

asynctest documentation

The package asynctest is built on top of the standard unittest [https://docs.python.org/3/library/unittest.html#module-unittest] module
and cuts down boilerplate code when testing libraries for asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio].

asynctest imports the standard unittest package, overrides some of its features
and adds new ones. A test author can import asynctest in place of
unittest [https://docs.python.org/3/library/unittest.html#module-unittest] safely.

It is divided in submodules, but they are all imported at the top level,
so asynctest.case.TestCase is equivalent to asynctest.TestCase.

Currently, asynctest targets the “selector” model. Hence, some features will
not (yet) work with Windows’ proactor.

This documentation contains the reference of the classes and functions defined
by asynctest, and an introduction guide.

Tutorial

	Introduction

	Test cases
	Writing and running a first test

	Test setup

	Testing asynchronous code

	Automated checks

	Conclusion

	Mocking
	Using mocks

	Mocking of coroutines

	Mocking of other objects

	Autospeccing

	Types of mocks

	Controlling the result of CoroutineMock

	Asynchronous iterators and context managers

	Patching

	Conclusion

	Advanced Features
	Controlling time

	Mocking I/O

	Testing with event loop policies

Reference

	Module case
	class-level set-up

	TestCases

	Decorators

	Module mock
	Mock classes

	Autospeccing

	Patch

	Helpers

	Module selector
	Mocking file-like objects

	Mocking the selector

	Module helpers

Code examples

	List of code examples
	tutorial/clock.py

	tutorial/mocking.py

	tutorial/mocking_io.py

	tutorial/patching.py

	tutorial/test_cases.py

Contribute

Development of asynctest is on github:
Martiusweb/asynctest [https://www.github.com/Martiusweb/asynctest].
Patches, feature requests and bug reports are welcome.

Documentation indices and tables

	Index

	Module Index

	Search Page

Introduction

Asynctest is a library which extends the standard pacakge unittest [https://docs.python.org/3/library/unittest.html#module-unittest] to
support asyncio features.

This tutorial aims at gathering examples showing how to use asynctest.
It is not a comprehensive documentation and doesn’t explain the concepts of
asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio].

Some basic patterns of unittest [https://docs.python.org/3/library/unittest.html#module-unittest] are covered. However, if you are not
familiar with unittest [https://docs.python.org/3/library/unittest.html#module-unittest], it’s probably a good idea to read its
documentation first.

Note

This documentation has not yet been reviewed. The code samples and examples
have been tested by the author but probably deserve (at least) a second
look.

This tutorial can be improved and probably contains mistakes, typos
and incorrect sentences. It can be considered as an “early release”. We
invite you to open issues or pull-requests on Github [https://github.com/Martiusweb/asynctest/].

Test cases

Writing and running a first test

Tests are written in classes inheriting TestCase. A test
case consists of:

	some set-up which prepares the environment and the resources required for the
test to run,

	a list of assertions, usually as a list of checks that must be verified to
mark the test as successful,

	some finalization code which cleans the resources used during the test. It
should revert the environment back to its state before the set-up.

Let’s look at a minimal example:

class MinimalExample(asynctest.TestCase):
 def test_that_true_is_true(self):
 self.assertTrue(True)

In this example, we created a test which contains only one assertion: it
ensures that True is, well, true.

assertTrue() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertTrue] is a method of
TestCase. If the test is successful, it does nothing. Else,
it raises an AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError].

The documentation of unittest [https://docs.python.org/3/library/unittest.html#module-unittest] lists assertion methods [https://docs.python.org/3/library/unittest.html#assert-methods] implemented by unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase].
asynctest.TestCase adds some more for asynchronous code.

We can run it by creating an instance of our test case, its constructor takes
the name of the test method as argument:

>>> test_case = MinimalExample("test_that_true_is_true")
>>> test_case.run()
<unittest.result.TestResult run=1 errors=0 failures=0>

To make things more convenient, unittest [https://docs.python.org/3/library/unittest.html#module-unittest] provides a test runner
script. The runner discovers test methods in a module (or package, or class) by
looking up methods with a name prefixed by test_ in
TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase] subclasses:

$ python -m unittest test_cases
.
--
Ran 1 test in 0.001s

OK

The runner will create and run an instance of the test case (as shown in the
code above) for each method that it finds. This means that you can add as many
test methods to your TestCase class as you want.

Test setup

Let’s work on a slightly more complex example:

class AnExampleWithSetup(asynctest.TestCase):
 async def a_coroutine(self):
 return "I worked"

 def test_that_a_coroutine_runs(self):
 my_loop = asyncio.new_event_loop()
 try:
 result = my_loop.run_until_complete(self.a_coroutine())
 self.assertIn("worked", result)
 finally:
 my_loop.close()

Here, we create a loop that will run a coroutine, ensure that the result of
this coroutine is as expected (it should return an object containing the string
"worked" somewhere). Then we close the loop, even if an exception was
raised.

If we happen to write several test methods, the set-up and clean-up will likely
be repeated several times. It’s probably more convenient to move these parts
into their own methods.

We can override two methods of the TestCase class:
setUp() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp] and tearDown() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDown] which
will be respectively called before the test method and after the test method:

class AnExampleWithSetupMethod(asynctest.TestCase):
 async def a_coroutine(self):
 return "I worked"

 def setUp(self):
 self.my_loop = asyncio.new_event_loop()

 def test_that_a_coroutine_runs(self):
 result = self.my_loop.run_until_complete(self.a_coroutine())
 self.assertIn("worked", result)

 def tearDown(self):
 self.my_loop.close()

Both examples are very similar: TestCase will run
tearDown() even if an exception is raised in the test
method.

However, if an exception is raised in setUp() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp], the
test execution is aborted and tearDown() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDown] will never
run. If the setup fails in between the initialization of several resources,
some of them will never be cleaned.

This problem can be solved by registering clean-up callbacks which will always
be executed. A clean-up callback is a function without (required) arguments
that is passed to addCleanup() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.addCleanup].

Using this feature, we can rewrite our previous example:

class AnExampleWithSetupAndCleanup(asynctest.TestCase):
 async def a_coroutine(self):
 return "I worked"

 def setUp(self):
 self.my_loop = asyncio.new_event_loop()
 self.addCleanup(self.my_loop.close)

 def test_that_a_coroutine_runs(self):
 result = self.my_loop.run_until_complete(self.a_coroutine())
 self.assertIn("worked", result)

Tests should always run isolated from the others, this is why tests should only
rely on local resources created for the test itself. This ensures that a test
will not impact the execution of other tests, and can greatly help to get an
accurate diagnostic when debugging a failing test.

It’s also worth noting that the order in which tests are executed by the test
runner is undefined. It can lead to unpredictable behaviors if tests share some
resources.

Testing asynchronous code

Speaking of tests isolation, it’s usually preferable to create one loop per
test. If the loop is shared, one test could (for instance) schedule a task and
never await its result, the task would then run (and possibly trigger
unexpected side effects) in another test.

asynctest.TestCase will create (and clean) an event loop for each test
that will run. This loop is set in the loop
attribute. We can use this feature and rewrite the previous example:

class AnExampleWithTestCaseLoop(asynctest.TestCase):
 async def a_coroutine(self):
 return "I worked"

 def test_that_a_coroutine_runs(self):
 result = self.loop.run_until_complete(self.a_coroutine())
 self.assertIn("worked", result)

Tests functions can be coroutines. TestCase will schedule
them on the loop.

class AnExampleWithTestCaseAndCoroutines(asynctest.TestCase):
 async def a_coroutine(self):
 return "I worked"

 async def test_that_a_coroutine_runs(self):
 self.assertIn("worked", await self.a_coroutine())

setUp() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp] and tearDown() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDown] can
also be coroutines, they will all run in the same loop.

class AnExampleWithAsynchronousSetUp(asynctest.TestCase):
 async def setUp(self):
 self.queue = asyncio.Queue(maxsize=1)
 await self.queue.put("I worked")

 async def test_that_a_lock_is_acquired(self):
 self.assertTrue(self.queue.full())

 async def tearDown(self):
 while not self.queue.empty():
 await self.queue.get()

Note

The functions setUpClass() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUpClass],
setUpModule() and their tearDown counterparts can not be
coroutine. This is because the loop only exists in an instance of
TestCase.

In practice, these methods should be avoided because they will not allow to
reset the environment between tests.

Automated checks

Asynchronous code introduces a class of subtle bugs which can be hard to
detect. In particular, clean-up of resources is often performed asynchronously
and can be missed in tests.

TestCase can check and fail if some callbacks or resources
are still pending at the end of a test.

These checks can be configured with the decorator fail_on().

class AnExempleWhichDetectsPendingCallbacks(asynctest.TestCase):
 def i_must_run(self):
 pass # do something

 @asynctest.fail_on(active_handles=True)
 async def test_missing_a_callback(self):
 self.loop.call_later(1, self.i_must_run)

This test will fail because the test don’t wait long enough or doesn’t cancel
the callback i_must_run(), scheduled to run in 1 second:

==
FAIL: test_missing_a_callback (tutorial.test_cases.AnExempleWhichDetectsPendingCallbacks)
--
Traceback (most recent call last):
 File "/home/martius/Code/python/asynctest/asynctest/case.py", line 300, in run
 self._tearDown()
 File "/home/martius/Code/python/asynctest/asynctest/case.py", line 262, in _tearDown
 self._checker.check_test(self)
 File "/home/martius/Code/python/asynctest/asynctest/_fail_on.py", line 90, in check_test
 getattr(self, check)(case)
 File "/home/martius/Code/python/asynctest/asynctest/_fail_on.py", line 111, in active_handles
 case.fail("Loop contained unfinished work {!r}".format(handles))
AssertionError: Loop contained unfinished work (<TimerHandle when=3064.258340775 AnExempleWhichDetectsPendingCallbacks.i_must_run()>,)

--

Some convenient decorators can be used to enable of disable all checks:
strict() and lenient().

All decorators can be used on a class or test function.

Conclusion

TestCase provides handy features to test coroutines and
asynchronous code.

In the next section, we will talk about mocks. Mocks are objects simulating the
behavior of other objects.

Mocking

Mocks are objects whose behavior can be controlled and which record how they
are used. They are very commonly used to write tests. The next section presents
the concept of a mock with an example. The rest of the chapter presents the
features of asynctest.mock.

Using mocks

Let’s have a look at a function to be tested.

def cache_users(client, cache):
 """
 Load the list of users from a distant server accessed with ``client``,
 add them to ``cache``.

 Notify the server about the number of new users put in the cache, and
 returns this number.

 :param client: a connection to the distant server
 :param cache: a dict-like object
 """
 users = client.get_users()

 nb_users_cached = 0

 for user in users:
 if user.id not in cache:
 nb_users_cached += 1
 cache[user.id] = user

 client.increase_nb_users_cached(nb_users_cached)

 logging.debug("added %d users to the cache %r", nb_users_cached, cache)

 return nb_users_cached

Even if the implementation of this function is correct, it can fail. For
instance, client.get_users() performs calls to a distant server, which can
fail temporarily.

It would also be complicated to create multiple test cases if the result of
client.get_users() can’t be controlled inside the tests.

