

 Navigation

 	
 index

 	
 next |

 	Async sockets 0.3.x documentation

Welcome to Async Sockets’s documentation!

Contents

	Getting started
	Installation

	Quick start

	The execution engine
	AsyncSocketFactory

	Request executor

	Socket types

	Processing data
	ReadOperation

	WriteOperation

	SslHandshakeOperation

	DelayedOperation

	NullOperation

	How to work with frames
	FramePickers

	Frames

	Limitation solver
	Writing custom limitation solver

	Persistent sockets

	Event reference
	INITIALIZE

	CONNECTED

	ACCEPT

	READ

	WRITE

	DATA_ALERT

	DISCONNECTED

	FINALIZE

	TIMEOUT

	EXCEPTION

	Socket metadata reference
	META_ADDRESS

	META_CONNECTION_TIMEOUT

	META_IO_TIMEOUT

	META_USER_CONTEXT

	META_SOCKET_STREAM_CONTEXT

	META_REQUEST_COMPLETE

	META_CONNECTION_START_TIME

	META_CONNECTION_FINISH_TIME

	META_LAST_IO_START_TIME

	AsyncSocketFactory configuration reference
	List of options

 Copyright 2015-2016, Efimov Evgenij.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Async sockets 0.3.x documentation

Getting started

Installation

The recommended way to install async sockets library is through composer

stable version:

$ composer require edefimov/async-sockets:~0.3.0 --prefer-dist|--prefer-source

actual version:

$ composer require edefimov/async-sockets:dev-master

Use –prefer-dist option in production environment, so as it ignores downloading of test and demo files,
and –prefer-source option for development. Development version includes both test and demo files.

Quick start

	Create AsyncSocketFactory at the point where you want to start request. This object is the entry point to the library:

	1
2
3

	use AsyncSockets\Socket\AsyncSocketFactory;

$factory = new AsyncSocketFactory();

	Create RequestExecutor and proper amount of sockets:

	1
2
3
4

	$client = $factory->createSocket(AsyncSocketFactory::SOCKET_CLIENT);
$anotherClient = $factory->createSocket(AsyncSocketFactory::SOCKET_CLIENT);

$executor = $factory->createRequestExecutor();

	Create event handler with events, you are interested in:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	use AsyncSockets\RequestExecutor\CallbackEventHandler;

$handler = new CallbackEventHandler(
 [
 EventType::INITIALIZE => [$this, 'onInitialize'],
 EventType::CONNECTED => [$this, 'onConnected'],
 EventType::WRITE => [$this, 'onWrite'],
 EventType::READ => [$this, 'onRead'],
 EventType::ACCEPT => [$this, 'onAccept'],
 EventType::DATA_ALERT => [$this, 'onDataAlert'],
 EventType::DISCONNECTED => [$this, 'onDisconnected'],
 EventType::FINALIZE => [$this, 'onFinalize'],
 EventType::EXCEPTION => [$this, 'onException'],
 EventType::TIMEOUT => [$this, 'onTimeout'],
]
);

	Add sockets into RequestExecutor:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	use AsyncSockets\Operation\WriteOperation;

$executor->socketBag()->addSocket(
 $client,
 new WriteOperation(),
 [
 RequestExecutorInterface::META_ADDRESS => 'tls://example.com:443',
 RequestExecutorInterface::META_CONNECTION_TIMEOUT => 30,
 RequestExecutorInterface::META_IO_TIMEOUT => 5,
],
 $handler
);
$executor->socketBag()->addSocket(
 $anotherClient,
 new WriteOperation(),
 [
 RequestExecutorInterface::META_ADDRESS => 'tls://example.net:443',
 RequestExecutorInterface::META_CONNECTION_TIMEOUT => 10,
 RequestExecutorInterface::META_IO_TIMEOUT => 2,
],
 $handler
);

	Execute it!

