
asyncdns Documentation
Release 0.1.2

Alastair Houghton

Nov 15, 2018

Contents

1 What is this? 3

2 Usage 5
2.1 Queries . 5
2.2 Replies . 8
2.3 What are Resolvers? . 13

3 Indices and tables 17

i

ii

asyncdns Documentation, Release 0.1.2

Contents 1

https://travis-ci.org/al45tair/asyncdns
http://asyncdns.readthedocs.io/en/latest/?badge=latest

asyncdns Documentation, Release 0.1.2

2 Contents

CHAPTER 1

What is this?

asyncdns is a pure Python asynchronous DNS resolver implementation written on top of asyncio. It doesn’t require
any external libraries, and it doesn’t use threads or blocking functions.

3

asyncdns Documentation, Release 0.1.2

4 Chapter 1. What is this?

CHAPTER 2

Usage

asyncdns doesn’t have an equivalent to the widely used gethostbyname() or getaddrinfo() functions.
Instead, you use it by constructing a Query object specifying the DNS query you wish to run, then pass it to a
Resolver to actually perform the query.

There are a handful of built-in resolvers, but for demonstration purposes the easiest one to use is the
SmartResolver, which automatically makes use of /etc/hosts, multicast DNS and regular DNS as appro-
priate.

For instance, do a simple lookup for an A record:

>>> import asyncdns, asyncio
>>> resolver = asyncdns.SmartResolver()
>>> loop = asyncio.get_event_loop()
>>> query = asyncdns.Query('www.example.com', asyncdns.A, asyncdns.IN)
>>> f = resolver.lookup(query)
>>> loop.run_until_complete(f)
>>> print(f.result())
;; No error (RD, RA)
; 1 answers:
www.example.com 54950 IN A 93.184.216.34
; 0 authorities:
; 0 additional:

Note that you may or may not want to use SmartResolver in your code, depending on your requirements - it
probably isn’t a good idea using multicast DNS on an untrusted network, for instance.

Contents:

2.1 Queries

DNS queries are represented by Query objects, which hold a name to look up, a query type and a query class.

class Query(name, q_type, q_class)

5

asyncdns Documentation, Release 0.1.2

Represents a DNS query.

Parameters

• name (ipaddress.IPv6Address) – The name to query.

• q_type (int) – The RR type you’re querying for.

• q_class (int) – The RR class you’re querying for.

name may be specified as a Python string (in which case, IDNA is applied if necessary); or as a Python bytes
object (in which case the bytes are used literally, subject to the usual rules on DNS labels); or an IP address
using the ipaddress module’s IPv4Address or IPv6Address objects, in which case the address will be
automatically turned into the appropriate form for a reverse lookup.

There are constants for most query types in the asyncdns module, e.g. asyncdns.A, asyncdns.AAAA
and so on, but you can use the numeric value if required. Possible values are:

Constant Value Meaning
A 1 IPv4 address
NS 2 Nameserver
MD 3 Mail destination (obsolete)
MF 4 Mail forwarder (obsolete)
CNAME 5 Canonical name record - an alias
SOA 6 Start Of Authority
MB 7 Mailbox domain name (obsolete)
MG 8 Mail group member (obsolete)
MR 9 Mail rename (obsolete)
NUL 10 Null
WKS 11 Well Known Service description (obsolete)
PTR 12 Pointer - for inverse queries
HINFO 13 Host information (obsolete)
MINFO 14 Mailbox or list information (obsolete)
MX 15 Mail eXchanger
TXT 16 Free format text
RP 17 Responsible person
AFSDB 18 AFS database record
X25 19 X.121 address, as used on X.25 networks
ISDN 20 ISDN address
RT 21 Route record, for X.25 or ISDN
NSAP 22 OSI NSAP address
NSAPPTR 23 NSAP Pointer - for inverse queries
SIG 24 (Old) DNSSEC signature (obsolete)
KEY 25 (Old) DNSSEC key (obsolete)
PX 26 X.400 mail mapping information (obsolete)
GPOS 27 Geographical location (obsolete)
AAAA 28 IPv6 address
LOC 29 Geographical location
NXT 30 (Old) DNSSEC Next record (obsolete)
EID 31 Nimrod Endpoint Identifier (obsolete)
NIMLOC 32 Nimrod Locator (obsolete)
SRV 33 Service locator
ATMA 34 ATM address