One can solve this problem by crafting a stub object:

class StubClient:
 User = collections.namedtuple("User", "id username")

 def __init__(self, *users_to_return):
 self.users_to_return = []
 self.users_to_return.extend(users_to_return)

 self.nb_users_cached = 0

 def add_user(self, user):
 self.users_to_return.append(user)

 def get_users(self):
 return self.users_to_return

 def increase_nb_users_cached(self, nb_cached):
 self.nb_users_cached += nb_cached

Tests can be written with this object.

class TestUsingStub(asynctest.TestCase):
 def test_one_user_added_to_cache(self):
 user = StubClient.User(1, "a.dmin")
 client = StubClient(user)
 cache = {}

 # The user has been added to the cache
 nb_added = cache_users(client, cache)

 self.assertEqual(nb_added, 1)
 self.assertEqual(cache[1], user)

 # The user was already there
 nb_added = cache_users(client, cache)
 self.assertEqual(nb_added, 0)
 self.assertEqual(cache[1], user)

 def test_no_users_to_add(self):
 cache = {}
 nb_added = cache_users(StubClient(), cache)

 self.assertEqual(nb_added, 0)
 self.assertEqual(len(cache), 0)

This will work correctly but has a few downsides. One of them is very
practical: each time the interface of the stubbed class change, the stub must
be updated.

There is also a bigger problem. In our example, test_no_users_to_add()
might miss a bug. If cache_users() doesn’t call client.get_users(), no
user is added to the cache, yet all the assertions in the test are checked.

In this example, the bug would be detected thanks to the other test. However,
it might not be the case with a more complex implementation. The key to write a
a better test is to enforce all the assumtions and requirements stated in the
documentation.

Currently, the test can be described this way:

knowing that:

	client.get_users() will return an empty result,

	and that the cache is empty,

a call to cache_users() must leave the cache empty.

Instead, it should be:

knowing that:

	client.get_users() will return an empty result,

	and that the cache is empty,

a call to cache_users() must have queried the client and must leaves
the cache empty.

Mocks solve both of the issues discussed above. A mock can be configured to act
like an actual object, and provides assertion methods to verify how the object
has been used.

We can also leverage the mock to test another statement of the documentation
and make the test even more accurate. We will verify that the server is indeed
notified of the number of users added to the cache.

class TestUsingMock(asynctest.TestCase):
 def test_no_users_to_add(self):
 client = asynctest.Mock(Client())
 client.get_users.return_value = []
 cache = {}

 nb_added = cache_users(client, cache)

 client.get_users.assert_called()
 self.assertEqual(nb_added, 0)
 self.assertEqual(len(cache), 0)

 client.increase_nb_users_cached.assert_called_once_with(0)

In this example, client is a Mock. This mock will reproduce
the interface of Client() (an instance of the Client class, ommited for
simplicity, available in the example file tutorial/mocking.py).

By default, the attributes of a mock object are themselves mocks. We call them
child mocks. In the above example, client.get_users is configured to
return an empty list when called. By default, a new mock object would have been
returned instead.

Later, client.get_users.assert_called() verifies that the method has been
called. client.increase_nb_users_cached.assert_called_once_with(1) verifies
that this method has been called, and that the right arguments have been
provided.

Mocks are powerful and can be configured in many ways. Unfortunatly, they can
be somewhat complex to use.

The next sections of this chapter will present the features of
asynctest.Mock related to asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio]. It is recommended to be
familiar with the module unittest.mock [https://docs.python.org/3/library/unittest.mock.html#module-unittest.mock] before reading the rest of this
chapter.

Mocking of coroutines

Let’s rewrite the previous example using asyncio.

async def cache_users_async(client, cache):
 users = await client.get_users()

 nb_users_cached = 0

 for user in users:
 if user.id not in cache:
 nb_users_cached += 1
 cache[user.id] = user

 await client.increase_nb_users_cached(nb_users_cached)

 logging.debug("added %d users to the cache %r", nb_users_cached, cache)

 return nb_users_cached

A mock object can not be awaited (with the await keyword). There are
several ways to make client.get_users() awaitable. One approach is to
configure the mock to return a asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future] object:

class TestUsingFuture(asynctest.TestCase):
 async def test_no_users_to_add(self):
 client = asynctest.Mock(Client())

 client.get_users.return_value = asyncio.Future()
 client.get_users.return_value.set_result([])

 client.increase_nb_users_cached.return_value = asyncio.Future()
 client.increase_nb_users_cached.return_value.set_result(None)

 cache = {}

 nb_added = await cache_users_async(client, cache)

 client.get_users.assert_called()
 self.assertEqual(nb_added, 0)
 self.assertEqual(len(cache), 0)

 client.increase_nb_users_cached.assert_called_once_with(0)

client.get_users() returns is a future which yields an empty list. It
works, but is fairly limited. For instance, if the original get_users() is
a coroutine function, this is not the case of its mock counterpart.

This test can also miss a new bug now: what if
client.increase_nb_users_cached() is never awaited? The method has been
called, and since the result is a Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future], this mistake will
not be caught if the test runs with asyncio’s Debug Mode [https://docs.python.org/3/library/asyncio-dev.html#asyncio-debug-mode].

asynctest.CoroutineMock is a type of mock which specializes in mocking
coroutine functions (defined with async def). A
CoroutineMock object is not awaitable, but it returns a
coroutine instance when called.

It provides assertion methods to ensure it has been awaited, as shown in this
example:

class TestUsingCoroutineMock(asynctest.TestCase):
 async def test_no_users_to_add(self):
 client = asynctest.Mock(Client())
 client.get_users = asynctest.CoroutineMock(return_value=[])
 client.increase_nb_users_cached = asynctest.CoroutineMock()
 cache = {}

 nb_added = await cache_users_async(client, cache)

 client.get_users.assert_awaited()
 self.assertEqual(nb_added, 0)
 self.assertEqual(len(cache), 0)

 client.increase_nb_users_cached.assert_awaited_once_with(0)

All the features of asynctest.CoroutineMock are decribed in the
reference documentation.

Mocking of other objects

Mock can be configured with the arguments of its
constructor. The value of spec defines the list of attributes of the mock.
asynctest.Mock will also detect which attributes are coroutine functions
and mock these attributes accordingly.

It means that in the previous example, it was not required to assign
CoroutineMock objects to get_users() and
increase_nb_users_cached().

async def test_no_users_to_add(self):
 client = asynctest.Mock(AsyncClient())
 client.get_users.return_value = []
 cache = {}

 nb_added = await cache_users_async(client, cache)

 client.get_users.assert_awaited()
 self.assertEqual(nb_added, 0)
 self.assertEqual(len(cache), 0)

 client.increase_nb_users_cached.assert_awaited_once_with(0)

Note

asynctest will mock an attribute as a
CoroutineMock if the function is a native coroutine
(async def function) or a decorated generator (using
asyncio.coroutine() [https://docs.python.org/3/library/asyncio-task.html#asyncio.coroutine], before Python 3.5).

Some libraries document function or methods as coroutines, while they are
actually implemented as simple functions returning an awaitable object (like
asyncio.Future [https://docs.python.org/3/library/asyncio-future.html#asyncio.Future]).

In this case, asynctest can not detect that it should be mocked with
CoroutineMock.

spec defines the attributes of the mock, but isn’t passed to child mocks.
In particular, using a class as spec will not reproduce the behavior of a
constructor:

>>> ClientMock = asynctest.Mock(Client)
<Mock spec='Client' id='140657386768816'>
>>> ClientMock()
<Mock name='mock()' id='140657394808144'>
>>> ClientMock().get_users
<Mock name='mock().get_users' id='140657394808144'>

In this example, ClientMock should mock the Client class, but
ClientMock() doesn’t return a mock specified as a Client instance, and
thus, ClientMock().get_users is not mocked as a coroutine. We need
autospeccing to fix this.

Autospeccing

As the documentation of unittest [https://docs.python.org/3/library/unittest.html#module-unittest] says it,
create_autospec() creates mock objects that have the same
attributes and methods as the objects they are replacing. Any functions and
methods (including constructors) have the same call signature as the real
object.

It is the best solution to configure mocks to behave accurately like the object
they replace.

The mock of a function or coroutine must be called with the right arguments:

async def test_functions_and_coroutines_arguments_are_checked(self):
 client = asynctest.Mock(Client())
 cache = {}

 cache_users_mock = asynctest.create_autospec(cache_users_async)

 with self.subTest("create_autospec returns a regular mock"):
 await cache_users_mock(client, cache)
 cache_users_mock.assert_awaited_once_with(client, cache)

 with self.subTest("an exception is raised when the mock is called "
 "with the wrong number of arguments"):
 with self.assertRaises(TypeError):
 await cache_users_mock("wrong", "number", "of", "args")

Note

This example also shows the use of
assertRaises() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaises], which is successful only if an
exception is raised in the with block.

subTest() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.subTest] is used to document in a human-readable
format which case is tested. It doesn’t change the outcome of the test. The
message is displayed if an assertion fails, which is especially useful to
understand faster which part of the test breaks.

create_autospec() will mock the constructor of a class as
expected. When called, it returns a mock with the spec of the class:

async def test_create_autospec_on_a_class(self):
 AsyncClientMock = asynctest.create_autospec(AsyncClient)
 client = AsyncClientMock()

 with self.subTest("the mock of a class returns a mock instance of "
 "the class"):
 self.assertIsInstance(client, AsyncClient)

 with self.subTest("attributes of the mock instance are correctly "
 "mocked as coroutines"):
 await client.increase_nb_users_cached(1)

Types of mocks

There are several types of mocks with slightly different features:

	Mock is the base mock type.

	MagicMock, it is very similar to Mock,
except that magic methods are also mocks, and can be configured:

>>> asynctest.Mock().__hash__
<method-wrapper '__hash__' of Mock object at 0x7fb514e3a748>
>>> asynctest.MagicMock().__hash__
<MagicMock name='mock.__hash__' id='140415716319528'>
>>> asynctest.MagicMock().__hash__.return_value = "custom value"

	NonCallableMock and
NonCallableMagicMock are their non-callable counterparts.
It’s usually better to use them when mocking objects or values.

	CoroutineMock mocks a coroutine function (or, more
generaly, any callable object returning an awaitable).

As mentioned before, a child mock is a mock attached to another mock. The
child mock is either an attribute of the parent mock, or the result of a call
to the parent mock. This relationship enables some features documented in the
documentation of unittest.mock.Mock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock].

Attaching a child mock is just a matter of setting the right attribute:

client_mock = asynctest.Mock()
manually attaching a child mock to get_users
mock.get_users = asynctest.Mock()
manually attaching the returned child mock to get_users()
mock.get_users.return_value = asynctest.NonCallableMock()

By default, the child mock is the result of the factory method
_get_child_mock() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock._get_child_mock], and its result depend on the
type of mock:

	parent mock

	child mock

	Mock

	Mock

	MagicMock

	MagicMock

	NonCallableMock

	Mock

	NonCallableMagicMock

	MagicMock

	CoroutineMock

	MagicMock

Controlling the result of CoroutineMock

Calling a CoroutineMock returns a coroutine which can be
awaited.