	1

	$executor->executeRequest();

The whole example may look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	namespace Demo;

use AsyncSockets\Event\Event;
use AsyncSockets\Event\EventType;
use AsyncSockets\Event\ReadEvent;
use AsyncSockets\Event\SocketExceptionEvent;
use AsyncSockets\Event\WriteEvent;
use AsyncSockets\Frame\MarkerFramePicker;
use AsyncSockets\RequestExecutor\CallbackEventHandler;
use AsyncSockets\RequestExecutor\RequestExecutorInterface;
use AsyncSockets\Operation\WriteOperation;
use AsyncSockets\Socket\AsyncSocketFactory;
use AsyncSockets\Socket\SocketInterface;

class RequestExecutorExample
{
 public function run()
 {
 $factory = new AsyncSocketFactory();

 $client = $factory->createSocket(AsyncSocketFactory::SOCKET_CLIENT);
 $anotherClient = $factory->createSocket(AsyncSocketFactory::SOCKET_CLIENT);

 $executor->socketBag()->addSocket(
 $client,
 new WriteOperation("GET / HTTP/1.1\nHost: example.com\n\n"),
 [
 RequestExecutorInterface::META_ADDRESS => 'tls://example.com:443',
]
);

 $executor->socketBag()->addSocket(
 $anotherClient,
 new WriteOperation("GET / HTTP/1.1\nHost: example.net\n\n"),
 [
 RequestExecutorInterface::META_ADDRESS => 'tls://example.net:443',
]
);

 $executor->withEventHandler(
 new CallbackEventHandler(
 [
 EventType::WRITE => [$this, 'onWrite'],
 EventType::READ => [$this, 'onRead'],
]
)
);

 $executor->executeRequest();
 }

 public function onWrite(WriteEvent $event)
 {
 $event->nextIsRead(new MarkerFramePicker(null, '</html>', false));
 }

 public function onRead(ReadEvent $event)
 {
 $socket = $event->getSocket();
 $meta = $event->getExecutor()->socketBag()->getSocketMetaData($event->getSocket());

 $response = $event->getFrame()->getData();

 echo "<info>{$meta[RequestExecutorInterface::META_ADDRESS]} read " .
 number_format(strlen($response), 0, ',', ' ') . ' bytes</info>';
 }
}

Here you create two sockets, the first will receive the main page from example.net and the second will receive
mainpage from example.com. You should also inform the execution engine about the first I/O operation on the socket and destination
address. These are minimum settings required for executing any request.

When connection is successfully established, since the WriteOperation is set, the onWrite method
will be called by engine. Within write handler you tell the engine to prepare read operation
with marker frame boundary detection strategy.

When the data is downloaded and is satisfied by given strategy, the onRead handler will be invoked, where you have
access to downloaded data and some additional information about data.

Since in the onRead handler you don’t ask the engine to prepare another I/O operation, the connection will be automatically
closed for you.

 Copyright 2015-2016, Efimov Evgenij.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Async sockets 0.3.x documentation

The execution engine

AsyncSocketFactory

The AsyncSocketFactory is an entry point to the Async Socket Library. The factory is used to create sockets
and request executors. You can use direct instantiation for this object:

	1
2
3

	use AsyncSockets\Socket\AsyncSocketFactory;

$factory = new AsyncSocketFactory();

Factory can be configured using Configuration object. The above code is the shortcut for configuring factory with
default values:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	use AsyncSockets\Socket\AsyncSocketFactory;
use AsyncSockets\Configuration\Configuration;

$configuration = new Configuration(
 [
 'connectTimeout' => ini_get('default_socket_timeout'),
 'ioTimeout' => ini_get('default_socket_timeout'),
 'preferredEngines' => ['libevent', 'native'],
]
);

$factory = new AsyncSocketFactory($configuration);

Note

To see all configuration options see Options reference

Request executor

Request executor is a primary execution engine for all socket requests. Each time you need to run a request,
you will use Request executor. Request executors are defined by RequestExecutorInterface
which allows to customize operations processing. There are two different implementations out of the box:
native and libevent. The former is the pure php handler, the latter is based on libevent [https://pecl.php.net/package/libevent] php library.

You can receive an instance of RequestExecutorInterface using the factory:

	1
2
3
4

	use AsyncSockets\Socket\AsyncSocketFactory;

$factory = new AsyncSocketFactory();
$executor = $factory->createRequestExecutor();

The purposes of Request Executor are:

	Providing a bag for adding sockets (See Setting up a socket section below);

	Dispatching events during sockets’ lifecycle;

	Executing request.

A request executor can be set up with global event handler, which will be applied to each added socket, and
with limitation solver - an object restricting amount of executing requests at time.

