
Astara Documentation
Release 9.0.0.0b3.dev19

Akanda, Inc

November 30, 2016

Contents

1 Narrative Documentation 3
1.1 What Is Astara . 3
1.2 Service VM Orchestration and Management . 6
1.3 The Service VM (the Astara Appliance) . 11
1.4 Contributing . 16
1.5 Operation and Deployment . 16
1.6 Astara Installation . 18
1.7 Install an Astara Load Balancer . 24
1.8 Astara Developer Quickstart . 25
1.9 Configuration Options . 27
1.10 Astara Release Notes . 27

2 Licensing 29

i

ii

Astara Documentation, Release 9.0.0.0b3.dev19

Astara is an open source network virtualization platform built by OpenStack operators for real OpenStack clouds.
Originally developed by DreamHost for their OpenStack-based public cloud, DreamCompute, Astara eliminates the
need for complex SDN controllers, overlays, and multiple plugins by providing a simple integrated networking stack
(routing, firewall, and load balancing via a virtual Service VM) for connecting and securing multi-tenant OpenStack
environments.

Contents 1

https://dreamhost.com
https://dreamhost.com/compute/cloud

Astara Documentation, Release 9.0.0.0b3.dev19

2 Contents

CHAPTER 1

Narrative Documentation

1.1 What Is Astara

Astara an open source network virtualization solution built by OpenStack operators for OpenStack clouds.

Astara follows core principles of simple, compatible, and open development.

The Astara architecture is broken down by describing the building blocks. The most important of those building
blocks, the Astara Orchestrator, is a multi-process, multi-threaded Neutron Advanced Services orchestration service
which manages the lifecycle of the Neutron Advanced Services. Astara currently supports a layer 3 routing and load
balancing. Astara will support additional Neuton Advanced services such as VPN, and Firewalls in the open driver
model.

1.1.1 High-Level Architecture

Astara is a network orchestration platform that delivers network services (L3-L7) via service instances that provide
routing, load balancing, and eventually more. Astara also interacts with any L2 overlay - including open source
solutions based on OVS and Linux bridge (VLAN, VXLAN, GRE) and most proprietary solutions - to deliver a
centralized management layer for all OpenStack networking decisions.

In a typical OpenStack deployment, Neutron server emits L3 and DHCP messages which are handled by a variety of
Neutron agents (the L3 agent, DHCP agent, agents for advanced services such as load balancing, firewall, and VPN as
a service):

3

Astara Documentation, Release 9.0.0.0b3.dev19

When we add Astara into the mix, we’re able to replace these agents with a virtualized Service Instance that manages
layer 3 routing and other advanced networking services, significantly lowering the barrier of entry for operators (in
terms of deployment, monitoring and management):

Astara takes the place of many of the agents that OpenStack Neutron communicates with (L3, DHCP, LBaaS, FWaaS)
and acts as a single control point for all networking services. By removing the complexity of extra agents, Astara
can centrally manage DHCP and L3, orchestrate load balancing and VPN Services, and overall reduce the number of
components required to build, manage and monitor complete virtual networks within your cloud.

4 Chapter 1. Narrative Documentation

Astara Documentation, Release 9.0.0.0b3.dev19

Astara Building Blocks

From an architectural perspective, Astara is composed of a few sub-projects:

• astara

A service for managing the creation, configuration, and health of Astara Service Instances. The Orchestrator
acts in part as a replacement for Neutron’s various L3-L7 agents by listening for Neutron AMQP events and
coalescing them into software appliance API calls (which configure and manage embedded services on the
Service Instance). Additionally, the Orchestrator contains a health monitoring component which monitors health
and guarantees uptime for existing Service Instances.

• astara-appliance

The software and services (including tools for building custom service images themselves) that run on the
virtualized Linux appliance. Includes drivers for L3-L7 services and a RESTful API that is used to orchestrate
changes to appliance configuration.

• astara-neutron

Addon API extensions and plugins for OpenStack Neutron which enable functionality and integration with the
Astara project, notably Astara router appliance interaction.

• akanda-horizon

OpenStack Horizon rug panels

Software Instance Lifecycle

As Neutron emits events in reaction to network operations (e.g., a user creates a new network/subnet, a user attaches
a virtual machine to a network, a floating IP address is associated, etc...), Astara Orchestrator receives these events,
parses, and dispatches them to a pool of workers which manage the lifecycle of every virtualized appliance.

This management of individual appliances is handled via a state machine per appliance; as events come in, the state
machine for the appropriate instance transitions, modifying its configuration in a variety of ways, such as:

• Booting a virtual machine for the appliance via the Nova API

• Checking for aliveness of the Service Instance.

• Pushing configuration updates via the REST API to configure services (such as iptables, dnsmasq, bird6,
etc...).

• Deleting instances via the Nova API (e.g., when a router or load balancer is deleted from Neutron).

1.1.2 The Service Instance (the Astara Appliance)

Astara uses Linux-based images (stored in OpenStack Glance) to provide layer 3 routing and advanced networking
services. There is a stable image available by default, but it’s also possible to build your own custom Service Instance
image (running additional services of your own on top of the routing and other default services provided by the
project).

1.1. What Is Astara 5

http://github.com/openstack/astara
http://github.com/openstack/astara-appliance
http://github.com/openstack/astara-neutron
http://github.com/stackforge/akanda-neutron

Astara Documentation, Release 9.0.0.0b3.dev19

1.2 Service VM Orchestration and Management

1.2.1 Astara Orchestrator

astara-orchestrator is a multi-processed, multithreaded Python process composed of three primary subsys-
tems, each of which are spawned as a subprocess of the main astara-orchestrator process:

1.2.2 L3 and DHCP Event Consumption

astara.notifications uses kombu and a Python multiprocessing.Queue to listen for specific
Neutron service events (e.g., router.interface.create, subnet.create.end, port.create.end,
port.delete.end) and normalize them into one of several event types:

• CREATE - a router creation was requested

• UPDATE - services on a router need to be reconfigured

• DELETE - a router was deleted

• POLL - used by the health monitor for checking aliveness of a Service VM

• REBUILD - a Service VM should be destroyed and recreated

As events are normalized and shuttled onto the multiprocessing.Queue, astara.scheduler shards (by
Tenant ID, by default) and distributes them amongst a pool of worker processes it manages.

