
assaytools Documentation
Release 0.1.0

John Chodera and Sonya Hanson

Dec 04, 2018

Contents

1 Documentation 3

2 API Reference 17

3 License 19

i

ii

assaytools Documentation, Release 0.1.0

Assay modeling and Bayesian analysis made easy.

AssayTools is a python library that allows users tomodel automated assays and analyze assay data using powerful
Bayesian techniques that allow complete characterization of the uncertainty in fit models. With AssayTools, you
can

• Createmodelsof experimental assays (e.g. fluorescenceorabsorbanceassaysof ligandbinding fromtitration
curves prepared by automated liquid handlers)

• Analyze data from these assays using powerful Bayesian techniques

• Derive parameters for these experimental assays from real data to use in modeling

• Model new assay configurations to determine expected accuracy and bias across a range of ligand a�inities

The library also shipswith a command-line application for visualizing Tecan Infinite plate reader XMLoutput. When
you install AssayTools, the script will be installed under the name xml2png.

• Download the code

• See it in action

• Get involved

Contents 1

http://lifesciences.tecan.com/products/reader_and_washer/microplate_readers/infinite_m1000_pro
https://github.com/choderalab/assaytools/releases/latest
https://github.com/choderalab/assaytools/tree/master/examples
https://github.com/assaytools/assaytools/issues

assaytools Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Documentation

1.1 Installation

1.1.1 Install with conda

To install AssayTools and its dependencies with conda <conda.pydata.org>‘_, use the following commands:

$ conda install -c omnia assaytools

1.1.2 Install from source

You can install the latest development version of AssayTools from github via pip:

$ pip install git+https://github.com/choderalab/assaytools.git

Testing Your Installation

Running the tests is a great way to verify that everything is working. The test suite uses nose, which you can install
via conda:

$ conda install nose

Then, to run the tests:

$ nosetests -vv assaytools

1.2 Theory

This section describes the theory behind the various Bayesian model fitting schemes in AssayTools.

3

https://nose.readthedocs.org/en/latest/

assaytools Documentation, Release 0.1.0

1.2.1 Bayesian analysis

AssayTools uses Bayesian inference to infer unknown parameters (such as ligand binding free energies) from ex-
perimental spectroscopic data. It does this to allow the complete uncertainty—in the form of the joint distribution
of all unknown parameters—to be rigorously characterized. The most common way to summarize these results is
generally to extract confidence intervals of individual parameters, butmuchmore sophisticated analyses—such as
examining the correlation between parameters—are also possible.

The Bayesian analysis scheme is intended to be modular, and the user can select whether certain e�ects (such as
inner filter e�ects) are incorporated into the model. Below, we describe the components of the model. If an e�ect
that carries unknown nuisance parameters (such as extinction coe�icients for inner filter e�ects), these nuisance
parameters carry additional prior terms along with them and are inferred as part of the inference procedure.

Unknown parameters

For convenience, we define the unknown parameters in the model for reference:

• the true total ligand concentration𝐿true in the well (including all species involving the ligand)

• the true receptor concentration𝑅true (including all species involving the receptor)

Data

For each experiment, the data is given by a set of observations for each well. Each well is associated with some
properties:

• the volume 𝑉 of sample in the well (mostly bu�er)

• a total concentration [𝑅]𝑇 of receptor added to the well

• a total concentration [𝐿]𝑇 of ligand added to the well (or potentially multiple ligands)

• thewell area𝐴with the assumption that the well is cylindrical (allowing the path length 𝑙 to be computed)

and one or more experimental measurements:

• a top fluorescencemeasurement (returning toward the incident excitation light) 𝐹𝑡𝑜𝑝

• a bottom fluorescence measurement (proceeding in the same direction as the incident excitation light)
𝐹bottom

• an absorbancemeasurement𝐴

Priors

Each unknown parameter in themodel is assigned a prior distribution that reflects the state of knowledgewe have
of its value before including the e�ects of the observed data.

Concentrations

While we design the experiment to dispense the intended amount of protein and ligand into each well, the true
amount dispensed into the well will vary due to random pipetting error. The true concentrations of protein𝑅true

and ligand 𝐿true in each well are therefore unknown. Because we propagate the pipetting error along with the
intended concentrations, we have the intended (“stated”) protein concentration 𝑃stated and its standard error
𝛿𝑃stated as input. Similarly, the stated ligand concentration𝐿stated and its error 𝛿𝐿stated are also known.

4 Chapter 1. Documentation

https://en.wikipedia.org/wiki/Bayesian_inference

assaytools Documentation, Release 0.1.0

If we assume the dispensing process is free of bias, the simplest distribution that fits the stated concentration and
its standard deviation without making additional assumptions is a Gaussian.

