areaDetector: EPICS Area Detector

Support Documentation
Release 3-1

University of Chicago

Jul 14, 2017

Contents

1 Content 3

Bibliography 11

areaDetector: EPICS Area Detector Support Documentation, Release 3-1

Release 3-1
July 3, 2017
Mark Rivers

University of Chicago

Contents 1

areaDetector: EPICS Area Detector Support Documentation, Release 3-1

2 Contents

CHAPTER 1

Content

Overview

The areaDetector module provides a general-purpose interface for area (2-D) detectors in EPICS. It is intended to be
used with a wide variety of detectors and cameras, ranging from high frame rate CCD and CMOS cameras, pixel-array
detectors such as the Pilatus, and large format detectors like the Perkin Elmer flat panels.

The goals of this module are:

Minimize the amount of code that needs to be written to implement a new detector.
Provide a standard interface defining the functions and parameters that a detector driver must support.

Provide a set of base EPICS records that will be present for every detector using this module. This allows the
use of generic EPICS clients for displaying images and controlling cameras and detectors.

Allow easy extensibility to take advantage of detector-specific features beyond the standard parameters.

Have high-performance. Applications can be written to get the detector image data through EPICS, but an
interface is also available to receive the detector data at a lower-level for very high performance.

Provide a mechanism for device-independent real-time data analysis such as regions-of-interest and statistics.

Provide detector drivers for commonly used detectors in synchrotron applications. These include Prosilica GigE
video cameras, IEEE 1394 (Firewire) cameras, ADSC and MAR CCD x-ray detectors, MAR-345 online imaging
plate detectors, the Pilatus pixel-array detector, Roper Scientific CCD cameras, Perkin-Elmer amorphous silicon
detector, and many others.

Architecture

The architecture of the areaDetector module is shown below.

areaDetector: EPICS Area Detector Support Documentation, Release 3-1

Layer 6
EPICS CA clients

EPICS areaDetector Architecture

Channel Access Clients (medm, IDL, ImageJ, SPEC, stc.)

A

Layer 5 — ” — - T —
Standard ADBase xocx Driver NDPluginBase NDPIluginX .
EPICS records femplate femplate femplate template
L 4 __-___________-_.__:::'Z-At.'f::..—/__________________ Ci++ Base classes
EEF");grS ovi Standard asyn device support (M Df‘-"gr?fb .
evice [. . asynForDriver,
sUBDOrt (device-independent) asynNDArayDriver,
PP — ADDriver,
TTT—— NDPluginDriver)
File /
;T:jfﬁrinss StdArrays |[«— ColorConvert« * ROl —(netCDF, TIFF,
9 N Vo JPEG, HDF)
/ _

Layer 2 Dr;;r)
Device drivers :

| «— Channel access

. «— Record/device support
Layer 1 Vendor API <«—» asynint32, Float64, Octet
Hardware API 1 «———» asynXXXArray

Hardware +«—— asynGenericPointer (NDArray)
«— C library calls

From the bottom to the top this architecture consists of the following:

e Layer 1. This is

the layer that allows user written code to communicate with the hardware. It is usually provided

by the detector vendor. It may consist of a library or DLL, of a socket protocol to a driver, a Microsoft COM

interface, etc.

Layer 2. This is the driver that is written for the areaDetector application to control a particular detector. It is

written in C++ and inherits from the ADDriver class. It uses the standard asyn interfaces for control and status
information. Each time it receives a new data array it can pass it as an NDArray object to all Layer 3 clients
that have registered for callbacks. This is the only code that needs to be written to implement a new detector.

Existing drivers

range from about 800 to 2600 lines of code.

