

 Navigation

 	
 index

 	
 next |

 	ATS Knowledge 0.1 documentation

Welcome to ATS’ documentation!

Contents:

	Annotated ATS Programs
	Goal

	Examples

	ATS Tools’ documentation
	Tag Generator For ATS-Anairiats

	Vim plug-in for ATS-Postiats

	ATS-Postiats’ Blog
	Syntax for staload

	Various print functions in ATS-Postiats

	Miscellaneous topics related to ATS-Postiats

	Targeting C# from program of ATS-Postiats

	Get value in the statics of ATS

	Template for Makefile of simple ATS project

	Global value with linear type

	ATS-Postiats’ syntax
	Mapping from source code to data structure

	Model Checking ATS
	Tutorial

	Table of Contents

	Bibliography

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

Annotated ATS Programs

Goal

The normal way to start up a programming project using ATS is via imitating an existing
example. The website serves as a collection of such examples along with intensive
comments about the usage of ATS in these examples.

These examples come primarily from the Google group for ATS [https://groups.google.com/forum/#!forum/ats-lang-users].

xxx

Examples

WireShark has been installed on all the Windows machines in the Instructional Lab (EMA 302). It is only usable during the period of the lab session.

	Dining Philosopher with Animation (by Cairo)
	Source File Download

	Code

	Operations pertaining to array0
	Source File Download

	Code

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	Annotated ATS Programs

Dining Philosopher with Animation (by Cairo)

Source File Download

Code

	dp_gui.dats

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	Copy from
Assignment 3:
Class: BU CAS CS520, Fall, 2013
Due: Thursday, the 26th of September, 2013
*)

(* ****** ****** *)
//
#include
"share/atspre_define.hats"
#include

	dp_observer.dats

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

	(*
**
**
**
*)

(* ****** ****** *)

(*
Copy from
Assignment 3:
Class: BU CAS CS520, Fall, 2013
Due: Thursday, the 26th of September, 2013
*)

(* ****** ****** *)
//
#include
"share/atspre_define.hats"
#include
"share/atspre_staload.hats"
//
(* ****** ****** *)

staload
UN = "prelude/SATS/unsafe.sats"

(* ****** ****** *)

staload "libc/SATS/time.sats"

(* ****** ****** *)

staload "{$CAIRO}/SATS/cairo.sats"

(* ****** ****** *)

staload "{$GTK}/SATS/gdk.sats"
staload "{$GTK}/SATS/gtk.sats"
staload "{$GLIB}/SATS/glib.sats"
staload "{$GLIB}/SATS/glib-object.sats"

(* ****** ****** *)

staload "mythread.sats"

// staload "libc/SATS/stdlib.sats"
staload "libc/SATS/unistd.sats"

staload "dp_observer.sats"
dynload "dp_observer.dats"

staload "DiningPhil.sats"
dynload "DiningPhil.dats"
(* ****** ****** *)

%{^
typedef
struct { char buf[32] ; } bytes32 ;
%} // end of [%{^]
abst@ype bytes32 = $extype"bytes32"

(* ****** ****** *)

%{^
#define mystrftime(bufp, m, fmt, ptm) strftime((char*)bufp, m, fmt, ptm)
%} // end of [%{^]

(* ****** ****** *)

extern fun worker (darea: !GtkDrawingArea1): void

(* ****** ****** *)
val x: ref int = ref<int>(0)
val cg: ref double = ref<double>(0.0)
val cb: ref double = ref<double>(1.0)

(* ****** ****** *)

%{^
typedef char **charptrptr ;
%} ;
abstype charptrptr = $extype"charptrptr"

(* ****** ****** *)
(* ****** ****** *)
extern
fun{} fexpose (!GtkDrawingArea1): gboolean

implement{
} fexpose (darea) = let
 val () = draw_drawingarea (darea) in GFALSE
end // end of [fexpose]

extern fun{
} dp_anime_main (): void

(* ****** ****** *)

#define nullp the_null_ptr

#define W 400
#define H 400

implement{}
dp_anime_main
 ((*void*)) = () where
{
//
val win0 =
 gtk_window_new (GTK_WINDOW_TOPLEVEL)
val win0 = win0
val () = assertloc (ptrcast(win0) > 0)
val () = gtk_window_set_default_size (win0, (gint)W, (gint)H)
//
val opt = stropt_some"dining philosopher"
val issome = stropt_is_some(opt)
//
val () =
if issome then let
 val title = stropt_unsome (opt)
in
 gtk_window_set_title (win0, gstring(title))
end // end of [if] // end of [val]
//
val darea =
 gtk_drawing_area_new ()
val p_darea = gobjref2ptr (darea)
val () = assertloc (p_darea > 0)
val () = gtk_container_add (win0, darea)
//
val _sid = g_signal_connect
(
 darea, (gsignal)"expose-event", G_CALLBACK(fexpose), (gpointer)nullp
)
//
val _sid = g_signal_connect
(
 win0, (gsignal)"delete-event", G_CALLBACK(gtk_main_quit), (gpointer)nullp
)
val _sid = g_signal_connect
(
 win0, (gsignal)"destroy-event", G_CALLBACK(gtk_widget_destroy), (gpointer)nullp
)
//
val () = gtk_widget_show_all (win0)
//
val () = g_object_unref (win0) // HX: refcount of [win0] decreases from 2 to 1
//
// todo: Why does this pass the typechecking?
val () = mythread_create_cloptr (llam () => worker (darea))
val () = dp_init ()

//
val ((*void*)) = gtk_main ((*void*))

val () = g_object_unref (darea)
//
} // end of [dp_anime_main]

(* ****** ****** *)

implement
main0 (argc, argv) =
{
//
var argc: int = argc
var argv: charptrptr = $UN.castvwtp1{charptrptr}(argv)
//
val () = $extfcall (void, "gtk_init", addr@(argc), addr@(argv))

val ((*void*)) = dp_anime_main ((*void*))
//
} (* end of [main0] *)

implement worker (darea) = let
 val () = ignoret (sleep(1))
 //
 val (fpf_win | win) = gtk_widget_get_window (darea)
 //
 val isnot = g_object_isnot_null (win)
 //
 prval () = minus_addback (fpf_win, win | darea)
 //
 in
 //
 if isnot then let
 var alloc: GtkAllocation
 val () = gtk_widget_get_allocation (darea, alloc)
 val () = gtk_widget_queue_draw_area (darea, (gint)0, (gint)0, alloc.width, alloc.height)
 in
 worker(darea)
 end else
 ()
 // end of [if]
 //
end // end of [worker]

(* ****** ****** *)

(* end of [dp_gui.dats] *)

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	Annotated ATS Programs

Operations pertaining to array0

Source File Download

Code

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

ATS Tools’ documentation

Contents:

	Tag Generator For ATS-Anairiats
	Description

	Download

	Usage

	Development

	Vim plug-in for ATS-Postiats

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	ATS Tools’ documentation

Tag Generator For ATS-Anairiats

Description

For users of Emacs and Vim, it is common to browse source code spanning over
multiple files with the support of tag. Here, we proivde a tool for generating
tag files accepted by these two editors.

