
Async HTTP Retriever Documentation

Jon Cram

Dec 19, 2018

First Steps

1 Requirements 3

2 First Steps 5
2.1 Overview . 5
2.2 Getting Started . 7
2.3 Request-Response Cycle . 10
2.4 Requesting a Resource . 11
2.5 Callback Responses . 13
2.6 Upgrading . 15
2.7 Configuration . 17

i

ii

Async HTTP Retriever Documentation

Service for retrieving HTTP resources asynchronously. Self-hosted within a lovely collection of docker containers.

Send a POST request containing url, callback, (optionally) header and (optionally) parameter values. Con-
tent for the given url will be retrieved eventually and sent in a POST request to the specified callback url.

Everything becomes clear if you read the overview. There is even a handy diagram.

First Steps 1

https://en.wikipedia.org/wiki/Docker_(software)

Async HTTP Retriever Documentation

2 First Steps

CHAPTER 1

Requirements

You’ll need docker and docker-compose present on the host box. If you can run docker, you can run this
application. Nothing else needed.

Developed and tested against docker 18.06.1-ce and docker-compose 1.22.0.

3

Async HTTP Retriever Documentation

4 Chapter 1. Requirements

CHAPTER 2

First Steps

Have a look at the getting started guide for details on how to get the code, create your configuration and install an
instance.

2.1 Overview

Service for retrieving HTTP resources asynchronously. Self-hosted within a lovely collection of docker containers.

2.1.1 Short Description

Send a POST request containing url, callback, (optionally) header and (optionally) parameter values. Con-
tent for the given url will be retrieved eventually and sent in a POST request to the specified callback url.

+--------------+ +---------
→˓-----+
| | |
→˓ |
| | POST http://localhost:8001/ |
→˓ |
| | url=http://example.com/ |
→˓ |
| | callback=http://callback.example.com/ |
→˓ |
| | headers={ |
→˓ |
| | "User-Agent":"Chrome, honest" |
→˓ |
| | } |
→˓ |
| | parameters={ |
→˓ |
| | "cookies": { |
→˓ | (continues on next page)

5

https://en.wikipedia.org/wiki/Docker_(software)

Async HTTP Retriever Documentation

(continued from previous page)

| | } |
→˓ |
| | } |
→˓ |
| | |
→˓ |
| | |
→˓ |
| | |
→˓Asynchronous |
| Your | | HTTP
→˓ |
| application | +--> |
→˓retriever |
| | |
→˓ |
| | |
→˓ |
| | |
→˓ |
| | |
→˓ |
| | HTTP 200 OK |
→˓ |
| | Content-Type: application/json |
→˓ |
| | |
→˓ |
| | "118e35f631be802c41bec5c9dfb0f415" |
→˓ |
| | <--+ |
→˓ |
+--------------+ +---------
→˓-----+
+

. . . some time passes . . .

+-------------+ +---------
→˓-----+
| | POST http://callback.example.com/ |
→˓ |
| | { |
→˓ |
| | "request_id": "118e35f631be802c41b...", |
→˓ |
| | "status": "success", |
→˓ |
| | "headers": { |
→˓ |
| | "content-type": "text/html;" |
→˓ |
| Your | }, |
→˓ |
| callback | "content": "PGRvY3R5cGUgaHRtbD4=" |
→˓Asynchronous |
| handler | } | HTTP
→˓ | (continues on next page)

6 Chapter 2. First Steps

Async HTTP Retriever Documentation

(continued from previous page)

| | |
→˓Retriever |
| | <---+ |
→˓ |
+-------------+ +---------
→˓-----+

2.1.2 Why?

Pretty much every modern programming ecosystem provides a means for making HTTP requests and handling the
resulting responses. You already get synchronous HTTP out the box, possibly asynchronous HTTP as well. Using
whatever HTTP functionality your programming ecosystem provides is fine most of the time.

Want to retrieve the content of arbitrary urls often? No, you probably don’t. But if you do, you periodically run into
failure cases.

We don’t like failure cases. Temporary service unavailability, intermittent internal server errors, unpredictable rate
limiting responses.

To reliably retrieve an arbitrary HTTP resource, you need to able to retry after a given period for those odd cases where
a request failed right now but which could (maybe would) succeed a little later. You introduce state (remembering
what to retrieve) and you need something to handle doing so at the right time (some form of delayable background job
processing).

You could re-write the means for doing so for every application you create that needs to retrieve resources over HTTP.
Or you could not. Up to you really.

