was to draw all public data from the CKAN API at data.gov.au, although any open public
API would be OK.

Due to the nature of duct tape, chewing gum and number 8 wire employed in pre-alpha development, none of the
data is currently being drawn from APIs at the moment. Currently it’s only the service catalogue drawn from a
repository hosted in github.com.

2.3.4 Search indexes

Pipeline:

• Maintain search indexes from content metadata.

maintain
indexes

search
indexes

low-level
search API

Search indexes are currently ElasticSearch, although theoretically could be any index backend supported by
django-haystack.

10 Chapter 2. Design

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

2.3.5 Discovery services

low-level
search API

discovery
services

high-level
API

user
interface

The disco services are implemented as python/django applications, run in a stateless wsgi container (gunicorn)
behind a reverse proxy (nginx). Django is used to produce both the user interface (responsive web) and high-level
API (REST).

See Dockerfile for specific details of how this is component is packaged, configured and run.

2.3. Components 11

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

12 Chapter 2. Design

CHAPTER 3

Code

The code is organised into packages, in the standard django way.

<project>
disco_service

<app>
crawler

<app>
metadata

<app>
govservices

The following documentation is incomplete (work in progress), for the timebeing it’s better to reffer to the actual
sources.

3.1 Package: disco_service

This is a django project, containing the usual settings.py, urls.py and wsgi.py

Note: Also contains celery.py, which is configuration for async worker nodes

3.2 Package: crawler

This django app is a simple wrapper. crawler app does not have an admin interface.

3.2.1 crawler.models

An ORM interface to the DB which is shared with the disco_crawler node.js app.

class crawler.models.WebDocument(*args, **kwargs)
Resource downloaded by the disco_crawler node.js app.

The document attribute is a copy of the resource which was downloaded.

13

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

url uniquely defines the resource (there is no numeric primary key). host, path, port and protocol are
attributes about the HTTP request used to retrieve the resource. lastfetchdatetime and nextfetchdatetime are
heuristically determined and drive the behavior of the crawler. _hash is indexed and has a coresponding
attribute in the metadata.Resource class (these are compared to determine if the metadata is dirty).

The rest of the attributes are derived from the content of the document.

3.2.2 crawler.tasks

This module contains integration tasks for synchronising this DB with the metadata used in the rest of the discovery
layer.

crawler.tasks.sync_from_crawler()
dispatch metadata.Resource inserts for new crawler.WebDocuments

crawler.tasks.sync_updates_from_crawler()
dispatch metadata.Resource updates for changed crawler.WebDocuments

3.3 Package: metadata

This django app manages the content metadata.

3.3.1 metadata.models

class metadata.models.Resource(*args, **kwargs)
ORM class wrapping persistent data of the web resource

Contains hooks into the code for resource processing

_article()
Analyse resource content, return Goose interface

_decode()
Lookup content of the coresponding WebDocument.document

excerpt()
Attempt to produce a plain text version of resource content

sr_summary()
Search result summary.

This is a rude hack, it doesn’t even break on word boundaries. There should be much smarter ways of
doing this.

title()
Attempt to produce a single line description of the resource

3.3.2 metadata.tasks

metadata.tasks.insert_resource_from_row()
Wrap metadata.Resource constructor

Stupidly, doesn’t even do any input validation.

metadata.tasks.update_resource_from_row()
ORM lookup then update

No input validation and foolishly assumes the lookup won’t miss.

14 Chapter 3. Code

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

3.4 Package: govservices

This app wraps public data about government services.

3.4.1 govservices.models

class govservices.models.Agency(id, acronym)

exception DoesNotExist

exception Agency.MultipleObjectsReturned

Agency.dimension_set

Agency.objects = <django.db.models.manager.Manager object>

Agency.service_set

Agency.subservice_set

class govservices.models.SubService(id, cat_id, desc, name, info_url, primary_audience,
agency)

exception DoesNotExist

exception SubService.MultipleObjectsReturned

SubService.agency

SubService.objects = <django.db.models.manager.Manager object>

class govservices.models.ServiceTag(id, label)

exception DoesNotExist

exception ServiceTag.MultipleObjectsReturned

ServiceTag.objects = <django.db.models.manager.Manager object>

ServiceTag.service_set

class govservices.models.LifeEvent(id, label)

exception DoesNotExist

exception LifeEvent.MultipleObjectsReturned

LifeEvent.objects = <django.db.models.manager.Manager object>

LifeEvent.service_set

class govservices.models.ServiceType(id, label)

exception DoesNotExist

exception ServiceType.MultipleObjectsReturned

ServiceType.objects = <django.db.models.manager.Manager object>

ServiceType.service_set

class govservices.models.Service(id, src_id, agency, old_src_id, json_filename, info_url, name,
acronym, tagline, primary_audience, analytics_available, in-
cidental, secondary, src_type, description, comment, current,
org_acronym)

3.4. Package: govservices 15

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

exception DoesNotExist

exception Service.MultipleObjectsReturned

Service.agency

Service.life_events

Service.objects = <django.db.models.manager.Manager object>

Service.service_tags

Service.service_types

class govservices.models.Dimension(id, dim_id, agency, name, dist, desc, info_url)

exception DoesNotExist

exception Dimension.MultipleObjectsReturned

Dimension.agency

Dimension.objects = <django.db.models.manager.Manager object>

3.4.2 govservices.tests

Suite of tests assuring that the code which manipulates govservices is working correctly.