This system also consumes and distributes special astara.command events which are published by the rug-ctl
operator tools.

1.2.3 State Machine Workers and Router Lifecycle

Each multithreaded worker process manages a pool of state machines (one per virtual router), each of which represents
the lifecycle of an individual router. As the scheduler distributes events for a specific router, logic in the worker
(dependent on the router’s current state) determines which action to take next:

6 Chapter 1. Narrative Documentation

https://pypi.python.org/pypi/kombu

Astara Documentation, Release 9.0.0.0b3.dev19

AMQP

Event Processing + Scheduler

Worker 1 Worker ... Worker N

Nova Neutron

Thread 1 Thread ... Thread N

Nova API Neutron API

Service VM 1 Service VM ...

Appliance REST API

Service VM N

For example, let’s say a user created a new Neutron network, subnet, and router. In this scenario, a
router-interface-create event would be handled by the appropriate worker (based by tenant ID), and a
transition through the state machine might look something like this:

1.2. Service VM Orchestration and Management 7

Astara Documentation, Release 9.0.0.0b3.dev19

CalcAction Alive CreateVM CheckBoot ConfigureVM

State Machine Flow

The supported states in the state machine are:

CalcAction The entry point of the state machine. Depending on the current status of the
Service VM (e.g., ACTIVE, BUILD, SHUTDOWN) and the current event, determine the
first step in the state machine to transition to.

Alive Check aliveness of the Service VM by attempting to communicate with it via its REST
HTTP API.

CreateVM Call nova boot to boot a new Service VM. This will attempt to boot a Service
VM up to a (configurable) number of times before placing the router into ERROR state.

CheckBoot Check aliveness (up to a configurable number of seconds) of the router until the
VM is responsive and ready for initial configuration.

ConfigureVM Configure the Service VM and its services. This is generally the final step in
the process of booting and configuring a router. This step communicates with the Neutron
API to generate a comprehensive network configuration for the router (which is pushed
to the router via its REST API). On success, the state machine yields control back to the
worker thread and that thread handles the next event in its queue (likely for a different
Service VM and its state machine).

ReplugVM Attempt to hot-plug/unplug a network from the router via nova
interface-attach or nova-interface-detach.

StopVM Terminate a running Service VM. This is generally performed when a Neutron router
is deleted or via explicit operator tools.

ClearError After a (configurable) number of nova boot failures, Neutron routers are au-
tomatically transitioned into a cool down ERROR state (so that astara will not continue
to boot them forever; this is to prevent further exasperation of failing hypervisors). This
state transition is utilized to add routers back into management after issues are resolved
and signal to astara-orchestrator that it should attempt to manage them again.

STATS Reads traffic data from the router.

CONFIG Configures the VM and its services.

EXIT Processing stops.

ACT(ion) Variables are:

Create Create router was requested.

Read Read router traffic stats.

8 Chapter 1. Narrative Documentation

Astara Documentation, Release 9.0.0.0b3.dev19

Update Update router configuration.

Delete Delete router.

Poll Poll router alive status.

rEbuild Recreate a router from scratch.

VM Variables are:

Down VM is known to be down.

Booting VM is booting.

Up VM is known to be up (pingable).

Configured VM is known to be configured.

Restart Needed VM needs to be rebooted.

Hotplug Needed VM needs to be replugged.

Gone The router definition has been removed from neutron.

Error The router has been rebooted too many times, or has had some other error.

1.2. Service VM Orchestration and Management 9

Astara Documentation, Release 9.0.0.0b3.dev19

START

CALC_ACTION

EXIT

ALIVE

ACT>[CRUP],vm:[UC]

CREATE_VM

ACT>[CRUP],vm:D

CHECK_BOOT

ACT>[CRUP],vm:B

REBUILD_VM

ACT:E

STOP_VM

ACT>D or vm:G

CLEAR_ERROR

vm:EACT:P,vm>[UC]

vm>D

vm:G

CONFIG

ACT:[CU],vm:[UC]

STATS

ACT:R,vm:C

vm:E

vm:D

ACT:[CRUDP],vm:[DBUCR]

vm:G

vm:[BCR]

vm:[DG]

vm>U

ACT:E,vm:D

vm!=[DG]

ACT:D,vm>D or vm:G

ACT:E or vm>D

no pause before next action

ACT>P,vm>C

vm>[RDG]

ACT:R,vm>C

REPLUG_VM

vm>[H]

ACT>P

vm>[R]

vm>[H]

1.2.4 Health Monitoring

astara.health is a subprocess which (at a configurable interval) periodically delivers POLL events to every known
virtual router. This event transitions the state machine into the Alive state, which (depending on the availability of the
router), may simply exit the state machine (because the router’s status API replies with an HTTP 200) or transition
to the CreateVM state (because the router is unresponsive and must be recreated).

10 Chapter 1. Narrative Documentation

Astara Documentation, Release 9.0.0.0b3.dev19

1.2.5 High Availability

Astara supports high-availability (HA) on both the control plane and data plane.

The astara-orchestrator service may be deployed in a configuration that allows multiple service processes to
span nodes to allow load-distribution and HA. For more information on clustering, see the install docs.

It also supports orchestrating pairs of virtual appliances to provide HA of the data path, allowing pairs of virtual routers
to be clustered among themselves using VRRP and connection tracking. To enable this, simply create Neutron routers
with the ha=True parameter or set this property on existing routers and issue a rebuild command via astara-ctl
for that router.

1.3 The Service VM (the Astara Appliance)

Astara uses Linux-based images (stored in OpenStack Glance) to provide layer 3 routing and advanced networking
services. Akanda, Inc provides stable image releases for download at akanda.io, but it’s also possible to build your own
custom Service VM image (running additional services of your own on top of the routing and other default services
provided by Astara).

