
AT-TPC DAQ Documentation
Release 1.0

Josh Bradt

Mar 27, 2017

Contents

1 Contents 3
1.1 Overview of DAQ system . 3
1.2 Installation and initial setup . 5
1.3 Configuring the system . 11
1.4 Logging information about runs . 13
1.5 Operating the DAQ system . 14
1.6 Developer documentation . 20

i

ii

AT-TPC DAQ Documentation, Release 1.0

This manual describes how to install, set up, and use the web-based GUI for the AT-TPC’s DAQ system. The docu-
mentation is divided into a few different sections. For some background information about the system, see Overview
of DAQ system. The Installation and initial setup section describes how to install the system and its dependencies, like
Docker. The next two sections, Configuring the system and Logging information about runs, show how to set up the
system for data taking.

The most important section of this manual for experimenters taking shifts is probably Operating the DAQ system. It
describes how to configure the CoBos and start and stop runs. It also has instructions on how to record parameters
about the runs, like pressures and voltages.

At the end of the manual is the Developer documentation section, which contains information about how the system
is implemented. This is probably only of interest to people who want to maintain the system or add new features.

Contents 1

AT-TPC DAQ Documentation, Release 1.0

2 Contents

CHAPTER 1

Contents

Overview of DAQ system

The AT-TPC DAQ is based on a collection of programs provided by the GET collaboration. These provide the back-
end of the system by handling CoBo configuration and data recording. This web application serves as a front-end for
those programs.

GET software components

There are two programs, in particular, that need to be running for each CoBo. They are:

getEccSoapServer This program controls the CoBo. It sends the configuration to the CoBo and tells it when to start
and stop acquisition.

dataRouter This program records the data.

The web interface controls the system by acting as a client for the getEccSoapServer. It does not communicate with
the dataRouter directly.

CoBo state machine

The ECC server controls the CoBo using the model of a state machine. This means that that CoBo can be in one of
several well-defined states, and to change from one state to another, it will undergo a well-defined transition. The state
machine for the CoBo looks like this:

3

AT-TPC DAQ Documentation, Release 1.0

4 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

The ellipses represent the different states that the system may be in, the arrows along the right side show the forward
state transitions, and the arrows along the left show the reverse state transitions.

Config files

Each forward transition requires a particular part of the configuration file. This is why we have three config files for
each setup (or, alternatively, two true files and one symbolic link). The expected files are named:

• describe-[name].xcfg for the describe step

• prepare-[name].xcfg for the prepare step

• configure-[name].xcfg for the configure step

These names will be shown stripped of their prefix and suffix in the DAQ interface. For example, a file called
describe-cobo0.xcfg will be shown as simply cobo0.

Web-based GUI

The interface to the system is a web application written in Python 3 using the Django web framework for the back-end
with Bootstrap providing the front-end. The structure of the code is described briefly in Developer documentation and
in comments directly in the code itself.

As Django apps can be a bit tricky to serve, the app has been structured to run inside Docker containers. The Docker-
ized version of the app can be built using the Docker compose utility like this:

docker-compose build

Installation and initial setup

Requirements

GET software

As mentioned previously, this DAQ software depends on two of the programs from the GET software suite: the
getEccSoapServer and the dataRouter. These programs are not provided with this package, so they must be
compiled and installed separately before this package can be installed.

Docker

Docker and the Docker Compose tool are required to get the containerized version of the DAQ software running.
Docker can be downloaded and installed from its developers’ website or from your package manager if you’re using
Linux.

Networking

If you’ll be running the system on multiple computers, be sure to consider where files will be stored. The ECC
server will expect to find config files locally wherever it’s running, so if multiple ECC servers are running on multiple
computers, you will likely want to share a folder on your local network to keep the config files in.

1.2. Installation and initial setup 5

https://www.djangoproject.com
http://getbootstrap.com
https://www.docker.com
https://www.docker.com/

AT-TPC DAQ Documentation, Release 1.0

Source code

Finally, get the latest version of the DAQ software from GitHub:

git clone https://github.com/attpc/attpc-daq.git

Always use the latest version from the Master branch. The version in the Develop branch may not be stable.

Creating the environment file

There are a few environment variables that need to be set to system-dependent values inside the Docker container.
Several of these variables provide encryption keys or passwords, so this environment file is not in the Git repository
(and it should never be committed to the repository!).

Create a file in the root of the repository with the following values. Remove the comment strings (starting with #)
before saving it.

DAQ_IS_PRODUCTION=True # Tells the system to use the production settings,
→˓rather than debug.
POSTGRES_USER=[something] # A user name for the PostgreSQL database. Set it to
→˓something reasonable.
POSTGRES_PASSWORD=[something] # A secure, random password that you will not likely
→˓need to remember.
POSTGRES_DB=attpcdaq # The name of the database for PostgreSQL
DAQ_SECRET_KEY=[something] # A secure, *STRONG* random string for Django's
→˓cryptography tools.

The user name for PostgreSQL is not important. Just set it to something reasonable. The remaining two things to be
filled in are the PostgreSQL database password and the Django secret key. Set these both to long, random strings of
characters since you will not need to remember them.

Warning: Although it may not seem that important to have a strong password on the local network, consider that
the Django secret key is used to derive everything cryptography-related in the app. This means that it’s especially
important for this key to be both strong and secret.

One way to generate these random strings is the following Python script:

from __future__ import print_function
import random

chars = 'abcdefghijklmnopqrstuvwxyz0123456789!@#$%^&*(-_=+)'
sr = random.SystemRandom()
key = ''.join(sr.choice(chars) for i in range(50))
print(key)

Or, if you prefer a one-liner:

python -c "import random; chars = 'abcdefghijklmnopqrstuvwxyz0123456789%^&*(-_=+)';
→˓sr = random.SystemRandom(); print(''.join(sr.choice(chars) for i in range(50)))"

Building the containers

Once you’ve installed Docker and docker-compose, open a terminal in the root of the repository. This is the
directory with the docker-compose.yml file. The Docker images can then be built with the command:

6 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

docker-compose build

This will create a set of Docker images and install all of the software’s dependencies inside them. This will require an
internet connection.

Starting the app

Start all of the containers and the virtual network connecting them by running:

docker-compose up

This will instantiate the containers and start them, and then it will start printing the standard output from the containers.
Keep this terminal window running to see the output as the program runs. If you want to quit the program later, press
Control-c in this terminal.

The first time you run the code, it will need to do some housekeeping to get set up. This may take a minute or so.
When the output printed to the terminal slows down or stops, continue with the next steps.

First-run setup

When the code is freshly installed, the database that backs the web app will be empty. We need to create a user in the
web app so that we can log in and set up an experiment. To do this, open a new terminal and run this command:

docker exec -it attpcdaq_web_1 python manage.py createsuperuser

If we break this command down into parts, it opens a TTY inside the container running the Django app (docker
exec -it attpcdaq_web_1) and runs the Django manage.py script to create a superuser account (python
manage.py createsuperuser). It will prompt you for a username and password, which you should choose
and remember for later.

Once you’ve made a superuser account, open a browser to http://localhost:8080/admin to access the Django admin
interface. Log in with the username and password you just set up. This will put you on the Admin page.

1.2. Installation and initial setup 7

http://localhost:8080/admin

AT-TPC DAQ Documentation, Release 1.0

This page allows you to access the internals of the DAQ web interface and directly change the contents of its database.
For now, click on “Experiments” under the “DAQ” header and then click the “Add Experiment” button on the next
page.

8 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

Click the green plus to add a new regular user account.

Note: Experiments are associated with user names in a one-to-one mapping in this program, so every time you add
an experiment, you should also create a new experimental user to go along with it.

Also enter a name for the experiment. Data will be written into a directory with this name at the end of each run.
Spaces are ok in this name. Finally, click “Save” to create the experiment.

Once you’ve finished this, click “Log Out” in the upper right to log out of the admin interface.

Starting the remote processes

Note: This section assumes the code is running on macOS. Linux distributions support a similar method of con-
figuring a process to automatically launch using systemd services or init scripts, but that will not be covered
here.

Under macOS, the remote GET processes are managed by launchd, the operating system’s main management pro-
cess. It will automatically re-launch the processes if they fail, and it will coordinate logging of the processes’ standard
outputs to a log file.

