

Contents

	A real-time audio time-scale modification library
	Installation

	Basic usage

	Thanks

	Indices and tables

API

	Time-Scale Modification
	Time-Scale Modification procedures

	TSM Object

	Readers and Writers
	Numpy arrays

	Wav files

	Play in real-time

	Implementing your own

	Gstreamer plugins
	OLA

	WSOLA

	Phase Vocoder

	Internal API
	Analysis-Synthesis based TSM procedures

	Circular buffers

	Window functions

	Gstreamer filters

A real-time audio time-scale modification library

[image: Documentation Status]
 [http://audiotsm.readthedocs.io/en/latest/?badge=latest][image: Build Status]
 [https://travis-ci.org/Muges/audiotsm]AudioTSM is a python library for real-time audio time-scale modification
procedures, i.e. algorithms that change the speed of an audio signal without
changing its pitch.

	Documentation:

	https://audiotsm.readthedocs.io/

	Examples:

	https://muges.github.io/audiotsm/

	Source code repository and issue tracker:

	https://github.com/Muges/audiotsm/

	Python Package Index:

	https://pypi.python.org/pypi/audiotsm/

	License:

	MIT – see the file LICENSE for details.

Installation

Audiotsm should work with python 2.7 and python 3.4+.

You can install the latest version of audiotsm with pip:

pip install audiotsm

If you want to use the gstreamer plugins, you should install PyGObject [https://pygobject.readthedocs.io/en/latest/getting_started.html] and
python-gst [https://gstreamer.freedesktop.org/modules/gst-python.html], and use the following command to install audiotsm:

pip install audiotsm[gstreamer]

If you want to play the output of the TSM procedures in real time, or to use
the examples, you should install audiotsm as follow:

pip install audiotsm[stream]

Basic usage

The audiotsm package implements several time-scale modification procedures:

	OLA (Overlap-Add);

	WSOLA (Waveform Similarity-based Overlap-Add);

	Phase Vocoder.

The OLA procedure should only be used on percussive audio signals. The WSOLA
and the Phase Vocoder procedures are improvements of the OLA procedure, and
should both give good results in most cases.

If you are unsure which procedure to choose, the Phase Vocoder should sound
best in most cases. You can listen to the output of the different procedures on
various audio files and at various speeds on the examples page [https://muges.github.io/audiotsm/].

Below is a basic example showing how to reduce the speed of a wav file by half
using the WSOLA procedure:

from audiotsm import phasevocoder
from audiotsm.io.wav import WavReader, WavWriter

with WavReader(input_filename) as reader:
 with WavWriter(output_filename, reader.channels, reader.samplerate) as writer:
 tsm = phasevocoder(reader.channels, speed=0.5)
 tsm.run(reader, writer)

Thanks

If you are interested in time-scale modification procedures, I highly recommend
reading A Review of Time-Scale Modification of Music Signals [http://www.mdpi.com/2076-3417/6/2/57] by Jonathan
Driedger and Meinard Müller.

Indices and tables

	Index

	Module Index

	Search Page

Time-Scale Modification

Time-Scale Modification procedures

The audiotsm module provides several time-scale modification procedures:

	ola() (Overlap-Add);

	wsola() (Waveform Similarity-based Overlap-Add);

	phasevocoder() (Phase Vocoder).

The OLA procedure should only be used on percussive audio signals. The WSOLA
and the Phase Vocoder procedures are improvements of the OLA procedure, and
should both give good results in most cases.

Note

If you are unsure which procedure and parameters to choose, using
phasevocoder() with the default parameters should give good
results in most cases. You can listen to the output of the different
procedures on various audio files and at various speeds on the examples
page [https://muges.github.io/audiotsm/].

Each of the function of this module returns a TSM
object which implements a time-scale modification procedure.

	
audiotsm.ola(channels, speed=1.0, frame_length=256, analysis_hop=None, synthesis_hop=None)

	Returns a TSM object implementing the OLA
(Overlap-Add) time-scale modification procedure.

In most cases, you should not need to set the frame_length, the
analysis_hop or the synthesis_hop. If you want to fine tune these
parameters, you can check the documentation of the
AnalysisSynthesisTSM class to
see what they represent.

	Parameters:	
	channels (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of channels of the input signal.

	speed (float [https://docs.python.org/3.6/library/functions.html#float], optional) – the speed ratio by which the speed of the signal will be
multiplied (for example, if speed is set to 0.5, the output signal
will be half as fast as the input signal).

	frame_length (int [https://docs.python.org/3.6/library/functions.html#int], optional) – the length of the frames.

	analysis_hop (int [https://docs.python.org/3.6/library/functions.html#int], optional) – the number of samples between two consecutive analysis
frames (speed * synthesis_hop by default). If analysis_hop is
set, the speed parameter will be ignored.

	synthesis_hop (int [https://docs.python.org/3.6/library/functions.html#int], optional) – the number of samples between two consecutive
synthesis frames (frame_length // 2 by default).

