

 Navigation

 	
 index

 	
 next |

 	arsenal documentation

Welcome to Arsenal’s documentation!

Contents:

	Arsenal - The Ironic image caching service
	About

	Features

	Documentation

	Roadmap

	Installation
	Deployment

	Development

	Configuring Arsenal
	arsenal.conf

	arsenal.conf Sections

	A full example arsenal.conf file

	Usage
	arsenal-director

	Design
	Scout

	Strategy

	Contributing

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Rackspace.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	arsenal documentation

Arsenal - The Ironic image caching service

[image: Build Status]
 [https://travis-ci.org/rackerlabs/arsenal][image: Documentation Status]
 [https://readthedocs.org/projects/arsenal/?badge=latest]
About

A small, Openstack-y service designed to manage image caching to nodes in Ironic [https://github.com/openstack/ironic], written in Python.

Pluggable data-gathering and cache management strategy means Arsenal can be repurposed to work with other services.

Features

	Pluggable data gathering.

	Pluggable strategy/decisioning around caching images to nodes.

	Built-in objects which provide client caching and API call retries to: Ironic [https://github.com/openstack/ironic], Nova [https://github.com/openstack/nova], and Glance [https://github.com/openstack/glance].

Documentation

Hosted HTML docs for Arsenal are available at http://arsenal.readthedocs.org/

You may also build a local copy of Arsenal’s documentation by using Sphinx:

$ sphinx-build $repo_root/docs/source $output_dir

Then you can read the local documentation by pointing a browser at $output_dir/index.html

Roadmap

See issues labeled ‘enhancements [https://github.com/rackerlabs/arsenal/labels/enhancement]‘ on Arsenal’s Github project issues [https://github.com/rackerlabs/arsenal/issues] page.

 Copyright 2015, Rackspace.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	arsenal documentation

Installation

Deployment

The easiest way to install arsenal is through pip. See pip’s
documentation on installation [https://pip.readthedocs.org/en/latest/installing.html] to obtain it.

To install arsenal, run the following command:

$ pip install --pre arsenal-director

Here, we’re instructing pip to install a package, namely
arsenal-director. arsenal-director is the package name for Arsenal in
Python’s Package Index [https://pypi.python.org/pypi]. The --pre option lets pip install
pre-release versions of packages.

Currently, Arsenal is in beta. Once beta testing is complete, a full release
will be made and the --pre option can be dropped from the above example.

Development

To obtain Arsenal for development, you should clone it directly from Github:

$ git clone https://github.com/rackerlabs/arsenal.git

For a development installation, navigate to the cloned repository’s root
and run:

$ pip install -e .

Should provide Arsenal to the system, while allowing development changes to
your local repository to be reflected in the installed package.

Or, if you have virtualenvwrapper installed, and would like to place Arsenal
in a virtual Python environment:

$ mkvirtualenv arsenal
$ pip install -e .

Should do the trick.

 Copyright 2015, Rackspace.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	arsenal documentation

Configuring Arsenal

arsenal.conf

Arsenal reads configuration variables from a single file, canonically called
arsenal.conf. The location and name of this configuration file can be
changed as long as the --config-file argument to arsenal-director
is set accordingly.

Oslo/Config

Arsenal uses the oslo.config [https://wiki.openstack.org/wiki/Oslo/Config] module to parse and load configuration.
See oslo.config [https://wiki.openstack.org/wiki/Oslo/Config]‘s documentation for detailed information on the supported
syntax.

Basic Syntax

That said, the basic syntax of the configuration file is fairly
straight-forward.

Sections

Arsenal’s configuration file is separated into sections. Each section begins
with a bracket enclosed string. For example:

[director]

Begins the “director” configuration section. Each line following the section
directive will populate that section’s configuration options, until another
section directive is parsed, or the end of the file is reached.

Options

Each option has this basic format:

<option_name>=<value>

Where <option_name> is the option’s name, and <value> is the value to assign
to the option.

