

Welcome to ATM’s documentation!

Contents:

	ATM: Scalable model selection and tuning
	Background

	Our goal: flexibility and power

	Setup
	0. Requirements

	1. Install ATM

	2. Install a database

	3. Start using ATM!

	Quick-start guide
	Create a datarun

	Execute the datarun

	Guide to the ModelHub database
	Datasets

	Dataruns

	Hyperpartitions

	Classifiers

	Contributing to ATM and BTB
	Ways to contribute

	Requirements

	Style

	Tests

	Docs

	Adding a classification method
	1. Valid method classes

	2. Creating the JSON file

	3. (Optional) Adding a new method to the ATM library

	Adding a BTB Selector or Tuner

ATM: Scalable model selection and tuning

Auto Tune Models (ATM) is an AutoML system designed with ease of use in mind. In
short, you give ATM a classification problem and a dataset as a CSV file, and
ATM will try to build the best model it can. ATM is based on a paper [https://cyphe.rs/static/atm.pdf] of the same name, and the project is part of
the Human-Data Interaction (HDI) Project [https://dai.lids.mit.edu/] at MIT.

To download ATM and get started quickly, head over to the setup section.

Background

AutoML [http://www.ml4aad.org/automl/] systems attempt to automate part or all
of the machine learning pipeline, from data cleaning to feature extraction to
model selection and tuning. ATM focuses on the last part of the machine-learning
pipeline: model selection and hyperparameter tuning.

Machine learning algorithms typically have a number of parameters (called
hyperparameters) that must be chosen in order to define their behavior. ATM
performs an intelligent search over the space of classification algorithms and
hyperparameters in order to find the best model for a given prediction problem.
Essentially, you provide a dataset with features and labels, and ATM does the
rest.

Our goal: flexibility and power

Nearly every part of ATM is configurable. For example, you can specify which
machine-learning algorithms ATM should try, which metrics it computes (such as
F1 score and ROC/AUC), and which method it uses to search through the space of
hyperparameters (using another HDI Project library, BTB [https://github.com/HDI-Project/btb]). You can also constrain ATM to find the
best model within a limited amount of time or by training a limited amount of
total models.

ATM can be used locally or on a cloud-computing cluster with AWS.
Currently, ATM only works with classification problems, but the project is under
active development. If you like the project and would like to help out, check
out our guide to contributing!

Setup

This page will guide you though downloading and installing ATM.

0. Requirements

Currently, ATM is only compatible with Python 2.7, 3.5 and 3.6 and *NIX systems.

We also recommend using virtualenv [https://virtualenv.pypa.io/en/stable/], which
you can install as follows.:

$ sudo apt-get install python-pip
$ sudo pip install virtualenv

For development, also git [https://git-scm.com/] is required in order to download and
update the software.

1. Install ATM

Install using pip

The recommended way to install ATM is using pip [https://pip.pypa.io/en/stable] inside
a dedicated virtualenv:

$ virtualenv atm-env
$. atm-env/bin/activate
(atm-env) $ pip install atm

Install from source

Alternatively, and for development, you can clone the repository and install it from
source by running make install:

$ git clone https://github.com/hdi-project/atm.git
$ cd atm
$ virtualenv atm-env
$. atm-env/bin/activate
(atm-env) $ make install

For development, replace the last command with make install-develop command in order to
also install all the required dependencies for testing and linting.

Note

You will need to execute the command . atm-env/bin/activate to activate the
virtualenv again every time you want to start working on ATM. You will know that your
virtualenv has been activated if you can see the (atm-env) prefix on your prompt.
If you do not, activate it again!

2. Install a database

ATM requires a SQL-like database to store information about datasets, dataruns,
and classifiers. It’s currently compatible with the SQLite3 and MySQL dialects.
For first-time and casual users, we recommend installing SQLite:

$ sudo apt-get install sqlite3

If you’re planning on running large, distributed, or performance-intensive jobs,
you might prefer using MySQL. Run:

$ sudo apt-get install mysql-server mysql-client

and following the instructions.