Continued on next page

6 Chapter 2. Usage

asyncdns Documentation, Release 0.1.2

Table 1 – continued from previous page
NAPTR 35 Naming Authority Pointer - regex rewriting
KX 36 Key exchanger record
CERT 37 Certificate record
A6 38 Intended to replace AAAA (obsolete)
DNAME 39 Alias for a name and all subnames
SINK 40 Kitchen sink (joke, obsolete)
OPT 41 EDNS option (PSEUDO-RR)
APL 42 Address Prefix List
DS 43 Delegation Signer record
SSHFP 44 SSH public key fingerprint
IPSECKEY 45 IPsec key
RRSIG 46 DNSSEC signature
NSEC 47 Next Secure record - to prove non-existence
DNSKEY 48 DNSSEC key record
DHCID 49 DHCP identifier
NSEC3 50 Next Secure record (v3)
NSEC3PARAM 51 NSEC3 parameter record
TLSA 52 TLSA cetificate association
HIP 55 Host Identity Protocol record
CDS 59 Child DS record
CDNSKEY 60 Child DNSKEY
OPENPGPKEY 61 OpenPGP public key
SPF 99 SPF record (obsolete)
UINFO 100 Reserved
UID 101 Reserved
GID 102 Reserved
UNSPEC 103 Reserved
TKEY 249 Transaction key
TSIG 250 Transaction signature
IXFR 251 Incremental zone transfer (PSEUDO-RR)
AXFR 252 Authoritative zone transfers (PSEUDO-RR)
MAILB 253 Used to get MB/MG/MR/MINFO records (obsolete)
MAILA 254 Used to retrieve MD or MF records (obsolete)
ANY 255 Return all record types (PSEUDO-RR)
URI 256 Maps a hostname to a URI
CAA 257 Certificate Authority Authorization
TA 32768 DNSSEC Trust Authorities
DLV 32769 DNSSEC Lookaside Validation record

The query class will almost always be asyncdns.IN. Possible values are:

Constant Value Meaning
IN 1 Internet
CH 3 Chaos
HS 4 Hesiod
NONE 254
ANY 255

__lt__(other)

2.1. Queries 7

asyncdns Documentation, Release 0.1.2

__eq__(other)

__ne__(other)

__gt__(other)

__ge__(other)

__le__(other)

Query provides comparison and ordering operators.

__hash__()

Query is also hashable, so it can be used as a key in a dict or set.

__repr__()

Returns a debug representation.

2.2 Replies

Replies are represented by Reply objects, which hold the flags, RCODE, and three sets of returned RRs (answers,
authorities and additional).

class Reply

flags
The flags returned by the server. These are as follows:

Constant Value Meaning
AA 0x0400 Authoritative Answer
TC 0x0200 Truncated Response
RD 0x0100 Recursion Desired
RA 0x0080 Recursion Allowed
Z 0x0040 Reserved
AD 0x0020 Authentic Data (DNSSEC)
CD 0x0010 Checking Disabled (DNSSEC)

rcode
The RCODE returned by the server. Possible values are:

