

Welcome to Aristotle Metadata Registry’s documentation!

[image: The Aristotle-MDR logo]

Aristotle Metadata Registry is an open-source metadata registry framework as laid out
by the requirements of the ISO/IEC 11179:2013 specification [http://metadata-standards.org/11179/].

Aristotle Metadata Registry represents a new way to manage and federate content built on and extending
the principles of leading metadata registry. The code of Aristotle-MDR is completely open-source,
building on the Django web framework and the mature model of the ISO 11179 standard,
agencies can easily run their own metadata registries while also having the ability
to extend the information model and tap into the permissions and roles defined
in ISO 11179.

By allowing organisations to run their own independent registries they are able to
expose authoritative metadata and the governance processes behind its creation,
and building upon known and open systems agencies, can build upon a stable platform
or the sharing of 11179 metadata items.

Table of Contents

	Aristotle Metadata Registry Mission Statement

	Installing Aristotle Metadata Registry
	Easy installer documentation

	Integrating Aristotle-MDR with a Django project

	Aristotle Static Files

	Configuring the behavior of Aristotle-MDR

	Adding new static pages into Aristotle

	Changing the look and feel of the site

	Configuring third-party apps

	Technical requirements

	Features of Aristotle-MDR
	100% Free open-source software

	Easily extensible

	Mobile-friendly interface

	Real-time enterprise search

	Secure, thoroughly tested permissions

	Easy content creation

	The Aristotle Metadata Registry API
	The Aristotle REST API

	The Aristotle GraphQL API

	Extending Aristotle-MDR
	Making new metadata types

	Adding new download formats

	Adding new bulk actions

	Tags and filters available in aristotle templates

	Using Aristotle permissions in custom code

	Testing

	Developing and contributing to the Aristotle Metadata Registry
	Setting up a development environment

	Creating a superuser

	Quickly switching user roles

	Customing the Aristotle Metadata Registry
	Customising templates

	Customising the browse pages

	Creating and deploying user help
	Aristotle Help models

	Special syntax in user help files

	Writing help files

	Importing help files

	Accessing help in extension and download templates

Indices and tables

	Index

	Module Index

	Search Page

Aristotle Metadata Registry Mission Statement

The core principle behind the design of the Aristotle Metadata Registry is to build
a framework for building ISO/IEC 11179 compliant Metadata Registries, using 100%
Free Open Source Software, and released to the public as Free Open Source Software.

By designing Aristotle-MDR in an extensible way, the core data model of Aristotle aims
to be as close to the model of ISO/IEC 11179-3, without burdening the framework with
unnecessary code.

Aristotle-MDR is designed to provide the framework for a metadata registry, and
is explicitly not designed to be a standard web content management system, and a core
assumption in the design of Aristotle is that the management of ‘non-metadata’ content
is a matter for each party installing Aristotle-MDR to handle independent of the registry.

There are some simple url hooks available in Aristotle for including extra pages using the
django template system, alternatively Django Packages [https://www.djangopackages.com/] has a
list of a number of excellent CMS packages for Django [https://www.djangopackages.com/grids/g/cms/].
Many of these should be able slot in besides the Aristotle-MDR app in a custom site,
without having to alter the code or compromise the core principles of Aristotle.

Installing Aristotle Metadata Registry

	Easy installer documentation
	Using a different database

	Disabling the DEBUG options

	Creating a superuser for the registry

	Integrating Aristotle-MDR with a Django project

	Aristotle Static Files
	Webpack

	Arisotle Webpack Structure

	During Development

	Installing Dependancies

	Running Builds

	Bundle Loading

	Testing

	Linting (Style Checking)

	Configuring the behavior of Aristotle-MDR
	Environment variables

	ARISTOTLE_SETTINGS

	Sample settings

	Adding new static pages into Aristotle

	Changing the look and feel of the site
	Changing site CSS using Django staticfiles

	Changing the Bootstrap file by overriding the settings

	Completely overhauling the site

	Configuring third-party apps
	Django

	Haystack

	LESS Compilation

	Technical requirements
	Operating system support

	Python

	Django

	Database support

	Search index support

Easy installer documentation

This is a quick guide to setting up a new metadata registry based on
the Aristotle Metadata Registry framework using the easy installer.

Such a server should be considered for demonstration purposes, and deployment
should be done in accordance with the best practices and specific requirements
of the installing agency.

For more information on configuring a more complete installation review the help article
Integrating Aristotle-MDR with a Django project.

	Make sure you have a server setup for hosting the project with an appropriate
WSGI web server configured. If the server is only used for development, the inbuilt
django server can be accessed by running the ./manage.py runserver command.

PythonAnywhere also provides a free python server suitable for development and low
traffic sites [http://www.PythonAnywhere.com].

	(Optional but recommended) Configure a virtualenv for your server, so that the dependancies
for Aristotle-MDR do conflict any other software you may be running. If you are running
Aristotle on an isolated server with root privileges you may skip this step.

For PythonAnywhere, information is available on
installing virtualenv [https://www.pythonanywhere.com/wiki/InstallingVirtualenvWrapper]
and configuring a new virtualenv [https://www.pythonanywhere.com/wiki/VirtualEnvForNewerDjango].

	Next install the Aristotle Metadata Registry package.
This can be done using pip with the following command pip install aristotle-metadata-registry.
If you already have a version installed your can update with pip install -U aristotle-metadata-registry

	To run the easy installer simply run aristotle-installer from the command line. There are a number of command line arguments that are explained in the help documentation which can be accessed from the command line:

``aristotle-installer --help``

To install your registry in a different directory use the –dir option python install.py --dir ./myregistry

This installer will setup an example registry, and will prompt you for a new name, ask for a few
additional settings, install requirements, setup a database and collect the static files.

	If required, browse to the directory of your project that was named in the above directory,
and edit the settings.py files to meet your requirements.
Although the installer generates a pseudo-random hash for the SECRET_KEY,
It is strongly recommmended you generate a fresh SECRET_KEY. Also consider which
customisations to implement using the options in the ARISTOTLE_SETTINGS
dictionary - details of which can be found under Configuring the behavior of Aristotle-MDR.

The example registry includes commented out lines for some useful Aristotle-MDR extensions.
If you wish to use these, remove the comments as directed by the documentation in settings.py.

	If you are using a WSGI server (such as PythonAnywhere) you’ll need to either point your server to
the projects wsgi.py file or update your WSGI configuration.

For more information on configuring the PythonAnywhere WSGI server review their documentation [https://www.pythonanywhere.com/wiki/DjangoTutorial].

	Start (or restart) the development server and visit its address.
In the case of a local development server this will likely be 127.0.0.1.

Using a different database

The easy installer using a simple SQLite database for storing content, however for
large scale production servers with multiple concurrent users this may not be
appropriate. Django supports a wide range of database server [https://docs.djangoproject.com/en/stable/ref/databases/]
which can be used instead of SQLite. However to the very specific nature of the
options required to connect to a database, to use an alternate database with
the easy installer a few additional steps are required.

	Let the installer run to completion, without the --dry option, and
selecting yes when asked Ready to install requirements? (y/n):.

	Edit your settings.py file and add a variable DATABASES set to connect
to your database as described in the Django documentation [https://docs.djangoproject.com/en/stable/ref/databases/].

	Remove the pos.db3 file that will have been created during the installation.
This file is the name of the default SQLite database and can be safely deleted
without any issues.

	Call the Django migrate command again using the updated settings:

./manage.py migrate

	Start (or restart) the development server and visit its address.
In the case of a local development server this will likely be 127.0.0.1.

Disabling the DEBUG options

Because of the The easy installer using a simple SQLite database for storing content, however for
large scale production servers with multiple concurrent users this may not be
appropriate. Django supports a wide range of database servers [https://docs.djangoproject.com/en/stable/ref/databases/]
which can be used instead of SQLite. However to the very specific nature of the
options required to connect to a a database, to use an alternate database with
the easy installer a few additional steps are required.

	Let the installer run to completion, without the --dry option, and
selecting yes when asked Ready to install requirements? (y/n):.

	
	Edit your settings.py file and set the DEBUG to False::

	DEBUG=False

	Remove the pos.db3 file that will have been created during the installation.
This file is the name of the default SQLite database and will have a number of
example objects and users created within it as the migrate step when DEBUG
is set to True.

	Call the Django migrate command again using the updated settings:

./manage.py migrate

	Start (or restart) the development server and visit its address.
In the case of a local development server this will likely be 127.0.0.1.
To access the administators sections of the site you will need to create
a super user.

Creating a superuser for the registry

Creating a superuser is covered in more depth in the Django documentation [https://docs.djangoproject.com/en/1.8/ref/django-admin/#django-admin-createsuperuser],
however a quick guide is given here. These steps assume a valid database exists
and has been appropriately set up with the Django migrate command.

To create a super user, browse to the project folder and run the command:

$ django-admin createsuperuser

This will prompt you for a username, email and password.

A username and email can be applied with the --username and --email
switches respectively. For example:

$ django-admin createsuperuser --username=my_registry_admin --email=admin@registry.example.gov

Integrating Aristotle-MDR with a Django project

Note: this guide relies on some experience with Python and Django.
For new users looking at getting a site up and running look at the
Easy installer documentation.

The first step is starting a project as described in the Django tutorial [https://docs.djangoproject.com/en/1.7/intro/tutorial01/].
Once this is done, follow the steps below to setup Aristotle-MDR.

	Add “aristotle_mdr” to your INSTALLED_APPS setting like this:

INSTALLED_APPS = (
 ...
 'haystack',
 'aristotle_mdr',
 ...
)

To ensure that search indexing works properly haystack must be installed before aristotle_mdr.
If you want to take advantage of Aristotle’s WCAG-2.0 access-key shortcut improvements for the admin interface,
make sure it is installed before the django admin app.

	Include the Aristotle-MDR URLconf in your project urls.py. Because Aristotle will
form the majority of the interactions with the site, as well as including a
number of URLconfs for supporting apps its recommended to included it at the
server root, like this:

url(r'^/', include('aristotle_mdr.urls')),

	Create the database for the metadata registry using the Django migrate command:

python manage.py migrate

	Start the development server with python manage.py runserver and visit http://127.0.0.1:8000/
to see the home page.

For a complete example of how to successfully include Aristotle, see the example_mdr directory.

Aristotle Static Files

Webpack

Aristotle uses webpack to bundle most static files served on the site. We also use webpack to compile .less stylesheets and to compile es6 javascript into backwards compatible versions using babel. More information about weback can be found here: https://webpack.js.org/

Arisotle Webpack Structure

The webpack project lives under /assets in the mono-repo. All pages with different js or css should have their own webpack entrypoint. All files in /src/pages are treated as entrypoints. /src/lib is for custom js that is used across entrypoints. /src/styles is where all the .css and .less stylesheets are found and src/components are where single file vue components are found

During Development

When making changes to aristotle we recommend using docker-compose to run your development version. This will automatically run the webpack build for you whenever a file is updated. The contianer will need to be restarted when adding a new page or changing the webpack config. This can be done with the docker-compose restart webpack command

Note that slightly different webpack configuration is used in development. The common, dev and prod configs can be found in /assets

If you wish to see what is in each of the generated bundles you can view the report generated with each build. This can be found at /assets/dist/report.html and gives a graphical represantaion of the bundles

Installing Dependancies

We use npm for dependancy management. You can run npm install from the assets directory to install all dependancies. This is not neccessary when using docker-compose

Running Builds

If you want to run a production build you can run npm run build. For a continuously updating development build you can run npm run watch

Bundle Loading

Bundles are loaded into the django template using django-webpack-loader. This provides some simple template tags to load the bundles. The css and js bundles should be loaded in the webpack_bundle and webpack_css_bundle blocks defined in base.html. See sandbox.html for an example

Testing

Front end tests are written using the mocha framework and chai assertion library and can be found in /assets/test.
The tests are also processed with webpack before being executed by the karma test runner.