Global event handler is the implementation of EventHandlerInterface, which will be called for every event on every
added socket. There are four implementations of this interface out of the box:

	CallbackEventHandler takes array of callable, indexed by event type. For certain event type a certain
callable will be invoked. Several callbacks can be defined for one event type;

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	$handler = new CallbackEventHandler(
 [
 EventType::INITIALIZE => [$this, 'logEvent'],
 EventType::WRITE => [[$this, 'logEvent'], [$this, 'onWrite']],
 EventType::READ => [[$this, 'logEvent'], [$this, 'onRead']],
 EventType::EXCEPTION => [$this, 'onException'],
 EventType::TIMEOUT => [
 [$this, 'onTimeout'],
 function () {
 echo "Timeout occured!\n";
 }
],
]
);

	EventHandlerFromSymfonyEventDispatcher dispatches all socket event to symfony EventDispatcher [http://symfony.com/doc/current/components/event_dispatcher/introduction.html];

	EventMultiHandler is the composite for EventHandlerInterface implementations;

	RemoveFinishedSocketsEventHandler decorator for any implementation of EventHandlerInterface which
automatically removes completed sockets from RequestExecutor. Recommended to use for accepted clients
from server sockets.

The limitation solver is the component restricting amount of executed at once requests. Out of the box two strategies
are available:

	NoLimitationSolver doesn’t restrict anything, it is a default one;

	ConstantLimitationSolver restricts amount of running requests to given number.

Note

You can write custom limitation solver, see Custom limitation solver

To set up event handler or limitation solver use the following code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	$executor->withEventHandler(
 new CallbackEventHandler(
 [
 EventType::INITIALIZE => [$this, 'onInitialize'],
 EventType::WRITE => [$this, 'onWrite'],

]
)
);

$executor->withLimitationSolver(new ConstantLimitationSolver(20));

Socket lifecycle

During request socket pass through lifecycle shown in the figure below.

 digraph {
 center=true;

 "added"[label="Added", group="success"];
 "initialized"[label="Initialized", group="success"];
 "connected"[label="Connected", group="success"];
 "io"[label="I/O", group="success"]
 "unmanaged"[label="Unmanaged", group=unmanaged]
 "exception"[label="Exception", group=unmanaged]
 "timeout"[label="Timeout", group=timeout]
 "disconnected"[label="Disconnected", group="success"]
 "finalized"[label="Finalized", group="success"]
 "removed"[label="Removed", group="success"]

 subgraph init_engine {
 label="Engine initialization";
 added; initialized
 }

 subgraph io_processing {
 label="I/O processing"
 connected; io; timeout; unmanaged; exception

 { rank=same; connected; exception }
 { rank=same; timeout; unmanaged; io }
 }

 subgraph finalize_engine {
 label="Finalization";
 disconnected; finalized; removed
 }

 "added" -> "initialized"[color=darkgreen, weight=1]

 "initialized" -> "connected"[color=darkgreen, weight=1]

 "connected" -> "io"[color=darkgreen, weight=1]
 "connected" -> "exception"[color=brown]
 "io" -> "io"[color=darkgreen]
 "io" -> "exception"[color=darkviolet]
 "io" -> "unmanaged"[color=red]
 "io" -> "timeout"[color=blue, weight=0.9]
 "timeout" -> "initialized"[color=lime]
 "timeout" -> "io"[color=lime]

 "exception" -> "unmanaged"[color=darkviolet, weight=1]
 "exception" -> "disconnected"[color=brown]

 "io" -> "disconnected"[color=darkgreen, weight=1]
 "timeout" -> "finalized"[color=blue, weight=0]
 "timeout" -> "disconnected"[color=blue, weight=0]
 "initialized" -> "exception"[color=brown, weight=0]
 "initialized" -> "timeout"[color=blue]
 "unmanaged" -> "disconnected"[color=red, weight=0]
 "unmanaged" -> "io"[color=green, weight=1]
 "disconnected" -> "finalized"[color=darkgreen, weight=1]
 "finalized" -> "removed"[color=darkgreen, weight=1]
}

Socket lifecycle

Each state except added and removed calls event handler with some information about occurred event.

Setting up a socket

Socket can be added into execution engine using socketBag() method from RequestExecutorInterface. It returns
object of class SocketBagInterface allows to manage sockets. Socket bag is a container for all sockets processed
by the engine. Every socket can have it’s own event handler and options.

You can use the following code to add socket into RequestExecutor:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	$executor->socketBag()->addSocket(
 $socket,
 new WriteOperation('some data'),
 [
 RequestExecutorInterface::META_ADDRESS => 'tls://example.com:443',
 RequestExecutorInterface::META_CONNECTION_TIMEOUT => 30,
 RequestExecutorInterface::META_IO_TIMEOUT => 5,
],
 $handler
);

Method addSocket() accepts four arguments: socket, operation, metadata and event handler.
Socket is the object, created by AsyncSocketFactory or received by AcceptEvent.
Metadata is a key-value array with settings for this socket.
Event handler is an implementation of EventHandlerInterface, which will be invoked only for this socket.