The result of this coroutine can be configured like the result of a call to a
mock.

return_value

The simplest way to configure the result of a mock is to set its
return_value attribute. This result will always be returned as it is.

async def test_result_set_with_return_value(self):
 coroutine_mock = asynctest.CoroutineMock()
 result = object()
 coroutine_mock.return_value = result

 # return the expected result
 self.assertIs(result, await coroutine_mock())
 # always return the same result
 self.assertIs(await coroutine_mock(), await coroutine_mock())

side_effect

The side_effect attribute of a mock enables more control over the result of
the mock. If set, it has priority over return_value, which is ignored.

The value of side_effect can be a function. In this case, the call to the
mock is forwarded to this function, and its result is returned.

async def test_result_with_side_effect_function(self):
 def uppercase_all(*args):
 return tuple(arg.upper() for arg in args)

 coroutine_mock = asynctest.CoroutineMock()
 coroutine_mock.side_effect = uppercase_all

 self.assertEqual(("FIRST", "CALL"),
 await coroutine_mock("first", "call"))
 self.assertEqual(("A", "SECOND", "CALL"),
 await coroutine_mock("a", "second", "call"))

If the side effect is an exception object or class, this exception is raised.

async def test_result_with_side_effect_exception(self):
 coroutine_mock = asynctest.CoroutineMock()
 coroutine_mock.side_effect = NotImplementedError

 # Raise an exception of the configured type
 with self.assertRaises(NotImplementedError):
 await coroutine_mock("any", "number", "of", "args")

 coroutine_mock.side_effect = Exception("an instance of exception")

 # Raise the exact specified object
 with self.assertRaises(Exception) as context:
 await coroutine_mock()

 self.assertIs(coroutine_mock.side_effect, context.exception)

Last but not least, side_effect can be any iterable object. In this case,
the mock will return each value once, until the iterator is exhausted and
StopIteration [https://docs.python.org/3/library/exceptions.html#StopIteration] is raised to the caller.

itertools.cycle() [https://docs.python.org/3/library/itertools.html#itertools.cycle] allows to repeat the iterator.

async def test_result_with_side_effect_iterable(self):
 coroutine_mock = asynctest.CoroutineMock()
 coroutine_mock.side_effect = ["one", "two", "three"]

 self.assertEqual("one", await coroutine_mock())
 self.assertEqual("two", await coroutine_mock())
 self.assertEqual("three", await coroutine_mock())

 coroutine_mock.side_effect = itertools.cycle(["odd", "even"])
 self.assertEqual("odd", await coroutine_mock())
 self.assertEqual("even", await coroutine_mock())
 self.assertEqual("odd", await coroutine_mock())
 self.assertEqual("even", await coroutine_mock())

Important

If the value of side_effect is a coroutine function or a generator
function, it is treated as a regular function.

The result of a call to this mock will be an instance of the coroutine or
generator.

As of asynctest 0.12, specifying a coroutine function as the side effect of
CoroutineMock is undefined and should be avoided.
See Github issue #31 [https://github.com/Martiusweb/asynctest/issues/31].

Wrapped object

A mock can also wrap an object. This wrapped object is defined as an argument
passed to the constructor of the mock.

When a mock or any of its attributes is called, the call is forwarded to the
wrapped object, like if it was the value of side_effect. If side_effect
or return_value are set for the mock, they will have priority over the
wrapper.

In practice, this is equivalent to adding the features of a
Mock to a stub object.

async def test_result_with_wrapped_object(self):
 stub = StubClient()
 mock = asynctest.Mock(stub, wraps=stub)
 cache = {}

 stub.add_user(StubClient.User(1, "a.dmin"))
 cache_users(mock, cache)

 mock.get_users.assert_called()
 self.assertEqual(stub.users_to_return, mock.get_users())

Asynchronous iterators and context managers

Python 3.5 introduced the support for asynchronous iterators and context
managers. They can be implemented with the magic methods __aiter__(),
__anext__(), __aenter__(), __aexit__() as described in
PEP 0492#asynchronous-context-managers-and-async-with [https://www.python.org/dev/peps/pep-0492#asynchronous-context-managers-and-async-with].

MagicMock will mock these methods and greatly simplify
their configuration.

In the example we used so far, we assumed that client.get_users() loads all
users from a database and store them in a list that it will return. This
implementation may consume a lot of memory if there are a lot of users to
return. We can instead use a cursor.

A cursor is an object pointing to the result of the query get all users on
the database. It keeps an open connection to the database and fetches the
objects lazily (only when they are really needed). It allows to load the users
one by one from the database, and avoid filling the memory with all users at
once.

It is also common to wrap several related queries to a database in a
transaction to ensure the sequence of calls is consistent. A better
implementation of cache_users() should keep the calls to get_users()
and increase_nb_users_cached() in the same transaction.

The cache_users() implementation will look like this:

async def cache_users_with_cursor(client, cache):
 nb_users_cached = 0

 async with client.new_transaction() as transaction:
 users_cursor = transaction.get_users_cursor()

 async for user in users_cursor:
 if user.id not in cache:
 nb_users_cached += 1
 cache[user.id] = user

 await transaction.increase_nb_users_cached(nb_users_cached)

 logging.debug("added %d users to the cache %r", nb_users_cached, cache)

 return nb_users_cached

client.new_transaction() returns a transaction object. Under the hood,
async with calls its coroutine method __aenter__() and the result is
stored in the variable transaction.

users_cursor is an asynchronously iterable object. It implements the method
__aiter__(), which returns an asynchronous iterator. __aiter__() is a
function, not a coroutine. For each iteration of the async for loop, the
coroutine method __anext__() of the asynchronous iterator is called and its
result is assigned to user.

When the interpreter leaves the async with block, __aexit__() is
called.

A partial implementation of this logic can be found in the example file
tutorial/mocking.py.

The next sections show how to use MagicMock to test this
method.

Asynchronous context manager

MagicMock mocks __aenter__ with a
CoroutineMock returning a new child mock.

If an exception is raised in an async with block, this exception is passed
to __aexit__(). In this case, the return value defines wether the
interpreter suppresses or propagates the exception, as described in the
documentation of object.__exit__() [https://docs.python.org/3/reference/datamodel.html#object.__exit__].

MagicMock mocks __aexit__ with a
CoroutineMock returning False by default, which means
that the exception is propagated.

By default, we can use a MagicMock in an async with
block without configuration, exceptions raised in this block are propagated:

async def test_context_manager(self):
 with self.assertRaises(AssertionError):
 async with asynctest.MagicMock() as context:
 # context is a MagicMock
 context.assert_called()

However, in the example above, the transaction object exposes the same
methods as client. In particular, We must configure this mock so
transaction.increase_nb_users_cached() is a coroutine.

Asynchronous iterator

The method __aiter__() of a MagicMock returns an
asynchronous iterator. By default, this iterator is empty.

async def test_empty_iterable(self):
 loop_iterations = 0
 async for _ in asynctest.MagicMock():
 loop_iterations += 1

 self.assertEqual(0, loop_iterations)

The values yielded by the iterator can be configured by setting the
return_value of __aiter__. This value must be an iterable object, such
as a list or a generator:

async def test_iterable(self):
 loop_iterations = 0
 mock = asynctest.MagicMock()
 mock.__aiter__.return_value = range(5)
 async for _ in mock:
 loop_iterations += 1

 self.assertEqual(5, loop_iterations)

Note

As of asynctest 0.12, it is not possible to use an asynchronously iterable
object as return_value for __aiter__().

Setting side_effect allows to override the behavior of
MagicMock.

Putting it all together

We can leverage several features of asynctest when testing
cache_users_with_cursor():

class TestCacheWithMagicMethods(asynctest.TestCase):
 async def test_one_user_added_to_cache(self):
 user = StubClient.User(1, "a.dmin")

 AsyncClientMock = asynctest.create_autospec(AsyncClient)

 transaction = asynctest.MagicMock()
 transaction.__aenter__.side_effect = AsyncClientMock

 cursor = asynctest.MagicMock()
 cursor.__aiter__.return_value = [user]

 client = AsyncClientMock()
 client.new_transaction.return_value = transaction
 client.get_users_cursor.return_value = cursor

 cache = {}

 # The user has been added to the cache
 nb_added = await cache_users_with_cursor(client, cache)

 self.assertEqual(nb_added, 1)
 self.assertEqual(cache[1], user)

 # The user was already there
 nb_added = await cache_users_with_cursor(client, cache)
 self.assertEqual(nb_added, 0)
 self.assertEqual(cache[1], user)

This example deserve some explanation.

First, we use create_autospec() to build a mock of the
class AsyncClient.

transaction will be the object configured as a context manager. When called
with async with, it must return an object with an interface as client.
We set AsyncClientMock as a side effect to transaction.__aenter__,
which means that a new mock of an instance of AsyncClient will be issued
each time transaction is used in an async width block.

cursor will be used in the async for loop. The iterator will yield the
values of cursor.__aiter__.return_value. We set to a list containing a
single User object. A new iterator is created each time an async for
loop is called upon the cursor, it is safe to use this mock several times.

We then create client, a mock created from AsyncClientMock. We
configure it so the return values of client.new_transaction() and
client.get_users_cursor() are the mocks we created above.

Note that we configured the behavior of client’s attributes, not those of
AsyncClientMock. This is because the child mock of an autospecced class
will not inherit the behavior of the parent mock, only its spec.

Patching

Patching is a mechanism allowing to temporarily replace a symbol (class,
object, function, attribute, …) by a mock, in-place. It is especially useful
when one need a mock, but can’t pass it as a parameter of the function to be
tested.

For instance, if cache_users() didn’t accept the client argument, but
instead created a new client, it would not be possible to replace it by a mock
like in all the previous examples.

When an object is hard to mock, it sometimes shows a limitation in the design:
a coupling that is too tight, the use of a global variable (or a singleton),
etc. However, it’s not always possible or desirable to change the code to
accomodate the tests. A common situation where tight coupling is almost
invisible is when performing logging or monitoring. In this case, patching will
help.

A patch() can be used as a context manager. It will replace
the target (logging.debug() [https://docs.python.org/3/library/logging.html#logging.debug]) with a mock during the lifetime of the
with block.

async def test_with_context_manager(self):
 client = asynctest.Mock(AsyncClient())
 cache = {}

 with asynctest.patch("logging.debug") as debug_mock:
 await cache_users_async(client, cache)

 debug_mock.assert_called()

Alternatively, patch() can be used to decorate a test or a
test class (inheriting TestCase). This second example is
roughly equivalent to the previous one. The main difference is that for all
tests affected by the patch (the decorated method or all test methods in a
decorated test class) must accept an additional argument which will receive
the mock object used by the patch.

Note that when using multiple decorators on a single method, the order of the
arguments is inversed compared to the order of the decorators. This is due to
the way decorators work in Python, a topic which we don’t cover in this
documentation.

@asynctest.patch("logging.error")
@asynctest.patch("logging.debug")
async def test_with_decorator(self, debug_mock, error_mock):
 client = asynctest.Mock(AsyncClient())
 cache = {}

 await cache_users_async(client, cache)

 debug_mock.assert_called()
 error_mock.assert_not_called()

Note

In practice, we should have used unittest.TestCase.assertLogs() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertLogs]. It
asserts that a given message have been logged and makes more sense than
manually patching logging [https://docs.python.org/3/library/logging.html#module-logging].

There are variants of patch():

	asynctest.patch.object() patches the attribute of a given
object,

	asynctest.patch.multiple() patches several attributes of a given
object,

	asynctest.patch.dict() patches the values in a dict for the given
indices.

