

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Colorschemes

This text explains colorschemes and how they work.

Context Tags

Context tags provide information about the context and are Boolean values (True
or False). For example, if the tag in_titlebar is set, you probably want to
know about the color of a part of the titlebar now.

The default context tags are specified in /ranger/gui/context.py in the
constant CONTEXT_KEYS. Custom tags can be specified in a custom plugin file in
~/.config/ranger/plugins/. The code to use follows.

Import the class
import ranger.gui.context

Add your key names
ranger.gui.context.CONTEXT_KEYS.append('my_key')

Set it to False (the default value)
ranger.gui.context.Context.my_key = False

Or use an array for multiple names
my_keys = ['key_one', 'key_two']
ranger.gui.context.CONTEXT_KEYS.append(my_keys)

Set them to False
for key in my_keys:
 code = 'ranger.gui.context.Context.' + key + ' = False'
 exec(code)

As you may or may not have guessed, this only tells ranger that they exist, not
what they mean. To do this, you’ll have to dig around in the source code. As an
example, let’s walk through adding a key that highlights README.md files
differently. All the following code will be written in a standalone plugin file.

First, from above, we’ll add the key readme and set it to False.

import ranger.gui.context

ranger.gui.context.CONTEXT_KEYS.append('readme')
ranger.gui.context.Context.readme = False

Then we’ll use the hook hook_before_drawing to tell ranger that our key is
talking about README.md files.

import ranger.gui.widgets.browsercolumn

OLD_HOOK_BEFORE_DRAWING = ranger.gui.widgets.browsercolumn.hook_before_drawing

def new_hook_before_drawing(fsobject, color_list):
 if fsobject.basename === 'README.md':
 color_list.append('readme')

 return OLD_HOOK_BEFORE_DRAWING(fsobject, color_list)

ranger.gui.widgets.browsercolumn.hook_before_drawing = new_hook_before_drawing

Notice we call the old hook_before_drawing. This makes sure that we don’t
overwrite another plugin’s code, we just append our own to it.

To highlight it a different color, just add it to your colorscheme

Implementation in the GUI Classes

The class CursesShortcuts in the file /ranger/gui/curses_shortcuts.py defines
the methods color(*tags), color_at(y, x, wid, *tags) and color_reset().
This class is a superclass of Displayable, so these methods are available almost
everywhere.

Something like color("in_titlebar", "directory") will be called to get the
color of directories in the titlebar. This creates a ranger.gui.context.Context
object, sets its attributes in_titlebar and directory to True, leaves the
others as False, and passes it to the colorscheme’s use(context) method.

The Color Scheme

A colorscheme should be a subclass of ranger.gui.ColorScheme and define the
method use(context). By looking at the context, this use-method has to
determine a 3-tuple of integers: (foreground, background, attribute) and return
it.

foreground and background are integers representing colors, attribute is
another integer with each bit representing one attribute. These integers are
interpreted by the terminal emulator in use.

Abbreviations for colors and attributes are defined in ranger.gui.color. Two
attributes can be combined via bitwise OR: bold | reverse

Once the color for a set of tags is determined, it will be cached by default. If
you want more dynamic colorschemes (such as a different color for very large
files), you will need to dig into the source code, perhaps add a custom tag and
modify the draw-method of the widget to use that tag.

Run tc_colorscheme to check if your colorschemes are valid.

Specify a Colorscheme

Colorschemes are searched for in these directories:

	~/.config/ranger/colorschemes/

	/path/to/ranger/colorschemes/

To specify which colorscheme to use, change the option colorscheme in your
rc.conf: set colorscheme default.

This means, use the colorscheme contained in either
~/.config/ranger/colorschemes/default.py or
/path/to/ranger/colorschemes/default.py.

Adapt a colorscheme

You may want to adapt a colorscheme to your needs without having a complete copy
of it, but rather the changes only. Say, you want the exact same colors as in
the default colorscheme, but the directories to be green rather than blue,
because you find the blue hard to read.

This is done in the jungle colorscheme ranger/colorschemes/jungle, check it
out for implementation details. In short, I made a subclass of the default
scheme, set the initial colors to the result of the default use() method and
modified the colors how I wanted.

This has the obvious advantage that you need to write less, which results in
less maintenance work and a greater chance that your colorscheme will work with
future versions of ranger.

Prepare the “stable” branch

Before you can do anything else, you need to decide what should be included in
the new version.

Bugfix releases bump the third number of the version, e.g. 1.9.0 -> 1.9.1.
They may include bugfix commits that you git cherry-picked from the master
branch into the stable branch, or you can just do a fast-forward merge of
master into stable, if there were only bugfix commits since the last major
version. You can also add minor new features that are very likely not causing
any bugs. However, there should be absolutely no backward-incompatible
changes, like:

	renamed or removed settings, commands or python functions

	renamed, removed or reordered function arguments

	change in syntax of configuration files or in API of configuration scripts

New settings are okay, just make sure a sane default value is defined.

Major releases bump the second number of the version, e.g. 1.9.2 -> 1.10.0
and are necessary if you introduce any breaking changes, like the ones
mentioned in the list above.

Test everything

	[] make test

	[] ./ranger.py [--clean]

	[] ranger/ext/rifle.py

	[] make install

Make a release commit

	[] Update the number in the README

	[] Update __version__ and __release__ in ranger/__init__.py

	[] Update __version__ in ranger/ext/rifle.py

	[] make man

	[] Write changelog entry

	[] Think of a witty commit message

	[] Commit

	[] Tag the signed release with git tag -as vX.Y.Z, using the same
commit message as annotation

	[] Push release and tag

Make snapshot and test again

	[] Build .tar.gz with make snapshot

	[] make

	[] make install

	[] Test the snapshot one last time

Update the website

	[] Add the new version as ranger-stable.tar.gz

	[] Add the new version as ranger-X.Y.Z.tar.gz

	[] Update both signatures gpg --local-user 0x00FB5CDF --sign --detach-sign <file>

	[] Update the man page

	[] run make manhtml in ranger’s repository

	[] copy the generated doc/ranger.1.html to the ranger.github.io repository

	[] Rebuild the website, see README.md in https://github.com/ranger/ranger.github.io

	[] Commit & push the website

Make a PyPI release

	[] git clean --force -d -x

	[] SETUPTOOLS_USE=1 python setup.py sdist

	[] gpg --local-user 0x00000000 --detach-sign --armor dist/*

	[] twine upload dist/*

Announce the update

	[] To the mailing list

	[] In the arch linux forum

Change back to before

	[] Change __release__ in ranger/__init__.py back to False

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