Once you set up all sockets, you can execute the request:

	1

	$executor->executeRequest();

Warning

You should not create nested RequestExecutor during request processing.

 Copyright 2015-2016, Efimov Evgenij.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Async sockets 0.3.x documentation

Socket types

Async Socket Library provides two types of sockets - client and server. The client socket can be either persistent or
non-persistent. The recommended way of creating sockets of different types in source code is by using AsyncSocketFactory:

	1
2
3
4
5
6

	use AsyncSockets\Socket\AsyncSocketFactory;

$factory = new AsyncSocketFactory();

$client = $factory->createSocket(AsyncSocketFactory::SOCKET_CLIENT);
$server = $factory->createSocket(AsyncSocketFactory::SOCKET_SERVER);

You may pass additional options via second argument of createSocket():

	1
2
3
4
5
6
7
8
9

	use AsyncSockets\Socket\AsyncSocketFactory;

$factory = new AsyncSocketFactory();
$client = $factory->createSocket(
 AsyncSocketFactory::SOCKET_CLIENT,
 [
 AsyncSocketFactory::SOCKET_OPTION_IS_PERSISTENT => true
]
);

The above code will create persistent socket. See persistent sockets to get detailed information.

All available options are now linked with persistent sockets.

 Copyright 2015-2016, Efimov Evgenij.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Async sockets 0.3.x documentation

Processing data

The socket lifecycle is managed via operations.

Every action on the socket is described by an operation. Operations are implementations of OperationInterface. Each
operation is an object, containing concrete data, required for processing. There are 5 available operations:

	ReadOperation

	WriteOperation

	SslHandshakeOperation

	DelayedOperation

	NullOperation

Note

For now there is no possibility to add custom operation into library.

ReadOperation

You can read data from socket using ReadOperation.

	1
2
3

	use AsyncSockets\Operation\ReadOperation;

$operation = new ReadOperation();

This code will create read operation telling the executing engine to handle reading data from the socket. By default
every read operation will immediately call event handler with the data received from socket.

Note

Be ready to process empty data, if you are using ReadOperation without constructor arguments.

The default behaviour can be easily changed using its constructor argument accepting instance of
FramePickerInterface:

	1
2
3
4

	use AsyncSockets\Operation\ReadOperation;
use AsyncSockets\Frame\FixedLengthFramePicker;

$operation = new ReadOperation(new FixedLengthFramePicker(50));

This code will emit read event when frame will be finished,
i.e. in this case the 50 bytes of response will be received.
See detailed explanations about frame pickers.

If given frame can not be received, the exception event
is dispatched with FrameException object inside event argument.

If the remote site does not send any data within chosen period of time,
the timeout event will be dispatched.

WriteOperation

The WriteOperation allows to send data to remote side. The data must be string. Each write operation
will either send the whole given string without emitting any event or fail with some exception.
The WriteOperation dispatches write event before sending the data.

	1
2
3
4
5
6
7
8
9

	use AsyncSockets\Operation\WriteOperation;

$executor->socketBag()->addSocket(
 $client,
 new WriteOperation("GET / HTTP/1.1\nHost: example.com\n\n"),
 [
 RequestExecutorInterface::META_ADDRESS => 'tls://example.com:443',
]
);

The example above will send the simplest GET request to example.com. If the remote site does not
accept any data within chosen period of time, the timeout event will be dispatched.

SslHandshakeOperation

Normally when you intend to establish secured connection with remote host you use address like tls://example.com:443
and it works perfect. With one great disadvantage - connection will be done synchronously even if you have switched
socket into non-blocking mode. This happens because of SSL handshake procedure required for successful data exchange.

The SslHandshakeOperation allows to process the handshake asynchronously leaving the CPU time for some useful work.

Supposing you have request executor instance and socket created, you can connect to remote server asynchronously:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	use AsyncSockets\Operation\SslHandshakeOperation;

$executor->socketBag()->addSocket(
 $socket,
 new SslHandshakeOperation(
 new WriteOperation("GET / HTTP/1.1\nHost: example.com\n\n")
),
 [
 RequestExecutorInterface::META_ADDRESS => 'tcp://example.com:443',
]
);

The SslHandshakeOperation‘s constructor accept two arguments:

	the operation to execute after the socket has connected;

	the cipher to use for SSL connection, one of php constant STREAM_CRYPTO_METHOD_*_CLIENT for client sockets.