The official python documentation provide extensive details about how to define
the target of a patch in its section Where to patch [https://docs.python.org/3/library/unittest.mock.html#where-to-patch].

Scope of the patch

There is one hidden catch in the examples above: what happens to the patch when
the interpreter reaches the await statement and pauses the coroutine?

When patch is used as a context manager, the patch stays active until the
interpreter reached the end of the with block.

When used as a decorator, the patch is activated right before the function (or
coroutine) is executed, and deactivated once it returned. This is equivalent to
englobing the body of the function in a with statement instead of using the
decorator.

However, since couroutines are asynchronous, the work performed by the
interpreter while the coroutine is paused is unpredictable. In some cases, the
patch can conflict with something else, and must only be active when
the patched coroutine is running.

It is possible to control when a asynctest.patch() must be active when
applied to a coroutine with the argument scope.

If scope is set to asynctest.LIMITED, the patch is active only when
the coroutine is running.

This situation is illustrated in the example bellow. The test case
TestMustBePatched runs a task in background which fails if some patch is
active. It contains two tests: one which shows the test conflicting, and one
which uses the LIMITED scope to deactivate the patch
outside of the test coroutine.

class TestMustBePatched(asynctest.TestCase):
 async def setUp(self):
 # Event used to track if the background task checked if the patch
 # is active
 self.checked = asyncio.Event()

 # This task checks if the object is patched continuously, and sets
 # the checked event everytime it does so.
 self.background_task = asyncio.create_task(
 must_be_patched.crash_if_patched(self.checked))

 # Any test will fail if the background task raises an exception
 self.addCleanup(terminate_and_check_task, self.background_task)

 @asynctest.patch.object(must_be_patched, "is_patched",
 return_value=True)
 async def test_patching_conflicting(self, _):
 # This call blocks until the check happened once in background
 await happened_once(self.checked)
 self.assertTrue(await must_be_patched.is_patched())
 await happened_once(self.checked)

 @asynctest.patch.object(must_be_patched, "is_patched",
 return_value=True, scope=asynctest.LIMITED)
 async def test_patching_not_conflicting(self, _):
 await happened_once(self.checked)
 self.assertTrue(await must_be_patched.is_patched())
 await happened_once(self.checked)

In this example, happened_once() pauses the coroutine until the background
task checked once that the patch is not active. The code of
must_be_patched, happened_once() and terminate_and_check_task() is
available in the example file tutorial/patching.py.

test_patching_conflicting() fails because the patch is still active when it
is paused and aways the self.checked event. While paused, the background
task runs, and crashes because the patch is still active.

In test_patching_not_conflicting(), the patch is set with a
LIMITED scope, and is active only when the coroutine runs.
When await must_be_patched.is_patched() runs, the patch is still active.
This coroutine runs in the scope of the outher coroutine (the test): indeed,
must_be_patched.is_patched() is scheduled in the task running the test.

Conclusion

This chapter showed most of the concepts and features of mock relevant when
testing asynchronous code. There are plenty of other features and subtleties
which are covered in the documentation of unittest.mock [https://docs.python.org/3/library/unittest.mock.html#module-unittest.mock].

Advanced Features

This chapter describes miscellaneous features of asynctest which can be
leveraged in specific use cases.

Controlling time

Tests running calls to asyncio.sleep() [https://docs.python.org/3/library/asyncio-task.html#asyncio.sleep] will take as long as the sum of
all these calls. These calls are frequent when testing for timeouts, for
instance.

In many cases, this will add a useless delay to the execution of the test
suite, and encourage us to deactivate or ignore these tests.

ClockedTestCase is a subclass of
TestCase which allows to advance the clock of the loop in
a test with the coroutine advance().

This will not affect the wall clock: functions like time.time() [https://docs.python.org/3/library/time.html#time.time] or
datetime.datetime.now() [https://docs.python.org/3/library/datetime.html#datetime.datetime.now] will return the regular date and time of the
system.

class TestAdvanceTime(asynctest.ClockedTestCase):
 async def test_advance_time(self):
 base_loop_time = self.loop.time()
 base_wall_time = time.time()

 await self.advance(10)

 self.assertEqual(base_loop_time + 10, self.loop.time())
 self.assertTrue(is_time_around(base_wall_time))

This example is pretty self-explanatory: we verified that the clock of the loop
advanced as expected, without awaiting 10 actual seconds and changing the time
of the wall clock.

Internally, ClockedTestCase will ensure that the loop is
executed as if time was passing fast, instead of jumping the clock to the
target time.

class TestWithClockAndCallbacks(asynctest.ClockedTestCase):
 results = None

 def runs_at(self, expected_time):
 self.results.append(is_time_around(expected_time, self.loop))

 @asynctest.fail_on(active_handles=True)
 async def test_callbacks_executed_when_expected(self):
 self.results = []

 base_time = self.loop.time()
 self.loop.call_later(1, self.runs_at, base_time + 1)
 self.loop.call_at(base_time + 7, self.runs_at, base_time + 7)

 # This shows that the callback didn't run yet
 self.assertEqual(0, len(self.results))

 await self.advance(10)

 # This shows that the callbacks ran...
 self.assertEqual(2, len(self.results))
 # ...when expected
 self.assertTrue(all(self.results))

This example schedules function calls to be executed later by the loop.
Each call will verify that it runs at the expected time.
@fail_on(active_handles=True) ensures that the callbacks have been executed
when the test finishes.

The source code of is_time_around() can be found in the example file
tutorial/clock.py.

Mocking I/O

Testing libraries or functions dealing with low-level IO objects may be
complex: these objects are outside of our control, since they are owned by the
kernel. It can be impossible to exactly predict their behavior and simulate
edge-cases, such as the ones happening in a real-world scenario in a large
network.

Even worse, using mocks in place of files will often raise OSError [https://docs.python.org/3/library/exceptions.html#OSError]
because these obhjects are not compatible with the features of the system used
by the loop.

asynctest provides special mocks which can be used in place of actual
file-like objects. They are supported by the loop provided by
TestCase if the loop uses a standard implementation with a
selector (Window’s Proactor loop or uvloop are not supported).

These mocks are configured with a spec matching common file-like objects.

	Mock

	spec

	FileMock

	a file object, implements fileno()

	SocketMock

	socket.socket

	SSLSocketMock

	ssl.SSLSocket [https://docs.python.org/3/library/ssl.html#ssl.SSLSocket]

We can use asynctest.isfilemock() to differenciate mocks from regular
objects.

As of asynctest 0.12, these mocks don’t provide other features, and must
be configured to return expected values for calls to methods like read() or
recv().

When configured, we still need to force the loop to detect that I/O is possible
on these mock files.

This is done with set_read_ready() and
set_write_ready().

class TestMockASocket(asynctest.TestCase):
 async def test_read_and_write_from_socket(self):
 socket_mock = asynctest.SocketMock()
 socket_mock.type = socket.SOCK_STREAM

 recv_data = iter((
 b"some data read",
 b"some other",
 b" ...and the last",
))

 recv_buffer = bytearray()

 def recv_side_effect(max_bytes):
 nonlocal recv_buffer

 if not recv_buffer:
 try:
 recv_buffer.extend(next(recv_data))
 asynctest.set_read_ready(socket_mock, self.loop)
 except StopIteration:
 # nothing left
 pass

 data = recv_buffer[:max_bytes]
 recv_buffer = recv_buffer[max_bytes:]

 if recv_buffer:
 # Some more data to read
 asynctest.set_read_ready(socket_mock, self.loop)

 return data

 def send_side_effect(data):
 asynctest.set_read_ready(socket_mock, self.loop)
 return len(data)

 socket_mock.recv.side_effect = recv_side_effect
 socket_mock.send.side_effect = send_side_effect

 reader, writer = await asyncio.open_connection(sock=socket_mock)

 writer.write(b"a request?")
 self.assertEqual(b"some", await reader.read(4))
 self.assertEqual(b" data read", await reader.read(10))
 self.assertEqual(b"some other ...and the last", await reader.read())

In this example, we configure a socket mock to simulate a simple
request-response scenario with a TCP (stream) socket. Some data is available to
read on the socket once a request has been written. recv_side_effect()
makes as if the data is received in several packets, but it has no impact on
the high level StreamReader [https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader].

It’s common that while a read operation blocks until data is available, a write
is often successful. Thus, we didn’t bother simulating the case where the
congestion control would block the write operation.

Testing with event loop policies

Advanced users may not be able to use the loop provided by
TestCase because they use a customized event loop policy (see
Policies [https://docs.python.org/3/library/asyncio-policy.html#asyncio-policies]). It is often the case when using an alternative
implementation (like uvloop [https://uvloop.readthedocs.io/]) or if the
tests are integrated within a framework hidding the scheduling and management
of the loop.

It is possible to force the TestCase to use the loop
provided by the policy by setting the class attribute
use_default_loop.

Conversely, authors of libraries may not want to assume which loop they should
use and let users explicitly pass the loop as argument to a function call. For
instance, most of the high-level functions of asyncio [https://docs.python.org/3/library/asyncio.html#module-asyncio] (see
Streams [https://docs.python.org/3/library/asyncio-stream.html#asyncio-streams], for instance) allow the caller to specify the loop
to use if it needs this kind of flexibility.

forbid_get_event_loop forbids the use of
asyncio.get_event_loop(). An exception is raised if the method is
called while a test is running. It helps developers to ensure they don’t rely
on the default loop this their library.

Note

The behavior of asyncio.get_event_loop() changed over time.
Explicitly passing the loop is not the recommended practice anymore.

Module case

Enhance unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase]:

	a new loop is issued and set as the default loop before each test, and
closed and disposed after,

	if the loop uses a selector, it will be wrapped with
asynctest.TestSelector,

	a test method in a TestCase identified as a coroutine function or returning
a coroutine will run on the loop,

	setUp() and tearDown() methods can be
coroutine functions,

	cleanup functions registered with addCleanup() can be
coroutine functions,

	a test fails if the loop did not run during the test.

class-level set-up

Since each test runs in its own loop, it is not possible to run
setUpClass() and tearDownClass() as
coroutines.

If one needs to perform set-up actions at the class level (meaning
once for all tests in the class), it should be done using a loop created for
this sole purpose and that is not shared with the tests. Ideally, the loop
shall be closed in the method which creates it.

If one really needs to share a loop between tests,
TestCase.use_default_loop can be set to True (as a class
attribute). The test case will use the loop returned by
asyncio.get_event_loop() instead of creating a new loop for each test.
This way, the event loop or event loop policy can be set during class-level
set-up and tear down.

TestCases

	
class asynctest.TestCase(methodName='runTest')

	A test which is a coroutine function or which returns a coroutine will run
on the loop.

Once the test returned, one or more assertions are checked. For instance,
a test fails if the loop didn’t run. These checks can be enabled or
disabled using the fail_on() decorator.

By default, a new loop is created and is set as the default loop before
each test. Test authors can retrieve this loop with
loop.

If use_default_loop is set to True, the
current default event loop is used instead. In this case, it is up to the
test author to deal with the state of the loop in each test: the loop might
be closed, callbacks and tasks may be scheduled by previous tests. It is
also up to the test author to close the loop and dispose the related
resources.