Download

Please download the file ats-lang-tools.jar.

Usage

The generation of tag file includes two steps as follows.

	Use atsopt to collect information from the source files you have.

atsopt -o MYTAGS --taggen -s fact.sats -d fact.dats

	Use ats-lang-tools.jar to generate the tag file from MYTAGS.

java -jar ats-lang-tools.jar --input MYTAGS -c --output tags # "c" for ctags with vim
java -jar ats-lang-tools.jar --input MYTAGS -e --output TAGS # "e" for etags with emacs

The next example shows how to generate the tag file for the source files of ATS-Postiats.
Using option –output-a, atsopt would output to file MYTAGS accululatively, so we can combine find and atsopt
to generate a large MYTAGS.

Make sure we start from a clean slate.
rm -f MYTAGS

find ${PATSHOME}/src -name "*.sats" -exec atsopt --output-a MYTAGS --taggen -s {} \;
find ${PATSHOME}/src -name "*.dats" -exec atsopt --output-a MYTAGS --taggen -d {} \;
java -jar ats-lang-tools.jar --input MYTAGS -c --output tags

I use ${PATSHOME}/src in the find command so that the generated tags would use absolute
path for each file. In this way, we can open vim at any location.

The aforementioned method can be applied to ATS-Postiats as well. The following example shows
how to generate the tag file for source files in the prelude of ATS-Postiats, which are written in ATS-Postiats.

PATH_PRELUDE=${PATSHOME}/prelude
MYTAGS_PATS_PRELUDE_PATS=${PATH_PRELUDE}/MYTAGS_PATS_PRELUDE_PATS

rm -rf ${MYTAGS_PATS_PRELUDE_PATS}
Exclude two subdirectories "CODEGEN" and "DOCUGEN"
find ${PATH_PRELUDE}/SATS \(-name "CODEGEN" -o -name "DOCUGEN" \) -prune -o -name "*.sats" \
 -exec patsopt --output-a ${MYTAGS_PATS_PRELUDE_PATS} --taggen -s {} \;
find ${PATH_PRELUDE}/DATS \(-name "CODEGEN" -o -name "DOCUGEN" \) -prune -o -name "*.dats" \
 -exec patsopt --output-a ${MYTAGS_PATS_PRELUDE_PATS} --taggen -d {} \;

java -jar ${PATSHOME}/ats-lang-tools.jar -c --input ${MYTAGS_PATS_PRELUDE_PATS} --output ${PATH_PRELUDE}/tags

Development

The project is held on Github with the follwing address https://github.com/alex-ren/org.ats-lang.toolats.

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	ATS Tools’ documentation

Vim plug-in for ATS-Postiats

Please refer to this post [https://groups.google.com/forum/#!searchin/ats-lang-users/vim/ats-lang-users/T3KfBQgw2hE/ZLdAMTxi6kkJ] for detailed information.

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

ATS-Postiats’ Blog

Some other sources of ATS: ATS Wiki [https://github.com/githwxi/ATS-Postiats/wiki].

Contents:

	Syntax for staload
	Macros in the path

	Various print functions in ATS-Postiats
	dddd

	Miscellaneous topics related to ATS-Postiats
	Setting of Environment

	Usage of staload

	Standard header files

	Type conversion

	Targeting C# from program of ATS-Postiats
	Convertion of types

	Get value in the statics of ATS

	Template for Makefile of simple ATS project

Global value with linear type

Global values with linear type can only be used in the global scope. They cannot be used
inside a function scope. For example, the following code cannot pass the type
checking.

staload
UNSAFE = "prelude/SATS/unsafe.sats"

absvtype VT

extern fun create (): VT
extern fun use (v: !VT): void

val v = create ()

fun temp (): void = let
 val () = use (v)
in
end

implement main0 () = ()

	ATS compiler conplains that

	regexp_main.dats: 177(line=15, offs=17) – 178(line=15, offs=18): error(3): the linear dynamic variable [v$64(-1)] is expected to be local but it is not.
regexp_main.dats: 177(line=15, offs=17) – 178(line=15, offs=18): error(3): a linear component of the following type is abandoned: [S2Ecst(VT)].
patsopt(TRANS3): there are [2] errors in total.
exit(ATS): uncaught exception: _2home_2alex_2programs_2ats2_github_2ATS_2dPostiats_2src_2pats_error_2esats__FatalErrorExn(1025)

Usually we would cast the global value of linear type into non-linear type, and cast
it back inside a function scope, which is shown below:

staload
UNSAFE = "prelude/SATS/unsafe.sats"

absvtype VT

extern fun create (): VT
extern fun use (v: !VT): void

val v = create ()

val ele = $UNSAFE.castvwtp0{ptr}(v)

fun temp (): void = let
 val v1 = $UNSAFE.castvwtp0{VT}(ele)
 val () = use (v1)
 prval ((*void*)) = $UNSAFE.cast2void (v1)
in
end

implement main0 () = ()

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	ATS-Postiats’ Blog

Syntax for staload

Macros in the path

In ATS2, keyword staload is followed by a literal string, which specifies the location of the
file to be loaded. Besides those relative path and absolute path commonly seen, we can use macro
inside the literal string. One example goes as follows:

staload "{$GTK}/SATS/gdk.sats"

The GTK is not a system environment variable. It is actually a macro defined in the ATS code. For
example, we can use the following code to set the GTK to the directory containing ATS2 code for gdk
library.

#define GTK_targetloc "~/codebase/contrib/GTK"
staload "{$GTK}/SATS/gdk.sats"

Note

When we use define to define the macro, we are actually using the name GTK_targetloc, not GTK.

There are some special macros we can use, which are provided by the ATS2 compiler, e.g. PATSHOME
and PATSHOMERELOC. The following example shows their usage:

#define GTK_targetloc "$PATSHOMERELOC/contrib/GTK"

The macro PATSHOMERELOC in ATS2 compiler is from the environment variable PATSHOMERELOC, which
is set in the environment before executing patscc or patsopt.

Note

The macro PATSHOMERELOC is normally set to the contrib package released along with ATS.

Going further, let’s have a look of the file $PATSHOME/share/HATS/atspre_define_pdgreloc.hats, which is
included by the file $PATSHOME/share/atspre_define.hats, which is commonly included in almost
all dats files.

