
Argyle Documentation
Release 0.2.1

Mark Lavin

April 15, 2013

CONTENTS

1 Requirements 3

2 Questions or Issues? 5

3 Contents 7
3.1 Motivation . 7
3.2 Base Functions . 7
3.3 System Functions . 8
3.4 Nginx Functions . 9
3.5 Postgres Functions . 10
3.6 Supevisord Functions . 10
3.7 RabbitMQ Functions . 11
3.8 NPM Functions . 12
3.9 Settings . 12
3.10 Release Notes . 13

4 Indices and tables 15

i

ii

Argyle Documentation, Release 0.2.1

Argyle is a collection of Fabric utilities for Django deployment. This project is still in very early phases.

CONTENTS 1

Argyle Documentation, Release 0.2.1

2 CONTENTS

CHAPTER

ONE

REQUIREMENTS

• Fabric >= 1.1

• Jinja2 >= 2.3

These tasks were written primarily for deployments on Ubuntu Linux. Your mileage may vary with other operating
systems and flavors of Linux.

3

Argyle Documentation, Release 0.2.1

4 Chapter 1. Requirements

CHAPTER

TWO

DOCUMENTATION

Additional documentation on using argyle is available on Read The Docs.

5

http://argyle.readthedocs.org/

Argyle Documentation, Release 0.2.1

6 Chapter 2. Documentation

CHAPTER

THREE

QUESTIONS OR ISSUES?

If you have questions, issues or requests for improvements please let me know on Github.

7

https://github.com/mlavin/argyle/issues

Argyle Documentation, Release 0.2.1

8 Chapter 3. Questions or Issues?

CHAPTER

FOUR

CONTENTS

4.1 Motivation

We love Fabric for deployments. We also use it for our server provisioning scripts. However, I found myself repeatedly
writing the same Fabric tasks over and over again without a good way to reuse them from project to project. This was
leading to a lot of wasted time and copy-paste errors.

While there are a number of existing projects out there for Django deployments with Fabric, I found most to be very
opinionated about project/server layout. Unfortunately I am also very opinionated about server layout. I also found
that they did not scale up well to multiple servers (separate app and db servers, multiple app servers behind a load
balancer).

In no particular order my goals in creating this project are:

• Standardize common Fabric tasks for server configuration and deployment

• Provide sane defaults for configurations with the ability to override

• Remain as agnostic as possible for directory layout

• Works well for single server and muli-server deployments

4.1.1 Related Projects

There are some similar projects. If this project does work for you then I would recommend you check out:

1. woven

2. django-fab-deploy

3. django-fab

4. django-fabtastic

I apologize in advance if you felt I’ve left out your project.

4.2 Base Functions

argyle.base contains functions which extend the Fabric api to make the rest of the Argyle framework work.

sshagent_run(cmd)
The base ssh library paramiko and hence Fabric does not support SSH Agent forwarding. However, using agent
forwarding can be helpful for accessing private repositories (such as hg/git) using ssh without having to generate

9

https://github.com/bretth/woven
https://bitbucket.org/kmike/django-fab-deploy
https://github.com/hbussell/django-fab
https://github.com/duointeractive/django-fabtastic

Argyle Documentation, Release 0.2.1

and allow the ssh key for the server on the repository. To use this function you must enable SSH forwarding on
your system.:

ForwardAgent yes

This code is based on code from Lincoln Loop. For more info you can see the Fabric issue and paramiko issue
for adding support for agent forwarding.

Note: This issue has been fixed in Fabric 1.4.

upload_template(filename, destination, context=None, use_sudo=False, backup=True, mode=None)
Fabric comes with support for uploading files using a template. See fabric.contrib.files.upload_template. With
this you can use either Python string formatting or Jinja2. Argyle uses this same idea but with a few differences:

1.All templates use Jinja2.

2.The current Fabric environment is always passed into the template context.

3.You can pass list of template names. The first matched template will be used.

Argyle ships with templates which are loaded using jinja2.PackageLoader. You can override these template by
defining env.ARGYLE_TEMPLATE_DIRS as a tuple of template locations.

