

Artemis Documentation

Artemis is a collection of tools that make it easier to run experiments in Python. These include:

	An easy-to-use system for making live plots, to monitor variables in a running experiment.

	A browser-based plotter for displaying live plots.

	A framework for defining experiments and logging their results (text output and figures) so that they can be reviewed later and replicated easily.

	A system for downloading/caching files, to a local directory, so the same code can work on different machines.

To install Artemis, see Artemis on Github [https://github.com/QUVA-Lab/artemis/]

Contents:

	Artemis Experiments Documentation
	A Basic Example

	More Examples

	Experiment API
	Creating Experiments

	The Experiment

	The Experiment Record

	Artemis Plotting
	Live Plots with dbplot

	dbplot documentation

	Plotting Demos

	Browser-Plotting

Artemis Experiments Documentation

The Artemis Experiment Framework helps you to keep track of your experiments and their results. It is an alternative to Sacred [http://sacred.readthedocs.io/en/latest/], with the goal of being more intuitive to use.

For details on the Experiment API, see Experiment API. For a in introduction to the framework, read on…

A Basic Example

Using this module, you can turn your main function into an “Experiment”, which, when run, stores all console output, plots,
and computed results to disk (in ~/.artemis/experiments)

Any function that can be called alone with no arguments can be turned into an experiment using the @experiment_function
decorator:

from artemis.experiments import experiment_function

@experiment_function
def multiply_3_numbers(a=1, b=2, c=3):
 answer = a*b*c
 print('{} x {} x {} = {}'.format(a, b, c, answer))
 return answer

This turns the function into an Experiment object, which, in addition to still being a callable function, has methods run(), add_variant(...) and get_variant(). It’s important to give this function a unique name (rather than main(), or something) because this name is used to link the experiment to the records that it has produced.

If we want to run our experiment, and save all text outputs and plots to disk, we can call the run method:

record = multiply_3_numbers.run()

The record is an ExperimentRecord object, which contains the computed result, console output, and other information about the execution of the experiment.

>>> record.get_log()
'1 x 2 x 3 = 6\n'

>>> record.get_result()
6

Now, we may want to create a “variant” on this experiment, with a different set of parameters. For this, we can use the add_variant method:

ex = multiply_3_numbers.add_variant('higher-ab', a=4, b=5)

The variant ex is itself just another Experiment object, which you can run or create more variants off of. We can also access this variant later by calling get_variant:.

ex = multiply_3_numbers.get_variant('higher-ab')

To open up a menu where you can see and run all experiments (and their variants) that have been created we run:

multiply_3_numbers.browse()

This will give us an output that looks something like this:

==================== Experiments ====================
 E# R# Name All Runs Duration Status Valid Result
---- ---- ---------------------------- -------------------------- --------------- --------------- ------- --------
 0 0 multiply_3_numbers 2017-08-03 10:34:51.150555 0.0213599205017 Ran Succesfully Yes 6
 1 multiply_3_numbers.higher-ab <No Records> - - - -

Enter command or experiment # to run (h for help) >>

This indicates that we have a saved record of our experiment (created when we called multiply_3_numbers.run()), but
none of the variant higher-ab. In the UI, we can run this variant by entering run 1:

Enter command or experiment # to run (h for help) >> run 1

After running, we will see the status of our experiments updated:

==================== Experiments ====================
 E# R# Name All Runs Duration Status Valid Result
---- ---- ---------------------------- -------------------------- ---------- --------------- ------- --------
 0 0 multiply_3_numbers 2017-08-03 10:34:51.150555 0.0213599 Ran Succesfully Yes 6
 1 0 multiply_3_numbers.higher-ab 2017-08-03 10:38:45.836260 0.0350862 Ran Succesfully Yes 60

Enter command or experiment # to run (h for help) >>

From the UI we have access to a variety of commands for showing and comparing experiments. For example, argtable prints
a table comparing the results of the different experiments:

