

 This Asphalt framework component provides a WAMP [http://wamp-proto.org/] (Web Application Message Protocol) client,
implemented on top of the autobahn [https://pypi.python.org/pypi/autobahn] library.

Table of contents

	Configuration
	Multiple clients

	User guide
	Calling remote procedures

	Registering procedure handlers

	Publishing messages

	Subscribing to topics

	Mapping WAMP exceptions to Python exceptions

	Using registries to structure your application

	Implementing dynamic authentication and authorization

	Version history

	API reference

Configuration

WAMP, being a routed protocol, requires a router to connect to. If you do not have one already,
the reference implementation, Crossbar [http://crossbar.io/], should work nicely. The recommended way of setting it up
is with Docker [https://docs.docker.com/engine/installation/], though setting up a dedicated virtualenv [http://python-guide-pt-br.readthedocs.io/en/latest/dev/virtualenvs/] for it would also do the trick.

Most WAMP clients need very little configuration. You usually have to set the realm name, host name
(if not running on localhost) and port (if not running on port 8080) and TLS, if connecting to a
remote instance securely.

Suppose you’re connecting to realm myrealm on crossbar.example.org, port 8181 using TLS,
your configuration would look like this:

components:
 wamp:
 realm: myrealmname
 host: crossbar.example.org
 port: 8181
 tls: true

Your wamp client resource (default) would then be accessible on the context as ctx.wamp.

Multiple clients

You can also configure multiple WAMP clients if necessary. For that, you will need to have a
structure along the lines of:

components:
 wamp:
 tls: true
 clients:
 wamp1:
 realm: myrealmname
 host: crossbar.example.org
 port: 8181
 wamp2:
 realm: otherrealm
 host: crossbar.company.com

In this example, two client resources (wamp1 / ctx.wamp1 and wamp2 / ctx.wamp2) are
created. The first one is like the one in the previous example. The second connects to the realm
named otherrealm on crossbar.company.com on the default port using TLS. Setting
tls: true (or any other option) on the same level as clients means it’s the default value
for all clients.

For a comprehensive list of all client options, see the documentation of the the
WAMPClient class.

User guide

The following sections explain how to use the most common functions of a WAMP client.
The more advanced options have been documented in the API reference.

For practical examples, see the examples directory [https://github.com/asphalt-framework/asphalt-wamp/tree/2.2.2/examples].

Calling remote procedures

To call a remote procedure, use the call() method:

result = await ctx.wamp.call('procedurename', arg1, arg2, arg3='foo')

To receive progressive results from the call, you can give a callback as the on_progress
option:

def progress(status):
 print('operation status: {}'.format(status))

result = await ctx.wamp.call('procedurename', arg1, arg2, arg3='foo',
 options=dict(on_progress=progress))

To set a time limit for how long to wait for the call to complete, use the timeout option:

Wait 10 seconds until giving up
result = await ctx.wamp.call('procedurename', arg1, arg2, arg3='foo', options=dict(timeout=10))

Note

This will not stop the remote handler from finishing; it will just make the client
stop waiting and discard the results of the call.

Registering procedure handlers

To register a procedure on the router, create a callable that takes a
CallContext as the first argument and use the
call() method to register it:

async def procedure_handler(ctx: CallContext, *args, **kwargs):
 ...

await ctx.wamp.register(procedure_handler, 'my_remote_procedure')

The handler can be either an asynchronous function or a regular function, but the latter will
obviously have fewer use cases due to the lack of await.

To send progressive results, you can call the progress callback on the
CallContext object. For this to work, the caller must have used the
on_progress option when making the call. Otherwise progress will be None.