We assign these true concentrations for the receptor 𝑅true and ligand 𝐿true a prior distribution. If
concentration_priors is set to gaussian, this is precisely what is used

𝑅𝑡𝑟𝑢𝑒 ∼ 𝑁(𝑅𝑠𝑡𝑎𝑡𝑒𝑑, 𝛿𝑅𝑠𝑡𝑎𝑡𝑒𝑑)

𝐿𝑡𝑟𝑢𝑒 ∼ 𝑁(𝐿𝑠𝑡𝑎𝑡𝑒𝑑, 𝛿𝐿𝑠𝑡𝑎𝑡𝑒𝑑)

This is expressed in the pymcmodel as

Ptrue = pymc.Normal('Ptrue', mu=Pstated, tau=dPstated**(-2)) # M
Ltrue = pymc.Normal('Ltrue', mu=Lstated, tau=dLstated**(-2)) # M

Note: pymc uses the precision 𝜏 ≡ 𝜎−2 instead of the variance 𝜎2 as a parameter of the normal distribution.

Gaussian priors have the unfortunate drawback that there is a small but nonzero probability that these concen-
trations would be negative, leading to nonsensical (unphysical) concentrations. To avoid this, we generally use a
lognormal distribution (selected by concentration_priors='lognormal').

Note: The parameters of a lognormal distribution di�er from those of a normal distribution by the relationship
described here. The parameters above ensure that the mean concentration is the stated concentration and the
standard deviation is its experimental uncertainty. The relationship between themean and variance of the normal
distribution 𝜇𝑁 , 𝜎2

𝑁 and the parameters for the lognormal distribution is given by:

𝜇𝐿𝑁 = ln
𝜇2
𝑁√︀

𝜇2
𝑁 + 𝜎2

𝑁

; 𝜎2
𝐿𝑁 = ln

[︃
1 +

(︂
𝜎𝑁

𝜇𝑁

)︂2
]︃

; 𝜏𝐿𝑁 = ln

[︃
1 +

(︂
𝜎𝑁

𝜇𝑁

)︂2
]︃−1

Binding free energy

The ligand binding free energy ∆𝐺 is unknown, and presumed to either be unknown over a large uniform range
with the uniform prior

∆𝐺 ∼ 𝑈(−∆𝐺min,+∆𝐺max)

where we by default take∆𝐺min = ln 10−15 (femtomolar a�inity) and Delta G_mathrm{max} = 0 (molar a�inity),
where∆𝐺 is in units of thermal energy 𝑘𝐵𝑇 .

This is expressed in the pymcmodel as

binding free energy (kT), uniform over huge range
DeltaG = pymc.Uniform('DeltaG', lower=DG_min, upper=DG_max)

This uniform prior has the drawback that a�inities near the extreme measurable ranges are simply unknown with
equal likelihood out to absurd extreme values.

We can attenuate the posterior probabilities at extreme a�inities by using a prior inspired by the range of data
recorded in ChEMBL via the chembl prior, with a Gaussian form

∆𝐺 ∼ 𝑁(0, 𝜎2)

𝜎 = 12.5 kcal/mol

This is expressed in the pymcmodel as

1.2. Theory 5

https://en.wikipedia.org/wiki/Log-normal_distribution
https://www.ebi.ac.uk/chembl/

assaytools Documentation, Release 0.1.0

binding free energy (kT), using a Gaussian prior inspired by ChEMBL
DeltaG = pymc.Normal('DeltaG', mu=0, tau=1./(12.5**2))

Modular components of the Bayesianmodel

We now discuss the various modular components of the Bayesian inference scheme.

These components generally involve models of observed spectroscopic value that are computed from concentra-
tionsof thevarious components [𝑋𝑖]which represent, for example, free receptor𝑅, complexed receptor𝑅𝐿, or free
ligand 𝐿. These concentrations are computed from the current samples of true total concentrations and binding
a�inities using one of the specified bindingmodels described below.

Fluorescence

Fluorescencemodel.

Fluorescence can be measured from either the top, bottom, or both. The true fluorescence depends on the con-
centration of each species𝑋𝑖:

𝐹top = 𝐼𝑒𝑥

[︃∑︁
𝑖

𝑞𝑖(𝑒𝑥, 𝑒𝑚)[𝑋𝑖] + 𝑙𝐹buffer + 𝐹plate

]︃

𝐹bottom = 𝐺bottom · 𝐼𝑒𝑥

[︃∑︁
𝑖

𝑞𝑖(𝑒𝑥, 𝑒𝑚)[𝑋𝑖] + 𝑙𝐹buffer + 𝐹plate

]︃

Here, 𝐼𝑒𝑥 is the incident excitation intensity, 𝑞𝑖(𝑒𝑥, 𝑒𝑚) are the quantum e�iciencies of each species at the exci-
tation/emission wavelengths, 𝐹buffer is a bu�er fluorescence per unit path length, and 𝐹plate is the background
fluorescence of the plate. Notably, without inner filter e�ects, the only factor that causes di�erences between top
andbottom fluorescence is the gain factorG_mathrm{bottom} that captures a potential di�erence in detector gains
between the top and bottom detectors.