Enter command or experiment # to run (h for help) >> argtable all
 --- ------------------ --------------- ----------- -------------- ------
 Function Run Time Common Args Different Args Result
 2017.08.03T10.34.51.150555-multiply_3_numbers multiply_3_numbers 0.0213599205017 c=3 a=1, b=2 6
 2017.08.03T10.38.45.836260-multiply_3_numbers.higher-ab multiply_3_numbers 0.0350861549377 c=3 a=4, b=5 60
 --- ------------------ --------------- ----------- -------------- ------

More Examples

	An example demonstrating Artemis’s Experiment framework on a simple MNIST classification task [https://github.com/QUVA-Lab/artemis/blob/master/artemis/examples/demo_mnist_logreg.py]

	Step-by-step tutorial on using Artemis to organize your Experiments [https://rawgit.com/petered/data/master/gists/experiment_tutorial.html]

Experiment API

You can use the UI for most things related to running and viewing the results of experiments. (See Artemis Experiments Documentation for how to do that).

This document shows the methods for interacting programatically with the experiment interface.

Creating Experiments

Experiment Decorators are turn your python functions into experiments. When using decorators, be sure that your experiment
function is uniquely named (ie, no other function in your code has the same name).
This is important because when results are saved, the name of the function is used
to identify what experiment the results belong to.

	
artemis.experiments.experiment_function(f)

	Use this decorator (@experiment_function) on a function that you want to run. e.g.

@experiment_function
def demo_my_experiment(a=1, b=2, c=3):
 ...

This turns your function demo_my_experiment into an experiment. It can still be called as a normal function, but
it now has can also be called with the methods of an Experiment object (eg. demo_my_experiment.run()).

	
artemis.experiments.experiment_root(f)

	Use this decorator on a function that you want to build variants off of:

@experiment_root
def demo_my_experiment(a, b=2, c=3):
 ...

The root experiment is not runnable by itself, and will not appear in the list in the browse experiments UI, but
you can call demo_my_experiment.add_variant(...) to create runnable variants.

	
class artemis.experiments.ExperimentFunction(display_function=None, comparison_function=None, one_liner_function=None, is_root=False)

	This is the most general decorator. You can use this to add details on the experiment.

	
__init__(display_function=None, comparison_function=None, one_liner_function=None, is_root=False)

	
	Parameters

	
	display_function – A function that takes the results (whatever your experiment returns) and displays them.

	comparison_function – A function that takes an OrderedDict<experiment_name, experiment_return_value>.
You can optionally define this function to compare the results of different experiments.
You can use call this via the UI with the compare_experiment_results command.

	one_liner_function – A function that takes your results and returns a 1 line string summarizing them.

	is_root – True to make this a root experiment - so that it is not listed to be run itself.

	
artemis.experiments.capture_created_experiments(*args, **kwds)

	A convenient way to cross-breed experiments. If you define experiments in this block, you can capture them for
later use (for instance by modifying them). e.g.:

@experiment_function
def add_two_numbers(a=1, b=2):
 return a+b

with capture_created_experiments() as exps:
 add_two_numbers.add_variant(a=2)
 add_two_numbers.add_variant(a=3)

for ex in exps:
 ex.add_variant(b=4)

	Return type

	Generator[Experiment]

The Experiment

The above decorators return Experiment Objects, which have the following API…

	
class artemis.experiments.experiments.Experiment(function=None, display_function=None, comparison_function=None, one_liner_function=None, name=None, is_root=False)

	An experiment. In general you should not use this class directly. Use the experiment_function decorator, and
create variants using decorated_function.add_variant()

	
add_root_variant(variant_name=None, **kwargs)

	Add a variant to this experiment, but do NOT register it on the list of experiments.
There are two ways you can do this:

Name the experiment explicitely, then list the named arguments
my_experiment_function.add_root_variant('big_a', a=10000)
assert my_experiment_function.get_name()=='my_experiment_function.big_a'

Allow the experiment to be named automatically, and just list the named arguments
my_experiment_function.add_root_variant(a=10000)
assert my_experiment_function.get_name()=='my_experiment_function.a=10000'

	Parameters

	
	variant_name – Optionally, the name of the experiment

	kwargs – The named arguments which will differ from the base experiment.

