
ATS Knowledge Documentation
Release 0.1

Zhiqiang Ren

June 01, 2015

Contents

1 Annotated ATS Programs 3
1.1 Goal . 3
1.2 Examples . 3

2 ATS Tools’ documentation 9
2.1 Tag Generator For ATS-Anairiats . 9
2.2 Vim plug-in for ATS-Postiats . 10

3 ATS-Postiats’ Blog 11
3.1 Syntax for staload . 11
3.2 Various print functions in ATS-Postiats . 12
3.3 Miscellaneous topics related to ATS-Postiats . 12
3.4 Targeting C# from program of ATS-Postiats . 13
3.5 Get value in the statics of ATS . 17
3.6 Template for Makefile of simple ATS project . 18
3.7 Global value with linear type . 19

4 ATS-Postiats’ syntax 21
4.1 Mapping from source code to data structure . 21

5 Model Checking ATS 23
5.1 Tutorial . 23
5.2 Table of Contents . 27
5.3 Bibliography . 34

6 Indices and tables 35

i

ii

ATS Knowledge Documentation, Release 0.1

Contents:

Contents 1

ATS Knowledge Documentation, Release 0.1

2 Contents

CHAPTER 1

Annotated ATS Programs

1.1 Goal

The normal way to start up a programming project using ATS is via imitating an existing example. The website serves
as a collection of such examples along with intensive comments about the usage of ATS in these examples.

These examples come primarily from the Google group for ATS.

xxx

1.2 Examples

WireShark has been installed on all the Windows machines in the Instructional Lab (EMA 302). It is only usable
during the period of the lab session.

1.2.1 Dining Philosopher with Animation (by Cairo)

Source File Download

Code

• dp_gui.dats

1 Copy from
2 Assignment 3:
3 Class: BU CAS CS520, Fall, 2013
4 Due: Thursday, the 26th of September, 2013
5 *)
6

7 (* ****** ****** *)
8 //
9 #include

10 "share/atspre_define.hats"
11 #include

• dp_observer.dats

3

https://groups.google.com/forum/#!forum/ats-lang-users

ATS Knowledge Documentation, Release 0.1

1 (*
2 **
3 **
4 **
5 *)
6

7 (* ****** ****** *)
8

9 (*
10 Copy from
11 Assignment 3:
12 Class: BU CAS CS520, Fall, 2013
13 Due: Thursday, the 26th of September, 2013
14 *)
15

16 (* ****** ****** *)
17 //
18 #include
19 "share/atspre_define.hats"
20 #include
21 "share/atspre_staload.hats"
22 //
23 (* ****** ****** *)
24

25 staload
26 UN = "prelude/SATS/unsafe.sats"
27

28 (* ****** ****** *)
29

30 staload "libc/SATS/time.sats"
31

32 (* ****** ****** *)
33

34 staload "{$CAIRO}/SATS/cairo.sats"
35

36 (* ****** ****** *)
37

38

39 staload "{$GTK}/SATS/gdk.sats"
40 staload "{$GTK}/SATS/gtk.sats"
41 staload "{$GLIB}/SATS/glib.sats"
42 staload "{$GLIB}/SATS/glib-object.sats"
43

44 (* ****** ****** *)
45

46 staload "mythread.sats"
47

48 // staload "libc/SATS/stdlib.sats"
49 staload "libc/SATS/unistd.sats"
50

51

52 staload "dp_observer.sats"
53 dynload "dp_observer.dats"
54

55 staload "DiningPhil.sats"
56 dynload "DiningPhil.dats"
57 (* ****** ****** *)
58

4 Chapter 1. Annotated ATS Programs

ATS Knowledge Documentation, Release 0.1

59 %{^
60 typedef
61 struct { char buf[32] ; } bytes32 ;
62 %} // end of [%{^]
63 abst@ype bytes32 = $extype"bytes32"
64

65 (* ****** ****** *)
66

67 %{^
68 #define mystrftime(bufp, m, fmt, ptm) strftime((char*)bufp, m, fmt, ptm)
69 %} // end of [%{^]
70

71 (* ****** ****** *)
72

73 extern fun worker (darea: !GtkDrawingArea1): void
74

75 (* ****** ****** *)
76 val x: ref int = ref<int>(0)
77 val cg: ref double = ref<double>(0.0)
78 val cb: ref double = ref<double>(1.0)
79

80

81 (* ****** ****** *)
82

83 %{^
84 typedef char **charptrptr ;
85 %} ;
86 abstype charptrptr = $extype"charptrptr"
87

88

89 (* ****** ****** *)
90 (* ****** ****** *)
91 extern
92 fun{} fexpose (!GtkDrawingArea1): gboolean
93

94 implement{
95 } fexpose (darea) = let
96 val () = draw_drawingarea (darea) in GFALSE
97 end // end of [fexpose]
98

99 extern fun{
100 } dp_anime_main (): void
101

102 (* ****** ****** *)
103

104 #define nullp the_null_ptr
105

106 #define W 400
107 #define H 400
108

109 implement{}
110 dp_anime_main
111 ((*void*)) = () where
112 {
113 //
114 val win0 =
115 gtk_window_new (GTK_WINDOW_TOPLEVEL)
116 val win0 = win0

1.2. Examples 5

ATS Knowledge Documentation, Release 0.1

117 val () = assertloc (ptrcast(win0) > 0)
118 val () = gtk_window_set_default_size (win0, (gint)W, (gint)H)
119 //
120 val opt = stropt_some"dining philosopher"
121 val issome = stropt_is_some(opt)
122 //
123 val () =
124 if issome then let
125 val title = stropt_unsome (opt)
126 in
127 gtk_window_set_title (win0, gstring(title))
128 end // end of [if] // end of [val]
129 //
130 val darea =
131 gtk_drawing_area_new ()
132 val p_darea = gobjref2ptr (darea)
133 val () = assertloc (p_darea > 0)
134 val () = gtk_container_add (win0, darea)
135 //
136 val _sid = g_signal_connect
137 (
138 darea, (gsignal)"expose-event", G_CALLBACK(fexpose), (gpointer)nullp
139)
140 //
141 val _sid = g_signal_connect
142 (
143 win0, (gsignal)"delete-event", G_CALLBACK(gtk_main_quit), (gpointer)nullp
144)
145 val _sid = g_signal_connect
146 (
147 win0, (gsignal)"destroy-event", G_CALLBACK(gtk_widget_destroy), (gpointer)nullp
148)
149 //
150 val () = gtk_widget_show_all (win0)
151 //
152 val () = g_object_unref (win0) // HX: refcount of [win0] decreases from 2 to 1
153 //
154 // todo: Why does this pass the typechecking?
155 val () = mythread_create_cloptr (llam () => worker (darea))
156 val () = dp_init ()
157

158 //
159 val ((*void*)) = gtk_main ((*void*))
160

161 val () = g_object_unref (darea)
162 //
163 } // end of [dp_anime_main]
164

165 (* ****** ****** *)
166

167 implement
168 main0 (argc, argv) =
169 {
170 //
171 var argc: int = argc
172 var argv: charptrptr = $UN.castvwtp1{charptrptr}(argv)
173 //
174 val () = $extfcall (void, "gtk_init", addr@(argc), addr@(argv))