Layer 3. Code running at this level is called a “plug-in”. This code registers with a driver for a callback when-

ever there is a new data array. The existing plugins implement file saving (NDPluginFile), region-of-interest
(ROI) calculations (NDPluginROI), statistics calculations (NDPluginStats, DNPluginROIStat), image process-
ing (NDPluginProcess), geometric transformations (NDPluginTransform), buffering and triggering (NDPlugin-
CircularBuff), color mode conversion (NDPluginColorConvert), graphics and text overlays (NDPluginOverlay),
exporting NDArray attributes as scalar and waveform records (NDPluginAttribute), and conversion of detector

data to standard

EPICS array types for use by Channel Access clients (NDPluginStdArrays). Plugins are written

in C++ and inherit from NDPluginDriver. Existing plugins range from about 300 to 3000 lines of code.

Layer 4. This is

standard asyn device support that comes with the EPICS asyn module.

Layer 5. These are standard EPICS records, and EPICS database (template) files that define records to commu-

nicate with drivers at Layer 2 and plugins at Layer 3.

Chapter 1. Content

areaDetector: EPICS Area Detector Support Documentation, Release 3-1

* Layer 6. These are EPICS channel access clients, such as MEDM that communicate with the records at Layer 5.
areaDetector includes two client applications that can display images using EPICS waveform and other records
communicating with the NDPIuginStdArrays plugin at Layer 3. One of these clients is an ImageJ plugin, and
the other is a freely runnable IDL application.

The code in Layers 1-3 is essentially independent of EPICS. In principle there are only 2 EPICS dependencies in this
code.

1. libCom from EPICS base provides operating-system independent functions for threads, mutexes, etc.
2. asyn is a module that provides interthread messaging services, including queueing and callbacks.

In particular it is possible to eliminate layers 4-6 in the architecture shown in Figure 1. This means that it is not
necessary to run an EPICS IOC or to use EPICS Channel Access when using the drivers and plugins at Layers 2
and 3. This is demonstrated in the simDetectorNoIOC application in ADSimDetector and in the unit tests in AD-
Core/ADApp/pluginTests.

The plugin architecture is very powerful, because new plugins can be written for application-specific purposes. For
example, a plugin could be written to analyze images and do some application specific functions, and such a plugin
would then work with any detector driver. Plugins are also powerful because they can be reconfigured at run-time.
For example the NDPluginStdArrays can switch from getting its array data from a detector driver to an NDPluginROI
plugin. That way it will switch from displaying the entire detector to whatever sub-region the ROI driver has selected.
Any Channel Access clients connected to the NDPluginStdArrays driver will automatically switch to displaying this
subregion. Similarly, the NDPluginFile plugin can be switched at run-time from saving the entire image to saving a
selected RO, just by changing its input source. Plugins can be used to form an image processing pipeline, for example
with a detector providing data to a color convert plugin, which feeds an ROI plugin, which feeds a file saving plugin.
Each plugin can run in its own threads, and hence in its own cores on a modern multi-core CPU.

The use of plugins is optional, and it is only plugins that require the driver to make callbacks with image data. If there
are no plugins being used then EPICS can be used simply to control the detector, without accessing the data itself.
This is most useful when the vendor provides an API has the ability to save the data to a file and an application to
display the images.

What follows is a detailed description of the software, working from the bottom up. Most of the code is object oriented,
and written in C++.

Implementation Details

The areaDetector module depends heavily on asyn. It is the software that is used for interthread communication,
using the standard asyn interfaces (e.g. asynInt32, asynOctet, etc.), and callbacks. In order to minimize the amount
of redundant code in drivers, areaDetector has been implemented using C++ classes. The base classes, from which
drivers and plugins are derived, take care of many of the details of asyn and other common code.

asynPortDriver

Detector drivers and plugins are asyn port drivers, meaning that they implement one or more of the standard asyn
interfaces. They register themselves as interrupt sources, so that they do callbacks to registered asyn clients when
values change. They inherit from the asynPortDriver base C++ class that is provided in the asyn module. That base
class handles all of the details of registering the port driver, registering the supported interfaces, and registering the
required interrupt sources. It also provides a parameter library for int, double, and string parameters indexed by the
integer index values defined in the driver. The parameter library provides methods to write and read the parameter
values, and to perform callbacks to registered clients when a parameter value has changed. The asynPortDriver class
documentation describes this class in detail.