No matter which you choose, you’ll need to install the mysql client developer
library in order for SQLAlchemy to work correctly:

$ sudo apt-get install libmysqlclient-dev

3. Start using ATM!

You’re all set. Head over to the quick-start section to create and
execute your first job with ATM.

Quick-start guide

This page is a quick tutorial to help you get ATM up and running for the first
time. We’ll use a featurized dataset for a binary classification problem,
already saved in atm/data/test/pollution_1.csv. This is one of the datasets
available on openml.org [https://openml.org]. More information about the
data can be found here [https://www.openml.org/d/542].

Our goal is predict mortality using the metrics associated with the air
pollution. Below we show a snapshot of the csv file. The dataset has 15
features, all numeric, and and a binary label column called “class”.

PREC JANT JULT OVR65 POPN EDUC HOUS DENS NONW WWDRK POOR HC NOX SO@ HUMID class
35 23 72 11.1 3.14 11 78.8 4281 3.5 50.7 14.4 8 10 39 57 1
44 29 74 10.4 3.21 9.8 81.6 4260 0.8 39.4 12.4 6 6 33 54 1
47 45 79 6.5 3.41 11.1 77.5 3125 27.1 50.2 20.6 18 8 24 56 1
43 35 77 7.6 3.44 9.6 84.6 6441 24.4 43.7 14.3 43 38 206 55 1
53 45 80 7.7 3.45 10.2 66.8 3325 38.5 43.1 25.5 30 32 72 54 1
43 30 74 10.9 3.23 12.1 83.9 4679 3.5 49.2 11.3 21 32 62 56 0
45 30 73 9.3 3.29 10.6 86 2140 5.3 40.4 10.5 6 4 4 56 0
..
..
..
37 31 75 8 3.26 11.9 78.4 4259 13.1 49.6 13.9 23 9 15 58 1
35 46 85 7.1 3.22 11.8 79.9 1441 14.8 51.2 16.1 1 1 1 54 0

Create a datarun

Before we can train any classifiers, we need to create a datarun. In ATM, a
datarun is a single logical machine learning task. The enter_data.py script
will set up everything you need.:

(atm-env) $ atm enter_data

The first time you run it, the above command will create a ModelHub database, a
dataset, and a datarun. If you run it without any arguments, it will load
configuration from the default values defined in atm/config.py. By default,
it will create a new SQLite3 database at ./atm.db, create a new dataset instance
which refers to the data at atm/data/test/pollution_1.csv, and create a
datarun instance which points to that dataset.

The command should produce output that looks something like this::

method logreg has 6 hyperpartitions
method dt has 2 hyperpartitions
method knn has 24 hyperpartitions
Data entry complete. Summary:
 Dataset ID: 1
 Training data: /home/bcyphers/work/fl/atm/atm/data/test/pollution_1.csv
 Test data: None
 Datarun ID: 1
 Hyperpartition selection strategy: uniform
 Parameter tuning strategy: uniform
 Budget: 100 (classifier)

The datarun you just created will train classifiers using the “logreg”
(logistic regression), “dt” (decision tree), and “knn” (k nearest neighbors)
methods. It is using the “uniform” strategy for both hyperpartition selection
and parameter tuning, meaning it will choose parameters uniformly at random. It
has a budget of 100 classifiers, meaning it will train and test 100 models
before completing. More info about what is stored in the database, and
what the fields of the datarun control, can be found here.

The most important piece of information is the datarun ID. You’ll need to
reference that when you want to actually compute on the datarun.

Execute the datarun

An ATM worker is a process that connects to a ModelHub, asks it what dataruns
need to be worked on, and trains and tests classifiers until all the work is
done. To run one, use the following command:

(atm-env) $ atm worker.py

This will start a process that builds classifiers, tests them, and saves them to
the ./models/ directory. As it runs, it should print output indicating which
hyperparameters are being tested, the performance of each classifier it builds,
and the best overall performance so far. One round of training looks like this:

Computing on datarun 1
Selector: <class 'btb.selection.uniform.Uniform'>
Tuner: <class 'btb.tuning.uniform.Uniform'>
Chose parameters for method "knn":
 _scale = True
 algorithm = brute
 metric = euclidean
 n_neighbors = 8
 weights = distance
 Judgment metric (f1, cv): 0.813 +- 0.081
New best score! Previous best (classifier 24): 0.807 +- 0.284
Saving model in: models/pollution_1-62233d75.model
Saving metrics in: metrics/pollution_1-62233d75.metric
Saved classifier 63.