//
#define
ZLOG_targetloc "$PATSHOMERELOC/contrib/zlog"
//
#define
JSONC_sourceloc "$PATSLIB_URL/contrib/json-c"
#define
JSONC_targetloc "$PATSHOMERELOC/contrib/json-c"

An ATS program using libraries of zlog and json-c would need to include the following snippet of code:

#include "share/atspre_define.hats"

staload "{$JSONC}/SATS/json_ML.sats"

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	ATS-Postiats’ Blog

Various print functions in ATS-Postiats

dddd

Todo

	fprint_val<a>(stdout_ref, x)

	fprint_newline

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	ATS-Postiats’ Blog

Miscellaneous topics related to ATS-Postiats

Setting of Environment

Please follow the instructions on ATS’ website [http://www.ats-lang.org/DOWNLOAD/#installation_srccomp] to install ATS-Postiats as well as
ATS2-contrib. Here I just want to emphasize the setting of environment
variables PATSHOME as well as PATSHOMERELOC. These two variables should be
set in the environment before invoking the ATS compiler (patscc or patsopt).
Also they are commonly referred in Makefile used in ATS projects. The first
one (PATSHOME) should be set to the directory where ATS is installed. Normally I just
download tarball for the source of ATS, decompress it, build ATS, and use
built executables. (Simply put, I don’t do make install.)
Therefore I just set PATSHOME to the folder resulting from
decompressing the tarball. PATSHOMERELOC should be set to the folder
resulting for decompress the tarball for ATS2-contrib. Also the PATH
variable should be set accordingly so that system can locate the compiler of
ATS. Normally, I put these settings into one script file, say pats.xxx.sh.
Then I do source pats.xxx.sh when I open a terminal for the first time.
My pats.xxx.sh looks like the following:

Script for setting environment for ATS-Postiats

PATSHOME=${HOME}/programs/ats2/ATS2-Postiats-0.0.8; export PATSHOME
PATSHOMERELOC=${HOME}/programs/ats2/ATS2-Postiats-contrib-0.0.7; export PATSHOMERELOC

PATH=${PATSHOME}/bin:${PATH}; export PATH

If you use make install to install ATS at the system level, your script would probably be
like the following:

Script for setting environment for ATS-Postiats

PATSHOME=/usr/local/lib/ATS2-Postiats-0.0.8; export PATSHOME
PATSHOMERELOC=${HOME}/programs/ats2/ATS2-Postiats-contrib-0.0.7; export PATSHOMERELOC

Note

Since we choose to install ATS at the system level, there’s no need to set PATH.

Usage of staload

Some useful information about staload can be found in
Wiki [https://github.com/githwxi/ATS-Postiats/wiki/staload] and my previous
blog [https://groups.google.com/forum/#!msg/ats-lang-users/4_d_tmGZXIA/8Hc7kMLfsesJ].

Standard header files

To use the prelude library of ATS, we would include the following code:

#include "share/atspre_define.hats"
#include "share/atspre_staload.hats"

To use the ML library of ATS, we would include the following code:

#include "share/HATS/atspre_staload_libats_ML.hats"

If we want to generate C code used on lower level systems, such as embedded system,
we can replace these header files with appropriate ones to fit the targeting
platform.

Type conversion

Todo

	$UNSAFE.cast{natLt(n)}

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	ATS-Postiats’ Blog

Targeting C# from program of ATS-Postiats

I am working on generating C# code from the second layer of the
syntax tree of ATS-Postiats. The following includes some lessons
I’ve learned and corresponding design decision I’ve made.

Convertion of types

Since C# supports powerful generic types, it feels so natural to try
to translate the polymorphic types in ATS into generic types in C#. The
following is the ATS code from which I want to generate C# code.

extern val p: ptr

fun foo1 {a:type} (x: (int, a)): int = x.0

fun test_foo1 (): void = let
 val x = foo1 ((0, p))
in
end

fun foo2 {a,b:type} (f: a -> b): int = 42

fun foo3 (): ptr -> ptr = let
 fun foo4 (x: ptr): ptr = x
in
 foo4
end

fun test_foo2 (): void = let
 val f = foo3 ()
 val x = foo2 (f)
in
end

/* ************ ************ */

fun foo5 (f: {a:type} a -> a): ptr = let
 val r = f (p)
in
 r
end

In ATS, tuple, record and function types have no names, and their equality is
based on their content. In C#, all types must have names including structure,
class, and delegate. Therefore I have to translate ATS code into
C# code in the way shown in the sample code below. That is to create very
general generic types in C# for tuple and functions types in ATS. It seems
that there’s no better way around this except the usage of Object type every
where. Since I want to avoid ugly type casting, I plot to generate the code as
follows

public class Ptr {};

/*
 * Tuple type must have name.
 */
public class Tuple2<T1, T2> {
 public T1 m1;
 public T2 m2;
 public Tuple2(T1 t1, T2 t2) {
 m1 = t1;
 m2 = t2;
 }
}

/*
 * Function type must have name.
 */
public delegate T2 Foo1<T1, T2>(T1 x);

public class Code {

 static public Ptr p = new Ptr();

 static public int foo1<T1>(Tuple2<int, T1> x) {
 return x.m1;
 }

 static public void test_foo1() {
 var x = foo1(new Tuple2<int, Ptr>(0, p));
 }

 static public int foo2<T1, T2>(Foo1<T1, T2> f) {
 return 42;
 }

 static public Foo1<Ptr, Ptr> foo3() {
 return foo4;
 }

 static public Ptr foo4(Ptr x) {
 return x;
 }

 static public void test_foo2() {
 var f = foo3();
 int x = foo2(f);
 }

 /* ******** ********* */

 // C# doesn't allow this.
 // static public Ptr foo5(Foo1 f) {
 // var r = f(p);
 // return r;
 // }

 static public void Main() {
 return;
 }
}

The code above compiles when function foo5 commented out.
The reason I have to comment out foo5 goes as follows. In ATS, polymorphic
function is of first class. (Object of polymorphic function type can be passed
around. E.g. foo5 takes one as input argument.) In C#, no object can be of
open generic type (including generic delegate). Therefore the function “foo5”
in ATS cannot be simply translated into a generic delegate of C#.

Therefore I choose to use Object type in C# to represent type parameter of
polymorphic type in ATS. But this is still not good. Such candidate in C# is shown below.

using System;

public class Ptr {};

/*
 * Tuple type must have name.
 */
public class Tuple2<T1, T2> {
 public T1 m1;
 public T2 m2;
 public Tuple2(T1 t1, T2 t2) {
 m1 = t1;
 m2 = t2;
 }
}

/*
 * Function type mush have name.
 */
public delegate T Foo1<T>(T x);

public class Code {

 static public Ptr p = new Ptr();

 static public int foo1(Tuple2<int, Object> x) {
 return x.m1;
 }

 static public void test_foo1() {
 var x = foo1(new Tuple2<int, Object>(0, p));
 }

 static public int foo2(Foo1<Object> f) {
 return 42;
 }

 static public Foo1<Ptr> foo3() {
 return foo4;
 }

 static public Ptr foo4(Ptr x) {
 return x;
 }

 static public void test_foo2() {
 var f = foo3();
 int x = foo2((Foo1<Object>)(Object)f);
 }

 static public Ptr foo5(Foo1<Object> f) {
 var r = f(p);
 return (Ptr)r;
 }

 static public void Main() {
 return;
 }
}

Due to aforementioned decision, I have to give foo2 the type Foo1<Object> as shown above.
Then to make test_foo2 compilable, I have to cast f to Object, then to FOO1<Object>.
Also I have to use cast again in foo5. Such heavy usage of casting contradicts my original idea
of relying on the generic type system of C#.