	Returns

	The experiment.

	
add_variant(variant_name=None, **kwargs)

	Add a variant to this experiment, and register it on the list of experiments.
There are two ways you can do this:

Name the experiment explicitely, then list the named arguments
my_experiment_function.add_variant('big_a', a=10000)
assert my_experiment_function.get_name()=='my_experiment_function.big_a'

Allow the experiment to be named automatically, and just list the named arguments
my_experiment_function.add_variant(a=10000)
assert my_experiment_function.get_name()=='my_experiment_function.a=10000'

	Parameters

	
	variant_name – Optionally, the name of the experiment

	kwargs – The named arguments which will differ from the base experiment.

	Returns

	The experiment.

	
browse(command=None, catch_errors=False, close_after=False, just_last_record=False, view_mode='full', raise_display_errors=False, run_args=None, keep_record=True, truncate_result_to=100, cache_result_string=False, **kwargs)

	Open up the UI, which allows you to run experiments and view their results.

	Parameters

	
	command – Optionally, a string command to pass directly to the UI. (e.g. “run 1”)

	catch_errors – Catch errors that arise while running experiments

	close_after – Close after issuing one command.

	just_last_record – Only show the most recent record for each experiment.

	view_mode – How to view experiments {‘full’, ‘results’} (‘results’ leads to a narrower display).

	raise_display_errors – Raise errors that arise when displaying the table (otherwise just indicate that display failed in table)

	run_args – A dict of named arguments to pass on to Experiment.run

	keep_record – Keep a record of the experiment after running.

	truncate_result_to – An integer, indicating the maximum length of the result string to display.

	cache_result_string – Cache the result string (useful when it takes a very long time to display the results
when opening up the menu - often when results are long lists).

	
get_all_variants(include_roots=False, include_self=True)

	Return a list of variants of this experiment
:param include_roots: Include “root” experiments
:param include_self: Include this experiment (unless include_roots is false and this this experiment is a root)
:return: A list of experiments.

	
get_args()

	
	Returns

	A dictionary of arguments to the experiment

	
get_id()

	
	Returns

	A string uniquely identifying this experiment.

	
get_latest_record(only_completed=False, err_if_none=True)

	Return the ExperimentRecord from the latest run of this Experiment.

	Parameters

	
	only_completed – Only search among records of that have run to completion.

	err_if_none – If True, raise an error if no record exists. Otherwise, just return None in this case.

	Returns

	An ExperimentRecord object

	
get_records(only_completed=False)

	Get all records associated with this experiment.

	Parameters

	only_completed – Only include records that have run to completion.

	Returns

	A list of ExperimentRecord objects.

	
get_variant(variant_name=None, **kwargs)

	Get a variant on this experiment.

	Parameters

	
	variant_name – The name of the variant, if it has one

	kwargs – Otherwise, the named arguments which were used to define the variant.

	Returns

	An Experiment object

	
get_variant_records(only_completed=False, only_last=False, flat=False)

	Get the collection of records associated with all variants of this Experiment.

	Parameters

	
	only_completed – Only search among records of that have run to completion.

	only_last – Just return the most recent record.

	flat – Just return a list of records

	Returns

	if not flat (default) An OrderedDict<experiment_id: ExperimentRecord>.
otherwise, if flat: a list<ExperimentRecord>

	
has_record(completed=True, valid=True)

	Return true if the experiment has a record, otherwise false.
:param completed: Check that the record is completed.
:param valid: Check that the record is valid (arguments match current experiment arguments)
:return: True/False

	
run(print_to_console=True, show_figs=None, test_mode=None, keep_record=None, raise_exceptions=True, display_results=True, **experiment_record_kwargs)

	Run the experiment, and return the ExperimentRecord that is generated.