1.3.1 Building a Service VM image from source

The router code that runs within the appliance is hosted in the astara-appliance repository at
https://git.openstack.org/cgit/openstack/astara-appliance. Additional tooling for actually
building a VM image to run the appliance is located in that repository’s disk-image-builder sub-directory, in
the form elements to be used with diskimage-builder. The following instructions will walk through building the
Debian-based appliance locally, publishing to Glance and configuring the RUG to use said image. These instructions
are for building the image on an Ubuntu 14.04+ system.

Install Prerequisites

First, install diskimage-builder and required packages:

sudo apt-get -y install debootstrap qemu-utils
sudo pip install "diskimage-builder<0.1.43"

Next, clone the astara-appliance repository:

git clone https://git.openstack.org/openstack/astara-appliance

Build the image

Kick off an image build using diskimage-builder:

cd astara-appliance
ELEMENTS_PATH=diskimage-builder/elements DIB_RELEASE=jessie DIB_EXTLINUX=1 \
disk-image-create debian vm astara -o astara

Publish the image

The previous step should produce a qcow2 image called astara.qcow that can be published into Glance for use by
the system:

1.3. The Service VM (the Astara Appliance) 11

http://akanda.io

Astara Documentation, Release 9.0.0.0b3.dev19

We assume you have the required OpenStack credentials set as an environment
variables
glance image-create --name astara --disk-format qcow2 --container-format bare \

--file astara.qcow2
+------------------+--------------------------------------+
| Property | Value |
+------------------+--------------------------------------+
checksum	cfc24b67e262719199c2c4dfccb6c808
container_format	bare
created_at	2015-05-13T21:27:02.000000
deleted	False
deleted_at	None
disk_format	qcow2
id	e2caf7fa-9b51-4f42-9fb9-8cfce96aad5a
is_public	False
min_disk	0
min_ram	0
name	astara
owner	df8eaa19c1d44365911902e738c2b10a
protected	False
size	450573824
status	active
updated_at	2015-05-13T21:27:03.000000
virtual_size	None
+------------------+--------------------------------------+

Configure the RUG

Take the above image id and set the corresponding value in the RUG’s config file, to instruct the service to use that
image for software router instances it manages:

vi /etc/astara/orchestrator.ini
...
[router]
image_uuid=e2caf7fa-9b51-4f42-9fb9-8cfce96aad5a

Making local changes to the appliance service

By default, building an image in this way pulls the astara-appliance code directly from the upstream tip of
trunk. If you’d like to make modifications to this code locally and build an image containing those changes, set
DIB_REPOLOCATION_astara and DIB_REPOREF_astara in your enviornment accordingly during the image build,
ie:

export DIB_REPOLOCATION_astara=~/src/astara-appliance # Location of the local repository checkout
export DIB_REPOREF_astara=my-new-feature # The branch name or SHA-1 hash of the git ref to build from.

1.3.2 REST API

The Astara Appliance REST API is used by the orchestrator service to manage health and configuration of services on
the router.

12 Chapter 1. Narrative Documentation

Astara Documentation, Release 9.0.0.0b3.dev19

Router Health

HTTP GET /v1/status/

Used to confirm that a router is responsive and has external network connectivity.

Example HTTP 200 Response

Content-Type: application/json
{

'v4': true,
'v6': false,

}

Router Configuration

HTTP GET /v1/firewall/rules/

Used to retrieve an overview of configured firewall rules for the router (from iptables -L and iptables6 -L).

Example HTTP 200 Response

Content-Type: text/plain
Chain INPUT (policy DROP)
target prot opt source destination
ACCEPT all -- 0.0.0.0/0 0.0.0.0/0
ACCEPT icmp -- 0.0.0.0/0 0.0.0.0/0 icmptype 8

...

HTTP GET /v1/system/interface/<ifname>/

Used to retrieve JSON data about a specific interface on the router.

Example HTTP 200 Response

Content-Type: application/json
{

"interface": {
"addresses": [

"8.8.8.8",
"2001:4860:4860::8888",

],
"description": "",
"groups": [],
"ifname": "ge0",
"lladdr": "fa:16:3f:de:21:e9",
"media": null,
"mtu": 1500,
"state": "up"

}
}

1.3. The Service VM (the Astara Appliance) 13

Astara Documentation, Release 9.0.0.0b3.dev19

HTTP GET /v1/system/interfaces

Used to retrieve JSON data about a every interface on the router.

Example HTTP 200 Response

Content-Type: application/json
{

"interfaces": [{
"addresses": [

"8.8.8.8",
"2001:4860:4860::8888",

],
"description": "",
"groups": [],
"ifname": "ge0",
"lladdr": "fa:16:3f:de:21:e9",
"media": null,
"mtu": 1500,
"state": "up"

}, {
...

}]
}

HTTP PUT /v1/system/config/

Used (generally, by astara-orchestrator) to push a new configuration to the router and restart services as
necessary:

Example HTTP PUT Body

Content-Type: application/json
{

"configuration": {
"networks": [

{
"address_allocations": [],
"interface": {

"addresses": [
"8.8.8.8",
"2001:4860:4860::8888"

],
"description": "",
"groups": [],
"ifname": "ge1",
"lladdr": null,
"media": null,
"mtu": 1500,
"state": "up"

},
"name": "",
"network_id": "f0f8c937-9fb7-4a58-b83f-57e9515e36cb",
"network_type": "external",
"v4_conf_service": "static",
"v6_conf_service": "static"

},

14 Chapter 1. Narrative Documentation

Astara Documentation, Release 9.0.0.0b3.dev19

{
"address_allocations": [],
"interface": {

"addresses": [
"..."