You can run the tests with npm run test. They are also executed by travis on each pull request

Linting (Style Checking)

Our package.json file contains some eslint configuration for style checking. Eslint can be run with npm run lint

Configuring the behavior of Aristotle-MDR

Environment variables

The default django settings file for Aristotle-MDR looks for a number of enviromnet variables for
storing files or configuring your webapp. These are all prefixed with aristotlemdr:.

	BASE_DIR

	Defaults to the path of where Aristotle is installed. Its highly adviced this is changed.

	SECRET_KEY

	Defaults to a very insecure value - you MUST change this before going into production.
From Django settings documentation [https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-SECRET_KEY]:

A secret key for a particular Django installation. This is used to provide cryptographic signing,
and should be set to a unique, unpredictable value.

	STATIC_ROOT

	Defaults to the value of BASE_DIR + "/static"
From Django settings documentation [https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-STATIC_ROOT]:

A secret key for a particular Django installation. This is used to provide cryptographic signing,
and should be set to a unique, unpredictable value.

	MEDIA_ROOT

	Defaults to the value of BASE_DIR + "/media"
From Django settings documentation [https://docs.djangoproject.com/en/1.10/ref/settings/#std:setting-MEDIA_ROOT]:

Absolute filesystem path to the directory that will hold user-uploaded files.

	ARISTOTLE_DISABLE_ASYNC_SIGNALS

	Default: False
Disables asynchronous signal processing

ARISTOTLE_SETTINGS

The following are required within a dictionary in the settings for the configured Django project.

	CONTENT_EXTENSIONS

	A list of the namespaces used to add additional content types,
these are used when discovering the available extensions for about pages -
required format a list of strings.

	BULK_ACTIONS

	A list of fully-qualified python paths to the bulk action form classes that
provide the action. More information on configuring
bulk actions is available here.

	PDF_PAGE_SIZE

	The default page size to deliver PDF downloads if a page size is not specified in the URL

	SEPARATORS

	A key:value set that describes the separators to be used for name suggestions in the
admin interface. These are set by specifying the key as the django model name for
a given model, and the value as the separator.
When a value for a model isn’t stated in this field it defaults to a hyphen -.
The default settings in required_settings.py set additional defaults and
specify the separator for “DataElements” as a comma with a single space , ``
and the separator for "DataElementConcepts" as an em-dash ``–.

	SITE_NAME

	The main title for the site - required format string or unicode.

	SITE_BRAND

	A URL to the logo to use for the site, this can be relative or absolute.

	SITE_INTRO

	The introductory text use on the home page as a prompt for users -
required format string or unicode.

	WORKGROUP_CHANGES

	An array that specified which classes of user can move items between workgroups.
Possible options include 'admin', 'manager' or 'submitter'.

	DOWNLOADERS

	A list of download options - explained below:

ARISTOTLE_SETTINGS.DOWNLOADERS

This is a list of tuples that define the different download options that will
be made available to users. This tuple defines in order:

	filetype used in the URL to catch this download type - must match the regex [a-zA-Z0-9\-\.]+.

	the name presented on the download menu

	The Font-Awesome [http://fortawesome.github.io/Font-Awesome/icons/#file-type] icon used in the download menu

	the python module that includes the downloader.py file for handling this filetype

For example:

('pdf',"PDF","fa-file-pdf-o","aristotle_mdr")

Menu options are only given if a template for that download file type exists for
a given object. The first (filetype) setting is used when catching URLs for downloads, so that
when resolving URLs the filetype is used in the URL in the following way:

/download/<download-file-type>/<item-id>

This file type is also passed to the download manager for this filetype, so that multiple
file types can be handled by the same extension.

For example, if an object class had a PDF template, based on the above
configuration the menu below would be accessible:

[image: An example download menu with one option for a PDF download link.]

And clicking this would access the following relative URL:

/download/pdf/<object_class_id>

For more information on creating additional download extensions consult the guide on
Adding new download formats.

Sample settings

Below is the ARISTOTLE_SETTINGS used on the hosted
Aristotle example:

ARISTOTLE_SETTINGS = {
 # 'The main title for the site.'
 'SITE_NAME': 'Aristotle Metadata Registry',
 # URL for the Site-wide logo
 'SITE_BRAND': '/static/aristotle_mdr/images/aristotle_small.png',
 # 'Intro text use on the home page as a prompt for users.'
 'SITE_INTRO': 'Use Aristotle Metadata to search for metadata...',
 # Extensions that add additional object types for search/display.
 'CONTENT_EXTENSIONS' : ['comet'],
 # Separators for auto-generating the names of constructed items.
 'SEPARATORS': { 'DataElement':',',
 'DataElementConcept':'–'},
 'DOWNLOADERS': [
 ('pdf','PDF','fa-file-pdf-o','aristotle_pdf'),
]
 }

Adding new static pages into Aristotle

While Aristotle provides a strong framework for setting up a metadata registry,
there some static pages which are important for a site, but unlikely to be changed,
such as the home page, CSS and about pages.

These exist in aristotle as template pages, and like all Django tempaltes are easy to
override with more custom, site-specific content. The first step is to ensure the
settings for the site include a Django TEMPLATE_DIR directive, like that below:

TEMPLATE_DIRS = [os.path.join(BASE_DIR, 'templates')]

Setting a separate template directory when using Aristotle ensure that templates
can be easily overriden, without requiring a separate django app or editing of
the main Aristole codebase.

When attempting to resolve templates, one of the first locations checked will be the
directory stated in TEMPLATE_DIRS. Examining the code in the
Aristotle-MDR code [https://github.com/aristotle-mdr/aristotle-metadata-registry/]
should give an understanding of how the templates are laid out if changes are necessary.

Changing the look and feel of the site

Changing site CSS using Django staticfiles

Changing the CSS of the site can be done by overriding the static files that serve the
Bootstrap and Aristotle CSS files, these are available at:

aristotle_mdr/static/aristotle_mdr/css/aristotle.css
aristotle_mdr/static/aristotle_mdr/bootstrap/bootstrap.min.css

Overriding these will require setting the STATICFILES_DIR setting in settings.py , like so:

STATICFILES_DIR = [os.path.join(BASE_DIR, "site_static")]

Its important, to make sure if setting a STATICFILES_DIR that
'django.contrib.staticfiles.finders.FileSystemFinder' is added to
the STATICFILES_FINDERS setting. If importing all of the settings from
Aristotles required_settings.py file this is already included, so this doesn’t need
to be redefined. But if settings.py doesn’t import required_settings.py,
STATICFILES_FINDERS can be declared like this:

STATICFILES_FINDERS = (
 'django.contrib.staticfiles.finders.FileSystemFinder',
 'django.contrib.staticfiles.finders.AppDirectoriesFinder',
)

Once this is set, to override the Aristotle bootstrap css, a file at the
following location in the project site will be used instead:

custom_site_static/aristotle_mdr/bootstrap/bootstrap.min.css

More information about these is available in the
Django documentation on static files [https://docs.djangoproject.com/en/stable/ref/contrib/staticfiles/#staticfiles-finders].

Changing the Bootstrap file by overriding the settings

Aristotle uses Django-bootstrap3 [https://github.com/dyve/django-bootstrap3] to
import bootstrap. By default Aristotle stores the boostrap file at:

/static/aristotle_mdr/bootstrap/

but, an alternative solution is to override this value be redefining the BOOTSTRAP3 setting
in your projects settings.py, like so:

BOOTSTRAP3 = {
 # The Bootstrap base URL
 'base_url': '/static/your_path_to/bootstrap/',
}

Completely overhauling the site

It is also possbile to override the home page and base templates to completely overhaul
the look and feel of the site, and these are available under the templates directory at:

	aristotle_mdr/templates/aristotle_mdr/base.html

	aristotle_mdr/templates/aristotle_mdr/static/home.html

However, doing so may break the rendering of pages and prevent the registry from working.
It is strongly recommended that overrides of these files are done by someone with
a strong working knowledge of HTML, CSS and Django templates.

Configuring third-party apps

Aristotle takes care of most of the work of getting a registry setup with the settings import:

from aristotle_mdr.required_settings import *

but there are few areas for customisation or tweaking.

Django

Every django setting can be overridden, but the ones that will be most important when configuring Aristotle-MDR are:

	DATABASE - By default Aristotle will configure a SQLite file-based database.
While this is fine for very small low-traffic registries, configuring Django to use a
fully-fledged relational database management system like PostgreSQL or MySQL will
be better for larger, high-traffic sites.

	ROOT_URLCONF - This is the python library that will be used to define the
settings for django to resolve URLs. If you aren’t using any extensions, you can
just leave this as the default which points to the Aristotle URLs file - aristotle_mdr.urls.
If you are using extensions, you’ll need to point this at the URLs file that you have created to
handle all of the different URL configuration files for each extension.

	WSGI_APPLICATION - This points to the file and WSGI application that you have created
to if you are intending to deploy via a WSGI server [https://docs.djangoproject.com/en/1.8/howto/deployment/wsgi/].

Haystack

For search to work, Haystack is required to be installed. There are no options to disable this,
as without search a registry is quite useless. However you can change some settings.

	HAYSTACK_SEARCH_RESULTS_PER_PAGE - Self explanatory, this defaults to 10 items per page.

	HAYSTACK_CONNECTIONS - This define which search indexers are being used and how they are
connected. By default this uses the Whoosh Engine [https://pypi.python.org/pypi/Whoosh/],
which is quite fast and because its a Pure-Python implementation reduces the complexity in getting it setup.
For more advanced usage, read the Haystack documentation [http://django-haystack.readthedocs.org/en/latest/tutorial.html#configuration].

	HAYSTACK_SIGNAL_PROCESSOR - Included for completion, this defaults to aristotle_mdr.contrib.help.signals.AristotleHelpSignalProcessor.
This is a custom signal processor that performs real-time, status-aware changes to the index and monitors for changes to Help Pages.
The alternative recommended option is aristotle_mdr.signals.AristotleSignalProcessor, which only monitors changes to metadata items.
Read the warnings below for why you probably only want to use these options.

Warnings about Haystack

	Always make sure haystack is included once and only once in INSTALLED_APPS,
otherwise your installation will throw errors.

	Make sure haystack is included in INSTALLED_APPS before aristotle_mdr.

	Be aware that Haystack will only update search indexes when told, Aristotle includes a
SignalProcessor that performs registation status-aware real-time updates to the index.
Switching this for another processor may expose private information through search results,
but will not allow unauthorised users to access the complete item.

LESS Compilation

Aristotle-MDR includes a number of uncompiled LESS files that need to be compiled by
django-static-precompiler. By default Aristotle-MDR uses the Python-based lesscpy
compiler for this which is approximately compatible, but slower than, to the Node lessc compiler.
If you have complex requirements in your custom LESS files, want a faster compile time
or wish to use another CSS precompile type, override the following setting in your settings.py:

STATIC_PRECOMPILER_COMPILERS = (
 ('static_precompiler.compilers.LESS', {"executable": "lesscpy"}),
)

In production, its advisable to compile the LESS files once and cache these withother static files.
This makes the choice of precompiler less of an issue for production environments.

Technical requirements

The Aristotle Metadata Registry is built on the Django framework which supports a wide range of
operating systems and databases. While Aristotle-MDR should support most of these
only a small set of configurations have been thoroughly tested on the
Travis-CI [https://travis-ci.org/aristotle-mdr/aristotle-metadata-registry/]
continuous integration systems as “supported infrastucture”.