Therefore I simply choose to turn all the boxed types into Object and add
proper type conversion whenever deemed necessary. (E.g. getting member of a tuple,
invoking via a function pointer.) This is also the convention when generating C
code from ATS program. The difference is that in C we rely on void * instead
of Object. A hand written candidate is shown below.

using System;

/*
 * Tuple type must have name.
 */
public class Tuple2<T1, T2> {
 public T1 m1;
 public T2 m2;
 private Tuple2(T1 t1, T2 t2) {
 m1 = t1;
 m2 = t2;
 }
 static public Object create(T1 t1, T2 t2) {
 return new Tuple2<T1, T2>(t1, t2);
 }
}

/*
 * Function type mush have name.
 */
public delegate Object Foo1(Object x);

public class Code {

 static public Object p = new Object();

 static public int foo1(Object x) {
 return ((Tuple2<int, Object>)x).m1;
 }

 static public void test_foo1() {
 var x = foo1(Tuple2<int, Object>.create(0, p));
 }

 static public int foo2(Foo1 f) {
 return 42;
 }

 static public Foo1 foo3() {
 return foo4;
 }

 static public Object foo4(Object x) {
 return x;
 }

 static public void test_foo2() {
 var f = foo3();
 int x = foo2(f);
 }

 static public void Main() {
 return;
 }
}

In my implementation of C# code generator, I track the usage of all the tuples
and records, define corresponding generic types for them. And I track all the
function definitions, define corresponding delegate types for them.

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	ATS-Postiats’ Blog

Get value in the statics of ATS

Todo

organize

ATS-Postiats/prelude/basics_dyn.sats

dataprop
EQINT (int, int) = {x: int} EQINT (x, x)
//
extern prfun eqint_make {x,y:int | x == y} (): EQINT (x, y)
//
extern prfun
eqint_make_gint
 {tk:tk}{x:int} (x: g1int (tk, x)): [y: int] EQINT (x, y)

fun goo {x:int | x == 1} (): void = ()

fun foo (): void = let
 val x = 1
 val [y:int] EQINT () = eqint_make_gint (x)
in
 goo {y} ()
end

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	ATS-Postiats’ Blog

Template for Makefile of simple ATS project

An old version of Makefile template I wrote for ATS can be found here (todo).

The newer version of Makefile, which relies on Makefile provided by ATS, is shown below.

Makefile

#Makefile for untyped lambda calculus
######

include $(PATSHOME)/share/atsmake-pre.mk

######
#
CFLAGS += -O2
#
######
#
TODO
#LDFLAGS := # uncomment this for a clean start of LDFLAGS
LDFLAGS += -lm # uncomment this for math library

TODO
Uncomment the following if you want the Boehm GC.
By default, MALLOCFLAG is -DATS_MEMALLOC_LIBC
LDFLAGS += -lgc
MALLOCFLAG := -DATS_MEMALLOC_GCBDW
#
######

TODO
Add source files here.
SOURCES_DATS += UTLC.dats
SOURCES_SATS +=
SOURCES_C +=

TODO
Specify the name of the target.
TARGET=UTLC

MYTARGET=$(TARGET)

include $(PATSHOME)/share/atsmake-post.mk

######

######

cleanats:: ; $(RMF) *_?ats.c

cleanall:: ; $(RMF) $(TARGET)

######

######

For the future when tag generator is provided.
.PHONY: tags
tags:
# 	$(RMF) tags MYTAGS
# 	find ./ -name "*.sats" -exec $(PATSOPT) --output-a MYTAGS --taggen -s {} \;
# 	find ./ -name "*.dats" -exec $(PATSOPT) --output-a MYTAGS --taggen -d {} \;
# 	java -jar ../../../tool/ats-lang-tools.jar --input MYTAGS -c --output tags

end of [Makefile]

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

ATS-Postiats’ syntax

Contents:

	Mapping from source code to data structure
	Function declaration and implementation

ss

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	ATS-Postiats’ syntax

Mapping from source code to data structure

Function declaration and implementation

We use the following source code as an example.

abstype ty (int, int)
extern fun foo {x: int} {y: int} (x: ty (x, y), y: int y):
 [q: int] int q

implement foo {x}{y}(x, y) = 3

For the function declaration, we would have a D2Cdcstdecs, which contains a list of
d2cst. Each d2cst has type information of the defined constant. In this example, the
type of function foo is quite complicated, which involves universal type (S2Euni) as
well as existential type (S2Eexi).

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

Model Checking ATS

In this project, we focus on integrating model checking techniques seamlessly into
the development of ATS program and ultimately build a practical system for
verifying concurrent ATS program.

Tutorial

Before going to the details, let’s have a quick look of how the methodology looks like.
The producer-consumer problem is a classic one in field of concurrent programming. A recommanded
implementation is described in the documentation of ATS [1], which exploits the type system of
ATS to better ensure the correctness of the program. Certain mistakes, as stated below, can
be avoided, which is great.
However, a well-typed implementation for producer-consumer problem in ATS may still cause
deadlock. And it’s very difficult to soly rely on type system to capture such errors. Therefore, we
start seeking help from other techniques, among which model checking is our pick here. It
can help detect bugs related to temporal properties in concurrent systems and provide
corresponding counterexamples. To apply the model checking technique, we need to form up
the precise semantics of ATS programs, which in turn requires the precise semantics of those
concurrency primitives related to communication and synchronization. We form up a collection
of such primitives, based on which programers can build concurrent program in ATS with semantics
meanful to the model checking techniques we employ here. Such collection is given
in the file conats.sats [https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats]. It also contains some other primitives used
for model checking, which we shall explain as we see more examples.

The complete implementation for producer-consumer problem can be found here
16_reader_writer.dats.
You can also read, modify, and verify the implementation via our website Model Checking ATS [http://54.148.225.84].
We illustrate some of the code snippets below.