And that’s it! You’re executing your first datarun, traversing the vast space
of hyperparameters to find the absolute best model for your problem. You can
break out of the worker with Ctrl+C and restart it with the same command; it
will pick up right where it left off. You can also run the command
simultaneously in different terminals to parallelize the work – all workers
will refer to the same ModelHub database.

Occassionally, a worker will encounter an error in the process of building and
testing a classifier. Don’t worry: when this happens, the worker will print
error data to the terminal, log the error in the database, and move on to the
next classifier.

When all 100 classifiers in your budget have been built, the datarun is
finished! All workers will exit gracefully.

Classifier budget has run out!
Datarun 1 has ended.
No dataruns found. Exiting.

You can then load the best classifier from the datarun and use it to make
predictions on new datapoints.

>>> from atm.database import Database
>>> db = Database(dialect='sqlite', database='atm.db')
>>> model = db.load_model(classifier_id=110)
>>> import pandas as pd
>>> data = pd.read_csv('atm/data/test/pollution_1.csv')
>>> model.predict(data[0])

Guide to the ModelHub database

The ModelHub database is what ATM uses to save state about ongoing jobs,
datasets, and previously-generated models. It allows multiple workers on
multiple machines to collaborate on a single task, regardless of failures or
interruptions. The ideas behind ModelHub are described in the corresponding
paper [https://cyphe.rs/static/atm.pdf], although the structure described
there does not match up one-to-one with the ModelHub implemented in
atm/database.py. This page gives a brief overview of the structure of the
ModelHub database as implemented and how it compares to the version in the
paper.

Datasets

A Dataset represents a single set of data which can be used to train and test
models by ATM. The table stores information about the location of the data as
well as metadata to help with analysis.

	dataset_id (Int): Unique identifier for the dataset.

	name (String): Identifier string for a classification technique.

	
	description (String): Human-readable description of the dataset.

	
	not described in the paper

	train_path (String): Location of the dataset train file.

	test_path (String): Location of the dataset test file.

	class_column (String): Name of the class label column.

The metadata fields below are not described in the paper.

	n_examples (Int): Number of samples (rows) in the dataset.

	k_classes (Int): Number of classes in the dataset.

	d_features (Int): Number of features in the dataset.

	majority (Number): Ratio of the number of samples in the largest class to
the number of samples in all other classes.

	size_kb (Int): Approximate size of the dataset in KB.

Dataruns

A Datarun is a single logical job for ATM to complete. The Dataruns table
contains a reference to a dataset, configuration for ATM and BTB, and
state information.

	datarun_id (Int): Unique identifier for the datarun.

	dataset_id (Int): ID of the dataset associated with this datarun.

	
	description (String): Human-readable description of the datarun.

	
	not in the paper

BTB configuration:

	
	selector (String): Selection technique for hyperpartitions.

	
	called “hyperpartition_selection_scheme” in the paper

	k_window (Int): The number of previous classifiers the selector will
consider, for selection techniques that set a limit of the number of
historical runs to use.

	called “ts” in the paper

	tuner (String): The technique that BTB will use to choose new continuous
hyperparameters.

	called “hyperparameters_tuning_scheme” in the paper

	r_minimum (Int): The number of random runs that must be performed in each
hyperpartition before allowing Bayesian optimization to select parameters.

	gridding (Int): If this value is set to a positive integer, each
numeric hyperparameter will be chosen from a set of gridding discrete,
evenly-spaced values. If set to 0 or NULL, values will be chosen from the
full, continuous space of possibilities.

	not in the paper

ATM configuration:

	priority (Int): Run priority for the datarun. If multiple unfinished
dataruns are in the ModelHub at once, workers will process higher-priority
runs first.