Operating system support

	Ubuntu Linux (Precise Pangolin) 12.04 LTS (verification courtesy of Travis-CI)

Travis-CI does not yet have containerised support for the Ubuntu 14.04 or 16.04
long-term support releases.

Python

Only the latest releases of Python are supported. New users are recommended to use Python 3.5 or above.

	Python 3.5+

Django

	Django version 1.11 LTS

Database support

	SQLite

	Postgres

	MariaDB

Notes:

Aristotle has been tested against Microsoft SQL Server 2016 on Windows, but we
no longer provide official testing against this database.

MySQL has issues incompatible with Aristotle that prevent it from being used.
Consider using an alternative like MariaDB if you need MySQL-like support.

Search index support

	Elasticsearch 5.0+ (Only tested on Linux)

	Whoosh (Linux and Windows)

Features of Aristotle-MDR

100% Free open-source software

The entire suite of software that Aristotle-MDR is built upon is free open-source software.
The majority of these requirements are managed through the Python Package Index [https://pypi.python.org/pypi],
the rest are online resources, such as
jQuery [http://jquery.com/],
Twitter Bootstrap CSS Framework [http://getbootstrap.com/] and
Font Awesome [http://fortawesome.github.io/Font-Awesome/] are hosted through online
content delivery networks for improved speed.

Because of the open nature, low-requirements and no-cost of this framework a new registry can be
setup on a Python shared hosting service like Python Anywhere in a matter
of minutes - and includes everything you need to get a professional scalable metadata registry up and running.

The only restriction with running Aristotle-MDR is that if you are running a public facing site,
you keep a link to the Aristotle GitHub page in the footer, but even this can can be waived with permission.

Easily extensible

One of the core features of the ISO/IEC 11179-3 information model is the ability
to extend the models by subclassing from the included items. Aristotle-MDR captures the
core of the ISO/IEC 11179 as faithfully as possible, but provides a rich API to quickly
and easily add new items for management using the Object-Oriented approach of
Python [https://www.python.org/] and Django [https://www.djangoproject.com/].

You can read more about the
content type API and
template overrides in the
extensions documentation.

Mobile-friendly interface

Every page of Aristotle-MDR has been built upon the Twitter Bootstrap CSS Framework [http://getbootstrap.com/].
This means that every page has a responsive, mobile first design and flawlessly
scales from the largest desktop to the smallest phone. Along with this, the use of the
Font Awesome [http://fortawesome.github.io/Font-Awesome/] icon toolkit means menus
and pages have a consistent look and feel.

Real-time enterprise search

Integration of the Django-Haystack [http://haystacksearch.org/] search API
provides a rich search engine capability, so content can always be found. Content
can be search on not just by text fields, but also by Registration Status, the owner
workgroup and content type, with more advanced search options to come!

Although the default settings for Aristotle use the Whoosh search engine [https://pypi.python.org/pypi/Whoosh/],
Haystack provides backend hooks for a number enterprise ready search engines [http://django-haystack.readthedocs.org/en/latest/backend_support.html].

The default settings for Aristotle-MDR include a real-time search index manager
that tracks changes as they are made, and updates visibilty and indexes immediately.

With appropriate tweaking the Haystack engine can scale from the smallest research facility
to the largest government agency.

Secure, thoroughly tested permissions

Using a set of thoroughly tested custom permissions, content created within the
Aristotle registry can be show or hidden from the public and registered users
based on the well documented status workflow in part 6 of the ISO/IEC 11179 standard.

Strict version control of the code on GitHub [https://github.com/aristotle-mdr/aristotle-metadata-registry/],
continuous testing of the code using Travis-CI [https://travis-ci.org/aristotle-mdr/aristotle-metadata-registry]
and code coverage analysis using Coveralls.io [https://coveralls.io/r/aristotle-mdr/aristotle-metadata-registry]
ensures that access permissions are clearly defined, and as changes are made
if issues with permissions they can be idenitified and rectified immediately.

Easy content creation

Aristotle-MDR includes an easy to use editing system, that uses the robust
CKEditor [http://ckeditor.com//] WYSIWYG (What-You-See-Is-What-You-Get)
editor, that gives users instant feedback on changes to content. The in-built editor
gives access to a rich-text editor, easy insertion of links to content and an image
upload and linking facility.

The Aristotle Metadata Registry API

	The Aristotle REST API
	Description

	Authentication

	The Aristotle GraphQL API
	Description

	Usage from external applications

	Authentication

The Aristotle REST API

Description

The Aristotle REST API’s are (available at /api/) provide access to content within the system in a machine readable form

The api is versioned and deprecated slowly so that existing applications have time to transition. Currently v3 and v4 are available.

Swagger documentation is automatically generated for each api. This describes the endpoints along with expected data and is available at /api/v3 and /api/v4

Authentication

To access private content through the api you need to either be logged in to the site or provide an access token.

Access tokens can be created from the token management page and must be assigned explicit permissions which determined the endpoints each token is able to access.

To use the token it must be provided in the Authenticate http header in the form Token mytoken. For example if your token is Ykc7ClFLUiQKKG8 the Authenticate header should be Token Ykc7ClFLUiQKKG8

The Aristotle GraphQL API

Description

The Aristotle GraphQL API provides read access to system data through the use of GraphQL queries.
See graphql.org for more information

You can test it out in GraphiQL by visiting /api/graphql

Usage from external applications

To query GraphQL from external applications you should use the /api/graphql/json endpoint.
You can use a GET request with the query and optional JSON encoded variables parmaters for example:

/api/graphql/json?query={metadata{edges{node{uuid}}}}&variables=” optional JSON encoded variables “

Or you can make a POST request with either JSON or direct GraphQL. JSON must be submitted with the application/json content type and be in the following form with variables being optional.

{
 "query": ...
 "variables": { ... }
}

To submit a query directly you can use the application/graphql content type, although you will not be able to provide variables, making JSON the preferred method.

The response (from either a GET or POST request) will be JSON in the form {"data": { ... }} if the query was successful or {"errors": [...]} if there was an error.

Authentication

By default the GraphQL endpoint will provide only public content.
To access private content a token must be provided in the Authorization header in the form Token mytoken.
These tokens can be created from the token management page accessible from /api/

Extending Aristotle-MDR

One of the core features of the ISO/IEC 11179-3 information model is the ability
to extend the models by subclassing from the included items. The core item that
most 11179 objects are based on is the “Concept”.

Due to this encouragement of inheritance and enhancement, Aristotle-MDR follows
similar principles and uses the Object-Oriented approach of
Python [https://www.python.org/] and Django [https://www.djangoproject.com/],
to expose a rich API that makes adding new content, and altering templates quick and easy.

Before starting it is strongly encouraged that you have a clear understanding of
the Python programming language [https://www.python.org/about/gettingstarted/] as well as
how to build Django apps and sites [https://docs.djangoproject.com/en/dev/intro/tutorial01/].

	Making new metadata types
	Making new item types

	Reusing generic actions to manage relations

	Concept model relations

	Using register_concept to connect new concept types

	Out-of-the-box features available for new concept types

	Advanced features that require configuration

	Using the ConceptManager in Django queries

	Adding new download formats
	Downloads architecture

	Creating a download module

	Writing a metadata_register

	How the download view works

	Adding new bulk actions
	Registering a bulk action

	Writing a functional bulk action

	An example bulk action form

	Tags and filters available in aristotle templates
	Available tags and filters

	Using Aristotle permissions in custom code
	Permissions in perms.py

	Permissions-based ConceptManager

	Permissions template tags

	Testing
	Running tests locally

	Adding extension modules to our automated testing

Making new metadata types

Most of the overhead for creating new item types in Aristotle-MDR is taken care
of by inheritance within the Python language and the Django web framework.

	Making new item types
	Customising the edit page for a new type

	Including additional items when downloading a custom concept type

	Caveats: concept versus _concept

	Retrieving the “true item” when you are returned a _concept.

	Setting up search, admin pages and autocompletes for new items types

	Caveats around extending existing item types

	Creating unmanagedContent types

	Including documentation in new content types

	A complete example of an Aristotle Extension

	Reusing generic actions to manage relations

	Concept model relations

	Using register_concept to connect new concept types
	Aristotle-MDR concept register

	Out-of-the-box features available for new concept types
	Content creation wizards that encourage reuse

	User-friendly modular editor

	Descriptive SEO friendly URLs

	Basic HTML and downloadable PDF templates

	Advanced features that require configuration
	Admin pages

	Search indexing

	Using the ConceptManager in Django queries

Making new item types

Most of the overhead for creating new item types in Aristotle-MDR is taken care
of by inheritance within the Python language and the Django web framework.

For example, creating a new item within the registry requires as little code as:

import aristotle_mdr
class Question(aristotle_mdr.models.concept):
 questionText = models.TextField()
 responseLength = models.PositiveIntegerField()

This code creates a new “Question” object in the registry that can be progressed
like any standard item in Aristotle-MDR. Once the the appropriate admin pages are
set up, from a usability and publication standpoint this would be indistinguishable
from an Aristotle-MDR item, and would instantly get a number of
features that are available to all Aristotle ‘concepts’ without having to write any additional code

Once synced with the database, this immediately creates a new item type that not only has
a name and description, but also can immediately be associated with a workgroup, can be
registered and progressed within the registry and has all of the correct permissions
associated with all of these actions.

Likewise, creating relationships to pre-existing items only requires the correct
application of Django relationships [https://docs.djangoproject.com/en/stable/topics/db/examples/]
such as a ForeignKey or ManyToManyField, like so:

mymodule.models.Question

import aristotle_mdr
from django.db import models

class Question(aristotle_mdr.models.concept):
 template = "extension_test/concepts/question.html"
 questionText = models.TextField(blank=True, null=True)
 responseLength = models.PositiveIntegerField(blank=True, null=True)
 collectedDataElement = models.ForeignKey(
 aristotle_mdr.models.DataElement,
 related_name="questions",
 null=True,
 blank=True,
 on_delete=models.deletion.CASCADE,
)

This code, extends our Question model from the previous example and adds an optional
link to the ISO 11179 Data Element model managed by Aristotle-MDR and even adds a new property
on to Data Elements, so that myDataElement.questions would return of all Questions
that are used to collect information for that Data Element.

Customising the edit page for a new type

To maintain consistancy edit pages have a similar look and feel across all
concept types, but some customisation is possible. If one or more fields should
be hidden on an edit page, they can be specified in the edit_page_excludes
property of the new concept class.

An example of this is when an item specifies a ManyToManyField that has special
attributes. This can be hidden on the default edit page like so:

class Questionnaire(aristotle_mdr.models.concept):
 edit_page_excludes = ['questions']
 questions = models.ManyToManyField(
 Question,
 related_name="questionnaires",
 null=True,blank=True)

Including additional items when downloading a custom concept type

	
concept.get_download_items() → typing.List[typing.Union[django.db.models.base.Model, django.db.models.query.QuerySet]]

	When downloading a concept, extra items can be included for download by
overriding the get_download_items method on your item. By default
this returns an empty list, but can be modified to include any number of
items that inherit from _concept.

When overriding, each entry in the list can be either an item or a queryset

For example:

mymodule.models.Questionnaire.get_download_items

 def get_download_items(self):
 return [
 self.questions.all().order_by('name'),
 aristotle_mdr.models.DataElement.objects.filter(questions__questionnaires=self).order_by('name')
]

Caveats: concept versus _concept

There is a need for some objects to link to any arbitrary concept, for example
the favourites field of aristotle.models.AristotleProfile.
Because of this there is a distinction between the Aristotle-MDR model objects
concept and _concept.

Abstract base classes in Django allow for the easy creation of items that share
similar properties, without introducing additional fields into the database. They also
allow for self-referential ForeignKeys that are restricted to the inherited type, rather
than to the base type.

	
class aristotle_mdr.models._concept(*args, **kwargs)

	9.1.2.1 - Concept class
Concept is a class each instance of which models a concept (3.2.18),
a unit of knowledge created by a unique combination of characteristics (3.2.14).
A concept is independent of representation.