6 Chapter 1. Annotated ATS Programs

ATS Knowledge Documentation, Release 0.1

175

176 val ((*void*)) = dp_anime_main ((*void*))
177 //
178 } (* end of [main0] *)
179

180 implement worker (darea) = let
181 val () = ignoret (sleep(1))
182 //
183 val (fpf_win | win) = gtk_widget_get_window (darea)
184 //
185 val isnot = g_object_isnot_null (win)
186 //
187 prval () = minus_addback (fpf_win, win | darea)
188 //
189 in
190 //
191 if isnot then let
192 var alloc: GtkAllocation
193 val () = gtk_widget_get_allocation (darea, alloc)
194 val () = gtk_widget_queue_draw_area (darea, (gint)0, (gint)0, alloc.width, alloc.height)
195 in
196 worker(darea)
197 end else
198 ()
199 // end of [if]
200 //
201 end // end of [worker]
202

203 (* ****** ****** *)
204

205 (* end of [dp_gui.dats] *)

1.2.2 Operations pertaining to array0

Source File Download

Code

1.2. Examples 7

ATS Knowledge Documentation, Release 0.1

8 Chapter 1. Annotated ATS Programs

CHAPTER 2

ATS Tools’ documentation

Contents:

2.1 Tag Generator For ATS-Anairiats

2.1.1 Description

For users of Emacs and Vim, it is common to browse source code spanning over multiple files with the support of tag.
Here, we proivde a tool for generating tag files accepted by these two editors.

2.1.2 Download

Please download the file ats-lang-tools.jar.

2.1.3 Usage

The generation of tag file includes two steps as follows.

1. Use atsopt to collect information from the source files you have.

atsopt -o MYTAGS --taggen -s fact.sats -d fact.dats

2. Use ats-lang-tools.jar to generate the tag file from MYTAGS.

java -jar ats-lang-tools.jar --input MYTAGS -c --output tags # "c" for ctags with vim
java -jar ats-lang-tools.jar --input MYTAGS -e --output TAGS # "e" for etags with emacs

The next example shows how to generate the tag file for the source files of ATS-Postiats. Using option –output-a,
atsopt would output to file MYTAGS accululatively, so we can combine find and atsopt to generate a large MYTAGS.

Make sure we start from a clean slate.
rm -f MYTAGS

find ${PATSHOME}/src -name "*.sats" -exec atsopt --output-a MYTAGS --taggen -s {} \;
find ${PATSHOME}/src -name "*.dats" -exec atsopt --output-a MYTAGS --taggen -d {} \;
java -jar ats-lang-tools.jar --input MYTAGS -c --output tags

I use ${PATSHOME}/src in the find command so that the generated tags would use absolute path for each file. In this
way, we can open vim at any location.

9

ATS Knowledge Documentation, Release 0.1

The aforementioned method can be applied to ATS-Postiats as well. The following example shows how to generate
the tag file for source files in the prelude of ATS-Postiats, which are written in ATS-Postiats.

PATH_PRELUDE=${PATSHOME}/prelude
MYTAGS_PATS_PRELUDE_PATS=${PATH_PRELUDE}/MYTAGS_PATS_PRELUDE_PATS

rm -rf ${MYTAGS_PATS_PRELUDE_PATS}
Exclude two subdirectories "CODEGEN" and "DOCUGEN"
find ${PATH_PRELUDE}/SATS \(-name "CODEGEN" -o -name "DOCUGEN" \) -prune -o -name "*.sats" \
-exec patsopt --output-a ${MYTAGS_PATS_PRELUDE_PATS} --taggen -s {} \;

find ${PATH_PRELUDE}/DATS \(-name "CODEGEN" -o -name "DOCUGEN" \) -prune -o -name "*.dats" \
-exec patsopt --output-a ${MYTAGS_PATS_PRELUDE_PATS} --taggen -d {} \;

java -jar ${PATSHOME}/ats-lang-tools.jar -c --input ${MYTAGS_PATS_PRELUDE_PATS} --output ${PATH_PRELUDE}/tags

2.1.4 Development

The project is held on Github with the follwing address https://github.com/alex-ren/org.ats-lang.toolats.

2.2 Vim plug-in for ATS-Postiats

Please refer to this post for detailed information.

10 Chapter 2. ATS Tools’ documentation

https://github.com/alex-ren/org.ats-lang.toolats
https://groups.google.com/forum/#!searchin/ats-lang-users/vim/ats-lang-users/T3KfBQgw2hE/ZLdAMTxi6kkJ

CHAPTER 3

ATS-Postiats’ Blog

Some other sources of ATS: ATS Wiki.

Contents:

3.1 Syntax for staload

3.1.1 Macros in the path

In ATS2, keyword staload is followed by a literal string, which specifies the location of the file to be loaded. Besides
those relative path and absolute path commonly seen, we can use macro inside the literal string. One example goes as
follows:

staload "{$GTK}/SATS/gdk.sats"

The GTK is not a system environment variable. It is actually a macro defined in the ATS code. For example, we can
use the following code to set the GTK to the directory containing ATS2 code for gdk library.

#define GTK_targetloc "~/codebase/contrib/GTK"
staload "{$GTK}/SATS/gdk.sats"

Note: When we use define to define the macro, we are actually using the name GTK_targetloc, not GTK.

There are some special macros we can use, which are provided by the ATS2 compiler, e.g. PATSHOME and PAT-
SHOMERELOC. The following example shows their usage:

#define GTK_targetloc "$PATSHOMERELOC/contrib/GTK"

The macro PATSHOMERELOC in ATS2 compiler is from the environment variable PATSHOMERELOC, which is set
in the environment before executing patscc or patsopt.

Note: The macro PATSHOMERELOC is normally set to the contrib package released along with ATS.

Going further, let’s have a look of the file $PATSHOME/share/HATS/atspre_define_pdgreloc.hats, which is in-
cluded by the file $PATSHOME/share/atspre_define.hats, which is commonly included in almost all dats files.

//
#define
ZLOG_targetloc "$PATSHOMERELOC/contrib/zlog"
//

11

https://github.com/githwxi/ATS-Postiats/wiki

ATS Knowledge Documentation, Release 0.1

#define
JSONC_sourceloc "$PATSLIB_URL/contrib/json-c"
#define
JSONC_targetloc "$PATSHOMERELOC/contrib/json-c"

An ATS program using libraries of zlog and json-c would need to include the following snippet of code:

#include "share/atspre_define.hats"

staload "{$JSONC}/SATS/json_ML.sats"

3.2 Various print functions in ATS-Postiats

3.2.1 dddd

Todo
• fprint_val<a>(stdout_ref, x)

• fprint_newline

3.3 Miscellaneous topics related to ATS-Postiats

3.3.1 Setting of Environment

Please follow the instructions on ATS’ website to install ATS-Postiats as well as ATS2-contrib. Here I just want
to emphasize the setting of environment variables PATSHOME as well as PATSHOMERELOC. These two variables
should be set in the environment before invoking the ATS compiler (patscc or patsopt). Also they are commonly
referred in Makefile used in ATS projects. The first one (PATSHOME) should be set to the directory where ATS is
installed. Normally I just download tarball for the source of ATS, decompress it, build ATS, and use built executables.
(Simply put, I don’t do make install.) Therefore I just set PATSHOME to the folder resulting from decompressing
the tarball. PATSHOMERELOC should be set to the folder resulting for decompress the tarball for ATS2-contrib. Also
the PATH variable should be set accordingly so that system can locate the compiler of ATS. Normally, I put these
settings into one script file, say pats.xxx.sh. Then I do source pats.xxx.sh when I open a terminal for the first
time. My pats.xxx.sh looks like the following:

Script for setting environment for ATS-Postiats

PATSHOME=${HOME}/programs/ats2/ATS2-Postiats-0.0.8; export PATSHOME
PATSHOMERELOC=${HOME}/programs/ats2/ATS2-Postiats-contrib-0.0.7; export PATSHOMERELOC

PATH=${PATSHOME}/bin:${PATH}; export PATH

If you use make install to install ATS at the system level, your script would probably be like the following:

Script for setting environment for ATS-Postiats

PATSHOME=/usr/local/lib/ATS2-Postiats-0.0.8; export PATSHOME
PATSHOMERELOC=${HOME}/programs/ats2/ATS2-Postiats-contrib-0.0.7; export PATSHOMERELOC

Note: Since we choose to install ATS at the system level, there’s no need to set PATH.

12 Chapter 3. ATS-Postiats’ Blog

http://www.ats-lang.org/DOWNLOAD/#installation_srccomp

ATS Knowledge Documentation, Release 0.1

3.3.2 Usage of staload

Some useful information about staload can be found in Wiki and my previous blog.

3.3.3 Standard header files

To use the prelude library of ATS, we would include the following code:

#include "share/atspre_define.hats"
#include "share/atspre_staload.hats"

To use the ML library of ATS, we would include the following code:

#include "share/HATS/atspre_staload_libats_ML.hats"

If we want to generate C code used on lower level systems, such as embedded system, we can replace these header
files with appropriate ones to fit the targeting platform.

3.3.4 Type conversion

Todo
• $UNSAFE.cast{natLt(n)}

3.4 Targeting C# from program of ATS-Postiats

I am working on generating C# code from the second layer of the syntax tree of ATS-Postiats. The following includes
some lessons I’ve learned and corresponding design decision I’ve made.

3.4.1 Convertion of types

Since C# supports powerful generic types, it feels so natural to try to translate the polymorphic types in ATS into
generic types in C#. The following is the ATS code from which I want to generate C# code.

extern val p: ptr

fun foo1 {a:type} (x: (int, a)): int = x.0

fun test_foo1 (): void = let
val x = foo1 ((0, p))

in
end

fun foo2 {a,b:type} (f: a -> b): int = 42

fun foo3 (): ptr -> ptr = let
fun foo4 (x: ptr): ptr = x

in
foo4

end

fun test_foo2 (): void = let

3.4. Targeting C# from program of ATS-Postiats 13

https://github.com/githwxi/ATS-Postiats/wiki/staload
https://groups.google.com/forum/#!msg/ats-lang-users/4_d_tmGZXIA/8Hc7kMLfsesJ

ATS Knowledge Documentation, Release 0.1

val f = foo3 ()
val x = foo2 (f)

in
end

/* ************ ************ */

fun foo5 (f: {a:type} a -> a): ptr = let
val r = f (p)

in
r

end

In ATS, tuple, record and function types have no names, and their equality is based on their content. In C#, all types
must have names including structure, class, and delegate. Therefore I have to translate ATS code into C# code in the
way shown in the sample code below. That is to create very general generic types in C# for tuple and functions types
in ATS. It seems that there’s no better way around this except the usage of Object type every where. Since I want to
avoid ugly type casting, I plot to generate the code as follows

public class Ptr {};

/*
* Tuple type must have name.

*/
public class Tuple2<T1, T2> {

public T1 m1;
public T2 m2;
public Tuple2(T1 t1, T2 t2) {

m1 = t1;
m2 = t2;

}
}

/*
* Function type must have name.

*/
public delegate T2 Foo1<T1, T2>(T1 x);

public class Code {

static public Ptr p = new Ptr();

static public int foo1<T1>(Tuple2<int, T1> x) {
return x.m1;

}

static public void test_foo1() {
var x = foo1(new Tuple2<int, Ptr>(0, p));

}

static public int foo2<T1, T2>(Foo1<T1, T2> f) {
return 42;

}

static public Foo1<Ptr, Ptr> foo3() {
return foo4;

}

14 Chapter 3. ATS-Postiats’ Blog

ATS Knowledge Documentation, Release 0.1

static public Ptr foo4(Ptr x) {
return x;

}

static public void test_foo2() {
var f = foo3();
int x = foo2(f);

}

/* ******** ********* */

// C# doesn't allow this.
// static public Ptr foo5(Foo1 f) {
// var r = f(p);
// return r;
// }

static public void Main() {
return;

}
}

The code above compiles when function foo5 commented out. The reason I have to comment out foo5 goes as follows.
In ATS, polymorphic function is of first class. (Object of polymorphic function type can be passed around. E.g. foo5
takes one as input argument.) In C#, no object can be of open generic type (including generic delegate). Therefore the
function “foo5” in ATS cannot be simply translated into a generic delegate of C#.

Therefore I choose to use Object type in C# to represent type parameter of polymorphic type in ATS. But this is still
not good. Such candidate in C# is shown below.

using System;

public class Ptr {};

/*
* Tuple type must have name.

*/
public class Tuple2<T1, T2> {

public T1 m1;
public T2 m2;
public Tuple2(T1 t1, T2 t2) {

m1 = t1;
m2 = t2;

}
}

/*
* Function type mush have name.

*/
public delegate T Foo1<T>(T x);

public class Code {

static public Ptr p = new Ptr();

static public int foo1(Tuple2<int, Object> x) {
return x.m1;

}

3.4. Targeting C# from program of ATS-Postiats 15

ATS Knowledge Documentation, Release 0.1

static public void test_foo1() {
var x = foo1(new Tuple2<int, Object>(0, p));

}

static public int foo2(Foo1<Object> f) {
return 42;

}

static public Foo1<Ptr> foo3() {
return foo4;

}

static public Ptr foo4(Ptr x) {
return x;

}

static public void test_foo2() {
var f = foo3();
int x = foo2((Foo1<Object>)(Object)f);

}

static public Ptr foo5(Foo1<Object> f) {
var r = f(p);
return (Ptr)r;

}

static public void Main() {
return;

}
}

Due to aforementioned decision, I have to give foo2 the type Foo1<Object> as shown above. Then to make test_foo2
compilable, I have to cast f to Object, then to FOO1<Object>. Also I have to use cast again in foo5. Such heavy
usage of casting contradicts my original idea of relying on the generic type system of C#.

Therefore I simply choose to turn all the boxed types into Object and add proper type conversion whenever deemed
necessary. (E.g. getting member of a tuple, invoking via a function pointer.) This is also the convention when
generating C code from ATS program. The difference is that in C we rely on void * instead of Object. A hand written
candidate is shown below.

using System;

/*
* Tuple type must have name.

*/
public class Tuple2<T1, T2> {

public T1 m1;
public T2 m2;
private Tuple2(T1 t1, T2 t2) {

m1 = t1;
m2 = t2;

}
static public Object create(T1 t1, T2 t2) {

return new Tuple2<T1, T2>(t1, t2);
}

}

/*

16 Chapter 3. ATS-Postiats’ Blog

ATS Knowledge Documentation, Release 0.1

* Function type mush have name.