	budget_type (Enum): One of [“learner”, “walltime”]. If this is “learner”,
only budget classifiers will be trained; if “walltime”, classifiers will
only be trained for budget minutes total.

	budget (Int): The maximum number of classifiers to build, or the maximum
amount of time to train classifiers (in minutes).

	called “budget_amount” in the paper

	deadline (DateTime): If provided, and if budget_type is set to
“walltime”, the datarun will run until this absolute time. This overrides the
budget column.

	not in the paper

	metric (String): The metric by which to score each classifier for
comparison purposes. Can be one of [“accuracy”, “cohen_kappa”, “f1”,
“roc_auc”, “ap”, “mcc”] for binary problems, or [“accuracy”, “rank_accuracy”,
“cohen_kappa”, “f1_micro”, “f1_macro”, “roc_auc_micro”, “roc_auc_macro”] for
multiclass problems

	not in the paper

	score_target (Enum): One of [“cv”, “test”, “mu_sigma”]. Determines how the
final comparative metric (the judgment metric) is calculated.

	“cv” (cross-validation): the judgment metric is the average of a 5-fold
cross-validation test.

	“test”: the judgment metric is computed on the test data.

	“mu_sigma”: the judgment metric is the lower error bound on the mean CV
score.

	not in the paper

State information:

	start_time (DateTime): Time the DataRun began.

	end_time (DateTime): Time the DataRun was completed.

	status (Enum): Indicates whether the run is pending, in progress, or has
been finished. One of [“pending”, “running”, “complete”].

	not in the paper

Hyperpartitions

A Hyperpartition is a fixed set of categorical hyperparameters which defines a
space of numeric hyperparameters that can be explored by a tuner. ATM uses BTB
selectors to choose among hyperpartitions during a run. Each hyperpartition
instance must be associated with a single datarun; the performance of a
hyperpartition in a previous datarun is assumed to have no bearing on its
performance in the future.

	hyperparition_id (Int): Unique identifier for the hyperparition.

	datarun_id (Int): ID of the datarun associated with this hyperpartition.

	method (String): Code for, or path to a JSON file describing, this
hyperpartition’s classification method (e.g. “svm”, “knn”).

	categoricals (Base64-encoded object): List of categorical hyperparameters
whose values are fixed to define this hyperpartition.

	called “partition_hyperparameter_values” in the paper

	tunables (Base64-encoded object): List of continuous hyperparameters which
are free; their values must be selected by a Tuner.

	called “conditional_hyperparameters” in the paper

	constants (Base64-encoded object): List of categorical or continuous
parameters whose values are always fixed. These do not define the
hyperpartition, but their values must be passed to the classification method
to fully parameterize it.

	not in the paper

	status (Enum): Indicates whether the hyperpartition has caused too many
classifiers to error, or whether the grid for this partition has been fully
explored. One of [“incomplete”, “gridding_done”, “errored”].

	not in the paper

Classifiers

A Classifier represents a single train/test run using a method and a set of hyperparameters with a particular dataset.

	classifier_id (Int): Unique identifier for the classifier.

	datarun_id (Int): ID of the datarun associated with this classifier.

	hyperpartition_id (Int): ID of the hyperpartition associated with this
classifier.

	host (String): IP address or name of the host machine where the classifier
was tested.

	not in the paper

	model_location (String): Path to the serialized model object for this
classifier.

	metrics_location (String): Path to the full set of metrics computed during
testing.

	cv_judgment_metric (Number): Mean of the judgement metrics from the
cross-validated training data.

	cv_judgment_metric_stdev (Number): Standard deviation of the
cross-validation test.

	test_judgment_metric (Number): Judgment metric computed on the test data.

	hyperparameters_values (Base64-encoded object): The full set of
hyperparameter values used to create this classifier.

	start_time (DateTime): Time that a worker started working on the
classifier.

	end_time (DateTime): Time that a worker finished working on the
classifier.

	status (Enum): One of [“running”, “errored”, “complete”].

	error_message (String): If this classifier encountered an error, this is
the Python stack trace from the caught exception.