This is the base concrete class that Status items attach to, and to
which collection objects refer to. It is not marked abstract in the Django
Meta class, and must not be inherited from. It has relatively few
fields and is a convenience class to link with in relationships.

	Parameters

	
	id (AutoField) – Id

	created (AutoCreatedField) – Created

	modified (AutoLastModifiedField) – Modified

	uuid (UUIDField) – Universally-unique Identifier. Uses UUID1 as this improves uniqueness and tracking between registries

	name (ShortTextField) – The primary name used for human identification purposes.

	definition (RichTextUploadingField) – Representation of a concept by a descriptive statement which serves to differentiate it from related concepts. (3.2.39)

	stewardship_organisation_id (ForeignKey) – Stewardship organisation

	workgroup_id (ForeignKey) – Workgroup

	submitter_id (ForeignKey) – This is the person who first created an item. Users can always see items they made.

	_is_public (BooleanField) – is public

	_is_locked (BooleanField) – is locked

	_type_id (ForeignKey) – type

	version (CharField) – Version

	references (RichTextUploadingField) – References

	origin_URI (URLField) – If imported, the original location of the item

	origin (RichTextUploadingField) – The source (e.g. document, project, discipline or model) for the item (8.1.2.2.3.5)

	comments (RichTextUploadingField) – Descriptive comments about the metadata item (8.1.2.2.3.4)

	
class aristotle_mdr.models.concept(*args, **kwargs)

	This is an abstract class that all items that should behave like a 11179
Concept must inherit from. This model includes the definitions for many
long and optional text fields and the self-referential superseded_by
field. It is not possible to include this model in a ForeignKey or
ManyToManyField.

	Parameters

	
	id (AutoField) – Id

	created (AutoCreatedField) – Created

	modified (AutoLastModifiedField) – Modified

	uuid (UUIDField) – Universally-unique Identifier. Uses UUID1 as this improves uniqueness and tracking between registries

	name (ShortTextField) – The primary name used for human identification purposes.

	definition (RichTextUploadingField) – Representation of a concept by a descriptive statement which serves to differentiate it from related concepts. (3.2.39)

	stewardship_organisation_id (ForeignKey) – Stewardship organisation

	workgroup_id (ForeignKey) – Workgroup

	submitter_id (ForeignKey) – This is the person who first created an item. Users can always see items they made.

	_is_public (BooleanField) – is public

	_is_locked (BooleanField) – is locked

	_type_id (ForeignKey) – type

	version (CharField) – Version

	references (RichTextUploadingField) – References

	origin_URI (URLField) – If imported, the original location of the item

	origin (RichTextUploadingField) – The source (e.g. document, project, discipline or model) for the item (8.1.2.2.3.5)

	comments (RichTextUploadingField) – Descriptive comments about the metadata item (8.1.2.2.3.4)

	_concept_ptr_id (OneToOneField) – concept ptr

The correct way to use both of these models would be as shown below:

import aristotle_mdr.models import concept, _concept
class ReallyComplexExampleItem(concept):
 relatedTo = models.ManyToManyField(_concept)

In this example, the model ReallyComplexExampleItem inherits from concept,
but also includes a many-to-many relationship that links it to any number of
registerable concepts, such as Data Element or Objects Classes, additionally
because of the inheritance, this would allow links to extended models
such as Questions or even self-referential links to other instances of the
ReallyComplexExampleItem model type.

Retrieving the “true item” when you are returned a _concept.

Because _concept is not a true abstract class, queries on this table or a Django
QuerySet that reference a _concept won’t return the “actual” object but will
return an object of type _concept instead. There is a item property on both the
_concept and concept classes that will return the properly subclassed item
using the get_subclass method from django-model-utils.

	
_concept.item

	Performs a lookup to find the subclassed item.
If the type is cached in _type this lookup is fast
otherwise InheritanceManager is used which is quite slow

	
concept.item

	Return self, because we already have the correct item.

On the inherited concept class this just returns a reference to the original item - self.
So once the true item is retrieved, this property can be called infinitely without a performance hit.

For example, in code or in a template it is always safe to call an item like so:

question.item
question.item.item
question.item.item.item

When in doubt about what object you are dealing with, calling item will ensure the
expected item, and not the _concept parent, is used.
In the very worst case a single additional query is made and the right item is used, in
the best case a very cheap Python property is called and the item is returned straight back.

Setting up search, admin pages and autocompletes for new items types

The easiest way to configure an item for searching and editing within the
django-admin app is using the aristotle_mdr.register.register_concept
method, described in Using register_concept to connect new concept types.

Creating admin pages

However, if customisation of Admin pages for an extension is required this can
be done through the creation and registration of classes in the admin.py
file of a Django app.

Because of the intricate permissions around content with the Aristotle Registry,
it’s recommended that admin pages for new items extend from the
aristotle.admin.ConceptAdmin class. This helps to ensure that there is a
consistent ordering of fields, and information is exposed only to the correct
users.

The most important property of the ConceptAdmin class is the fieldsets property
that defines the inclusion and ordering of fields within the admin site. The easiest
way to extend this is to add extra options to the end of the fieldsets like so:

from aristotle_mdr import admin as aristotle_admin

class QuestionAdmin(aristotle_admin.ConceptAdmin):
 fieldsets = aristotle_admin.ConceptAdmin.fieldsets + [
 ('Question Details',
 {'fields': ['questionText','responseLength']}),
 ('Relations',
 {'fields': ['collectedDataElement']}),
]

It is important to always import aristotle.admin with an alias as shown above,
otherwise there are circular dependancies across various apps when importing which
will prevent the app, and thus the whole site, from being used.

Lastly, Aristotle-MDR provides an easy way to give users a suggestion button when entering a name to
ensure consistancy within the registry. This can be added to an Admin page by specifying the fields that
are used to construct the name - however these must be fields on the current model.

For example, if the rules of the registry dictated that a Question name should have the form of
its question text along with the name of the collected Data Element, separated by a pipe (|),
the QuestionAdmin class could include the name_suggest_fields value of:

name_suggest_fields = ['questionText','collectedDataElement']

Then to ensure the correct separator is used in ARISTOTLE_SETTINGS
(which is described in Configuring the behavior of Aristotle-MDR)
add "Question" as a key and "|" as its value, like so:

ARISTOTLE_SETTINGS = {
 'SEPARATORS': { 'Question':'|',
 # Other separators not shown
 },
Other settings not shown
}

For reference, the complete code for the QuestionAdmin class providing extra
fieldsets, autcompeletes and suggested names is:

from aristotle_mdr import admin as aristotle_admin

class QuestionAdmin(aristotle_admin.ConceptAdmin):
 fieldsets = aristotle_admin.ConceptAdmin.fieldsets + [
 ('Question Details',
 {'fields': ['questionText','responseLength']}),
 ('Relations',
 {'fields': ['collectedDataElement']}),
]
 name_suggest_fields = ['questionText','collectedDataElement']

For more information on configuring an admin site for Django models, consult the
Django documentation [https://docs.djangoproject.com/en/stable/ref/contrib/admin/].

Making new item types searchable

The creation and registration of haystack search indexes is done in the
search_indexes.py file of a Django app.

On an Aristotle-MDR powered site, it is possible to restrict search results across a number of
criteria including the registration status of an item, its workgroup or Registration
Authority or the item type.

In aristotle.search_indexes there is the convenience class conceptIndex that
make indexing a new item within the search engine quite easy, and allows new item types to be searched using
these criteria with a minimum of code. Inheriting from this class takes care of nearly
all simple cases when searching for new items, like so:

from haystack import indexes
from aristotle_mdr.search_indexes import conceptIndex

class QuestionIndex(conceptIndex, indexes.Indexable):
 def get_model(self):
 return models.Question

It is important to import the required models from aristotle.search_indexes
directly, otherwise there are circular dependancies in Haystack when importing.
This will prevent the app and the whole site from being used.

The only additional work required is to create a search index template in the
templates directory of your app with a path similar to this:

template/search/indexes/your_app_name/question_text.txt

This ensures that when Haystack is indexing the site, some content is available
so that items can be queried and weighted accordingly. These templates are passed an object
variable that is the particualr object being indexed.

Sample content for an index for our question would look like this:

{% include "search/indexes/aristotle_mdr/managedobject_text.txt" %}
{{ object.questionText }}

Here we include the managedobject_text.txt which adds generic content for all
concepts into the indexed text, as well as including the questionText in the index.

If we wanted to include the content from the related Data Element to add more information
for the seach engine to work with we could include this as well, using one of the provided index
template in Aristotle, like so:

{% include "search/indexes/aristotle_mdr/managedobject_text.txt" %}
{{ object.questionText }}
{% include "search/indexes/aristotle_mdr/dataelement_text.txt" with object=object.collectedDataElement only %}

For more information on creating search templates and configuring search options consult the
Haystack documentation [http://django-haystack.readthedocs.org/]. For more information on how
the search templates are generated read about the Django template engine [https://docs.djangoproject.com/en/1.6/topics/templates/].

Caveats around extending existing item types

This tutorial has covered how to create new items when inheriting from the base
concept type. However, Python and Django allow for extension from any object.
So if you wished to extend and improve on 11179 item it would be perfectly possible
to do so by inheriting from the appropriate class, rather than the abstract concept.
For example, if you wished to extend a Data Element to create a internationalised
DataElement that was only applicable in specific countries, this could be done like so:

class Country(model.Models):
 name = models.TextField
 ... # Other attributes could also be applied.

class CountrySpecificDataElement(aristotle.models.DataElement):
 countries = models.ManyToManyField(Country)

Aristotle does not prevent you from doing so, however there are a few issues that
can arise when extending from non-abstract classes:

	Due to the way that Django handles subclassing, all objects subclassed from a
concrete model will also exist in the database as the subclass and an item that
belongs to the parent superclass.

So a CountrySpecificDataElement would also be a DataElement, so a query like this:

aristotle.models.DataElement.objects.all()

Would return both DataElement s and its subclasses, such as CountrySpecificDataElement s, however
depending on the domain and objects, this may be desired behaviour.

	Following from the above, restricted searches for only objects of the parent item type will return
results from the subclassed item. For example, all searches restricted to a DataElement
would also return results for CountrySpecificDataElement, and they will
be displayed in the list as DataElement not as CountrySpecificDataElement.

	Items that inherit from non-abstract classes do not inherit the Django object Managers,
this is one of the reasons for the decision to make concept an abstract class.
As such, it is strongly adviced that any new item types that inherit from concrete classes
specify the Aristotle-MDR concept manager, like so:

class CountrySpecificDataElement(aristotle.models.DataElement):
 countries = models.ManyToManyField(Country)
 objects = aristotle_mdr.models.ConceptManager()

Failure to include this may lead to broken code or pages that expose private items.

Creating unmanagedContent types

Not all content needs to undergo a standardisation process, and in fact some content
should only be accessible to administrators. In Aristotle this is termed an “unmanagedObject”.
Content types that are unmanaged do not belong to workgroups, and can only be edited by
users with the Django “super user” privileges.

It is perfectly safe to extend from the unmanagedObject types, however because these
are closer to pure Django objects there are much fewer convenience method set up to
handle them. By default, unmanagedContent is always visible.

Because of their visibility and strict privileges, they are generally suited to relatively
static items that may vary between individual sites and add context to other items. Inheriting
from this class can be done like so:

class Country(aristotle.models.unmanagedObject):
 # Inherits name and description.
 isoCode = models.CharField(maxLength=3)

For example, in Aristotle-MDR “Measure” is an unmanagedObject type, that is used
to give extra context to UnitOfMeasure objects.