*/
public delegate Object Foo1(Object x);

public class Code {

static public Object p = new Object();

static public int foo1(Object x) {
return ((Tuple2<int, Object>)x).m1;

}

static public void test_foo1() {
var x = foo1(Tuple2<int, Object>.create(0, p));

}

static public int foo2(Foo1 f) {
return 42;

}

static public Foo1 foo3() {
return foo4;

}

static public Object foo4(Object x) {
return x;

}

static public void test_foo2() {
var f = foo3();
int x = foo2(f);

}

static public void Main() {
return;

}
}

In my implementation of C# code generator, I track the usage of all the tuples and records, define corresponding
generic types for them. And I track all the function definitions, define corresponding delegate types for them.

3.5 Get value in the statics of ATS

Todo
organize

ATS-Postiats/prelude/basics_dyn.sats

dataprop
EQINT (int, int) = {x: int} EQINT (x, x)
//
extern prfun eqint_make {x,y:int | x == y} (): EQINT (x, y)
//
extern prfun
eqint_make_gint

3.5. Get value in the statics of ATS 17

ATS Knowledge Documentation, Release 0.1

{tk:tk}{x:int} (x: g1int (tk, x)): [y: int] EQINT (x, y)

fun goo {x:int | x == 1} (): void = ()

fun foo (): void = let
val x = 1
val [y:int] EQINT () = eqint_make_gint (x)

in
goo {y} ()

end

3.6 Template for Makefile of simple ATS project

An old version of Makefile template I wrote for ATS can be found here (todo).

The newer version of Makefile, which relies on Makefile provided by ATS, is shown below.

Makefile

#Makefile for untyped lambda calculus
######

include $(PATSHOME)/share/atsmake-pre.mk

######
#
CFLAGS += -O2
#
######
#
TODO
#LDFLAGS := # uncomment this for a clean start of LDFLAGS
LDFLAGS += -lm # uncomment this for math library
#
TODO
Uncomment the following if you want the Boehm GC.
By default, MALLOCFLAG is -DATS_MEMALLOC_LIBC
LDFLAGS += -lgc
MALLOCFLAG := -DATS_MEMALLOC_GCBDW
#
######

TODO
Add source files here.
SOURCES_DATS += UTLC.dats
SOURCES_SATS +=
SOURCES_C +=

TODO
Specify the name of the target.
TARGET=UTLC

MYTARGET=$(TARGET)

include $(PATSHOME)/share/atsmake-post.mk

18 Chapter 3. ATS-Postiats’ Blog

ATS Knowledge Documentation, Release 0.1

######

######

cleanats:: ; $(RMF) *_?ats.c

cleanall:: ; $(RMF) $(TARGET)

######

######

For the future when tag generator is provided.
.PHONY: tags
tags:
$(RMF) tags MYTAGS
find ./ -name "*.sats" -exec $(PATSOPT) --output-a MYTAGS --taggen -s {} \;
find ./ -name "*.dats" -exec $(PATSOPT) --output-a MYTAGS --taggen -d {} \;
java -jar ../../../tool/ats-lang-tools.jar --input MYTAGS -c --output tags

end of [Makefile]

3.7 Global value with linear type

Global values with linear type can only be used in the global scope. They cannot be used inside a function scope. For
example, the following code cannot pass the type checking.

staload
UNSAFE = "prelude/SATS/unsafe.sats"

absvtype VT

extern fun create (): VT
extern fun use (v: !VT): void

val v = create ()

fun temp (): void = let
val () = use (v)

in
end

implement main0 () = ()

ATS compiler conplains that regexp_main.dats: 177(line=15, offs=17) – 178(line=15, offs=18): error(3): the
linear dynamic variable [v$64(-1)] is expected to be local but it is not. regexp_main.dats: 177(line=15,
offs=17) – 178(line=15, offs=18): error(3): a linear component of the following type is aban-
doned: [S2Ecst(VT)]. patsopt(TRANS3): there are [2] errors in total. exit(ATS): uncaught exception:
_2home_2alex_2programs_2ats2_github_2ATS_2dPostiats_2src_2pats_error_2esats__FatalErrorExn(1025)

Usually we would cast the global value of linear type into non-linear type, and cast it back inside a function scope,
which is shown below:

3.7. Global value with linear type 19

ATS Knowledge Documentation, Release 0.1

staload
UNSAFE = "prelude/SATS/unsafe.sats"

absvtype VT

extern fun create (): VT
extern fun use (v: !VT): void

val v = create ()

val ele = $UNSAFE.castvwtp0{ptr}(v)

fun temp (): void = let
val v1 = $UNSAFE.castvwtp0{VT}(ele)
val () = use (v1)
prval ((*void*)) = $UNSAFE.cast2void (v1)

in
end

implement main0 () = ()

20 Chapter 3. ATS-Postiats’ Blog

CHAPTER 4

ATS-Postiats’ syntax

Contents:

4.1 Mapping from source code to data structure

4.1.1 Function declaration and implementation

We use the following source code as an example.

abstype ty (int, int)
extern fun foo {x: int} {y: int} (x: ty (x, y), y: int y):

[q: int] int q

implement foo {x}{y}(x, y) = 3

For the function declaration, we would have a D2Cdcstdecs, which contains a list of d2cst. Each d2cst has type
information of the defined constant. In this example, the type of function foo is quite complicated, which involves
universal type (S2Euni) as well as existential type (S2Eexi).

ss

21

ATS Knowledge Documentation, Release 0.1

22 Chapter 4. ATS-Postiats’ syntax

CHAPTER 5

Model Checking ATS

In this project, we focus on integrating model checking techniques seamlessly into the development of ATS program
and ultimately build a practical system for verifying concurrent ATS program.

5.1 Tutorial

Before going to the details, let’s have a quick look of how the methodology looks like. The producer-consumer problem
is a classic one in field of concurrent programming. A recommanded implementation is described in the documentation
of ATS 1, which exploits the type system of ATS to better ensure the correctness of the program. Certain mistakes, as
stated below, can be avoided, which is great. However, a well-typed implementation for producer-consumer problem
in ATS may still cause deadlock. And it’s very difficult to soly rely on type system to capture such errors. Therefore,
we start seeking help from other techniques, among which model checking is our pick here. It can help detect bugs
related to temporal properties in concurrent systems and provide corresponding counterexamples. To apply the model
checking technique, we need to form up the precise semantics of ATS programs, which in turn requires the precise
semantics of those concurrency primitives related to communication and synchronization. We form up a collection
of such primitives, based on which programers can build concurrent program in ATS with semantics meanful to the
model checking techniques we employ here. Such collection is given in the file conats.sats. It also contains some
other primitives used for model checking, which we shall explain as we see more examples.

The complete implementation for producer-consumer problem can be found here 16_reader_writer.dats. You
can also read, modify, and verify the implementation via our website Model Checking ATS. We illustrate some of the
code snippets below.

As indicated in 1, a shared object contains a linear object, which in this example is a linear buffer. The primitives
provided in conats.sats do not support such type. Therefore we define a linear type lin_buffer as well as corre-
sponding functions for manupulating objects of such type, which is given below.

