

astor – AST observe/rewrite

	PyPI

	https://pypi.org/project/astor/

	Source

	https://github.com/berkerpeksag/astor

	Issues

	https://github.com/berkerpeksag/astor/issues/

	License

	3-clause BSD

	Build status

	[image: Travis CI]
 [https://travis-ci.org/berkerpeksag/astor/]

astor is designed to allow easy manipulation of Python source via the AST.

Getting Started

Install with pip:

$ pip install astor

or clone the latest version from GitHub [https://github.com/berkerpeksag/astor/].

Features

There are some other similar libraries, but astor focuses on the following
areas:

	Round-trip back to Python via Armin Ronacher’s codegen.py module:

	Modified AST doesn’t need linenumbers, ctx, etc. or otherwise be directly
compileable

	Easy to read generated code as, well, code

	Dump pretty-printing of AST

	Harder to read than round-tripped code, but more accurate to figure out what
is going on.

	Easier to read than dump from built-in AST module

	Non-recursive treewalk

	Sometimes you want a recursive treewalk (and astor supports that, starting
at any node on the tree), but sometimes you don’t need to do that. astor
doesn’t require you to explicitly visit sub-nodes unless you want to:

	You can add code that executes before a node’s children are visited, and/or

	You can add code that executes after a node’s children are visited, and/or

	You can add code that executes and keeps the node’s children from being
visited (and optionally visit them yourself via a recursive call)

	Write functions to access the tree based on object names and/or attribute
names

	Enjoy easy access to parent node(s) for tree rewriting

Deprecations

New in version 0.6.

Modules

	astor 0.5

	astor 0.6+

	astor.codegen

	astor.code_gen

	astor.misc

	astor.file_util

	astor.treewalk

	astor.tree_walk

Functions

	astor 0.5

	astor 0.6+

	astor.codetoast()

	astor.code_to_ast()

	astor.parsefile()

	astor.parse_file()

	astor.dump()

	astor.dump_tree()

	astor.get_anyop()

	astor.get_op_symbol()

	astor.get_boolop()

	astor.get_op_symbol()

	astor.get_binop()

	astor.get_op_symbol()

	astor.get_cmpop()

	astor.get_op_symbol()

	astor.get_unaryop()

	astor.get_op_symbol()

Attributes

	astor 0.5

	astor 0.6+

	astor.codetoast

	astor.code_to_ast

	astor.all_symbols

	astor.symbol_data

Functions

	
to_source(source, indent_with=' ' * 4, add_line_information=False,

	
source_generator_class=astor.SourceGenerator)

	Convert a node tree back into Python source code.

Each level of indentation is replaced with indent_with. Per default this
parameter is equal to four spaces as suggested by PEP 8 [https://www.python.org/dev/peps/pep-0008].

If add_line_information is set to True comments for the line numbers
of the nodes are added to the output. This can be used to spot wrong line
number information of statement nodes.

source_generator_class defaults to astor.SourceGenerator, and
specifies the class that will be instantiated and used to generate the
source code.

Changed in version 0.8: source_generator_class was added.

	
astor.codetoast()

	

	
astor.code_to_ast(codeobj)

	Given a module, or a function that was compiled as part
of a module, re-compile the module into an AST and extract
the sub-AST for the function. Allow caching to reduce
number of compiles.

Deprecated since version 0.6: codetoast() is deprecated.

	
astor.parsefile()

	

	
astor.parse_file()

	

	
astor.code_to_ast.parse_file(fname)

	Parse a Python file into an AST.

This is a very thin wrapper around ast.parse().

Deprecated since version 0.6: astor.parsefile() is deprecated.

New in version 0.6.1: Added the astor.parse_file() function as an alias.

	
astor.code_to_ast.get_file_info(codeobj)

	Returns the file and line number of codeobj.

If codeobj has a __file__ attribute (e.g. if
it is a module), then the returned line number will be 0.

New in version 0.6.

	
astor.code_to_ast.find_py_files(srctree, ignore=None)

	Recursively returns the path and filename for all
Python files under the srctree directory.

If ignore is not None, it will ignore any path
that contains the ignore string.

New in version 0.6.

	
astor.iter_node(node, unknown=None)

	This function iterates over an AST node object:

	If the object has a _fields attribute,
it gets attributes in the order of this
and returns name, value pairs.

	Otherwise, if the object is a list instance,
it returns name, value pairs for each item
in the list, where the name is passed into
this function (defaults to blank).

	Can update an unknown set with information about
attributes that do not exist in fields.

	
astor.dump()

	

	
astor.dump_tree(node, name=None, initial_indent='', indentation=' ', maxline=120, maxmerged=80)

	This function pretty prints an AST or similar structure
with indentation.