Including documentation in new content types

To make deploying new content easier, and encourage better documentation, Aristotle
reuses help content built into the Django Web framework. When producing dynamic
documentation, Aristotle uses the Python docstring of a concept-inheriting class
and the field level help_text to produce documentation.

This can be seen on in the concept editor, administrator pages, item comparator
and can be accessed in html pages using the doc template tag in the aristotle_tags
module.

A complete example of an Aristotle Extension

The first content extension for Aristotle that helps clarify a lot
of the issues around inheritance is the
Comet Indicator Registry [https://github.com/aristotle-mdr/comet-indicator-registry].
This adds 6 new content types along with admin pages, search indexes and templates and extra content for
display on the included Aristotle DataElement template - which was all achieved with less than 600 lines of code.

Reusing generic actions to manage relations

	
class aristotle_mdr.contrib.generic.views.BootTableListView(**kwargs)

	Lists objects in a bootstrap table (with optional pagination)

	
class aristotle_mdr.contrib.generic.views.GenericAlterForeignKey(**kwargs)

	A view that provides a framework for altering ManyToOne relationships
(Include through models from ManyToMany relationships)
from one ‘base’ object to many others.

The URL pattern must pass a kwarg with the name iid that is the object from the
model_base to use as the main link for the many to many relation.

	model_base - mandatory - The model with the instance to be altered

	model_to_add - mandatory - The model that has instances we will link to the base.

	
	template_name

	
	optional - The template used to display the form.

	default - “aristotle_mdr/generic/actions/alter_foreign_key.html”

	model_base_field - mandatory - the name of the field that goes from the model_base to the model_to_add.

	model_to_add_field - mandatory - the name of the field on the model_to_add model that links to the model_base model.

	form_title - Title for the form

For example: If we have a many to many relationship from DataElement`s to
`Dataset`s, to alter the `DataElement`s attached to a `Dataset, Dataset is the
base_model and model_to_add is DataElement.

	
post(request, *args, **kwargs)

	Handles POST requests, instantiating a form instance with the passed
POST variables and then checked for validity.

	
save_form(form)

	Saves the formset returned by the view
Can be overwritten to add/change extra data

	
class aristotle_mdr.contrib.generic.views.GenericAlterManyToManyView(**kwargs)

	A view that provides a framework for altering ManyToMany relationships from
one ‘base’ object to many others.

The URL pattern must pass a kwarg with the name iid that is the object from the
model_base to use as the main link for the many to many relation.

	model_base - mandatory - The model with the instance to be altered

	model_to_add - mandatory - The model that has instances we will link to the base.

	
	template_name

	
	optional - The template used to display the form.

	default - “aristotle_mdr/generic/actions/alter_many_to_many.html”

	model_base_field - mandatory - the field name that goes from the model_base to the model_to_add.

	form_title - Title for the form

For example: If we have a many to many relationship from DataElement`s to
`Dataset`s, to alter the `DataElement`s attached to a `Dataset, Dataset is the
base_model and model_to_add is DataElement.

	
post(request, *args, **kwargs)

	Handles POST requests, instantiating a form instance with the passed
POST variables and then checked for validity.

	
class aristotle_mdr.contrib.generic.views.GenericAlterOneToManyView(**kwargs)

	A view that provides a framework for altering ManyToOne relationships
(Include through models from ManyToMany relationships)
from one ‘base’ object to many others.

The URL pattern must pass a kwarg with the name iid that is the object from the
model_base to use as the main link for the many to many relation.

	model_base - mandatory - The model with the instance to be altered

	model_to_add - mandatory - The model that has instances we will link to the base.

	
	template_name

	
	optional - The template used to display the form.

	default - “aristotle_mdr/generic/actions/alter_many_to_many.html”

	model_base_field - mandatory - the name of the field that goes from the model_base to the model_to_add.

	model_to_add_field - mandatory - the name of the field on the model_to_add model that links to the model_base model.

	ordering_field - optional - name of the ordering field, if entered this field is hidden and updated using a drag-and-drop library

	form_add_another_text - optional - string used for the button to add a new row to the form - defaults to “Add another”

	form_title - Title for the form

For example: If we have a many to many relationship from DataElement`s to
`Dataset`s, to alter the `DataElement`s attached to a `Dataset, Dataset is the
base_model and model_to_add is DataElement.

	
class aristotle_mdr.contrib.generic.views.UnorderedGenericAlterOneToManyView(**kwargs)

	A view that provides a framework for altering ManyToOne relationships
(Include through models from ManyToMany relationships)
from one ‘base’ object to many others.

The URL pattern must pass a kwarg with the name iid that is the object from the
model_base to use as the main link for the many to many relation.

	model_base - mandatory - The model with the instance to be altered

	model_to_add - mandatory - The model that has instances we will link to the base.

	
	template_name

	
	optional - The template used to display the form.

	default - “aristotle_mdr/generic/actions/alter_many_to_many.html”

	model_base_field - mandatory - the name of the field that goes from the model_base to the model_to_add.

	model_to_add_field - mandatory - the name of the field on the model_to_add model that links to the model_base model.

	ordering_field - optional - name of the ordering field, if entered this field is hidden and updated using a drag-and-drop library

	form_add_another_text - optional - string used for the button to add a new row to the form - defaults to “Add another”

	form_title - Title for the form

For example: If we have a many to many relationship from DataElement`s to
`Dataset`s, to alter the `DataElement`s attached to a `Dataset, Dataset is the
base_model and model_to_add is DataElement.

	
class aristotle_mdr.contrib.generic.views.VueFormView(**kwargs)

	A view for returning a serialized json representation of a django form
for use with vue components. Does not permit the POST method as that
should be handled by the api

Concept model relations

These are direct reimplementations of Django model relations,
at the moment they only exist to make permissions-based filtering easier for
the GraphQL codebase. However, in future these may add additional functionality
such as automatically applying certain permissions to ensure users only
retrieve the right objects.

When building models that link to any subclass of _concept, use these in place
of the Django builtins.

Note

The model these are place on does not need to be a subclass of concept.
They are for linking to a concept subclass.

	
class aristotle_mdr.fields.ConceptForeignKey(to, on_delete, related_name=None, related_query_name=None, limit_choices_to=None, parent_link=False, to_field=None, db_constraint=True, **kwargs)

	Reimplementation of ForeignKey for linking
a model to a Concept

	
class aristotle_mdr.fields.ConceptGenericRelation(to, object_id_field='object_id', content_type_field='content_type', for_concrete_model=True, related_query_name=None, limit_choices_to=None, **kwargs)

	Force relations on concept and subclasses to ONLY use the concept content type.

	
get_content_type()

	Return the content type associated with this field’s model.

	
class aristotle_mdr.fields.ConceptManyToManyField(to, related_name=None, related_query_name=None, limit_choices_to=None, symmetrical=None, through=None, through_fields=None, db_constraint=True, db_table=None, swappable=True, **kwargs)

	Reimplementation of ManyToManyField for linking
a model to a Concept

	
class aristotle_mdr.fields.ConceptOneToOneField(to, on_delete, to_field=None, **kwargs)

	Reimplementation of OneToOneField for linking
a model to a Concept

	
class aristotle_mdr.fields.LowerEmailField(*args, **kwargs)

	Reimplementation of email field, where email is always stored lowercase

Using register_concept to connect new concept types

Aristotle-MDR concept register

This module allows developers to easily register new concept models with the core
functionality of Aristotle-MDR. The register_concept is a wrapper around three
methods that registers a new concept with the Django-Admin site, with the
Django-Autocomplete and with a class for a Haystack search index. This is all done
in a way that conforms to the permissions required for control item visibility.

Other methods in this module can be called, to highly customise how concepts are
used within the admin site and search, but should be considered internal methods
and future releases of Aristotle-MDR may break code that uses these methods.

	
aristotle_mdr.register.register_concept(concept_class, *args, **kwargs)

	A handler for third-party apps to make registering
extension models based on aristotle_mdr.models.concept easier.

Sets up the version controls, search indexes, django administrator page
and autocomplete handlers.
All args and kwargs are passed to the called methods. For examples of
what can be passed into this method review the other methods in
aristotle_mdr.register.

Example usage (based on the models in the extensions test suite):

register_concept(Question, extra_fieldsets=[(‘Question’,’question_text’),]

	
aristotle_mdr.register.register_concept_admin(concept_class, *args, **kwargs)

	Registers the given concept with the Django admin backend based on the default
aristotle_mdr.admin.ConceptAdmin.

Additional parameters are only required if a model has additional fields or
references to other models.

	Parameters

	
	auto_fieldsets (boolean) – If no extra_fieldsets, when set to true this generates a list of fields for the admin page as “Extra fields for [class]”

	concept_class (concept) – The model that is to be registered

	extra_fieldsets (list) – Model-specific fieldsets [https://docs.djangoproject.com/en/1.8/ref/contrib/admin/#django.contrib.admin.ModelAdmin.fieldsets] to be displayed. Fields in the tuples given should be those not defined by the base aristotle_mdr.models._concept class.

	extra_inlines (list) – Model-specific inline [https://docs.djangoproject.com/en/1.8/ref/contrib/admin/#django.contrib.admin.ModelAdmin.inlines] admin forms to be displayed.

	
aristotle_mdr.register.register_concept_search_index(concept_class, *args, **kwargs)

	Registers the given concept with a Haystack search index that conforms
to Aristotle permissions. If the concept to be registered does not have a
template for serving a search document, a basic document with just the basic
fields from aristotle_mdr.models._concept will be used when indexing items.

	Parameters

	concept_class (concept) – The model that is to be registered for searching.

Out-of-the-box features available for new concept types

The modular and object-oriented nature of ISO/IEC 11179 and Python encourage reuse
and inheritance when dealing with items. This allows items to have standardised
content and behaviours.

Below is a list of features that are available when making new item types based on
ISO/IEC 11179 concepts.

Content creation wizards that encourage reuse

Every item type is provided with a basic 2-step content creation wizard that shows
a user when they may be replicating content that already exists in the registry in an unobtusive way.

This gives freedom to content creators, but gives registry administrators the
peace of mind knowing that the system will encourage reuse where possible.

User-friendly modular editor

Descriptive SEO friendly URLs

Basic HTML and downloadable PDF templates

The decoupling of the model management and database back-end and Djangos powerful
templating front-end means new item types can be quickly described and prototyped
in code, without having to worry about front-end concerns.

Concepts have a generic fallback template that gives a unified look to new items,
meaning development can be an iterative process.

Advanced features that require configuration

Admin pages

Search indexing

Using the ConceptManager in Django queries

	
class aristotle_mdr.managers.ConceptManager

	The ConceptManager is the default object manager for concept and
_concept items, and extends from the django-model-utils
InheritanceManager.

It provides access to the ConceptQuerySet to allow for easy
permissions-based filtering of ISO 11179 Concept-based items.

	
class aristotle_mdr.managers.ConceptQuerySet(*args, **kwargs)

	
	
editable(user)

	Returns a queryset that returns all items that the given user has
permission to edit.

It is chainable with other querysets. For example, both of these
will work and return the same list:

ObjectClass.objects.filter(name__contains="Person").editable()
ObjectClass.objects.editable().filter(name__contains="Person")

	
public()

	Returns a list of public items from the queryset.

This is a chainable query set, that filters on items which have the
internal _is_public flag set to true.

Both of these examples will work and return the same list:

ObjectClass.objects.filter(name__contains="Person").public()
ObjectClass.objects.public().filter(name__contains="Person")

	
visible(user)

	Returns a queryset that returns all items that the given user has
permission to view.