1 // Define linear buffer to prevent resource leak.
2 absviewtype lin_buffer (a:t@ype)
3

4 local
5 assume lin_buffer (a) = atomref (a)
6 in
7 fun lin_buffer_create {a:t@ype} (
8 data: a): lin_buffer a = let
9 val ref = conats_atomref_create (data)

10 in
11 ref
12 end

1 http://ats-lang.sourceforge.net/EXAMPLE/EFFECTIVATS/Producer-Consumer/main.html

23

https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats
http://54.148.225.84
https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats
http://ats-lang.sourceforge.net/EXAMPLE/EFFECTIVATS/Producer-Consumer/main.html

ATS Knowledge Documentation, Release 0.1

13

14 fun lin_buffer_update {a:t@ype} (
15 lref: lin_buffer a, data: a): lin_buffer a = let
16 val () = conats_atomref_update (lref, data)
17 in
18 lref
19 end
20

21 fun lin_buffer_get {a:t@ype} (
22 lref: lin_buffer a): (lin_buffer a, a) = let
23 val v = conats_atomref_get lref
24 in
25 (lref, v)
26 end
27 end

Three functions conats_atomref_create, conats_atomref_update, and conats_atomref_get are declared in
conats.sats. Intuitively, they are used for creating a mutable object whose content can be accessed in an atomic
manner.

In our example, we only need a linear buffer whose content is an integer. The following code defines the type
demo_buffer for such linear buffer and some auxiliary functions for accessing it.

1 // Define linear integer buffer for demonstration.
2 viewtypedef demo_buffer = lin_buffer int
3

4 fun demo_buffer_isful (buf: demo_buffer): (demo_buffer, bool) = let
5 val (buf, len) = lin_buffer_get (buf)
6 in
7 (buf, len > 0) // Assume the buffer can only hold 1 elements.
8 end
9

10 fun demo_buffer_isnil (buf: demo_buffer): (demo_buffer, bool) = let
11 val (buf, len) = lin_buffer_get (buf)
12 in
13 (buf, len <= 0)
14 end
15

16 fun demo_buffer_insert (buf: demo_buffer): demo_buffer = let
17 val (buf, len) = lin_buffer_get (buf)
18 val buf = lin_buffer_update (buf, len + 1)
19 in
20 buf
21 end
22

23 fun demo_buffer_takeout (buf: demo_buffer): demo_buffer = let
24 val (buf, len) = lin_buffer_get (buf)
25 val buf = lin_buffer_update (buf, len - 1)
26 in
27 buf
28 end

One thing worth mentioning is the number 1 we choose as the capacity of the virtual buffer shared by producer and
consumer. In reality, a shared buffer may have a large capacity. But a big number may cause model checking not to
be able to detect the potential bugs. Arguably, if our implementation is correct for a small capacity of shared buffer, it
has better chances to be correct as well for large capacity.

Now we can create the linear buffer holding integer and then put it into a shared object which can be accessed by
multiple threads. The corresponding code is shown below.

24 Chapter 5. Model Checking ATS

https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats

ATS Knowledge Documentation, Release 0.1

1 // Create a buffer for model construction.
2 val db: demo_buffer = lin_buffer_create (0)
3

4 // Turn a linear buffer into a shared buffer.
5 val s = conats_shared_create {demo_buffer}(db)

conats_shared_create is a function declared in conats.sats, whose semantics is about creating an shared object
protecting its content via mutex and condition variables.

We now give out the code for producer and consumer. For the purpose of model checking, producer is actually a
function which keeps increasing the counter inside the linear buffer whenever possible. If the capacity is reached, the
producer would wait until the consumer takes out (by decreasing the counter) something out of the buffer. The same
idea applies to the consumer functions. Notably, both producer and consumer would wake up the potentially waiting
counterpart by sending a signal.

1 // Keep adding elements into buffer.
2 fun producer (x: int):<fun1> void = let
3 val db = conats_shared_acquire (s)
4

5 fun insert (db: demo_buffer):<cloref1> demo_buffer = let
6 val (db, isful) = demo_buffer_isful (db)
7 in
8 if isful then let
9 val db = conats_shared_condwait (s, db)

10 in
11 insert (db)
12 end else let
13 val (db, isnil) = demo_buffer_isnil (db)
14 val db = demo_buffer_insert (db)
15 in
16 if isnil then conats_shared_signal (s, db)
17 else db
18 end
19 end
20

21 val db = insert (db)
22 val () = conats_shared_release (s, db);
23 in
24 producer (x)
25 end
26

27 // Keep removing elements from buffer.
28 fun consumer (x: int):<fun1> void = let
29 val db = conats_shared_acquire (s)
30

31 fun takeout (db: demo_buffer):<cloref1> demo_buffer = let
32 val (db, isnil) = demo_buffer_isnil (db)
33 in
34 if isnil then let
35 val db = conats_shared_condwait (s, db)
36 in
37 takeout (db)
38 end else let
39 val (db, isful) = demo_buffer_isful (db)
40 val db = demo_buffer_takeout (db)
41 in
42 if isful then let
43 // Omitting the following would cause deadlock

5.1. Tutorial 25

https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats

ATS Knowledge Documentation, Release 0.1

44 // val db = conats_shared_signal (s, db)
45 in db end
46 else db
47 end
48 end
49

50 val db = takeout (db)
51 val () = conats_shared_release (s, db);
52 in
53 consumer (x)
54 end

Due to the usage of linear type of ATS, ATS compiler would complain if a programmer forgets to call
conats_shared_acquire to acquire the mutex (which is inside the shared object) before updating the counter, or
conats_shared_release to release the mutex. However, type checking won’t be able to detect the potential deadlock if
the producer or consumer doesn’t call the conats_shared_signal function.

Model checking can help detect the aforementioned bug. However, unlike type checking, model checking can only
be applied to a runable program instead of a collection of functions. Therefore we set up the environment as follows
so that we have a complete model. The model consists of two threads, one for producer and one for consumer. The
conats_tid_allocate and conats_thread_create functions are provided by conats.sats. Intuitively, they are used
for allocating thread id and creating new thread with a given function.

1 val tid1 = conats_tid_allocate ()
2 val tid2 = conats_tid_allocate ()
3

4 val () = conats_thread_create(producer, 0, tid1)
5 val () = conats_thread_create(consumer, 0, tid2)

Since model checking allows us to verify various properties of a program, we specify as follows that we want to verify
that our program does not have deadlock.

1 %{$
2 #assert main deadlockfree;
3 %}

So far we have implemented the producer-consumer problem. With the appropriate implementations of functions from
conats.sats, we can compile and run the ATS program. Due to the nondeterminism caused by concurrency, the
potential deadlock may not happen during several runnings. But with model checking, we are guaranteed that there is
no deadlock if our implementation can pass the model checking.

The model checking process goes as follows. We build a tool, which is able to extract a model from the ATS pro-
gram given above. Currently, the extracted model is in the modeling langauge CSP#. We then use the state-of-art
model checker PAT to check the generated model. To ease the whole process, we set up a website for readers to
try this methodology on-line: Model Checking ATS. The aforementioned example can be found under the name
“16_reader_writer.dats” in the dropdown list “Select ATS Example”. We are working on building tools to better relate
the model checking result (counterexample) to the original ATS program. However, it’s still quite informative just
by inspecting the current result of the model checker since the extracted model in CSP# is quite readable. As for the
example, if we omit conats_shared_signal in consumer, model checking would give out the following result including
the trace leading to the deadlock. (We omit the detail of the trace here for clarity purpose.)