Deprecated since version 0.6: astor.dump() is deprecated.

	
astor.strip_tree(node)

	This function recursively removes all attributes from
an AST tree that are not referenced by the _fields member.

Returns a set of the names of all attributes stripped.
By default, this should just be the line number and column.

This canonicalizes two trees for comparison purposes.

New in version 0.6.

	
astor.get_boolop()

	

	
astor.get_binop()

	

	
astor.get_cmpop()

	

	
astor.get_unaryop()

	

	
astor.get_anyop()

	

	
astor.get_op_symbol(node, fmt='%s')

	Given an ast node, returns the string representing the
corresponding symbol.

Deprecated since version 0.6: get_boolop(), get_binop(), get_cmpop(), get_unaryop()
and get_anyop() functions are deprecated.

Classes

	
class file_util.CodeToAst

	This is the base class for the helper function code_to_ast().
It may be subclassed, but probably will not need to be.

	
class tree_walk.TreeWalk(node=None)

	The TreeWalk class is designed to be subclassed in order
to walk a tree in arbitrary fashion.

	
class node_util.ExplicitNodeVisitor

	The ExplicitNodeVisitor class subclasses the ast.NodeVisitor
class, and removes the ability to perform implicit visits.
This allows for rapid failure when your code encounters a
tree with a node type it was not expecting.

Command-line utilities

There is currently one command-line utility:

rtrip

New in version 0.6.

python -m astor.rtrip [readonly] [<source>]

This utility tests round-tripping of Python source to AST
and back to source.

Warning

This tool will trash the tmp_rtrip directory unless
the readonly option is specified.

If readonly is specified, then the source will be tested,
but no files will be written.

if the source is specified to be “stdin” (without quotes)
then any source entered at the command line will be compiled
into an AST, converted back to text, and then compiled to
an AST again, and the results will be displayed to stdout.

If neither readonly nor stdin is specified, then rtrip
will create a mirror directory named tmp_rtrip and will
recursively round-trip all the Python source from the source
into the tmp_rtrip dir, after compiling it and then reconstituting
it through code_gen.to_source.

If the source is not specified, the entire Python library will be used.

The purpose of rtrip is to place Python code into a canonical form.

This is useful both for functional testing of astor, and for
validating code edits.

For example, if you make manual edits for PEP8 compliance,
you can diff the rtrip output of the original code against
the rtrip output of the edited code, to insure that you
didn’t make any functional changes.

For testing astor itself, it is useful to point to a big codebase,
e.g:

python -m astor.rtrip

to round-trip the standard library.

If any round-tripped files fail to be built or to match, the
tmp_rtrip directory will also contain fname.srcdmp and fname.dstdmp,
which are textual representations of the ASTs.

Note

The canonical form is only canonical for a given version of
this module and the astor toolbox. It is not guaranteed to
be stable. The only desired guarantee is that two source modules
that parse to the same AST will be converted back into the same
canonical form.

Release Notes

0.8.1 - 2019-12-10

Bug fixes

	Fixed precedence issue for f-string expressions that caused
redundant parenthesis around expression.
(Reported by Ilya Kamenshchikov in Issue 153 [https://github.com/berkerpeksag/astor/issues/153] and fixed by Batuhan Taskaya in PR 155 [https://github.com/berkerpeksag/astor/pull/155].)

	Fixed astor.to_source() incorrectly checking whether
source_generator_class is a subclass of astor.code_gen.SourceGenerator.
(Reported by Yu-Chia “Hank” Liu in Issue 158 [https://github.com/berkerpeksag/astor/issues/158] and fixed by Will Crichton in PR 164 [https://github.com/berkerpeksag/astor/pull/164].)

	Fixed TypeError when AST nodes with unicode strings are passed to
astor.to_source().
(Reported and fixed by Dominik Moritz in PR 154 [https://github.com/berkerpeksag/astor/pull/154].)

	Fixed installation issue with setuptools 41.4.0 or later due to the use of
an undocumented feature.
(Reported and fixed by Jonathan Ringer in Issue 162 [https://github.com/berkerpeksag/astor/issues/162] and PR 163 [https://github.com/berkerpeksag/astor/pull/163].)

0.8.0 - 2019-05-19

New features

	Support ast.Constant nodes being emitted by Python 3.8 (and initially
created in Python 3.6).
(Reported and fixed by Chris Rink in Issue 120 [https://github.com/berkerpeksag/astor/issues/120] and PR 121 [https://github.com/berkerpeksag/astor/pull/121].)

	Support Python 3.8’s assignment expressions.
(Reported and fixed by Kodi Arfer in Issue 126 [https://github.com/berkerpeksag/astor/issues/126] and PR 134 [https://github.com/berkerpeksag/astor/pull/134].)