A Short Example

The following:

[director]
dry_run=True

Would set the dry_run option to the boolean value ‘True’, which belongs to
the [director] section.

arsenal.conf Sections

There are several sections which comprise arsenal.conf. You may not need
to include every available section, nor set every option. Please read through
the following section descriptions to get a sense for what functionality is
made available through arsenal.conf.

[director] Section

The [director] section contains options which affect how
arsenal-director gathers information using Scouts.

Note

See scheduler.py [https://github.com/rackerlabs/arsenal/blob/master/arsenal/director/scheduler.py] for all [director] configuration options.

Important Section Options

	scout - Configures which Scout will be loaded by arsenal-director to
gather data from services. The Scout also currently handles issuing
directives to endpoints. The format is:

<scout_module_name>.<ScoutClassName>

For example, setting the scout option to:

devstack_scout.DevstackScout

Would cause arsenal-director to use the DevStack Scout, which is
a Scout provided by Arsenal that is designed to work with DevStack [http://docs.openstack.org/developer/devstack/].

	dry_run - A boolean option. Setting this option to True will cause
arsenal-director to run in dry run mode. Which means no directives
generated by the configured Strategy will be issued.

Tip

dry_run is a great option to use while testing Arsenal without worrying
about affecting outside services beyond requesting information.

	directive_spacing - An integer option. Represents time in seconds.
Determines how long the Director will wait between issuing new directives
returned by the configured Strategy.

	log_statistics - A boolean option. If True, Arsenal will log detailed
statistics about nodes at the INFO level every time Arsenal issues
directives. Statistics include: number of provisioned nodes,
number of available nodes, number of cached nodes, a breakdown of which
images have been cached and at what frequency. Also logs information broken
up by flavor of node. If False, no statistics will be logged. Defaults to
True.

Cache Node Directive Rate Limiting

The next two options are related to limiting how many Cache Node
directives Arsenal will issue within a given period of time. They are tightly
coupled and should be set together.

	cache_directive_rate_limit - An integer option limiting how many
cache directives Arsenal will issue within a period of time delimited by
cache_directive_limiting_period. Defaults to 0, which indicates no rate
limiting of cache directives will occur.

	cache_directive_limiting_period - An integer option denoting the period
of time, in seconds, to limit Arsenal issuing cache directives to the
limit set by cache_directive_rate_limit. Once this period of time passes,
Arsenal will again issue cache directives (if the configured Strategy
is returning cache directives) until the rate limit is reached,
or until the current time period again passes.

Eject Node Directive Rate Limiting

The next two options are related to limiting how many Eject Node
directives Arsenal will issue within a given period of time. They are
tightly coupled and should be set together.

Tip

These two options operate identically as the cache directive rate limiting
options presented above. Except they apply to ejection directives.

	eject_directive_rate_limit - An integer option limiting how many
eject directives Arsenal will issue within a period of time delimited by
eject_directive_limiting_period. Defaults to 0, which indicates no rate
limiting of eject directives will occur.

	eject_directive_limiting_period - An integer option denoting the period
of time, in seconds, to limit Arsenal issuing eject directives to the
limit set by eject_directive_rate_limit. Once this period of time passes,
Arsenal will again issue eject directives (if the configured Strategy
is returning eject directives) until the rate limit is reached,
or until the current time period again passes.

[strategy] Section

This section provides configuration options relevant to all Strategy
objects.

module_class

The module_class option controls which Strategy object
is loaded and subsequently used to provide Arsenal’s cache decisions.
The format of the module_class option is as follows:

<strategy_module_name>.<StrategyClassName>

For example, the default value for module_class is:

simple_proportional_strategy.SimpleProportionalStrategy

This causes the the class SimpleProportionalStrategy,
which can be found in the simple_proportional_strategy module, to be
instantiated and used by arsenal-director to provide cache decisions
at run-time. The simple_proportional_strategy module is included as
part of Arsenal.