If forbid_get_event_loop is set to True,
a call to asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] will raise an
AssertionError [https://docs.python.org/3/library/exceptions.html#AssertionError]. Since Python 3.6, calling
asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] from a callback or a coroutine will return
the running loop (instead of raising an exception).

These behaviors should be configured when defining the test case class:

class With_Reusable_Loop_TestCase(asynctest.TestCase):
 use_default_loop = True

 forbid_get_event_loop = False

 def test_something(self):
 pass

If setUp() and tearDown() are coroutine functions, they
will run on the loop. Note that setUpClass() and
tearDownClass() can not be coroutines.

New in version 0.5: attribute use_default_loop.

New in version 0.7: attribute forbid_get_event_loop.
In any case, the default loop is now reset to its original state
outside a test function.

New in version 0.8: ignore_loop has been deprecated in favor of the extensible
fail_on() decorator.

	
setUp()

	Method or coroutine called to prepare the test fixture.

see unittest.TestCase.setUp() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.setUp]

	
tearDown()

	Method called immediately after the test method has been called and
the result recorded.

see unittest.TestCase.tearDown() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.tearDown]

	
addCleanup(function, *args, **kwargs)

	Add a function, with arguments, to be called when the test is
completed. If function is a coroutine function, it will run on the loop
before it’s cleaned.

	
assertAsyncRaises(exception, awaitable)

	Test that an exception of type exception is raised when an
exception is raised when awaiting awaitable, a future or coroutine.

	See

	unittest.TestCase.assertRaises() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaises]

	
assertAsyncRaisesRegex(exception, regex, awaitable)

	Like assertAsyncRaises() but also tests that regex matches
on the string representation of the raised exception.

	See

	unittest.TestCase.assertRaisesRegex() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertRaisesRegex]

	
assertAsyncWarns(warning, awaitable)

	Test that a warning is triggered when awaiting awaitable, a future
or a coroutine.

	See

	unittest.TestCase.assertWarns() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertWarns]

	
assertAsyncWarnsRegex(warning, regex, awaitable)

	Like assertAsyncWarns() but also tests that regex matches
on the message of the triggered warning.

	See

	unittest.TestCase.assertWarnsRegex() [https://docs.python.org/3/library/unittest.html#unittest.TestCase.assertWarnsRegex]

	
doCleanups()

	Execute all cleanup functions. Normally called for you after tearDown.

	
forbid_get_event_loop = False

	If true, the value returned by asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop] will be
set to None during the test. It allows to ensure that tested code
use a loop object explicitly passed around.

	
loop = None

	Event loop created and set as default event loop during the test.

	
use_default_loop = False

	If true, the loop used by the test case is the current default event
loop returned by asyncio.get_event_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_event_loop]. The loop will not be
closed and recreated between tests.

	
class asynctest.FunctionTestCase(testFunc, setUp=None, tearDown=None, description=None)

	Enables the same features as TestCase, but for
FunctionTestCase.

	
class asynctest.ClockedTestCase(methodName='runTest')

	Subclass of TestCase with a controlled loop clock,
useful for testing timer based behaviour without slowing test run time.

	
advance(seconds)

	Fast forward time by a number of seconds.

Callbacks scheduled to run up to the destination clock time will be
executed on time:

>>> self.loop.call_later(1, print_time)
>>> self.loop.call_later(2, self.loop.call_later, 1, print_time)
>>> await self.advance(3)
1
3

In this example, the third callback is scheduled at t = 2 to be
executed at t + 1. Hence, it will run at t = 3. The callback as
been called on time.

Decorators

	
@asynctest.fail_on(**checks)

	Enable checks on the loop state after a test ran to help testers to
identify common mistakes.

Enable or disable a check using a keywork argument with a boolean
value:

@asynctest.fail_on(unused_loop=True)
class TestCase(asynctest.TestCase):
 ...

Available checks are:

	unused_loop: disabled by default, checks that the loop ran at
least once during the test. This check can not fail if the test
method is a coroutine. This allows to detect cases where a test
author assume its test will run tasks or callbacks on the loop,
but it actually didn’t.

	active_selector_callbacks: enabled by default, checks that
any registered reader or writer callback on a selector loop (with
add_reader() or add_writer()) is later explicitly
unregistered (with remove_reader() or remove_writer())
before the end of the test.

	active_handles: disabled by default, checks that there is not
scheduled callback left to be executed on the loop at the end of
the test. The helper
exhaust_callbacks() can help to give
a chance to the loop to run pending callbacks.

The decorator of a method has a greater priority than the decorator of
a class. When fail_on() decorates a class and one of
its methods with conflicting arguments, those of the class are
overriden.

Subclasses of a decorated TestCase inherit of the
checks enabled on the parent class.

New in version 0.8.

New in version 0.9: active_handles

New in version 0.12: unused_loop is now deactivated by default to maintain
compatibility with non-async test inherited from
unittest.TestCase [https://docs.python.org/3/library/unittest.html#unittest.TestCase]. This check is especially useful to track
missing @asyncio.coroutine decorators in a codebase that must be
compatbible with Python 3.4.

	
@asynctest.strict

	Activate strict checking of the state of the loop after a test ran.

It is a shortcut to fail_on() with all checks set to
True.

Note that by definition, the behavior of strict() will change in
the future when new checks will be added, and may break existing tests
with new errors after an update of the library.

New in version 0.8.

	
@asynctest.lenient

	Deactivate all checks performed after a test ran.

It is a shortcut to fail_on() with all checks set to
False.

New in version 0.8.

	
@asynctest.ignore_loop

	By default, a test fails if the loop did not run during the test
(including set up and tear down), unless the
TestCase class or test function is decorated by
ignore_loop().

Deprecated since version 0.8: Use fail_on() with unused_loop=False instead.

Module mock

Wrapper to unittest.mock reducing the boilerplate when testing asyncio powered
code.

A mock can behave as a coroutine, as specified in the documentation of
Mock.

Mock classes

	
class asynctest.Mock(spec=None, side_effect=None, return_value=sentinel.DEFAULT, wraps=None, name=None, spec_set=None, parent=None, _spec_state=None, _new_name='', _new_parent=None, **kwargs)

	Enhance unittest.mock.Mock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock] so it returns
a CoroutineMock object instead of
a Mock object where a method on a spec or
spec_set object is a coroutine.

For instance:

>>> class Foo:
... @asyncio.coroutine
... def foo(self):
... pass
...
... def bar(self):
... pass

>>> type(asynctest.mock.Mock(Foo()).foo)
<class 'asynctest.mock.CoroutineMock'>

>>> type(asynctest.mock.Mock(Foo()).bar)
<class 'asynctest.mock.Mock'>

The test author can also specify a wrapped object with wraps. In this
case, the Mock object behavior is the same as with an
unittest.mock.Mock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock] object: the wrapped object may have methods
defined as coroutine functions.

If you want to mock a coroutine function, use CoroutineMock
instead.

See NonCallableMock for details about asynctest
features, and unittest.mock [https://docs.python.org/3/library/unittest.mock.html#module-unittest.mock] for the comprehensive documentation
about mocking.

	
class asynctest.NonCallableMock(spec=None, wraps=None, name=None, spec_set=None, is_coroutine=None, parent=None, **kwargs)

	Enhance unittest.mock.NonCallableMock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.NonCallableMock] with features allowing to
mock a coroutine function.

If is_coroutine is set to True, the NonCallableMock
object will behave so asyncio.iscoroutinefunction() [https://docs.python.org/3/library/asyncio-task.html#asyncio.iscoroutinefunction] will return
True with mock as parameter.

If spec or spec_set is defined and an attribute is get,
CoroutineMock is returned instead of
Mock when the matching spec attribute is a coroutine
function.

The test author can also specify a wrapped object with wraps. In this
case, the Mock object behavior is the same as with an
unittest.mock.Mock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock] object: the wrapped object may have methods
defined as coroutine functions.

See unittest.mock.NonCallableMock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.NonCallableMock]

	
is_coroutine

	True if the object mocked is a coroutine

	
class asynctest.MagicMock(*args, **kwargs)

	Enhance unittest.mock.MagicMock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.MagicMock] so it returns
a CoroutineMock object instead of
a Mock object where a method on a spec or
spec_set object is a coroutine.

If you want to mock a coroutine function, use CoroutineMock
instead.

MagicMock allows to mock __aenter__, __aexit__,
__aiter__ and __anext__.

When mocking an asynchronous iterator, you can set the
return_value of __aiter__ to an iterable to define the list of
values to be returned during iteration.

You can not mock __await__. If you want to mock an object implementing
__await__, CoroutineMock will likely be sufficient.

see Mock.

New in version 0.11: support of asynchronous iterators and asynchronous context managers.

	
class asynctest.CoroutineMock(*args, **kwargs)

	Enhance Mock with features allowing to mock
a coroutine function.

The CoroutineMock object will behave so the object is
recognized as coroutine function, and the result of a call as a coroutine:

>>> mock = CoroutineMock()
>>> asyncio.iscoroutinefunction(mock)
True
>>> asyncio.iscoroutine(mock())
True

The result of mock() is a coroutine which will have the outcome of
side_effect or return_value:

	if side_effect is a function, the coroutine will return the result
of that function,

	if side_effect is an exception, the coroutine will raise the
exception,

	if side_effect is an iterable, the coroutine will return the next
value of the iterable, however, if the sequence of result is exhausted,
StopIteration is raised immediately,

	if side_effect is not defined, the coroutine will return the value
defined by return_value, hence, by default, the coroutine returns
a new CoroutineMock object.

If the outcome of side_effect or return_value is a coroutine, the
mock coroutine obtained when the mock object is called will be this
coroutine itself (and not a coroutine returning a coroutine).

The test author can also specify a wrapped object with wraps. In this
case, the Mock object behavior is the same as with an
unittest.mock.Mock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock] object: the wrapped object may have methods
defined as coroutine functions.

	
assert_any_await(*args, **kwargs)

	Assert the mock has ever been awaited with the specified arguments.

New in version 0.12.

	
assert_awaited()

	Assert that the mock was awaited at least once.

New in version 0.12.

	
assert_awaited_once(*args, **kwargs)

	Assert that the mock was awaited exactly once.

New in version 0.12.

	
assert_awaited_once_with(*args, **kwargs)

	Assert that the mock was awaited exactly once and with the specified arguments.

New in version 0.12.

	
assert_awaited_with(*args, **kwargs)

	Assert that the last await was with the specified arguments.

New in version 0.12.

	
assert_has_awaits(calls, any_order=False)

	Assert the mock has been awaited with the specified calls.
The await_args_list list is checked for the awaits.

If any_order is False (the default) then the awaits must be
sequential. There can be extra calls before or after the
specified awaits.

If any_order is True then the awaits can be in any order, but
they must all appear in await_args_list.

New in version 0.12.

	
assert_not_awaited()

	Assert that the mock was never awaited.

New in version 0.12.

	
await_args

	

	
await_args_list

	

	
await_count

	Number of times the mock has been awaited.

New in version 0.12.

	
awaited

	Property which is set when the mock is awaited. Its wait and
wait_next coroutine methods can be used to synchronize execution.