If the second parameter is omitted, the default value STREAM_CRYPTO_METHOD_TLS_CLIENT will be used.

If connection can not be established, the exception event
is dispatched with SslHandshakeException object inside event argument.

Warning

Do not use SslHandshakeOperation more than once for any socket request as the second call will fail
with SslHandshakeException.

DelayedOperation

The DelayedOperation allows to postpone operation to some future time determined by a callback function.
The callback function must answer the question “Is an operation is still pending?” and return true if socket
is waiting for something and false when it is ready to proceed. The function is executed each time there is
some other socket in the engine to process.

This feature is useful when a socket is waiting data from another one.

The constructor of DelayedOperation accepts three arguments:

	the operation to execute after delay is finished;

	the callback function;

	optional arguments to pass into callback function.

The callback function prototype must be the following:

bool function(SocketInterface $socket, RequestExecutorInterface $executor, ...$arguments)

Warning

The callback function is executed only when there is at least one socket except waiting one
and there is some activity on the second socket. If these
conditions are not met, the operation on the waiting socket will never finish.

NullOperation

The NullOperation is a special type of operation which is automatically set for socket, if the
next operation has not been defined in read event
or write event. This operation does not perform any action and has different meanings
for persistent socket and non-persistent ones.

For non-persistent sockets NullOperation is considered as the end of request and the engine closes the connection.

For persistent sockets the situation significantly changes since persistent sockets
keep connection all the time. If there are new data to read and NullOperation
is set for the socket, the system dispatches data alert event.
In the response to the event you can set the appropriate read
operation and receive the data or close the connection.

Warning

If you don’t do anything the connection will be automatically closed by the engine
after some unsuccessful event calls and UnmanagedSocketException will be thrown.

 Copyright 2015-2016, Efimov Evgenij.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Async sockets 0.3.x documentation

How to work with frames

One of the key features of Async Socket Library is the determination of frame boundaries
according to user-provided provided information.

FramePickers

FramePickers are the special objects implementing FramePickerInterface and designed to split incoming
data into frames. FramePickers are passed into ReadOperation as the
first argument of its constructor.

	1
2
3
4

	use AsyncSockets\Frame\FixedLengthFramePicker;

$picker = new ...;
$operation = new ReadOperation($picker);

There are some implementations available out of the box.

	FixedLengthFramePicker

	MarkerFramePicker

	RawFramePicker

	EmptyFramePicker

Warning

FramePickers‘ instances are not reusable. Once you’ve set it into an operation, you can not reuse them
in another one. Moreover you can not reuse the FramePicker after
receiving read event. Create new instance each time instead.

Each FramePicker describes some rules that data should match before it can create a frame. If rule can not be
met a FrameException is thrown in exception event.

The core idea of using FramePickers is that client code is aware of data structure it intends to receive
from remote side.

FixedLengthFramePicker

The FixedLengthFramePicker allows to receive frame of well-known size. The only argument of its constructor
accepts length of frame in bytes.

	1
2
3
4
5

	use AsyncSockets\Frame\FixedLengthFramePicker;

$operation = new ReadOperation(
 new FixedLengthFramePicker(255)
);

By setting this operation the read event will fired only after loading 255 bytes from
remote side.

Note

Actually more data from network can be collected, but event will be fired with exactly given bytes of data.

MarkerFramePicker

If data have variable length, but there are well-known ending and beginning of data (or at least ending) it is
possible to use MarkerFramePicker. It cuts the data between given start marker and end marker, including markers
themselves.

Example usages:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	use AsyncSockets\Frame\MarkerFramePicker;

$picker = new MarkerFramePicker('HTTP', "\r\n\r\n"); // return HTTP headers

$picker = new MarkerFramePicker(null, "\x00"); // reads everything until 0-byte including 0-byte itself

$picker = new MarkerFramePicker("\x00", "\x00"); // start and end marker can be the same

$picker = new MarkerFramePicker('<start>', '</START>', true); // returns everything between <start> and </START>
 // case-insensitive compare

Warning

When you use a MarkerFramePicker and there are some data before the start marker
passed into FramePicker, all these data will be lost. Suppose you have such incoming data:

 digraph {
 graph [bgcolor="transparent"];
 node [shape=record];
 Frame [label="<lost> AAA|<frame> X1234567890X|<next> CCC"];
}

and such a FramePicker used for the first read operation:

	1

	$picker = new MarkerFramePicker("X", "X");

Since it is the first read operation, the data AAA will be lost.