	Support Python 3.8’s f-string debugging syntax.
(Reported and fixed by Batuhan Taskaya in Issue 138 [https://github.com/berkerpeksag/astor/issues/138] and PR 139 [https://github.com/berkerpeksag/astor/pull/139].)

	astor.to_source() now has a source_generator_class parameter to
customize source code generation.
(Reported and fixed by matham in Issue 113 [https://github.com/berkerpeksag/astor/issues/113] and PR 114 [https://github.com/berkerpeksag/astor/pull/114].)

	The SourceGenerator class can now be imported from the
astor package directly. Previously, the astor.code_gen
submodule was needed to be imported.

	Support Python 3.8’s positional only arguments. See PEP 570 [https://www.python.org/dev/peps/pep-0570] for
more details.
(Reported and fixed by Batuhan Taskaya in Issue 142 [https://github.com/berkerpeksag/astor/issues/142] and PR 143 [https://github.com/berkerpeksag/astor/pull/143].)

Bug fixes

	Fix string parsing when there is a newline inside an f-string. (Reported by
Adam Cécile in Issue 119 [https://github.com/berkerpeksag/astor/issues/119] and fixed by Felix Yan in PR 123 [https://github.com/berkerpeksag/astor/pull/123].)

	Fixed code generation with escaped braces in f-strings.
(Reported by Felix Yan in Issue 124 [https://github.com/berkerpeksag/astor/issues/124] and fixed by Kodi Arfer in PR 125 [https://github.com/berkerpeksag/astor/pull/125].)

	Fixed code generation with attributes of integer literals, and
with u-prefixed string literals.
(Fixed by Kodi Arfer in PR 133 [https://github.com/berkerpeksag/astor/pull/133].)

	Fixed code generation with very large integers.
(Reported by Adam Kucz in Issue 127 [https://github.com/berkerpeksag/astor/issues/127] and fixed by Kodi Arfer in PR 130 [https://github.com/berkerpeksag/astor/pull/130].)

	Fixed astor.tree_walk.TreeWalk when attempting to access attributes
created by Python’s type system (such as __dict__ and __weakref__)
(Reported and fixed by esupoff in Issue 136 [https://github.com/berkerpeksag/astor/issues/136] and PR 137 [https://github.com/berkerpeksag/astor/pull/137].)

0.7.1 - 2018-07-06

Bug fixes

	Fixed installation error by adding the setuputils.py helper to the sdist.
(Reported by Adam and fixed by Berker Peksag in Issue 116 [https://github.com/berkerpeksag/astor/issues/116].)

0.7.0 - 2018-07-05

New features

	Added initial support for Python 3.7.0.

Note that if you have a subclass of astor.code_gen.SourceGenerator, you
may need to rename the keyword argument async of the following methods
to is_async:

	visit_FunctionDef(..., is_async=False)

	visit_For(..., is_async=False)

	visit_With(..., is_async=False)

(Reported and fixed by Berker Peksag in Issue 86 [https://github.com/berkerpeksag/astor/issues/86].)

	Dropped support for Python 2.6 and Python 3.3.

Bug fixes

	Fixed a bug where newlines would be inserted to a wrong place during
printing f-strings with trailing newlines.
(Reported by Felix Yan and contributed by Radomír Bosák in
Issue 89 [https://github.com/berkerpeksag/astor/issues/89].)

	Improved code generation to support ast.Num nodes containing infinities
or NaNs.
(Reported and fixed by Kodi Arfer in Issue 85 [https://github.com/berkerpeksag/astor/issues/85] and Issue 100 [https://github.com/berkerpeksag/astor/issues/100].)

	Improved code generation to support empty sets.
(Reported and fixed by Kodi Arfer in Issue 108 [https://github.com/berkerpeksag/astor/issues/108].)

0.6.2 - 2017-11-11

Bug fixes

	Restore backwards compatibility that was broken after 0.6.1.
You can now continue to use the following pattern:

import astor

class SpamCodeGenerator(astor.codegen.SourceGenerator):
 ...

(Reported by Dan Moldovan and fixed by Berker Peksag in Issue 87 [https://github.com/berkerpeksag/astor/issues/87].)

0.6.1 - 2017-11-11

New features

	Added astor.parse_file() as an alias to
astor.code_to_ast.parsefile().
(Contributed by Berker Peksag.)

Bug fixes

	Fix compatibility layer for the astor.codegen submodule. Importing
astor.codegen now succeeds and raises a DeprecationWarning
instead of ImportError.
(Contributed by Berker Peksag.)