1.3. Implementation Details 5

http://www.aps.anl.gov/epics/base/R3-14/12-docs/AppDevGuide/
http://www.aps.anl.gov/epics/modules/soft/asyn/
http://www.aps.anl.gov/epics/modules/soft/asyn/R4-26/asynPortDriver.html
http://www.aps.anl.gov/epics/modules/soft/asyn/R4-26/asynDoxygenHTML/classasyn_port_driver.html
http://www.aps.anl.gov/epics/modules/soft/asyn/R4-26/asynDoxygenHTML/classasyn_port_driver.html

areaDetector: EPICS Area Detector Support Documentation, Release 3-1

NDArray

The NDArray (N-Dimensional array) is the class that is used for passing detector data from drivers to plugins. An
NDArray is a general purpose class for handling array data. An NDArray object is self-describing, meaning it contains
enough information to describe the data itself. It can optionally contain “attributes” (class NDAttribute) which contain
meta-data describing how the data was collected, etc.

An NDArray can have up to ND_ARRAY_MAX_DIMS dimensions, currently 10. A fixed maximum number of
dimensions is used to significantly simplify the code compared to unlimited number of dimensions. Each dimension
of the array is described by an NDDimension structure. The NDArray class documentation describes this class in
detail.

NDArrayPool

The NDArrayPool class manages a free list (pool) of NDArray objects. Drivers allocate NDArray objects from the
pool, and pass these objects to plugins. Plugins increase the reference count on the object when they place the object
on their queue, and decrease the reference count when they are done processing the array. When the reference count
reaches 0 again the NDArray object is placed back on the free list. This mechanism minimizes the copying of array
data in plugins. The NDArrayPool class documentation describes this class in detail.

NDAttribute

The NDAttribute is a class for linking metadata to an NDArray. An NDattribute has a name, description, data type,
value, source type and source information. Attributes are identified by their names, which are case-sensitive. There
are methods to set and get the information for an attribute.

It is useful to define some conventions for attribute names, so that plugins or data analysis programs can look for a
specific attribute. The following are the attribute conventions used in current plugins:

Conventions for standard attribute names

Attribute name | Description Data type

ColorMode “Color mode” int (NDColorMode_t)
BayerPattern “Bayer pattern” | int (NDBayerPattern_t)

Attribute names are case-sensitive. For attributes not in this table a good convention would be to use the corresponding
driver parameter without the leading ND or AD, and with the first character of every “word” of the name starting with
upper case. For example, the standard attribute name for ADManufacturer should be “Manufacturer”’, ADNumExpo-
sures should be “NumExposures”, etc.

The NDAttribute class documentation describes this class in detail.

NDAttributeList

The NDAttributeList implements a linked list of NDAttribute objects. NDArray objects contain an NDAttributeList
which is how attributes are associated with an NDArray. There are methods to add, delete and search for NDAttribute
objects in an NDAttributeList. Each attribute in the list must have a unique name, which is case-sensitive.

When NDArrays are copied with the NDArrayPool methods the attribute list is also copied.

IMPORTANT NOTE: When a new NDArray is allocated using NDArrayPool::alloc() the behavior of any existing
attribute list on the NDArray taken from the pool is determined by the value of the global variable eraseNDA(tributes.
By default the value of this variable is 0. This means that when a new NDArray is allocated from the pool its attribute
list is not cleared. This greatly improves efficiency in the normal case where attributes for a given driver are defined
once at initialization and never deleted. (The attribute values may of course be changing.) It eliminates allocating and
deallocating attribute memory each time an array is obtained from the pool. It is still possible to add new attributes