Observed fluorescence.

The observed fluorescence 𝐹 obs
top and 𝐹 obs

bottom will di�er from the true fluorescence due to detector noise. Because
the observed fluorescence is reported as the mean of a number of detector measurements from independent
flashes of the Xenon lamp, detector error will be well described by a normal distribution:

𝐹 obs
top ∼ 𝑁(𝑓top, 𝜎

2
top)

𝐹 obs
bottom ∼ 𝑁(𝑓top, 𝜎

2
bottom)

Themeasurement errors 𝜎top and 𝜎bottom are assigned Je�reys priors, which are uniform in ln𝜎

ln𝜎 ∼ 𝑈(−10, ln𝐹𝑚𝑎𝑥)

By default, the same detector error 𝜎 is used for both top and bottom detectors, but separate errors can be used if
link_top_and_bottom_sigma = False.

While the detector error is inferred separately for each experiment since the detector gain may di�er from experi-
ment. If multiple datasets using the same instrument configuration and detector gain are inferred together—such
as the inclusion of calibration experiments with controls—this will help improve the detector error estimate.

6 Chapter 1. Documentation

assaytools Documentation, Release 0.1.0

Quantum e�iciencies.

Since the quantum e�iciencies 𝑞𝑖(𝑒𝑥, 𝑒𝑚) of each species𝑋𝑖 are unknown, they are inferred as nuisance param-
eters as part of the Bayesian inference process. We therefore assign a uniform (informationless) priors to these,
though we use the product 𝐹𝑖 ≡ 𝐼𝑒𝑥𝑞𝑖(𝑒𝑥, 𝑒𝑚) for convenience since 𝐼𝑒𝑥 and the scaling factor to convert ob-
served fluorescence into reported arbitrary fluorescence units is unknown:

𝐹𝑖 ∼ 𝑈(0, 𝐹𝑖,𝑚𝑎𝑥)

𝐹plate ∼ 𝑈(0, 𝐹max)

𝐹buffer ∼ 𝑈(0, 𝐹max/𝑙)

For e�iciency, we compute the maximum allowed values based on an upper limit of these quantities from the
observed data.

We also make e�icient initial guesses for these quantities, which assume that:

• 𝐹buffer assumes the minimum fluorescence signal is explained by only bu�er fluorescence

• 𝐹plate assumes the minimum fluorescence signal is explained by only plate fluorescence

• 𝐹𝐿 assumes the maximum fluorescence signal increase above background is explained by the free ligand
fluorescence

• 𝐹𝑅 assumes the receptor fluorescence is zero

• 𝐹𝑃𝐿 assumes that the maximum fluorescence signal increase above background is explained by complex
fluorescence with 100% complex formation

These assumptions can of course be violated once the sampler starts to infer these quantities.

In the pymcmodel, these priors are implemented via

model['F_PL'] = pymc.Uniform('F_PL', lower=0.0, upper=2*Fmax/min(Pstated.max(),Lstated.max()), value=F_
→˓PL_guess)
model['F_P'] = pymc.Uniform('F_P', lower=0.0, upper=2*(Fmax/Pstated).max(), value=F_P_guess)
model['F_L'] = pymc.Uniform('F_L', lower=0.0, upper=2*(Fmax/Lstated).max(), value=F_L_guess)
model['F_plate'] = pymc.Uniform('F_plate', lower=0.0, upper=Fmax, value=F_plate_guess)
model['F_buffer'] = pymc.Uniform('F_buffer', lower=0.0, upper=Fmax/path_length, value=F_buffer_guess)

If an estimate of 𝐹𝑃𝐿 is known from a prior experiment, this value and its standard error can be specified via a
lognormal distribution

model['F_PL'] = pymc.Lognormal('F_PL', mu=np.log(F_PL**2 / np.sqrt(dF_PL**2 + F_PL**2)), tau=np.sqrt(np.
→˓log(1.0 + (dF_PL/F_PL)**2))**(-2))

Top/bottom detector gain.