	Returns:	a audiotsm.base.tsm.TSM object

	
audiotsm.wsola(channels, speed=1.0, frame_length=1024, analysis_hop=None, synthesis_hop=None, tolerance=None)

	Returns a TSM object implementing the WSOLA
(Waveform Similarity-based Overlap-Add) time-scale modification procedure.

In most cases, you should not need to set the frame_length, the
analysis_hop, the synthesis_hop, or the tolerance. If you want
to fine tune these parameters, you can check the documentation of the
AnalysisSynthesisTSM class to
see what the first three represent.

WSOLA works in the same way as OLA, with the exception that it allows
slight shift (at most tolerance) of the position of the analysis
frames.

	Parameters:	
	channels (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of channels of the input signal.

	speed (float [https://docs.python.org/3.6/library/functions.html#float], optional) – the speed ratio by which the speed of the signal will be
multiplied (for example, if speed is set to 0.5, the output signal
will be half as fast as the input signal).

	frame_length (int [https://docs.python.org/3.6/library/functions.html#int], optional) – the length of the frames.

	analysis_hop (int [https://docs.python.org/3.6/library/functions.html#int], optional) – the number of samples between two consecutive analysis
frames (speed * synthesis_hop by default). If analysis_hop is
set, the speed parameter will be ignored.

	synthesis_hop (int [https://docs.python.org/3.6/library/functions.html#int], optional) – the number of samples between two consecutive
synthesis frames (frame_length // 2 by default).

	tolerance (int [https://docs.python.org/3.6/library/functions.html#int]) – the maximum number of samples that the analysis frame can
be shifted.

	Returns:	a audiotsm.base.tsm.TSM object

	
audiotsm.phasevocoder(channels, speed=1.0, frame_length=2048, analysis_hop=None, synthesis_hop=None)

	Returns a TSM object implementing the phase
vocoder time-scale modification procedure.

In most cases, you should not need to set the frame_length, the
analysis_hop or the synthesis_hop. If you want to fine tune these
parameters, you can check the documentation of the
AnalysisSynthesisTSM class to
see what they represent.

	Parameters:	
	channels (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of channels of the input signal.

	speed (float [https://docs.python.org/3.6/library/functions.html#float], optional) – the speed ratio by which the speed of the signal will be
multiplied (for example, if speed is set to 0.5, the output signal
will be half as fast as the input signal).

	frame_length (int [https://docs.python.org/3.6/library/functions.html#int], optional) – the length of the frames.

	analysis_hop (int [https://docs.python.org/3.6/library/functions.html#int], optional) – the number of samples between two consecutive analysis
frames (speed * synthesis_hop by default). If analysis_hop is
set, the speed parameter will be ignored.

	synthesis_hop (int [https://docs.python.org/3.6/library/functions.html#int], optional) – the number of samples between two consecutive
synthesis frames (frame_length // 4 by default).

	Returns:	a audiotsm.base.tsm.TSM object

TSM Object

The audiotsm.base.tsm module provides an abstract class for real-time
audio time-scale modification procedures.

	
class audiotsm.base.tsm.TSM

	An abstract class for real-time audio time-scale modification
procedures.

If you want to use a TSM object to run a TSM
procedure on a signal, you should use the
run() method in most cases.

	
clear()

	Clears the state of the TSM object,
making it ready to be used on another signal (or another part of a
signal).

This method should be called before processing a new file, or seeking
to another part of a signal.

	
flush_to(writer)

	Writes as many output samples as possible to writer, assuming
that there are no remaining samples that will be added to the input
(i.e. that the write_to() method will not
be called), and returns the number of samples that were written.

	Parameters:	writer – a audiotsm.io.base.Writer.

	Returns:	a tuple (n, finished), with:
	n the number of samples that were written to writer

	finished a boolean that is True when there are no samples
remaining to flush.

	Return type:	(int [https://docs.python.org/3.6/library/functions.html#int], bool [https://docs.python.org/3.6/library/functions.html#bool])

	
get_max_output_length(input_length)

	Returns the maximum number of samples that will be written to the
output given the numver of samples of the input.

	Parameters:	input_length (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of samples of the input.

	Returns:	the maximum number of samples that will be written to the
output.

	
read_from(reader)

	Reads as many samples as possible from reader, processes them,
and returns the number of samples that were read.

	Parameters:	reader – a audiotsm.io.base.Reader.

	Returns:	the number of samples that were read from reader.

	
run(reader, writer, flush=True)

	Runs the TSM procedure on the content of reader and writes the
output to writer.

	Parameters:	
	reader – a audiotsm.io.base.Reader.

	writer – a audiotsm.io.base.Writer.

	flush (bool [https://docs.python.org/3.6/library/functions.html#bool], optional) – True if there is no more data to process.

	
set_speed(speed)

	Sets the speed ratio.

	Parameters:	speed (float [https://docs.python.org/3.6/library/functions.html#float]) – the speed ratio by which the speed of the signal will be
multiplied (for example, if speed is set to 0.5, the output
signal will be half as fast as the input signal).

	
write_to(writer)

	Writes as many result samples as possible to writer.

	Parameters:	writer – a audiotsm.io.base.Writer.