RawFramePicker

This kind of FramePicker is used by default in ReadOperation if no other object is provided. With
RawFramePicker the read event will be dispatched each time the socket
read data.

Note

Be ready to process even an empty string using this FramePicker.

EmptyFramePicker

This FramePicker does not really read anything and the empty string is the always data for this frame. This
frame has special meaning in SSL context for persistent socket - if there are some data in socket buffer which
can not be treated as a frame, the FramePicker can clean it and stop the receiving of
data alert event. This kind of garbage collection can be done automatically by
decorating your event handler into SslDataFlushEventHandler.

Frames

After FramePicker has finished reading data it can create a Frame. Frames are a piece of data collected
by current read operation. Each frame implements FrameInterface providing methods for getting the data
and remote host address these data belongs to.

	1
2
3
4
5

	public function onRead(ReadEvent $event)
{
 $remoteAddress = $event->getFrame()->getRemoteAddress();
 echo "Received data from {$remoteAddress}: \n\n" . $event->getFrame()->getData();
}

An alternative way of receiving data from the frame is casting an object into a string:

	1
2
3
4
5

	public function onRead(ReadEvent $event)
{
 $remoteAddress = $event->getFrame()->getRemoteAddress();
 echo "Received data from {$remoteAddress}: \n\n {$event->getFrame()}";
}

Out of the box 3 implementations of Frames are available:

	Frame - default implementation for creating finished piece of data;

	PartialFrame - an implementation showing that data are incomplete. You will never receive it in read event,
but if you intend to create a custom FramePicker, you should use this type of frame
as a result of createFrame() method from FramePickerInterface when the system calls it;

	EmptyFrame - a frame that always casted into an empty string. This object is returned by EmptyFramePicker.

 Copyright 2015-2016, Efimov Evgenij.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Async sockets 0.3.x documentation

Limitation solver

The LimitationSolver is the component which allows to restrict amount of executing requests at certain period of time.

Writing custom limitation solver

Custom limitation solver can be written by implementing LimitationSolverInterface.

The LimitationSolverInterface contains 3 methods:

	initialize() is called before engine execution loop is started;

	finalize() is called after engine execution loop is finished;

	decide() is called each time the engine needs to make some decision about the socket.

The prototype of decide method looks like:

public function decide(RequestExecutorInterface $executor, SocketInterface $socket, $totalSockets);

The decide method should return a hint for engine what to do with certain given socket. The possible decisions are:

	DECISION_OK - schedule request for given socket;

	DECISION_PROCESS_SCHEDULED - the engine has enough scheduled sockets and should process them before taking new ones;

	DECISION_SKIP_CURRENT - this certain socket should not be processed right now.

If you need an access to socket events from the solver,
just implement EventHandlerInterface in addition to the LimitationSolverInterface one.

The simple implementation of the LimitationSolverInterface is ConstantLimitationSolver:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	class ConstantLimitationSolver implements LimitationSolverInterface, EventHandlerInterface
{
 private $limit;
 private $activeRequests;

 public function __construct($limit)
 {
 $this->limit = $limit;
 }

 public function initialize(RequestExecutorInterface $executor)
 {
 $this->activeRequests = 0;
 }

 public function decide(RequestExecutorInterface $executor, SocketInterface $socket, $totalSockets)
 {
 if ($this->activeRequests + 1 <= $this->limit) {
 return self::DECISION_OK;
 } else {
 return self::DECISION_PROCESS_SCHEDULED;
 }
 }

 public function invokeEvent(Event $event)
 {
 switch ($event->getType()) {
 case EventType::INITIALIZE:
 $this->activeRequests += 1;
 break;
 case EventType::FINALIZE:
 $this->activeRequests -= 1;
 break;
 }
 }

 public function finalize(RequestExecutorInterface $executor)
 {

 }
}

 Copyright 2015-2016, Efimov Evgenij.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Async sockets 0.3.x documentation

Persistent sockets

Persistent sockets allow to reuse opened connection for subsequent requests. For creating a
persistent socket you should pass additional options into createSocket() method from
AsyncSocketFactory:

	1
2
3
4
5
6
7
8
9

	use AsyncSockets\Socket\AsyncSocketFactory;

$factory = new AsyncSocketFactory();
$client = $factory->createSocket(
 AsyncSocketFactory::SOCKET_CLIENT,
 [
 AsyncSocketFactory::SOCKET_OPTION_IS_PERSISTENT => true
]
);

There are two options allow to control persistent socket connections:

	AsyncSocketFactory::SOCKET_OPTION_IS_PERSISTENT - a boolean flag, must be explicitly set to true
for persistent sockets;

	AsyncSocketFactory::SOCKET_OPTION_PERSISTENT_KEY - string, an optional name to store this connection.
Changing this value for the same host and port opens multiple connections to the same server.