For example:

async def procedure_handler(ctx: CallContext, *args, **kwargs):
 for i in range(1, 11):
 await asyncio.sleep(1)
 if ctx.progress:
 ctx.progress('{}% complete'.format(i * 10))

 return 'Done'

await ctx.wamp.register(procedure_handler, 'my_remote_procedure')

Publishing messages

To publish a message on the router, call publish() with the
topic as the first argument and then add any positional and keyword arguments you want to include
in the message:

await ctx.wamp.publish('some_topic', 'hello', 'world', another='argument')

By default, publications are not acknowledged by the router. This means that a published message
could be silently discarded if, for example, the publisher does not have proper permissions to
publish it. To avoid this, use the acknowledge option:

await ctx.wamp.publish('some_topic', 'hello', 'world', another='argument',
 options=dict(acknowledge=True))

Subscribing to topics

You can use the subscribe() method to receive published
messages from the router:

async def subscriber(ctx: EventContext, *args, **kwargs):
 print('new message: args={}, kwargs={}'.format(args, kwargs))

await ctx.wamp.subscribe(subscriber, 'some_topic')

Just like procedure handlers, subscription handlers can be either an asynchronous or regular
functions.

Mapping WAMP exceptions to Python exceptions

Exceptions transmitted over WAMP are identified by a specific URI. WAMP errors can be mapped to
Python exceptions by linking a specific URI to a specific exception class by means of either
exception(),
map_exception() or
map_exception().

When you map an exception, you can raise it in your procedure or subscription handlers and it will
be automatically translated using the given error URI so that the recipients will be able to
properly map it on their end as well. Likewise, when a matching error is received from the router,
the appropriate exception class is instantiated and raised in the calling code.

Any unmapped exceptions manifest themselves as ApplicationError [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.exception.ApplicationError]
exceptions.

Using registries to structure your application

While it may at first seem convenient to register every procedure and subscription handler using
register() and
subscribe(), it does not scale very well when your
handlers are distributed over several packages and modules.

The WAMPRegistry class provides an alternative to this.
Each registry object stores registered procedure handlers, subscription handlers and mapped
exceptions, and can apply defaults on each of these. Each registry can have a separate namespace
prefix so you don’t have to repeat it in every single procedure name, topic or mapped error.

Suppose you want to register two procedures and one subscriber, all under the foo prefix and
you want to apply the invoke='roundrobin' setting to all procedures:

from asphalt.wamp import WAMPRegistry

registry = WAMPRegistry('foo', procedure_defaults={'invoke': 'roundrobin'})

@registry.procedure
def multiply(ctx, factor1, factor2):
 return factor1 * factor2

@registry.procedure
def divide(ctx, numerator, denominator):
 return numerator / denominator

@registry.subscriber
def message_received(ctx, message):
 print('new message: %s' % message)

To use the registry, pass it to the WAMP component as an option:

class ApplicationComponent(ContainerComponent):
 async def start(ctx):
 ctx.add_component('wamp', registry=registry)
 await super.start(ctx)

This will register the foo.multiply, foo.divide procedures and a subscriptions for the
foo.message_received topic.

Say your procedures and/or subscribers are spread over several modules and you want a different
namespace for every module, you could have a separate registry in every module and then combine
them into a single registry using add_from():

from asphalt.wamp import WAMPRegistry

from myapp.services import accounting, deliveries, production # these are modules

registry = WAMPRegistry()
registry.add_from(accounting.registry, 'accounting')
registry.add_from(deliveries.registry, 'deliveries')
registry.add_from(production.registry, 'production')

You can set the prefix either in the call to add_from()
or when creating the registry of each subsection. Note that if you do both, you end up with two
prefixes!

Implementing dynamic authentication and authorization

While static configuration of users and permissions may work for trivial applications, you will
probably find yourself wanting for more flexibility for both authentication and authorization as
your application grows larger. Crossbar [http://crossbar.io/], the reference WAMP router implementation, supports
dynamic authentication and dynamic authorization. That means that instead of a preconfigured
list of users or permissions, the router itself will call named remote procedures to determine
whether the credentials are valid (authentication) or whether a session has permission to
register/call a procedure or subscribe/publish to a topic (authorization).