2.1.3 Production Readiness

Not production ready

2.2 Getting Started

2.2.1 Requirements

You’ll need docker and docker-compose present on the host box. If you can run docker, you can run this
application. Nothing else needed.

Developed and tested against docker 18.06.1-ce and docker-compose 1.22.0.

2.2.2 Getting the Code

git clone git@github.com:webignition/async-http-retriever.git

2.2.3 Creating Your Configuration

Configuration is provided through a collection of environment variables. These can be set on the host itself or defined
in docker/.env. I’m assuming the use of a .env file to be consumed by docker-compose.

2.2. Getting Started 7

https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/503
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/500
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429
https://developer.mozilla.org/en-US/docs/Web/HTTP/Status/429

Async HTTP Retriever Documentation

There are some configuration values you must set before installing. There are some configuration values that can only
be set before installing.

cd /var/www/async-http-retriever/instance-x
cp docker/.env.dist docker/.env

Edit your docker/.env file as needed. Refer to the configuration guide

2.2.4 Installation

You’ve got the code and you’ve set your configuration via environment variables. Now to install.

The following simple installation guide briefly covers how to install an instance.

If you ever want to perform zero-downtime upgrades (yes, yes, do you) or if you ever want to run multiple instances
on the same host, you want to create an isolated installation.

Simple Installation

Create a directory for the application and get the code
mkdir -p /var/www/async-http-retriever/instance-x
cd /var/www/async-http-retriever/instance-x
git clone git@github.com:webignition/async-http-retriever.git .

Change to the docker directory as that is where all the fun happens
cd docker

Build container images
docker-compose up -d --build

Install third-party dependencies
docker-compose exec -T app-web ./bin/console composer install

Create database schema
docker-compose exec -T app-web ./bin/console doctrine:migrations:migrate --no-
→˓interaction

Restart containers
(will have failed due to lack of third-party dependencies and lack of database
→˓schema)
docker-compose down && docker-compose up -d

Isolated Installation

An isolated instance:

• has container names unique to itself

• has service port numbers unique to itself

• will not interfere with other instances on the same host

• will not be interfered by other instances on the same host

Isolated installations are preferred.

We can isolate instances through the use of:

8 Chapter 2. First Steps

Async HTTP Retriever Documentation

• the docker-compose project name argument

• the ID environment variable

• the ASYNC_HTTP_RETRIEVER_EXPOSED_PORT environment variable

• the ASYNC_HTTP_RETRIEVER_RABBITMQ_MANAGEMENT_EXPOSED_PORT environment variable

An isolated instance has a name. This can be whatever is meaningful to you. For this example, we’ll opt for the name
instance-x.

##########
GET CODE
##########

Create a directory for the application and get the code
mkdir -p /var/www/async-http-retriever/instance-x
cd /var/www/async-http-retriever/instance-x
git clone git@github.com:webignition/async-http-retriever.git .

Create a directory for the MySQL data files for this instance
mkdir -p /var/docker-mysql/async-http-retriever-x

Change to the docker directory as that is where all the fun happens
cd docker

CONFIGURE

Create the configuration
cp .env.dist .env

We need to set the MySQL data path on the host
sed -i 's|MYSQL_DATA_PATH_ON_HOST|/var/docker-mysql/async-http-retriever-x|g' .env

Set a non-default rabbit-mq management interface port
sed -i 's|15672|25672|g' .env

Set a non-default application port
sed -i 's|8001|8002|g' .env

INSTALL

ID=instance-x docker-compose -p instance-x up -d --build
ID=instance-x docker-compose -p instance-x exec -T app-web composer install
ID=instance-x docker-compose -p instance-x exec -T app-web ./bin/console
→˓doctrine:migrations:migrate --no-interaction
ID=instance-x docker-compose -p instance-x down
ID=instance-x docker-compose -p instance-x up -d

You must pass in the ID environment variable and the project name when calling docker-compose commands:

List containers
ID=instance-x docker-compose -p instance-x ps

ssh into the app-web container
ID=instance-x docker-compose -p instance-x exec app-web /bin/bash

2.2. Getting Started 9

https://docs.docker.com/compose/reference/overview/

Async HTTP Retriever Documentation

2.3 Request-Response Cycle

Your application requests a resource.

This request includes the url of the resource you want to retrieve, the callback URL where you want the resource
to be sent when it has been retrieved and, optionally, a set of headers to be sent with the retrieval request.

The response you receive includes a json-encoded string. That’s the request ID. You’ll want to make a note of that
somewhere.