4.3 System Functions

argyle.system contains functions for managing system packages and users. Most of these system functions
require sudo permissions. They should be run with a user with sufficient permission on the remote server.

install_packages(*packages)
This function installs a list of packages using apt-get. You can use this function from both the command-line:

fab -H 33.33.33.10 install_packages:nginx
fab -H 33.33.33.10 install_packages:git-core,subversion,mercurial

or from another Fabric task

def install_python_packages():
package_list = [

’python2.6’, ’python-all-dev’, ’python-setuptools’
]
install_packages(*package_list)

install_packages_from_file(file_name)
A common use case for installing packages is to install a list of packages from a file.
install_packages_from_file is a thin wrapper around install_packages which takes a
filename and installs the listed packages. This file should contain single package name per line. The file is read
from the local filesystem not the remote.

update_apt_sources()
Not much to say here. It just runs apt-get update to reload the sources.

upgrade_apt_packages()
Again this is pretty simple. It runs a apt-get upgrade on the remote system.

add_ppa(name, update=True)
Adds a personal package archive (PPA) and updates the sources. This requires that python-software-properties
is installed on the system.

10 Chapter 4. Contents

http://lincolnloop.com/blog/2009/sep/22/easy-fabric-deployment-part-1-gitmercurial-and-ssh/
https://github.com/fabric/fabric/issues/72
https://bugs.launchpad.net/paramiko/+bug/483697
http://docs.fabfile.org/en/1.2.2/api/contrib/files.html#fabric.contrib.files.upload_template
http://jinja.pocoo.org/docs/api/#jinja2.PackageLoader

Argyle Documentation, Release 0.2.1

add_ppas_from_file(file_name)
A common use case for adding PPAs is to add them from a list of PPAs from a file. add_ppas_from_file
is a thin wrapper around add_ppa which takes a filename and adds the listed PPAs. This file should contain
single package name per line. The file is read from the local filesystem not the remote.

add_apt_source(source, key=None, update=True)
Adds a source to /etc/apt/sources.list. There is an optional key parameter which is the url to the key. If given it
will be fetched and added via apt-key add.

add_sources_from_file(file_name, update=True)
A wrapper around add_apt_source which parses a list of source/key pairs from a file. The format is:

deb http://example.com/deb lucid main (http://example.com/key)

create_user(name, groups=None, key_file=None)
This is used to create a new user on the remote server. You can optionally pass a list of groups and the user will
be added to them. In addition you can pass the location of a key file. If given the public key will be added to the
newly created user‘s authorized_keys. All users are created without passwords.

service_command(name, command)
This is a task for calling service commands (such as init.d). This takes the name of the service and the command
to run:

fab -H 33.33.33.10 service_command:apache2,reload

By default this will call sudo /etc/init.d/name command. You can configure this by setting
env.ARGYLE_SERVICE_COMMAND_TEMPLATE.

from fabric.api import env

env.ARGYLE_SERVICE_COMMAND_TEMPLATE = u’invoke-rc.d %(name)s %(command)’

start_service, stop_service and restart_service are wrappers around service_command
to call start, stop and restart commands for a particular service. As such they are also impacted by setting
ARGYLE_SERVICE_COMMAND_TEMPLATE.

4.4 Nginx Functions

Tasks for configuring sites running under the Nginx webserver.

remove_default_site()
Nginx installs with a default server listening on 80 defined in /etc/nginx/sites-enabled/default.conf.
This task removes that configuration.

upload_nginx_site_conf(site_name, template_name=None, context=None, enable=True)
This task uploads a new configuration to /etc/nginx/sites-available/<site_name>. This
looks for a template named nginx/<site_name>.conf and if not found uploads the default
nginx/site.conf unless template_name is given. By default this site configuration will be enabled
/etc/nginx/sites-enabled/.

enable_site(site_name)
Enables a site in /etc/nginx/sites-available/<site_name> and links it to
/etc/nginx/sites-enabled/<site_name>.

disable_site(site_name)
Disables a site in /etc/nginx/sites-enabled/ by the name. The configuration in
/etc/nginx/sites-available/ is not touched.