The catch-22 in this is that the WAMP client that provides these procedures has to have
permission to register these procedures. This chicken and egg problem can be solved by providing
a trusted backdoor for this particular client. In the example below, the client providing the
authenticator and authorizer services connects via port 8081 which will be only made accessible for
that particular client. Unlike the other two configured roles, the server role has a static
authorization configuration, which is required for this to work.

version: 2
workers:
- type: router
 realms:
 - name: myrealm
 roles:
 - name: regular
 authorizer: authorize
 - name: admin
 authorizer: authorize
 - name: server
 permissions:
 - uri: "*"
 allow: {call: true, publish: true, register: true, subscribe: true}
 transports:
 - type: websocket
 endpoint:
 type: tcp
 port: 8080
 auth:
 ticket:
 type: dynamic
 authenticator: authenticate
 - type: websocket
 endpoint:
 type: tcp
 port: 8081
 auth:
 anonymous:
 type: static
 role: server

The client performing the server role will then register the authenticate() and
authorize() procedures on the router:

from typing import Dict

from asphalt.core import ContainerComponent
from asphalt.wamp import CallContext, WAMPRegistry
from autobahn.wamp.exception import ApplicationError

registry = WAMPRegistry()
users = {
 'joe_average': ('1234', 'regular'),
 'bofh': ('B3yt&4_+', 'admin')
}

@registry.procedure
def authenticate(ctx: CallContext, realm: str, auth_id: str, details: Dict[str, Any]):
 # Don't do this in real apps! This is a security hazard!
 # Instead, use a password hashing algorithm like argon2, scrypt or bcrypt
 user = users.get(authid)
 if user:
 # This applies for "ticket" authentication as configured above
 password, role = user
 if password == details['ticket']:
 return {'authrole': role}

 raise ApplicationError(ApplicationError.AUTHENTICATION_FAILED, 'Authentication failed')

@registry.procedure
def authorize(ctx: CallContext, session: Dict[str, Any], uri: str, action: str):
 # Cache any positive answers
 if session['authrole'] == 'regular':
 # Allow regular users to call and subscribe to public.*
 if action in ('call', 'subscribe') and uri.startswith('public.'):
 return {'allow': True, 'cache': True}
 elif session['authrole'] == 'admin':
 # Allow admins to call, subscribe and publish anything anywhere
 # (but not register procedures)
 if action in ('call', 'subscribe', 'publish'):
 return {'allow': True, 'cache': True}

 return {'allow': False}

class ServerComponent(ContainerComponent):
 async def start(ctx):
 ctx.add_component('wamp', registry=registry)
 await super().start(ctx)

For more information, see the Crossbar documentation:

	Dynamic authentication [http://crossbar.io/docs/Dynamic-Authenticators/]

	Dynamic authorization [http://crossbar.io/docs/Authorization/#dynamic-authorization]

Warning

At the time of this writing (2017-04-29), caching of authorizer responses has not been
implemented in Crossbar. This documentation assumes that it will be present in a future
release.

Version history

This library adheres to Semantic Versioning [http://semver.org/].

2.2.2 (2018-03-02)

	Fixed error in Client.stop() when the session is already None

2.2.1 (2018-02-22)

	Fixed mapped custom exceptions being reported via asphalt-exceptions

2.2.0 (2018-02-15)

	Added integration with asphalt-exceptions

	Raised connection logging level to INFO

	Added a configurable shutdown timeout

	Renamed WAMPClient.close() to WAMPClient.stop()

	Improved the reliability of the connection/session teardown process

2.1.0 (2017-09-21)

	Added the protocol_options option to WAMPClient

	Added the connection_timeout option to WAMPClient

2.0.1 (2017-06-07)

	Fixed failure to register option-less procedures and subscriptions added from a registry

2.0.0 (2017-06-07)

	BACKWARD INCOMPATIBLE Upgraded minimum Autobahn version to v17.5.1

	BACKWARD INCOMPATIBLE Changed the default value of the path option on WAMPClient to
/ws to match the default Crossbar configuration

	BACKWARD INCOMPATIBLE Changed subscriptions to use the details keyword argument to accept
subscription details (since details_arg is now deprecated in Autobahn)

	BACKWARD INCOMPATIBLE Replaced SessionJoinEvent.session_id with the details attribute
which directly exposes all session details provided by Autobahn

	BACKWARD INCOMPATIBLE Changed the way registration/subscription/call/publish options are
passed. Keyword arguments were replaced with a single options keyword-only argument.