],
"description": "",
"groups": [],
"ifname": "ge0",
"lladdr": "fa:16:f8:90:32:e3",
"media": null,
"mtu": 1500,
"state": "up"

},
"name": "",
"network_id": "15016de1-494b-4c65-97fb-475b40acf7e1",
"network_type": "management",
"v4_conf_service": "static",
"v6_conf_service": "static"

},
{

"address_allocations": [
{

"device_id": "7c400585-1743-42ca-a2a3-6b30dd34f83b",
"hostname": "10-10-10-1.local",
"ip_addresses": {

"10.10.10.1": true,
"2607:f298:6050:f0ff::1": false

},
"mac_address": "fa:16:4d:c3:95:81"

}
],
"interface": {

"addresses": [
"10.10.10.1/24",
"2607:f298:6050:f0ff::1/64"

],
"description": "",
"groups": [],
"ifname": "ge2",
"lladdr": null,
"media": null,
"mtu": 1500,
"state": "up"

},
"name": "",
"network_id": "31a242a0-95aa-49cd-b2db-cc00f33dfe88",
"network_type": "internal",
"v4_conf_service": "static",
"v6_conf_service": "static"

}
],
"static_routes": []

}
}

1.3. The Service VM (the Astara Appliance) 15

Astara Documentation, Release 9.0.0.0b3.dev19

1.3.3 Survey of Software and Services

The Astara Appliance uses a variety of software and services to manage routing and advanced services, such as:

• iproute2 tools (e.g., ip neigh, ip addr, ip route, etc...)

• dnsmasq

• bird6

• iptables and iptables6

In addition, the Astara Appliance includes two Python-based services:

• The REST API (which astara-orchestrator) communicates with to orchestrate router updates), de-
ployed behind gunicorn.

• A Python-based metadata proxy.

1.3.4 Proxying Instance Metadata

When OpenStack VMs boot with cloud-init, they look for metadata on a well-known address,
169.254.169.254. To facilitate this process, Astara sets up a special NAT rule (one for each local network):

-A PREROUTING -i eth2 -d 169.254.169.254 -p tcp -m tcp --dport 80 -j DNAT --to-destination 10.10.10.1:9602

...and a special rule to allow metadata requests to pass across the management network (where OpenStack Nova is
running, and will answer requests):

-A INPUT -i !eth0 -d <management-v6-address-of-router> -j DROP

A Python-based metadata proxy runs locally on the router (in this example, listening on
http://10.10.10.1:9602) and proxies these metadata requests over the management network so that
instances on local tenant networks will have access to server metadata.

1.4 Contributing

1.4.1 Submitting Code Upstream

All of Astara’s code is 100% open-source and is hosted on git.openstack.org Patches are welcome!

1.5 Operation and Deployment

1.5.1 Installation

You can install from GitHub directly with pip:

$ pip install -e git://git.openstack.org/openstack/astara@stable/liberty#egg=astara

After installing astara, it can be invoked as:

$ astara-orchestrator --config-file /etc/akanda-rug/rug.ini

16 Chapter 1. Narrative Documentation

http://gunicorn.org
https://git.openstack.org/cgit/openstack/astara/

Astara Documentation, Release 9.0.0.0b3.dev19

The astara service is intended to run on a management network (a separate network for use by your cloud operators).
This segregation prevents system administration and the monitoring of system access from being disrupted by traffic
generated by guests.

1.5.2 Operator Tools

rug-ctl

astara-ctl is a tool which can be used to send manual instructions to a running astara-orchestrator via
AMQP:

$ astara-ctl browse
A curses console interface for browsing the state
of every Neutron router and issuing `rebuild` commands

$ astara-ctl poll
Sends a POLL instruction to every router to check health

$ astara-ctl router rebuild <router-id>
Sends a REBUILD instruction to a specific router

$ astara-ctl router update <router-id>
Sends an UPDATE instruction to a specific router

$ astara-ctl router debug <router-id>
Places a specific router in `debug mode`.
This causes the rug to ignore messages for the specified
router (so that, for example, operators can investigate
troublesome routers).

$ astara-ctl router manage <router-id>
Removes a specific router from `debug mode` and places
it back under astara-orchestrator management.

$ astara-ctl tenant debug <tenant-id>
Places a specific tenant in `debug mode`.
This causes the rug to ignore messages for the specified
tenant.
troublesome routers).

$ astara-ctl tenant manage <tenant-id>
Removes every router for a specific tenant from `debug mode`
and places the tenant back under astara-orchestrator management.

$ astara-ctl ssh <router-id>
Establishes an ssh connection with a specified Service VM.

$ astara-ctl workers debug
Causes the rug to print debugging diagnostics about the
current state of its worker processes and the state machines
under their management.

astara-orchestrator also exposes an RPC API on the management network, which allows non-interactive
astara-ctl commands to be issued via HTTP, e.g.,

$ curl -X PUT -g6 "http://[fdca:3ba5:a17a:acda::1]:44250/poll/"
$ curl -X PUT -g6 "http://[fdca:3ba5:a17a:acda::1]:44250/workers/debug/"

1.5. Operation and Deployment 17

Astara Documentation, Release 9.0.0.0b3.dev19

$ curl -X PUT -g6 "http://[fdca:3ba5:a17a:acda::1]:44250/router/rebuild/<ID>"

astara-debug-router

astara-debug-router is a diagnostic tool which can be used to analyze the state machine flow of any router and
step through its operation using Python’s debugger. This is particularly useful for development purposes and under-
standing the nature of the astara-orchestrator state machine, but it’s also useful for debugging problematic
routers as an operator; a common pattern for determining why a Service VM won’t boot is to place the router in debug
mode:

$ astara-ctl router debug <router-id>

...and then step through the handling of a manual UPDATE event to see where it fails:

$ astara-debug-router --router-id <router-id>

1.6 Astara Installation

1.6.1 Assumptions

You have a fully operating Openstack environment with, at least: Nova, Keystone, Glance, Neutron The OpenStack
environment has been tested and they VMs can be successfully created. the packages git and pip should be installed

This has been tested on Ubuntu 14.04 with OpenStack installed from source. For RHEL or CentOS path names will
need to be adjusted. These instructions assume they are performed by the root user, whose home directory is /root. If
another user does the installation some adjustment in the paths may be needed. This user will need sudo access and
most commands will need to be prepended with sudo.