The behavior of launchd with respect to the GET software components is controlled by a Launch Agent plist file.
Example plist files are included in the Git repository, but here is an annotated example for the ECC server:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
→˓PropertyList-1.0.dtd">

1.2. Installation and initial setup 9

AT-TPC DAQ Documentation, Release 1.0

<plist version="1.0">
<dict>

<!-- A label to identify the program -->
<key>Label</key>
<string>attpc.getEccSoapServer</string>

<!-- Any necessary environment variables. This might include settings for paths
needed for libraries installed using MacPorts, for example.-->

<key>EnvironmentVariables</key>
<dict>

<key>DYLD_FALLBACK_LIBRARY_PATH</key>
<string>/opt/local/lib</string>

</dict>

<!-- The commands needed to start the program. Each element of the command is
→˓given in

a separate <string> tag. The first element should be the full path to the
→˓program,

and the remaining elements give the command line arguments. -->
<key>ProgramArguments</key>
<array>

<string>/path/to/getEccSoapServer</string>
<string>--config-repo-url</string>
<string>/path/to/configs/directory</string>

</array>

<!-- The working directory for the program. This is important for the dataRouter
→˓as it's

where that program will write the data. -->
<key>WorkingDirectory</key>
<string>/path/to/working/directory</string>

<!-- Where to write the standard out and standard error files. These may be the
→˓same file.

It is probably best to put the logs in ~/Library/Logs since that will allow
→˓you to

view them with the Console application. -->
<key>StandardOutPath</key>
<string>/Users/USER/Library/Logs/getEccSoapServer.log</string>

<key>StandardErrorPath</key>
<string>/Users/USER/Library/Logs/getEccSoapServer.log</string>

<!-- Keep the program running at all times, even if there are no incoming
→˓connections. -->

<key>KeepAlive</key>
<true/>

</dict>
</plist>

A similar file should be created for the data router with the appropriate arguments.

Once plist files have been created, they are conventionally placed in ~/Library/LaunchAgents, and they should
be launched on startup if they are in that directory. To launch the programs manually, use launchctl:

launchctl load ~/Library/LaunchAgents/attpc.getEccSoapServer.plist

Manually stopping the programs is very similar. Just replace load with unload in the above command.

10 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

This can also be automated for all of the remote computers using, e.g. Apple Remote Desktop.

Configuring the system

Once everything is up and running, the next step is to tell the DAQ system about the components you’ll be using. First,
log into the system. Go to http://localhost:8080 in a browser to get to the main login page:

Sign in using the experiment account you created in the last section.

Note: Don’t use the superuser account to log in here, or you’ll just get an error page. That account should only be
used to sign into the admin page.

After signing in, you’ll find yourself on the main page. If you’ve just installed the system, it should be blank, like this:

1.3. Configuring the system 11

http://localhost:8080

AT-TPC DAQ Documentation, Release 1.0

We need to tell the system about the data routers and ECC servers in the system. That can be accomplished a few
different ways, but the easiest method is to use the Easy Setup page.

Note: Just to be clear, all of the steps on this page are used to set up the model of the GET electronics in the DAQ
GUI. These steps will not start getEccSoapServer or dataRouter processes. That must be done separately.
This section just tells the system where to contact these processes, and we’re assuming that they’re already running
and reachable from the network.

Easy setup

On the status page, click the “Easy setup” link in the left-hand menu column. This will take you to a form that you
can fill out to automatically set up the system with some default values. Fill in values for the following fields:

Number of CoBos How many CoBos are you using? A data router will be created for each one.

Use one ECC server for all sources? If this is checked, the system will create one ECC server and link all CoBos to
it. If this is unchecked, a separate ECC server object will be created for each CoBo.

IP address of first CoBo ECC server If we’re using one global ECC server, it will have this IP address. If each
CoBo has its own ECC server, the first ECC server will get this IP address, and subsequent servers will get this
address plus an offset in the last segment. For example, if this address is set to 192.168.1.10, CoBo 0’s
ECC server will be at 192.168.1.10, CoBo 1’s ECC server will be at 192.168.1.11, CoBo 2’s ECC
server will be at 192.168.1.12, etc.

IP address of first CoBo data router The address assigned to the data router of the first CoBo. Subsequent CoBos
have an address that is incremented by an offset like above.

12 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

Is there a MuTAnT? If so, the system will create a data router object for it.

IP address of the MuTAnT ECC server If there is only one global ECC server, the MuTAnT will also be connected
to that server, so this field will have no effect. Otherwise, the MuTAnT’s ECC server will be found at this
address.

IP address of MuTAnT data router The address where we should look for the MuTAnT data router.

Note: Again, just to be clear, the IP addresses entered here should be the addresses of the computers where the ECC
server and data router processes are already running.

Once you click “Submit”, the system will create all of the necessary objects for this setup.

Danger: Submitting this form will overwrite the current DAQ GUI configuration. This will not destroy any
data or config files, but it will remove any Data Router, ECC Server, and Data Source objects you’ve previously
configured.

Manual configuration

If you need to tweak the results of the easy setup page, or if you need something more sophisticated than what it
provides, you can always set things up manually. Under “Setup” in the left-hand navigation menu, there are links for
setting up ECC servers, data routers, and data sources. Each of these leads to a table of the instances of that object
that are currently set up. You can add a new instance using the “Add” button in the table header, and instances can be
edited or removed using the buttons in each row.

To manually set up the system, you should first create your ECC servers and data routers. Then, create data source
objects to link the two. For more information about the model used to describe the system, see Modeling the system in
code.

Logging information about runs

In addition to controlling data taking, the DAQ system also allows you to record metadata about each run. This includes
information about when the runs started and stopped along with metadata about the conditions during the run. This is
intended to replace a physical log book with run data sheets. The set of items that are recorded is customizable, but
there are a few fields which are always recorded.

Default run information

The default set of information will be recorded for every run, regardless of configuration. This set of fields includes
the following:

• A sequential run number

• A run class identifying the type of the run. Options include “Testing”, “Production”, “Beam”, “Pulser”, and
“Junk.”

• A title or label for the run

• The date and time when the run started and ended

• The name of the config file(s) used for this run

1.4. Logging information about runs 13

AT-TPC DAQ Documentation, Release 1.0

Adding additional fields

In addition to these defaults, any number of custom fields can be added. These fields, known in the DAQ software
as observables can be used to record detector parameters like voltages and pressures. These should be set up at the
beginning of an experiment, but they can also be added later.

To set up observables, click “Observables” under “Setup” in the left-hand menu. This will bring you to a list of the
observables that are currently set up in the system. Add a new one by clicking the “Add” button in the top right corner
of the “Observables” panel.

Tip: Observables in this list can be reordered by clicking and dragging the handle on the left-hand side of each row.
This order will be remembered, and the fields for the observables will be presented in this order when entering run
information.

An observable has four properties that you can set:

Name The name of the measurement. Choose something descriptive, but don’t include units. They will be added
later.

Value type What type of data is this? Options include integer, floating point, and string values.

Units The units this will be recorded in. This is just for display, and no unit conversions will be done by the software.

Comment This optional comment will be shown next to the field on the run data sheet for this observable. This could
be used to make a brief note of how to take a particular measurement, for example.

Fill these fields in and click “Submit” to add a new observable.

Operating the DAQ system

At this point, we’re nearly ready to take data. This page will describe how to choose a configuration file and start
and stop runs. This is probably the most relevant part of the manual from the point of view of the person taking an
experimental shift.

Web GUI status page

After logging into the system at http://localhost:8080 or whatever address the system is available at, you will arrive at
the main status page:

14 Chapter 1. Contents

http://localhost:8080

AT-TPC DAQ Documentation, Release 1.0

This page shows an overview of what’s currently happening in the system. It is divided into a set of panels:

Run Information This panel has details about the current current run, like how long it has been going and what run
number is currently being recorded.

ECC Server Status This panel lists the status of each ECC server the system knows about. The “State” indicator
shows what state machine state the ECC server is in (i.e. “Idle”, “Ready”, “Running”, etc.). The “Selected
Config” column lists the name of the config file set that will be used to configure the devices. he “Controls”
column contains a set of buttons for changing the state of an individual ECC server. These button should only
be used for troubleshooting purposes. Finally, clicking the icon in the “Logs” column will display the last few
lines of the log file for that ECC server.

Data Router Status This panel shows the state of all of the data routers the system knows about. The “Online”
column shows if the data router process is running, and the “Clean” column shows if the data router’s staging
directory contains unsorted files. Both of these should display green checkmarks if the system is ready to take
data.

Log Entries This panel will show the latest error messages from the web interface. This does not include error mes-
sages that may be produced by the GET software. You can click on an individual error to get more information
and possibly a traceback. Finally, clicking “Clear” will discard all error messages.

Controls This set of large buttons configures the entire system at once. This is what you should use to control the
system. The reset button will step the system back one state. For example, if the system is in the “Ready” state,
pressing Reset will step it back to “Prepared”.