	BACKWARD INCOMPATIBLE Registry-based subscriptions and exception mappings now inherit the
parent prefixes, just like procedures did previously

	Added compatibility with Asphalt 4.0

	Added the WAMPClient.details property which returns the session details when joined to one

	Fixed error during WAMPClient.close() if a connection attempt was in progress

	Fixed minor documentation errors

1.0.0 (2017-04-29)

	Initial release

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 asphalt	

 	
 	
 asphalt.wamp.client	

 	
 	
 asphalt.wamp.component	

 	
 	
 asphalt.wamp.context	

 	
 	
 asphalt.wamp.events	

 	
 	
 asphalt.wamp.registry	

Index

 A
 | C
 | D
 | E
 | H
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | W

A

 	
 	add_from() (asphalt.wamp.registry.WAMPRegistry method)

 	add_procedure() (asphalt.wamp.registry.WAMPRegistry method)

 	add_subscriber() (asphalt.wamp.registry.WAMPRegistry method)

 	asphalt.wamp.client (module)

 	
 	asphalt.wamp.component (module)

 	asphalt.wamp.context (module)

 	asphalt.wamp.events (module)

 	asphalt.wamp.registry (module)

C

 	
 	call() (asphalt.wamp.client.WAMPClient method)

 	CallContext (class in asphalt.wamp.context)

 	
 	connect() (asphalt.wamp.client.WAMPClient method)

 	ConnectionError

D

 	
 	details (asphalt.wamp.client.WAMPClient attribute)

E

 	
 	EventContext (class in asphalt.wamp.context)

 	
 	exception() (asphalt.wamp.registry.WAMPRegistry method)

H

 	
 	handler (asphalt.wamp.registry.Procedure attribute)

 	(asphalt.wamp.registry.Subscriber attribute)

M

 	
 	map_exception() (asphalt.wamp.client.WAMPClient method)

 	(asphalt.wamp.registry.WAMPRegistry method)

N

 	
 	name (asphalt.wamp.registry.Procedure attribute)

O

 	
 	options (asphalt.wamp.registry.Procedure attribute)

 	(asphalt.wamp.registry.Subscriber attribute)

P

 	
 	Procedure (class in asphalt.wamp.registry)

 	
 	procedure() (asphalt.wamp.registry.WAMPRegistry method)

 	publish() (asphalt.wamp.client.WAMPClient method)

R

 	
 	register() (asphalt.wamp.client.WAMPClient method)

S

 	
 	session_id (asphalt.wamp.client.WAMPClient attribute)

 	SessionJoinEvent (class in asphalt.wamp.events)

 	SessionLeaveEvent (class in asphalt.wamp.events)

 	start() (asphalt.wamp.component.WAMPComponent method)

 	
 	stop() (asphalt.wamp.client.WAMPClient method)

 	subscribe() (asphalt.wamp.client.WAMPClient method)

 	Subscriber (class in asphalt.wamp.registry)

 	subscriber() (asphalt.wamp.registry.WAMPRegistry method)

T

 	
 	topic (asphalt.wamp.registry.Subscriber attribute)

W

 	
 	WAMPClient (class in asphalt.wamp.client)

 	
 	WAMPComponent (class in asphalt.wamp.component)

 	WAMPRegistry (class in asphalt.wamp.registry)

asphalt.wamp.client

	
exception asphalt.wamp.client.ConnectionError

	Raised when there was an error connecting to the WAMP router.

	
class asphalt.wamp.client.WAMPClient(host='localhost', port=8080, path='/ws', realm='realm1', *, protocol_options=None, connection_timeout=10, reconnect_delay=5, max_reconnection_attempts=15, shutdown_timeout=15, registry=None, tls=False, tls_context=None, serializer=None, auth_method='anonymous', auth_id=None, auth_secret=None)

	A WAMP client.