+--------------+ +---------
→˓-----+
| | |
→˓ |
| | POST http://localhost:8001/ |
→˓ |
| | url=http://example.com/ |
→˓ |
| | callback=http://callback.example.com/ |
→˓ |
| | headers={ |
→˓ |
| | "User-Agent":"Chrome, honest" |
→˓ |
| | } |
→˓ |
| | parameters={ |
→˓ |
| | "cookies": { |
→˓ |
| | } |
→˓ |
| | } |
→˓ |
| | |
→˓ |
| | |
→˓ |
| | |
→˓Asynchronous |
| Your | | HTTP
→˓ |
| application | +--> |
→˓retriever |
| | |
→˓ |
| | |
→˓ |
| | |
→˓ |
| | |
→˓ |
| | HTTP 200 OK |
→˓ |
| | Content-Type: application/json |
→˓ |
| | |
→˓ |

(continues on next page)

10 Chapter 2. First Steps

Async HTTP Retriever Documentation

(continued from previous page)

| | "118e35f631be802c41bec5c9dfb0f415" |
→˓ |
| | <--+ |
→˓ |
+--------------+ +---------
→˓-----+
+

Your request to retrieve a resource has been put into a queue. The request will probably be handled quite quickly but
not instantly. Some time will pass before your request has completed.

. . . let’s wait. Something will happen eventually . . .

Your request completed and was successful. That’s good.

A json-encoded response object is sent in a POST request to the callback URL that you specified in your request.

+-------------+ +---------
→˓-----+
| | POST http://callback.example.com/ |
→˓ |
| | { |
→˓ |
| | "request_id": "118e35f631be802c41b...", |
→˓ |
| | "status": "success", |
→˓ |
| | "headers": { |
→˓ |
| | "content-type": "text/html;" |
→˓ |
| Your | }, |
→˓ |
| callback | "content": "PGRvY3R5cGUgaHRtbD4=" |
→˓Asynchronous |
| handler | } | HTTP
→˓ |
| | |
→˓Retriever |
| | <---+ |
→˓ |
+-------------+ +---------
→˓-----+

2.4 Requesting a Resource

2.4.1 Making a Request

Parameters

Send a POST request to your instance. Include the url of the resource to be retrieved and the callback URL to
where the response should be sent.

You can optionally provide a headers parameter defining headers to send when retrieving the resource.

2.4. Requesting a Resource 11

Async HTTP Retriever Documentation

The collection of headers can contain whatever keys and values you need to satisfy a request. This might include
specifying the User-Agent, passing along Authorization or setting Cookies.

Name Description Example
url URL of the resource to be retrieved http://example.com
callback URL to which the resource should be sent https://httpbin.org/post
headers JSON-encoded key:value pairs {"User-Agent":"Chrome, honest"}
parameters JSON-encoded parameters {"cookies":{"domain": "..."}}

Curl Example Without Headers

curl -X POST http://localhost:8001/ \
-d 'url=http://example.com/&callback=https://httpbin.org/post'

"118e35f631be802c41bec5c9dfb0f415"

Curl Example With Headers

curl -X POST http://localhost:8001/ \
-d 'url=http://example.com/&callback=https://httpbin.org/post&headers={"User-

→˓Agent":"Chrome"}'

"ea8a4d4eb1840d0bec6284658a8ef064"

2.4.2 Specifying Cookie Parameters

Including a Cookie header in your request for a resource will result in an equivalent Cookie header being sent with
the relevant HTTP request.

curl -X POST http://localhost:8001/ \
-d 'url=http://example.com/&headers={"Cookie":"key=value"}&callback=https://

→˓httpbin.org/post'

Cookies may contain sensitive information. The request for a resource may be redirected to another host. You do not
want to pass potentially-sensitive information to another host. No, you don’t. Trust me.

Add to your parameters value a cookie parameters object:

{
"cookie": {
"domain": ".example.com",
"path": "/"

}
}

curl -X POST http://localhost:8001/ \
-d 'url=http://example.com/&headers={"Cookie":"key=value"}¶meters={"cookies":

→˓{"domain":".example.com","path":"/"}}&callback=https://httpbin.org/post'

You must include domain and path values. It is up to you to choose the correct values for the resource you are
requesting.

12 Chapter 2. First Steps

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/User-Agent
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Authorization
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Cookie

Async HTTP Retriever Documentation

Only requests against URLs that match the given domain and path values will have the relevant Cookie header
set. Cookie parameters prevent cookie data from being exposed where it should not be.

If you specify a Cookie header but do not specify cookie parameters, no cookies will be sent with the request to
retrieve the resource.