1.5. Operating the DAQ system 15

AT-TPC DAQ Documentation, Release 1.0

Selecting a configuration

Once all necessary processes are up and running, the ECC Server Status panel should display a status of “Idle” for
each ECC server and the Data Router Status panel should show green check marks next to each data router. At this
point, you should select a config file for each ECC server.

Config files can be selected by clicking the pencil icon next to the current config name in the Selected Config column
of the ECC Server Status panel.

This will bring up a page with a drop-down menu listing the configurations available for that
ECC server. The list of available configurations contains all possible permutations of the set of
describe-*.xcfg, prepare-*.xcfg, and configure-*.xcfg files known to the ECC
server. Each configuration is identified by a name composed of the names of the three *.xcfg
files that go into it, formatted as [describe-name]/[prepare-name]/[configure-name].
For example, if you want to configure a data source using the files describe-cobo0.xcfg,
prepare-experiment.xcfg, and configure-experiment.xcfg, then you should choose the con-
figuration called cobo0/experiment/experiment. See Config files for more information about these files and
their naming convention.

Preparing to take runs

After selecting a configuration, the CoBos and MuTAnT must be configured to prepare them to take data. This can be
done using the first three buttons on the main Controls panel.

16 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

Begin by clicking the “Describe all” button. The system will then send a message to the ECC servers telling them to
execute the “Describe” transition on the CoBos. The status label for each ECC server should then disappear and be
replaced by a spinning cursor. Once the transition is finished, each ECC server should list a status of “Described”, and
the overall system status in the top-right corner should also be shown as “Described.”

Note: These system-wide buttons only work if all ECC servers are in the same state. If they are in different states,
you will need to use the individual controls in the ECC Server Status panel to bring them into the same state.

The next two steps are nearly identical. Click the “Prepare all” button, and wait until the status on each ECC server is
shown as “Prepared.” Finally, click “Configure all,” and wait for a status of “Ready.” At this point, the system is ready
to take data.

Note: If one or more of the CoBos fails to complete the state transition, their ECC servers will remain in whatever
state they started in. This will be apparent since that ECC server will have a different label from the others, and the
overall system status in the top-right corner will be shown as “Error.” If this happens, look for an error message in the
“Log entries” panel at the bottom of the page, and try to diagnose the problem. Once the problem is fixed, try using
the individual controls in the ECC Server Status panel to bring the troublesome server to the same state as the others.

Starting a run

Runs are controlled using the “Start all” and “Stop all” buttons in the main Controls panel.

1.5. Operating the DAQ system 17

AT-TPC DAQ Documentation, Release 1.0

Once you click “Start all,” the CoBos will begin recording data and the Run Information panel should update to reflect
the new run.

Danger: Data taking on the CoBos can also be started and stopped using the individual source control buttons on
the ECC Server Status panel; however, if this is done, the global run number will not be updated. Therefore,
these individual buttons should only be used in the case of an error where a CoBo fails to start recording data.

Recording run metadata

Once a new run has been started, metadata about the run can be entered by clicking on either the “Update values” or
“Same as previous” button on the Run Information panel. Both of these will bring up a form where you can enter

18 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

information about the current run. The only difference between the two is that the “Same as previous” button will
pre-fill some fields with their values from the previous run. This is useful for values that don’t change often.

Fill in any values on this page that were not filled automatically, and then click “Submit” to save them. You can get
back to the status page by clicking “Status” in the left-hand menu.

Tip: The run will continue even if you navigate away from the status page or close the web browser.

Stopping a run

When it is time to stop a run, click the “Stop all” button. This will tell the CoBos to stop recording data, and it will also
tell the system to connect to each computer where the data router is running and rearrange the data files into a directory
for the just-completed run. Watch the “Clean” column in the Data Router Status panel to see when this process has
finished.

Warning: It may take several seconds for the data files to be rearranged on each computer. You must wait until
this process is complete before the system will allow you to start a new run.

1.5. Operating the DAQ system 19

AT-TPC DAQ Documentation, Release 1.0

Resetting the system

When an experiment is complete, or when you want to re-configure the CoBos, the system should be reset to the “Idle”
state. This can be done using the “Reset all” button in the main Controls panel. One click of this button will step each
ECC server back by one state in the state machine (see CoBo state machine).

Note: Each transition must finish before you click the Reset button again.

Developer documentation

This section contains some information about the structure of the DAQ code and some explanation of the design of the
system. This will be useful mostly for people who want to modify the code or fix bugs.

Structure of the DAQ system

The AT-TPC DAQ system runs inside a collection of Docker containers. Each of these containers is responsible for
running part of the system. In general, one container corresponds to one process. The responsibilities of each container
are outlined below.

Django application

Container/service name: web

This is the core of the system, and it’s the container in which nearly all of the Python code in this application runs. The
main process in this container is the Gunicorn web server, which runs the Django application that will be described in
the next pages of this documentation.

This server responds to any requests for dynamic web content. When you click a link to load a page of the DAQ
app, the Django library calls the appropriate functions in the web app to dynamically generate the HTML that will be
shown. This also includes calls to the API that communicates with the ECC servers. These calls are implemented as
functions that get called when certain URLs are requested.

NGINX web server

Container/service name: nginx

NGINX is a commonly used web server. It acts as a front-end to the application. When a URL is requested, NGINX
receives the request first and decides whether the request is for static content or dynamic content. Requests for
dynamically generated content are forwarded to the Gunicorn server described above for further processing. Requests
for static content (such as CSS files, the help pages, and static images) are processed by NGINX itself in order to
reduce the load on the Gunicorn server.

Celery task queue

Container/service name: celery

Celery is a Python-based, distributed, asynchronous task queue system. It receives messages from Django and sched-
ules tasks accordingly. This allows asynchronous execution of portions of the web app’s code. For example, when you
configure the CoBos, a set of tasks is sent to the Celery server that tell it to perform the configuration.

20 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

This is useful for long-running tasks like the configuration commands. If these tasks were executed synchronously
inside the main Django process, the web interface would become unresponsive until the tasks finished. Instead, we
execute the tasks asynchronously in the Celery worker processes and update the GUI later when the tasks are finished.

RabbitMQ message broker

Container/service name: rabbitmq

RabbitMQ is a “message broker” that coordinates communication between the main process of the Django application
and the Celery task queue system. It needs to be running, but otherwise it is not particularly interesting from the
perspective of the DAQ system.

PostgreSQL database

Container/service name: db

This is the database used to store the internal configuration of the web app. This stores things like the IP addresses of
the ECC servers and data routers, the name of the config file to use for each CoBo, the history of recent runs, and the
name of the current experiment.

Modeling the system in code

In the Django framework, models are used to represent entities. A model has a collection of fields associated with it,
and these fields are mapped to columns in the model’s representation in the database. The models in the AT-TPC DAQ
app are used to represent components of the DAQ system, including things like ECC servers and data routers. This
page will provide an overview of the different models in the system and how they work together. For more specific
information about each model, refer to their individual pages.

DAQ system components

The GET DAQ system is modeled using three classes: the ECCServer, the DataRouter, and the DataSource.

The ECC server

The ECCServer model is responsible for all communication with the GET ECC server processes. There should be
one instance of this model for each ECC server in the system. The ECCServer has fields that store the IP address
and port of the ECC server, and it also keeps track of which configuration file set to use, what the state of the ECC
server is with respect to the CoBo state machine, and whether the ECC server is online and reachable.

In addition to storing basic information about the ECC servers, this model also has methods that allow it to com-
municate with the ECC server it represents. The refresh_configs() method fetches the list of available con-
figuration file sets from the ECC server and stores it in the database. The refresh_state() method fetches the
current CoBo state machine state from the ECC server and updates the state field accordingly. Finally, the method
change_state() will tell the ECC server to transition its data sources to a different state. This last method is used
to configure, start, and stop the CoBos during data taking.

Communication with the ECC server is done using the SOAP protocol. This is performed by a third-party library
which is wrapped by the EccClient class in this module. The interface to the ECC server is defined by the file
web/attpcdaq/daq/ecc.wsdl, which was copied from the source of the GET ECC server into this package. If
the interface is updated in a future version of the ECC server, this file should be replaced.

1.6. Developer documentation 21

AT-TPC DAQ Documentation, Release 1.0

The data router

The DataRouter model stores information about data routers in the system. The data router processes are each
associated with one data source, and they record the data stream from that source to a GRAW file. This model simply
stores information about the data router like its IP address, port, and connection type. This information is forwarded
to the data sources when the ECC server configures them.

The data source

This represents a source of data, like a CoBo or a MuTAnT. This is functionally just a link between an ECC server,
which controls the source, and a data router, which receives data from the source.