As indicated in [1], a shared object contains a linear object, which in this example is
a linear buffer. The primitives provided in conats.sats [https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats] do not support such type.
Therefore we define a linear type lin_buffer as well as corresponding functions for
manupulating objects of such type, which is given below.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	 // Define linear buffer to prevent resource leak.
 absviewtype lin_buffer (a:t@ype)

 local
 assume lin_buffer (a) = atomref (a)
 in
 fun lin_buffer_create {a:t@ype} (
 data: a): lin_buffer a = let
 val ref = conats_atomref_create (data)
 in
 ref
 end

 fun lin_buffer_update {a:t@ype} (
 lref: lin_buffer a, data: a): lin_buffer a = let
 val () = conats_atomref_update (lref, data)
 in
 lref
 end

 fun lin_buffer_get {a:t@ype} (
 lref: lin_buffer a): (lin_buffer a, a) = let
 val v = conats_atomref_get lref
 in
 (lref, v)
 end
 end

Three functions conats_atomref_create, conats_atomref_update, and
conats_atomref_get are declared in conats.sats [https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats]. Intuitively, they are used for
creating a mutable object whose content can be accessed in an atomic manner.

In our example, we only need a linear buffer whose content is an integer. The following
code defines the type demo_buffer for such linear buffer and some auxiliary functions
for accessing it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	 // Define linear integer buffer for demonstration.
 viewtypedef demo_buffer = lin_buffer int

 fun demo_buffer_isful (buf: demo_buffer): (demo_buffer, bool) = let
 val (buf, len) = lin_buffer_get (buf)
 in
 (buf, len > 0) // Assume the buffer can only hold 1 elements.
 end

 fun demo_buffer_isnil (buf: demo_buffer): (demo_buffer, bool) = let
 val (buf, len) = lin_buffer_get (buf)
 in
 (buf, len <= 0)
 end

 fun demo_buffer_insert (buf: demo_buffer): demo_buffer = let
 val (buf, len) = lin_buffer_get (buf)
 val buf = lin_buffer_update (buf, len + 1)
 in
 buf
 end

 fun demo_buffer_takeout (buf: demo_buffer): demo_buffer = let
 val (buf, len) = lin_buffer_get (buf)
 val buf = lin_buffer_update (buf, len - 1)
 in
 buf
 end

One thing worth mentioning is the number 1 we choose as the capacity of the virtual
buffer shared by producer and consumer. In reality, a shared buffer may have a large
capacity. But a big number may cause model checking not to be able to detect the
potential bugs. Arguably, if our implementation is correct for a small capacity of
shared buffer, it has better chances to be correct as well for large capacity.

Now we can create the linear buffer holding integer and then put it into a shared object
which can be accessed by multiple threads. The corresponding code is shown below.

	1
2
3
4
5

	 // Create a buffer for model construction.
 val db: demo_buffer = lin_buffer_create (0)

 // Turn a linear buffer into a shared buffer.
 val s = conats_shared_create {demo_buffer}(db)

conats_shared_create is a function declared in conats.sats [https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats], whose semantics is about
creating an shared object protecting its content via mutex and condition variables.

We now give out the code for producer and consumer. For the purpose of model
checking, producer is actually a function which keeps increasing the
counter inside the linear buffer whenever possible. If the capacity is reached,
the producer would wait until the consumer takes out (by decreasing the counter)
something out of the buffer. The same idea applies to the consumer functions.
Notably, both producer and consumer would wake up the potentially waiting counterpart by
sending a signal.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	 // Keep adding elements into buffer.
 fun producer (x: int):<fun1> void = let
 val db = conats_shared_acquire (s)

 fun insert (db: demo_buffer):<cloref1> demo_buffer = let
 val (db, isful) = demo_buffer_isful (db)
 in
 if isful then let
 val db = conats_shared_condwait (s, db)
 in
 insert (db)
 end else let
 val (db, isnil) = demo_buffer_isnil (db)
 val db = demo_buffer_insert (db)
 in
 if isnil then conats_shared_signal (s, db)
 else db
 end
 end

 val db = insert (db)
 val () = conats_shared_release (s, db);
 in
 producer (x)
 end

 // Keep removing elements from buffer.
 fun consumer (x: int):<fun1> void = let
 val db = conats_shared_acquire (s)

 fun takeout (db: demo_buffer):<cloref1> demo_buffer = let
 val (db, isnil) = demo_buffer_isnil (db)
 in
 if isnil then let
 val db = conats_shared_condwait (s, db)
 in
 takeout (db)
 end else let
 val (db, isful) = demo_buffer_isful (db)
 val db = demo_buffer_takeout (db)
 in
 if isful then let
 // Omitting the following would cause deadlock
 // val db = conats_shared_signal (s, db)
 in db end
 else db
 end
 end

 val db = takeout (db)
 val () = conats_shared_release (s, db);
 in
 consumer (x)
 end

Due to the usage of linear type of ATS, ATS compiler would complain if a programmer forgets
to call conats_shared_acquire to acquire the mutex (which is inside the shared object)
before updating the counter, or conats_shared_release to release the mutex.
However, type checking won’t be
able to detect the potential deadlock if the producer or consumer doesn’t call the
conats_shared_signal function.

Model checking can help detect the aforementioned bug. However, unlike type checking,
model checking can only be applied to a runable program instead of a collection of functions.
Therefore we set up the environment as follows so that we have a complete model. The
model consists of two threads, one for producer and one for consumer. The
conats_tid_allocate and conats_thread_create functions are provided by
conats.sats [https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats]. Intuitively, they are used for allocating thread id and creating new
thread with a given function.

	1
2
3
4
5

	 val tid1 = conats_tid_allocate ()
 val tid2 = conats_tid_allocate ()

 val () = conats_thread_create(producer, 0, tid1)
 val () = conats_thread_create(consumer, 0, tid2)

Since model checking allows us to verify various properties of a program, we specify as
follows that we want to verify that our program does not have deadlock.

	1
2
3

	 %{$
 #assert main deadlockfree;
 %}

So far we have implemented the producer-consumer problem. With the appropriate
implementations of functions from conats.sats [https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats], we can compile and run the ATS program.
Due to the nondeterminism caused by concurrency, the potential deadlock may not happen
during several runnings. But with model checking, we are guaranteed that there is no
deadlock if our implementation can pass the model checking.

The model checking process goes as follows. We build a tool, which is able to
extract a model from the ATS program given above. Currently, the extracted model is
in the modeling langauge CSP#. We then use the state-of-art model checker
PAT [http://www.comp.nus.edu.sg/~pat/] to check the generated model. To ease the
whole process, we set up a website for readers to try this methodology on-line:
Model Checking ATS [http://54.148.225.84]. The aforementioned example can be found under the
name “16_reader_writer.dats” in the dropdown list “Select ATS Example”. We are working
on building tools to better relate the model checking result (counterexample) to the original ATS
program. However, it’s still quite informative just by inspecting the current result of
the model checker since the extracted model in CSP# is quite readable. As for the
example, if we omit conats_shared_signal in consumer, model checking would give out
the following result including the trace leading to the deadlock. (We omit the detail
of the trace here for clarity purpose.)