	Parameters

	
	print_to_console – Print to console (as well as logging to file)

	show_figs – Show figures (as well as saving to file)

	test_mode – Run in “test_mode”. This sets the global “test_mode” flag when running the experiment. This
flag can be used to, for example, shorten a training session to verify that the code runs. Can be:
True: Run in test mode
False: Don’t run in test mode:
None: Keep the current state of the global “is_test_mode()” flag.

	keep_record – Keep the folder that results are saved into.
True: Results are saved into a folder
False: Results folder is deleted at the end.
None: If “test_mode” is true, then delete results at end, otherwise save them.

	raise_exceptions – True to raise any exception that occurs when running the experiment. False to catch it,
print the error, and move on.

	experiment_record_kwargs – Passed to the “record_experiment” context.

	Returns

	The ExperimentRecord object, if keep_record is true, otherwise None

The Experiment Record

When you run an Experiment, a folder is created in which the stdout, results, figures, and
other info are stored. The ExperimentRecord object provides an API for accessing the contents of
this folder.

	
class artemis.experiments.experiment_record.ExperimentRecord(experiment_directory)

	A Record of a run of an Experiment. This object allows you to access data stored in the directory that was created
for that run of the experiment. Experiment Records are stored in ~/artemis/experiments/.

	
args_valid(last_run_args=None, current_args=None)

	
	Returns

	True if the experiment arguments have not changed
False if they have changed
None if it cannot be determined because arguments are not hashable objects.

	
delete()

	Delete this experiment record from disk.

	
get_args()

	Get the arguments with which this record was run.
:return: An OrderedDict((arg_name -> arg_value))

	
get_dir()

	
	Returns

	The directory associated with this experiment record.

	
get_error_trace()

	Get the error trace, or return None if there is no error trace.
:return:

	
get_experiment()

	Load the experiment associated with this record.
Note that this will raise an ExperimentNotFoundError if the experiment has not been imported.
:return: An Experiment object

	
get_figure_locs(include_directory=True)

	Return a list of the paths of the figures saved in the experiment.
:param include_directory: If True, return the full path.
:return: A list of string file paths.

	
get_id()

	Get the id of this experiment record. Generally in format ‘<datetime>-<experiment_name>’
:return:

	
get_log()

	
	Returns

	The stdout generated during the run of this experiment.

	
get_result(err_if_none=True)

	Unpickle and return the “return value” of the experiment.
:param err_if_none: If there is no saved return value, throw an exception if err_is_none, else just return None.
:return: The return value from the experiment.

	
has_result()

	
	Returns

	True if this record has a saved result.

	
info

	
	Returns

	An ExperimentRecordInfo object, containing info about the experiment (name, runtime, etc)

	
list_files(full_path=False)

	List files in experiment directory, relative to root.
:param full_path: If true, list file with the full local path
:return: A list of strings indicating the file paths.

	
load_figures()

	
	Returns

	A list of matplotlib figures generated in the experiment. The figures will not be drawn yet, so you
will have to call plt.show() to draw them or plt.draw() to draw them.

	
open_file(filename, *args, **kwargs)

	Open a file within the experiment record folder.
Example Usage:

	with record.open_file(‘filename.txt’) as f:

	txt = f.read()

	Parameters

	
	filename – Path within experiment directory (it can include subdirectories)

	kwargs (args,) – Forwarded to python’s “open” function

	Returns

	A file object

	
show_figures(hang=False)

	Show all figures that were saved during the run of the experiment.
:param hang: If True, and figures were saved matplotlib figures, hang execution until they are closed.

Artemis Plotting

Live Plots with dbplot

dbplot is an easy way to create a live plot of your data.

For example, to create live updating plots of a random grid:

from artemis.plotting.db_plotting import dbplot
import numpy as np

for _ in xrange(50):
 dbplot(np.random.randn(20, 10), 'random data')

A plot will come up showing the random data.

from artemis.plotting.db_plotting import dbplot
import numpy as np

for _ in xrange(50):
 dbplot(np.random.randn(20, 10), 'random line data', plot_type='line')

You can include multiple plots:

from artemis.plotting.db_plotting import dbplot
import numpy as np

for _ in xrange(50):
 dbplot(np.random.randn(20, 2), 'random line data', plot_type='line')
 dbplot(np.random.randn(10, 10), 'random grid data')

