Apollo

User Guides

1	Documentation	1
2	Thesis	9
3	Acknowledgements	13

CHAPTER 1

Documentation

1.1 Overview: The What and Why of Apollo

Apollo is an open source system for machine learning from numerical weather forecasts. Its purpose is to facilitate data collection, model training and evaluation, and the serving of predictions.

- Use Cases
 - Irradiance Forecasting
 - Model Evaluation
- System Architecture
 - Data Ingestion Subsystem
 - Modeling Subsystem
 - Storage Subsystem
 - Service Subsystem

1.1.1 Use Cases

Irradiance Forecasting

Todo: TODO

Model Evaluation

Apollo

Todo: TODO

1.1.2 System Architecture

Fig. 1: System Architecture of Apollo

Data Ingestion Subsystem

Todo: TODO

Modeling Subsystem

Todo: TODO

Storage Subsystem

Todo: TODO

Service Subsystem

Todo: TODO

1.2 Quickstart: Running Apollo with Docker

git clone https://github.com/cbarrick/apollo.git
docker build apollo -t apollo
docker run -it apollo

1.3 Installing Apollo Locally

1.4 Python API Reference

1.4.1 Modeling Framework

Apollo's core API is the modeling framework.

Model Classes

apollo.models.Model	
apollo.models.IrradianceModel	
apollo.models.NamModel	

Utility Functions

apollo.models.list_models
apollo.models.list_templates
apollo.models.load_model
apollo.models.load_model_at
apollo.models.load_model_from
apollo.models.make_estimator
apollo.models.make_model
apollo.models.make_model_from

1.4.2 NAM Forecast Data

Apollo uses the North American Mesoscale (NAM) forecast system, a numerical weather simulation produced by the National Oceanic and Atmospheric Administration (NOAA). Apollo can be configured to collect NAM forecasts as training data for machine learning models.

Data Access

apollo.nam.download	
apollo.nam.open	
apollo.nam.open_range	
apollo.nam.CacheMiss	

Geographic Coordinates

apollo.nam.NAM218	
apollo.nam.proj_coords	
apollo.nam.slice_geo	

Useful Constants

apollo.nam.ATHENS_LATLON	
apollo.nam.PLANAR_FEATURES	

See also:

NAM Home Page Detailed documentation of NAM.

National Centers for Environmental Information Access to raw NAM forecast data.

Inventory of File nam.t00z.awphys00.tm00.grib2 Catalog of variables included in NAM forecasts. (Apollo does not support every variable.)

1.4.3 Feature Extraction

```
apollo.time_of_day
apollo.time_of_year
apollo.is_daylight
```

1.4.4 Time Series Related

Timestamps in Apollo adhere to the following conventions:

- Timestamps are always UTC.
- Timezone-naive inputs are interpreted as UTC.
- Timezone-aware inputs in a different timezone are converted to UTC.

Apollo extends common Pandas utilities to support these conventions.

```
apollo.Timestamp
apollo.DatetimeIndex
apollo.date_range
```

1.4.5 Metrics

```
apollo.metrics.all
apollo.metrics.mae
apollo.metrics.r2
apollo.metrics.rmse
apollo.metrics.stdae
```

1.4.6 Visualizations

Apollo includes several visualization routines.

```
apollo.date_heatmap
apollo.date_heatmap_figure
apollo.nam_figure
```

1.4.7 Data Access

Apollo stores models and datasets in the *Apollo database*. The database is a regular directory specified by the APOLLO_DATA environment variable, defaulting to /var/lib/apollo. In the Apollo Docker image, the database

is a volume mounted to /apollo-data.

apollo.path

1.5 REST API Reference

Todo: Document

1.6 Command Line Reference

Apollo provides a command line toolbox for managing forecast data, developing forecast models, and administering the server. All Apollo commands sport a --help option with detailed descriptions. This documentation provides an overview of the commands.

- apollo
- apollo ls
- · apollo predict
- apollo train
- · apollo score
- apollo nam download

1.6.1 apollo

Summary

The Apollo CLI toolbox.

Usage

```
apollo [-h] [--quiet | --debug | --log LEVEL] COMMAND ...
```

Description

The apollo command provides a *toolbox* style CLI, like git. The root apollo command takes a single required argument, COMMAND, giving the subcommand to execute. Optional arguments that come before the subcommand are applicable to all subcommands, while arguments that come after are specific to the subcommand.