Note

All persistent sockets must be explicitly closed.

Warning

When you process read or write event and don’t set next operation on the persistent socket, the one becomes unmanaged.
This means next time there will be new network activity, you will receive
data alert event.

 Copyright 2015-2016, Efimov Evgenij.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Async sockets 0.3.x documentation

Event reference

To deal with sockets you need to subscribe to events you are interested in. Each event type has
Event object (or one of its children) as the callback argument. If you have symfony event
dispatcher [http://symfony.com/doc/current/components/event_dispatcher/introduction.html/] component installed ,
the Async Socket Library’s Event object will be inherited from symfony Event object.
All events are described in EventType class.

INITIALIZE

	Summary

	The first event sent for each socket and can be
used for some initializations, for ex. setting
destination address for client socket and local
address for server ones.

	Constant in EventType

	INITIALIZE

	Callback argument

	Event

CONNECTED

	Summary

	Socket has been just connected to server.

	Constant in EventType

	CONNECTED

	Callback argument

	Event

ACCEPT

	Summary

	Applicable only for server sockets, fires each time
there is a new client, no matter what kind of
transport is used tcp, udp, unix or something
else. Client socket can be got from AcceptEvent.

	Constant in EventType

	INITIALIZE

	Callback argument

	AcceptEvent

READ

	Summary

	New frame has arrived. The Frame data object can be
extracted from event object passed to the callback
function. Applicable only for client sockets.

	Constant in EventType

	READ

	Callback argument

	ReadEvent

WRITE

	Summary

	Socket is ready to write data. New data must be passed
to socket through event object.

	Constant in EventType

	WRITE

	Callback argument

	WriteEvent

DATA_ALERT

	Summary

	Socket is in unmanaged state. Event is fired when
there are new data in socket, but ReadOperation is
not set. This event can be fired several times, the
typical reaction should be either closing connection
or setting appropriate ReadOperation. If none of
this is done, connection will be automatically closed
and UnmanagedSocketException will be thrown.

	Constant in EventType

	DATA_ALERT

	Callback argument

	DataAlertEvent

DISCONNECTED

	Summary

	Connection to remote server is now closed. This event
is not fired when socket hasn’t connected.

	Constant in EventType

	DISCONNECTED

	Callback argument

	Event

FINALIZE

	Summary

	Socket lifecycle is complete and one can be removed
from the executing engine.

	Constant in EventType

	FINALIZE

	Callback argument

	Event

TIMEOUT

	Summary

	Socket failed to connect/read/write data during set up
period of time.

	Constant in EventType

	TIMEOUT

	Callback argument

	TimeoutEvent

EXCEPTION

	Summary

	Some NetworkSocketException occurred and detailed
information can be retrieved from SocketExceptionEvent.

	Constant in EventType

	EXCEPTION

	Callback argument

	SocketExceptionEvent

 Copyright 2015-2016, Efimov Evgenij.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Async sockets 0.3.x documentation

Socket metadata reference

Metadata are settings for all operations on given socket. Supported keys are defined in RequestExecutorInterface.

You can pass these options either during adding a socket into engine’s bag:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	use AsyncSockets\Operation\WriteOperation;

$executor->socketBag()->addSocket(
 $client,
 new WriteOperation(),
 [
 RequestExecutorInterface::META_ADDRESS => 'tls://example.com:443',
 RequestExecutorInterface::META_CONNECTION_TIMEOUT => 30,
 RequestExecutorInterface::META_IO_TIMEOUT => 5,
]
);

or you can set these settings later via setSocketMetaData() method.

META_ADDRESS

	Data type:

	string

	Read-only:

	no

	Summary:

	Remote address in form scheme://target, destination address
for client socket and local address for server ones.
This value is required for manually created sockets and
can be ignored for accepted ones.