The bottom detector relative gain factor is assigned a uniform prior over the log gain:

ln𝐺bottom ∼ 𝑈(−6,+6)

which is implemented in the pymcmodel as

model['log_gain_bottom'] = pymc.Uniform('log_gain_bottom', lower=-6.0, upper=6.0, value=log_gain_guess)

1.2. Theory 7

https://en.wikipedia.org/wiki/Nuisance_parameter
https://en.wikipedia.org/wiki/Nuisance_parameter

assaytools Documentation, Release 0.1.0

Absorbance

Absorbancemodel.

The absorbance is determined by the the extinction coe�icient of each component 𝑋𝑖 (R, L, RL for simple two-
component binding) at the illumination wavelength, as well as any intrinsic absorbance of the plate at that wave-
length.

𝐴 = 1 − 𝑒−𝜖·𝑙·[𝐿]

where 𝜖 is the extinction coe�icient of the species (e.g. free ligand𝐿) at the illumination wavelength (excitation or
emission), 𝑙 is the path length, and 𝑐 is the concentration of the species.

Note: You may be more familiar with the linearized form of Beer’s law (𝐴 = 𝜖𝑙𝑐). It’s easy to see that this comes
fromaTaylor expansion of the above equation, truncated to first order: 1−𝑒−𝜖𝑙𝑐 ≈ 1−

[︀
1 − 𝜖𝑙𝑐 + 𝒪(𝜖𝑙𝑐)2)

]︀
≈ 𝜖𝑙𝑐.

We use the equation above instead because it is muchmore accurate for larger absorbance values.

The plate absorbance is a nuisance parameter that is assigned a uniform informationless prior:

𝐴plate ∼ 𝑈(0, 1)

Currently, AssayTools supports absorbance measurements made at either (or both) the excitation and emission
wavelengths. Absorbancemeasurements performed at the excitationwavelength help constrain the extinction co-
e�icient for primary inner filter e�ects, while absorbancemeasurements at the emissionwavelength help constrain
the extinction coe�icients for secondary inner filter e�ects. Note that even if plates that are not highly transparent
in the excitation or emission wavelengths are used, this still provides useful information—this e�ect is corrected
for by inferring the plate absorbance𝐴plate at the appropriate wavelengths.

Note: Currently, AssayTools only models absorbance for the ligand, using data fromwells in which only ligand in
bu�er is present. In the future, we intend to extend this to support absorbance of all components.

Observed absorbance.

As the detector averages manymeasurements frommultiple flashes of a Xenon lamp for the reported absorbance
𝐴obs, the observedmeasurement can bemodeled with a normal distribution

𝐴obs ∼ 𝑁(𝐴, 𝜎2
abs)

The detector error 𝜎𝐴 is assigned Je�reys priors, which are uniform in ln𝜎abs

ln𝜎abs ∼ 𝑈(−10, 0)

Note: It is critical that if multiple datasets are inferred jointly, they all be from the same plate type.

8 Chapter 1. Documentation

assaytools Documentation, Release 0.1.0

Inner filter e�ects

Primary inner filter e�ect.

At high ligand concentrations, if the ligand has significant absorbance at the excitation wavelength, the amount of
light reaching the bottom of the well is less than the light reaching the top of the well. This is called the primary
inner filter e�ect, and has the net e�ect of attenuating the observed absorbance and fluorescence.

To see where this e�ect comes from, consider the permeation of light through a liquid withmolar concentration 𝑐,
and extinction coe�icient 𝜖.

Fig. 1: Attenuation of light passing through a liquid containing absorbing species.

A slice of width∆𝑙 at depth 𝑙 will absorb some of the incoming light intensity 𝐼(𝑙):

∆𝐼 = −𝜖 · ∆𝑙 · 𝑐 · 𝐼(𝑙)

If we shrink∆𝑙 down to an infinitesimal slice, this gives us a di�erential equation for the intensity 𝐼(𝑙) at depth 𝑙:

𝜕𝐼(𝑙)

𝜕𝑙
= −𝜖 · 𝑐 · 𝐼(𝑙)

It’s easy to see that the solution to this di�erential equation is given by

𝐼(𝑙) = 𝐼0𝑒
−𝜖𝑙𝑐

since this satisfies the di�erential equation:

𝜕𝐼(𝑙)

𝜕𝑙
= 𝐼0(−𝜖𝑐)𝑒−𝜖𝑙𝑐 = −𝜖 · 𝑐 · 𝐼(𝑙)

If only the primary inner filter e�ect is used, both top and bottom fluorescence are attenuated by a factor that can
be computed by integrating the attenuation of incident light over the whole liquid path length:

IFtop/bottom =

∫︁ 1

0

𝑑𝑥𝑒−𝜖𝑒𝑥·𝑥𝑙·𝑐 =

[︂
𝑒−𝜖𝑒𝑥·𝑥𝑙·𝑐

−𝜖𝑒𝑥 · 𝑙 · 𝑐

]︂1
0

=
1 − 𝑒−𝜖𝑒𝑥·𝑙·𝑐

𝜖𝑒𝑥 · 𝑙 · 𝑐

1.2. Theory 9

assaytools Documentation, Release 0.1.0

Note: When 𝜖·𝑙·𝑐 ≪ 1, numerical underflowof the exponential becomesaproblem. Toavoidnegative attenuation
factors, a fourth-order Taylor series approximation of the exponential is used in computing the attenuation factor
if 𝜖 · 𝑙· < 0.01.