2.4.3 Understanding The Response

Successful Request (200)

The response body ("118e35f631be802c41bec5c9dfb0f415" in the very first example) is a json-encoded
request ID.

The request ID is unique to the combination of url, headers and parameters.

Store the request ID in your application. The request ID is sent with the requested resource to the given callback
URL. Use the request ID to map the response you receive to the request that you made.

Bad Request (400)

Your request will receive a HTTP 400 response if:

• url is empty

• callback is empty

• callback is not valid (which depends on your configuration for allowed callback host names)

2.5 Callback Responses

A request to retrieve a resource will be followed up (eventually) by a POST request to the given callback URL.

The body of the request is a json-encoded response object.

2.5. Callback Responses 13

Async HTTP Retriever Documentation

2.5.1 Response Object Properties

Name Description Example
request_id Unique request identifier 118e35f631be802c41bec5c9dfb0f415
status Whether the resource could be re-

trieved
success or failed

failure_type If status=failed http, curl or unknown
status_code

If status=failed
and (failure_type=http or
failure_type=curl)

failure_type=http: 404,
500 . . .
failure_type=curl: 6, 28
. . .

context

Array of additional information
If status=failed
and failure_type=http and
status_code=301

headers

Response headers if
status=success

{"content-type": "text/
html"}

content

Base64-encoded response body
in cases where
status=success

PGRvY3R5cGUgaHRtbD4=

2.5.2 Success Response Example

{
"request_id": "118e35f631be802c41bec5c9dfb0f415",
"status": "success",
"headers": {
"content-type": "text/html; charset=utf-8",
"content-length": 40,
"cache-control": "public, max-age=60"

},
"content": "PGRvY3R5cGUgaHRtbD48aHRtbD48Ym9keT48L2JvZHk+PC9odG1sPg=="

}

2.5.3 HTTP Failure Example (404 Not Found)

{
"request_id": "118e35f631be802c41bec5c9dfb0f415",

(continues on next page)

14 Chapter 2. First Steps

/requesting-a-resource.html#understanding-the-response

Async HTTP Retriever Documentation

(continued from previous page)

"status": "failed",
"failure_type": "http",
"status_code": 404

}

2.5.4 HTTP Failure Example (301)

{
"request_id": "118e35f631be802c41bec5c9dfb0f415",
"status": "failed",
"failure_type": "http",
"status_code": 404,
"context": {
"too_many_redirects": true,
"is_redirect_loop": true,
"history": [

"http://example.com",
"http://example.com",
"http://example.com",
"http://example.com",
"http://example.com"

]
}

}

2.5.5 Curl Failure Example (Operation Timed Out)

{
"request_id": "118e35f631be802c41bec5c9dfb0f415",
"status": "failed",
"failure_type": "curl",
"status_code": 28

}

2.5.6 Unknown Failure Example

{
"request_id": "118e35f631be802c41bec5c9dfb0f415",
"status": "failed",
"failure_type": "unknown"

}

2.6 Upgrading

Upgrading a live instance is not recommended. Doing so can put your instance into an odd state resulting in service-
unavailability the applications making use of your instance.

Upgrading with zero downtime is achievable. We will do that.

2.6. Upgrading 15

Async HTTP Retriever Documentation

2.6.1 Zero-downtime Upgrading

We can achieve zero downtime for applications that use an existing instance by creating a second instance and using
that instead. The first instance can then be removed.

Pre-requisites:

• you have an existing isolated instance named instance-x.

• you have determined that an upgrade is needed

Scenario:

• create instance-y (second instance)

• configure instance-y and get it running

• configure relevant applications on the host to use instance-y

• remove instance-x

2.6.2 Creating the Second Instance (instance-y)

##########
GET CODE
##########

Create a directory for the application and get the code
mkdir -p /var/www/async-http-retriever/instance-y
cd /var/www/async-http-retriever/instance-y
git clone git@github.com:webignition/async-http-retriever.git .

Create a directory for the MySQL data files for this instance
mkdir -p /var/docker-mysql/async-http-retriever-y

Change to the docker directory as that is where all the fun happens
cd docker

###########
CONFIGURE
###########

Create the configuration
cp .env.dist .env

We need to set the MySQL data path on the host
sed -i 's|MYSQL_DATA_PATH_ON_HOST|/var/docker-mysql/async-http-retriever-y|g' .env

Set the rabbit-mq management port to not be the same as instance-x
sed -i 's|15672|35672|g' .env

Set the application port to not be the same as instance-x
sed -i 's|8001|8003|g' .env

#########
INSTALL
#########

ID=instance-y docker-compose -p instance-y up -d --build

(continues on next page)

16 Chapter 2. First Steps

Async HTTP Retriever Documentation

(continued from previous page)

ID=instance-y docker-compose -p instance-y exec -T app-web composer install
ID=instance-y docker-compose -p instance-y exec -T app-web ./bin/console
→˓doctrine:migrations:migrate --no-interaction
ID=instance-y docker-compose -p instance-y down
ID=instance-y docker-compose -p instance-y up -d

2.6.3 Configure Applications to Use instance-y

You managed to configure relevant applications to use instance-x. Do the same but for instance-y.