Contributing to ATM and BTB

Ways to contribute

ATM is a research project under active development, and there’s a ton of work
to do. To get started helping out, you can browse the issues [https://github.com/hdi-project/atm/issues] page on
Github and look for issues tagged with “help wanted [https://github.com/hdi-project/atm/issues?q=is%3Aissue+is%3Aopen+label%3A%22help+wanted%22]” or “good first issue [https://github.com/hdi-project/atm/issues?q=is%3Aissue+is%3Aopen+label%3A"good+first+issue"].” An easy first pull request might flesh out the documentation for a
confusing feature or just fix a typo. You can also file an issue to report a
bug, suggest a feature, or ask a question.

If you’re looking to make a more in-depth contribution, check out our guides on
adding a classification method and adding a BTB Tuner or Selector.

Requirements

If you’d like to contribute code or documentation, to have installed the project in
development mode.

Style

We try to stick to the Google style guide [https://google.github.io/styleguide/pyguide.html] where possible. We also use
flake8 [http://flake8.pycqa.org/en/latest/] (for Python best practices) and
isort [https://pypi.python.org/pypi/isort] (for organizing imports) to
enforce general consistency.

To check if your code passes a style sanity check, run make lint from the
main directory.

Tests

We currently have a limited (for now!) suite of unit tests that ensure at least
most of ATM is working correctly. You can run the tests locally with pytest
(which will use your local python environment) or tox (which will create a
new one from scratch); All tests should pass for every commit on master – this
means you’ll have to update the code in atm/tests/unit_tests if you modify
the way anything works. In addition, you should create new tests for any new
features or functionalities you add. See the pytest documentation [https://pytest.link] and the existing tests for more information.

All unit and integration tests are run automatically for each pull request and
each commit on master with CircleCI [https://circleci.com/]. We won’t merge
anything that doesn’t pass all the tests and style checks.

Docs

All documentation source files are in the docs/source/ directory. To build
the docs after you’ve made a change, run make html from the docs/
directory; the compiled HTML files will be in docs/build/.

Adding a classification method

ATM includes several classification methods out of the box, but it’s possible to
add custom ones too.

From 10,000 feet, a “method” in ATM comprises the following:

	A Python class which defines a fit-predict interface;

	A set of hyperparameters that are (or may be) passed to the class’s
constructor, and the range of values that each hyperparameter may take;

	A conditional parameter tree that defines how hyperparameters depend on one
another; and

	A JSON file in atm/methods/ that describes all of the above.

1. Valid method classes

Every method must be implemented by a python class that has the following
instance methods:

	fit: accepts training data and labels (X and y) and trains a predictive model.

	predict: accepts a matrix of unlabeled feature vectors (X) and returns predictions for the corresponding labels (y).

This follows the convention used by scikit-learn [http://scikit-learn.org/stable/], and most of the classifier methods already included with ATM are sklearn classes. However, any custom python class that implements the fit/predict interface can be used with ATM.

Once you have a class, you need to configure the relevant hyperparameters and tell ATM about your class.

2. Creating the JSON file

All configuration for a classification method must be described in a json file with the following format:

{
 "name": "bnb",
 "class": "sklearn.naive_bayes.BernoulliNB",
 "hyperparameters": {...},
 "root_hyperparameters": [...],
 "conditions": {...}
}

	“name” is a short string (or “code”) which ATM uses to refer to the method.

	“class” is an import path to the class which Python can interpret.

	“hyperparameters” is a list of hyperparameters which ATM will attempt to tune.

Defining hyperparameters

Most parameter definitions have two fields: “type” and either “range” or “values”.
The “type” is one of [“float”, “float_exp”, “float_cat”, “int”, “int_exp”,
“int_cat”, “string”, “bool”]. Types ending in “_cat” are categorical
types, and those ending in “_exp” are exponential types.

	If the type is ordinal or continuous (e.g. “int” or “float”), “range”
defines the upper and lower bound on possible values for the parameter.
Ranges are inclusive: [0.0, 1.0] includes both 0.0 and 1.0.

	If the type is categorical (e.g. “string” or “float_cat”), “values”
defines the list of all possible values for the parameter.