===
Assertion: main() deadlockfree

********Verification Result********
The Assertion (main() deadlockfree) is NOT valid.
The following trace leads to a deadlock situation.
<init -> main_init -> main61_id_s1.0 -> lin_buffer_create_63_s1.0 -> main61_id_s2.0 ->

26 Chapter 5. Model Checking ATS

https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats
https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats
http://www.comp.nus.edu.sg/~pat/
http://54.148.225.84

ATS Knowledge Documentation, Release 0.1

********Verification Setting********
Admissible Behavior: All
Search Engine: Shortest Witness Trace using Breadth First Search
System Abstraction: False

********Verification Statistics********
Visited States:2392
Total Transitions:4588
Time Used:0.3925891s
Estimated Memory Used:24059.904KB

Next we will illustrate more features of this methodology of combining type checking of ATS programming langauge
with model checking technique to verify properties of concurrent programs.

5.2 Table of Contents

5.2.1 Ghosts for Model Checking

ATS programming language allows programmers to write code constructing proofs along side with operational code
which does the actual computation. The code for proof is seen only by the type checker of ATS and is erased com-
pletely before the compiler of ATS starts generating executable programs. We extends such concept by allowing
programmers to write code related to model checking. Such code can be seen by the type checker of ATS, which facil-
itate the type checking process, and will be erased (just like proof code) before the compiler of ATS starts generating
executable programs. We call such code ghost code. Ghost code comes in various forms: Ghost function, Ghost value,
Ghost type, and etc. We will talk about them in details when meeting related exampels.

Both operational code and ghost code have semantics to model checker we build. On the other hand, proof code is
neglected by the model checker. The simplest but maybe the most stimulating example of ghost code is mc_assert as
shown below.

1 fun foo (): void = let
2 prval () = mc_assert (false)
3 in
4 end
5

6 val () = foo ()

The executable generated by ATS compiler from the code above simply does nothing since the only content of the
function foo is a ghost function mc_assert, which is only meaningful to our model checker. Intuitively, we can view
mc_assert as assertions normally used by programmers for runtime checking, but this time it’s used at the stage of
model checking.

Feel free to try the example using our online model checker. To use the model checker, we need to appending the
following code to indicate that we want to verify that mc_assert succeeds.

1 %{$
2 #assert main |= G sys_assertion;
3 %}

The complete code (with some routine code for header files) for the example can be found here
demo_01_mc_assert.dats

With mc_assert, we can use model checking as a test facility as shown in the following example.

5.2. Table of Contents 27

http://54.149.186.200

ATS Knowledge Documentation, Release 0.1

1 typedef Int = [x:int] int x
2

3 fun sum {x:nat} (x: int x): Int = x * (x + 1) / 2
4

5 fun sum2 {x:nat}.<x>.(x: int x):<fun> Int =
6 if x > 0 then x + sum2 (x - 1)
7 else 0
8

9 val n = 3
10 val ret = sum (n)
11 prval mc_ret = sum2 (n)
12 prval () = mc_assert (ret = mc_ret)

In the example above, we have two versions of the summation function. We use model checking to verify that they
generate the same output. mc_ret is a ghost value (declared via the keyword prval), and accordingly the executable
generated by ATS compiler doesn’t contain the invocation of sum2. However sum2 itself is not a ghost function, and it
can be used at runtime if programmers choose to. (Just for technical detail, currently only pure functions in ATS can
be used to calculate ghost values. That’s why the type of sum2 is a little bit verbose, since we prove that sum2 always
terminates.)

One thing worth mentioning is the type of mc_assert as shown below:

prfun mc_assert {b: bool} (x: bool b):<fun> [b == true] void

The type of the argument of mc_assert depends on a boolean value b in the statics of ATS. mc_assert assures the type
system that b is true and as such the type checking of the whole program may be established successfully. Also the
validity of such assertion is checking during the process of model checking.

5.2.2 Towards Concurrent Program

The type system of ATS consists of both dependent types and linear types. Please refer to ATS’ documentation for its
application in constructing verifiably correct sequential progarm. Linear types are of help to certain extent in ensuring
safety properties about mutual exclusion. However, in general, the type system of ATS has difficulty in specifying
properties of concurrent programs, e.g. invariants of objects across threads, absence of deadlock, liveness properties,
and etc. Such incapability triggers our research in corporating model checking techniques into the verification process
of ATS program.

Primitives for Concurrent Programming

But first of all, programmers have to be able to write concurrent programs in ATS. Currently, we add a set of primitives
into ATS programming language to support concurrent programming in a style similar to using pthead. In the near
future, we will add more primitives (e.g. channel, future) supporting different styles of concurrent programming.

The declarations of these primitives can be found in conats.sats. In the Tutorial, we al-
ready use conats_shared_create, conats_shared_acquire, conats_shared_condwait, conats_shared_signal, and
conats_shared_release, whose types are declared as follows:

1 abstype shared_t (viewt@ype, int)
2 typedef shared (a:viewt@ype) = shared_t (a, 1)
3

4 fun conats_shared_create {a: viewt@ype} (ele: a): shared (a)
5

6 fun conats_shared_acquire {a: viewt@ype} {n:pos} (s: shared_t (a, n)): a
7 fun conats_shared_release {a: viewt@ype} {n:pos} (s: shared_t (a, n), ele: a): void
8

28 Chapter 5. Model Checking ATS

https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats

ATS Knowledge Documentation, Release 0.1

9 fun conats_shared_signal {a: viewt@ype} (s: shared (a), ele: a): a
10 fun conats_shared_condwait {a: viewt@ype} (s: shared (a), ele: a): a

conats_shared_create creates a shared object (of type shared a) holding a linear buffer. The concept of shared ob-
ject is similar to that of monitor 2. The types of the aforementioned functions guarantee they are invoked appro-
priately in a non-object-oriented language like ATS. (E.g. we have to call conats_shared_acquire before invoking
conats_shared_condwait and conats_shared_signal. From the perspective of pthread programming, a shared object
consists of a mutex and a condition variable working together for synchronization purpose.

However, sometimes it’s not enough for a shared object to contain just one condition varialbe. For example, in
Tutorial, the shared object has only one condition varialbe, which is used to indicate two situations: buffer is full
or empty. The example has no deadlock because it only has one producer and one consumer. Simply adding
one more consumer to the example would lead to potential deadlock. The complete code can be downloaded here
16_1_producer_consumer_m_1.dats. You can also find this example at our website Model Checking ATS.
One example of the potential deadlock can be thought as follows: Initially, the shared buffer is empty. Two consumers
come and wait on the shared object. The producer comes and puts one element into the buffer and then wake up one
consumer. However, the newly active consumer doesn’t execute instantly. Instead, the producer comes again, tries to
put another element into the buffer, and has to wait on the shared object since the capacity of the buffer is 1. Then the
newly active consumer gets one element out of the buffer and wakes up another consumer. At this moment, the buffer
is empty, the producer is waiting, and two consumers won’t signal the shared buffer any more. And this leads to a
deadlock. The counterexample found by the model checker by Breadth First Search confirms with our speculation.