	Variables

	
	realm_joined (Signal) – a signal (SessionJoinEvent) dispatched
when the client has joined the realm and has registered any procedures and subscribers on
the router

	realm_left (Signal) – a signal (SessionLeaveEvent) dispatched
when the client has left the realm

	Parameters

	
	host (str [https://docs.python.org/3/library/stdtypes.html#str]) – host address of the WAMP router

	port (int [https://docs.python.org/3/library/functions.html#int]) – port to connect to

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – HTTP path on the router

	realm (str [https://docs.python.org/3/library/stdtypes.html#str]) – the WAMP realm to join the application session to (defaults to the resource
name if not specified)

	protocol_options (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – dictionary of Autobahn’s websocket protocol options [http://autobahn.readthedocs.io/en/latest/websocket/programming.html#websocket-options]

	connection_timeout (float [https://docs.python.org/3/library/functions.html#float]) – maximum time to wait for the client to connect to the router and
join a realm

	reconnect_delay (float [https://docs.python.org/3/library/functions.html#float]) – delay between connection attempts (in seconds)

	max_reconnection_attempts (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – maximum number of connection attempts before giving up

	shutdown_timeout (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][float [https://docs.python.org/3/library/functions.html#float]]) – maximum number of seconds to wait for the client to complete its
shutdown sequence (unregister procedures/subscriptions, wait for running handlers to
finish, leave the realm)

	registry (Union [https://docs.python.org/3/library/typing.html#typing.Union][WAMPRegistry, str [https://docs.python.org/3/library/stdtypes.html#str], None]) – a WAMPRegistry instance, a
module:varname reference or resource name of one

	tls (bool [https://docs.python.org/3/library/functions.html#bool]) – True to use TLS when connecting to the router

	tls_context (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext], None]) – an SSLContext [https://docs.python.org/3/library/ssl.html#ssl.SSLContext] instance or the resource name of one

	serializer (Union [https://docs.python.org/3/library/typing.html#typing.Union][Serializer [http://asphalt-serialization.readthedocs.io/en/latest/modules/api.html#asphalt.serialization.api.Serializer], str [https://docs.python.org/3/library/stdtypes.html#str], None]) – a asphalt.serialization.api.Serializer [http://asphalt-serialization.readthedocs.io/en/latest/modules/api.html#asphalt.serialization.api.Serializer] instance or the resource
name of one

	auth_method (str [https://docs.python.org/3/library/stdtypes.html#str]) – authentication method to use (valid values are currently anonymous,
wampcra and ticket)

	auth_id (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – authentication ID (username)

	auth_secret (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – secret to use for authentication (ticket or password)

	
coroutine call(self, endpoint, *args, options=None, **kwargs)

	Call an RPC function.

	Parameters

	
	endpoint (str [https://docs.python.org/3/library/stdtypes.html#str]) – name of the endpoint to call

	args – positional arguments to call the endpoint with

	options (Union [https://docs.python.org/3/library/typing.html#typing.Union][CallOptions [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.types.CallOptions], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], None]) – either an Autobahn call options object or a dictionary of keyword arguments
to make one

	kwargs – keyword arguments to call the endpoint with

	Returns

	the return value of the call

	Raises

	TimeoutError [https://docs.python.org/3/library/exceptions.html#TimeoutError] – if the call times out

	
connect()

	Connect to the WAMP router and join the designated realm.

When the realm is successfully joined, exceptions, procedures and event subscriptions from
the registry are automatically registered with the router.

The connection process is restarted if connection, joining the realm or registering the
exceptions/procedures/subscriptions fails. If max_connection_attempts is set, it will
limit the number of attempts. If this limit is reached, the future gets the last
exception set to it. Otherwise, the process is repeated indefinitely until it succeeds.

If the realm has already been joined, the future completes instantly.

	Raises

	ConnectionError – if there is a protocol level problem connecting to the router

	Return type

	Future

	
details

	Return the session details object provided by Autobahn if the session has been established.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][SessionDetails [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.types.SessionDetails]]

	
map_exception(exc_class, error)

	Map a Python exception to a WAMP error.

	Parameters

	
	exc_class (Type [https://docs.python.org/3/library/typing.html#typing.Type][BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]]) – an exception class

	error (str [https://docs.python.org/3/library/stdtypes.html#str]) – the WAMP error code

	Return type

	None

	
coroutine publish(self, topic, *args, options=None, **kwargs)

	Publish an event on the given topic.