DAQ component models

ECCServer(*args, **kwargs) Represents an individual ECC server which may control
one or more data sources.

DataRouter(*args, **kwargs) Represents the data router associated with one data source.
DataSource(*args, **kwargs) A source of data, probably a CoBo or a MuTAnT.

attpcdaq.daq.models.ECCServer

class attpcdaq.daq.models.ECCServer(*args, **kwargs)
Represents an individual ECC server which may control one or more data sources.

This object is responsible for the bulk of the program’s work. It is capable of communicating with the ECC
server process to change the state of a CoBo or MuTAnT, and it also maintains a record of the ECC server’s
current state.

Data sources are associated with an ECC server through a many-to-one relationship, meaning that one ECC
server may control many data sources. Alternatively, each data source may have its own ECC server, if that is
desired.

Fields

name A unique name for the ECC server
ip_address The IP address of the ECC server
port The TCP port that the ECC server listens on.
is_online Whether the ECC server process is currently available

and responding to requests
is_transitioning Whether the ECC server is currently changing state
log_path The path to the ECC server process’s log file on the

computer where the process is running.
selected_config The configuration file set this ECC server will use
state The state of the ECC server with respect to the CoBo

state machine.

State constants and attributes

22 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

DESCRIBED A constant representing the “described” state
IDLE A constant representing the “idle” state
PREPARED A constant representing the “prepared” state
READY A constant representing the “ready” state
RUNNING A constant representing the “running” state
RESET A constant that is used to tell the system to step back-

wards by one state
STATE_DICT A dictionary mapping state constants back to state

names

Methods

change_state(target_state) Tells the ECC server to transition the data source to a
new state.

get_data_link_xml_from_clients() Get an XML representation of the data link for this
source.

refresh_configs() Fetches the list of configs from the ECC server and up-
dates the database.

refresh_state() Gets the current state of the data source from the ECC
server and updates the database.

_get_soap_client() Creates a SOAP client for communicating with the ECC
server.

_get_transition(client, current_state, ...) Look up the appropriate SOAP request to change the
ECC server from one state to another.

attpcdaq.daq.models.ECCServer.change_state

ECCServer.change_state(target_state)
Tells the ECC server to transition the data source to a new state.

If the request is successful, the is_transitioning field will be set to True, but the state field will
not be updated automatically. To update this, refresh_state() should be called to see if the transition
has completed.

Parameters target_state (int) – The desired final state. The required transition will be
computed using _get_transition().

Raises RuntimeError – If the data source does not have a config set.

attpcdaq.daq.models.ECCServer.get_data_link_xml_from_clients

ECCServer.get_data_link_xml_from_clients()
Get an XML representation of the data link for this source.

This is used by the ECC server to establish a connection between the CoBo and the data router. The format
is as follows:

<DataLinkSet>
<DataLink>

<DataSender id="[DataSource.name]">
<DataRouter name="[DataSource.data_router_name]"

1.6. Developer documentation 23

AT-TPC DAQ Documentation, Release 1.0

ipAddress="[DataSource.data_router_ip_address]"
port="[DataSource.data_router_port]"
type="[DataSource.data_router_type]">

</DataLink>
</DataLinkSet>

Returns The XML data.

Return type str

attpcdaq.daq.models.ECCServer.refresh_configs

ECCServer.refresh_configs()
Fetches the list of configs from the ECC server and updates the database.

If new configs are present on the ECC server, they will be added to the database. If configs are present in
the database but are no longer known to the ECC server, they will be deleted.

The old configs are deleted based on their last_fetched field. Therefore, this field will be updated for
each existing config set that is still present on the ECC server when this function is called.

attpcdaq.daq.models.ECCServer.refresh_state

ECCServer.refresh_state()
Gets the current state of the data source from the ECC server and updates the database.

This will update the state and is_transitioning fields of the ECCServer.

Raises ECCError – If the return code from the ECC server is nonzero.

attpcdaq.daq.models.ECCServer._get_soap_client

ECCServer._get_soap_client()
Creates a SOAP client for communicating with the ECC server.

The client loads the WSDL file, which describes the SOAP services, from the local disk. The target URL
of the client is then set to the ECC server’s address.

Returns The configured SOAP client.

Return type EccClient

attpcdaq.daq.models.ECCServer._get_transition

classmethod ECCServer._get_transition(client, current_state, target_state)
Look up the appropriate SOAP request to change the ECC server from one state to another.

Given the current_state and the target_state, this will either return the correct callable to make
the transition, or it will raise an exception.

Parameters

• client (EccClient) – The SOAP client. One of its methods will be returned.

• current_state (int) – The current state of the ECC state machine.

24 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

• target_state (int) – The desired final state of the ECC state machine.

Returns The function corresponding to the requested transition. This can then be called with
the appropriate arguments to change the ECC server’s state.

Return type function

Raises ValueError – If the requested states differ by more than one transition, or if no tran-
sition is needed.

attpcdaq.daq.models.DataRouter

class attpcdaq.daq.models.DataRouter(*args, **kwargs)
Represents the data router associated with one data source.

Each source of data (a CoBo or a MuTAnT) must be associated with a data router. The data router receives the
data stream from the source and records it. This model stores information like the IP address, port, and type of
the data router.

Fields

name A unique name for the data router
ip_address The IP address of the data router
port The TCP port where the data router is listening.
connection_type The protocol of the data router.
is_online Whether the data router is online and available
log_path The path to the log file on the computer where the data

router is running.
staging_directory_is_clean Whether the directory where the data router is running

contains any GRAW files.

Data router type constants

FDT A constant for the “FDT” protocol.
ICE A constant for the “ICE” protocol
TCP A constant for the “TCP” protocol.
ZBUF A constant for the “ZBUF” protocol

attpcdaq.daq.models.DataSource

class attpcdaq.daq.models.DataSource(*args, **kwargs)
A source of data, probably a CoBo or a MuTAnT.

This model represents a source of data in the system, like a CoBo or a MuTAnT. A data source is controlled by
an ECC server, and it sends its data to a data router. Therefore, this is simply a link between an ECCServer
instance and a DataRouter instance.

Fields

1.6. Developer documentation 25

AT-TPC DAQ Documentation, Release 1.0

name A unique name for the data source.
ecc_server The ECCServer that controls this data source.
data_router The DataRouter that receives the data stream from

this source.

Methods

get_data_link_xml() Get an XML representation of the data link for this
source.

attpcdaq.daq.models.DataSource.get_data_link_xml

DataSource.get_data_link_xml()
Get an XML representation of the data link for this source.

This is used by the ECC server to establish a connection between the CoBo or MuTAnT and the data router.
The format is as follows:

<DataLink>
<DataSender id="[DataSource.name]">
<DataRouter name="[DataSource.data_router_name]"

ipAddress="[DataSource.data_router_ip_address]"
port="[DataSource.data_router_port]"
type="[DataSource.data_router_type]">

</DataLink>

This must be wrapped in <DataLinkSet> tags before sending it to the ECC server.

Returns The XML data for this source.

Return type xml.etree.ElementTree.Element

Config file sets

Sets of config files are represented as ConfigId objects. These contain fields for each of the three config files for the
three configuration steps. These sets will generally be created automatically by fetching them from the ECC servers
using ECCServer.refresh_configs(), but they can also be created manually if necessary.

Config file models

ConfigId(*args, **kwargs) Represents a configuration file set as seen by the ECC
servers.

attpcdaq.daq.models.ConfigId

class attpcdaq.daq.models.ConfigId(*args, **kwargs)
Represents a configuration file set as seen by the ECC servers.

This will generally be retrieved from the ECC servers using a SOAP call. If this is the case, an object can be
constructed from the XML representation using the class method from_xml.

26 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

It is important to note that this is just a representation of the config files which is used for communicating with
the ECC server. No actual configuration is done by this program.

Note: This model stores configuration names using the convention of the ECC server. This means that the
actual filenames seen by the ECC server will be, for example, describe-[name].xcfg. The prefix and file
extension are added automatically by the ECC server.

Fields

describe The name of the configuration for the “describe” step
prepare The name of the configuration for the “prepare” step
configure The name of the configuration for the “configure” step
ecc_server The ECC server that this configuration set is associated

with
last_fetched The date and time when this config was fetched from

the ECC server.

Methods

as_xml() Get an XML representation of the object.
from_xml(node) Construct a ConfigId object from the given XML repre-

sentation.

attpcdaq.daq.models.ConfigId.as_xml

ConfigId.as_xml()
Get an XML representation of the object.