8 Chapter 2. Usage

asyncdns Documentation, Release 0.1.2

Constant Value Meaning
NOERROR 0 Successful query
FORMERR 1 Format failure
SERVFAIL 2 Server failure
NXDOMAIN 3 Non-existent domain
NOTIMP 4 Not implemented
REFUSED 5 Query refursed
YXDOMAIN 6 Name exists when it should not
YXRRSET 7 RR set exists when it should not
NXRRSET 8 RR set that should exist does not
NOTAUTH 9 Server not authoritative OR Not authorized
NOTZONE 10 Name not contained in zone
BADVERS 16 Bad OPT version
BADSIG 16 TSIG signature failure
BADKEY 17 Key not recognized
BADTIME 18 Signature out of time window
BADMODE 19 Bad TKEY mode
BADNAME 20 Duplicate key name
BADALG 21 Algorithm not supported
BADTRUNC 22 Bad truncation
BADCOOKIE 23 Bad/missing server cookie

answers
A list of rr.RR returned by the server in the Answers section of the reply.

authorities
A list of rr.RR returned by the server in the Authorities section of the reply.

additional
A list of additional rr.RR returned by the server.

2.2.1 RRs

RRs are represented by subclasses of rr.RR; a handful of common RR types have special subclasses that decode the
RDATA field in the DNS reply for you. If you are using some other type of RR, you can create your own subclass and
register it using rr.RR.register(), or you can just decode the data in your own code.

class rr.RR(name, rr_type, rr_class, ttl)
The base class of all RRs. You won’t get a raw rr.RR in a Reply - RRs that we don’t understand are mapped
to rr.Unknown.

name
The associated domain name, in the form given in the DNS packet (a bytes).

unicode_name
The associated domain name, after IDNA processing (a str)

rr_type
The RR type (see query for a list).

rr_class
The RR class (see query for a list).

ttl
The remaining time to live for this RR, in seconds. Note that this field is only updated

2.2. Replies 9

asyncdns Documentation, Release 0.1.2

register(rr_type, rr_class, pyclass)
Register a subclass of rr.RR; when we decode a response from the DNS server, we will create an instance
of the specified class to represent RRs of the specified type and class.

Parameters

• rr_type (int) – The RR type to map.

• rr_class (int) – The RR class to map, or ANY if the mapping should operate for any
class.

• pyclass – The Python class we should use for RRs of the specified type and class.

decode(name, rr_type, rr_class, ttl, packet, ptr, rdlen)
Decode an RR from a DNS packet, returning a new rr.RR instance representing it. The implementation
in rr.RR looks up the correct Python class and calls its decode() method; if it doesn’t find a class
registered for the RR type with which it’s presented, it will use rr.Unknown.

Parameters

• name (bytes) – The domain name.

• rr_type (int) – The RR type.

• rr_class (int) – The RR class.

• ttl (int) – The remaining time to live for this RR.

• packet (bytes) – The entire DNS response packet.

• ptr (int) – The current offset within the DNS packet.

• rdlen (int) – The length of the RR’s data, starting from ptr.

class rr.A(name, ttl, address)

address
The IPv4 address (an ipaddress.IPv4Address).

class rr.AAAA(name, ttl, address)

address
The IPv6 address (an ipaddress.IPv6Address).

class rr.CNAME(name, ttl, address)

cname
The aliased name, in the form given in the DNS packet (a bytes).

unicode_cname
The aliased name after IDNA processing (a str)

class rr.HINFO(name, ttl, cpu, os)

cpu
The CPU model (as a string).

os
The operating system (as a string).

10 Chapter 2. Usage

asyncdns Documentation, Release 0.1.2

Note that the RFC does not specify the encoding of either string, so for maximum robustness we decode the
data as ISO Latin 1. In most cases we would expect the two fields to be ASCII; if they are not, each code point
in the resulting string with have the same value as the byte in the byte string.

class rr.MB(name, ttl, host)

host
The host specified in the record.

unicode_host
The host name after IDNA processing.

class rr.MF(name, ttl, host)

host
The host specified in the record.

unicode_host
The host name after IDNA processing.

class rr.MG(name, ttl, mailbox)

mailbox
The mailbox specified in the record.

unicode_mailbox
The mailbox name after IDNA processing.

class rr.MINFO(name, ttl, mailbox)

rmailbox

emailbox
The mailboxes specified in the record.

unicode_rmailbox

unicode_emailbox
The mailbox names after IDNA processing.

class rr.MR(name, ttl, mailbox)

mailbox
The mailbox specified in the record.

unicode_mailbox
The mailbox name after IDNA processing.

class rr.MX(name, ttl, preference, exchange)

preference
The mail exchanger priority from the DNS record.

exchange
The mail exchanger hostname as found in the DNS packet.

unicode_exchange
The mail exchanger hostname after IDNA processing.