	Returns:	a tuple (n, finished), with:
	n the number of samples that were written to writer

	finished a boolean that is True when there are no samples
remaining to write. In this case, the
read_from() method should be called
to add new input samples, or, if there are no remaining input
samples, the flush_to() method
should be called to get the last output samples.

	Return type:	(int [https://docs.python.org/3.6/library/functions.html#int], bool [https://docs.python.org/3.6/library/functions.html#bool])

Readers and Writers

TSM objects use Reader
objects as input and Writer objects as output.

The audiotsm.io package provides Readers and Writers allowing to use
numpy arrays or wav files as input or output of a
TSM, to play the output in real-time, as well as base classes to implement your own Readers and Writers.

Numpy arrays

The audiotsm.io.array module provides a Reader and Writers allowing to
use a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] as input or output of a
TSM object.

	
class audiotsm.io.array.ArrayReader(data)

	Bases: audiotsm.io.base.Reader

A Reader allowing to use
numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] as input of a TSM
object.

	Parameters:	data (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a matrix of shape (m, n), with m the number of
channels and n the length of the buffer, where the samples will be
read.

	
class audiotsm.io.array.ArrayWriter(channels)

	Bases: audiotsm.io.base.Writer

A Writer allowing to get the output of a
TSM object as a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray].

Writing to an ArrayWriter will add the data at
the end of the data attribute.

	Parameters:	channels (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of channels of the signal.

	
data

	A numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (m, n), with m the
number of channels and n the length of the data, where the samples
have written.

	
class audiotsm.io.array.FixedArrayWriter(data)

	Bases: audiotsm.io.base.Writer

A Writer allowing to use
numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] as output of a TSM object.

Contrary to an ArrayWriter, a
FixedArrayWriter takes the buffer in which the
data will be written as a parameter of its constructor. The buffer is of
fixed size, and it will not be possible to write more samples to the
FixedArrayWriter than the buffer can contain.

	Parameters:	data (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a matrix of shape (m, n), with m the number of
channels and n the length of the buffer, where the samples will be
written.

Wav files

The audiotsm.io.wav module provides a Reader
and a Writer allowing to use wav files as input or
output of a TSM object.

	
class audiotsm.io.wav.WavReader(filename)

	Bases: audiotsm.io.base.Reader

A Reader allowing to use a wav file as input
of a TSM object.

You should close the WavReader after using it
with the close() method, or use it in a
with statement as follow:

with WavReader(filename) as reader:
 # use reader...

	Parameters:	filename (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – the name of an existing wav file.

	
close()

	Close the wav file.

	
samplerate

	The samplerate of the wav file.

	
samplewidth

	The sample width in bytes of the wav file.

	
class audiotsm.io.wav.WavWriter(filename, channels, samplerate)

	Bases: audiotsm.io.base.Writer

A Writer allowing to use a wav file as output
of a TSM object.

You should close the WavWriter after using it
with the close() method, or use it in a
with statement as follow:

with WavWriter(filename, 2, 44100) as writer:
 # use writer...

	Parameters:	
	filename (str [https://docs.python.org/3.6/library/stdtypes.html#str]) – the name of the wav file (it will be overwritten if it
already exists).

	channels (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of channels of the signal.

	samplerate (int [https://docs.python.org/3.6/library/functions.html#int]) – the sampling rate of the signal.

	
close()

	Close the wav file.

Play in real-time

The audiotsm.io.stream module provides a
Writer allowing to play the output of a
TSM object in real-time.

	
class audiotsm.io.stream.StreamWriter(channels, samplerate, **attrs)

	Bases: audiotsm.io.base.Writer

A Writer allowing to play the output of a
TSM object directly.

You should stop the StreamWriter after using
it with the stop() method, or use it
in a with statement as follow:

with WavWriter(2, 44100) as writer:
 # use writer...

	Parameters:	
	channels (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of channels of the signal.

	samplerate (int [https://docs.python.org/3.6/library/functions.html#int]) – the sampling rate of the signal.

	attrs – additional parameters used to create the
sounddevice.OutputStream [https://python-sounddevice.readthedocs.io/en/latest/index.html#sounddevice.OutputStream] that is used by the
StreamWriter.

	
stop()

	Stop the stream.

Implementing your own

The audiotsm.io.base module provides base classes for the input and
output of TSM objects.

	
class audiotsm.io.base.Reader

	An abstract class for the input of a TSM
object.

	
channels

	The number of channels of the Reader.

	
empty

	True if there is no more data to read.

	
read(buffer)

	Reads as many samples from the Reader as
possible, write them to buffer, and returns the number of samples
that were read.

	Parameters:	buffer (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a matrix of shape (m, n), with m the number
of channels and n the length of the buffer, where the samples
will be written.

	Returns:	the number of samples that were read. It should always be
equal to the length of the buffer, except when there is no more
values to be read.

	Raises:	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the Reader and the
buffer do not have the same number of channels

	
skip(n)

	Try to skip n samples, an returns the number of samples that
were actually skipped.

	
class audiotsm.io.base.Writer

	An abstract class for the output of a TSM
object.

	
channels

	The number of channels of the Writer.

	
write(buffer)

	Write as many samples from the Writer as
possible from buffer, and returns the number of samples that were
written.