New in version 0.12.

	
reset_mock(*args, **kwargs)

	See unittest.mock.Mock.reset_mock()

Autospeccing

	
asynctest.create_autospec(spec, spec_set=False, instance=False, _parent=None, _name=None, **kwargs)

	Create a mock object using another object as a spec. Attributes on the mock
will use the corresponding attribute on the spec object as their spec.

spec can be a coroutine function, a class or object with coroutine
functions as attributes.

If spec is a coroutine function, and instance is not False, a
RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] is raised.

New in version 0.12.

Patch

	
asynctest.GLOBAL = <PatchScope.GLOBAL: 2>

	An enumeration.

	
asynctest.LIMITED = <PatchScope.LIMITED: 1>

	An enumeration.

	
asynctest.patch(target, new=sentinel.DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, scope=<PatchScope.GLOBAL: 2>, **kwargs)

	A context manager, function decorator or class decorator which patches the
target with the value given by the new argument.

new specifies which object will replace the target when the patch
is applied. By default, the target will be patched with an instance of
CoroutineMock if it is a coroutine, or
a MagicMock object.

It is a replacement to unittest.mock.patch() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch], but using
asynctest.mock objects.

When a generator or a coroutine is patched using the decorator, the patch
is activated or deactivated according to the scope argument value:

	asynctest.GLOBAL: the default, enables the patch until the
generator or the coroutine finishes (returns or raises an exception),

	asynctest.LIMITED: the patch will be activated when the
generator or coroutine is being executed, and deactivated when it
yields a value and pauses its execution (with yield, yield from
or await).

The behavior differs from unittest.mock.patch() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch] for generators.

When used as a context manager, the patch is still active even if the
generator or coroutine is paused, which may affect concurrent tasks:

@asyncio.coroutine
def coro():
 with asynctest.mock.patch("module.function"):
 yield from asyncio.get_event_loop().sleep(1)

@asyncio.coroutine
def independent_coro():
 assert not isinstance(module.function, asynctest.mock.Mock)

asyncio.create_task(coro())
asyncio.create_task(independent_coro())
this will raise an AssertionError(coro() is scheduled first)!
loop.run_forever()

	Parameters

	scope – asynctest.GLOBAL or asynctest.LIMITED,
controls when the patch is activated on generators and coroutines

When used as a decorator with a generator based coroutine, the order of
the decorators matters. The order of the @patch() decorators is in
the reverse order of the parameters produced by these patches for the
patched function. And the @asyncio.coroutine decorator should be
the last since @patch() conceptually patches the coroutine, not
the function:

@patch("module.function2")
@patch("module.function1")
@asyncio.coroutine
def test_coro(self, mock_function1, mock_function2):
 yield from asyncio.get_event_loop().sleep(1)

see unittest.mock.patch() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch].

New in version 0.6: patch into generators and coroutines with
a decorator.

	
asynctest.patch.object(target, attribute, new=DEFAULT, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, scope=asynctest.GLOBAL, **kwargs)

	Patch the named member (attribute) on an object (target) with
a mock object, in the same fashion as patch().

See patch() and unittest.mock.patch.object() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch.object].

	
asynctest.patch.multiple(target, spec=None, create=False, spec_set=None, autospec=None, new_callable=None, scope=asynctest.global, **kwargs)

	Perform multiple patches in a single call. It takes the object to be
patched (either as an object or a string to fetch the object by
importing) and keyword arguments for the patches.

See patch() and unittest.mock.patch.multiple() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch.multiple].

	
asynctest.patch.dict(in_dict, values=(), clear=False, scope=asynctest.GLOBAL, **kwargs)

	Patch a dictionary, or dictionary like object, and restore the
dictionary to its original state after the test.

Its behavior can be controlled on decorated generators and coroutines with
scope.

New in version 0.8: patch into generators and coroutines with
a decorator.

	Parameters

	
	in_dict – dictionary like object, or string referencing the
object to patch.

	values – a dictionary of values or an iterable of (key, value)
pairs to set in the dictionary.

	clear – if True, in_dict will be cleared before the new
values are set.

	scope – asynctest.GLOBAL or asynctest.LIMITED,
controls when the patch is activated on generators and coroutines

	See

	patch() (details about scope) and
unittest.mock.patch.dict() [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.patch.dict].

Helpers

	
asynctest.mock_open(mock=None, read_data='')

	A helper function to create a mock to replace the use of open() [https://docs.python.org/3/library/functions.html#open]. It
works for open() [https://docs.python.org/3/library/functions.html#open] called directly or used as a context manager.

	Parameters

	
	mock – mock object to configure, by default
a MagicMock object is
created with the API limited to methods or attributes
available on standard file handles.

	read_data – string for the read() and readlines() of
the file handle to return. This is an empty string by
default.

	
asynctest.return_once(value, then=None)

	Helper to use with side_effect, so a mock will return a given value
only once, then return another value.

When used as a side_effect value, if one of value or then is an
Exception [https://docs.python.org/3/library/exceptions.html#Exception] type, an instance of this exception will be raised.

>>> mock.recv = Mock(side_effect=return_once(b"data"))
>>> mock.recv()
b"data"
>>> repr(mock.recv())
'None'
>>> repr(mock.recv())
'None'

>>> mock.recv = Mock(side_effect=return_once(b"data", then=BlockingIOError))
>>> mock.recv()
b"data"
>>> mock.recv()
Traceback BlockingIOError

	Parameters

	
	value – value to be returned once by the mock when called.

	then – value returned for any subsequent call.

New in version 0.4.

Module selector

Mock of selectors [https://docs.python.org/3/library/selectors.html#module-selectors] and compatible objects performing asynchronous IO.

This module provides classes to mock objects performing IO (files, sockets,
etc). These mocks are compatible with TestSelector, which
can simulate the behavior of a selector on the mock objects, or forward actual
work to a real selector.

Mocking file-like objects

	
class asynctest.FileMock(*args, **kwargs)

	Mock a file-like object.

A FileMock is an intelligent mock which can work with TestSelector to
simulate IO events during tests.

	
fileno()

	Return a FileDescriptor object.

	
class asynctest.SocketMock(side_effect=None, return_value=sentinel.DEFAULT, wraps=None, name=None, spec_set=None, parent=None, **kwargs)

	Bases: asynctest.selector.FileMock

Mock a socket.

See FileMock.

	
class asynctest.SSLSocketMock(side_effect=None, return_value=sentinel.DEFAULT, wraps=None, name=None, spec_set=None, parent=None, **kwargs)

	Bases: asynctest.selector.SocketMock

Mock a socket wrapped by the ssl [https://docs.python.org/3/library/ssl.html#module-ssl] module.

See FileMock.

New in version 0.5.

	
class asynctest.FileDescriptor

	Bases: int [https://docs.python.org/3/library/functions.html#int]

A subclass of int which allows to identify the virtual file-descriptor of a
FileMock.

If FileDescriptor() without argument, its value will be
the value of next_fd.

When an object is created, next_fd is set to the
highest value for a FileDescriptor object + 1.

	
next_fd = 0

	

Helpers

	
asynctest.fd(fileobj)

	Return the FileDescriptor value of fileobj.

If fileobj is a FileDescriptor, fileobj is
returned, else fileobj.fileno() is returned instead.

Note that if fileobj is an int, ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] is raised.

	Raises

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if fileobj is not a FileMock,
a file-like object or
a FileDescriptor.

	
asynctest.isfilemock(obj)

	Return True if the obj or obj.fileno() is
a asynctest.FileDescriptor.

Mocking the selector

	
class asynctest.TestSelector(selector=None)

	A selector which supports IOMock objects.

It can wrap an actual implementation of a selector, so the selector will
work both with mocks and real file-like objects.

A common use case is to patch the selector loop:

loop._selector = asynctest.TestSelector(loop._selector)

	Parameters

	selector – optional, if provided, this selector will be used to work
with real file-like objects.

	
close()

	Close the selector.

Close the actual selector if supplied, unregister all mocks.

See selectors.BaseSelector.close() [https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.close].

	
modify(fileobj, events, data=None)

	Shortcut when calling TestSelector.unregister() then
TestSelector.register() to update the registration of a an object
to the selector.

See selectors.BaseSelector.modify() [https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.modify].

	
register(fileobj, events, data=None)

	Register a file object or a FileMock.

If a real selector object has been supplied to the
TestSelector object and fileobj is not
a FileMock or a FileDescriptor
returned by FileMock.fileno(), the object will be registered to
the real selector.

See selectors.BaseSelector.register() [https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.register].

	
select(timeout=None)

	Perform the selection.

This method is a no-op if no actual selector has been supplied.

See selectors.BaseSelector.select() [https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.select].

	
unregister(fileobj)

	Unregister a file object or a FileMock.

See selectors.BaseSelector.unregister() [https://docs.python.org/3/library/selectors.html#selectors.BaseSelector.unregister].

Helpers

	
asynctest.set_read_ready(fileobj, loop)

	Schedule callbacks registered on loop as if the selector notified that
data is ready to be read on fileobj.

	Parameters

	
	fileobj – file object or FileMock on which the
event is mocked.

	loop – asyncio.SelectorEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.SelectorEventLoop] watching for events on
fileobj.

mock = asynctest.SocketMock()
mock.recv.return_value = b"Data"

def read_ready(sock):
 print("received:", sock.recv(1024))

loop.add_reader(mock, read_ready, mock)

set_read_ready(mock, loop)

loop.run_forever() # prints received: b"Data"

New in version 0.4.

	
asynctest.set_write_ready(fileobj, loop)

	Schedule callbacks registered on loop as if the selector notified that
data can be written to fileobj.

	Parameters

	
	fileobj – file object or FileMock on which th
event is mocked.

	loop – asyncio.SelectorEventLoop [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.SelectorEventLoop] watching for events on
fileobj.

New in version 0.4.

Module helpers

Helper functions and coroutines for asynctest.

	
asynctest.helpers.exhaust_callbacks(loop)

	Run the loop until all ready callbacks are executed.

The coroutine doesn’t wait for callbacks scheduled in the future with
call_at() or
call_later().

	Parameters

	loop – event loop

List of code examples

	tutorial/clock.py

	tutorial/mocking.py

	tutorial/mocking_io.py

	tutorial/patching.py

	tutorial/test_cases.py

tutorial/clock.py

coding: utf-8
import time

import asynctest

def is_time_around(expected_time, loop=None, delta=.01):
 """
 Checks that the time is equal to ``expected_time`` (within the range of +/-
 ``delta``).