2.2. Replies 11

asyncdns Documentation, Release 0.1.2

class rr.NUL(name, ttl, data)

data
The RDATA from the record.

class rr.NS(name, ttl, host)

host
The hostname of the nameserver.

unicode_host
The hostname of the nameserver after IDNA processing.

class rr.PTR(name, ttl, dname)

address
The IPv4 or IPv6 address, decoded from name, or None if no address could be decoded.

dname
The name pointed to by this record.

unicode_host
The name poitned to by this record, after IDNA processing.

rr.SOA(name, ttl, mname, rname, serial, refresh, retry, expire,
minimum)

mname
The name of the primary mailserver for the zone.

unicode_mname
Same as above, but after IDNA processing.

rname
The mailbox name of the person responsible for the zone.

unicode_rname
As above, but after IDNA processing.

serial
The zone’s serial number; this is used to detect changes to a zone (it must be incremented every time a
zone is changed).

refresh
The number of seconds for which a secondary nameserver may assume the zone data has not changed -
controls how often the secondary checks the zone serial number.

retry
The number of seconds a secondary should wait to retry a refresh if the primary nameserver is busy.

expire
The number of seconds a secondary nameserver can cache the data before it is no longer authoritative.

minimum
The minimum time to live for RRs in the zone.

class rr.TXT(name, ttl, text)

12 Chapter 2. Usage

asyncdns Documentation, Release 0.1.2

text
The stored text. Since no encoding is specified, this is decoded as ISO Latin 1 (since that is the most robust
option).

class rr.WKS(name, ttl, address, protocol, bitmap)

address
The IPv4 address for this record.

protocol
The IP protocol number for this record (typically 6, for TCP, or 17, for UDP).

bitmap
A bytes holding the port bitmap.

class rr.Unknown(name, ttl, rr_type, rr_class, ttl, data)
This subclass of rr.RR is used when we don’t know how to decode the RR found in the data packet.

data
The RDATA from the record.

2.3 What are Resolvers?

In asyncdns, Resolvers are the objects that are responsible for taking Query objects and returning Reply objects
corresponding to those queries.

Resolvers don’t derive from a single base class, as some of them work quite differently to others. Instead, they all
implement the following two methods:

close()
Cancel all in-progress lookups and shut down the resolver.

lookup(query)

Parameters query – The Query to process.

Retval An asyncio.Future that will complete with a Reply .

Resolvers are guaranteed to cancel lookups that are in progress when the resolver itself is destroyed. Active lookups
do not keep a resolver alive.

Individual resolvers may support additional parameters for their lookup() method, but those parameters are gener-
ally specific to the workings of the resolver in question.

2.3.1 Resolver

class Resolver
The core DNS resolver. This class holds all of the code to perform normal DNS queries, including recursive
resolution, and maintains its own request cache, so that repeatedly querying for the same record won’t result in
unnecessary network traffic or delay.

lookup(query, servers=None, should_cache=True,
recursive=False, prefer_ipv6=False, force_tcp=False)

Perform a DNS lookup.

Parameters

• query – The Query to resolve.

2.3. What are Resolvers? 13

asyncdns Documentation, Release 0.1.2

• servers – See discussion below.

• should_cache – Setting this to False disables the Resolver cache.

• recursive – Whether to perform recursive lookups.

• prefer_ipv6 – When doing recursive lookup, prefer servers that talk over IPv6.

• force_tcp – Prevents the resolver from using UDP for queries that are short enough to
fit.

Retval An asyncio.Future that will complete with a Reply .

The servers parameter can be:

• An (address, port) tuple.