It is chainable with other querysets. For example, both of these
will work and return the same list:

ObjectClass.objects.filter(name__contains="Person").visible()
ObjectClass.objects.visible().filter(name__contains="Person")

Adding new download formats

While the Aristotle-MDR framework has a PDF download extension, it may be
desired to download metadata stored within a registry in a variety of download
formats. Rather than include these within the Aristotle-MDR core codebase,
additional download formats can be developed included via the download API.

Downloads architecture

There are two parts to the downloads module

	Django views will serve and it will start a job with Celery that will yield a download file asynchronously.

	Celery will have the tasks registered from the downloads class. Celery worker will add the file to a redis cache.

Creating a download module

A download module is a specialised class, that sub-classes aristotle_mdr.downloader.Downloader
and provides an appropriate get_download_config and download or get_bulk_download_config and bulk_download methods.

A download module is just a Django app that includes a specific set
of files for generating downloads. The only files required in your app are:

	__init__.py - to declare the app as a python module

	downloader.py - where your download classes will be stored

Other modules can be written, for example a download module may define models for
recording a number of times an item is downloaded.

Writing a metadata_register

Your downloader class must contain a register of download types and the metadata concept
types which this module provides downloads for. This takes one of the following forms
which define which concepts can be downloaded as in the output format:

class CSVExample(Downloader):
 download_type = "csv"
 metadata_register = {'aristotle_mdr': ['valuedomain']}

class XLSExample(Downloader):
 download_type = "xls"
 metadata_register = {'aristotle_mdr': ['__all__']}

class PDFExample(Downloader):
 download_type = "pdf"
 metadata_register = '__template__'

class TXTExample(Downloader):
 download_type = "txt"
 metadata_register = '__all__'

Describing these options, these classes specifies the following downloads:

	csv provides downloads for Value Domains in the Aristotle-MDR module

	xls provides downloads for all metadata types in the Aristotle-MDR module

	pdf provides downloads for items in all modules, only if they have a download template

	txt provides downloads for all metadata types in all modules

Each download class must also define a class method with the following signature:

def get_download_config(cls, request, iid):
 return properties, iid

This is a download config which creates the json serializable properties for the request.
This will ensure that the task can be passed on to Celery, which requires the objects to be json serializable.

The arguments are

	request - the request object [https://docs.djangoproject.com/en/stable/ref/request-response/]
that was used to call the download view. The current user trying to download the
item can be gotten by calling request.user.

	iid - This is the id of the item that needs to be downloaded

The return arguments are:

	properties - This will save essential information like user email(can be used by celery to get user object) and title of the document(to be displayed to the user while the download is generated).

	iid - This would be same as the input argument in most cases. It is present to manipulate the iid if required.

Each download class must also define a static method with the following signature:

@shared_task
def download(properties, iid):

A shared task is a celery worker hook which will register this function as a celery task
This is called from Aristotle-MDR when it catches a download type that has been
registered for this module. The arguments are:

	properties - This will contain all the variables required by celery task to prepare the download.

	iid - the id of the item to be downloaded, to be retrieved from the database.

Note: If a download method is called the user has been verified to have
permissions to view the requested item only. Permissions for other items will
have to be checked within the download method.

The get_bulk_download_config and bulk_download method works in same fashion as get_download_config and download respectively.

For more information see the Downloader class below:

	
class aristotle_mdr.downloader.Downloader(item_ids: typing.List[int], user_id: typing.Union[int, NoneType], options: typing.Dict[str, typing.Any] = {}, override_bulk: bool = False)

	Base class used by all downloaders
Subclasses must override the create_file method

Required class properties:

	description: a description of the downloader type

	download_type: the extension or name of the download to support

	icon_class: the font-awesome class

	metadata_register: can be one of:

	a dictionary with keys corresponding to django app labels and values as lists of models within that app the downloader supports

	the string “__all__” indicating the downloader supports all metadata types

	the string “__template__” indicating the downloader supports any metadata type with a matching download template

	
create_file() → django.core.files.base.File

	Create the file object, should be overwritten by subclasses
See below for examples

	
download() → str

	Get the url for this downloads file, creating it if necessary

	
classmethod get_class_info() → typing.Dict[str, typing.Any]

	Used as context instead of passing classes to templates

	
get_storage(media=False)

	Gets a storage class object (use media to get default media class instead of dl class)

	
retrieve_file(filename: str) → typing.Union[str, NoneType]

	Use default storage class to retrieve file if it exists

	
store_file(filename: str, content: django.core.files.base.File) → str

	Use default storage class to store file

How the download view works

Adding new bulk actions

Often for user convenience it is useful to perfom the same action across a
number of similar metadata items. Aristotle-MDR provides a bulk action API that
allows developers to create new discoverable action types that are shown to
users in certain item lists, such as search results or workgroup item listings.

Registering a bulk action

The BULK_ACTIONS setting in the
in the ARISTOTLE_SETTINGS dictionary stores the register of bulk actions
used for generating lists of actions. Adding the qualified path
to the form is sufficient to register a new bulk action.
For example this set in ARISTOTLE_SETTINGS would register an action int Python
module module.forms.MyBulkAction:

'BULK_ACTIONS': [
 'module.forms.MyBulkActionForm',
]

Writing a functional bulk action

A bulk action form is just a specialised Django form for acting on multiple
Aristotle-MDR concepts, with a few small additions that come from inheriting
from aristotle_mdr.forms.bulk_actions.BulkActionForm.

After inheriting to make a form function some properties should exist.

	action_text - This is the name for an action shown in lists to users.
Default is based on the class name.

	classes - A string of HTML classes that will be applied to each item.
Default empty.
Currently these are used for inserting ‘Font Awesome’ icons for each action.

	confirm_page - An optional template name used to render between a user
clicking the action and completing it. By adding extra fields to a form, with
this template a bulk action can get additional inforamtion from a user before
continuing. No default, if this is empty no confirmation is requested.

	items_label - An optional override of the label for the list of items the
action form acts on. Defaults to “Select some items”

There are two additional methods that complete the class:

	can_use - A classmethod that provides a boolean response indicating if
a certain user has permission to use this action in any context - note this
permission does not have knowledge of the items selected. Default is true,
so if this is not overriden all users will see the action in their list.

	make_changes - Performs that actual action of the form, this is called
once the user invokes a bulk action (after confirmation is required).
No default, not including a make_changes method will cause your action to
fail. Any text returned from this method will be shown to a user via the
django messages framework.

An example bulk action form

Below is an example bulk action that is only visible for staff users, and
deletes the items requested by a user.:

mymodule.forms.StaffDeleteActionForm

from django import forms
from django.core.exceptions import PermissionDenied
from aristotle_mdr.forms.bulk_actions import BulkActionForm
from django.utils.translation import ugettext_lazy as _

class StaffDeleteActionForm(BulkActionForm):
 action_text = _('Delete')
 classes = "fa-trash"
 confirm_page = "confirm_delete.html"
 items_label = "Items to delete",

 safe_to_delete = forms.BooleanField(required=True, label="Tick to confirm deletion")

 @classmethod
 def can_use(cls, user):
 return user.is_staff

 def make_changes(self):
 if not self.user.is_staff:
 raise PermissionDenied
 else:
 self.cleaned_data['items'].delete()
 return "Items deleted"

confirm_delete.html

{% extends "aristotle_mdr/base.html" %}

{% block title %}Delete items{% endblock %}
{% block content %}
 {# {{ form.media }} #}
 <form method="post" action="{% url 'aristotle:bulk_action' %}?next={{next}}">{% csrf_token %}
 <p>
 Use this page to confirm you wish to delete the following items.
 </p>
 <input type="hidden" name="bulkaction" value="{{action}}"/>
 <table>
 {{ form.as_table }}
 </table>
 <div>
 Cancel
 <button type="submit" name="confirmed" class="btn btn-primary" value="Delete">Delete</button>
 </div>
 </form>
 {% include 'autocomplete_light/static.html' %}
{% endblock %}

This will produce a button wherever other bulk actions are available, similar to
the ‘Delete’ button available on the right in the image below.

[image: A list of items with bulk actions available.]

Tags and filters available in aristotle templates

A number of convenience tags are available for performing common actions in custom
templates.

Include the aristotle template tags in every template that uses them, like so:

{% load aristotle_tags %}

Available tags and filters

	
aristotle_mdr.templatetags.aristotle_tags.adminEdit(item)

	A tag for easily generating the link to an admin page for editing an item. For example:

Advanced editor for {{item.name}}

	
aristotle_mdr.templatetags.aristotle_tags.append_asterisk_if_required(field)

	Add an asterisk symbol to the required fields of a form.

Usage:

{{ field | append_asterisk_if_required }}

Thanks to Moses Koledoye: https://stackoverflow.com/questions/37389855/django-label-tag-required-asterisk

	
aristotle_mdr.templatetags.aristotle_tags.can_add_status(item, user)

	A filter that acts as a wrapper around aristotle_mdr.perms.user_can_add_status.
Returns true if the user has permission to change status the item, otherwise it returns False.
If calling user_can_add_status throws an exception it safely returns False.

For example:

{% if myItem|can_add_status:request.user %}
 {{ item }}
{% endif %}

	
aristotle_mdr.templatetags.aristotle_tags.can_edit(item, user)

	A filter that acts as a wrapper around aristotle_mdr.perms.user_can_edit.
Returns true if the user has permission to edit the item, otherwise it returns False.
If calling user_can_edit throws an exception it safely returns False.

For example:

{% if myItem|can_edit:request.user %}
 {{ item }}
{% endif %}

	
aristotle_mdr.templatetags.aristotle_tags.can_supersede(item, user)

	A filter that acts as a wrapper around aristotle_mdr.perms.user_can_supersede.
Returns true if the user has permission to supersede the item, otherwise it returns False.
If calling user_can_supersede throws an exception it safely returns False.

For example:

{% if myItem|can_supersede:request.user %}
 {{ item }}
{% endif %}

	
aristotle_mdr.templatetags.aristotle_tags.can_view(item, user)

	A filter that acts as a wrapper around aristotle_mdr.perms.user_can_view.
Returns true if the user has permission to view the item, otherwise it returns False.
If calling user_can_view throws an exception it safely returns False.

For example:

{% if myItem|can_view:request.user %}
 {{ item }}
{% endif %}

	
aristotle_mdr.templatetags.aristotle_tags.can_view_iter(qs, user)

	A filter that is a simple wrapper that applies the aristotle_mdr.models.ConceptManager.visible(user)
for use in templates. Filtering on a Django Queryset and passing in the current
user as the argument returns a list (not a Queryset at this stage) of only
the items from the Queryset the user can view.

If calling can_view_iter throws an exception it safely returns an empty list.

For example:

{% for item in myItems|can_view_iter:request.user %}
 {{ item }}
{% endfor %}

	
aristotle_mdr.templatetags.aristotle_tags.doc(item, field=None)

	Gets the appropriate help text or docstring for a model or field.
Accepts 1 or 2 string arguments:
If 1, returns the docstring for the given model in the specified app.
If 2, returns the help_text for the field on the given model in the specified app.

	
aristotle_mdr.templatetags.aristotle_tags.downloadMenu(item)

	Returns the complete download menu for a partcular item. It accepts the id of
the item to make a download menu for, and the id must be of an item that can be downloaded,
otherwise the links will show, but not work.

For example:

{% downloadMenu item %}

	
aristotle_mdr.templatetags.aristotle_tags.get_status_from_dict(dictionary, current_status, key, with_icon=True)

	Get the Status of a particular item from a dictionary mapping.
:param dictionary: dictionary mapping that must contain key-value pairs
where the key must correspond to the concept_id, and the value must
correspond to the state id.
:param current_status: string that represents the numerical form of
the status object that belongs to the Data Element.
:param key: string that represents the concept id to be looked up.
:param with_icon: boolean value to add a Fontawesome icon.
:return: HTML with the name of the corresponding status state.

	
aristotle_mdr.templatetags.aristotle_tags.in_workgroup(user, workgroup)

	A filter that acts as a wrapper around aristotle_mdr.perms.user_in_workgroup.
Returns true if the user has permission to administer the workgroup, otherwise it returns False.
If calling user_in_workgroup throws an exception it safely returns False.