 If ``loop`` is provided, the clock of the loop is used.
 """
 now = loop.time() if loop else time.time()
 return (expected_time - delta) <= now <= (expected_time + delta)

class TestAdvanceTime(asynctest.ClockedTestCase):
 async def test_advance_time(self):
 base_loop_time = self.loop.time()
 base_wall_time = time.time()

 await self.advance(10)

 self.assertEqual(base_loop_time + 10, self.loop.time())
 self.assertTrue(is_time_around(base_wall_time))

class TestWithClockAndCallbacks(asynctest.ClockedTestCase):
 results = None

 def runs_at(self, expected_time):
 self.results.append(is_time_around(expected_time, self.loop))

 @asynctest.fail_on(active_handles=True)
 async def test_callbacks_executed_when_expected(self):
 self.results = []

 base_time = self.loop.time()
 self.loop.call_later(1, self.runs_at, base_time + 1)
 self.loop.call_at(base_time + 7, self.runs_at, base_time + 7)

 # This shows that the callback didn't run yet
 self.assertEqual(0, len(self.results))

 await self.advance(10)

 # This shows that the callbacks ran...
 self.assertEqual(2, len(self.results))
 # ...when expected
 self.assertTrue(all(self.results))

tutorial/mocking.py

coding: utf-8
pylama: ignore=C0103, ignore camel case variable name (AsyncClientMock)

import asyncio
import collections
import itertools
import logging

import asynctest

class Client:
 def add_user(self, user):
 raise NotImplementedError

 def get_users(self):
 raise NotImplementedError

 def increase_nb_users_cached(self, nb_cached):
 raise NotImplementedError

class AsyncClient:
 async def add_user(self, user, transaction=None):
 raise NotImplementedError

 async def get_users(self, transaction=None):
 raise NotImplementedError

 async def increase_nb_users_cached(self, nb_cached, transaction=None):
 raise NotImplementedError

 def get_users_cursor(self, transaction=None):
 return self.Cursor(transaction or self)

 def new_transaction(self):
 return self.Transaction(self)

 class Transaction:
 def __init__(self, client):
 self.client = client

 def __call__(self, funcname, *args, **kwargs):
 """
 Forwards the call to the client, with the argument ``transaction ``
 set.
 """
 method = getattr(self.client, funcname)
 return method(*args, transaction=self, **kwargs)

 async def __aenter__(self):
 return self

 async def __aexit__(self, *args):
 pass

 class Cursor:
 def __init__(self, transaction):
 self.transaction = transaction

 def __aiter__(self):
 return self

 async def __anext__(self):
 # if the request has not been started, do it there
 raise NotImplementedError

def cache_users(client, cache):
 """
 Load the list of users from a distant server accessed with ``client``,
 add them to ``cache``.

 Notify the server about the number of new users put in the cache, and
 returns this number.

 :param client: a connection to the distant server
 :param cache: a dict-like object
 """
 users = client.get_users()

 nb_users_cached = 0

 for user in users:
 if user.id not in cache:
 nb_users_cached += 1
 cache[user.id] = user

 client.increase_nb_users_cached(nb_users_cached)

 logging.debug("added %d users to the cache %r", nb_users_cached, cache)

 return nb_users_cached

class StubClient:
 User = collections.namedtuple("User", "id username")

 def __init__(self, *users_to_return):
 self.users_to_return = []
 self.users_to_return.extend(users_to_return)

 self.nb_users_cached = 0

 def add_user(self, user):
 self.users_to_return.append(user)

 def get_users(self):
 return self.users_to_return

 def increase_nb_users_cached(self, nb_cached):
 self.nb_users_cached += nb_cached

class TestUsingStub(asynctest.TestCase):
 def test_one_user_added_to_cache(self):
 user = StubClient.User(1, "a.dmin")
 client = StubClient(user)
 cache = {}

 # The user has been added to the cache
 nb_added = cache_users(client, cache)

 self.assertEqual(nb_added, 1)
 self.assertEqual(cache[1], user)

 # The user was already there
 nb_added = cache_users(client, cache)
 self.assertEqual(nb_added, 0)
 self.assertEqual(cache[1], user)

 def test_no_users_to_add(self):
 cache = {}
 nb_added = cache_users(StubClient(), cache)

 self.assertEqual(nb_added, 0)
 self.assertEqual(len(cache), 0)

class TestUsingMock(asynctest.TestCase):
 def test_no_users_to_add(self):
 client = asynctest.Mock(Client())
 client.get_users.return_value = []
 cache = {}

 nb_added = cache_users(client, cache)

 client.get_users.assert_called()
 self.assertEqual(nb_added, 0)
 self.assertEqual(len(cache), 0)

 client.increase_nb_users_cached.assert_called_once_with(0)

async def cache_users_async(client, cache):
 users = await client.get_users()

 nb_users_cached = 0

 for user in users:
 if user.id not in cache:
 nb_users_cached += 1
 cache[user.id] = user

 await client.increase_nb_users_cached(nb_users_cached)

 logging.debug("added %d users to the cache %r", nb_users_cached, cache)

 return nb_users_cached

class TestUsingFuture(asynctest.TestCase):
 async def test_no_users_to_add(self):
 client = asynctest.Mock(Client())

 client.get_users.return_value = asyncio.Future()
 client.get_users.return_value.set_result([])

 client.increase_nb_users_cached.return_value = asyncio.Future()
 client.increase_nb_users_cached.return_value.set_result(None)

 cache = {}

 nb_added = await cache_users_async(client, cache)

 client.get_users.assert_called()
 self.assertEqual(nb_added, 0)
 self.assertEqual(len(cache), 0)

 client.increase_nb_users_cached.assert_called_once_with(0)

class TestUsingCoroutineMock(asynctest.TestCase):
 async def test_no_users_to_add(self):
 client = asynctest.Mock(Client())
 client.get_users = asynctest.CoroutineMock(return_value=[])
 client.increase_nb_users_cached = asynctest.CoroutineMock()
 cache = {}

 nb_added = await cache_users_async(client, cache)

 client.get_users.assert_awaited()
 self.assertEqual(nb_added, 0)
 self.assertEqual(len(cache), 0)

 client.increase_nb_users_cached.assert_awaited_once_with(0)

class TestUsingCoroutineMockAndSpec(asynctest.TestCase):
 async def test_no_users_to_add(self):
 client = asynctest.Mock(AsyncClient())
 client.get_users.return_value = []
 cache = {}

 nb_added = await cache_users_async(client, cache)

 client.get_users.assert_awaited()
 self.assertEqual(nb_added, 0)
 self.assertEqual(len(cache), 0)

 client.increase_nb_users_cached.assert_awaited_once_with(0)

class TestAutoSpec(asynctest.TestCase):
 async def test_functions_and_coroutines_arguments_are_checked(self):
 client = asynctest.Mock(Client())
 cache = {}

 cache_users_mock = asynctest.create_autospec(cache_users_async)

 with self.subTest("create_autospec returns a regular mock"):
 await cache_users_mock(client, cache)
 cache_users_mock.assert_awaited_once_with(client, cache)

 with self.subTest("an exception is raised when the mock is called "
 "with the wrong number of arguments"):
 with self.assertRaises(TypeError):
 await cache_users_mock("wrong", "number", "of", "args")

 async def test_create_autospec_on_a_class(self):
 AsyncClientMock = asynctest.create_autospec(AsyncClient)
 client = AsyncClientMock()

 with self.subTest("the mock of a class returns a mock instance of "
 "the class"):
 self.assertIsInstance(client, AsyncClient)

 with self.subTest("attributes of the mock instance are correctly "
 "mocked as coroutines"):
 await client.increase_nb_users_cached(1)

class TestCoroutineMockResult(asynctest.TestCase):
 async def test_result_set_with_return_value(self):
 coroutine_mock = asynctest.CoroutineMock()
 result = object()
 coroutine_mock.return_value = result

 # return the expected result
 self.assertIs(result, await coroutine_mock())
 # always return the same result
 self.assertIs(await coroutine_mock(), await coroutine_mock())

 async def test_result_with_side_effect_function(self):
 def uppercase_all(*args):
 return tuple(arg.upper() for arg in args)

 coroutine_mock = asynctest.CoroutineMock()
 coroutine_mock.side_effect = uppercase_all

 self.assertEqual(("FIRST", "CALL"),
 await coroutine_mock("first", "call"))
 self.assertEqual(("A", "SECOND", "CALL"),
 await coroutine_mock("a", "second", "call"))

 async def test_result_with_side_effect_exception(self):
 coroutine_mock = asynctest.CoroutineMock()
 coroutine_mock.side_effect = NotImplementedError

 # Raise an exception of the configured type
 with self.assertRaises(NotImplementedError):
 await coroutine_mock("any", "number", "of", "args")

 coroutine_mock.side_effect = Exception("an instance of exception")

 # Raise the exact specified object
 with self.assertRaises(Exception) as context:
 await coroutine_mock()

 self.assertIs(coroutine_mock.side_effect, context.exception)

 async def test_result_with_side_effect_iterable(self):
 coroutine_mock = asynctest.CoroutineMock()
 coroutine_mock.side_effect = ["one", "two", "three"]

 self.assertEqual("one", await coroutine_mock())
 self.assertEqual("two", await coroutine_mock())
 self.assertEqual("three", await coroutine_mock())

 coroutine_mock.side_effect = itertools.cycle(["odd", "even"])
 self.assertEqual("odd", await coroutine_mock())
 self.assertEqual("even", await coroutine_mock())
 self.assertEqual("odd", await coroutine_mock())
 self.assertEqual("even", await coroutine_mock())

 async def test_result_with_wrapped_object(self):
 stub = StubClient()
 mock = asynctest.Mock(stub, wraps=stub)
 cache = {}

 stub.add_user(StubClient.User(1, "a.dmin"))
 cache_users(mock, cache)

 mock.get_users.assert_called()
 self.assertEqual(stub.users_to_return, mock.get_users())

async def cache_users_with_cursor(client, cache):
 nb_users_cached = 0

 async with client.new_transaction() as transaction:
 users_cursor = transaction.get_users_cursor()

 async for user in users_cursor:
 if user.id not in cache:
 nb_users_cached += 1
 cache[user.id] = user

 await transaction.increase_nb_users_cached(nb_users_cached)

 logging.debug("added %d users to the cache %r", nb_users_cached, cache)

 return nb_users_cached

class TestWithMagicMethods(asynctest.TestCase):
 async def test_context_manager(self):
 with self.assertRaises(AssertionError):
 async with asynctest.MagicMock() as context:
 # context is a MagicMock
 context.assert_called()

 async def test_empty_iterable(self):
 loop_iterations = 0
 async for _ in asynctest.MagicMock():
 loop_iterations += 1

 self.assertEqual(0, loop_iterations)

 async def test_iterable(self):
 loop_iterations = 0
 mock = asynctest.MagicMock()
 mock.__aiter__.return_value = range(5)
 async for _ in mock:
 loop_iterations += 1

 self.assertEqual(5, loop_iterations)

class TestCacheWithMagicMethods(asynctest.TestCase):
 async def test_one_user_added_to_cache(self):
 user = StubClient.User(1, "a.dmin")

 AsyncClientMock = asynctest.create_autospec(AsyncClient)

 transaction = asynctest.MagicMock()
 transaction.__aenter__.side_effect = AsyncClientMock

 cursor = asynctest.MagicMock()
 cursor.__aiter__.return_value = [user]

 client = AsyncClientMock()
 client.new_transaction.return_value = transaction
 client.get_users_cursor.return_value = cursor

 cache = {}

 # The user has been added to the cache
 nb_added = await cache_users_with_cursor(client, cache)

 self.assertEqual(nb_added, 1)
 self.assertEqual(cache[1], user)

 # The user was already there
 nb_added = await cache_users_with_cursor(client, cache)
 self.assertEqual(nb_added, 0)
 self.assertEqual(cache[1], user)

class TestCachingIsLogged(asynctest.TestCase):
 async def test_with_context_manager(self):
 client = asynctest.Mock(AsyncClient())
 cache = {}

 with asynctest.patch("logging.debug") as debug_mock:
 await cache_users_async(client, cache)

 debug_mock.assert_called()