1.6.2 apollo Is

Summary

List items within the Apollo database.

Usage

```
apollo ls [-h] [COMPONENT]
```

Description

The apollo 1s command is for listing different items stored in the Apollo database. You can optionally specify a component to list only those items.

Components include:

- models: The trained models.
- templates: Templates for training new models.
- nam: Available NAM forecasts.

Examples

List everything in the database:

```
$ apollo ls
models/linear-nam-uga
models/xgboost-nam-uga
...
templates/linear-nam
templates/xgboost-nam
...
nam/2017-01-01T00Z
nam/2017-01-01T06Z
nam/2017-01-01T12Z
nam/2017-01-01T12Z
nam/2017-01-02T0Z
nam/2017-01-02T0Z
nam/2017-01-02T0Z
nam/2017-01-02T0Z
nam/2017-01-02T12Z
nam/2017-01-02T12Z
nam/2017-01-02T12Z
nam/2017-01-02T18Z
...
```

List only NAM forecasts:

```
$ apollo ls nam

2017-01-01T00Z

2017-01-01T06Z

2017-01-01T12Z

2017-01-01T18Z

2017-01-02T00Z

2017-01-02T06Z

2017-01-02T12Z
```

(continues on next page)

(continued from previous page)

2017-01-02T18Z

1.6.3 apollo predict

Summary

Execute an Apollo model

Todo: Document

1.6.4 apollo train

Summary

Train a new model

Todo: Document

1.6.5 apollo score

Summary

Compute metrics for model output

Todo: Document

1.6.6 apollo nam download

Summary

Download and process a NAM forecast

Todo: Document

CHAPTER 2

	Thesis
Note: These are my thesis chapters and won't appear in the final docs.	
2.1 Introduction	
Todo: TODO	
2.2 System Design	
2.2.1 Use Cases	
Todo: Copy from Overview: The What and Why of Apollo.	
2.2.2 System Architecture	
Todo: Copy from Overview: The What and Why of Apollo.	

2.2.3 Deployment

Apollo

Microservice architectures

Todo: TODO

Containers

Todo:

- What are containers?
- Docker and the Dockerfile language
- Kubernetes and Docker Swarm

REST / HTTP

Todo: TODO

uWSGI & Nginx

Todo: TODO

2.3 The NAM-UGA Dataset

2.3.1 NAM

Todo:

- What is the NAM forecast model?
- NOAA
- GRIB

2.3.2 WRF-NMM

Todo: NAM is an instance of the Weather Research and Forecasting (WRF) nonhydrostatic mesoscale model (NMM)

10 Chapter 2. Thesis

2.3.3 NAM-UGA

Todo:

- Feature subset
- Geographic subset
- Data collection period
- netCDF

2.4 Experiments

2.4.1 Description of Train and Test Data

Todo:

- Simple test-train split.
- Train data from 2017.
- Test data from 2018.
- Calendar heatmap graphic.

2.4.2 Evaluation Metrics

Todo:

- MAE vs. MSE
- MAPE vs. sMAPE
- R^2
- day-night vs day-only

2.4.3 Preprocess & Feature Selection

Todo:

- What features are useful?
- Computed time-of-day and time-of-year features.
- Training with day-night vs day-only.

2.4. Experiments

2.4.4 Empirical Learning Curve

Todo:

- Error vs amount of training data used.
- Linear regression vs. Random Forest vs. GBTs.

2.4.5 Reference Time vs Forecast Time

Todo:

- Error for each (reftime, forecast time) pair.
- Heatmap.

2.5 Conclusions

Todo: TODO

12 Chapter 2. Thesis

CHAPTER 3

Acknowledgements

Apollo was developed at the UGA Institute for Artificial Intelligence in Athens, GA and funded by the Georgia Power Company.

The primary authors of Apollo are:

- · Chris Barrick
- Zach Jones
- · Aashish Yadavally
- · Dr. Fred Maier

A more complete listing of code contributors can be found here.

The research and development of Apollo was directed by:

- Dr. Fred Maier (UGA)
- Dr. Khaled Rasheed (UGA)
- Will Hobbs (GA Power)

Apollo's logo was designed by Freepik and is used under the terms of the Flaticon basic license. The logo was obtained from Flaticon.

The Apollo wordmark was added to the logo and uses the Fira Sans font. Fira Sans was designed by bBox Type and is used under the terms of the SIL Open Font License (OFL).