Astute readers will notice the the syntax of this option matches that of
scout from the [director] section.

image_weights_filename

image_weights_filename is a string option specifying the location of a
text file containing a single JSON object where the object’s keys are names
of images as strings, and the values are the associated weights as
non-negative integers.
This JSON object is loaded as a Python dictionary and then referred to by
Arsenal whenever a built-in image selection function, such as
arsenal.strategy.choose_weighted_images_force_distribution, has to make a
decision on which image(s) to choose to cache to available nodes.

Important

The keys of the JSON object in the file named by
image_weights_filename must exactly match the names of images as
reported by the configured Scout object. This typically means image names
reported by Glance. Otherwise the configured weights will not be properly
applied.

Images with higher weights will tend to be picked more frequently, and
similarly those with lower weights will tend to be picked less frequently.

Note

If image_weights_filename is not defined, then every image will
receive the weight specified by the default_image_weight option.
Meaning every image will have an equal chance of being cached.

Example JSON object containing image weights:

{
 'Ubuntu': 10,
 'CoreOS': 5,
 'Windows': 2,
 'SteamOS': 1
}

In the above example the Ubuntu image will be picked twice as often as the
CoreOS image, and ten times as often as the SteamOS image. If you had
18 nodes to cache, then you can reasonably expect 10 nodes to have the
Ubuntu image cached, 5 nodes to have the CoreOS image cached, and so
on.

An example image weight json file is available in Arsenal’s source tree.

default_image_weight

default_image_weight is an integer value which is used to weight an image
with no corresponding entry in the JSON object loaded by the
image_weights_filename option. Defaults to 1.

[simple_proportional_strategy] Section

Currently, the SimpleProportionalStrategy class is the only concrete
implementation of strategy.Strategy provided by Arsenal.

See the SimpleProportionalStrategy section for more information on this
Strategy.

Important Section Options

percentage_to_cache - A floating point number. Valid values range from
0 to 1 inclusive. 0 corresponds to 0%, and 1 corresponds to 100%. Controls
the percentage of unprovisioned/available nodes of a particular flavor to be
cached at a particular time.

[client_wrapper] Section

The [client_wrapper] section contains options relevant to the Openstack
client wrapper provided by Arsenal. Arsenal provides service-specific client
wrappers for Ironic [https://github.com/openstack/ironic], Nova [https://github.com/openstack/nova], and Glance [https://github.com/openstack/glance].

The client wrappers provided by Arsenal all provide client caching and
call-retry behavior. This section provides options to configure part of that
behavior as well as provide credentials to all wrappers.

Note

Please see client_wrapper.py [https://github.com/rackerlabs/arsenal/blob/master/arsenal/external/client_wrapper.py] for all
[client_wrapper] configuration options.

Important

Credential options defined in the client_wrapper section will be used by
default by every derived instance of client wrapper unless the credential
is overridden in the derived client wrapper’s section. For instance,
if os_username is defined in the [client_wrapper] section, then
the Nova client wrapper will use the client_wrapper.os_username value
unless nova.admin_username is defined.

Important Section Options

	call_max_retries - An integer value which determines how many times an
individual client will be retried, until it is successful.

	call_retry_interval - An integer value which Determines how long the
client wrapper will wait before trying a call again.

[nova] Section

This section provides options mainly relating to credentials and the endpoint
to use to communicate with Nova [https://github.com/openstack/nova].

Note

Please see nova_client_wrapper.py [https://github.com/rackerlabs/arsenal/blob/master/arsenal/external/nova_client_wrapper.py] for all [nova] configuration
options.

[ironic] Section

This section provides options mainly relating to credentials and the endpoint
to use to communicate with Ironic [https://github.com/openstack/ironic].

Note

Please see ironic_client_wrapper.py [https://github.com/rackerlabs/arsenal/blob/master/arsenal/external/ironic_client_wrapper.py] for all [ironic] configuration
options.