 @asynctest.patch("logging.error")
 @asynctest.patch("logging.debug")
 async def test_with_decorator(self, debug_mock, error_mock):
 client = asynctest.Mock(AsyncClient())
 cache = {}

 await cache_users_async(client, cache)

 debug_mock.assert_called()
 error_mock.assert_not_called()

tutorial/mocking_io.py

coding: utf-8
import asyncio
import socket

import asynctest

class TestMockASocket(asynctest.TestCase):
 async def test_read_and_write_from_socket(self):
 socket_mock = asynctest.SocketMock()
 socket_mock.type = socket.SOCK_STREAM

 recv_data = iter((
 b"some data read",
 b"some other",
 b" ...and the last",
))

 recv_buffer = bytearray()

 def recv_side_effect(max_bytes):
 nonlocal recv_buffer

 if not recv_buffer:
 try:
 recv_buffer.extend(next(recv_data))
 asynctest.set_read_ready(socket_mock, self.loop)
 except StopIteration:
 # nothing left
 pass

 data = recv_buffer[:max_bytes]
 recv_buffer = recv_buffer[max_bytes:]

 if recv_buffer:
 # Some more data to read
 asynctest.set_read_ready(socket_mock, self.loop)

 return data

 def send_side_effect(data):
 asynctest.set_read_ready(socket_mock, self.loop)
 return len(data)

 socket_mock.recv.side_effect = recv_side_effect
 socket_mock.send.side_effect = send_side_effect

 reader, writer = await asyncio.open_connection(sock=socket_mock)

 writer.write(b"a request?")
 self.assertEqual(b"some", await reader.read(4))
 self.assertEqual(b" data read", await reader.read(10))
 self.assertEqual(b"some other ...and the last", await reader.read())

tutorial/patching.py

coding: utf-8
import asyncio
import unittest.mock

import asynctest

class MustBePatched:
 async def is_patched(self):
 """
 return ``False``, unless patched.
 """
 return False

 async def crash_if_patched(self, ran_event):
 """
 Verify that the method is not patched. The coroutine is put to sleep
 for a duration of 0, meaning it let the loop schedule other coroutines
 concurrently.

 Each time the check is performed, ``ran_event`` is set.
 """

 try:
 while True:
 try:
 is_patched = await self.is_patched()
 assert not is_patched

 await asyncio.sleep(0)
 finally:
 ran_event.set()
 except asyncio.CancelledError:
 pass

async def terminate_and_check_task(task):
 task.cancel()
 await task

async def happened_once(event):
 await event.wait()
 event.clear()

must_be_patched = MustBePatched() # noqa

class TestMustBePatched(asynctest.TestCase):
 async def setUp(self):
 # Event used to track if the background task checked if the patch
 # is active
 self.checked = asyncio.Event()

 # This task checks if the object is patched continuously, and sets
 # the checked event everytime it does so.
 self.background_task = asyncio.create_task(
 must_be_patched.crash_if_patched(self.checked))

 # Any test will fail if the background task raises an exception
 self.addCleanup(terminate_and_check_task, self.background_task)

 @asynctest.patch.object(must_be_patched, "is_patched",
 return_value=True)
 async def test_patching_conflicting(self, _):
 # This call blocks until the check happened once in background
 await happened_once(self.checked)
 self.assertTrue(await must_be_patched.is_patched())
 await happened_once(self.checked)

 @asynctest.patch.object(must_be_patched, "is_patched",
 return_value=True, scope=asynctest.LIMITED)
 async def test_patching_not_conflicting(self, _):
 await happened_once(self.checked)
 self.assertTrue(await must_be_patched.is_patched())
 await happened_once(self.checked)

tutorial/test_cases.py

coding: utf-8
import asyncio
import asynctest

class MinimalExample(asynctest.TestCase):
 def test_that_true_is_true(self):
 self.assertTrue(True)

class AnExampleWithSetup(asynctest.TestCase):
 async def a_coroutine(self):
 return "I worked"

 def test_that_a_coroutine_runs(self):
 my_loop = asyncio.new_event_loop()
 try:
 result = my_loop.run_until_complete(self.a_coroutine())
 self.assertIn("worked", result)
 finally:
 my_loop.close()

class AnExampleWithSetupMethod(asynctest.TestCase):
 async def a_coroutine(self):
 return "I worked"

 def setUp(self):
 self.my_loop = asyncio.new_event_loop()

 def test_that_a_coroutine_runs(self):
 result = self.my_loop.run_until_complete(self.a_coroutine())
 self.assertIn("worked", result)

 def tearDown(self):
 self.my_loop.close()

class AnExampleWithSetupAndCleanup(asynctest.TestCase):
 async def a_coroutine(self):
 return "I worked"

 def setUp(self):
 self.my_loop = asyncio.new_event_loop()
 self.addCleanup(self.my_loop.close)

 def test_that_a_coroutine_runs(self):
 result = self.my_loop.run_until_complete(self.a_coroutine())
 self.assertIn("worked", result)

class AnExampleWithTestCaseLoop(asynctest.TestCase):
 async def a_coroutine(self):
 return "I worked"

 def test_that_a_coroutine_runs(self):
 result = self.loop.run_until_complete(self.a_coroutine())
 self.assertIn("worked", result)

class AnExampleWithTestCaseAndCoroutines(asynctest.TestCase):
 async def a_coroutine(self):
 return "I worked"

 async def test_that_a_coroutine_runs(self):
 self.assertIn("worked", await self.a_coroutine())

class AnExampleWithAsynchronousSetUp(asynctest.TestCase):
 async def setUp(self):
 self.queue = asyncio.Queue(maxsize=1)
 await self.queue.put("I worked")

 async def test_that_a_lock_is_acquired(self):
 self.assertTrue(self.queue.full())

 async def tearDown(self):
 while not self.queue.empty():
 await self.queue.get()

class AnExempleWhichDetectsPendingCallbacks(asynctest.TestCase):
 def i_must_run(self):
 pass # do something

 @asynctest.fail_on(active_handles=True)
 async def test_missing_a_callback(self):
 self.loop.call_later(1, self.i_must_run)

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 asynctest	

 	
 	
 asynctest.case	

 	
 	
 asynctest.helpers	

 	
 	
 asynctest.mock	

 	
 	
 asynctest.selector	

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	
 	addCleanup() (asynctest.TestCase method)

 	advance() (asynctest.ClockedTestCase method)

 	assert_any_await() (asynctest.CoroutineMock method)

 	assert_awaited() (asynctest.CoroutineMock method)

 	assert_awaited_once() (asynctest.CoroutineMock method)

 	assert_awaited_once_with() (asynctest.CoroutineMock method)

 	assert_awaited_with() (asynctest.CoroutineMock method)

 	assert_has_awaits() (asynctest.CoroutineMock method)

 	assert_not_awaited() (asynctest.CoroutineMock method)

 	assertAsyncRaises() (asynctest.TestCase method)

 	assertAsyncRaisesRegex() (asynctest.TestCase method)

 	
 	assertAsyncWarns() (asynctest.TestCase method)

 	assertAsyncWarnsRegex() (asynctest.TestCase method)

 	asynctest (module)

 	asynctest.case (module)

 	asynctest.helpers (module)

 	asynctest.mock (module)

 	asynctest.selector (module)

 	await_args (asynctest.CoroutineMock attribute)

 	await_args_list (asynctest.CoroutineMock attribute)

 	await_count (asynctest.CoroutineMock attribute)

 	awaited (asynctest.CoroutineMock attribute)

C

 	
 	ClockedTestCase (class in asynctest)

 	close() (asynctest.TestSelector method)

 	
 	CoroutineMock (class in asynctest)

 	create_autospec() (in module asynctest)

D

 	
 	dict() (in module asynctest.patch)

 	
 	doCleanups() (asynctest.TestCase method)

E

 	
 	exhaust_callbacks() (in module asynctest.helpers)

F

 	
 	fail_on() (in module asynctest)

 	fd() (in module asynctest)

 	FileDescriptor (class in asynctest)

 	
 	FileMock (class in asynctest)

 	fileno() (asynctest.FileMock method)

 	forbid_get_event_loop (asynctest.TestCase attribute)

 	FunctionTestCase (class in asynctest)

G

 	
 	GLOBAL (in module asynctest)

I

 	
 	ignore_loop() (in module asynctest)

 	
 	is_coroutine (asynctest.NonCallableMock attribute)

 	isfilemock() (in module asynctest)

L

 	
 	lenient() (in module asynctest)

 	
 	LIMITED (in module asynctest)

 	loop (asynctest.TestCase attribute)

M

 	
 	MagicMock (class in asynctest)

 	Mock (class in asynctest)

 	
 	mock_open() (in module asynctest)

 	modify() (asynctest.TestSelector method)

 	multiple() (in module asynctest.patch)

N

 	
 	next_fd (asynctest.FileDescriptor attribute)

 	
 	NonCallableMock (class in asynctest)

O

 	
 	object() (in module asynctest.patch)

P

 	
 	patch() (in module asynctest)

 	
 	
 Python Enhancement Proposals

 	PEP 0492#asynchronous-context-managers-and-async-with

R

 	
 	register() (asynctest.TestSelector method)

 	
 	reset_mock() (asynctest.CoroutineMock method)

 	return_once() (in module asynctest)

S

 	
 	select() (asynctest.TestSelector method)

 	set_read_ready() (in module asynctest)

 	set_write_ready() (in module asynctest)

 	
 	setUp() (asynctest.TestCase method)

 	SocketMock (class in asynctest)

 	SSLSocketMock (class in asynctest)

 	strict() (in module asynctest)

T

 	
 	tearDown() (asynctest.TestCase method)

 	
 	TestCase (class in asynctest)

 	TestSelector (class in asynctest)

U

 	
 	unregister() (asynctest.TestSelector method)

 	
 	use_default_loop (asynctest.TestCase attribute)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 asynctest documentation

 		
 Introduction

 		
 Test cases

 		
 Writing and running a first test

 		
 Test setup

 		
 Testing asynchronous code

 		
 Automated checks

 		
 Conclusion

 		
 Mocking

 		
 Using mocks

 		
 Mocking of coroutines

 		
 Mocking of other objects

 		
 Autospeccing

 		
 Types of mocks

 		
 Controlling the result of CoroutineMock

 		
 return_value

 		
 side_effect

 		
 Wrapped object

 		
 Asynchronous iterators and context managers

 		
 Asynchronous context manager

 		
 Asynchronous iterator

 		
 Putting it all together

 		
 Patching

 		
 Scope of the patch

 		
 Conclusion

 		
 Advanced Features

 		
 Controlling time

 		
 Mocking I/O

 		
 Testing with event loop policies

 		
 Module case

 		
 class-level set-up

 		
 TestCases

 		
 Decorators

 		
 Module mock

 		
 Mock classes

 		
 Autospeccing

 		
 Patch

 		
 Helpers

 		
 Module selector

 		
 Mocking file-like objects

 		
 Helpers

 		
 Mocking the selector

 		
 Helpers

 		
 Module helpers

 		
 List of code examples

 		
 tutorial/clock.py

 		
 tutorial/mocking.py

 		
 tutorial/mocking_io.py

 		
 tutorial/patching.py

 		
 tutorial/test_cases.py

_static/up-pressed.png

_static/up.png

_static/plus.png

