Aumbry Documentation
Release 0.8.0

John Vrbanac

Jan 09, 2019

Contents

1 Installation

3

L1 Using Aumbry o e e e e e e e e e e 3

1.2 APIDocumentation i e e e e e e e e e e e e e e 8

1.3 CLIDocumentation v v v v v i i e e e e e e e e e e e e 11

2 Indices and tables 13
Python Module Index 15

Aumbry Documentation, Release 0.8.0

Aumbry is general purpose library for handling configuration within your Python applications. The project was born
from constantly needing a simple interface for configuration models that came from multiple data sources.

Behind the scenes, Aumbry uses Alchemize to handle the conversion of the configuration data into application specific
data models for your project.

Contents 1

https://alchemize.readthedocs.io

Aumbry Documentation, Release 0.8.0

2 Contents

CHAPTER 1

Installation

Aumbry is available on PyPI

Install aumbry core
pip install aumbry

For Consul dependencies
pip install aumbry|]

For Etcd2 dependencies
pip install aumbry|]

For Yaml dependencies
pip install aumbry|]

Contents:

1.1 Using Aumbry

1.1.1 Dependencies

Many developers are very conscious of the number of dependencies that they include in their projects. To that end,
Aumbry doesn’t install the dependencies for parsing yaml or loading from consul by default. However, Aumbry
attempts to make this relatively easy on users by enabling users to easily install the extra dependencies using the
following convention:

For Consul dependencies
pip install aumbry|]

For Etcd2 dependencies
pip install aumbry|]

(continues on next page)

Aumbry Documentation, Release 0.8.0

(continued from previous page)

For Yaml dependencies
pip install aumbry|]

For Parameter Store dependencies
pip install aumbry|]

For Fernet File dependencies
pip install aumbry|]

Installing multiple dependencies
pip install aumbry| ']

1.1.2 Loading from a File

One of the simplest and most common way of loading configuration is from a file. For this example, we’ll use a JSON
configuration file.

Lets say we have the following JSON configuration that we want to load

"something"

The next steps are to define a configuration class that matches what we’re trying to do and load the config up.

import

You can either specify the options here or via environment variables

Time to load it up!

it works!

File Options

Like all options, these can be manually specified when calling 1oad () or via environment variables.

Key Default | Notes
CONFIG_FILE_PATH Required

4 Chapter 1. Installation

Aumbry Documentation, Release 0.8.0

Encryption

Encryption and decryption support is provided by using pyca/cryptography’s Fernet module. Installing the required
dependencies can be done with:

pip install aumbry []

The usage is nearly identical to a standard file; however, the source type and options change slightly. The source type
becomes aumbry . FERNET and you need to provide the CONFIG_FILE_FERNET_KEY option.

1.1.3 Loading from Consul

As mentioned under the Dependencies section, the dependencies to load from consul are not included by default. As
a result, we need to first install our extra dependencies.

pip install aumbry|]

Much like our loading from a file example, we need a configuration class and set our options for the Consul source.

import

You can either specify the options here or via environment variables

Time to load it up!

it works!

It is important to note that the Consul source will block until it either cannot load, reaches max retries, or successfully
loads.

Consul Options

Like all options, these can be manually specified when calling 1oad () or via environment variables.

Key Default | Notes

CONSUL_URI Required

CONSUL_KEY Required
CONSUL_TIMEOUT 10 Timeout per-request
CONSUL_RETRY_MAX 1 Number of retries to attempt
CONSUL_RETRY_INTERVAL | 10 Wait period between retries

1.1. Using Aumbry 5

Aumbry Documentation, Release 0.8.0

1.1.4 Loading from Etcd2

As mentioned under the Dependencies section, the dependencies to load from etcd2 are not included by default. As a
result, we need to first install our extra dependencies.

pip install aumbry|

Much like our loading from a file example, we need a configuration class and set our options for the Etcd2 source.

import

You can either specify the options here or via environment variables

Time to load it up!

it works!

It is important to note that the Etcd2 source will block until it either cannot load, reaches max retries, or successfully
loads.

Etcd2 Options

Like all options, these can be manually specified when calling 1oad () or via environment variables.

Key Default | Notes

ETCD2_URI Required

ETCD2_KEY Required
ETCD2_TIMEOUT 10 Timeout per-request
ETCD2_RETRY_MAX 1 Number of retries to attempt
ETCD2_RETRY_INTERVAL | 10 Wait period between retries

1.1.5 Loading from AWS Parameter Store

As mentioned under the Dependencies section, the dependencies to load from the parameter store are not included by
default. As a result, we need to first install our extra dependencies.

pip install aumbry []

To use the parameter store functionality, we need to use the generic configuration class or force the usage of the generic
handler on 1oad () and save ().