Use the neutron commands to delete all VMs, routers, networks

All neutron l3 agents should be stopped and disabled. (l3, dhcp, ..)

1.6.2 Installation

All configuration is to be performed on the controller node.

1. Set up astara user and directories:

mkdir -p /var/log/astara /var/lib/astara /etc/astara
useradd --home-dir "/var/lib/astara" --create-home --system --shell /bin/false astara

chown -R astara:astara /var/log/astara /var/lib/astara /etc/astara

Set up log rotation:

cat >> /etc/logrotate.d/astara << EOF

/var/log/astara/*.log {

daily

missingok

rotate 7

18 Chapter 1. Narrative Documentation

Astara Documentation, Release 9.0.0.0b3.dev19

compress

notifempty

nocreate

}

EOF

Give astara sudo permissions:

cat > '/etc/sudoers.d/astara_sudoers' << EOF
Defaults:astara !requiretty

astara ALL = (root) NOPASSWD: /usr/local/bin/astara-rootwrap /etc/astara/rootwrap.conf *

EOF

2. Get the code:

cd ~
git clone git://git.openstack.org/openstack/astara
git clone git://git.openstack.org/openstack/astara-neutron
git clone git://git.openstack.org/openstack/astara-appliance

3. Install the code:

If you are not building packages and just installing locally, manually install it via pip:

cd ~/astara
pip install .

cd ~/astara-neutron
pip install .
cd ~

4. Configure Neutron:

Make required changes to the neutron configuration file:

In /etc/neutron/neutron.conf, set in the [DEFAULT] section:

To use the Astara Neutron ML2 plugin change the core_plugin and service_plugins to:

core_plugin = astara_neutron.plugins.ml2_neutron_plugin.Ml2Plugin
service_plugins = astara_neutron.plugins.ml2_neutron_plugin.L3RouterPlugin

And also the add the API extension path (Note: append the astara path to existing list of
extension paths if you have others specified):

api_extensions_path = /usr/local/lib/python2.7/dist-packages/astara_neutron/extensions/

Note: the path shown will vary with the distribution for Ubuntu it will be
/usr/lib/python2.7/dist-packages/astara_neutron/extensions/ for Red Hat installations this path
will be different.

Configure Neutron to emit event notifications:

notification_driver = neutron.openstack.common.notifier.rpc_notifier

1.6. Astara Installation 19

Astara Documentation, Release 9.0.0.0b3.dev19

In /etc/neutron/plugins/ml2/ml2_conf.ini in the [ml2] section add:

extension_drivers = port_security

Ensure that l2population is enabled. On all nodes running the l2 agent, either Linuxbridge or OpenvSwitch
(namely the compute nodes and nodes running the orchestrator process), in the ml2 ini file set:

Add l2population to the mechanism_drivers line

To the [agent] sections add:

l2_population = True

Depending on the layer 2 technology used in your OpenStack environment to enable layer 2
population additional parameters may need to be set. Check the OpenStack configuration guide
for information about additional layer 2 setting for the layer 2 type and to tenant isolation type
(VLAN, VXLAN of GRE) being used.

5. Configure Nova to use astara in the [DEFAULT] section of /etc/nova/nova.conf set:

If using IPv6:

use_ipv6=True

In the [neutron] section of /etc/nova/nova.conf set:

service_metadata_proxy = True

In /etc/nova/policy.json, replace:

"network:attach_external_network": "rule:admin_api"

with:

"network:attach_external_network": "rule:admin_api or role:service"

6. Start/restart Nova API to read the configuration changes:

restart nova-api

Restart the neutron services:

restart neutron-server
restart neutron-linuxbridge

Stop and disable any L3 agents such as the DHCP agent, L3 agent or the metadata agent.

Create a management network:

neutron net-create mgt # note the ID, it is used in the orchestrator.ini config
neutron subnet-create --name mgt-subnet mgt fdca:3ba5:a17a:acda::/64 --ip-version=6 --ipv6_address_mode=slaac --enable_dhcp

Create a public network:

neutron net-create --shared --router:external public
neutron subnet-create --name public-subnet public 172.16.0.0/24

7. Configure Astara:

For this configuration, we assume an IPv6 Neutron network /w prefix fdca:3ba5:a17a:acda::/64 has been
created to be used as the management network:

20 Chapter 1. Narrative Documentation

Astara Documentation, Release 9.0.0.0b3.dev19

mkdir /etc/astara
cp -r ~/astara/etc/* /etc/astara/
mv /etc/astara/orchestrator.ini.sample /etc/astara/orchestrator.ini
chown astara:astara /etc/astara/*.{ini,json}

Create a ssh keypair to enable ssh key based logins to the router:

ssh-keygen

It is best to copy the public ssh key into the astara configuration directory:

cp ~/.ssh/id_rsa.pub /etc/astara
chmod 600 /etc/astara

In the astara orchestrator configuration file (/etc/astara/orchestrator.ini) make the following changes:

In the [oslo_messaging_rabbit] section set:

rabbit_userid = guest
rabbit_password = guest
rabbit_hosts = 10.0.1.4

Set up logging:

log_file = /var/log/astara/orchestrator.log

Set the prefix of the existing Neutron network to be used used as management network used
during subnet creation (above):

management_prefix = fdca:3ba5:a17a:acda::/64

The neutron subnet id of the management network and subnet:

management_net_id = $management_net_uuid
management_subnet_id = $management_subnet_uuid

The neutron network if of the external network:

external_network_id=$public_network_id
external_subnet_id=$public_subnet_id

Public SSH Key used for SSH’ing into the appliance VMs as user ‘astara’ (this is optional):

ssh_public_key = $path_to_readable_ssh_pub_key #From the above step this should be /etc/astara/id_rsa.pub