If you plot many things, you may want to “hold” your plots, so that they all update together. This speeds up the rate of
plotting:

from artemis.plotting.db_plotting import dbplot, hold_dbplots
import numpy as np

for _ in xrange(50):
 with hold_dbplots():
 dbplot(np.random.randn(20, 2), 'random line data', plot_type='line')
 dbplot(np.random.randn(10, 10), 'random grid data')
 dbplot(np.random.randn(4), 'random line history')
 dbplot(np.random.rand(3), 'random bars', plot_type='bar')
 dbplot([np.random.rand(20, 20), np.random.randn(20, 16, 3)], 'multi image')

dbplot documentation

	
artemis.plotting.db_plotting.dbplot(data, name=None, plot_type=None, axis=None, plot_mode='live', draw_now=True, hang=False, title=None, fig=None, xlabel=None, ylabel=None, draw_every=None, layout=None, legend=None, grid=False, wait_for_display_sec=0, cornertext=None)

	Plot arbitrary data and continue execution. This program tries to figure out what type of plot to use.

	Parameters

	
	data – Any data. Hopefully, we at dbplot will be able to figure out a plot for it.

	name – A name uniquely identifying this plot.

	plot_type – A specialized constructor to be used the first time when plotting. You can also pass
certain string to give hints as to what kind of plot you want (can resolve cases where the given data could be
plotted in multiple ways):
‘line’: Plots a line plot
‘img’: An image plot
‘colour’: A colour image plot
‘pic’: A picture (no scale bars, axis labels, etc).

	axis – A string identifying which axis to plot on. By default, it is the same as “name”. Only use this
argument if you indend to make multiple dbplots share the same axis.

	plot_mode – Influences how the data should be used to choose the plot type:
‘live’: Best for ‘live’ plots that you intend to update as new data arrives
‘static’: Best for ‘static’ plots, that you do not intend to update
‘image’: Try to represent the plot as an image

	draw_now – Draw the plot now (you may choose false if you’re going to add another plot immediately after and
don’t want have to draw this one again.

	hang – Hang on the plot (wait for it to be closed before continuing)

	title – Title of the plot (will default to name if not included)

	fig – Name of the figure - use this when you want to create multiple figures.

	grid – Turn the grid on

	wait_for_display_sec – In server mode, you can choose to wait maximally wait_for_display_sec seconds before this
call returns. In case plotting is finished earlier, the call returns earlier. Setting wait_for_display_sec to a negative number will cause the call to block until the plot has been displayed.

Plotting Demos

	A demo of showing how to make various kinds of live updating plots.

	A demo repo showing how to use Artemis from your code [https://github.com/QUVA-Lab/demo_repo)]

	A guide on using Artemis for remote plotting [https://github.com/QUVA-Lab/artemis/blob/master/artemis/remote/README.md)]

Browser-Plotting

After installing, you should have a file ~/.artemisrc.

To use the web backend, edit the backend field to matplotlib-web.

To try it you can run the commands described above for dbplot.

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | O
 | R
 | S

_

 	
 	__init__() (artemis.experiments.ExperimentFunction method)

A

 	
 	add_root_variant() (artemis.experiments.experiments.Experiment method)

 	
 	add_variant() (artemis.experiments.experiments.Experiment method)

 	args_valid() (artemis.experiments.experiment_record.ExperimentRecord method)

B

 	
 	browse() (artemis.experiments.experiments.Experiment method)

C

 	
 	capture_created_experiments() (in module artemis.experiments)

D

 	
 	dbplot() (in module artemis.plotting.db_plotting)

 	
 	delete() (artemis.experiments.experiment_record.ExperimentRecord method)

E

 	
 	Experiment (class in artemis.experiments.experiments)

 	experiment_function() (in module artemis.experiments)

 	
 	experiment_root() (in module artemis.experiments)

 	ExperimentFunction (class in artemis.experiments)

 	ExperimentRecord (class in artemis.experiments.experiment_record)