6 Chapter 1. Content

http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/struct_n_d_dimension.html
http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/class_n_d_array.html
http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/class_n_d_array_pool.html
http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/class_n_d_attribute.html

areaDetector: EPICS Area Detector Support Documentation, Release 3-1

to the array, but any existing attributes will continue to exist even if they are ostensibly cleared e.g. asynNDArray-
Driver::readNDAttributesFile() is called again. If it is desired to eliminate all existing attributes from NDArrays each
time a new one is allocated then the global variable eraseNDAttributes should be set to 1. This can be done at the iocsh
prompt with the command:

var eraseNDAttributes 1

The NDAttributeList class documentation describes this class in detail.

PVAttribute

The PVAttribute class is derived from NDAttribute. It obtains its value by monitor callbacks from an EPICS PV, and
is thus used to associate current the value of any EPICS PV with an NDArray. The PVAttribute class documentation
describes this class in detail.

paramAttribute

The paramAttribute class is derived from NDAttribute. It obtains its value from the current value of a driver or plugin
parameter. The paramAttribute class is typically used when it is important to have the current value of the parameter
and the value of a corresponding PVAttribute might not be current because the EPICS PV has not yet updated. The
paramAttribute class documentation describes this class in detail.

functAttribute

The functAttribute class is derived from NDAttribute. It obtains its value from a user-written C++ function. The
functAttribute class is thus very general, and can be used to add almost any information to an NDArray. ADCore
contains example code, myAttributeFunctions.cpp that demonstates how to write such functions. The functAttribute
class documentation describes this class in detail.

asynNDArrayDriver

asynNDArrayDriver inherits from asynPortDriver. It implements the asynGenericPointer functions for NDArray ob-
jects. This is the class from which both plugins and area detector drivers are indirectly derived. The asynNDArray-
Driver class documentation describes this class in detail.

The file asynNDAurrayDriver.h defines a number of parameters that all NDArray drivers and plugins should implement
if possible. These parameters are defined by strings (drvInfo strings in asyn) with an associated asyn interface, and
access (read-only or read-write). There is also an integer index to the parameter which is assigned by asynPortDriver
when the parameter is created in the parameter library. The EPICS database NDArrayBase.template provides access
to these standard driver parameters. The following table lists the standard driver parameters. The columns are defined
as follows:

Parameter index variable: The variable name for this parameter index in the driver. There are several EPICS
records in ADBase.template that do not have corresponding parameter indices, and these are indicated as Not
Applicable (N/A).

asyn interface: The asyn interface used to pass this parameter to the driver.

Access: Read-write (r/w) or read-only (1/0).

drvInfo string: The string used to look up the parameter in the driver through the drvUser interface. This
string is used in the EPICS database file for generic asyn device support to associate a record with a particular
parameter. It is also used to associate a paramAttribute with a driver parameter in the XML file that is read by
asynNDArrayDriver::readNDAttributesFile

1.3. Implementation Details 7

http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/class_n_d_attribute_list.html
http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/class_p_v_attribute.html
http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/classparam_attribute.html
http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/classfunct_attribute.html
http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/classfunct_attribute.html
http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/classasyn_n_d_array_driver.html
http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/classasyn_n_d_array_driver.html
http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/asyn_n_d_array_driver_8h.html
http://cars.uchicago.edu/software/epics/areaDetectorDoxygenHTML/classparam_attribute.html

areaDetector: EPICS Area Detector Support Documentation, Release 3-1

¢ EPICS record name: The name of the record in ADBase.template. Each record name begins with the two
macro parameters $(P) and $(R). In the case of read/write parameters there are normally two records, one
for writing the value, and a second, ending in _RBY, that contains the actual value (Read Back Value) of the
parameter.