The interface driver is used for bringing up a local port on the astara control node that plugs
into the management network. This is specific to the underlying L2 implementation used, set
accordingly:

interface_driver=astara.common.linux.interface.BridgeInterfaceDriver #For Linuxbridge
interface_driver=astara.common.linux.interface.OVSInterfaceDriver #For OpenvSwitch

Correct the provider rules path:

provider_rules_path=/etc/astara/provider_rules.json

In the [keystone_authtoken] section, configure the credentials for the keystone service tenant
as configured in your environment, specifically:

auth_uri = http://127.0.0.1:5000 # Adjust the IP for the current installation
project_name = service

1.6. Astara Installation 21

Astara Documentation, Release 9.0.0.0b3.dev19

password = neutron
username = neutron
auth_url = http://127.0.0.1:35357 # Adjust the IP for the current installation
auth_plugin = password

In the [database] section, configure URL to supported oslo.db backend, ie:

connection = mysql+pymysql://astara:astara@127.0.0.1/astara?charset=utf8

8. Create and Migrate the DB:

Install the PyMySQL pip package:

pip install PyMySQL

And create the database set database access permissions:

mysql -u root -pmysql -e 'CREATE DATABASE astara;'
mysql -u root -pmysql -e "GRANT ALL PRIVILEGES ON astara.* TO 'astara'@'localhost' IDENTIFIED BY 'astara';"
mysql -u root -pmysql -e "GRANT ALL PRIVILEGES ON astara.* TO 'astara'@'%' IDENTIFIED BY 'astara';"
astara-dbsync --config-file /etc/astara/orchestrator.ini upgrade

9. Create or download an Appliance Image

If you don’t plan to build your own appliance image, one can be downloaded for testing at:
http://tarballs.openstack.org/akanda-appliance/images/

If you want to build one yourself instructions are found in the appliance documentation In either case,
upload the image to Glance (this command must be performed in the directory where the image was
downloaded/created):

openstack image create astara --public --container-format=bare --disk-format=qcow2 --file astara.qcow2

Note the image id for the next step

Update /etc/astara/orchestrator.ini and set this in the [router] section:

image_uuid=$image_uuid_in_glance

You may also want to boot appliances with a specific nova flavor, this may be specified in the [router]
section as: Create a new flavor:

nova flavor-create m1.astara 6 512 3 1 --is-public True

Set the flavor in /etc/astara/orchestrator.ini:

instance_flavor=$nova_flavor_id

10. Start astara:

astara-orchestrator –config-file /etc/astara/orchestrator.ini

For Ubuntu or Debian systems use the following to create an upstart script to automatically start astara-
orchestrator on boot:

cat > /etc/init/astara.conf << EOF
description "Astara Orchestrator server"

start on runlevel [2345]
stop on runlevel [!2345]

respawn

22 Chapter 1. Narrative Documentation

http://tarballs.openstack.org/akanda-appliance/images/

Astara Documentation, Release 9.0.0.0b3.dev19

exec start-stop-daemon --start --chuid astara --exec /usr/local/bin/astara-orchestrator -- --config-file=/etc/astara/orchestrator.ini

EOF

Note: For RHEL or CentOS use the command:

sudo -u astara /usr/local/bin/astara-orchestrator --config-file=/etc/astara/orchestrator.ini &

Note: to automatically start the orchestrator process a systemd startup script will need to be created. Start
the astara orchestrator process:

start astara

1.6.3 Use Astara

If you have existing routers in your environment, astara will find them and attempt to boot appliances in Nova. If not,
create a router and it should react accordingly. Otherwise use the following to create a privte network, create a router
and add the network interface to the rputer:

neutron net-create private
neutron subnet-create --name private-subnet private 10.2.0.0/24

neutron router-create MyRouter
neutron router-interface-add MyRouter private

Boot a VM (replacing the <—> with the appropriate information):

nova boot --image <VM image name> --flavor 1 --nic net-id=<private network UUID> <name>

At this time sourcing the admin’s credentials and using the command:

nova list --all-tenants

Output similar to:

+--------------------------------------+--+----------------------------------+--------+------------+-------------+--+
| ID | Name | Tenant ID | Status | Task State | Power State | Networks |
+--------------------------------------+--+----------------------------------+--------+------------+-------------+--+

| 1003335d-640c-4492-8054-80c4d23f9552 | Three | fbf54d3e3fc544a7895701d27139489e | ACTIVE | - | Running | private1=10.3.0.3, fdd6:a1fa:cfa8:f4d0:f816:3eff:fed6:2e3b |
| e75a0429-15cb-41a2-ae7b-890315b75922 | ak-router-6aa27c79-8ed4-4c59-ae83-4c4da725b3ec | d9aa8deb2d2c489e81eb93f30a5b63e8 | ACTIVE | - | Running | private1=fdd6:a1fa:cfa8:f4d0:f816:3eff:feab:c96b; public=fdd6:a1fa:cfa8:b59a:f816:3eff:feb4:29e6; private=fdd6:a1fa:cfa8:eefe:f816:3eff:fe3e:a5e9; mgt=fdd6:a1fa:cfa8:d5ff:f816:3eff:fe3f:4f95, fdca:3ba5:a17a:acda:f816:3eff:fe3f:4f95 |
+--------------------------------------+--+----------------------------------+--------+------------+-------------+--+

The line with the ak-router shows that astara has built the router VM. Further operation and debug information can be
found in the operator tools section.

1.6.4 Clustering astara-orchestrator

The astara-orchestartor service supports clustering among multiple processes spanning multiple nodes to
provide active/active clustering for purposes of load-distribution and high-availability (HA). In this setup, multi-
ple astara-orchestrator processes form a distributed hash ring, in which each is responsible for orches-
trating a subset of virtual appliances. When one astara-orchestrator falls offline, management of its re-
sources are redistributed to remaining nodes. This feature requires the use of an external coordination service
(ie, zookeeper), as provided by the tooz library. To find out more about which services tooz supports, see
http://docs.openstack.org/developer/tooz/drivers.html.