===
Assertion: main() deadlockfree
********Verification Result********
The Assertion (main() deadlockfree) is NOT valid.
The following trace leads to a deadlock situation.
<init -> main_init -> main61_id_s1.0 -> lin_buffer_create_63_s1.0 -> main61_id_s2.0 ->

********Verification Setting********
Admissible Behavior: All
Search Engine: Shortest Witness Trace using Breadth First Search
System Abstraction: False

********Verification Statistics********
Visited States:2392
Total Transitions:4588
Time Used:0.3925891s
Estimated Memory Used:24059.904KB

Next we will illustrate more features of this methodology of combining type checking of ATS
programming langauge with model checking technique to verify properties of concurrent programs.

Table of Contents

	Ghosts for Model Checking

	Towards Concurrent Program
	Primitives for Concurrent Programming

	Bibliography

	Accessing Global Ghost Variables
	Global ghost variables

	Atomicity in ghost code

	Virtual Lock
	Bibliography

Bibliography

	[1]	(1, 2) http://ats-lang.sourceforge.net/EXAMPLE/EFFECTIVATS/Producer-Consumer/main.html

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	Model Checking ATS

Ghosts for Model Checking

ATS programming language allows programmers to write code constructing proofs along side with
operational code which does the actual computation. The code for proof is seen only by the
type checker of ATS and is erased completely before the compiler of ATS starts generating
executable programs. We extends such concept by allowing programmers to write code
related to model checking. Such code can be seen by the type checker of ATS, which
facilitate the type checking process, and will be erased (just like proof code) before
the compiler of ATS starts generating executable programs. We call such code ghost code.
Ghost code comes in various forms: Ghost function, Ghost value, Ghost type, and etc. We
will talk about them in details when meeting related exampels.

Both operational code and ghost code have semantics to model checker we build. On the
other hand, proof code is neglected by the model checker. The simplest but maybe the
most stimulating example of ghost code is mc_assert as shown below.

	1
2
3
4
5
6

	 fun foo (): void = let
 prval () = mc_assert (false)
 in
 end

 val () = foo ()

The executable generated by ATS compiler from the code above simply does nothing since
the only content of the function foo is a ghost function mc_assert, which is only meaningful
to our model checker. Intuitively, we can view mc_assert as assertions normally used by
programmers for runtime checking, but this time it’s used at the stage of model checking.

Feel free to try the example using our online model checker [http://54.149.186.200].
To use the model checker, we need to appending the following code to indicate that we
want to verify that mc_assert succeeds.

	1
2
3

	 %{$
 #assert main |= G sys_assertion;
 %}

The complete code (with some routine code for header files) for the example can be found here
demo_01_mc_assert.dats

With mc_assert, we can use model checking as a test facility as shown in the following
example.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 typedef Int = [x:int] int x

 fun sum {x:nat} (x: int x): Int = x * (x + 1) / 2

 fun sum2 {x:nat}.<x>.(x: int x):<fun> Int =
 if x > 0 then x + sum2 (x - 1)
 else 0

 val n = 3
 val ret = sum (n)
 prval mc_ret = sum2 (n)
 prval () = mc_assert (ret = mc_ret)

In the example above, we have two versions of the summation function. We use model checking
to verify that they generate the same output. mc_ret is a ghost value (declared via
the keyword prval), and accordingly the executable generated by ATS compiler doesn’t contain
the invocation of sum2. However sum2 itself is not a ghost function, and it can be
used at runtime if programmers choose to. (Just for technical detail, currently only pure
functions in ATS can be used to calculate ghost values. That’s why the type of sum2 is a little
bit verbose, since we prove that sum2 always terminates.)

One thing worth mentioning is the type of mc_assert as shown below:

prfun mc_assert {b: bool} (x: bool b):<fun> [b == true] void

The type of the argument of mc_assert depends on a boolean value b in the statics of
ATS. mc_assert assures the type system that b is true and as such the type checking
of the whole program may be established successfully. Also the validity of such
assertion is checking during the process of model checking.

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	Model Checking ATS

Towards Concurrent Program

The type system of ATS consists of both dependent types and linear types. Please refer
to ATS’ documentation for its application in constructing verifiably correct sequential
progarm. Linear types are of help to certain extent in ensuring safety properties about
mutual exclusion. However, in general, the type system of ATS has difficulty in
specifying properties of concurrent programs, e.g. invariants of objects across threads,
absence of deadlock, liveness properties, and etc. Such incapability triggers our
research in corporating model checking techniques into the verification process of ATS
program.

Primitives for Concurrent Programming

But first of all, programmers have to be able to write concurrent programs in ATS.
Currently, we add a set of primitives into ATS programming language to support concurrent
programming in a style similar to using pthead. In the near future, we will add more
primitives (e.g. channel, future) supporting different styles of concurrent programming.

The declarations of these primitives can be found in conats.sats [https://github.com/alex-ren/org.ats-lang.postiats.jats/blob/master/utfpl/src/jats/utfpl/stfpl/test/conats.sats]. In the
Tutorial, we already use conats_shared_create, conats_shared_acquire,
conats_shared_condwait, conats_shared_signal, and conats_shared_release, whose
types are declared as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 abstype shared_t (viewt@ype, int)
 typedef shared (a:viewt@ype) = shared_t (a, 1)

 fun conats_shared_create {a: viewt@ype} (ele: a): shared (a)

 fun conats_shared_acquire {a: viewt@ype} {n:pos} (s: shared_t (a, n)): a
 fun conats_shared_release {a: viewt@ype} {n:pos} (s: shared_t (a, n), ele: a): void

 fun conats_shared_signal {a: viewt@ype} (s: shared (a), ele: a): a
 fun conats_shared_condwait {a: viewt@ype} (s: shared (a), ele: a): a

conats_shared_create creates a shared object (of type shared a) holding
a linear buffer. The concept of shared object is similar to that of monitor
[1]. The types of the aforementioned functions guarantee they are invoked
appropriately in a non-object-oriented language like ATS. (E.g. we have to call
conats_shared_acquire before invoking conats_shared_condwait and
conats_shared_signal. From the perspective of pthread programming, a shared object
consists of a mutex and a condition variable working together for synchronization
purpose.