[glance] Section

This section provides options mainly relating to credentials and the endpoint
to use to communicate with Glance [https://github.com/openstack/glance].

Note

Please see glance_client_wrapper.py [https://github.com/rackerlabs/arsenal/blob/master/arsenal/external/glance_client_wrapper.py] for all [glance] configuration
options.

A full example arsenal.conf file

See the example Arsenal configuration [https://github.com/rackerlabs/arsenal/blob/master/etc/arsenal/arsenal.conf] in the Arsenal source tree to see a
full example configuration to use with arsenal-director.

 Copyright 2015, Rackspace.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	arsenal documentation

Usage

arsenal-director

Arsenal is invoked by running:

arsenal-director

With various arguments. All of arsenal-director‘s supported arguments are
documented on the command line. Run:

arsenal-director --help

To see them, and a brief explanation on each one.

A reasonable invocation for actual use looks something like:

arsenal-director --config-file /etc/arsenal/arsenal.conf --log-file /car/log/arsenal/arsenal-director.log

Which would start arsenal-director, and it would try to load the
configuration file found at /etc/arsenal/arsenal.conf while logging to
/var/log/arsenal/arsenal-director.log.

arsenal-director will periodically gather data using the configured
Scout object, and issuing directives returned by the configured
Strategy object. arsenal-director will continue in this way
indefinitely, only stopping through program termination.

Important

It’s a good idea to set the dry_run option to
True in order to prevent arsenal-director from issuing directives
until you are confident that all the configuration settings appear to be
correct, and the directives emitted by the configured Strategy are
consistent with expected behavior.

 Copyright 2015, Rackspace.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	arsenal documentation

Design

The core of Arsenal’s functionality consists of gathering data for input,
through Scout objects, to send to Arsenal’s caching Strategy
objects, which produce directives, which in turn are currently fulfilled by
Scout objects.

Therefore, Scouts deal with the outside world, while Strategies
provide introspection on data provided by Scouts to direct image caching on
nodes in some meaningful way. The Scout and Strategy objects used by
arsenal-director can be changed through configuration options.

Arsenal’s design philosophy can be summed up as:
“Provide a way to do something, but make it easy to change or swap out.”

Scout

The responsibility of Scouts are to gather data from various outside sources,
like Ironic [https://github.com/openstack/ironic], Nova [https://github.com/openstack/nova], and Glance [https://github.com/openstack/glance], convert that data to a form suitable for
Strategy object consumption, as well as issue directives to endpoints,
such as Ironic [https://github.com/openstack/ironic].

All of Arsenal’s Scout objects are derived from an abstract base class called
Scout, which is defined in scout.py [https://github.com/rackerlabs/arsenal/blob/master/arsenal/director/scout.py].

Tip

If you are thinking about defining your own Scout object, reading
scout.py [https://github.com/rackerlabs/arsenal/blob/master/arsenal/director/scout.py] is a good place to start.

A couple of pre-made Scouts are currently included in Arsenal.

Openstack Scout

The Openstack Scout will communicate with Ironic [https://github.com/openstack/ironic], Nova [https://github.com/openstack/nova], and Glance [https://github.com/openstack/glance] services,
and handle fulfilling Strategy actions by talking to Ironic [https://github.com/openstack/ironic].

Most Scouts hoping to be used with Openstack services will derive from this
Scout while passing filtration functions for flavors and images to
OpenstackScout via a super() call during __init__.

For more information see, openstack_scout.py [https://github.com/rackerlabs/arsenal/blob/master/arsenal/director/openstack_scout.py].

DevStack Scout

This Scout is designed to be used with the DevStack [http://docs.openstack.org/developer/devstack/] project, which provides
a relatively easy way to setup an Openstack-based environment on a single
machine, typically for testing purposes.

See Ironic documentation [http://docs.openstack.org/developer/ironic/dev/dev-quickstart.html#deploying-ironic-with-devstack] on how to configure virtual baremetal nodes for
use with DevStack.