This is useful for sending to the ECC server. The format is as follows:

<ConfigId>
<SubConfigId type="describe">[self.describe]</SubConfigId>
<SubConfigId type="prepare">[self.prepare]</SubConfigId>
<SubConfigId type="configure">[self.configure]</SubConfigId>

</ConfigId>

Returns The XML representation.

Return type str

attpcdaq.daq.models.ConfigId.from_xml

classmethod ConfigId.from_xml(node)
Construct a ConfigId object from the given XML representation.

Parameters node (xml.etree.ElementTree.Element or str) – The XML repre-
sentation of the object, probably from the ECC server. If it’s a string, it will be automatically
converted to the appropriate XML node object.

1.6. Developer documentation 27

AT-TPC DAQ Documentation, Release 1.0

Returns new_config – A ConfigId object constructed from the representation. Note
that this object is not automatically committed to the database, so one should call
new_config.save() if that is desired.

Return type ConfigId

Run and experiment metadata

The Experiment and RunMetadata models store information about the experiment and the runs it contains. They
are used to number the runs and to store metadata like the experiment name, the duration of each run, and a comment
describing the conditions for each run.

The Observable and Measurement classes are used to store measurements of experimental parameters like
voltages, pressures, and scalers. An Observable defines a quantity that can be measured, and each one adds a new
field that can be filled in on the Run Info sheet. When a user fills in values for an Observable, a corresponding
Measurement object is created to store that value. This design was chosen so that the user can add new observables
at any time without reloading the code or altering the database structure. This would not be possible if we just defined
a new field on the RunMetadata object for each observable.

Metadata models

Experiment(*args, **kwargs) Represents an experiment and the settings relevant to one.
RunMetadata(*args, **kwargs) Represents the metadata describing a data run.
Observable(*args, **kwargs) Something that can be measured.
Measurement(*args, **kwargs) A measurement of an Observable.

attpcdaq.daq.models.Experiment

class attpcdaq.daq.models.Experiment(*args, **kwargs)
Represents an experiment and the settings relevant to one.

This model keeps track of run numbers and knows the name of the experiment. It is queried when rearranging
data files at the end of a run, when the experiment name is used as the name of the directory in which to store
the files.

Fields

name The name of the experiment.
is_active Is this the active experiment? Only one experiment may

be active at a time.

Properties

is_running Whether a run is currently being recorded.
latest_run Get the most recent run in the experiment.
next_run_number Get the number that the next run should have.

28 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

attpcdaq.daq.models.Experiment.is_running

Experiment.is_running
Whether a run is currently being recorded.

Returns True if the latest run has started but not stopped. False otherwise (including if there are
no runs).

Return type bool

attpcdaq.daq.models.Experiment.latest_run

Experiment.latest_run
Get the most recent run in the experiment.

This will return the current run if a run is ongoing, or the most recent run if the DAQ is stopped.

Returns The most recent or current run. If there are no runs for this experiment, None will be
returned instead.

Return type RunMetadata or None

attpcdaq.daq.models.Experiment.next_run_number

Experiment.next_run_number
Get the number that the next run should have.

The number returned is the run number from latest_run plus 1. Therefore, if a run is currently being
recorded, this function will return the current run number plus 1.

If there are no runs, this will return 0.

Returns The next run number.

Return type int

Methods

start_run() Creates and saves a new RunMetadata object with
the next run number for the experiment.

stop_run() Stops the current run.
save(*args, **kwargs) Override of save to enforce only one active experiment

at a time.

attpcdaq.daq.models.Experiment.start_run

Experiment.start_run()
Creates and saves a new RunMetadata object with the next run number for the experiment.

The start_datetime field of the created RunMetadata instance is set to the current date and time.

Raises RuntimeError – If there is already a run that has started but not stopped.

1.6. Developer documentation 29

AT-TPC DAQ Documentation, Release 1.0

attpcdaq.daq.models.Experiment.stop_run

Experiment.stop_run()
Stops the current run.

This sets the stop_datetime of the current run to the current date and time, effectively ending the run.

Raises RuntimeError – If there is no current run.

attpcdaq.daq.models.Experiment.save

Experiment.save(*args, **kwargs)
Override of save to enforce only one active experiment at a time.

attpcdaq.daq.models.RunMetadata

class attpcdaq.daq.models.RunMetadata(*args, **kwargs)
Represents the metadata describing a data run.

Fields can be added to this model to store any type of data we want to record about each run. For instance, a
title can be added so we know what the run was recording.

Fields

experiment The experiment that this run is a part of
run_number The run number
start_datetime The date and time when the run started
stop_datetime The date and time when the run ended
title A title or comment describing the run

Properties

duration Get the duration of the run.
duration_string Get the duration as a string.

attpcdaq.daq.models.RunMetadata.duration

RunMetadata.duration
Get the duration of the run.

If the run has not ended, the difference is taken with respect to the current time.

Returns Object representing the duration of the run.

Return type datetime.timedelta

30 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

attpcdaq.daq.models.RunMetadata.duration_string

RunMetadata.duration_string
Get the duration as a string.

Returns The duration of the current run. The format is HH:MM:SS.

Return type str

attpcdaq.daq.models.Observable

class attpcdaq.daq.models.Observable(*args, **kwargs)
Something that can be measured.

Observables correspond to columns in a run sheet. Add a new one to add a new field to the run sheet.

Fields

name The name of the observable
experiment The experiment that this observable is associated with.
comment A comment to describe how to take a measurement, for

example.
units The units that measurements will be recorded in.
value_type The data type of the measurement.

Value type constants

FLOAT Constant for a floating-point measurement
INTEGER Constant for an integer measurement
STRING Constant for a string measurement

attpcdaq.daq.models.Measurement

class attpcdaq.daq.models.Measurement(*args, **kwargs)
A measurement of an Observable.

Measurements are like instances of Observables. When you fill in the run sheet, a Measurement is created for
each Observable-related field on the sheet.

Fields

observable The Observable that this is a measurement of
run_metadata The run that this measurement is for
serialized_value The value as a string

Other attributes and properties

1.6. Developer documentation 31

AT-TPC DAQ Documentation, Release 1.0

python_type The Python data type we expect for this measurement.
value The value, converted to the expected data type.

Interacting with the system

Interaction with the Django web app occurs through views, which are just functions and classes that Django calls when
certain URLs are requested. Views are used to render the pages of the web app, and they are also how the user tells
the system to “do something” like configure a CoBo or refresh the state of an ECC server.

Views are mapped to URLs automatically by Django. This mapping is set up in the module attpcdaq.daq.urls.

Some views render pages that accept information from the user. These generally use a Django form class to process
the data.

Since the views serve a number of different purposes, they are organized into a few separate modules in the package
attpcdaq.daq.views.

Page rendering views

These views, located in the module attpcdaq.daq.views.pages, are used to render the pages of the web app.
This includes functions like status(), which renders the main status page, and others like show_log_page(),
which contacts a remote computer, fetches the end of a log file, and renders a page showing it.

Views

status(request) Renders the main status page.
choose_config(request, pk) Renders a page for choosing the config for an ECC server.
experiment_settings(request) Renders the experiment settings page.
show_log_page(request, pk, program) Retrieve and render the log file for the given program.
EasySetupPage(**kwargs) Renders the easy setup page, where the system can be set

up in one step.

attpcdaq.daq.views.pages.status

attpcdaq.daq.views.pages.status(request)
Renders the main status page.

Parameters request (HttpRequest) – The request object.

Returns The rendered page.

Return type HttpResponse

attpcdaq.daq.views.pages.choose_config

attpcdaq.daq.views.pages.choose_config(request, pk)
Renders a page for choosing the config for an ECC server.

This renders the ConfigSelectionForm to pick the configuration.

Parameters

32 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

• request (HttpRequest) – The request object

• pk (int) – The primary key of the ECC server to configure.

Returns Redirects back to the main page on success.

Return type HttpResponse

attpcdaq.daq.views.pages.experiment_settings

attpcdaq.daq.views.pages.experiment_settings(request)
Renders the experiment settings page.

attpcdaq.daq.views.pages.show_log_page

attpcdaq.daq.views.pages.show_log_page(request, pk, program)
Retrieve and render the log file for the given program.

This can be used to display the end of the log file for the ECC server process or the data router process.

Parameters

• request (HttpRequest) – The request object.

• pk (int) – The integer primary key of the data source whose logs we want to view.

• program (str) – The program whose logs we want. Must be one of ‘ecc’ or ‘data_router’.

Returns Renders the log_file.html template with the given log file as content.

Return type HttpResponse

attpcdaq.daq.views.pages.EasySetupPage

class attpcdaq.daq.views.pages.EasySetupPage(**kwargs)
Renders the easy setup page, where the system can be set up in one step.