To solve this problem, we also provide another version of shared object which contains multiple condition variables.
The types of related functions are shown below.

1 abstype shared_t (viewt@ype, int)
2

3 fun conats_sharedn_create {a: viewt@ype} {n:pos} (ele: a, n: int n): shared_t (a, n)
4

5 fun conats_sharedn_signal {a: viewt@ype} {i,n:nat | i < n} (s: shared_t (a, n), i: int i, ele: a): a
6

7 fun conats_sharedn_condwait {a: viewt@ype} {i,n:nat | i < n} (s: shared_t (a, n), i: int i, ele: a): a

With such shared object, we can now set up two condition variables handling both full and empty buffers separately.
The complete code can be download here 16_2_producer_consumer_m_1_2cond.dats. A snappet of code
for the producer is shown below.

1 // Keep adding elements into buffer.
2 fun producer (x: int):<fun1> void = let
3 val db = conats_shared_acquire (s)
4

5 fun insert (db: demo_buffer):<cloref1> demo_buffer = let
6 val (db, isful) = demo_buffer_isful (db)
7 in
8 if isful then let
9 val db = conats_sharedn_condwait (s, NOTEMP, db)

10 in
11 insert (db)
12 end else let
13 val (db, isnil) = demo_buffer_isnil (db)
14 val db = demo_buffer_insert (db)
15 in
16 if isnil then conats_sharedn_signal (s, NOTFUL, db)
17 else db
18 end
19 end

2 http://en.wikipedia.org/wiki/Monitor_%28synchronization%29

5.2. Table of Contents 29

http://54.148.225.84
http://en.wikipedia.org/wiki/Monitor_%28synchronization%29

ATS Knowledge Documentation, Release 0.1

20

21 val db = insert (db)
22 val () = conats_shared_release (s, db);
23 in
24 producer (x)
25 end

In this implemenation, producer only signals the condition variable when the buffer is actually empty at that moment.
This would lead to the missing of signal if we have multiple producers and consumers. (Please refer to section 8.2.2
of 3.) In the example 16_3_producer_consumer_m_m_signal.dats, there is two producers, each of which
inserts only one element, and two consumers, each of which takes out one element. And the problem of miss signal
would lead to deadlock. The model checker would demonstrate this by a counterexample. One remedy is to sigal the
condition variable every time. The other is to use conats_sharedn_wait instead of conats_sharedn_signal.

Bibliography

5.2.3 Accessing Global Ghost Variables

Global ghost variables

To facilite programmers to state the properties across the boundry of threads, we provide the concept of global ghost
variables. (As being ghost, any flow of data from such variables to the operational state of the program is forbidden.)
Programmers are also required to give identities to ghost variables, which provides a way to bridge model checking
and type checking for program development. The following example demonstrates this concept.

1 stacst sid_init: sid
2 extern val mc_init: mc_gv_t sid_init
3

4 fun exec (x: int): void = let
5

6 fun foo {init: pos}(pf: int_value_of (sid_init, init) | x: int): int = x
7

8 prval (pf | init) = mc_get_int (mc_init)
9

10 // mc_assert cannot be omitted though it is ghost code.
11 prval () = mc_assert (init > 0)
12

13 val _ = foo (pf | x)
14 in
15 end
16

17 val tid1 = conats_tid_allocate ()
18

19 val () = conats_thread_create(exec, 0, tid1)
20

21 prval () = mc_set_int (mc_init, 1)
22

23

24 %{$
25 // #assert main deadlockfree;
26

27 #assert main |= G sys_assertion;
28

29 %}

3 The Art of Multiprocessor Programming

30 Chapter 5. Model Checking ATS

http://www.amazon.com/The-Multiprocessor-Programming-Revised-Reprint/dp/0123973376

ATS Knowledge Documentation, Release 0.1

We explain this example in details as follows:

stacst sid_init: sid
extern val mc_init: mc_gv_t sid_init

stacst declares a constant sid_init in the statics of ATS. This contant serves as the identifier of a ghost variable. extern
val declares a value mc_init, which is the counterpart of sid_init in the dynamics of ATS. (In the future, only stacst is
needed after we simplify the model generation process.)

fun foo {init: pos}(pf: int_value_of (sid_init, init) | x: int): int = x

The type of function foo states that a proof that ghost variable sid_init used to be positive is needed to invoke the
function. Therefore, if we erase the ghost code mc_assert from the following code

fun exec (x: int): void = let

fun foo {init: pos}(pf: int_value_of (sid_init, init) | x: int): int = x

prval (pf | init) = mc_get_int (mc_init)

// mc_assert cannot be omitted though it is ghost code.
prval () = mc_assert (init > 0)

val _ = foo (pf | x)
in
end

the type checker of ATS would complain that there exists unsolved constraint in the type checking process. From
the example, we can see that a set of well designed interfaces for functions can force programmers to incorpo-
rate model checking method during the development process. The complete program can be downloaded here
24_global_ghost_variable.dats. Because of the following code

val tid1 = conats_tid_allocate ()

val () = conats_thread_create(exec, 0, tid1)

prval () = mc_set_int (mc_init, 1)

The program stands a chance of making the mc_assert (in function exec) to fail since the ghost variable is set to 1 after
creating a new thread to execute function exec. The model checking process can help us detect such problem.

Atomicity in ghost code

For specification purpose, sometimes it’s necessary to group sereral ghost code into one atomic step. We provide two
ghost primitives mc_atomic_start and mc_atomic_end to mark the scope for an atomic step, which we call an atomic
scope, consisting of both ghost code and operational code. The following program shows the usage of the atomic step.

1 stacst mid: sid
2

3 extern val mc_m: mc_gv_t mid
4

5 fun foo1 (): void = let
6 prval () = mc_atomic_start()
7 prval () = mc_set_int (mc_m, 3)
8 prval () = mc_set_int (mc_m, 4)
9 prval () = mc_atomic_end()

10 in
11 end

5.2. Table of Contents 31

ATS Knowledge Documentation, Release 0.1

12

13 fun foo2 (x: int): void = let
14 prval (pf | x) = mc_get_int (mc_m)
15 prval () = mc_assert (x <> 3)
16 in
17 end
18

19 val tid1 = conats_tid_allocate ()
20

21 val () = conats_thread_create(foo2, 0, tid1)
22

23 val () = foo1 ()

The mc_assert in function foo2 succeeds because the state in which the ghost variable mc_m is set to 3 is not observable
by other threads. The complete code can be downloaded here 18_atomic_opr.dats.

Currently, it’s programmers’ responsibility to make sure that only primitives for accessing ghost variables
(mc_set_int, mc_get_int) and primitives for accessing global references (conats_atomref_update, conats_atomref_get,
conats_atomarrayref_update, conats_atomarrayref_get) can appear in an atomic scope. Also they have to make sure
that an atomic scope can contain at most one operational primitive for accessing global reference while there’s no limit
for the number of primitives for accessing ghost variables.