	Parameters:	buffer (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a matrix of shape (m, n), with m the number
of channels and n the length of the buffer, where the samples
will be read.

	Returns:	the number of samples that were written. It should always be
equal to the length of the buffer, except when there is no more
space in the Writer.

	Raises:	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the Writer and the
buffer do not have the same number of channels

Gstreamer plugins

The audiotsm.gstreamer module implements three audio filters allowing to
use the TSM procedures with gstreamer:

	audiotsm-ola, defined in the audiotsm.gstreamer.ola module;

	audiotsm-wsola, defined in the audiotsm.gstreamer.wsola module;

	audiotsm-phase-vocoder, defined in the
audiotsm.gstreamer.phasevocoder module.

Note

If you are unsure which filter to choose, using audiotsm-phase-vocoder
should give good results in most cases. You can listen to the output of the
different procedures on various audio files and at various speeds on the
examples page [https://muges.github.io/audiotsm/].

In order to use these audio filters, you should first import the module
corresponding to the TSM procedure you want to use, for example:

import audiotsm.gstreamer.phasevocoder

Then, you should create the audio filter with Gst.ElementFactory.make, as
follow:

tsm = Gst.ElementFactory.make("audiotsm-phase-vocoder")

You should then create a gstreamer pipeline using the audio filter you created.
See examples/audiotsmcli_gst.py for an example of pipeline.

The audio filters work in the same manner as the scaletempo gstreamer
plugin. You can change the playback rate by sending a seek event to the
pipeline:

speed = 0.5
pipeline.seek(speed, Gst.Format.BYTES, Gst.SeekFlags.FLUSH,
 Gst.SeekType.NONE, -1, Gst.SeekType.NONE, -1)

The other parameters of the TSM procedure are available as properties, as
documented for each of the procedures below.

OLA

The audiotsm.gstreamer.ola module implements an audio filter allowing to
use the OLA procedure with gstreamer.

	
class audiotsm.gstreamer.ola.OLA

	Bases: audiotsm.gstreamer.base.GstTSM

OLA gstreamer audio filter.

	
frame_length = <Mock name='mock.GObject.Property()' id='140220276541480'>

	The length of the frames.

This is a write-only attribute, that will only take effect the next time
the audio filter is setup (usually on the next song).

	
plugin_name = 'audiotsm-ola'

	The plugin name, to be used in Gst.ElementFactory.make.

	
synthesis_hop = <Mock name='mock.GObject.Property()' id='140220276541480'>

	The number of samples between two consecutive synthesis frames.

This is a write-only attribute, that will only take effect the next time
the audio filter is setup (usually on the next song).

WSOLA

The audiotsm.gstreamer.wsola module implements an audio filter
allowing to use the WSOLA procedure with gstreamer.

	
class audiotsm.gstreamer.wsola.WSOLA

	Bases: audiotsm.gstreamer.base.GstTSM

WSOLA gstreamer audio filter.

	
frame_length = <Mock name='mock.GObject.Property()' id='140220276541480'>

	The length of the frames.

This is a write-only attribute, that will only take effect the next time
the audio filter is setup (usually on the next song).

	
plugin_name = 'audiotsm-wsola'

	The plugin name, to be used in Gst.ElementFactory.make.

	
synthesis_hop = <Mock name='mock.GObject.Property()' id='140220276541480'>

	The number of samples between two consecutive synthesis frames.

This is a write-only attribute, that will only take effect the next time
the audio filter is setup (usually on the next song).

	
tolerance = <Mock name='mock.GObject.Property()' id='140220276541480'>

	The maximum number of samples that the analysis frame can be shifted.

This is a write-only attribute, that will only take effect the next time
the audio filter is setup (usually on the next song).

Phase Vocoder

The audiotsm.gstreamer.phasevocoder module implements an audio filter
allowing to use the phase vocoder procedure with gstreamer.

	
class audiotsm.gstreamer.phasevocoder.PhaseVocoder

	Bases: audiotsm.gstreamer.base.GstTSM

Phase vocoder gstreamer audio filter.

	
frame_length = <Mock name='mock.GObject.Property()' id='140220276541480'>

	The length of the frames.

This is a write-only attribute, that will only take effect the next time
the audio filter is setup (usually on the next song).

	
plugin_name = 'audiotsm-phase-vocoder'

	The plugin name, to be used in Gst.ElementFactory.make.

	
synthesis_hop = <Mock name='mock.GObject.Property()' id='140220276541480'>

	The number of samples between two consecutive synthesis frames.

This is a write-only attribute, that will only take effect the next time
the audio filter is setup (usually on the next song).

	
tolerance = <Mock name='mock.GObject.Property()' id='140220276541480'>

	The maximum number of samples that the analysis frame can be shifted.

This is a write-only attribute, that will only take effect the next time
the audio filter is setup (usually on the next song).