However, sometimes it’s not enough for a shared object to contain just one condition
varialbe. For example, in Tutorial, the shared object has only one
condition varialbe, which is used to indicate two situations: buffer is full or
empty. The example has no deadlock because it only has one producer and one consumer.
Simply adding one more consumer to the example would lead to potential deadlock. The
complete code can be downloaded here 16_1_producer_consumer_m_1.dats. You can also find this example at our website Model Checking ATS [http://54.148.225.84].
One example of the potential deadlock can be thought as follows: Initially, the
shared buffer is empty. Two consumers come and wait on the shared object. The
producer comes and puts one element into the buffer and then wake up one consumer.
However, the newly active consumer doesn’t execute instantly. Instead, the
producer comes again, tries to put another element into the buffer, and has to wait
on the shared object since the capacity of the buffer is 1. Then the newly active
consumer gets one element out of the buffer and wakes up another consumer. At this
moment, the buffer is empty, the producer is waiting, and two consumers won’t signal
the shared buffer any more. And this leads to a deadlock. The counterexample found by
the model checker by Breadth First Search confirms with our speculation.

To solve this problem, we also provide another version of shared object which
contains multiple condition variables. The types of related functions are shown
below.

	1
2
3
4
5
6
7

	 abstype shared_t (viewt@ype, int)

 fun conats_sharedn_create {a: viewt@ype} {n:pos} (ele: a, n: int n): shared_t (a, n)

 fun conats_sharedn_signal {a: viewt@ype} {i,n:nat | i < n} (s: shared_t (a, n), i: int i, ele: a): a

 fun conats_sharedn_condwait {a: viewt@ype} {i,n:nat | i < n} (s: shared_t (a, n), i: int i, ele: a): a

With such shared object, we can now set up two condition variables handling both full
and empty buffers separately. The complete code can be download here
16_2_producer_consumer_m_1_2cond.dats. A snappet of code for the producer
is shown below.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 // Keep adding elements into buffer.
 fun producer (x: int):<fun1> void = let
 val db = conats_shared_acquire (s)

 fun insert (db: demo_buffer):<cloref1> demo_buffer = let
 val (db, isful) = demo_buffer_isful (db)
 in
 if isful then let
 val db = conats_sharedn_condwait (s, NOTEMP, db)
 in
 insert (db)
 end else let
 val (db, isnil) = demo_buffer_isnil (db)
 val db = demo_buffer_insert (db)
 in
 if isnil then conats_sharedn_signal (s, NOTFUL, db)
 else db
 end
 end

 val db = insert (db)
 val () = conats_shared_release (s, db);
 in
 producer (x)
 end

In this implemenation, producer only signals the condition variable when the buffer
is actually empty at that moment. This would lead to the missing of signal if we have
multiple producers and consumers. (Please refer to section 8.2.2 of [2].) In the example
16_3_producer_consumer_m_m_signal.dats, there is two producers, each of
which inserts only one element, and two consumers, each of which takes out one
element. And the problem of miss signal would lead to deadlock. The model checker
would demonstrate this by a counterexample. One remedy is to sigal the condition
variable every time. The other is to use conats_sharedn_wait instead of
conats_sharedn_signal.

Bibliography

	[1]	http://en.wikipedia.org/wiki/Monitor_%28synchronization%29

	[2]	The Art of Multiprocessor Programming [http://www.amazon.com/The-Multiprocessor-Programming-Revised-Reprint/dp/0123973376]

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	Model Checking ATS

Accessing Global Ghost Variables

Global ghost variables

To facilite programmers to state the properties across the boundry of threads, we
provide the concept of global ghost variables. (As being ghost, any flow of data from
such variables to the operational state of the program is forbidden.) Programmers
are also required to give identities to ghost variables, which provides a way to bridge
model checking and type checking for program development. The following example
demonstrates this concept.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	 stacst sid_init: sid
 extern val mc_init: mc_gv_t sid_init

 fun exec (x: int): void = let

 fun foo {init: pos}(pf: int_value_of (sid_init, init) | x: int): int = x

 prval (pf | init) = mc_get_int (mc_init)

 // mc_assert cannot be omitted though it is ghost code.
 prval () = mc_assert (init > 0)

 val _ = foo (pf | x)
 in
 end

 val tid1 = conats_tid_allocate ()

 val () = conats_thread_create(exec, 0, tid1)

 prval () = mc_set_int (mc_init, 1)

 %{$
 // #assert main deadlockfree;

 #assert main |= G sys_assertion;

 %}

We explain this example in details as follows:

stacst sid_init: sid
extern val mc_init: mc_gv_t sid_init

stacst declares a
constant sid_init in the statics of ATS. This contant serves as the identifier of a
ghost variable. extern val declares a value mc_init, which is the counterpart of
sid_init in the dynamics of ATS. (In the future, only stacst is needed after we simplify the model
generation process.)

fun foo {init: pos}(pf: int_value_of (sid_init, init) | x: int): int = x

The type of function foo states that a proof that ghost variable sid_init used to
be positive is needed to invoke the function. Therefore, if we erase the ghost code
mc_assert from the following code

fun exec (x: int): void = let

 fun foo {init: pos}(pf: int_value_of (sid_init, init) | x: int): int = x

 prval (pf | init) = mc_get_int (mc_init)

 // mc_assert cannot be omitted though it is ghost code.
 prval () = mc_assert (init > 0)

 val _ = foo (pf | x)
in
end

the type checker of ATS would complain that there exists unsolved constraint in the
type checking process. From the example, we can see that a set of well designed
interfaces for functions can force programmers to incorporate model checking method
during the development process. The complete program can be downloaded here
24_global_ghost_variable.dats. Because of the following code

val tid1 = conats_tid_allocate ()

val () = conats_thread_create(exec, 0, tid1)

prval () = mc_set_int (mc_init, 1)

The program stands a chance of making the
mc_assert (in function exec) to fail since the ghost variable is set to 1 after
creating a new thread to
execute function exec. The model checking process can help us detect such problem.

Atomicity in ghost code

For specification purpose, sometimes it’s necessary to group sereral ghost code into
one atomic step. We provide two ghost primitives mc_atomic_start and mc_atomic_end
to mark the scope for an atomic step, which we call an atomic scope, consisting of both
ghost code and operational code. The following program shows the usage of the atomic
step.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 stacst mid: sid

 extern val mc_m: mc_gv_t mid

 fun foo1 (): void = let
 prval () = mc_atomic_start()
 prval () = mc_set_int (mc_m, 3)
 prval () = mc_set_int (mc_m, 4)
 prval () = mc_atomic_end()
 in
 end

 fun foo2 (x: int): void = let
 prval (pf | x) = mc_get_int (mc_m)
 prval () = mc_assert (x <> 3)
 in
 end

 val tid1 = conats_tid_allocate ()

 val () = conats_thread_create(foo2, 0, tid1)

 val () = foo1 ()

The mc_assert in function foo2 succeeds because the state in which the ghost
variable mc_m is set to 3 is not observable by other threads. The complete code
can be downloaded here 18_atomic_opr.dats.

