

Contents

	Overview
	Installation

	Getting started

	Full Documentation

	Development

	Installation

	Usage

	Reference
	audit_alembic

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.2.0 (TBD)

	0.1.0 (2017-06-21)

	Acknowledgements

Indices and tables

	Index

	Module Index

	Search Page

Overview

	docs
	[image: Documentation Status] [https://readthedocs.org/projects/Audit-Alembic]

	tests
	
[image: Travis-CI Build Status] [https://travis-ci.org/jpassaro/Audit-Alembic] | [image: Coverage Status] [https://codecov.io/github/jpassaro/Audit-Alembic]

	package
	
[image: PyPI Package latest release] [https://pypi.python.org/pypi/Audit-Alembic]

An Alembic plugin to keep records of upgrades and downgrades.

	Free software: MIT license

Installation

pip install Audit-Alembic

Getting started

Quickstart

Create an Alembic environment [http://alembic.zzzcomputing.com/en/latest/tutorial.html] if you don’t
already have one. Edit its env.py to include the following:

... imports ...
import audit_alembic
from myapp import version

if not audit_alembic.alembic_supports_callback():
 raise audit_alembic.exc.AuditSetupError(
 'This Alembic version does not have on_version_apply')
auditor = audit_alembic.Auditor.create(version)

def run_migrations_offline():
 ...
 context.configure(
 ...
 on_version_apply=auditor.listen,
)
 ...

def run_migrations_offline():
 ...
 context.configure(
 ...
 on_version_apply=auditor.listen
)
...

More involved

Auditor.create() is a factory method: it creates an Alembic history
table for you and merely asks you to specify your application version (though
it allows much else to be customized as well). If you are already maintaining a
table you wish to add records to whenever an Alembic operation takes place, and
you have a callable that creates a row for that table, you can instantiate
Auditor directly:

auditor = Auditor(HistoryTable, HistoryTable.alembic_version_applied)

In this case alembic_version_applied must return a dictionary that can
serve as binds for an INSERT statement on HistoryTable. It has the same
signature as documented for Alembic’s on_version_apply hook.

Full Documentation

Once the 0.2.0 release is complete, the docs will be accessible here:
https://Audit-Alembic.readthedocs.io/

Development

Status

The bulk of the test suite is complete and passing for Postgres, mysql, and
SQLite. Travis does not appear to support MSSQL or Oracle so test status for
those DB backends is not known. If you find that it does not work for your
backend, pull requests to make it so will be happily accepted.

Please feel free to expand from there. See the issues for a list of known
issues to work on.

Testing

To run basic tests:

$ virtualenv venv && source venv/bin/activate
(venv) $ python setup.py install
(venv) $ pip install pytest psycopg2
(venv) $ pytest

To run all tests (i.e. py2 + py3, across all database drivers), run:

$ tox

See CONTRIBUTING.rst for more detail.
Also see our Travis setup [https://travis-ci.org/jpassaro/Audit-Alembic].

Installation

At the command line:

pip install Audit-Alembic

Usage

To use Audit-Alembic in a project:

import audit_alembic

Reference

	audit_alembic

audit_alembic

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

These suggestions are largely adapted from those provided by the cookiecutter
template used for this project [https://github.com/ionelmc/cookiecutter-pylibrary]. I rewrote a great
deal, and I stand what I haven’t changed. Acknowledgment nonetheless is due to
others who gave me something to tweak.

Bug reports

When reporting a bug [https://github.com/jpassaro/Audit-Alembic/issues]
please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

Audit-Alembic could always use more documentation, whether as part of the
official Audit-Alembic docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at gh-issues [https://github.com/jpassaro/Audit-Alembic/issues].

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that I am just this guy, you know? If at all possible, please try
implementing yourself; if it doesn’t work, submit as a pull request and we’ll
see what we can make out of it.

Development

To set up Audit-Alembic for local development:

	Fork Audit-Alembic [https://github.com/jpassaro/Audit-Alembic]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/Audit-Alembic.git

	Create a branch for local development:

git checkout -b name-of-your-change

Now you can make your changes locally.

	When you’re done making changes, make sure tests pass – see Testing.

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

Please observe Tim Pope’s guidelines [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html] for a good commit message.

	Submit a pull request through the GitHub website.

Testing

Testing is required – no patch will be accepted without tests that fail if
implemented without the fix.

Trigger your virtual environment and install the test dependencies:

$ pip install flake8 # required for linting
$ pip install pytest mock # required for testing
$ pip install psycopg2 # enables running tests with postgresql
$ pip install mysql-python # enables running tests with mysql
$ pip install pytest-cov # enables coverage tracking

First run flake8 to ensure no facepalms. Please keep the library
PEP8-compliant; deviations are likely to be nitpicked in code review.

Now to run tests:

$ python setup.py install &&
$ pytest -k test_my_change # substitute the name of the new test you wrote
$ pytest --cov # runs all available tests

The above commands run the tests using SQLite and whatever version of python
you’re running. The full test suite runs several database drivers and several
versions of python. You can get this running by just submitting a pull request
and Travis will do the rest. It’s nonetheless (gently) encouraged, and not all
that difficult, to run them yourself before submitting a pull request. It’s one
easy way to assure yourself the change can be accepted.

	Database backends

	Running with SQLite is trivial, as we’ve seen. Running with postgresql or
mysql requires a working installation of the respective database and its
respective Python driver (for the latter see the pip installs above). The
principles are pretty simple and ought to work with any SQL dialect that
also works for Alembic (e.g. Oracle, MSSQL), but no working examples are
known other than those directly supported by Travis: sqlite, postgresql,
mysql.