• A list of (address, port) tuples, which will be used randomly.

• An iterable of some sort that yields (address, port) tuples. Note that if the iterable raises StopIteration,
any in-progress queries will fail with the StopIteration exception.

• None, in which case the resolver will be recursive (regardless of the setting of the recursive
parameter) and will start with the global root servers. We recommend not using this feature unless
absolutely necessary, as it puts additional load on the root servers and it’s usually better to talk to your
own nameserver or use one provided by your ISP or infrastructure platform.

asyncdns provides two useful iterables, RandomServer and RoundRobinServer, both of which
provide an infinite stream of tuples given a list of server addresses.

flush_cache()
Flushes the resolver’s cache.

2.3.2 HostsResolver

class HostsResolver
Resolves names using the contents of /etc/hosts (or, on Windows,
\Windows\System32\drivers\etc\hosts).

lookup(query)

Parameters query – The Query to resolve.

Retval An asyncio.Future that will complete with a Reply .

This method only supports A, AAAA and PTR queries. In addition to names listed in /etc/hosts, it
knows about the .in-addr.arpa and .ip6.arpa pseudo-zones.

The HostsResolver will automatically re-read /etc/hosts if it has changed, but only if the last
time it was read was more than 30 seconds ago.

2.3.3 MulticastResolver

class MulticastResolver
Resolves queries using Multicast DNS (aka MDNS). You don’t need to have Apple’s mdnsResponder software
installed to use this - it will work on any system that can run Python and that supports IP multicast.

lookup(query, use_ipv6=False, unicast_reply=False)

Parameters

• query – The Query to resolve.

14 Chapter 2. Usage

asyncdns Documentation, Release 0.1.2

• use_ipv6 – Whether to multicast using IPv6 or not. The default is to use IPv4.

• unicast_reply – Whether to request that the reply be sent via unicast. This is intended
to reduce multicast traffic.

Retval An asyncio.Future that will complete with a Reply .

2.3.4 SystemResolver

SystemResolver is actually a “class cluster”, in that there are separate implementations for Darwin/Mac OS
X/macOS, Windows, and generic UNIX/Linux. The idea of SystemResolver is that it works like Resolver,
but uses the system configured nameservers (and will automatically update its list of nameservers should the system
configuration change).

There are some limitations here: the UNIX/Linux generic implementation works by reading /etc/resolv.conf,
so any other configuration mechanism that might be in use will be ignored, while the Windows version uses Windows
APIs that appear to be limited to returning IPv4 nameservers only. On Windows, there doesn’t seem to be a mechanism
to spot changes to the configuration, so we re-read it at most once every 30 seconds; on UNIX/Linux, we watch the
timestamp on /etc/resolv.conf, again, at most once every 30 seconds. Some people have suggested using
res_ninit() on UNIX rather than directly reading /etc/resolv.conf; that’s certainly a possibility, but if /
etc/resolv.conf isn’t being used to configure the nameservers, we’d end up in the same situation as on Windows,
where we have no way to tell if the server settings have been updated.

class SystemResolver

lookup(query, servers=None, should_cache=True,
recursive=False, prefer_ipv6=False, force_tcp=False)

Perform a DNS lookup.

Parameters

• query – The Query to resolve.

• should_cache – Setting this to False disables the Resolver cache.

• recursive – Whether to perform recursive lookups.

• prefer_ipv6 – When doing recursive lookup, prefer servers that talk over IPv6.

• force_tcp – Prevents the resolver from using UDP for queries that are short enough to
fit.

Retval An asyncio.Future that will complete with a Reply .

2.3.5 SmartResolver

SmartResolver is a convenience class that accepts a query and determines which of the other resolvers to use to
process it. Specifically:

• It first tries HostsResolver, which means the hosts file can override resolution the way people expect.

• If that fails and the query is for a name ending .local, it uses MulticastResolver.

• Otherwise, it uses SystemResolver.