You configure all relevant applications to use instance-y and that, once done, no applications are using
instance-x.

2.6.4 Removing the First Instance

Change to the docker directory as that is where all the fun happens
cd /var/www/async-http-retriever/instance-x/docker

Stop and remove containers
ID=instance-x docker-compose -p instance-x down

Remove instance-x
cd /var/www/async-http-retriever
rm -rf cd /var/www/async-http-retriever/instance-x

Remove MySQL data files
rm -rf /var/docker-mysql/async-http-retriever-x

2.7 Configuration

Configuration is provided through a collection of environment variables. These can be set on the host itself or defined
in docker/.env.

2.7.1 Creating your configuration file

Copy the relevant .env.dist to .env.

cp docker/.env.dist docker/.env

2.7.2 Configuration You Must Set

Things are not going to work nicely if you don’t set these.

ASYNC_HTTP_RETRIEVER_DATABASE_DATA_PATH

The path on the host for MySQL to store data.

2.7. Configuration 17

Async HTTP Retriever Documentation

Set this to any writable directory that already exists. Do not set this to /var/lib/mysql if your host is running a
MySQL instance.

This must be set before installing.

2.7.3 Configuration You Should Set

Things will work if you don’t set these, however setting is recommended as some of these values are sensitive.

ASYNC_HTTP_RETRIEVER_EXPOSED_PORT

Port to expose for the application. Set to any suitable unused port number.

ASYNC_HTTP_RETRIEVER_MYSQL_ROOT_PASSWORD

The root password for the MySQL instance. Set to any value and forget about it.

This must be set before installing if you want to set it.

ASYNC_HTTP_RETRIEVER_DATABASE_USER

DB user for the application to use. Set to any value and forget about it.

This must be set before installing if you want to set it.

ASYNC_HTTP_RETRIEVER_DATABASE_PASSWORD

DB password for the application to use. Set to any value and forget about it.

This must be set before installing if you want to set it.

ASYNC_HTTP_RETRIEVER_RABBITMQ_USER

Username for the rabbit-mq service. Set to any meaningful value.

This must be set before installing if you want to set it.

ASYNC_HTTP_RETRIEVER_RABBITMQ_PASS

Password for the rabbit-mq service. Set to any meaningful value.

This must be set before installing if you want to set it.

18 Chapter 2. First Steps

Async HTTP Retriever Documentation

2.7.4 Configuration You Can Optionally Set

Set these if you like, things will work just fine if you don’t.

ASYNC_HTTP_RETRIEVER_CONSUMER_COUNT

Number of parallel message consumers. Defaults to 1. Ideally set higher.

ASYNC_HTTP_RETRIEVER_APP_SECRET

Private token used within the application. Set to whatever you like.

ASYNC_HTTP_RETRIEVER_CALLBACK_ALLOWED_HOSTS

Used to limit the host names allowed in callback URLs. Defaults to * which allows all host names.

ASYNC_HTTP_RETRIEVER_RETRIEVER_TIMEOUT_SECONDS

Timeout in seconds for when retrieving HTTP resources. Defaults to 30 seconds.

Set to any positive integer. Set to 0 for no timeout (probably a bad idea).

ASYNC_HTTP_RETRIEVER_DATABASE_NAME

Name of the application database.

This must be set before installing if you want to set it.

ASYNC_HTTP_RETRIEVER_DATABASE_USER

DB user for the application.

This must be set before installing if you want to set it.

ASYNC_HTTP_RETRIEVER_RABBITMQ_MANAGEMENT_EXPOSED_PORT

Exposed port of the rabbit-mq management interface.

ASYNC_HTTP_RETRIEVER_HTTPBIN_EXPOSED_PORT

Port to expose for httpbin when using the dev configuration. Defaults to 7000.

2.7. Configuration 19

	Requirements
	First Steps
	Overview
	Getting Started
	Request-Response Cycle
	Requesting a Resource
	Callback Responses
	Upgrading
	Configuration