* EPICS record type: The record type of the record. Waveform records are used to hold long strings, with length
(NELM) = 256 bytes and EPICS data type (FTVL) = UCHAR. This removes the 40 character restriction string
lengths that arise if an EPICS “string” PV is used. MEDM allows one to edit and display such records correctly.
EPICS clients will typically need to convert such long strings from a string to an integer or byte array before
sending the path name to EPICS. In IDL this is done as follows:

; Convert a string to a null-terminated byte array and write with caput
IDL> t = caput ('13PS1:TIFFl:FilePath', [byte('/home/epics/scratch'),0B])
; Read a null terminated byte array

IDL> t = caget ('13PS1:TIFFl1:FilePath’, v)

; Convert to a string

IDL> s = string(v)

In SPEC this is done as follows:

array _temp[256]

Setting the array to
temp — nn

Copy the string to the array. Note, this does not null terminate, so 1f array,

"" will zero-fill it

—already contains

a longer string it needs to first be zeroed by setting it to
_temp = "/home/epics/scratch"

epics_put ("13PS1:TIFF1:FilePath", _temp)

mn

Note that for parameters whose values are defined by enum values (e.g NDDataType, NDColorMode, etc.), drivers
can use a different set of enum values for these parameters. They can override the enum menu in ADBase.template
with driver-specific choices by loading a driver-specific template file that redefines that record field after loading
ADBase.template.

8 Chapter 1. Content

areaDetector: EPICS Area Detector Support Documentation, Release 3-1

Parameter Definitions in asynNDArrayDriver.h and EPICS Record Definitions in NDArrayBase.template (file-rela

Information about the version of ADCore and the plugin or driver
Param- | asyn Ac-J Description drv- EPICS
eter in- ces Info record
index ter- string | name
variable | face
NDAD- | asyn- | r/o | ADCore version number. This can be used by Channel AD- (P)(R)ADCoreVersion_RB’
Core- Octet Access clients to alter their behavior depending on the CORE_VYERSION
Version version of ADCore that was used to build this driver or

plugin.

ND- asyn- | r/o | Driver or plugin version number. This can be used by DRIVER_MEBRSR)BriverVersion_RBV
DriverVer1 Octet Channel Access clients to alter their behavior
sion depending on the version of the plugin or driver.

Information about the asyn port
NDPort- | asyn- | r/o | Aasyn port name PORT_NAWWHB$AEIPBrtName_RBV
Name- Octet
Self

Data Type
ND- asynInt32w | Data type (NDDataType_t). DATA_TYRE)$(R)DataType
DataType

(P)(R)DataType_RBV

Color Mode
NDCol- | asynIntiZw | Color mode (NDColorMode_t). COLOR | M@®1$R)ColorMode
orMode

(P)(R)ColorMode_RBV

NDBay- | asynInt3Zo | Bayer pattern (NDBayerPattern_t) of NDArray data. BAYER | PXPT$RMBayerPattern_RBV
erPat-
tern

Detector Drivers

Here is an example of linking documentation across repositories.

Credits

Citations

We kindly request that you cite the following article /A 7] if you use project.

References

1.4. Detector Drivers 9

areaDetector: EPICS Area Detector Support Documentation, Release 3-1

10 Chapter 1. Content

Bibliography

[A1l] Mark L. Rivers. Areadetector: software for 2d detectors in epics. AIP Conference Proceedings, 1234(1):51-54,
2010. URL: http://aip.scitation.org/doi/abs/10.1063/1.3463256, doi:10.1063/1.3463256.

[B1] Mark L. Rivers. Areadetector: software for 2d detectors in epics. AIP Conference Proceedings, 1234(1):51-54,
2010. URL: http://aip.scitation.org/doi/abs/10.1063/1.3463256, doi:10.1063/1.3463256.

11

http://aip.scitation.org/doi/abs/10.1063/1.3463256
https://doi.org/10.1063/1.3463256
http://aip.scitation.org/doi/abs/10.1063/1.3463256
https://doi.org/10.1063/1.3463256

	Content
	Bibliography