3.4.3 govservices.management.commands.update_servicecatalogue

It would be highly preferable to refactor this to use a REST API to interrogate the service catalogue, rather than
messing about with the ServiceJsonRepository.

class govservices.management.commands.update_servicecatalogue.Command(stdout=None,
stderr=None,
no_color=False)

manage.py extension. Call with:

python manage.py update_servicecatalogue

or:

python manage.py update_servicecatalogue <entity>

where <entity> is the name of one of the classes in metadata.models

16 Chapter 3. Code

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

17

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

18 Chapter 4. Indices and tables

Python Module Index

c
crawler, 13
crawler.admin, 13
crawler.migrations, 13
crawler.models, 13
crawler.tasks, 14
crawler.tests, 14
crawler.views, 14

d
disco_service, 13

g
govservices, 14
govservices.management.commands.update_servicecatalogue,

16
govservices.management.utilities, 16
govservices.models, 15
govservices.tests, 16

m
metadata, 14
metadata.admin, 14
metadata.migrations, 14
metadata.models, 14
metadata.tasks, 14
metadata.tests, 14
metadata.urls, 14
metadata.views, 14

19

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

20 Python Module Index

Index

Symbols
_article() (metadata.models.Resource method), 14
_decode() (metadata.models.Resource method), 14

A
Agency (class in govservices.models), 15
agency (govservices.models.Dimension attribute), 16
agency (govservices.models.Service attribute), 16
agency (govservices.models.SubService attribute), 15
Agency.DoesNotExist, 15
Agency.MultipleObjectsReturned, 15

C
Command (class in govser-

vices.management.commands.update_servicecatalogue),
16

crawler (module), 13
crawler.admin (module), 13
crawler.migrations (module), 13
crawler.models (module), 13
crawler.tasks (module), 14
crawler.tests (module), 14
crawler.views (module), 14

D
Dimension (class in govservices.models), 16
Dimension.DoesNotExist, 16
Dimension.MultipleObjectsReturned, 16
dimension_set (govservices.models.Agency attribute),

15
disco_service (module), 13

E
excerpt() (metadata.models.Resource method), 14

G
govservices (module), 14
govservices.management.commands.update_servicecatalogue

(module), 16
govservices.management.utilities (module), 16
govservices.models (module), 15
govservices.tests (module), 16

I
insert_resource_from_row() (in module meta-

data.tasks), 14

L
life_events (govservices.models.Service attribute), 16
LifeEvent (class in govservices.models), 15
LifeEvent.DoesNotExist, 15
LifeEvent.MultipleObjectsReturned, 15

M
metadata (module), 14
metadata.admin (module), 14
metadata.migrations (module), 14
metadata.models (module), 14
metadata.tasks (module), 14
metadata.tests (module), 14
metadata.urls (module), 14
metadata.views (module), 14

O
objects (govservices.models.Agency attribute), 15
objects (govservices.models.Dimension attribute), 16
objects (govservices.models.LifeEvent attribute), 15
objects (govservices.models.Service attribute), 16
objects (govservices.models.ServiceTag attribute), 15
objects (govservices.models.ServiceType attribute), 15
objects (govservices.models.SubService attribute), 15

R
Resource (class in metadata.models), 14

S
Service (class in govservices.models), 15
Service.DoesNotExist, 15
Service.MultipleObjectsReturned, 16
service_set (govservices.models.Agency attribute), 15
service_set (govservices.models.LifeEvent attribute),

15
service_set (govservices.models.ServiceTag attribute),

15
service_set (govservices.models.ServiceType attribute),

15
service_tags (govservices.models.Service attribute), 16

21

AusDTO Discovery Layer, Release 0.0.1-pre-alpha

service_types (govservices.models.Service attribute),
16

ServiceTag (class in govservices.models), 15
ServiceTag.DoesNotExist, 15
ServiceTag.MultipleObjectsReturned, 15
ServiceType (class in govservices.models), 15
ServiceType.DoesNotExist, 15
ServiceType.MultipleObjectsReturned, 15
sr_summary() (metadata.models.Resource method), 14
SubService (class in govservices.models), 15
SubService.DoesNotExist, 15
SubService.MultipleObjectsReturned, 15
subservice_set (govservices.models.Agency attribute),

15
sync_from_crawler() (in module crawler.tasks), 14
sync_updates_from_crawler() (in module

crawler.tasks), 14

T
title() (metadata.models.Resource method), 14

U
update_resource_from_row() (in module meta-

data.tasks), 14

W
WebDocument (class in crawler.models), 13

22 Index

	Overview
	Copyright
	Introduction
	Development

	Design
	Activities
	Interfaces
	Components

	Code
	Package: disco_service
	Package: crawler
	Package: metadata
	Package: govservices

	Indices and tables
	Python Module Index