Internal API

Analysis-Synthesis based TSM procedures

The audiotsm.base.analysis_synthesis module provides a base class for
real-time analysis-synthesis based audio time-scale modification procedures.

	
class audiotsm.base.analysis_synthesis.AnalysisSynthesisTSM(converter, channels, frame_length, analysis_hop, synthesis_hop, analysis_window, synthesis_window, delta_before=0, delta_after=0)

	A audiotsm.base.tsm.TSM for real-time analysis-synthesis based
time-scale modification procedures.

The basic principle of an analysis-synthesis based TSM procedure is to
first decompose the input signal into short overlapping frames, called the
analysis frames. The frames have a fixed length frame_length, and are
separated by analysis_hop samples, as illustrated below:

 <--------frame_length--------><-analysis_hop->
Frame 1: [~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
Frame 2: [~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
Frame 3: [~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
...

It then relocates the frames on the time axis by changing the distance
between them (to synthesis_hop), as illustrated below:

 <--------frame_length--------><----synthesis_hop---->
Frame 1: [~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
Frame 2: [~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
Frame 3: [~~~~~~~~~~~~~~~~~~~~~~~~~~~~]
...

This changes the speed of the signal by the ratio analysis_hop /
synthesis_hop (for example, if the synthesis_hop is twice the
analysis_hop, the output signal will be half as fast as the input
signal).

However this simple method introduces artifacts to the signal. These
artifacts can be reduced by modifying the analysis frames by various
methods. This is done by a converter object, which converts the
analysis frames into modified frames called the synthesis frames.

To further reduce the artifacts, window functions (the analysis_window
and the synthesis_window) can be applied to the analysis frames and the
synthesis frames in order to smooth the signal.

Some TSM procedures (e.g. WSOLA-like methods) may need to have access to
some samples preceeding or following an analysis frame to generate the
synthesis frame. The delta_before and delta_after parameters allow to
specify the numbers of samples needed before and after the analysis frame,
so that they are available to the converter.

For more details on Time-Scale Modification procedures, I recommend reading
“A Review of Time-Scale Modification of Music Signals [http://www.mdpi.com/2076-3417/6/2/57]” by Jonathan
Driedger and Meinard Müller.

	Parameters:	
	converter (Converter) – an object that implements the conversion of the analysis
frames into synthesis frames.

	channels (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of channels of the input signal.

	frame_length (int [https://docs.python.org/3.6/library/functions.html#int]) – the length of the frames.

	analysis_hop (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of samples between two consecutive analysis
frames.

	synthesis_hop (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of samples between two consecutive
synthesis frames.

	analysis_window (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a window applied to the analysis frames

	synthesis_window (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a window applied to the synthesis frames

	delta_before (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of samples preceding an analysis frame that
the converter requires (this is usually 0, except for WSOLA-like
methods)

	delta_after (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of samples following an analysis frame that
the converter requires (this is usually 0, except for WSOLA-like
methods)

	
class audiotsm.base.analysis_synthesis.Converter

	A base class for objects implementing the conversion of analysis frames
into synthesis frames.

	
clear()

	Clears the state of the Converter, making it ready to be used on
another signal (or another part of a signal). It is called by the
clear() method and the constructor of
AnalysisSynthesisTSM.

	
convert_frame(analysis_frame)

	Converts an analysis frame into a synthesis frame.

	Parameters:	analysis_frame (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a matrix of shape (m, delta_before +
frame_length + delta_after), with m the number of channels,
containing the analysis frame and some samples before and after
(as specified by the delta_before and delta_after
parameters of the AnalysisSynthesisTSM calling the
Converter).

analysis_frame[:, delta_before:-delta_after] contains the
actual analysis frame (without the samples preceeding and following
it).

	Returns:	a synthesis frame represented as a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of
shape (m, frame_length), with m the number of channels.

	
set_analysis_hop(analysis_hop)

	Change the value of the analysis hop. This is called by the
set_speed() method.

Circular buffers

The audiotsm.utils module provides utility functions and classes used in
the implementation of time-scale modification procedures.

	
class audiotsm.utils.CBuffer(channels, max_length)

	A CBuffer is a circular buffer used to store multichannel audio
data.

It can be seen as a variable-size buffer whose length is bounded by
max_length. The CBuffer.write() and CBuffer.right_pad()
methods allow to add samples at the end of the buffer, while the
CBuffer.read() and CBuffer.remove() methods allow to remove
samples from the beginning of the buffer.

Contrary to the samples added by the CBuffer.write() and
CBuffer.read_from(), those added by the CBuffer.right_pad()
method are considered not to be ready to be read. Effectively, this means
that they can be modified by the CBuffer.add() and
CBuffer.divide() methods, but have to be marked as ready to be read
with the CBuffer.set_ready() method before being read with the
CBuffer.peek(), CBuffer.read(), or CBuffer.write_to()
methods.

	Parameters:	
	channels (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of channels of the buffer.

	max_length (int [https://docs.python.org/3.6/library/functions.html#int]) – the maximum length of the buffer (i.e. the maximum
number of samples that can be stored in each channel).

	
add(buffer)

	Adds a buffer element-wise to the CBuffer.