Note: Currently, inner filter e�ects are only computed for the free ligand, but we plan to extend this to include a
sum over the e�ects from all species.

Secondary inner filter e�ect.

Similarly, the secondary inner filter e�ect is caused by significant absorbance at the emission wavelength. When
both e�ects are combined, the net attenuation e�ect depends on the geometry of excitation and detection:

Fig. 2: Geometry and light intensities used for inner filter e�ect corrections.
This figure assumes top illumination, and depicts the incident excitation light intensity 𝐼𝑒𝑥, transmitted light 𝐼bottom𝑒𝑥 , and
emitted fluorescent light toward the top 𝐼top𝑒𝑚 and bottom 𝐼bottom𝑒𝑚 detectors. The distance from the top liquid interface is
expressed in terms of the dimensionless 𝑥 ∈ [0, 1] and the path length 𝑙 = 𝑉/𝐴, with liquid volume 𝑉 and well area𝐴.

Consider the shaded slice at depth 𝑥𝑙 depicted in the figure. The excitation light reaching this layer has intensity

𝐼𝑒𝑥(𝑥𝑙) = 𝐼𝑒𝑥𝑒
−𝜖𝑒𝑥·𝑥𝑙·𝑐

10 Chapter 1. Documentation

assaytools Documentation, Release 0.1.0

where 𝑐 is the concentration of the specieswith extinction coe�icient 𝜖𝑒𝑥 (wherewe are only considering the e�ects
from the ligand species at this point, since its concentration can be high).

The secondary inner filter e�ect, because it considers absorbance at a di�erentwavelength from the incident light,
does not attenuate the absorbance.

If both primary and secondary inner filter e�ects are utilized, fluorescence is attenuated by a factor that depends
on the detection geometry.

For top fluorescence, this is given by

IFtop =

∫︁ 1

0

𝑑𝑥 𝑒−𝜖𝑒𝑥·𝑥𝑙·𝑐 𝑒−𝜖𝑒𝑚·𝑥𝑙·𝑐 =

∫︁ 1

0

𝑑𝑥 𝑒−(𝜖𝑒𝑥+𝜖𝑒𝑚)·𝑥𝑙·𝑐 =
1 − 𝑒−(𝜖𝑒𝑥+𝜖𝑒𝑚)𝑙𝑐

(𝜖𝑒𝑥 + 𝜖𝑒𝑚)𝑙𝑐

For bottom fluorescence measurements, the path taken to the detector is di�erent from the incident path length,
so the attenuation factor is given by

IFbottom =

∫︁ 1

0

𝑑𝑥 𝑒−𝜖𝑒𝑥·𝑥𝑙·𝑐 𝑒−𝜖𝑒𝑚·(1−𝑥)𝑙·𝑐 = 𝑒−𝜖𝑒𝑚𝑙𝑐

∫︁ 1

0

𝑑𝑥 𝑒−(𝜖𝑒𝑥−𝜖𝑒𝑚)·𝑥𝑙·𝑐 = 𝑒−𝜖𝑒𝑚𝑙𝑐

[︂
1 − 𝑒−(𝜖𝑒𝑥−𝜖𝑒𝑚)𝑙𝑐

(𝜖𝑒𝑥 − 𝜖𝑒𝑚)𝑙𝑐

]︂

Note: Just as with the primary inner filter e�ect, when 𝜖𝑙𝑐 ≪ 1, numerical underflow of the exponential becomes
a problem. To avoid negative attenuation factors, a fourth-order Taylor series approximation of the exponential is
used in computing the attenuation factor if 𝜖𝑙𝑐 < 0.01.

Extinction coe�icients

Extinction coe�icients at excitation (and possibly emission) wavelengths are needed if either absorbancemeasure-
ments are made or inner filter e�ects are used. These can either be measured separately and provided by the user
or inferred directly as nuisance parameters.

Measured extinction coe�icients.