	Parameters

	
	topic (str [https://docs.python.org/3/library/stdtypes.html#str]) – the topic to publish on

	args – positional arguments to pass to subscribers

	options (Union [https://docs.python.org/3/library/typing.html#typing.Union][PublishOptions [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.types.PublishOptions], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], None]) – either an Autobahn publish options object or a dictionary of keyword
arguments to make one

	kwargs – keyword arguments to pass to subscribers

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]

	Returns

	publication ID (if the acknowledge option is True)

	
coroutine register(self, handler, name=None, options=None)

	Add a procedure handler to the registry and attempt to register it on the router.

	Parameters

	
	handler (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – callable that handles calls for the given endpoint

	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – name of the endpoint to register (e.g. x.y.z); omit to use the internal
name of the callable

	options (Union [https://docs.python.org/3/library/typing.html#typing.Union][RegisterOptions [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.types.RegisterOptions], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], None]) – either an Autobahn register options object or a dictionary of keyword
arguments to make one

Note

the details_arg option is set by WAMPClient itself so do not attempt to set
it yourself.

	Return type

	None

	
session_id

	Return the current WAMP session ID.

	Return type

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]

	Returns

	the session ID or None if not in a session.

	
coroutine stop()

	Finish outstanding tasks and then disconnect from the router.

First, all subscriptions and registrations are undone to prevent more publications or calls
from coming in. Next, all outstanding tasks are awaited on. Finally, the client leaves the
realm and disconnects from the router.

	
coroutine subscribe(self, handler, topic, options=None)

	Add a WAMP event subscriber to the registry and attempt to register it on the router.

	Parameters

	
	handler (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – the callable that is called when a message arrives

	topic (str [https://docs.python.org/3/library/stdtypes.html#str]) – topic to subscribe to

	options (Union [https://docs.python.org/3/library/typing.html#typing.Union][SubscribeOptions [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.types.SubscribeOptions], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], None]) – either an Autobahn subscribe options object or a dictionary of keyword
arguments to make one

Note

the details option is set by WAMPClient itself so do not attempt to set it
yourself.

	Return type

	None

asphalt.wamp.component

	
class asphalt.wamp.component.WAMPComponent(clients=None, **default_client_args)

	Creates one or more WAMPClient resources.

If the clients argument is omitted or empty, a default client with the context
attribute wamp will be created.

If clients is defined, any keyword arguments to the component become default options
for the clients.

If you wish to change the context attribute of a WAMP client, use the context_attr
argument.

	Parameters

	
	clients (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]]) – a dictionary of resource name ⭢ WAMPClient constructor arguments

	default_client_args – WAMPClient base options for all clients or arguments
for the default client if clients is not specified

	
coroutine start(self, ctx)

	Perform any necessary tasks to start the services provided by this component.

	In this method, components typically use the context to:

	
	add resources and/or resource factories to it
(add_resource() [http://asphalt.readthedocs.io/en/latest/modules/context.html#asphalt.core.context.Context.add_resource] and
add_resource_factory() [http://asphalt.readthedocs.io/en/latest/modules/context.html#asphalt.core.context.Context.add_resource_factory])

	request resources from it asynchronously
(request_resource() [http://asphalt.readthedocs.io/en/latest/modules/context.html#asphalt.core.context.Context.request_resource])

It is advisable for Components to first add all the resources they can to the context
before requesting any from it. This will speed up the dependency resolution and prevent
deadlocks.

	Parameters

	ctx (Context [http://asphalt.readthedocs.io/en/latest/modules/context.html#asphalt.core.context.Context]) – the containing context for this component

asphalt.wamp.context

	
class asphalt.wamp.context.CallContext(parent, session_details, call_details, **kwargs)

	Context class for procedure calls.

Procedure call handlers are passed an instance of this class as the first argument.

	Variables

	
	session_id (int [https://docs.python.org/3/library/functions.html#int]) – our own WAMP session ID

	progress (Optional[Callable]) – a callable through which the handler can send
progress information to the caller

	caller_session_id (Optional[int [https://docs.python.org/3/library/functions.html#int]]) – WAMP session ID of the caller (if disclosed)

	caller_auth_id (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – WAMP authentication ID (username) of the caller
(if disclosed)

	caller_auth_role (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – WAMP authentication role of the caller (if disclosed)

	procedure (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – the actual name of the procedure (when using a pattern based
registration)

	enc_algo (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – payload encryption algorithm that was in use, if any
(e.g. cryptobox, or a custom algorithm)

	
class asphalt.wamp.context.EventContext(parent, session_details, event_details, **kwargs)

	Context class for WAMP events.