	Parameters:	buffer (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a matrix of shape (m, n), with m the number
of channels and n the length of the buffer.

	Raises:	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the CBuffer and the buffer do not
have the same number of channels or the CBuffer is smaller
than the buffer (self.length < n).

	
divide(array)

	Divides each channel of the CBuffer element-wise by the
array.

	Parameters:	array (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – an array of shape (n,).

	Raises:	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the length of the CBuffer is smaller
than the length of the array (self.length < n).

	
length

	The number of samples of each channel of the CBuffer.

	
peek(buffer)

	Reads as many samples from the CBuffer as possible, without
removing them from the CBuffer, writes them to the buffer,
and returns the number of samples that were read.

The samples need to be marked as ready to be read with the
CBuffer.set_ready() method in order to be read. This is done
automatically by the CBuffer.write() and
CBuffer.read_from() methods.

	Parameters:	buffer (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a matrix of shape (m, n), with m the number
of channels and n the length of the buffer, where the samples
will be written.

	Returns:	the number of samples that were read from the
CBuffer.

	Raises:	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the CBuffer and the buffer do not
have the same number of channels.

	
read(buffer)

	Reads as many samples from the CBuffer as possible, removes
them from the CBuffer, writes them to the buffer, and
returns the number of samples that were read.

The samples need to be marked as ready to be read with the
CBuffer.set_ready() method in order to be read. This is done
automatically by the CBuffer.write() and
CBuffer.read_from() methods.

	Parameters:	buffer (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a matrix of shape (m, n), with m the number
of channels and n the length of the buffer, where the samples
will be written.

	Returns:	the number of samples that were read from the
CBuffer.

	Raises:	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the CBuffer and the buffer do not
have the same number of channels.

	
read_from(reader)

	Reads as many samples as possible from reader, writes them to
the CBuffer, and returns the number of samples that were read.

The written samples are marked as ready to be read.

	Parameters:	reader – a audiotsm.io.base.Reader.

	Returns:	the number of samples that were read from reader.

	Raises:	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the CBuffer and reader do not have
the same number of channels.

	
ready

	The number of samples that can be read.

	
remaining_length

	The number of samples that can be added to the CBuffer.

	
remove(n)

	Removes the first n samples of the CBuffer, preventing
them to be read again, and leaving more space for new samples to be
written.

	Parameters:	n (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of samples to remove.

	Returns:	the number of samples that were removed.

	
right_pad(n)

	Add zeros at the end of the CBuffer.

The added samples are not marked as ready to be read. The
CBuffer.set_ready() will need to be called in order to be able to
read them.

	Parameters:	n (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of zeros to add.

	Raises:	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if there is not enough space to add the zeros.

	
set_ready(n)

	Mark the next n samples as ready to be read.

	Parameters:	n (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of samples to mark as ready to be read.

	Raises:	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if there is less than n samples that are not
ready yet.

	
to_array()

	Returns an array containing the same data as the CBuffer.

	Returns:	a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (m, n), with m
the number of channels and n the length of the buffer.

	
write(buffer)

	Writes as many samples from the buffer to the CBuffer
as possible, and returns the number of samples that were read.

The written samples are marked as ready to be read.

	Parameters:	buffer (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a matrix of shape (m, n), with m
the number of channels and n the length of the buffer, where
the samples will be read.

	Returns:	the number of samples that were written to the
CBuffer.

	Raises:	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the CBuffer and the buffer do not
have the same number of channels.

	
write_to(writer)

	Writes as many samples as possible to writer, deletes them from
the CBuffer, and returns the number of samples that were
written.

The samples need to be marked as ready to be read with the
CBuffer.set_ready() method in order to be read. This is done
automatically by the CBuffer.write() and
CBuffer.read_from() methods.

	Parameters:	writer – a audiotsm.io.base.Writer.

	Returns:	the number of samples that were written to writer.

	Raises:	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the CBuffer and writer do not have
the same number of channels.

	
class audiotsm.utils.NormalizeBuffer(length)

	A NormalizeBuffer is a mono-channel circular buffer, used to
normalize audio buffers.

	Parameters:	length (int [https://docs.python.org/3.6/library/functions.html#int]) – the length of the NormalizeBuffer.

	
add(window)

	Adds a window element-wise to the NormalizeBuffer.

	Parameters:	window (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – an array of shape (n,).

	Raises:	ValueError [https://docs.python.org/3.6/library/exceptions.html#ValueError] – if the window is larger than the buffer (n >
self.length).

	
length

	The length of the CBuffer.

	
remove(n)

	Removes the first n values of the NormalizeBuffer.

	Parameters:	n (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of values to remove.

	
to_array(start=0, end=None)

	Returns an array containing the same data as the
NormalizeBuffer, from index start (included) to index
end (exluded).

	Returns:	numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]

Window functions

The audiotsm.utils.windows module contains window functions used for
digital signal processing.

	
audiotsm.utils.windows.apply(buffer, window)

	Applies a window to a buffer.