Running tests on postgresql and mysql backends is nearly identical, so
let’s say you want to run with postgresql. As mentioned above, install
a postgresql database if you don’t have one, and pip install psycopg2.

By default, when asked to run with postgresql or mysql, the test suite
expects a database named test, usable by a user named scott who has
a password of tiger (run grep psql .travis.yml to see how travis
creates it, or grep mysql .travis.yml for the same with mysql). This
default can be overridden if you have your own configuration you want to
work with. Either way, beware that the tests include DROP ALL TABLES as
a teardown command, so make sure the database you’re using, test or
otherwise, contains no data you need to preserve.

	Running pytest with different backends

	To use the default setup, database test and user scott with
password tiger:

$ pytest --cov --db postgresql
$ pytest --cov --db mysql

Valid inputs for the --db option can be seen by running
pytest --dbs= [sic]. (Please note, while configurations exist
for mssql and oracle, the author has no access to those databases;
if you are able to run tests on these, please let me know what you find,
pass or fail!)

To use a different DB configuration, use a SQLAlchemy URI string:

$ pytest --cov --dburi postgresql://scott:tiger@127.0.0.1:5432/test

The --dburi option can point to any database on any backend, as long as
a SQLAlchemy Dialect for it can be found on your system.

You can combine as many of these options as you like to run multiple
backends in a single pytest invocation:

$ pytest --cov --db mysql --db postgresql --dburi sqlite:///my-file.db

	tox

	tox is a standard tool used to run several distinct testing environments.
It creates a new virtual environment for each combination of Python
interpreter and database backend it’s asked to run. It can be installed
inside or outside your own virtual environment.

Install tox using pip, and on your system install whatever extra
interpreters you want to test with. (You should test at a minimum with
2.7 and one of 3.4, 3.5, or 3.6. Whatever you’re unable to test, Travis
will handle when you create a pull request.)

Also install and set up whatever database servers you’ll be
testing against. If you want want tox to use a database configuration
other than the default, export as follows:

$ export POSTGRESQL='--dburi postgresql://scott:tiger@127.0.0.1:5432/test'

The default list of environments is found in tox.ini or by running
tox -l. You can adjust it by exporting to TOXENV or using
tox -e to specify environments. Again, what you’re unable to test
yourself.

When the environment variables are set to your liking, run:

tox

It will run all the tests in all available environments and report on
results. Furthermore, it will track coverage automatically.

To run just your test on all environments, run like this:

tox -- -k test_my_change

For more granular control on what tests tox runs, read its docs,
and our tox.ini.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code, just
submit the pull request.

When ready for merging, you should:

	Create new tests covering your change, and use tox to
assure yourself the change works. [1]. If you can write one that fails
without your patch, even better! If your patch includes new code and does
not include a test, it is unlikely to be accepted; if any tests fail in any
Travis environment, they will have to be resolved before the change is
accepted.

	Update documentation when there’s new API, functionality etc. Docstrings are
usually the best way to do this.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	[1]	If you don’t have all the necessary python versions available locally
you can rely on Travis - it will run the tests [https://travis-ci.org/jpassaro/Audit-Alembic/pull_requests] for each
change you add in the pull request.

Tips

To run a subset of tests:

tox -e envname -- py.test -k test_myfeature

Simple pytest -k test_myfeature will not work; the package must be
installed first. tox does that for you.

To run all the test environments in parallel (you need to pip install detox):

detox

(Nota bene: the author has never done this.)

Authors

	John Passaro

Changelog

0.2.0 (TBD)

Alpha release, pending a patch in alembic without which we cannot support
stamps.

	Creates a listener for Alembic’s on_version_apply callback hook which
records information from that callback to a SQL table of the user’s choosing.

	Test setup making use of SQLAlchemy testing plugins and utilities and Alembic
testing utilities.

	Support for running with –sql as well as online mode.

	Tests covering stamps, branches, and a couple of other complex use cases.

	Test setup to cover multiple DB backends. Known to work: SQLite, Postgresql,
mysql.

0.1.0 (2017-06-21)

	First release on PyPI. (powered by cookiecutter-pylibrary [https://github.com/ionelmc/cookiecutter-pylibrary])

Acknowledgements

Many thanks are of course due to Mike Bayer [http://techspot.zzzeek.org], the author of the
amazing libraries SQLAlchemy [http://sqlalchemy.org] and Alembic [http://alembic.zzzcomputing.com] which this present effort seeks to
extend.

Zeconomy [http://zeconomy.com] enabled the writing of this library and is one of its first adopters.

Thanks also to ionelmc [http://github.com/ionelmc], who wrote a template [http://github.com/ionelmc/cookiecutter-pylibrary] that vastly sped up the initial
development process.

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 audit_alembic	

Index

 A

A

 	
 	audit_alembic (module)

 _static/ajax-loader.gif

_static/down.png

_static/up.png

_static/down-pressed.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		Contents

 		Overview

 		Installation

 		Getting started

 		Quickstart

 		More involved

 		Full Documentation

 		Development

 		Status

 		Testing

 		Installation

 		Usage

 		Reference

 		audit_alembic

 		Contributing

 		Bug reports

 		Documentation improvements

 		Feature requests and feedback

 		Development

 		Testing

 		Pull Request Guidelines

 		Tips

 		Authors

 		Changelog

 		0.2.0 (TBD)

 		0.1.0 (2017-06-21)

 		Acknowledgements

_static/up-pressed.png

_static/comment-bright.png