For more information see, devstack_scout.py [https://github.com/rackerlabs/arsenal/blob/master/arsenal/director/devstack_scout.py].

OnMetal Scouts

The OnMetal Scouts are designed to work with Rackspace’s OnMetal product [http://www.rackspace.com/cloud/servers/onmetal/].
While these specific Scouts will probably not be directly useful to anyone
outside of Rackspace, it can still be instructive to view fully functional
implementations of Openstack Scout with filters.

For more information, see onmetal_scout.py [https://github.com/rackerlabs/arsenal/blob/master/arsenal/director/onmetal_scout.py].

Strategy

A Strategy’s role lies in consuming data provided by Scouts, and then emitting
directives to manage imaging caching on nodes.

Directives

Currently, two directives are used by Arsenal’s strategies to manage the cache.
Cache Node, which adds a node to the cache, and Eject Node, which
will remove a node from the cache.

Cache Node

CacheNode instructs the endpoint to cache a specific image onto a
specific node. This is the main mechanism used to build a fleet of cached
nodes.

Eject Node

The second is EjectNode, which instructs the endpoint to do
whatever is necessary to put a previously cached node back into an
uncached state. This directive is necessary if an image cached to a node
becomes out-of-date.

Tip

If you are thinking about defining your own Strategy object, reading
strategy/base.py [https://github.com/rackerlabs/arsenal/blob/master/arsenal/strategy/base.py] is a good place to start.

SimpleProportionalStrategy

Currently, SimpleProportionalStrategy is the only Strategy shipping with
Arsenal.

This object implements a fairly straight-forward strategy: For each available
flavor of node, use a constant proportion of available nodes for caching.

SimpleProportionalStrategy randomly picks available, uncached nodes to cache.
The random selection is designed to level wear across nodes.

Image selection is handled by choose_weighted_images_force_distribution
found in the arsenal.strategy.base module. This means
SimpleProportionalStrategy will pick images by weights pulled from the
strategy.image_weights_filename option.
See the image_weights_filename option section
for more details on how image weighting works in Arsenal.

See the [simple_proportional_strategy] Section for information on how to
configure this Strategy.

 Copyright 2015, Rackspace.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	arsenal documentation

Contributing

Contributions are encouraged and welcome!

For any type of change, please follow this general workflow:

	Open an issue in Arsenal’s Github issue tracker [https://github.com/rackerlabs/arsenal/issues]. Describe the issue and
tag it accordingly. That is, if the issue is a bug, please tag the issue
as a bug. If an issue already exists, skip this step.

	Clone Arsenal’s repository locally.

	Create a topic branch for the changes you plan to make in regards to the
issue you’re working on: git checkout -b your_branch_name

	Make your changes.

	Add appropriate unit-tests. If your change addresses a bug, please
add a unit test that proves the bug is fixed by your change. For
enhancements, try to thoroughly test all cases the new code will face.

	Make sure all unit tests pass. tox -epy27,pep8 should exercise all
unit-tests and check for pep8 related style issues.

	Commit your changes to your local repository and
reference the appropriate Github issue in your commit message [https://help.github.com/articles/closing-issues-via-commit-messages/],
if appropriate.

	Push your topic branch: your_banch_name to Github.

	Create a pull request using the your_branch_name branch.

At that point, a repository maintainer will need to review and approve the
pull-request. You may be asked to make additional changes to your pull-request
before it is merged.

Please note that any contributions will fall under the Apache 2.0 license [https://github.com/rackerlabs/arsenal/blob/master/LICENSE]
governing this project.

Thanks for contributing!

 Copyright 2015, Rackspace.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	arsenal documentation

Index

 Copyright 2015, Rackspace.
 Created using Sphinx 1.3.5.

 _static/comment.png

search.html

 Navigation

 		
 index

 		arsenal documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Rackspace.
 Created using Sphinx 1.3.5.

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/down.png

_static/up.png

_static/comment-close.png

_static/down-pressed.png

_static/minus.png