6 Chapter 1. Installation

Aumbry Documentation, Release 0.8.0

import

You can either specify the options here or via environment variables

Time to load it up!

it works!

Note: If you need to mix configuration types, such as using a Yam1Config, you’ll need to tell Aumbry to attempt
to coerce the configuration using the aumbry. formats.generic.GenericHandler when calling aumbry.
load () and aumbry.save ().

Parameter Store Options

Like all options, these can be manually specified when calling 1oad () or via environment variables.

Key Default Notes
PARAMETER_STORE_AWS_REGION Required
PARAMETER_STORE_PREFIX Required
PARAMETER_STORE_AWS_ACCESS_ID If empty, the default machine credentials are
used
PARAMETER_STORE_AWS_ACCESS_SECRET If empty, the default machine credentials are
used
PARAMETER_STORE_AWS_SESSION_TOKEN If empty, the default machine credentials are
used
PARAMETER_STORE_AWS_KMS_KEY_ID | Account
Default

1.1.6 Building Configuration Models

Because Aumbry uses Alchemize for model de/serialization, it’s just a matter of defining out the models in the Al-
chemize method.

Example Yaml Configuration

(continues on next page)

1.1. Using Aumbry 7

https://alchemize.readthedocs.io/en/latest/

Aumbry Documentation, Release 0.8.0

(continued from previous page)

Example Code Load and Parse that config

import
from import

postgres

One of the things you might have noticed is that the explicit mapping allows for us to take an attribute name such as
base-uri which isn’t compatible with Python, and map it over to base_uri.

More details can be found on building your mappings in the Alchemize documentation.

1.2 API Documentation

aumbry.FILE
str — Alias of SourceTypes.file

aumbry .CONSUL
str — Alias of SourceTypes.consul

class aumbry.Attr (attr_name, attr_type, serialize=True, required=False, coerce=None)
Attribute Definition

Parameters

* name — Python attribute name

8 Chapter 1. Installation

https://alchemize.readthedocs.io/en/latest/

Aumbry Documentation, Release 0.8.0

* type — Attribute type (e.g str, int, dict, etc)

* serialize — Determines if the attribute can be serialized

* required - Forces attribute to be defined

* coerce — Forces attribute to be coerced to its type (primitive types)

aumbry . load (source_name, config_class, options=None, search_paths=None, preprocessor=None, han-

dler=None)
Loads a configuration from a source into the specified Config type

Parameters
e source_name (str)- The name of the desired source.

* config class (AumbryConfig) — The resulting class of configuration you wish to
deserialize the data into.

* options (dict, optional)— The options used by the source handler. The keys are
determined by each source handler. Refer to your source handler documentation on what
options are available.

* search_paths (1ist, optional)— A list paths for custom source handlers

* preprocessor (function)— A function that pre-processes the source data before load-
ing into the configuration object.

* handler (AbstractHandler) — An instance of a handler to process the configuration
data.

Returns An instance of the passed in config_class

aumbry .merge (config_class, sources, preprocessor=None, handler=None)
Loads a configuration from multiple sources into the specified Config type. Each source has to be the same type.

Parameters

* config class (AumbryConfig) — The resulting class of configuration you wish to
deserialize the data into.

* sources — an iterable collection of dicts with with the following keys: source_name (str):
The name of the desired source. options (dict, optional): The options used by the source
handler.

The keys are determined by each source handler. Refer to your source handler docu-
mentation on what options are available.
search_paths (list, optional): A list paths for custom source handlers
* preprocessor (function)— A function that pre-processes the source data before load-
ing into the configuration object.

* handler (AbstractHandler) — An instance of a handler to process the configuration
data.

Returns An instance of the passed in config_class

aumbry . save (source_name, config_inst, options=None, search_paths=None, preprocessor=None, han-

dler=None)
Loads a configuration from a source into the specified Config type

Parameters

e source_name (str) - The name of the desired source.

1.2. API Documentation 9

Aumbry Documentation, Release 0.8.0

* config_inst (AumbryConfig)— The instance of a configuration class wish save.

* options (dict, optional)— The options used by the source handler. The keys are
determined by each source handler. Refer to your source handler documentation on what
options are available.