For example:

{% if request.user|in_workgroup:workgroup %}
 {{ something }}
{% endif %}

	
aristotle_mdr.templatetags.aristotle_tags.public_standards(regAuth, itemType='aristotle_mdr._concept')

	This is a filter that accepts a registration Authority and an item type and returns
a list of tuples that contain all public items with a status of “Standard” or
“Preferred Standard” in that Registration Authority only, as well as a the
status object for that Authority.

The item type should consist of the name of the app the item is from and the
name of the item itself separated by a period (.).

This requires the django django.contrib.contenttypes app is installed.

If calling public_standards throws an exception or the item type requested
is not found it safely returns an empty list.

For example:

{% for item, status in registrationAuthority|public_standards:'aristotle_mdr.DataElement' %}
 {{ item }} - made standard on {{ status.registrationDate }}.
{% endfor %}

	
aristotle_mdr.templatetags.aristotle_tags.state_to_text(state)

	This tag takes the integer value of a state for a registration status and
converts it to its text equivilent.

	
aristotle_mdr.templatetags.aristotle_tags.ternary(condition, a, b)

	A simple ternary tag - it beats verbose if/else tags in templates for simple strings
If the condition is ‘truthy’ return a otherwise return b. For example:

{{item.name}}

	
aristotle_mdr.templatetags.aristotle_tags.user_can_view_statuses_revisions(user, ra)

	A filter that is a simple wrapper that applies the aristotle_mdr.perms.user_can_view_statuses_revisions
Returns true if the user has permission to view the statuses reversion history, otherwise it returns False.
If calling user_can_view throws an exception it safely returns False.

If calling user_can_view_statuses_revisions throws an exception it safely returns False.

For example:

{% if request.user|user_can_view_statuses_revisions:ra %}
 {{ item }}
{% endif %}

	
aristotle_mdr.templatetags.aristotle_tags.visible_superseded_by_items(item, user)

	Fetch newer items for an older item

	
aristotle_mdr.templatetags.aristotle_tags.visible_supersedes_items(item, user)

	Fetch older items for a newer item

	
aristotle_mdr.templatetags.aristotle_tags.zws(string)

	zws or “zero width space” is used to insert a soft break near em-dashed.
Since em-dashs are commonly used in Data Element Concept names, this helps them wrap
in the right places.

For example:

<h1>{% zws item.name %}</h1>

Using Aristotle permissions in custom code

One of the key features in Aristotle is specific access control to items based on a
rich matrix of user groups. To make creating extension easier these are exposed through
the code in a number of easy to use ways.

Permissions in perms.py

	
aristotle_mdr.perms.user_can_add_status(user, item)

	Can the user add a status to this item in some RA

	
aristotle_mdr.perms.user_can_edit(user, item)

	Can the user edit the item?

	
aristotle_mdr.perms.user_can_view(user, item)

	Can the user view the item?

Permissions-based ConceptManager

All correctly derived concept items should have their default manager set to
the aristotle.models.ConceptManager. For more information on how this works
see the full documentation on the
ConceptManager and ConceptQuerySet.

	
class aristotle_mdr.models.ConceptManager

	The ConceptManager is the default object manager for concept and
_concept items, and extends from the django-model-utils
InheritanceManager.

It provides access to the ConceptQuerySet to allow for easy
permissions-based filtering of ISO 11179 Concept-based items.

Permissions template tags

Tags and filters available in aristotle templates

A number of convenience tags are available for performing common actions in custom
templates.

Include the aristotle template tags in every template that uses them, like so:

{% load aristotle_tags %}

Available tags and filters

	
aristotle_mdr.templatetags.aristotle_tags.can_edit(item, user)

	A filter that acts as a wrapper around aristotle_mdr.perms.user_can_edit.
Returns true if the user has permission to edit the item, otherwise it returns False.
If calling user_can_edit throws an exception it safely returns False.

For example:

{% if myItem|can_edit:request.user %}
 {{ item }}
{% endif %}

	
aristotle_mdr.templatetags.aristotle_tags.can_view(item, user)

	A filter that acts as a wrapper around aristotle_mdr.perms.user_can_view.
Returns true if the user has permission to view the item, otherwise it returns False.
If calling user_can_view throws an exception it safely returns False.

For example:

{% if myItem|can_view:request.user %}
 {{ item }}
{% endif %}

	
aristotle_mdr.templatetags.aristotle_tags.can_view_iter(qs, user)

	A filter that is a simple wrapper that applies the aristotle_mdr.models.ConceptManager.visible(user)
for use in templates. Filtering on a Django Queryset and passing in the current
user as the argument returns a list (not a Queryset at this stage) of only
the items from the Queryset the user can view.

If calling can_view_iter throws an exception it safely returns an empty list.

For example:

{% for item in myItems|can_view_iter:request.user %}
 {{ item }}
{% endfor %}

There are more template tags available in Aristotle

Testing

Aristotle uses tox and django’s unit test framework for testing

Running tests locally

Docker

For running tests on a local docker environemnt refer to https://github.com/aristotle-mdr/aristotle-metadata-registry/docker

Tox

Tests can be run locally running tox with an optional environment argument e.g. tox -e dj1.11-test-linux-db-sqlite-search-whoosh.

Virtualenv

	To run tests in a virtualenv, first set the DJANGO_SETTINGS_MODULE enviroment variable to the settings module you want to use

	Install dev requirements with pipenv install --dev

	Run tests with pipenv run django-admin test aristotle_mdr. Replacing aristotle_mdr with a full test path if needed

Adding extension modules to our automated testing

When adding an extension package to the system it is important to integrate this with the automated testing process to
ensure it is tested alongside the rest of the system

Once the extension has been added to the /python directory follow these steps to enable automated testing

	Add a setup.py for your package with dependancies defined in install_requires

	Add the package to the Pipfile at the base directory of the repo

	Run pipenv lock to update the lock file

	Add a new model extension to the envlist in tox.ini at the base directory of the repo

	Define your settings module, module name and module path in the setenv section of tox.ini

	Add a new stage in .travis.yml with your new module extension

Done, your module will now be tested by travis automatically using the command django-admin test modulename

Developing and contributing to the Aristotle Metadata Registry

Aristotle-MDR is a complex tool, so this is a guide on how you can easily
contribute to the development of Aristotle.

	Setting up a development environment

Note

In this page, we assume your registry is at aristotle.example.com. Update your URLs accordingly when running commands.

Creating a superuser

docker-compose exec web django-admin createsuperuser

Quickly switching user roles

Its often easy to interact with the registry as a super user, however often you will
want to test how users with different roles will interact with the site.

To make this easier, in development by default django-impersonate is installed.
Using this you can quickly switch users by going to the aristotle.example.com/alias/list
page.

To stop acting as a different user go to aristotle.example.com/alias/stop.

Setting up a development environment

See README.md under aristotle-metadata-registry/docker/

Customing the Aristotle Metadata Registry

	Customising templates

	Customising the browse pages
	Making metadata-specific browse lists

Customising templates

Aristotle-MDR builds pages using Django templates.

Which means almost every part of the website can be customised using the
django template overriding order [https://docs.djangoproject.com/en/1.8/ref/templates/api/#loading-templates].

But default, when building pages Aristotle will try to load templates from the site directory
first before using templates from Aristolte and extensions or other Django apps.

Customising the browse pages

Making metadata-specific browse lists

To make a metadata specific browse page, add a directory and template into your custom
templates directory for that specific app of the form:

'aristotle_mdr_browse/<app_label>/<model_name>_list.html

Creating and deploying user help

	Aristotle Help models

	Special syntax in user help files

Writing help files

To improve users abilities to self-help and self-manage within an instance the
Aristotle Metadata Registry includes a help API that allows system administrators,
and extension and download developers to write help files that are searchable by
users.

At their core, these help files are similar to django fixture files with
a few relatively minor differences.

	The subclassing of help files needed for indexing can be ignored

	One fixture per file is recommended to make writing easier, although multiple help pages can be parsed from one file

Importing help files

The Aristotle-MDR provides a django command line action similar to the loadata
called load_aristotle_help. This adds an additional switch --update or -U that
when attempting to insert, will instead override help files.

For example:

./manage.py load_aristotle_help

Will load all help files in the ./aristotle_help_files/ subdirectory of all apps in ``INSTALLED_APPS``.

Accessing help in extension and download templates

Aristotle provides a template tag to extract a number of different help types for
11179-derived concepts in templates.

This can be called using help_doc and passing the model class for the concept
required along with the help field requested.

{% load aristotle_help %}
{% help_doc model_class ‘brief’ %}

Aristotle Help models

	
class aristotle_mdr.contrib.help.models.ConceptHelp(*args, **kwargs)

	A Concept help page documents a given model that inherits from an
11179 concept.

	Parameters

	
	id (AutoField) – Id

	created (AutoCreatedField) – Created

	modified (AutoLastModifiedField) – Modified

	slug (AutoSlugField) – Slug

	app_label (CharField) – Add an app for app specific help, required for concept help

	title (TextField) – A short title for the help page

	body (RichTextUploadingField) – A long help definition for an object or topic

	language (CharField) – Language

	is_public (BooleanField) – Indicates if a help topic is available to non-registered users.

	helpbase_ptr_id (OneToOneField) – Helpbase ptr

	concept_type (CharField) – Concept type

	brief (TextField) – A short description of the concept

	official_definition (TextField) – An official description of the concept, e.g. the ISO/IEC definition for an Object Class

	official_reference (TextField) – The reference document that describes this concept type

	official_link (TextField) – An link to an official source for a description of the concept

	creation_tip (RichTextUploadingField) – Instructions for creating good content of this type

	
class aristotle_mdr.contrib.help.models.HelpBase(*args, **kwargs)

	The base help class for Aristotle help pages.

	Parameters

	
	id (AutoField) – Id

	created (AutoCreatedField) – Created

	modified (AutoLastModifiedField) – Modified

	slug (AutoSlugField) – Slug

	app_label (CharField) – Add an app for app specific help, required for concept help

	title (TextField) – A short title for the help page

	body (RichTextUploadingField) – A long help definition for an object or topic

	language (CharField) – Language

	is_public (BooleanField) – Indicates if a help topic is available to non-registered users.

	
class aristotle_mdr.contrib.help.models.HelpPage(*args, **kwargs)

	A help page is a generic way of providing help to a user on a topic.

	Parameters

	
	id (AutoField) – Id

	created (AutoCreatedField) – Created

	modified (AutoLastModifiedField) – Modified

	slug (AutoSlugField) – Slug

	app_label (CharField) – Add an app for app specific help, required for concept help

	title (TextField) – A short title for the help page

	body (RichTextUploadingField) – A long help definition for an object or topic

	language (CharField) – Language

	is_public (BooleanField) – Indicates if a help topic is available to non-registered users.

	helpbase_ptr_id (OneToOneField) – Helpbase ptr

Special syntax in user help files

	As help files are just django fixture files [https://docs.djangoproject.com/en/1.8/howto/initial-data/]

	all of the caveats there apply, with a few small conventions applied on top.

	For consistancy and readability, its encouraged to keep one help fixture per file.

	The body of the help file can be HTML, and this will be displayed to the user unchanged. It is up to documenters to ensure that help files are valid HTML that won’t break layout.