Methods

form_valid(form) Checks that the form data is valid, and then performs the
setup.

Backend functions

easy_setup(experiment, num_cobos, ...[, ...]) Create a set of model instances with default values based
on the given parameters.

1.6. Developer documentation 33

AT-TPC DAQ Documentation, Release 1.0

attpcdaq.daq.views.pages.easy_setup

attpcdaq.daq.views.pages.easy_setup(experiment, num_cobos, one_ecc_server,
first_cobo_ecc_ip, first_cobo_data_router_ip,
cobo_ecc_log_path, cobo_router_log_path,
cobo_config_root, cobo_config_backup_root, mu-
tant_is_present=False, mutant_ecc_ip=None,
mutant_data_router_ip=None, mu-
tant_ecc_log_path=None, mu-
tant_router_log_path=None, mutant_config_root=None,
mutant_config_backup_root=None)

Create a set of model instances with default values based on the given parameters.

This will populate the database with all of the required DAQ components. Note that all old instances will be
deleted. This is done atomically, so if this function fails, nothing will be changed.

Parameters

• experiment (attpcdaq.daq.models.Experiment) – The experiment to modify.

• num_cobos (int) – The number of CoBos to add to the system.

• one_ecc_server (bool) – If True, all data sources will use the same ECC server. If
False, a separate ECC server will be created for each data source.

• first_cobo_ecc_ip (str) – The IP address of the ECC server for the first CoBo.
Subsequent ECC servers will have IP addresses whose last component is incremented by
one.

• first_cobo_data_router_ip (str) – The IP address of the data router for the first
CoBo. Subsequent data routers will have IP addresses whose last component is incremented
by one.

• cobo_ecc_log_path (str) – The path to the CoBo ECC server log file. This is on the
remote computer.

• cobo_router_log_path (str) – The path to the CoBo data router log file. This is on
the remote computer.

• cobo_config_root (str) – The path to the config file directory on the remote com-
puter.

• cobo_config_backup_root (str) – The path to which config files should be backed
up on the remote computer.

• mutant_is_present (bool, optional) – True if the MuTAnT is present in the
system and should be set up.

• mutant_ecc_ip (str, optional) – The IP address of the ECC server of the Mu-
TAnT. This will be overridden if one_ecc_server is True.

• mutant_data_router_ip (str, optional) – The IP address of the data router of
the MuTAnT.

• mutant_ecc_log_path (str, optional) – The path to the MuTAnT ECC server
log file. This is on the remote computer.

• mutant_router_log_path (str, optional) – The path to the MuTAnT data
router log file. This is on the remote computer.

• mutant_config_root (str, optional) – The path to the config file directory on
the remote computer.

34 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

• mutant_config_backup_root (str, optional) – The path to which config files
should be backed up on the remote computer.

ECC interaction views

A few of the views in the module attpcdaq.daq.views.api are used to interact with the ECC servers and
request that they perform some action. These views are called when the user clicks a button to request a state change.

source_change_state(request) Submits a request to tell the ECC server to change a
source’s state.

source_change_state_all(request) Send requests to change the state of all ECC servers.

attpcdaq.daq.views.api.source_change_state

attpcdaq.daq.views.api.source_change_state(request)
Submits a request to tell the ECC server to change a source’s state.

The transition request is put in the Celery task queue.

Parameters request (HttpRequest) – The request must include the primary key pk of the
ECC server and the integer target_state to change to. The request must be made via
POST.

Returns The JSON response includes the items outlined in _make_status_response.

Return type JsonResponse

attpcdaq.daq.views.api.source_change_state_all

attpcdaq.daq.views.api.source_change_state_all(request)
Send requests to change the state of all ECC servers.

The requests are queued to be performed asynchronously.

Parameters request (HttpRequest) – The request method must be POST, and it must contain
an integer representing the target state.

Returns A JSON array containing status information about all ECC servers.

Return type JsonResponse

API views

The remaining views in the attpcdaq.daq.views.api module provide an interface to the information stored in
the database. These generate pages that allow the user to add, modify, and remove instances of models. There are also
views that return information from the database so the GUI can be updated by AJAX calls.

Unlike other views described above, the API views for manipulating database objects are based on classes instead of
functions. These are all subclasses of generic views provided by Django, so for more information on these views, take
a look at Django’s documentation for class-based views.

Refreshing data

1.6. Developer documentation 35

AT-TPC DAQ Documentation, Release 1.0

refresh_state_all(request) Fetch the state of all data sources from the database and
return the overall state of the system.

attpcdaq.daq.views.api.refresh_state_all

attpcdaq.daq.views.api.refresh_state_all(request)
Fetch the state of all data sources from the database and return the overall state of the system.

The value of the data source state that will be returned is whatever the database says. These values will be
returned along with the overall state of the system and some information about the current experiment and run.

Note: This function does not communicate with the ECC server in any way. To contact the ECC server and
update the state stored in the database, call attpcdaq.daq.models.ECCServer.refresh_state()
instead.

The JSON array returned will contain the following keys:

overall_state The overall state of the system. If all of the data sources have the same state, this should be the
numerical ID of a state. If the sources have different states, it should be -1.

overall_state_name The name of the overall state of the system. Either a state name or “Mixed” if the state is
inconsistent.

run_number The current run number.

start_time The date and time when the current run started.

run_duration The duration of the current run. This is with respect to the current time if the run has not ended.

individual_results The results for the individual data sources. These are sub-arrays.

The sub arrays for the individual results should include the keys:

success Whether the request succeeded.

pk The primary key of the source.

error_message An error message.

state The ID of the current state.

state_name The name of the current state

transitioning Whether the source is undergoing a state transition.

Parameters request (HttpRequest) – The request object. The method must be GET.

Returns An array of dictionaries containing the results from each data source. See above for the
contents.

Return type JsonResponse

Working with data sources

AddDataSourceView(**kwargs) Add a data source.
ListDataSourcesView(**kwargs) List all data sources.

Continued on next page

36 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

Table 1.27 – continued from previous page
UpdateDataSourceView(**kwargs) Change parameters on a data source.
RemoveDataSourceView(**kwargs) Delete a data source.

Working with data routers

AddDataRouterView(**kwargs) Add a data router.
ListDataRoutersView(**kwargs) List all data routers.
UpdateDataRouterView(**kwargs) Modify a data router.
RemoveDataRouterView(**kwargs) Delete a data router.

Working with ECC servers

AddECCServerView(**kwargs) Add an ECC server.
ListECCServersView(**kwargs) List all ECC servers.
UpdateECCServerView(**kwargs) Modify an ECC server.
RemoveECCServerView(**kwargs) Delete an ECC server.

Working with run metadata

ListRunMetadataView(**kwargs) List the run information for all runs.
UpdateRunMetadataView(**kwargs) Change run metadata
UpdateLatestRunMetadataView(**kwargs) Redirects to UpdateRunMetadataView for the latest

run.

Working with Observables

AddObservableView(**kwargs) Add a new observable to the experiment.
ListObservablesView(**kwargs) List the observables registered for this experiment.
UpdateObservableView(**kwargs) Change properties of an Observable.
RemoveObservableView(**kwargs) Remove an observable from this experiment.

Setting the ordering of observables

set_observable_ordering(request) An AJAX request that sets the order in which observables
are displayed.

attpcdaq.daq.views.api.set_observable_ordering

attpcdaq.daq.views.api.set_observable_ordering(request)
An AJAX request that sets the order in which observables are displayed.

The request should be submitted via POST, and the request body should be JSON encoded. The content should
be be dictionary with the key “new_order” mapped to a list of Observable primary keys in the desired order.

1.6. Developer documentation 37

AT-TPC DAQ Documentation, Release 1.0

Parameters request (HttpRequest) – The request with the information given above. Must be
POST.

Returns If successful, the JSON data {’success’: True} is returned.

Return type JsonResponse

Helper functions

These helper functions are called by some of the views to avoid duplicating code. They are located in the module
attpcdaq.daq.views.helpers.

calculate_overall_state(request) Find the overall state of the system.
get_ecc_server_statuses(request) Gets some information about the ECC servers.
get_data_router_statuses(request) Gets some information about the data routers.
get_status(request) Returns some information about the system’s status.

attpcdaq.daq.views.helpers.calculate_overall_state

attpcdaq.daq.views.helpers.calculate_overall_state(request)
Find the overall state of the system.

Parameters request (django.http.request.HttpRequest) – The request object.

Returns

• overall_state (int or None) – The overall state of the system. Returns None if the state is
mixed.

• overall_state_name (str) – The name of the system state. The value ‘Mixed’ is returned if
the system is not in a consistent state.

attpcdaq.daq.views.helpers.get_ecc_server_statuses

attpcdaq.daq.views.helpers.get_ecc_server_statuses(request)
Gets some information about the ECC servers.