* search_paths (I1ist, optional)— A list paths for custom source handlers

* preprocessor (function)— A function that pre-processes the configration data before
saving to the source.

* handler (AbstractHandler)— An instance of a handler to process the configuration

data. Defaults to the configuration handler.

class aumbry.JsonConfig
A type of AumbryConfig for JSON Configurations.

class aumbry.YamlConfig
A type of AumbryConfig for Yaml Configurations.

class aumbry.GenericConfig
A type of AumbryConfig for Generic Dict Configurations.

class aumbry.SourceTypes
Used to specified the source type to load a configuration.

consul = 'consul'

etcd2 = 'etcd2'

fernet = 'fernet'
file = 'file'
parameter_store = 'parameter_ store'

1.2.1 Format Handlers

class aumbry.formats.generic.GenericHandler

deserialize (raw_config, config_cls)
Method to handle deserialization to a Config object.

serialize (config)
Method to handle serialization to a string.

class aumbry.formats.yml.YamlHandler

deserialize (raw_config, config_cls)
Method to handle deserialization to a Config object.

serialize (config)
Method to handle serialization to a string.

class aumbry.formats.js.JsonHandler

deserialize (raw_config, config_cls)
Method to handle deserialization to a Config object.

serialize (config)
Method to handle serialization to a string.

10 Chapter 1

. Installation

Aumbry Documentation, Release 0.8.0

1.3 CLI Documentation

Warning: This is an unstable feature of aumbry. Use with discretion!

1.3.1 Installation

The Aumbry command-line interface is available as an extra requirement available on PyPI.

pip install aumbry[cli]

1.3.2 Usage

usage: aumbry [-h] {upload,edit,view}
CLI Tool Aumbry

positional arguments:
{upload, edit,view}

upload Uploads a configuration file
edit Edits a configuration file
view Displays a configuration file

optional arguments:
-h, —-help show this message and

Upload

The upload sub-command allows for you to push up a configuration.

aumbry upload
——file-type yml
——param-store-region us-east-1
—-—param-store-prefix /my/aws/prefix
./path/to/my/config.yml
my.aumbry.config:ConfigClass
parameter_store

Edit

The edit sub-command enabled you to open up your configuration file.

aumbry edit ./path/to/my/config.yml

View

The view sub-command prints out your configuration file to stdout. This feature is usually used in conjunction with
encrypted configuration files.

1.3. CLI Documentation 11

Aumbry Documentation, Release 0.8.0

aumbry view ./path/to/my/config.yml

1.3.3 Encrypted Configuration

Encryption and Decryption of configuration happens using Cryptography’s Fernet capability. To use this functionality,
provide your key via the ——fernet-key cli option.

12 Chapter 1. Installation

CHAPTER 2

Indices and tables

* genindex
* modindex

e search

13

Aumbry Documentation, Release 0.8.0

14 Chapter 2. Indices and tables

Python Module Index

aumbry, 8

15

Aumbry Documentation, Release 0.8.0

16 Python Module Index

Index

A

Attr (class in aumbry), 8
aumbry (module), 8

C

consul (aumbry.SourceTypes attribute), 10
CONSUL (in module aumbry), 8

D

deserialize() (aumbry.formats.generic.GenericHandler
method), 10

deserialize() (aumbry.formats.js.JsonHandler method), 10

deserialize() (aumbry.formats.yml. YamlHandler method),
10

E

etcd2 (aumbry.SourceTypes attribute), 10

F

fernet (aumbry.SourceTypes attribute), 10
file (aumbry.SourceTypes attribute), 10
FILE (in module aumbry), 8

G

GenericConfig (class in aumbry), 10
GenericHandler (class in aumbry.formats.generic), 10

J

JsonConfig (class in aumbry), 10
JsonHandler (class in aumbry.formats.js), 10

L

load() (in module aumbry), 9

M

merge() (in module aumbry), 9

P

parameter_store (aumbry.SourceTypes attribute), 10

S

save() (in module aumbry), 9

serialize() (aumbry.formats.generic.GenericHandler
method), 10

serialize() (aumbry.formats.js.JsonHandler method), 10

serialize() (aumbry.formats.yml.YamlHandler method),
10

SourceTypes (class in aumbry), 10

Y

YamlConfig (class in aumbry), 10
YamlHandler (class in aumbry.formats.yml), 10

17

	Installation
	Using Aumbry
	API Documentation
	CLI Documentation

	Indices and tables
	Python Module Index