A few additional

Below is an example help file:

- model: aristotle_mdr_help.helppage
 fields:
 title: Advanced Search
 language: en
 body: >
 <h2>Restricting search with the advanced search options</h2>
 <p>
 The search page provides a form that gives
 users control to filter and sort search results.</p>
 <p>

 When searching, the "indexed text" refers to everything crawled by the search engine.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aristotle_mdr	

 	
 	
 aristotle_mdr.contrib.generic.views	

 	
 	
 aristotle_mdr.contrib.help.models	

 	
 	
 aristotle_mdr.fields	

 	
 	
 aristotle_mdr.perms	

 	
 	
 aristotle_mdr.register	

 	
 	
 aristotle_mdr.templatetags.aristotle_tags	

 	
 	
 aristotle_mdr.views.downloads	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | L
 | P
 | R
 | S
 | T
 | U
 | V
 | Z

_

 	
 	_concept (class in aristotle_mdr.models)

A

 	
 	adminEdit() (in module aristotle_mdr.templatetags.aristotle_tags)

 	append_asterisk_if_required() (in module aristotle_mdr.templatetags.aristotle_tags)

 	aristotle_mdr.contrib.generic.views (module)

 	aristotle_mdr.contrib.help.models (module)

 	
 	aristotle_mdr.fields (module)

 	aristotle_mdr.perms (module)

 	aristotle_mdr.register (module)

 	aristotle_mdr.templatetags.aristotle_tags (module)

 	aristotle_mdr.views.downloads (module)

B

 	
 	BootTableListView (class in aristotle_mdr.contrib.generic.views)

C

 	
 	can_add_status() (in module aristotle_mdr.templatetags.aristotle_tags)

 	can_edit() (in module aristotle_mdr.templatetags.aristotle_tags)

 	can_supersede() (in module aristotle_mdr.templatetags.aristotle_tags)

 	can_view() (in module aristotle_mdr.templatetags.aristotle_tags)

 	can_view_iter() (in module aristotle_mdr.templatetags.aristotle_tags)

 	concept (class in aristotle_mdr.models)

 	ConceptForeignKey (class in aristotle_mdr.fields)

 	
 	ConceptGenericRelation (class in aristotle_mdr.fields)

 	ConceptHelp (class in aristotle_mdr.contrib.help.models)

 	ConceptManager (class in aristotle_mdr.managers)

 	ConceptManyToManyField (class in aristotle_mdr.fields)

 	ConceptOneToOneField (class in aristotle_mdr.fields)

 	ConceptQuerySet (class in aristotle_mdr.managers)

 	create_file() (aristotle_mdr.downloader.Downloader method)

D

 	
 	doc() (in module aristotle_mdr.templatetags.aristotle_tags)

 	download() (aristotle_mdr.downloader.Downloader method)

 	
 	Downloader (class in aristotle_mdr.downloader)

 	downloadMenu() (in module aristotle_mdr.templatetags.aristotle_tags)

E

 	
 	editable() (aristotle_mdr.managers.ConceptQuerySet method)

G

 	
 	GenericAlterForeignKey (class in aristotle_mdr.contrib.generic.views)

 	GenericAlterManyToManyView (class in aristotle_mdr.contrib.generic.views)

 	GenericAlterOneToManyView (class in aristotle_mdr.contrib.generic.views)

 	get_class_info() (aristotle_mdr.downloader.Downloader class method)

 	
 	get_content_type() (aristotle_mdr.fields.ConceptGenericRelation method)

 	get_download_items() (aristotle_mdr.models.concept method)

 	get_status_from_dict() (in module aristotle_mdr.templatetags.aristotle_tags)

 	get_storage() (aristotle_mdr.downloader.Downloader method)

H

 	
 	HelpBase (class in aristotle_mdr.contrib.help.models)

 	
 	HelpPage (class in aristotle_mdr.contrib.help.models)

I

 	
 	in_workgroup() (in module aristotle_mdr.templatetags.aristotle_tags)

 	
 	item (aristotle_mdr.models._concept attribute)

 	(aristotle_mdr.models.concept attribute)

L

 	
 	LowerEmailField (class in aristotle_mdr.fields)

P

 	
 	post() (aristotle_mdr.contrib.generic.views.GenericAlterForeignKey method)

 	(aristotle_mdr.contrib.generic.views.GenericAlterManyToManyView method)

 	
 	public() (aristotle_mdr.managers.ConceptQuerySet method)

 	public_standards() (in module aristotle_mdr.templatetags.aristotle_tags)

R

 	
 	register_concept() (in module aristotle_mdr.register)

 	register_concept_admin() (in module aristotle_mdr.register)

 	
 	register_concept_search_index() (in module aristotle_mdr.register)

 	retrieve_file() (aristotle_mdr.downloader.Downloader method)

S

 	
 	save_form() (aristotle_mdr.contrib.generic.views.GenericAlterForeignKey method)

 	
 	state_to_text() (in module aristotle_mdr.templatetags.aristotle_tags)

 	store_file() (aristotle_mdr.downloader.Downloader method)

T

 	
 	ternary() (in module aristotle_mdr.templatetags.aristotle_tags)

U

 	
 	UnorderedGenericAlterOneToManyView (class in aristotle_mdr.contrib.generic.views)

 	user_can_add_status() (in module aristotle_mdr.perms)

 	
 	user_can_edit() (in module aristotle_mdr.perms)

 	user_can_view() (in module aristotle_mdr.perms)

 	user_can_view_statuses_revisions() (in module aristotle_mdr.templatetags.aristotle_tags)

V

 	
 	visible() (aristotle_mdr.managers.ConceptQuerySet method)

 	visible_superseded_by_items() (in module aristotle_mdr.templatetags.aristotle_tags)

 	
 	visible_supersedes_items() (in module aristotle_mdr.templatetags.aristotle_tags)

 	VueFormView (class in aristotle_mdr.contrib.generic.views)

Z

 	
 	zws() (in module aristotle_mdr.templatetags.aristotle_tags)

 _static/download_menu.png
= Technical View | & Download v

Person PDF
Type:

_static/down-pressed.png

_static/down.png

_static/itemeditsample.png
Editing Person—number of people in the presenting unit, total N[N] (clone)

Person—number of people in the presenting unit, total N[N] (clone) / Advanced editor

Definition

‘These fields help identify and define the item. A name and definition are required, but adding a version is optional.

|Person—number of people in the presenting unit, total N[N] (clone)
‘The primary name used for human identification purposes.

‘Workgroup: The workgroup responsible for maintaining this metadata item.
(5

Definition: Representation of a concept by a descriptive statement which serves to differentiate it from related concepts. (3.2.39)

<p>The size of the presenting unit, based on the total number of people seeking specialist homelessness services together.</p>

_static/minus.png

_static/file.png

_static/homescreenshot.png
Search for open metadata from institutes around the globe

Popular terms: (Cancer. (Diabetes (Emergency More.

® Q ©

About this site

Aristotle Metadata Registry is based on ISO/IEG
standard 11179 and this open-registry contains
metadata sourced from the AIHW Meteor Registry,
along with other ISO specific organisations so you
can test and explore the system.

Learn more

Explore

Take it for a test drive! You can search, browse,
edit and create, all from a single dashboard. If you
want to make your own registry see our hosting
options.

Learn more

Learn more

What is a metadata registry?

What are “metadata standards" and why are they
important?

Visit our community hub

Explore our help topics

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Welcome to Aristotle Metadata Registry’s documentation!

 		
 Aristotle Metadata Registry Mission Statement

 		
 Installing Aristotle Metadata Registry

 		
 Easy installer documentation

 		
 Using a different database

 		
 Disabling the DEBUG options

 		
 Creating a superuser for the registry

 		
 Integrating Aristotle-MDR with a Django project

 		
 Aristotle Static Files

 		
 Webpack

 		
 Arisotle Webpack Structure

 		
 During Development

 		
 Installing Dependancies

 		
 Running Builds

 		
 Bundle Loading

 		
 Testing

 		
 Linting (Style Checking)

 		
 Configuring the behavior of Aristotle-MDR

 		
 Environment variables

 		
 ARISTOTLE_SETTINGS

 		
 Sample settings

 		
 Adding new static pages into Aristotle

 		
 Changing the look and feel of the site

 		
 Changing site CSS using Django staticfiles

 		
 Changing the Bootstrap file by overriding the settings

 		
 Completely overhauling the site

 		
 Configuring third-party apps

 		
 Django

 		
 Haystack

 		
 LESS Compilation

 		
 Technical requirements

 		
 Operating system support

 		
 Python

 		
 Django

 		
 Database support

 		
 Search index support

 		
 Features of Aristotle-MDR

 		
 100% Free open-source software

 		
 Easily extensible

 		
 Mobile-friendly interface

 		
 Real-time enterprise search

 		
 Secure, thoroughly tested permissions

 		
 Easy content creation

 		
 The Aristotle Metadata Registry API

 		
 The Aristotle REST API

 		
 Description

 		
 Authentication

 		
 The Aristotle GraphQL API

 		
 Description

 		
 Usage from external applications

 		
 Authentication

 		
 Extending Aristotle-MDR

 		
 Making new metadata types

 		
 Making new item types

 		
 Reusing generic actions to manage relations

 		
 Concept model relations

 		
 Using register_concept to connect new concept types

 		
 Out-of-the-box features available for new concept types

 		
 Advanced features that require configuration

 		
 Using the ConceptManager in Django queries

 		
 Adding new download formats

 		
 Downloads architecture

 		
 Creating a download module

 		
 Writing a metadata_register

 		
 How the download view works

 		
 Adding new bulk actions

 		
 Registering a bulk action

 		
 Writing a functional bulk action

 		
 An example bulk action form

 		
 Tags and filters available in aristotle templates

 		
 Available tags and filters

 		
 Using Aristotle permissions in custom code

 		
 Permissions in perms.py

 		
 Permissions-based ConceptManager

 		
 Permissions template tags

 		
 Testing

 		
 Running tests locally

 		
 Adding extension modules to our automated testing

 		
 Developing and contributing to the Aristotle Metadata Registry

 		
 Setting up a development environment

 		
 Creating a superuser

 		
 Quickly switching user roles

 		
 Customing the Aristotle Metadata Registry

 		
 Customising templates

 		
 Customising the browse pages

 		
 Making metadata-specific browse lists

 		
 Creating and deploying user help

 		
 Aristotle Help models

 		
 Special syntax in user help files

 		
 Writing help files

 		
 Importing help files

 		
 Accessing help in extension and download templates

_static/up.png

_static/up-pressed.png

_images/aristotle_square_small.png
I
ARISTOTLE

metadata registry

_images/bulk_action_options.png
[J Person (Object Class)

Created: Dec. 27, 2015, 1:45 a.m. | Last modified: 19 minutes ago
Statuses: Unregistered

A human being, whether man or woman.

[J Person (Object Class)

Created: Dec. 27, 2015, 2:38 a.m. | Last modified: 19 minutes ago
Statuses: [Health: Standard]

A human being, whether man, woman or child.

Add bookmark @ Remove bookmark Ml Change state i Delete

_static/ajax-loader.gif

_static/aristotle_large_square.png
ARISTOTLE

metadata registry

_images/download_menu.png
= Technical View | & Download v

Person PDF
Type:

_static/bulk_action_options.png
[J Person (Object Class)

Created: Dec. 27, 2015, 1:45 a.m. | Last modified: 19 minutes ago
Statuses: Unregistered

A human being, whether man or woman.

[J Person (Object Class)

Created: Dec. 27, 2015, 2:38 a.m. | Last modified: 19 minutes ago
Statuses: [Health: Standard]

A human being, whether man, woman or child.

Add bookmark @ Remove bookmark Ml Change state i Delete

_static/aristotle_small.png
ARISTOTLE
‘metadata registry

_static/aristotle_square_small.png
I
ARISTOTLE

metadata registry

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