G

 	
 	get_all_variants() (artemis.experiments.experiments.Experiment method)

 	get_args() (artemis.experiments.experiment_record.ExperimentRecord method)

 	(artemis.experiments.experiments.Experiment method)

 	get_dir() (artemis.experiments.experiment_record.ExperimentRecord method)

 	get_error_trace() (artemis.experiments.experiment_record.ExperimentRecord method)

 	get_experiment() (artemis.experiments.experiment_record.ExperimentRecord method)

 	get_figure_locs() (artemis.experiments.experiment_record.ExperimentRecord method)

 	
 	get_id() (artemis.experiments.experiment_record.ExperimentRecord method)

 	(artemis.experiments.experiments.Experiment method)

 	get_latest_record() (artemis.experiments.experiments.Experiment method)

 	get_log() (artemis.experiments.experiment_record.ExperimentRecord method)

 	get_records() (artemis.experiments.experiments.Experiment method)

 	get_result() (artemis.experiments.experiment_record.ExperimentRecord method)

 	get_variant() (artemis.experiments.experiments.Experiment method)

 	get_variant_records() (artemis.experiments.experiments.Experiment method)

H

 	
 	has_record() (artemis.experiments.experiments.Experiment method)

 	
 	has_result() (artemis.experiments.experiment_record.ExperimentRecord method)

I

 	
 	info (artemis.experiments.experiment_record.ExperimentRecord attribute)

L

 	
 	list_files() (artemis.experiments.experiment_record.ExperimentRecord method)

 	
 	load_figures() (artemis.experiments.experiment_record.ExperimentRecord method)

O

 	
 	open_file() (artemis.experiments.experiment_record.ExperimentRecord method)

R

 	
 	run() (artemis.experiments.experiments.Experiment method)

S

 	
 	show_figures() (artemis.experiments.experiment_record.ExperimentRecord method)

	Script to train an SVM on the iris dataset

	The same script as a Sacred experiment

	And as an Artemis experiment

	from numpy.random import permutation
from sklearn import svm, datasets

C = 1.0
gamma = 0.7

iris = datasets.load_iris()
perm = permutation(iris.target.size)
iris.data = iris.data[perm]
iris.target = iris.target[perm]
clf = svm.SVC(C, 'rbf', gamma=gamma)
clf.fit(iris.data[:90],
 iris.target[:90])
print(clf.score(iris.data[90:],
 iris.target[90:]))

	from numpy.random import permutation
from sklearn import svm, datasets
from sacred import Experiment
ex = Experiment('iris_rbf_svm')

@ex.config
def cfg():
 C = 1.0
 gamma = 0.7

@ex.automain
def run(C, gamma):
 iris = datasets.load_iris()
 per = permutation(iris.target.size)
 iris.data = iris.data[per]
 iris.target = iris.target[per]
 clf = svm.SVC(C, 'rbf', gamma=gamma)
 clf.fit(iris.data[:90],
 iris.target[:90])
 return clf.score(iris.data[90:],
 iris.target[90:])

	from numpy.random import permutation
from sklearn import svm, datasets
from artemis.experiments import experiment_function

@experiment_function
def demo_iris_svm(C=1.0, gamma=0.7):
 iris = datasets.load_iris()
 perm = permutation(iris.target.size)
 iris.data = iris.data[perm]
 iris.target = iris.target[perm]
 clf = svm.SVC(C, 'rbf', gamma=gamma)
 clf.fit(iris.data[:90],
 iris.target[:90])
 return clf.score(iris.data[90:],
 iris.target[90:])

if __name__ == '__main__':
 demo_iris_svm.browse()

 nav.xhtml

 Table of Contents

 		
 Artemis Documentation

 		
 Artemis Experiments Documentation

 		
 A Basic Example

 		
 More Examples

 		
 Experiment API

 		
 Creating Experiments

 		
 The Experiment

 		
 The Experiment Record

 		
 Artemis Plotting

 		
 Live Plots with dbplot

 		
 dbplot documentation

 		
 Plotting Demos

 		
 Browser-Plotting

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