This produces a dictionary with the following key-value pairs:

‘success’ Whether the request succeeded.

‘error_message’ An error message, if applicable.

‘pk’ The integer primary key of the ECC server in the database.

‘state’ The current (integer) state of the ECC server, as enumerated in the constants attached to that class.

‘state_name’ The name of the current state of the ECC server.

‘transitioning’ Whether the ECC server is transitioning between states.

Returns A dictionary with the above keys.

Return type dict

38 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

attpcdaq.daq.views.helpers.get_data_router_statuses

attpcdaq.daq.views.helpers.get_data_router_statuses(request)
Gets some information about the data routers.

This produces a dictionary with the following key-value pairs:

‘success’ Whether the request succeeded.

‘pk’ The integer primary key of the data router in the database.

‘is_online’ Whether the router is available.

‘is_clean’ Whether the staging directory is clean.

Returns A dictionary of the values above.

Return type dict

attpcdaq.daq.views.helpers.get_status

attpcdaq.daq.views.helpers.get_status(request)
Returns some information about the system’s status.

This generates a dictionary containing the following key-value pairs:

‘overall_state’ The overall state of the system. If all of the data sources have the same state, this should be the
numerical ID of a state. If the sources have different states, it should be -1.

‘overall_state_name’ The name of the overall state of the system. Either a state name or “Mixed” if the state
is inconsistent.

‘run_number’ The current run number.

‘run_title’ The title of the current run.

‘run_class’ The type of the current run.

‘start_time’ The date and time when the current run started.

‘run_duration’ The duration of the current run. This is with respect to the current time if the run has not ended.

‘ecc_server_status_list’ Status of each ECC server. See get_ecc_server_statuses() for details.

‘data_router_status_list’ Status of each data router. See get_data_router_statuses() for details.

This is helpful when generating JSON responses to update the main page periodically.

Parameters request (HttpRequest) – The request object. This must be included so we can
get the name of the current user when fetching the Experiment object.

Returns A dictionary containing the information above.

Return type dict

Interfacing with the remote processes

The attpcdaq.daq.workertasks module contains a class that uses the Paramiko SSH library to connect to the
nodes running the data router and ECC server in order to, for example, organize files at the end of a run. It can also
check whether these processes are running.

1.6. Developer documentation 39

AT-TPC DAQ Documentation, Release 1.0

This class should typically be used as a context manager (i.e., with a with statement). For example, to organize files,
you could try the following:

with WorkerInterface(data_router_ip_address) as wint:
wint.organize_files(experiment_name, run_number)

When used in this manner, the SSH session will automatically be opened when entering the with block and closed
when leaving it.

The WorkerInterface class

class attpcdaq.daq.workertasks.WorkerInterface(hostname, port=22, username=None, con-
fig_path=None)

An interface to perform tasks on the DAQ worker nodes.

This is used perform tasks on the computers running the data router and the ECC server. This includes things
like cleaning up the data files at the end of each run.

The connection is made using SSH, and the SSH config file at config_path is honored in making the con-
nection. Additionally, the server must accept connections authenticated using a public key, and this public key
must be available in your .ssh directory.

Parameters

• hostname (str) – The hostname to connect to.

• port (int, optional) – The port that the SSH server is listening on. The default is
22.

• username (str, optional) – The username to use. If it isn’t provided, a username
will be read from the SSH config file. If no username is listed there, the name of the user
running the code will be used.

• config_path (str, optional) – The path to the SSH config file. The default is
~/.ssh/config.

Methods

find_data_router() Find the working directory of the data router process.
get_graw_list() Get a list of GRAW files in the data router’s working direc-

tory.
working_dir_is_clean() Check if there are GRAW files in the data router’s working

directory.
check_ecc_server_status() Checks if the ECC server is running.
check_data_router_status() Checks if the data router is running.
organize_files(experiment_name, run_number) Organize the GRAW files at the end of a run.
tail_file(path[, num_lines]) Retrieve the tail of a text file on the remote host.

attpcdaq.daq.workertasks.WorkerInterface.find_data_router

WorkerInterface.find_data_router()
Find the working directory of the data router process.

The directory is found using lsof, which must be available on the remote system.

40 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

Returns The directory where the data router is running, and therefore writing data.

Return type str

Raises RuntimeError – If lsof finds something strange instead of a process called
dataRouter.

attpcdaq.daq.workertasks.WorkerInterface.get_graw_list

WorkerInterface.get_graw_list()
Get a list of GRAW files in the data router’s working directory.

Returns A list of the full paths to the GRAW files.

Return type list[str]

attpcdaq.daq.workertasks.WorkerInterface.working_dir_is_clean

WorkerInterface.working_dir_is_clean()
Check if there are GRAW files in the data router’s working directory.

Returns True if there are files in the working directory, False otherwise.

Return type bool

attpcdaq.daq.workertasks.WorkerInterface.check_ecc_server_status

WorkerInterface.check_ecc_server_status()
Checks if the ECC server is running.

Returns True if getEccSoapServer is running.

Return type bool

attpcdaq.daq.workertasks.WorkerInterface.check_data_router_status

WorkerInterface.check_data_router_status()
Checks if the data router is running.

Returns True if dataRouter is running.

Return type bool

attpcdaq.daq.workertasks.WorkerInterface.organize_files

WorkerInterface.organize_files(experiment_name, run_number)
Organize the GRAW files at the end of a run.

This will get a list of the files written in the working directory of the data router and move them to the
directory ./experiment_name/run_name, which will be created if necessary. For example, if the
experiment_name is “test” and the run_number is 4, the files will be placed in ./test/run_0004.

Parameters

• experiment_name (str) – A name for the experiment directory.

1.6. Developer documentation 41

AT-TPC DAQ Documentation, Release 1.0

• run_number (int) – The current run number.

attpcdaq.daq.workertasks.WorkerInterface.tail_file

WorkerInterface.tail_file(path, num_lines=50)
Retrieve the tail of a text file on the remote host.

Note that this assumes the file is ASCII-encoded plain text.

Parameters

• path (str) – Path to the file.

• num_lines (int) – The number of lines to include.

Returns The tail of the file’s contents.

Return type str

Asynchronous tasks and Celery

Due to the distributed design of the DAQ system, it’s very likely that sometimes a command sent to the system
will take a while to process. This is especially true when communicating with an ECC server if the ECC server is
configuring all of its attached data sources in series. If we decided to send a long-running command to the ECC server
synchronously in the middle of whatever view was responding to the user’s HTTP request, the view would block on the
communication until it finished. This would prevent it from updating the GUI, giving the impression that the software
has crashed, and in extreme cases, the browser could even return a timeout error.

To prevent this problem, we process slow commands asynchronously with Celery. Instead of directly initiating com-
munications, the view submits a task to the Celery queue and returns immediately, updating the GUI to indicate that
the task is processing. When the task is completed, some part of the database is generally updated. The GUI is then
updated to reflect the fact that the task has completed when it periodically refreshes itself.

Tasks

The Celery tasks in this application are just Python functions with the @shared_task decorator. This decorator
registers them with the Celery system as tasks, and it also allows us to set a time limit on them. All of the tasks are
located in the module attpcdaq.daq.tasks.

ECC server interaction

eccserver_refresh_state_task Fetch the state of the given ECC server.
eccserver_refresh_all_task Fetch the state of all ECC servers.
eccserver_change_state_task Change the state of an ECC server (make it perform a tran-

sition).

attpcdaq.daq.tasks.eccserver_refresh_state_task

attpcdaq.daq.tasks.eccserver_refresh_state_task = <@task: attpcdaq.daq.tasks.eccserver_refresh_state_task of attpcdaq:0x7fe184253438>
Fetch the state of the given ECC server.

This will contact the ECC server identified by the given primary key, fetch its state, and update the state in the
database.

42 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

Parameters eccserver_pk (int) – The integer primary key of the ECCServer object in the
database.

attpcdaq.daq.tasks.eccserver_refresh_all_task

attpcdaq.daq.tasks.eccserver_refresh_all_task = <@task: attpcdaq.daq.tasks.eccserver_refresh_all_task of attpcdaq:0x7fe184253438>
Fetch the state of all ECC servers.

This calls eccserver_refresh_state_task() for each ECC server in the database.

attpcdaq.daq.tasks.eccserver_change_state_task

attpcdaq.daq.tasks.eccserver_change_state_task = <@task: attpcdaq.daq.tasks.eccserver_change_state_task of attpcdaq:0x7fe184253438>
Change the state of an ECC server (make it perform a transition).