Example categorical types:

"nu": {
 "type": "float_cat",
 "values": [0.5, 1.5, 3.5] // will select one of the listed values
}

"kernel": {
 "type": "string",
 "values": ["constant", "rbf", "matern"] // will select one of the listed strings
}

Example (uniform) numeric type:

"max_depth": {
 "type": "int",
 "range": [2, 10] // will select integer values uniformly at random between 2 and 10, inclusive
}

Example exponential numeric type:

"length_scale": {
 "type": "float_exp",
 "range": [1e-5, 1e5] // will select floating-point values from an exponential distribution between 10^-5 and 10^5, inclusive
}

Defining the Conditional Parameter Tree

There are two kinds of hyperparameters: root hyperparameters (also referred to
as “method hyperparameters” in the paper) and conditional parameters. Root parameters
must be passed to the method class’s constructor no matter what, and conditional
parameters are only passed if specific values for other parameters are set. For
example, the GaussianProcessClassifier configuration has a single root
parameter: kernel. This must be set no matter what. Depending on how it’s
set, other parameters might need to be set as well. The format for conditions is
as follows:

{
 "root_parameter_name": {
 "value1": ["conditional_parameter_name", ...],
 "value2": ["other_conditional_parameter_name", ...]
 }
}

In gaussian_process.json, there are three sets of parameters which are conditioned on the value of the root parameter kernel:

"root_parameters": ["kernel"],

"conditions": {
 "kernel": {
 "matern": ["nu"],
 "rational_quadratic": ["length_scale", "alpha"],
 "exp_sine_squared": ["length_scale", "periodicity"]
 }
}

If kernel is set to “matern”, it means nu must also be set. If it’s set to “rational_quadratic” instead, length_scale and alpha must be set instead. Conditions can overlap – for instance, length_scale must be set if kernel is either “rational_quadratic” or “exp_sine_squared”, so it’s included in both conditional lists. The only constraint is that any parameter which is set as a result of a condition (i.e. a conditional parameter) must not be listed in “root_parameters”.

The example above defines a conditional parameter tree that looks something like
this:

kernel-----------------------
| \ \
matern rational_quadratic exp_sine_squared
| | | | |
nu length_scale alpha length_scale periodicity

3. (Optional) Adding a new method to the ATM library

We are always looking for new methods to add to ATM’s core! If your method is
implemented as part of a publicly-available Python library which is compatible
with ATM’s other dependencies, you can submit it for permanent inclusion in the
library.

Save a copy of your configuration json in the atm/methods/ directory. Then, in
in the METHODS_MAP dictionary in atm/constants.py, enter a mapping from
a short string representing your method’s name to the name of its json file. For
example, 'dt': 'decision_tree.json'. If necessary, add the library where
your method lives to requirements.txt.

Test out your method with python scripts/test_method.py --method
<your_method_code>. If all hyperpartitions run error-free, you’re probably
good to go. Commit your changes to a separate branch, then open up a pull
request in the main repository. Explain why your method is a useful addition to
ATM, and we’ll merge it in if we agree!

Adding a BTB Selector or Tuner

BTB is the metamodeling library and framework at the core of ATM. It defines two
general abstractions:

	A selector chooses one of a discrete set of possibilities based on
historical performance data for each choice. ATM uses a selector before
training each classifier to choose which hyperpartition to try next.

	A tuner generates a metamodel which tries to predict the score that a set
of numeric hyperparameters will achieve, and can generate a set of
hyperparameters which are likely to do well based on that model. After ATM
has chosen a hyperpartition, it uses a tuner to choose a new set of
hyperparameters within the hyperpartition’s scope.

Like with methods, ATM allows domain experts and tinkerers
to build their own selectors and tuners. At a high level, you just need to
define a subclass of btb.Selector or btb.Tuner in a new python file and
create a new datarun with the ‘selector’ or ‘tuner’ set to
“path/to/your_file.py:YourClassName”.

More to come… stay tuned!

Index

Tutorial

Creating a Dataset

A Dataset in ATM is defined by the following fields:

Data format

ATM works with data in CSV format. For ATM to interpret it, each CSV file needs
the following

	Have the first line of the file be headers with strings as the feature names, and the class column named “class” (or configured otherwise in run_config.yaml). If the features aren’t named (ie, image or SVD or PCA data), then anything will do (but see below for a small script to generate nice feature names).