0.6 - 2017-10-31

New features

	New astor.rtrip command-line tool to test round-tripping
of Python source to AST and back to source.
(Contributed by Patrick Maupin.)

	New pretty printer outputs much better looking code:

	Remove parentheses where not necessary

	Use triple-quoted strings where it makes sense

	Add placeholder for function to do nice line wrapping on output

(Contributed by Patrick Maupin.)

	Additional Python 3.5 support:

	Additional unpacking generalizations (PEP 448 [https://www.python.org/dev/peps/pep-0448])

	Async and await (PEP 492 [https://www.python.org/dev/peps/pep-0492])

(Contributed by Zack M. Davis.)

	Added Python 3.6 feature support:

	f-strings (PEP 498 [https://www.python.org/dev/peps/pep-0498])

	async comprehensions (PEP 530 [https://www.python.org/dev/peps/pep-0530])

	variable annotations (PEP 526 [https://www.python.org/dev/peps/pep-0526])

(Contributed by Ryan Gonzalez.)

	Code cleanup, including renaming for PEP8 and deprecation of old names.
See Deprecations for more information.
(Contributed by Leonard Truong in Issue 36 [https://github.com/berkerpeksag/astor/issues/36].)

Bug fixes

	Don’t put trailing comma-spaces in dictionaries. astor will now create
{'three': 3} instead of {'three': 3, }.
(Contributed by Zack M. Davis.)

	Fixed several bugs in code generation:

	Keyword-only arguments should come before **

	from .. import <member> with no trailing module name did not work

	Support from .. import foo as bar syntax

	Support with foo: ..., with foo as bar: ... and
with foo, bar as baz: ... syntax

	Support 1eNNNN syntax

	Support return (yield foo) syntax

	Support unary operations such as -(1) + ~(2) + +(3)

	Support if (yield): pass

	Support if (yield from foo): pass

	try...finally block needs to come after the try...else clause

	Wrap integers with parentheses where applicable (e.g. (0).real
should generated)

	When the yield keyword is an expression rather than a statement,
it can be a syntax error if it is not enclosed in parentheses

	Remove extraneous parentheses around yield from

(Contributed by Patrick Maupin in Issue 27 [https://github.com/berkerpeksag/astor/issues/27].)

0.5 - 2015-04-18

New features

	Added support for Python 3.5 infix matrix multiplication (PEP 465 [https://www.python.org/dev/peps/pep-0465])
(Contributed by Zack M. Davis.)

0.4.1 - 2015-03-15

Bug fixes

	Added missing SourceGenerator.visit_arguments()

0.4 - 2014-06-29

New features

	Added initial test suite and documentation

Bug fixes

	Added a visitor for NameConstant

0.3 - 2013-12-10

New features

	Added support for Python 3.3.

	Added YieldFrom

	Updated Try and With.

Bug fixes

	Fixed a packaging bug on Python 3 – see pull requests #1 and #2 for more information.

0.2.1 – 2012-09-20

Enhancements

	Modified TreeWalk to add _name suffix for functions that work on attribute names

0.2 – 2012-09-19

Enhancements

	Initial Python 3 support

	Test of treewalk

0.1 – 2012-09-19

	Initial release

	Based on Armin Ronacher’s codegen

	Several bug fixes to that and new tree walker

Index

 A
 | C
 | D
 | F
 | G
 | I
 | N
 | P
 | S
 | T

A

 	
 	astor.code_to_ast.find_py_files() (in module astor)

 	astor.code_to_ast.get_file_info() (in module astor)

 	
 	astor.code_to_ast.parse_file() (in module astor)

 	astor.parse_file() (in module astor)

 	astor.parsefile() (in module astor)

C

 	
 	code_to_ast() (in module astor)

 	
 	codetoast() (in module astor)

D

 	
 	dump() (in module astor)

 	
 	dump_tree() (in module astor)

F

 	
 	file_util.CodeToAst (class in astor)

G

 	
 	get_anyop() (in module astor)

 	get_binop() (in module astor)

 	get_boolop() (in module astor)

 	
 	get_cmpop() (in module astor)

 	get_op_symbol() (in module astor)

 	get_unaryop() (in module astor)

I

 	
 	iter_node() (in module astor)

N

 	
 	node_util.ExplicitNodeVisitor (class in astor)

P

 	
 	
 Python Enhancement Proposals

 	PEP 448

 	PEP 465

 	PEP 492

 	PEP 498

 	PEP 526

 	PEP 530

 	PEP 570

 	PEP 8

S

 	
 	strip_tree() (in module astor)

T

 	
 	tree_walk.TreeWalk (class in astor)

 nav.xhtml

 Table of Contents

 		
 astor – AST observe/rewrite

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