To enable this feature, you must set the following in orchestrator.ini:

1.6. Astara Installation 23

http://docs.openstack.org/developer/tooz/
http://docs.openstack.org/developer/tooz/drivers.html

Astara Documentation, Release 9.0.0.0b3.dev19

[coordination]
enabled=True # enable the feature
url=kazoo://zookeeper.localnet:2181?timeout=5 # a URL to a tooz-supported coordination service
group_id=astara.orchestrator # optional, change this if deploying multiple clusters
heartbeat_interval=1 # optional, tune as needed

1.7 Install an Astara Load Balancer

1.7.1 How to configure Astara to be able to create load balancers

In this example we will create an image that can be used for both a router or a loadbalancer. Then we will configure
both astara and neutron for loadbalancer support, which will use the LBAASV2 commands. We can then use the
LBAASv2 API to create a loadbalancer.

1.7.2 Build loadbalancer applicance image:

Build an image to include loadbalancer support by using one of the two following commands. If you have a license
for nginx plus you will be able to take advantage of some of these nginx-plus features but you must first copy over
your nginx certs. Run this commad in the astara-appliance directory:

ELEMENTS_PATH=diskimage-builder/elements \
DIB_RELEASE=jessie DIB_EXTLINUX=1 \
DIB_ASTARA_ADVANCED_SERVICES=router,loadbalancer \
disk-image-create debian vm astara nginx -o astara-lb

or for nginx plus (nginx certs will need to be copied over before running this command). Run this commad in the
astara-appliance directory:

ELEMENTS_PATH=diskimage-builder/elements \
DIB_RELEASE=jessie DIB_EXTLINUX=1 \
DIB_ASTARA_ADVANCED_SERVICES=router,loadbalancer \
disk-image-create debian vm astara nginx-plus -o astara-lb

1.7.3 Configure Neutron for Astara loadbalancer support

1. Ensure that neutron LBAAS packages are installed or install neutron-lbaas from source as follows:

git clone https://git.openstack.org/openstack/neutron-lbaas
cd neutron-lbaas
pip install -U .

2. Make the following changes to neutron.conf in the [DEFAULT] section:

core_plugin = astara_neutron.plugins.ml2_neutron_plugin.Ml2Plugin
service_plugins = astara_neutron.plugins.ml2_neutron_plugin.L3RouterPlugin,astara_neutron.plugins.lbaas_neutron_plugin.LoadBalancerPluginv2
api_extensions_path = /usr/local/lib/python2.7/dist-packages/astara_neutron/extensions:/usr/local/lib/python2.7/dist-packages/neutron_lbaas/extensions

in the [SERVICE_PROVIDERS] section (you may have to add this section if it doesn’t exist):

service_provider = LOADBALANCERV2:LoggingNoop:neutron_lbaas.drivers.logging_noop.driver.LoggingNoopLoadBalancerDriver:default

3. Create the loadbalancer tables in the neutron database:

24 Chapter 1. Narrative Documentation

Astara Documentation, Release 9.0.0.0b3.dev19

neutron-db-manage --subproject neutron-lbaas upgrade head

1.7.4 Configure Astara for loadbalancer support

1. Make the following changes to orchestrator.conf.

in the [DEFAULT] section:

enabled_drivers = router,loadbalancer

in the [LOADBALANCER] section:

image_uuid = <loadbalancer image ID>
instance_flavor = 6

(If you are using this image for the router also, in the [ROUTER] section, set the image_uuid to this value
also.)

2. Restart the neutron-server and astara services to pick up the changes:

restart neutron-server
restart astara

1.7.5 Create a loadbalancer

1. Build a loadbalancer (this assumes that you have two web servers at ips -WEB1_IP, WEB2_IP which will used in
the following commands):

neutron lbaas-loadbalancer-create --name lb1 private-subnet
neutron lbaas-loadbalancer-show lb1 # Note the VIP address
neutron lbaas-listener-create --loadbalancer lb1 --protocol HTTP --protocol-port 80 --name listener1
neutron lbaas-pool-create --lb-algorithm ROUND_ROBIN --listener listener1 --protocol HTTP --name pool1
neutron lbaas-member-create --subnet private-subnet --address 10.2.0.4 --protocol-port 80 --name mem1 pool1
neutron lbaas-member-create --subnet private-subnet --address 10.2.0.5 --protocol-port 80 --name mem2 pool1
neutron lbaas-healthmonitor-create --delay 3 --type HTTP --max-retries 3 --timeout 3 --pool pool1 --name hm1

2. Once finished you can delete everything using the following:

neutron lbaas-member-delete mem1 pool1
neutron lbaas-member-delete mem2 pool1
neutron lbaas-pool-delete pool1
neutron lbaas-listener-delete listener1
neutron lbaas-loadbalancer-delete lb1

1.8 Astara Developer Quickstart

This guide provides guidance for new developers looking to get up and running with an Astara development environ-
ment. The Astara components may be easily deployed alongside OpenStack using DevStack. For more information
about DevStack visit http://docs.openstack.org/developer/devstack/.

1.8. Astara Developer Quickstart 25

Astara Documentation, Release 9.0.0.0b3.dev19

1.8.1 Deploying Astara using DevStack

Preparation and prerequisites

Deploying DevStack on your local workstation is not recommended. Instead, developers should use a dedicated virtual
machine. Currently, Ubuntu Trusty 14.04 is the tested and supported base operating system. Additionally, you’ll need
at least 4GB of RAM (8 is better) and to have git installed:

sudo apt-get -y install git

First clone the DevStack repository:

sudo mkdir -p /opt/stack/
sudo chown `whoami` /opt/stack
git clone https://git.openstack.org/openstack-dev/devstack /opt/stack/devstack

Configuring DevStack

Next, you will need to enable the Astara plugin in the DevStack configuration and enable the relevant services:

cat >/opt/stack/devstack/local.conf <<END
[[local|localrc]]
enable_plugin astara https://github.com/openstack/astara
enable_service q-svc q-agt astara
disable_service n-net

HOST_IP=127.0.0.1
LOGFILE=/opt/stack/logs/devstack.log
DATABASE_PASSWORD=secret
RABBIT_PASSWORD=secret
SERVICE_TOKEN=secret
SERVICE_PASSWORD=secret
ADMIN_PASSWORD=secret
END

You may wish to SSH into the appliance VMs for debugging purposes. The orchestrator will enable access for the ‘as-
tara’ user for a specified public key. This may be specified by setting ASTARA_APPLIANCE_SSH_PUBLIC_KEY
variable in your devstack config to point to an existing public key. The default is $HOME/.ssh/id_rsa.pub.