	Parameters:	
	buffer (numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]) – a matrix of shape (m, n), with m the number of
channels and n the length of the buffer.

	window – a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,).

	
audiotsm.utils.windows.hanning(length)

	Returns a periodic Hanning window.

Contrary to numpy.hanning() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.hanning.html#numpy.hanning], which returns the symetric Hanning
window, hanning() returns a periodic Hanning window, which is better
for spectral analysis.

	Parameters:	length (int [https://docs.python.org/3.6/library/functions.html#int]) – the number of points of the Hanning window

	Returns:	the window as a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (length,).

	
audiotsm.utils.windows.product(window1, window2)

	Returns the product of two windows.

	Parameters:	
	window1 – a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,) or None.

	window2 – a numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] of shape (n,) or None.

	Returns:	the product of the two windows. If one of the windows is equal to
None, the other is returned, and if the two are equal to None,
None is returned.

Gstreamer filters

The base module provides a base class for gstreamer
plugin using TSM objects.

	
class audiotsm.gstreamer.base.GstTSM

	Gstreamer TSM plugin.

Subclasses should implement the create_tsm() method and
provide two class attributes:

	__gstmetadata__ = (longname, classification, description, author).
See the documentation of the gst_element_class_set_metadata [https://gstreamer.freedesktop.org/data/doc/gstreamer/head/gstreamer/html/GstElement.html#gst-element-class-set-metadata] function for
more details.

	plugin_name, the name of the plugin.

Calling the register() class method on a subclass will
register it, enabling you to instantiate an audio filter with
Gst.ElementFactory.make(plugin_name).

	
create_tsm(channels)

	Returns the TSM object used by the audio
filter.

	
do_sink_event(event)

	Sink pad event handler.

	
do_transform(in_buffer, out_buffer)

	Run the data of in_buffer through the
TSM object and write the output to
out_buffer.

	Parameters:	
	in_buffer – a Gst.Buffer containing the input data.

	out_buffer – a Gst.Buffer where the output data will be
written.

	
do_transform_size(direction, caps, size, othercaps)

	Returns the size of the output buffer given the size of the input
buffer.

	
classmethod plugin_init(plugin)

	Initialize the plugin.

	
classmethod register()

	Register the plugin.

Register the plugin to make it possible to instantiate it with
Gst.ElementFactory.make.

	
audiotsm.gstreamer.base.audioformatinfo_to_dtype(info)

	Return the data type corresponding to a GstAudio.AudioFormatInfo
object.

	Parameters:	info – a GstAudio.AudioFormatInfo.

	Returns:	the corresponding data type, to be used in numpy [https://docs.scipy.org/doc/numpy/reference/index.html#module-numpy]
functions.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 audiotsm	

 	
 	
 audiotsm.base.analysis_synthesis	

 	
 	
 audiotsm.base.tsm	

 	
 	
 audiotsm.gstreamer	

 	
 	
 audiotsm.gstreamer.base	

 	
 	
 audiotsm.gstreamer.ola	

 	
 	
 audiotsm.gstreamer.phasevocoder	

 	
 	
 audiotsm.gstreamer.wsola	

 	
 	
 audiotsm.io	

 	
 	
 audiotsm.io.array	

 	
 	
 audiotsm.io.base	

 	
 	
 audiotsm.io.stream	

 	
 	
 audiotsm.io.wav	

 	
 	
 audiotsm.utils	

 	
 	
 audiotsm.utils.windows	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | H
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | W

A

 	
 	add() (audiotsm.utils.CBuffer method)

 	(audiotsm.utils.NormalizeBuffer method)

 	AnalysisSynthesisTSM (class in audiotsm.base.analysis_synthesis)

 	apply() (in module audiotsm.utils.windows)

 	ArrayReader (class in audiotsm.io.array)

 	ArrayWriter (class in audiotsm.io.array)

 	audioformatinfo_to_dtype() (in module audiotsm.gstreamer.base)

 	audiotsm (module)

 	audiotsm.base.analysis_synthesis (module)

 	audiotsm.base.tsm (module)

 	audiotsm.gstreamer (module)

 	
 	audiotsm.gstreamer.base (module)

 	audiotsm.gstreamer.ola (module)

 	audiotsm.gstreamer.phasevocoder (module)

 	audiotsm.gstreamer.wsola (module)

 	audiotsm.io (module)

 	audiotsm.io.array (module)

 	audiotsm.io.base (module)

 	audiotsm.io.stream (module)

 	audiotsm.io.wav (module)

 	audiotsm.utils (module)

 	audiotsm.utils.windows (module)

C

 	
 	CBuffer (class in audiotsm.utils)

 	channels (audiotsm.io.base.Reader attribute)

 	(audiotsm.io.base.Writer attribute)

 	clear() (audiotsm.base.analysis_synthesis.Converter method)

 	(audiotsm.base.tsm.TSM method)

 	
 	close() (audiotsm.io.wav.WavReader method)

 	(audiotsm.io.wav.WavWriter method)

 	convert_frame() (audiotsm.base.analysis_synthesis.Converter method)