4.4. Nginx Functions 11

Argyle Documentation, Release 0.2.1

4.5 Postgres Functions

Tasks for managing clusters, databases, users and configurations for a Postgres server.

create_db_user(username, password=None, flags=None)
Creates a database user and sets a password if given. You can pass additional creation flags with the flags
parameter.

db_user_exists(username)
Return True if the database user already exists.

excute_query(query, db=None, flags=None, use_sudo=False, **kwargs)
Execute a SQL query on the remote server. You can specify the DB and additional flags with the db and flags
parameter. If use_sudo is True then this will be executed as the postgres user. Additional **kwargs are
passed to sudo or run.

create_db(name, owner=None, encoding=u’UTF-8’, template=’template1’)
Creates a new database with a given owner (if given) and encoding. You can specify which database is copied to
create the new one with the template parameter. Using ’template0’ as the template will allow creating a
database with a different encoding from the default, which can’t be done from template1.

db_exists(name)
Return True if the database already exists.

upload_pg_hba_conf(template_name=None, pg_version=None, pg_cluster=’main’, restart=True)
Uploads a configuration to /etc/postgresql/<version>/<cluster>/pg_hba.conf from a tem-
plate. If not given the Postgres version will be detected on the server. The default template name is
postgres/pg_hba.conf.

reset_cluster(pg_cluster=’main’, pg_version=None, encoding=u’UTF-8’, locale=u’en_US.UTF-8’)
Drops and restores a given cluster. This is mainly used for provisioning a new server to ensure the cluster has
the desired default encoding.

4.6 Supevisord Functions

Tasks for configuring processes which will be managed by Supervisord.

supervisor_command(command)
This is a simple way to execute a supervisorctl command on the remote server similar to the
service_command().

upload_supervisor_app_conf(app_name, template_name=None, context=None)
Uploads a configuration to /etc/supervisor/conf.d/<app_name>.conf for manag-
ing a new process. If the template_name is not given it will look for templates named
supervisor/<app_name>.conf and if not found it will use the supervisor/base.conf in-
cluded with this project. The app_name parameter is passed in the context and additional context can be
provided with the context parameter.

The default supervisor/base.conf is shown below.

[program:{% block name %}{{ app_name }}{% endblock %}]
{% block main %}
command={% block command %}{% endblock %}
{%- if directory -%}directory={{ directory }}{% endif %}
{%- if run_user -%}user={{ run_user }}{% endif %}
{% endblock %}
{% block logging %}

12 Chapter 4. Contents

Argyle Documentation, Release 0.2.1

stdout_logfile={{ log_dir|default(’/var/log’) }}/%(program_name)s.log
redirect_stderr=true
stderr_logfile={{ log_dir|default(’/var/log’) }}/%(program_name)s.error.log
{% endblock %}
{% block additional %}
{% endblock %}

remove_supervisor_app(app_name)
Deletes the /etc/supervisor/conf.d/<app_name>.conf configuration.

upload_celery_conf(command=’celeryd’, app_name=None, template_name=None, context=None)
A wrapper around upload_supervisor_app_conf() for managing a Celery process such as celeryd
or celerybeat. The app_name defaults to the command and both are pass in the context. A default
supervisor/celery.conf is included which will be used instead of supervisor/base.conf if
supervisor/<app_name>.conf is not found.

The default supervisor/celery.conf is shown below.

{% extends "supervisor/base.conf" %}

{% block name %}{{ command }}{% endblock %}

{% block command %}{{ bin_dir|default(’/usr/local/bin’) }}/{{ command }} {{ args }}{% endblock %}

{% block additional %}
stopwaitsecs=60
{% endblock %}

upload_gunicorn_conf(command=’gunicorn’, app_name=None, template_name=None, con-
text=None)

A wrapper around upload_supervisor_app_conf() for managing a Gunicorn process such as
gunicorn or gunicorn_django. The app_name defaults to the command and both are pass in
the context. A default supervisor/gunicorn.conf is included which will be used instead of
supervisor/base.conf if supervisor/<app_name>.conf is not found.