5.2.4 Virtual Lock

Improper handling of resources (e.g. memory) in a program may lead to various bugs (e.g. memroy leak) in sequential
programs. The problem gets even worse when entering the concurrent domain, in which simultaneous access to shared
resource by multiple threads is feasible. One example is that we may lose the integrity of data if two threads are using
a shared memory to transfer data. Techniques for solving this problem generally rely on mutual exclusion principles
to control access to shared resources. Mutual exclusion introduces a measure of synchronization, but with the cost of
losing efficiency. With a deliberate design, sometimes we can remove the need for synchronization while maintain-
ing the desired property of mutual exclusion. Simpson’s four-slot fully asynchronous communication mechanism 4

demonstrates such idea. However, it’s very difficult to verify that the deemed mutual exclusion property actually holds
in the design. To tackle this problem, we provide two primitives supporting the concept of “virtual lock” to allow
programmers to specify assumptions of mutual exclusion to various granularities according to their design. And such
assumption can then be verified by our model checker.

Let’s illustrate the usage of “virtual lock” using the following example of two-slot mechanism. Consider the scenario in
which one writer and one reader try to communicate via a shared resource consisting of multiple memory regions (two
in this example). Due to hardware constraint, access to each memory region cannot be done atomically. Therefore,
reader may get inconsistent data if writer is writing the same region at the same time. The following code shows the
proposed types for the shared resource (dataslots_t) as well as the interfaces for accessing it.

1 abstype dataslots_t (t@ype, int)
2

3 absviewtype own_slot_vt (int)
4

5 fun dataslots_create {a:t@ype} {x:pos} (
6 x: int x, v: a): dataslots_t (a, x)
7

8 fun dataslots_update {a:t@ype} {x,i:nat | i < x}
9 (vpf: own_slot_vt (i)

10 | slots: dataslots_t (a, x), i: int i, v: a
11): (own_slot_vt i | void)
12

13 fun dataslots_get {a:t@ype} {x,i:nat | i < x}

4 H.R. Simpson, Four-slot fully asynchronous communication mechanism

32 Chapter 5. Model Checking ATS

ATS Knowledge Documentation, Release 0.1

14 (vpf: own_slot_vt (i)
15 | slots: dataslots_t (a, x), i: int i
16): (own_slot_vt i | a)

The usage of linear type own_slot_vt states clearly that dataslots_update and dataslots_get require mutual exclusion
on the memory region to be accessed. Normally, programmers ensure such property by the usage of synchronization
primitives (e.g. mutex). However, in the following code, we try to gain mutual exclusion by the usage of a few global
variables the access for which is atomic. The code is shown below.

1 typedef data_t = dataslots_t (int, 2)
2 val data: data_t = dataslots_create (2, 0)
3

4 typedef int2 = [i: int | i >= 0 && i <= 1] int i
5

6 // control variables
7 val latest = conats_atomref_create {int2} (0)
8

9 fun write (item: int): void = let
10 val index = 1 - conats_atomref_get (latest)
11

12 prval vpf = mc_acquire_ownership (index)
13 val (vpf | _) = dataslots_update (vpf | data, index, item)
14 prval () = mc_release_ownership (vpf)
15

16 val () = conats_atomref_update (latest, index)
17 in
18 end
19

20 fun read (): int = let
21 val index = conats_atomref_get (latest)
22

23 prval vpf = mc_acquire_ownership (index)
24 val (vpf | item) = dataslots_get (vpf | data, index)
25 prval () = mc_release_ownership (vpf)
26 in
27 item
28 end

In the example, the shared resource (data_t) contains two regions (slots). lastest is a global reference for an inte-
ger, which is created by the primitive conats_atomref_create. (Primitives conats_atomref_create, conats_atomref_get,
and conats_atomref_update are provided as an extension to ATS to support concurrent programming.) To pass the
type checking of ATS, we use two functions mc_acquire_ownership and mc_release_ownership to generate and de-
stroy the linear ghost value (vpf), which serves as the warranty for mutual exclusion. mc_acquire_ownership and
mc_release_ownership are not primitives. Instead, they are user-defined ghost functions. Their implementation is
shown below.

1 prfun mc_acquire_ownership .<>. {i: nat}
2 (i: int i): own_slot_vt (i) = mc_vlock_get (i, 0, 1, 1)
3

4 prfun mc_release_ownership .<>. {i: nat}
5 (vpf: own_slot_vt (i)): void = mc_vlock_put (vpf)

The two ghost functions are built upon two primitives mc_vlock_put and mc_vlock_get. Intuitively, mc_vlock_get (x,
y, a, b) indicates the acquision of a virtual lock covering a rectangle with (x, y) as the upper left corner, a as the width
(x-axis), and b as the height (y-axis), and mc_vlock_put indicates the release of the lock. And our model checker
would check that under no circumstances would two threads try to acquire two virtual locks covering overlapping
areas simutaneously. And this serves as the verification of mutual exclusion. To model checking the example, we
would need to add the following code to implement those interfaces for accessing shared resource.

5.2. Table of Contents 33

ATS Knowledge Documentation, Release 0.1

1 fun dataslots_create {a:t@ype} {x:pos} (
2 x: int x, v: a): dataslots_t (a, x) =
3 conats_atomarrayref_create {a} (x, v)
4

5 fun dataslots_update {a:t@ype} {x,i:nat | i < x}
6 (vpf: own_slot_vt (i)
7 | slots: dataslots_t (a, x), i: int i, v: a
8): (own_slot_vt i | void) = let
9 val () = conats_atomarrayref_update (slots, i, v)

10 in
11 (vpf | ())
12 end
13

14 fun dataslots_get {a:t@ype} {x,i:nat | i < x}
15 (vpf: own_slot_vt (i)
16 | slots: dataslots_t (a, x), i: int i
17): (own_slot_vt i | a) = let
18 val v = conats_atomarrayref_get (slots, i)
19 in
20 (vpf | v)
21 end

In the aforementioned code, this implementation is actually based on the primitives for creating and accessing array.
This is not necessary if our focus is to verify the validity of mutual exclusion.

The complete code can be downloaded here 20_1_two_slot_acm.dats. Without much thinking, we know
that this implementation cannot pass model checking since writer just switches between two slots. Going further,
the implementation (20_2_three_slot_acm.dats) using three slots doesn’t work either. And based on the
implementation using four slots (20_3_four_slot_acm.dats), we verify that Simpson’s four-slot asynchronous
mechanism possesses the acclaimed mutual exclusion property.

Bibliography

5.3 Bibliography

34 Chapter 5. Model Checking ATS

CHAPTER 6

Indices and tables

• genindex

• modindex

• search

35

ATS Knowledge Documentation, Release 0.1

36 Chapter 6. Indices and tables

Index

V
Virtual Lock, 32

37

	Annotated ATS Programs
	Goal
	Examples

	ATS Tools' documentation
	Tag Generator For ATS-Anairiats
	Vim plug-in for ATS-Postiats

	ATS-Postiats' Blog
	Syntax for staload
	Various print functions in ATS-Postiats
	Miscellaneous topics related to ATS-Postiats
	Targeting C# from program of ATS-Postiats
	Get value in the statics of ATS
	Template for Makefile of simple ATS project
	Global value with linear type

	ATS-Postiats' syntax
	Mapping from source code to data structure

	Model Checking ATS
	Tutorial
	Table of Contents
	Bibliography

	Indices and tables