N.B. Pay attention to the security implications of using MulticastResolver here; if you are using a server
platform where multicast isn’t appropriately restricted, this could open up a security hole that causes you to send data
to an attacker’s system instead of the one you wanted to.

2.3. What are Resolvers? 15

asyncdns Documentation, Release 0.1.2

16 Chapter 2. Usage

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

17

asyncdns Documentation, Release 0.1.2

18 Chapter 3. Indices and tables

Index

Symbols
__eq__() (Query method), 7
__ge__() (Query method), 8
__gt__() (Query method), 8
__hash__() (Query method), 8
__le__() (Query method), 8
__lt__() (Query method), 7
__ne__() (Query method), 8
__repr__() (Query method), 8

A
additional (Reply attribute), 9
address (rr.A attribute), 10
address (rr.AAAA attribute), 10
address (rr.PTR attribute), 12
address (rr.WKS attribute), 13
answers (Reply attribute), 9
authorities (Reply attribute), 9

B
bitmap (rr.WKS attribute), 13

C
close() (built-in function), 13
cname (rr.CNAME attribute), 10
cpu (rr.HINFO attribute), 10

D
data (rr.NUL attribute), 12
data (rr.Unknown attribute), 13
decode() (rr.RR method), 10
dname (rr.PTR attribute), 12

E
emailbox (rr.MINFO attribute), 11
exchange (rr.MX attribute), 11
expire, 12

F
flags (Reply attribute), 8

H
host (rr.MB attribute), 11
host (rr.MF attribute), 11
host (rr.NS attribute), 12
HostsResolver (built-in class), 14

L
lookup() (built-in function), 13
lookup() (HostsResolver method), 14
lookup() (MulticastResolver method), 14

M
mailbox (rr.MG attribute), 11
mailbox (rr.MR attribute), 11
minimum, 12
mname, 12
MulticastResolver (built-in class), 14

N
name (rr.RR attribute), 9

O
os (rr.HINFO attribute), 10

P
preference (rr.MX attribute), 11
protocol (rr.WKS attribute), 13

Q
Query (built-in class), 5

R
rcode (Reply attribute), 8
refresh, 12
register() (rr.RR method), 9

19

asyncdns Documentation, Release 0.1.2

Reply (built-in class), 8
Resolver (built-in class), 13
Resolver.flush_cache() (built-in function), 14
retry, 12
rmailbox (rr.MINFO attribute), 11
rname, 12
rr.A (built-in class), 10
rr.AAAA (built-in class), 10
rr.CNAME (built-in class), 10
rr.HINFO (built-in class), 10
rr.MB (built-in class), 11
rr.MF (built-in class), 11
rr.MG (built-in class), 11
rr.MINFO (built-in class), 11
rr.MR (built-in class), 11
rr.MX (built-in class), 11
rr.NS (built-in class), 12
rr.NUL (built-in class), 11
rr.PTR (built-in class), 12
rr.RR (built-in class), 9
rr.TXT (built-in class), 12
rr.Unknown (built-in class), 13
rr.WKS (built-in class), 13
rr_class (rr.RR attribute), 9
rr_type (rr.RR attribute), 9

S
serial, 12
SystemResolver (built-in class), 15

T
text (rr.TXT attribute), 12
ttl (rr.RR attribute), 9

U
unicode_cname (rr.CNAME attribute), 10
unicode_emailbox (rr.MINFO attribute), 11
unicode_exchange (rr.MX attribute), 11
unicode_host (rr.MB attribute), 11
unicode_host (rr.MF attribute), 11
unicode_host (rr.NS attribute), 12
unicode_host (rr.PTR attribute), 12
unicode_mailbox (rr.MG attribute), 11
unicode_mailbox (rr.MR attribute), 11
unicode_mname, 12
unicode_name (rr.RR attribute), 9
unicode_rmailbox (rr.MINFO attribute), 11
unicode_rname, 12

20 Index

	What is this?
	Usage
	Queries
	Replies
	What are Resolvers?

	Indices and tables