META_CONNECTION_TIMEOUT

	Data type:

	integer

	Read-only:

	no

	Summary:

	Value in seconds, if connection is not established during
this time, socket will be closed automatically and
TIMEOUT event will be fired. If value is omitted then
value from Configuration will be used.

META_IO_TIMEOUT

	Data type:

	double

	Read-only:

	no

	Summary:

	Value in seconds, if no data are sent/received during this
time, socket will be closed automatically and
TIMEOUT event will be fired. If value is omitted then
value from Configuration will be used.

META_USER_CONTEXT

	Data type:

	mixed

	Read-only:

	no

	Summary:

	Arbitrary user data. This field is not used anyhow by the engine.

META_SOCKET_STREAM_CONTEXT

	Data type:

	
	array

	resource

	null

	Read-only:

	no

	Summary:

	Settings to set up in socket resource.

If value is a resource it must be a valid stream context
created by stream_context_create [http://php.net/manual/en/function.stream-context-create.php] PHP function.

If value is array, it must contain two nested keys:
options and params, which will be passed into
stream_context_create [http://php.net/manual/en/function.stream-context-create.php] corresponding parameters.

If value is null, the default context returned by
stream_context_get_default [http://php.net/manual/en/function.stream-context-get-default.php] PHP function will be used.

META_REQUEST_COMPLETE

	Data type:

	bool

	Read-only:

	yes

	Summary:

	Value indicating that execution for this request
is finished. Socket with this flag set can be safely removed
from engine’s socket bag.

META_CONNECTION_START_TIME

	Data type:

	
	double

	null

	Read-only:

	yes

	Summary:

	Timestamp value, int part is seconds and float is
microseconds, indicates when connection process is started.

If connection has not started yet, the value is null.

META_CONNECTION_FINISH_TIME

	Data type:

	
	double

	null

	Read-only:

	yes

	Summary:

	Timestamp value, int part is seconds and float is
microseconds, indicates when connection process was finished.

If connection has not finished yet, the value is null.

META_LAST_IO_START_TIME

	Data type:

	
	double

	null

	Read-only:

	yes

	Summary:

	Timestamp value, int part is seconds and float is
microseconds, indicates when last I/O operation has started.

If there were no I/O operation, the value would be null.

 Copyright 2015-2016, Efimov Evgenij.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	Async sockets 0.3.x documentation

AsyncSocketFactory configuration reference

The AsyncSocketFactory can be configured using non-standard values. To pass these value into the factory use
Configuration object:

	1
2
3
4
5
6

	use AsyncSockets\Socket\AsyncSocketFactory;
use AsyncSockets\Configuration\Configuration;

$options = ...; // array with options to set
$configuration = new Configuration($options);
$factory = new AsyncSocketFactory($configuration);

You should retrieve options from some source and pass it as key-value array into Configuration object.

List of options

connectTimeout

	Data type:

	double

	Default value:

	from socket_default_timeout php.ini directive

	Summary:

	Default value for execution engine to wait connection
establishment before considering it as timed out.

ioTimeout

	Data type:

	double

	Default value:

	from socket_default_timeout php.ini directive

	Summary:

	Default value for execution engine to wait some
I/O activity before considering connection as timed out.

Note

Too low timeout values may result in frequent timeouts on sockets.

preferredEngines

	Data type:

	string[]

	Default value:

	[‘libevent’, ‘native’]

	Summary:

	Preferred order of execution engines to try to create by createRequestExecutor() method from
AsyncSocketFactory. Only native and libevent values are possible inside the array.

Warning

Incorrect configuration for preferredEngines option will lead to InvalidArgumentException is thrown when
you create the Request executor.

	Details:

	There are two possible implementations of executing engine - native and libevent. The libevent one
requires libevent [https://pecl.php.net/package/libevent] extension installed, whereas a native one can work without any additional requirements.
See the comparative table below.

	Engine
	Pros and cons

	native
	
	Works without any additional requirements.

	Supports persistent connections

	By default supports up to 1024 concurrent
connections and requires PHP recompilation
to increase this number.

	libevent
	
	Requires libevent [https://pecl.php.net/package/libevent] extension

	All versions prior to 0.1.1 can not process
persistent connections and fails with
“fd argument must be either valid PHP
stream or valid PHP socket resource”
warning.

	Version 0.1.1 is available only from
sources.

	Process more than 1024 concurrent
connections.

 Copyright 2015-2016, Efimov Evgenij.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Async sockets 0.3.x documentation

Index

 Copyright 2015-2016, Efimov Evgenij.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