Event subscribers are passed an instance of this class as the first argument.

	Variables

	
	session_id (int [https://docs.python.org/3/library/functions.html#int]) – our own WAMP session ID

	publication_id (int [https://docs.python.org/3/library/functions.html#int]) – publication ID of the event

	publisher_session_id (int [https://docs.python.org/3/library/functions.html#int]) – WAMP session ID of the publisher, if disclosed

	publisher_auth_id (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – WAMP authentication ID (username) of the publisher
(if disclosed)

	publisher_auth_role (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – WAMP authentication role of the publisher
(if disclosed)

	topic (str [https://docs.python.org/3/library/stdtypes.html#str]) – the exact topic the event was received on

	enc_algo (Optional[str [https://docs.python.org/3/library/stdtypes.html#str]]) – payload encryption algorithm that was in use, if any
(e.g. cryptobox, or a custom algorithm)

asphalt.wamp.events

	
class asphalt.wamp.events.SessionJoinEvent(source, topic, session_details)

	Signals that the client has joined the WAMP realm on the router.

	Variables

	details (SessionDetails [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.types.SessionDetails]) – the autobahn-provided session details

	
class asphalt.wamp.events.SessionLeaveEvent(source, topic, close_details)

	Signals that the client has left the WAMP realm on the router.

	Variables

	
	reason (str [https://docs.python.org/3/library/stdtypes.html#str]) – the reason why the client left the realm

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – the closing message

asphalt.wamp.registry

	
class asphalt.wamp.registry.Procedure(name, handler, options)

	Create new instance of Procedure(name, handler, options)

	
handler

	Alias for field number 1

	
name

	Alias for field number 0

	
options

	Alias for field number 2

	
class asphalt.wamp.registry.Subscriber(topic, handler, options)

	Create new instance of Subscriber(topic, handler, options)

	
handler

	Alias for field number 1

	
options

	Alias for field number 2

	
topic

	Alias for field number 0

	
class asphalt.wamp.registry.WAMPRegistry(prefix='', *, procedure_defaults=None, subscription_defaults=None)

	Hosts a collection of WAMP procedure and subscriber registrations and exception mappings.

The purpose of this class is to ease the task of collecting all of the procedure handlers,
event listeners and exception mappings of the application into a single place that the client
can then use to register those on the router when a session has been opened.
The alternative would be to call register_procedure(),
subscribe() and
map_exception() after
connect(). This would not be very modular, however, since
the code the connects the client would have to know about every single handler callbacks in
advance.

	Variables

	
	procedures (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], Procedure]) – registered procedure handlers

	subscriptions (List[Subscription]) – registered event subscribers

	exceptions (Dict[str [https://docs.python.org/3/library/stdtypes.html#str], type [https://docs.python.org/3/library/functions.html#type]]) – mapping of WAMP error code to exception class

	Parameters

	
	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – a prefix that is added to the name of every registered procedure

	procedure_defaults (Union [https://docs.python.org/3/library/typing.html#typing.Union][RegisterOptions [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.types.RegisterOptions], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], None]) – default values to use for omitted arguments to
add_procedure()

	subscription_defaults (Union [https://docs.python.org/3/library/typing.html#typing.Union][SubscribeOptions [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.types.SubscribeOptions], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], None]) – default values to use for omitted arguments to
add_subscriber()

	
add_from(registry, prefix='')

	Add all the procedures, subscribers and exception mappings from another registry to this
one.

If no prefix has been specified, the final name of each added procedure/subscriber endpoint
or mapped error will be of the form <root prefix>.<name>.
If a prefix has been specified, the name will be <root prefix>.<prefix>.<name>.

	Parameters

	
	registry (WAMPRegistry) – a WAMP registry

	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – prefix to add to names of all procedure endpoints

	Return type

	None

	
add_procedure(handler, name=None, options=None)

	Add a procedure handler.

The callable will receive a CallContext instance as its
first argument. The other positional and keyword arguments will be the arguments the caller
passed to it.