The default supervisor/gunicorn.conf is shown below.

{% extends "supervisor/base.conf" %}

{% block name %}{{ app_name|default(’gunicorn’) }}{% endblock %}

{% block command %}{{ bin_dir|default(’/usr/local/bin’) }}/{{ command|default(’gunicorn’) }} {{ args }}{% endblock %}

4.7 RabbitMQ Functions

Tasks for managing vhosts, users and configurations for RabbitMQ.

rabbitmq_command(command)
This is a simple way to execute a rabbitmqctl command on the remote server similar to the
service_command().

create_user(username, password)
Creates a new RabbitMQ user with the given name and password.

create_vhost(name)
Creates a new vhost on the remote RabbitMQ server.

4.7. RabbitMQ Functions 13

http://www.celeryproject.org/
http://gunicorn.org/

Argyle Documentation, Release 0.2.1

set_vhost_permissions(vhost, username, permissions=”’.*” ”.*” ”.*”’)
Grants the given permissions to the user on the given vhost. By default all permissions are granted.

upload_rabbitmq_environment_conf(template_name=None, context=None, restart=True)
Uploads the RabbitMQ environment configuration to /etc/rabbitmq/rabbitmq-env.conf. This looks
for a template named rabbitmq/rabbitmq-env.conf if the template_name is not given. A default
for this template is not given.

upload_rabbitmq_conf(template_name=None, context=None, restart=True)
Uploads the RabbitMQ configuration to /etc/rabbitmq/rabbitmq.config. This looks for a template
named rabbitmq/rabbitmq.config if the template_name is not given. A default for this template is
not given.

4.8 NPM Functions

Tasks for installing, updating and removing packages installed with NPM, the package manager for Node.JS. New in
version 0.2.

npm_command(command)
Execute any npm command on the remote server. This requires that npm is installed.

npm_install(package, flags=None)
Install a given package from npm. The flags parameter can be used to pass flags such as --tag, --force,
--global or --link.

npm_uninstall(package)
Uninstall a package.

npm_update(package)
Update a package to the latest version.

4.9 Settings

Below are the available settings for configuring Argyle. Each of these settings can be used by setting them in the
Fabric environment env dictionary.

4.9.1 ARGYLE_SERVICE_COMMAND_TEMPLATE

This settings configures the behavior of the system service_command() for the stop/start/restart tasks. This
should be a string with takes the formatting parameters name and command.

Default: u’/etc/init.d/%(name)s %(command)s’

4.9.2 ARGYLE_TEMPLATE_DIRS

By default Argyle loads various configuration templates from the templates directory inside the argyle module. How-
ever, if you wish to override, extend or include additional templates you can include additional directories using this
setting. Jinja will look for templates in any directories included here first before loading from the default template
directory. See the upload_template() command for additional information on the usage.

Default: ()

14 Chapter 4. Contents

http://docs.fabfile.org/en/1.4.0/usage/env.html

Argyle Documentation, Release 0.2.1

4.10 Release Notes

4.10.1 v0.2.1 (Released 2012-08-25)

• Fixed group permissions for newly created user’s ssh directory

4.10.2 v0.2 (Released 2012-08-03)

Mostly a cleanup release. Added docs which were previously missing and a full test suite.

Features

• Tasks for managing Node packages with npm

• Added unittest suite

• Various bug fixes/cleanup

Bug Fixes

• Fixed bug with creating a user with no groups

• Fixed bug when using upload template with a list of filenames

• Fixed incorrect error case when detecting Postgres version

Backwards Incompatible Changes

• The default contexts for the supervisor templates have been updated slightly but were never documented

4.10.3 v0.1 (Released 2012-02-17)

Initial public release

4.10. Release Notes 15

Argyle Documentation, Release 0.2.1

16 Chapter 4. Contents

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

17

	Requirements
	Questions or Issues?
	Contents
	Motivation
	Base Functions
	System Functions
	Nginx Functions
	Postgres Functions
	Supevisord Functions
	RabbitMQ Functions
	NPM Functions
	Settings
	Release Notes

	Indices and tables