This will contact the ECC server identified by the given primary key and tell it to transition to the given target
state. This is done by calling change_state() on the ECCServer object.

Parameters

• eccserver_pk (int) – The ECC server’s integer primary key.

• target_state (int) – The target state. Use one of the constants from the ECCServer
class.

Checking remote status

check_ecc_server_online_task Checks if the ECC server is online.
check_ecc_server_online_all_task Check and update the state of all known ECC servers.
check_data_router_status_task Checks whether the data router is online and if the staging

directory is clean.
check_data_router_status_all_task Check and update the state of all known data routers.

attpcdaq.daq.tasks.check_ecc_server_online_task

attpcdaq.daq.tasks.check_ecc_server_online_task = <@task: attpcdaq.daq.tasks.check_ecc_server_online_task of attpcdaq:0x7fe184253438>
Checks if the ECC server is online.

This is done by checking if the process is running via SSH. Specifically, the method
check_ecc_server_status() of the WorkerInterface object is used.

Parameters eccserver_pk (int) – The primary key of the ECC server in the database.

attpcdaq.daq.tasks.check_ecc_server_online_all_task

attpcdaq.daq.tasks.check_ecc_server_online_all_task = <@task: attpcdaq.daq.tasks.check_ecc_server_online_all_task of attpcdaq:0x7fe184253438>
Check and update the state of all known ECC servers.

This calls check_ecc_server_online_task() for each ECC server.

1.6. Developer documentation 43

AT-TPC DAQ Documentation, Release 1.0

attpcdaq.daq.tasks.check_data_router_status_task

attpcdaq.daq.tasks.check_data_router_status_task = <@task: attpcdaq.daq.tasks.check_data_router_status_task of attpcdaq:0x7fe184253438>
Checks whether the data router is online and if the staging directory is clean.

This is done by checking if the process is running via SSH. Specifically, the method
check_data_router_status() of the WorkerInterface object is used. Then, the staging
directory is checked for GRAW files using working_dir_is_clean() from the same class.

Parameters datarouter_pk (int) – The primary key of the data router in the database.

attpcdaq.daq.tasks.check_data_router_status_all_task

attpcdaq.daq.tasks.check_data_router_status_all_task = <@task: attpcdaq.daq.tasks.check_data_router_status_all_task of attpcdaq:0x7fe184253438>
Check and update the state of all known data routers.

This calls check_data_router_status_task() for each data router.

File organization

organize_files_task Connects to the DAQ worker nodes to organize files at the
end of a run.

organize_files_all_task Organize files on all remote nodes.

attpcdaq.daq.tasks.organize_files_task

attpcdaq.daq.tasks.organize_files_task = <@task: attpcdaq.daq.tasks.organize_files_task of attpcdaq:0x7fe184253438>
Connects to the DAQ worker nodes to organize files at the end of a run.

This is done via SSH using the method organize_files() of the WorkerInterface object.

Parameters

• datarouter_pk (int) – Integer primary key of the data source

• experiment_pk (int) – The primary key of the current experiment

• run_pk (int) – The primary key of the most recent run

attpcdaq.daq.tasks.organize_files_all_task

attpcdaq.daq.tasks.organize_files_all_task = <@task: attpcdaq.daq.tasks.organize_files_all_task of attpcdaq:0x7fe184253438>
Organize files on all remote nodes.

This calls organize_files_task() for all data routers.

Parameters

• experiment_pk (int) – The primary key of the current experiment

• run_pk (int) – The primary key of the most recent run

44 Chapter 1. Contents

AT-TPC DAQ Documentation, Release 1.0

Task scheduling

Some of the tasks above are best run automatically according to a schedule. Periodic tasks are supported by the Celery
system, and are configured using the CELERYBEAT_SCHEDULE entry in the attpcdaq.settings module. This
is a dictionary with the format shown in the example below.

CELERYBEAT_SCHEDULE = {
'update-state-every-5-sec': { # A descriptive

→˓name for the task
'task': 'attpcdaq.daq.tasks.eccserver_refresh_all_task', # The dotted name

→˓of the task, as a string
'schedule': timedelta(seconds=5), # The interval

→˓between runs
},

}

1.6. Developer documentation 45

AT-TPC DAQ Documentation, Release 1.0

46 Chapter 1. Contents

Index

Symbols
_get_soap_client() (attpcdaq.daq.models.ECCServer

method), 24
_get_transition() (attpcdaq.daq.models.ECCServer class

method), 24

A
as_xml() (attpcdaq.daq.models.ConfigId method), 27

C
calculate_overall_state() (in module attpc-

daq.daq.views.helpers), 38
change_state() (attpcdaq.daq.models.ECCServer

method), 23
check_data_router_status() (attpc-

daq.daq.workertasks.WorkerInterface method),
41

check_data_router_status_all_task (in module attpc-
daq.daq.tasks), 44

check_data_router_status_task (in module attpc-
daq.daq.tasks), 44

check_ecc_server_online_all_task (in module attpc-
daq.daq.tasks), 43

check_ecc_server_online_task (in module attpc-
daq.daq.tasks), 43

check_ecc_server_status() (attpc-
daq.daq.workertasks.WorkerInterface method),
41

choose_config() (in module attpcdaq.daq.views.pages),
32

ConfigId (class in attpcdaq.daq.models), 26

D
DataRouter (class in attpcdaq.daq.models), 25
DataSource (class in attpcdaq.daq.models), 25
duration (attpcdaq.daq.models.RunMetadata attribute),

30
duration_string (attpcdaq.daq.models.RunMetadata at-

tribute), 31

E
easy_setup() (in module attpcdaq.daq.views.pages), 34
EasySetupPage (class in attpcdaq.daq.views.pages), 33
ECCServer (class in attpcdaq.daq.models), 22
eccserver_change_state_task (in module attpc-

daq.daq.tasks), 43
eccserver_refresh_all_task (in module attpc-

daq.daq.tasks), 43
eccserver_refresh_state_task (in module attpc-

daq.daq.tasks), 42
Experiment (class in attpcdaq.daq.models), 28
experiment_settings() (in module attpc-

daq.daq.views.pages), 33

F
find_data_router() (attpc-

daq.daq.workertasks.WorkerInterface method),
40

from_xml() (attpcdaq.daq.models.ConfigId class
method), 27

G
get_data_link_xml() (attpcdaq.daq.models.DataSource

method), 26
get_data_link_xml_from_clients() (attpc-

daq.daq.models.ECCServer method), 23
get_data_router_statuses() (in module attpc-

daq.daq.views.helpers), 39
get_ecc_server_statuses() (in module attpc-

daq.daq.views.helpers), 38
get_graw_list() (attpcdaq.daq.workertasks.WorkerInterface

method), 41
get_status() (in module attpcdaq.daq.views.helpers), 39

I
is_running (attpcdaq.daq.models.Experiment attribute),

29

L
latest_run (attpcdaq.daq.models.Experiment attribute), 29

47

AT-TPC DAQ Documentation, Release 1.0

M
Measurement (class in attpcdaq.daq.models), 31

N
next_run_number (attpcdaq.daq.models.Experiment at-

tribute), 29

O
Observable (class in attpcdaq.daq.models), 31
organize_files() (attpcdaq.daq.workertasks.WorkerInterface

method), 41
organize_files_all_task (in module attpcdaq.daq.tasks),

44
organize_files_task (in module attpcdaq.daq.tasks), 44

R
refresh_configs() (attpcdaq.daq.models.ECCServer

method), 24
refresh_state() (attpcdaq.daq.models.ECCServer

method), 24
refresh_state_all() (in module attpcdaq.daq.views.api), 36
RunMetadata (class in attpcdaq.daq.models), 30

S
save() (attpcdaq.daq.models.Experiment method), 30
set_observable_ordering() (in module attpc-

daq.daq.views.api), 37
show_log_page() (in module attpcdaq.daq.views.pages),

33
source_change_state() (in module attpc-

daq.daq.views.api), 35
source_change_state_all() (in module attpc-

daq.daq.views.api), 35
start_run() (attpcdaq.daq.models.Experiment method), 29
status() (in module attpcdaq.daq.views.pages), 32
stop_run() (attpcdaq.daq.models.Experiment method), 30

T
tail_file() (attpcdaq.daq.workertasks.WorkerInterface

method), 42

W
WorkerInterface (class in attpcdaq.daq.workertasks), 40
working_dir_is_clean() (attpc-

daq.daq.workertasks.WorkerInterface method),
41

48 Index

	Contents
	Overview of DAQ system
	Installation and initial setup
	Configuring the system
	Logging information about runs
	Operating the DAQ system
	Developer documentation