	Parameters

	
	handler (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – callable that handles the procedure calls

	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – name of the endpoint to register (relative to registry’s prefix); if None,
use the callable’s internal name

	options (Union [https://docs.python.org/3/library/typing.html#typing.Union][RegisterOptions [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.types.RegisterOptions], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], None]) – either an Autobahn register options object or a dictionary of keyword
arguments to make one

	Return type

	Procedure

	Returns

	the procedure registration object

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the handler does not accept at least a single positional argument

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – if there is already a handler registered for this endpoint

See also

How registrations work [http://crossbar.io/docs/How-Registrations-Work/]

See also

Pattern based registrations [http://crossbar.io/docs/Pattern-Based-Registrations/]

See also

Shared registrations [http://crossbar.io/docs/Shared-Registrations/]

	
add_subscriber(handler, topic, options=None)

	Decorator that registers a callable to receive events on the given topic.

The callable will receive an EventContext instance as its
first argument and must return an awaitable.
The other positional and keyword arguments will be the arguments the publisher passed to
the publish() method.

The topic may contain wildcards (a..b).

	Parameters

	
	handler (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – callable that receives matching events

	topic (str [https://docs.python.org/3/library/stdtypes.html#str]) – the topic to listen to

	options (Union [https://docs.python.org/3/library/typing.html#typing.Union][SubscribeOptions [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.types.SubscribeOptions], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], None]) – either an Autobahn subscribe options object or a dictionary of keyword
arguments to make one

	Return type

	Subscriber

	Returns

	the subscription registration object

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if the handler is not a coroutine or does not accept at least a single
positional argument

See also

How subscriptions work [http://crossbar.io/docs/How-Subscriptions-Work/]

See also

Pattern based subscriptions [http://crossbar.io/docs/Pattern-Based-Subscriptions/]

	
exception(error)

	Decorator version of map_exception().

	Parameters

	error (str [https://docs.python.org/3/library/stdtypes.html#str]) – the WAMP error code (e.g. foo.bar.baz)

	Return type

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	
map_exception(exc_type, code)

	Map a Python exception class to a WAMP error code.

	Parameters

	
	code (str [https://docs.python.org/3/library/stdtypes.html#str]) – the WAMP error code (e.g. foo.bar.baz)

	exc_type (Type [https://docs.python.org/3/library/typing.html#typing.Type][BaseException [https://docs.python.org/3/library/exceptions.html#BaseException]]) – an exception class

	Raises

	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – if exc_type does not inherit from :class`BaseException`

	Return type

	None

	
procedure(name=None, options=None)

	Decorator version of add_procedure().

Can be used as @procedure(...) or simply @procedure.

If name has not been specified, the function name of the handler is used.

	Parameters

	
	name (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable], None]) – name of the endpoint to register (relative to registry’s prefix)

	options (Union [https://docs.python.org/3/library/typing.html#typing.Union][RegisterOptions [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.types.RegisterOptions], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], None]) – either an Autobahn register options object or a dictionary of keyword
arguments to make one

	Return type

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

	
subscriber(topic, options=None)

	Decorator version of add_subscriber().

	Parameters

	
	topic (str [https://docs.python.org/3/library/stdtypes.html#str]) – the topic to listen to

	options (Union [https://docs.python.org/3/library/typing.html#typing.Union][SubscribeOptions [http://autobahn.readthedocs.io/en/latest/reference/autobahn.wamp.html#autobahn.wamp.types.SubscribeOptions], Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]], None]) – either an Autobahn subscribe options object or a dictionary of keyword
arguments to make one

See also

How subscriptions work [http://crossbar.io/docs/How-Subscriptions-Work/]

See also

Pattern based subscriptions [http://crossbar.io/docs/Pattern-Based-Subscriptions/]

	Return type

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable]

 _static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Table of contents

 		
 Configuration

 		
 Multiple clients

 		
 User guide

 		
 Calling remote procedures

 		
 Registering procedure handlers

 		
 Publishing messages

 		
 Subscribing to topics

 		
 Mapping WAMP exceptions to Python exceptions

 		
 Using registries to structure your application

 		
 Implementing dynamic authentication and authorization

 		
 Version history