 	Converter (class in audiotsm.base.analysis_synthesis)

 	create_tsm() (audiotsm.gstreamer.base.GstTSM method)

D

 	
 	data (audiotsm.io.array.ArrayWriter attribute)

 	divide() (audiotsm.utils.CBuffer method)

 	
 	do_sink_event() (audiotsm.gstreamer.base.GstTSM method)

 	do_transform() (audiotsm.gstreamer.base.GstTSM method)

 	do_transform_size() (audiotsm.gstreamer.base.GstTSM method)

E

 	
 	empty (audiotsm.io.base.Reader attribute)

F

 	
 	FixedArrayWriter (class in audiotsm.io.array)

 	flush_to() (audiotsm.base.tsm.TSM method)

 	
 	frame_length (audiotsm.gstreamer.ola.OLA attribute)

 	(audiotsm.gstreamer.phasevocoder.PhaseVocoder attribute)

 	(audiotsm.gstreamer.wsola.WSOLA attribute)

G

 	
 	get_max_output_length() (audiotsm.base.tsm.TSM method)

 	
 	GstTSM (class in audiotsm.gstreamer.base)

H

 	
 	hanning() (in module audiotsm.utils.windows)

L

 	
 	length (audiotsm.utils.CBuffer attribute)

 	(audiotsm.utils.NormalizeBuffer attribute)

N

 	
 	NormalizeBuffer (class in audiotsm.utils)

O

 	
 	OLA (class in audiotsm.gstreamer.ola)

 	
 	ola() (in module audiotsm)

P

 	
 	peek() (audiotsm.utils.CBuffer method)

 	PhaseVocoder (class in audiotsm.gstreamer.phasevocoder)

 	phasevocoder() (in module audiotsm)

 	plugin_init() (audiotsm.gstreamer.base.GstTSM class method)

 	
 	plugin_name (audiotsm.gstreamer.ola.OLA attribute)

 	(audiotsm.gstreamer.phasevocoder.PhaseVocoder attribute)

 	(audiotsm.gstreamer.wsola.WSOLA attribute)

 	product() (in module audiotsm.utils.windows)

R

 	
 	read() (audiotsm.io.base.Reader method)

 	(audiotsm.utils.CBuffer method)

 	read_from() (audiotsm.base.tsm.TSM method)

 	(audiotsm.utils.CBuffer method)

 	Reader (class in audiotsm.io.base)

 	ready (audiotsm.utils.CBuffer attribute)

 	
 	register() (audiotsm.gstreamer.base.GstTSM class method)

 	remaining_length (audiotsm.utils.CBuffer attribute)

 	remove() (audiotsm.utils.CBuffer method)

 	(audiotsm.utils.NormalizeBuffer method)

 	right_pad() (audiotsm.utils.CBuffer method)

 	run() (audiotsm.base.tsm.TSM method)

S

 	
 	samplerate (audiotsm.io.wav.WavReader attribute)

 	samplewidth (audiotsm.io.wav.WavReader attribute)

 	set_analysis_hop() (audiotsm.base.analysis_synthesis.Converter method)

 	set_ready() (audiotsm.utils.CBuffer method)

 	set_speed() (audiotsm.base.tsm.TSM method)

 	
 	skip() (audiotsm.io.base.Reader method)

 	stop() (audiotsm.io.stream.StreamWriter method)

 	StreamWriter (class in audiotsm.io.stream)

 	synthesis_hop (audiotsm.gstreamer.ola.OLA attribute)

 	(audiotsm.gstreamer.phasevocoder.PhaseVocoder attribute)

 	(audiotsm.gstreamer.wsola.WSOLA attribute)

T

 	
 	to_array() (audiotsm.utils.CBuffer method)

 	(audiotsm.utils.NormalizeBuffer method)

 	
 	tolerance (audiotsm.gstreamer.phasevocoder.PhaseVocoder attribute)

 	(audiotsm.gstreamer.wsola.WSOLA attribute)

 	TSM (class in audiotsm.base.tsm)

W

 	
 	WavReader (class in audiotsm.io.wav)

 	WavWriter (class in audiotsm.io.wav)

 	write() (audiotsm.io.base.Writer method)

 	(audiotsm.utils.CBuffer method)

 	
 	write_to() (audiotsm.base.tsm.TSM method)

 	(audiotsm.utils.CBuffer method)

 	Writer (class in audiotsm.io.base)

 	WSOLA (class in audiotsm.gstreamer.wsola)

 	wsola() (in module audiotsm)

 _static/up.png

nav.xhtml

 Table of Contents

 		<no title>

 		A real-time audio time-scale modification library

 		Installation

 		Basic usage

 		Thanks

 		Indices and tables

 		Time-Scale Modification

 		Time-Scale Modification procedures

 		TSM Object

 		Readers and Writers

 		Numpy arrays

 		Wav files

 		Play in real-time

 		Implementing your own

 		Gstreamer plugins

 		OLA

 		WSOLA

 		Phase Vocoder

 		Internal API

 		Analysis-Synthesis based TSM procedures

 		Circular buffers

 		Window functions

 		Gstreamer filters

_static/minus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