Currently, it’s programmers’ responsibility to make sure that only primitives for
accessing ghost variables (mc_set_int, mc_get_int) and primitives for accessing
global references (conats_atomref_update, conats_atomref_get,
conats_atomarrayref_update, conats_atomarrayref_get) can appear in an atomic scope.
Also they have to make sure that an atomic scope can contain at most one operational
primitive for accessing global reference while there’s no
limit for the number of primitives for accessing ghost variables.

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	ATS Knowledge 0.1 documentation

 	Model Checking ATS

Virtual Lock

Improper handling of resources (e.g. memory) in a program may lead to various
bugs (e.g. memroy leak) in sequential programs. The problem gets even worse
when entering the concurrent domain, in which simultaneous access to shared resource by
multiple threads is feasible. One example is that we may lose the integrity of data if
two threads are using a shared memory to transfer data. Techniques for solving
this problem generally rely on mutual exclusion principles to control access to shared
resources. Mutual exclusion introduces a measure of synchronization, but with the cost of
losing efficiency. With a deliberate design, sometimes we can remove the need for
synchronization while maintaining the desired property of mutual exclusion.
Simpson’s four-slot fully asynchronous communication mechanism [1] demonstrates such
idea. However, it’s very difficult to verify that the deemed mutual exclusion
property actually holds in the design. To tackle this problem, we provide two
primitives supporting the concept of “virtual lock” to allow programmers to
specify assumptions of mutual exclusion to various
granularities according to their design. And such assumption can then be verified by
our model checker.

Let’s illustrate the usage of “virtual lock” using the following example of two-slot
mechanism. Consider the scenario in which one writer and one reader try to
communicate via a shared resource consisting of multiple memory regions
(two in this example). Due to hardware
constraint, access to each memory region cannot be done atomically. Therefore, reader
may get inconsistent data if writer is writing the same region at the same time. The
following code shows the proposed types for the shared resource (dataslots_t) as well as the
interfaces for accessing it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 abstype dataslots_t (t@ype, int)

 absviewtype own_slot_vt (int)

 fun dataslots_create {a:t@ype} {x:pos} (
 x: int x, v: a): dataslots_t (a, x)

 fun dataslots_update {a:t@ype} {x,i:nat | i < x}
 (vpf: own_slot_vt (i)
 | slots: dataslots_t (a, x), i: int i, v: a
): (own_slot_vt i | void)

 fun dataslots_get {a:t@ype} {x,i:nat | i < x}
 (vpf: own_slot_vt (i)
 | slots: dataslots_t (a, x), i: int i
): (own_slot_vt i | a)

The usage of linear type own_slot_vt states clearly that
dataslots_update and dataslots_get require mutual exclusion on the memory region
to be accessed. Normally, programmers ensure such property by the
usage of synchronization primitives (e.g. mutex). However, in the following code, we
try to gain mutual exclusion by the usage of a few global variables
the access for which is atomic. The code is shown below.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	 typedef data_t = dataslots_t (int, 2)
 val data: data_t = dataslots_create (2, 0)

 typedef int2 = [i: int | i >= 0 && i <= 1] int i

 // control variables
 val latest = conats_atomref_create {int2} (0)

 fun write (item: int): void = let
 val index = 1 - conats_atomref_get (latest)

 prval vpf = mc_acquire_ownership (index)
 val (vpf | _) = dataslots_update (vpf | data, index, item)
 prval () = mc_release_ownership (vpf)

 val () = conats_atomref_update (latest, index)
 in
 end

 fun read (): int = let
 val index = conats_atomref_get (latest)

 prval vpf = mc_acquire_ownership (index)
 val (vpf | item) = dataslots_get (vpf | data, index)
 prval () = mc_release_ownership (vpf)
 in
 item
 end

In the example, the shared resource (data_t) contains two regions (slots). lastest
is a global reference for an integer, which is created by the primitive
conats_atomref_create. (Primitives conats_atomref_create,
conats_atomref_get, and conats_atomref_update are provided as an extension to ATS
to support concurrent programming.) To pass the type checking of ATS, we use two
functions mc_acquire_ownership and mc_release_ownership to generate and destroy
the linear ghost value (vpf), which serves as the warranty for mutual exclusion.
mc_acquire_ownership and mc_release_ownership are not primitives. Instead, they
are user-defined ghost functions. Their implementation is shown below.

	1
2
3
4
5

	 prfun mc_acquire_ownership .<>. {i: nat}
 (i: int i): own_slot_vt (i) = mc_vlock_get (i, 0, 1, 1)

 prfun mc_release_ownership .<>. {i: nat}
 (vpf: own_slot_vt (i)): void = mc_vlock_put (vpf)

The two ghost functions are built upon two primitives mc_vlock_put and
mc_vlock_get. Intuitively, mc_vlock_get (x, y, a, b) indicates the acquision of
a virtual lock covering a rectangle with (x, y) as the upper left corner, a as
the width (x-axis), and b as the height (y-axis), and mc_vlock_put indicates the
release of the lock. And our model
checker would check that under no circumstances would two threads try to acquire two
virtual locks covering overlapping areas simutaneously. And this serves as the
verification of mutual exclusion.
To model checking the example, we would need to add the following code to implement
those interfaces for accessing shared resource.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 fun dataslots_create {a:t@ype} {x:pos} (
 x: int x, v: a): dataslots_t (a, x) =
 conats_atomarrayref_create {a} (x, v)

 fun dataslots_update {a:t@ype} {x,i:nat | i < x}
 (vpf: own_slot_vt (i)
 | slots: dataslots_t (a, x), i: int i, v: a
): (own_slot_vt i | void) = let
 val () = conats_atomarrayref_update (slots, i, v)
 in
 (vpf | ())
 end

 fun dataslots_get {a:t@ype} {x,i:nat | i < x}
 (vpf: own_slot_vt (i)
 | slots: dataslots_t (a, x), i: int i
): (own_slot_vt i | a) = let
 val v = conats_atomarrayref_get (slots, i)
 in
 (vpf | v)
 end

In the aforementioned code, this implementation is actually based on the
primitives for creating and accessing array. This is not necessary if our focus is
to verify the validity of mutual exclusion.

The complete code can be downloaded here 20_1_two_slot_acm.dats. Without
much thinking, we know that this implementation cannot pass model checking since
writer just switches between two slots. Going
further, the implementation (20_2_three_slot_acm.dats) using three slots
doesn’t work either. And based on the implementation using four slots
(20_3_four_slot_acm.dats), we verify that Simpson’s four-slot asynchronous
mechanism possesses the acclaimed mutual exclusion property.

Bibliography

	[1]	H.R. Simpson, Four-slot fully asynchronous communication mechanism

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	ATS Knowledge 0.1 documentation

Index

 V

V

 	

 	Virtual Lock

 Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

 _static/up.png

_static/down.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/comment-close.png

_static/up-pressed.png

_static/comment.png

_static/file.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		ATS Knowledge 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Zhiqiang Ren.
 Created using Sphinx 1.3.1.