	Should have N + 1 rows (1 header + N examples)

	Should have D + 1 features (1 class label + D features per example)

Here’s a handy Python script to create a CSV header line for data that doesn’t have feature names:

def create_csv_header(n_features, name, class_label_name):
 """
 Creates a CSV header like:
 "<class_label_name>, <name>1, <name>2, ..., <name><n_features>"

 Example:
 print CreateCSVHeader(64, "pixel", "class")
 """
 separator = ","
 zip([name for i in range(n_features)], range(1, n_features + 1, 1))
 header_row_string = separator.join(
 [x + str(y) for (x, y) in
])
 return separator.join([class_label_name, header_row_string])

Creating a Datarun in the ModelHub

Once your data in the proper format, you can upload it to the ModelHub for processing.

Configuration File

To run ATM, you must create a configuration file.

A configuration file template is included in config/atm.cnf.template (and shown below).
Since the configuration file contains passwords, it’s best to rename it to atm.cnf so that it will be ignored by git.
This is especially true if you plan to make changes to ATM and upload them to the repository.
The git repository is setup to ignore all files in the config folder except atm.cnf.template.

The name of the file must also be a environmental variable called ATM_CONFIG_FILE.
For example if the configuration file is called atm.cnf in the config directory of the root atm directory, then an environmental variable would created with the command:

(atm-env) $ export ATM_CONFIG_FILE=/path_to_atm_root/config/atm.cnf

Datarun Creation

Now we need to add the datarun to the ModelHub (database).
A datarun consists of all the parameters for a single experiment run, including where the find the data, what the budget is for number of learners to train, the majoirty class benchmark, and other things.
The datarun ID in the database also ties together the hyperpartitions (frozen sets) which delineate how ATM can explore different subtypes of classifiers to maximize their performance.
Once the configuration file is filled out, we can enter it in ModelHub with:

(atm-env) $ atm enter_data

Workers

Once at least one datarun is in the ModelHub, workers can be started to run classification routines.

On a Local Machine

In local mode, this is simple:

(atm-env) $ atm worker

This command can b executed several times to create many workers that operate independently in parallel.
How many to run depends of your judgment of your computer’s capabilities.

On Amazon Web Services

In cloud mode, the fabric [https://www.fabfile.org] package is used to deploy workers on AWS.
First, you must create instance(s) by executing the following command on your local machine:

(atm-env) $ fab create_instances

The number of instances will be the number specified in the aws section of the configuration file.
Second, you must start ATM worker processes on the instance(s) by executing the following command on your local machine:

(atm-env) $ fab deploy

The number of worker processes on each EC2 instance is specified in the configuration file.
Once the workers are done, the worker processes can be killed by executing the following command on your local machine:

(atm-env) $ fab killworkers

This does NOT terminate the instances.
Currently, the instances have to be terminated from the AWS Management Console.

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to ATM’s documentation!

 		
 ATM: Scalable model selection and tuning

 		
 Background

 		
 Our goal: flexibility and power

 		
 Setup

 		
 0. Requirements

 		
 1. Install ATM

 		
 Install using pip

 		
 Install from source

 		
 2. Install a database

 		
 3. Start using ATM!

 		
 Quick-start guide

 		
 Create a datarun

 		
 Execute the datarun

 		
 Guide to the ModelHub database

 		
 Datasets

 		
 Dataruns

 		
 Hyperpartitions

 		
 Classifiers

 		
 Contributing to ATM and BTB

 		
 Ways to contribute

 		
 Requirements

 		
 Style

 		
 Tests

 		
 Docs

 		
 Adding a classification method

 		
 1. Valid method classes

 		
 2. Creating the JSON file

 		
 Defining hyperparameters

 		
 Defining the Conditional Parameter Tree

 		
 3. (Optional) Adding a new method to the ATM library

 		
 Adding a BTB Selector or Tuner

_static/up.png

_static/up-pressed.png