Building a Custom Service VM

By default, the Astara plugin downloads a pre-built official Astara image. To build your own from source, enable
BUILD_ASTARA_APPLIANCE_IMAGE and specify a repository and branch to build from:

cat >>/opt/stack/devstack/local.conf <<END

BUILD_ASTARA_APPLIANCE_IMAGE=True
ASTARA_APPLIANCE_REPO=http://github.com/openstack/astara-appliance.git
ASTARA_APPLIANCE_BRANCH=master
END

To build the appliance using locally modified astara-appliance code, you may point devstack at the local git
checkout by setting the ASTARA_APPLIANCE_DIR variable. Ensure that any changes you want included in the
image build have been committed to the repository and it is checked out to the proper commit.

26 Chapter 1. Narrative Documentation

Astara Documentation, Release 9.0.0.0b3.dev19

Deploying

Simply run DevStack and allow time for the deployment to complete:

cd /opt/stack/devstack
./stack.sh

After it has completed, you should have a astara_orchestrator process running alongside the other services
and an Astara router appliance booted as a Nova instance.

1.9 Configuration Options

astara-orchestrator uses oslo.config for configuration, so it’s configuration file format should be very
familiar to OpenStack deployers

1.10 Astara Release Notes

1.10.1 Astara Mitaka Series Release Notes (UNRELEASED)

8.0.0

Astara has dropped a number of legacy convenience hooks available in earlier releases. The hooks complicated au-
tomation and created potential for mismatch of end state and the desired state.

Astara Mitaka Series Release v8.0.0.

New Features

• Blueprint astara-rootwrap - We replace shelling out directly to sudo with the oslo.rootwrap library.

• blueprint autogen-astara-conf-file - This switches astara to use oslo-config-generator, where the contents of our
sample configuration file are configured using a configuration file in etc/oslo-config-generator/.

• Operators may now associate custom drivers and image IDs to tenants, via the Neutron API, to override global
configuration, providing support for dynamic user-provided network functions. To enable this feature, set
enable_byonf=True in orchestrator.ini and be sure the version of astara-neutron loaded
into Neutron supports the BYONF API.

• Astara now supports orchestrating clustered pairs of appliance VMs for Neutron routers that have the been set
to highly-available.

• The orchestrator now pushes local orchestrator-specific configuration into the appliance, allowing services like
the metadata proxy to be configured specifically for current cluster layout.

Upgrade Notes

• Astara will no longer automatically add the external gateway to a router. Previous usage was causing issues with
automation tooling.

• Astara no longer requires the external network and subnet id to be known. In production deployments this step
was handled externally and the internal hooks were often disabled.

1.9. Configuration Options 27

https://blueprints.launchpad.net/astara/+spec/astara-rootwrap
https://blueprints.launchpad.net/astara/+spec/autogen-astara-conf-file

Astara Documentation, Release 9.0.0.0b3.dev19

Deprecation Notes

• The amqp_url config option has been deprecated in favor using oslo.messaging backend specific con-
figution. See example configuration file for an example. The pre-Liberty rabbit options have been removed.

Critical Issues

• The devstack plugin no longer creates the external network as before and instead follows the setup used for
reference implementation.

Bug Fixes

• Bug 1539786 Varible MTU support is now supported by the orchestrator and passed to appliance. This requires
Neutron with MTU extension enabled to support.

• Bug 1524979, Bug 1528338 - astara-debug-router command has been fixed

• Bug 1537500 Fixes tenant_id issue when rebuilding router from the astara-ctl browser

• Bug 1527396 Fixes issue where, after a cluster rebalance, stat machines are created across all workers and
instead ensures they are only created on a single target worker.

• Bug 1524595 astara-ctl warning message for deprecated AMQP configuration

• Bug 1539345 auto added resources break interoperability

• Bug 1524068 Local management port addresses are now allocated from the management subnet rather than
using a hard-coded address, fixing Neutron port address conflicts when clustering astara-orchestrators.

• Bug 152492 Fixed astara-ctl ssh command

• Bug 1535857 The additional “leadership” member reported by zookeeper is now ignored to avoid hashing
resources to a non-existent node.

• Bug 1531597 - Deleted resources are properly invalidated from the local tenant resource cache

28 Chapter 1. Narrative Documentation

https://bugs.launchpad.net/astara/+bug/1539786/
https://bugs.launchpad.net/astara/+bug/1524979/
https://bugs.launchpad.net/astara/+bug/1528338/
https://bugs.launchpad.net/astara/+bug/1537500
https://bugs.launchpad.net/astara/+bug/1527396
https://bugs.launchpad.net/astara/+bug/1524595/
https://bugs.launchpad.net/astara/+bug/1539345
https://bugs.launchpad.net/astara/+bug/1524068/
https://bugs.launchpad.net/astara/+bug/1524592
https://bugs.launchpad.net/astara/+bug/1535857/
https://bugs.launchpad.net/astara/+bug/1531597/

CHAPTER 2

Licensing

Astara is licensed under the Apache-2.0 license and is copyright Akanda, Inc.

29

http://akanda.io

	Narrative Documentation
	What Is Astara
	Service VM Orchestration and Management
	The Service VM (the Astara Appliance)
	Contributing
	Operation and Deployment
	Astara Installation
	Install an Astara Load Balancer
	Astara Developer Quickstart
	Configuration Options
	Astara Release Notes

	Licensing