If the extinction coe�icients have been measured, we have a measurement 𝜖 and corresponding standard error
𝛿𝜖 available. Because extinction coe�icients must be positive, we use a lognormal distirbution to model the true
extinction coe�icients about the measured value

𝜖 ∼ LN(𝜇, 𝜏) where 𝜇 = ln
𝜖2√

𝜖2 + 𝛿2𝜖
, 𝜏 = ln

[︃
1 +

(︂
𝛿𝜖

𝜖

)︂2
]︃−1

Inferred extinction coe�icients.

If the extinction coe�icients have not been measured, they are inferred as nuisance parameters, with priors as-
signed from a uniform distribution with a large maximum and an initial guess based on the extinction coe�icient
of bosutinib at 280 nm

model['epsilon_ex'] = pymc.Uniform('epsilon_ex', lower=0.0, upper=1000e3, value=70000.0) # 1/M/cm
model['epsilon_em'] = pymc.Uniform('epsilon_em', lower=0.0, upper=1000e3, value=0.0) # 1/M/cm

1.2. Theory 11

assaytools Documentation, Release 0.1.0

1.2.2 Bindingmodels

AssayToolshas a variety of bindingmodels implemented. Though theusermust currently specify themodel tobe fit
to thedata,weplan to include theability to automatically select themost appropriatebindingmodel automatically
using reversible-jump Monte Carlo (RJMC), which also permits Bayesian hypothesis testing. All binding models
are subclasses of the BindingModel abstract base class, and users can implement their own binding models as
subclasses.

Two-component bindingmodel

A two-component binding model is implemented in assaytools.bindingmodels.TwoComponentBinding. When
it is known that receptor R associates with ligand L in a 1:1 fashion, we can write the dissociation constant𝐾𝑑 in
terms of the equilibrium concentrations of each species:

𝐾𝑑 =
[𝑅][𝐿]

[𝑅𝐿]

Incorporating conservation of mass constraints

[𝑅]𝑇 = [𝑅] + [𝑅𝐿]

[𝐿]𝑇 = [𝐿] + [𝑅𝐿]

we can eliminate the unknown concentrations of free receptor [𝑅] and free ligand [𝐿] to obtain an expression for
the complex concentration [𝑅𝐿] in terms of fixed quantities (dissociation constant 𝐾𝑑 and total concentrations
[𝑅]𝑇 and [𝐿]𝑇):

𝐾𝑑 =
([𝑅]𝑇 − [𝑅𝐿])([𝐿]𝑇 − [𝑅𝐿])

[𝑅𝐿]

[𝑅𝐿]𝐾𝑑 = ([𝑅]𝑇 − [𝑅𝐿])([𝐿]𝑇 − [𝑅𝐿])

0 = [𝑅𝐿]2 − ([𝑅]𝑇 + [𝐿]𝑇 + 𝐾𝑑)[𝑅𝐿] + [𝑅]𝑇 [𝐿]𝑇

This quadratic equation has closed-form solution, with only one branch of the solution where we require

0 < [𝑅𝐿] < min([𝑅]𝑇 , [𝐿]𝑡)

which gives

𝐾𝑑 =
1

2

[︁
([𝑅]𝑇 + [𝐿]𝑇 + 𝐾𝑑) −

√︀
([𝑅]𝑇 + [𝐿]𝑇 + 𝐾𝑑)2 − 4[𝑅]𝑇 [𝐿]𝑇

]︁
Note that this form is not always numerically stable since [𝑅]𝑇 , [𝐿]𝑇 , and𝐾𝑑 may di�er by orders of magnitude,
leading to slightly negative numbers inside the square-root. AssayTools uses the logarithms of these quantities
instead, and guards against negative values inside the square root.

Competitive bindingmodel

WhenworkingwithN ligands𝐿𝑛 that binda single receptor𝑅, weutilize a competitivebindingmodel implemented
in assaytools.bindingmodels.CompetitiveBindingModel. Here, the dissociation constants𝐾𝑛 are defined as

𝐾𝑛 =
[𝑅][𝐿𝑛]

[𝑅𝐿𝑛]

with corresponding conservation of mass constraints

[𝑅]𝑇 = [𝑅] +

𝑁∑︁
𝑛=1

[𝑅𝐿𝑛]

[𝐿𝑛]𝑇 = [𝐿𝑛] + [𝑅𝐿𝑛], 𝑛 = 1, . . . , 𝑁

12 Chapter 1. Documentation

https://en.wikipedia.org/wiki/Reversible-jump_Markov_chain_Monte_Carlo
https://en.wikipedia.org/wiki/Bayes_factor

assaytools Documentation, Release 0.1.0

The solution must also satisfy some constraints:

0 ≤ [𝑅𝐿𝑛] ≤ min([𝐿𝑛], [𝑅]𝑇) , 𝑛 = 1, . . . , 𝑁

𝑁∑︁
𝑛=1

[𝑅𝐿𝑛] ≤ [𝑅]𝑇

We can rearrange these expressions to give

[𝑅][𝐿𝑛] − [𝑅𝐿𝑛]𝐾𝑛 = 0 , 𝑛 = 1, . . . , 𝑁

and eliminate [𝑅𝐿𝑛] and [𝑅] to give(︃
[𝑅]𝑇 −

𝑁∑︁
𝑛=1

[𝑅𝐿𝑛]

)︃
· ([𝐿𝑛]𝑇 − [𝑅𝐿𝑛]) − [𝑅𝐿𝑛]𝐾𝑛 = 0 , 𝑛 = 1, . . . , 𝑁

This leads to a coupled series of equations that cannot easily be solved in closed form, but are straightforward
to solve numerically using the solver scipy.optimize.fsolve(), starting from an initial guess that ensures the
constraints remain satisfied.

General bindingmodel

Amore general binding model is available in assaytools.bindingmodels.GeneralBindingModel.

A general series of𝑁 equilibrium reactions involving the interconversion of𝐾 components𝑋𝑗 , which may repre-
sent individual species or complexes, and have the form

𝐾𝑛 =

𝐾∏︁
𝑗=1

[𝑋𝑗]
𝑠𝑛𝑗 , 𝑛 = 1, . . . , 𝑁

with corresponding conservation of mass constraints

𝐾∑︁
𝑗=1

𝑐𝑚𝑗 [𝑋𝑗] = 𝑞𝑚 , 𝑚 = 1, . . . ,𝑀

This problem can be specified in terms of

• an𝑁 − 𝑣𝑒𝑐𝑡𝑜𝑟 equilibrium constant vector𝐾 ≡ (𝐾𝑛)

• an𝑁 ×𝐾 stoichiometry matrix 𝑆 ≡ (𝑠𝑛𝑗)

• an𝑀 ×𝐾 mass conservation matrix𝐶 ≡ (𝑐𝑚𝑗)

• an𝑀 -vector𝑄 ≡ (𝑞𝑚) of total concentrations across all species

For example, for a simple binding reaction𝑅 + 𝐿
 𝑅𝐿, the species𝑋𝑗 are {𝑅,𝐿,𝑅𝐿}, and we have

𝐾 = [𝐾𝑑]

𝑆 =
[︀
+1 +1 −1

]︀
𝐶 =

[︂
+1 0 +1
0 +1 0

]︂
𝑄 =

[︂
[𝑅]tot
[𝐿]tot

]︂

1.2. Theory 13

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html#scipy.optimize.fsolve

assaytools Documentation, Release 0.1.0

A competitive binding reaction𝑅 + 𝐿
 𝑅𝐿 and𝑅 + 𝑃
 𝑅𝑃 with species {𝑅,𝐿, 𝑃,𝑅𝐿,𝑅𝑃}, we have

𝐾 =

[︂
𝐾1

𝐾2

]︂
𝑆 =

[︂
+1 +1 0 −1 0
+1 0 +1 0 −1

]︂

𝐶 =

⎡⎣+1 0 0 +1 +1
0 +1 0 +1 0
0 0 + 0 +1

⎤⎦
𝑄 =

⎡⎣[𝑅]tot
[𝐿]tot
[𝑃]tot

⎤⎦
Because the equilibrium constants𝐾𝑛 and concentrations [𝑋𝑗]must be positive but can range over many orders
of magnitude, we represent these quantities by their logarithms, resulting in the equations

0 = − log𝐾𝑛 +
𝐾∑︁
𝑗=1

𝑠𝑛𝑗 log[𝑋𝑗] , 𝑛 = 1, . . . , 𝑁

0 = − log 𝑞𝑚 + log
∑︁

𝑗,𝑐𝑚𝑗>0

𝑒log 𝑐𝑚𝑗+log[𝑋𝑗] , 𝑚 = 1, . . . ,𝑀

The equilibrium concentrations [𝑋𝑖] is found as the solution to this set of equations using 𝑦𝑗 ≡ log[𝑋𝑗], solved by
the numerical root-finding function scipy.optimize.root() using the vector-valued function 𝑓(𝑦) and its Jaco-
bian 𝐽(𝑦):

𝑓𝑛(𝑥) ≡ − log𝐾𝑛 +

𝐾∑︁
𝑗=1

𝑠𝑛𝑗 log[𝑋𝑗] , 𝑛 = 1, . . . , 𝑁

𝑓𝑚(𝑥) ≡ − log 𝑞𝑚 + log
∑︁

𝑗,𝑐𝑚𝑗>0

𝑒log 𝑐𝑚𝑗+log[𝑋𝑗] , 𝑚 = (𝑁 + 1), . . . , (𝑁 + 𝑀)

where the log
∑︀𝑁

𝑛=1 𝑒
𝑎𝑛 operation can be computed in a numerically stable manner using the scipy.misc.

logsumexp() function. The Jacobian 𝐽(𝑦) is given by

𝐽𝑛𝑗 ≡ 𝑠𝑛𝑗 , 𝑛 = 1, . . . , 𝑁

𝐽𝑚𝑗 ≡
𝑐𝑚𝑗𝑒

𝑦𝑗

𝐾∑︀
𝑘=1

𝑐𝑚𝑘𝑒𝑦𝑘

, 𝑚 = (𝑁 + 1), . . . , (𝑁 + 𝑀)

where the scipy.misc.logsumexp() function is once again used to compute rows𝑚 = (𝑁 + 1), . . . , (𝑁 + 𝑀) in
a numerically stable manner.

1.3 Useful Scripts

1.3.1 xml2png

Converts xml data file output from the Tecan Infinite M1000 Pro plate reader to png plot of fluorescence and ab-
sorbance values. It allows for the quick visual inspection of raw experimental results.

$ xml2png *.xml --singlet 'singlet_96'

14 Chapter 1. Documentation

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.root.html#scipy.optimize.root
https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.logsumexp.html#scipy.misc.logsumexp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.logsumexp.html#scipy.misc.logsumexp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.misc.logsumexp.html#scipy.misc.logsumexp

assaytools Documentation, Release 0.1.0

1.3.2 quickmodel

Builds quick Bayesian model of both spectra and single wavelength two component binding experiments.

As input, it requires xmloutput filesof theexperiment formplate readerandapythonscript(inputs.py) that includes
all experimental design details.

1. Run calculate_L_stated_array to generate ligand concentration array and copy it into inputs.py.

2. Construct inputs.py script based on experimental design.

3. Run‘quickmodel‘.

$ quickmodel --inputs 'inputs' --type 'singlet' --nsamples 10000

inputs.py

inputs.py should be manually constructed to record experimental design details, following the layout of
of inputs_example.py file. Ligand concentration array (Lstated section) can be constructed using calcu-
late_L_stated_array.py script.

Sections of ‘inputs.py‘

• xml_file_path : relative path to xml plate reader output files.

• file_set : option to groupmultiple experimental sets with a dictionary key.

• ligand_order : List of ligand names per each experiment set (one protein, one bu�er row). If None Python
object is specified as ligand name in this list, quickmodel analysis will skip the analysis of that experiment.
For example:

'ligand_order' : [None, None, 'ligand3', 'ligand4']

• section : Data section label of Tecan Infinite M1000 Pro plate reader as specified in its method.

• wavelength : Emission wavelength picked for analysis (nm).

• Lstated : Experimental value of ligand concentration (M), in NumPy array form. It can be constructed using
calculate_L_stated_array.py script.

• L_error : Estimated% error in stated ligand concentrations.

• Pstated : Experimental value of protein concentration (M).

• P_error : Estimated% error in stated protein concentration.

• assay_volume : Volume of each assay sample (L).

• well_area : Area of microtiter plate well (cm^2)

calculate_L_stated_array.py

Generates Numpy array of stated ligand concentration (Lstated) for logarithmic or linear dilution along a row. This
numpy array is necessary to construct inputs.py file for quickmodel.py analysis. Provide information on how ligand
titration is constructed: number of wells in each titration (–n_wells), highest and lowest ligand concentrations in
molar units (–h_conc and –l_conc), and serial dilution mode (–dilution, linear or logarithmic) as inputs.

$ calculate_Lstated_array --n_wells 12 --h_conc 8e-06 --l_conc 2.53e-09 --dilution logarithmic

The numpy array this script prints out must be directly copied to Lstated section of inputs.py.

1.3. Useful Scripts 15

assaytools Documentation, Release 0.1.0

16 Chapter 1. Documentation

CHAPTER2

API Reference

Note: This section is under heavy construction! For now, see the examples directory: https://github.com/
choderalab/assaytools/tree/master/examples

2.1 Analysis Functions

AssayTools provides a number of analysis functions.

Here’s an example

>>> import assaytools
>>> dataset = assaytools.load('dataset.xml')

</div>

17

https://github.com/choderalab/assaytools/tree/master/examples
https://github.com/choderalab/assaytools/tree/master/examples

assaytools Documentation, Release 0.1.0

18 Chapter 2. API Reference

CHAPTER3

License

AssayTools is licensed under the Lesser GNU General Public License (LGPL v2.1+).

19

	Documentation
	API Reference
	License

