
avocado Documentation
Release 63.0

Avocado Development Team

Jul 19, 2018

Contents

1 About Avocado 3

2 Getting Started 5
2.1 Installing Avocado . 5
2.2 Using Avocado . 8
2.3 Writing a Simple Test . 10
2.4 Running A More Complex Test Job . 10
2.5 Interrupting The Job On First Failed Test (failfast) . 11
2.6 Ignoring Missing Test References . 11
2.7 Running Tests With An External Runner . 12
2.8 Debugging tests . 13

3 Writing Avocado Tests 15
3.1 Basic example . 15
3.2 Test statuses . 16
3.3 Saving test generated (custom) data . 17
3.4 Accessing test data files . 18
3.5 Accessing test parameters . 18
3.6 Running multiple variants of tests . 19
3.7 Advanced logging capabilities . 21
3.8 unittest.TestCase heritage . 23
3.9 Setup and cleanup methods . 24
3.10 Running third party test suites . 24
3.11 Fetching asset files . 25
3.12 Test Output Check and Output Record Mode . 27
3.13 Test log, stdout and stderr in native Avocado modules . 30
3.14 Setting a Test Timeout . 31
3.15 Skipping Tests . 32
3.16 Cancelling Tests . 33
3.17 Docstring Directives . 34
3.18 Python unittest Compatibility Limitations And Caveats . 40
3.19 Environment Variables for Tests . 41
3.20 SIMPLE Tests BASH extensions . 42
3.21 SIMPLE Tests Status . 43
3.22 Wrap Up . 43

4 Result Formats 45

i

4.1 Results for human beings . 45
4.2 Machine readable results . 46
4.3 Multiple results at once . 49
4.4 Exit Codes . 49
4.5 Implementing other result formats . 49

5 Configuration 51
5.1 Config file parsing order . 51
5.2 Plugin config files . 52
5.3 Parsing order recap . 52
5.4 Order of precedence for values used in tests . 52
5.5 Config plugin . 53
5.6 Avocado Data Directories . 53

6 Test discovery 55
6.1 The order of test loaders . 55
6.2 Running simple tests with arguments . 56
6.3 Filtering tests by tags . 56
6.4 Test References . 56

7 Logging system 59
7.1 Tweaking the UI . 59
7.2 Storing custom logs . 59
7.3 Paginator . 60

8 Sysinfo collection 61

9 Test parameters 63
9.1 TreeNode . 64
9.2 AvocadoParams . 64
9.3 Parameter Paths . 65
9.4 Variant . 65
9.5 Dumping/Loading Variants . 65
9.6 Varianter . 66
9.7 Default params . 67
9.8 Varianter plugins . 67
9.9 Multiplexer . 67
9.10 Multiplex domains . 68
9.11 MuxPlugin . 70
9.12 MuxTree . 70

10 Job Replay 73

11 Job Diff 77

12 Running Tests Remotely 79

13 Subclassing Avocado 81

14 Debugging with GDB 85
14.1 Transparent Execution of Executables . 85
14.2 avocado.utils.gdb APIs . 87

15 Wrap executables run by tests 89
15.1 Usage . 89
15.2 Caveats . 89

ii

16 Plugin System 91
16.1 Listing plugins . 91
16.2 Writing a plugin . 92

17 Utilities 95
17.1 Utilities . 95

18 Optional Plugins 99
18.1 Optional Plugins . 99

19 Advanced Topics and Maintenance 119
19.1 Reference Guide . 119
19.2 Contribution and Community Guide . 130
19.3 Avocado development tips . 135
19.4 Releasing avocado . 137
19.5 Other Resources . 141

20 API Reference 143
20.1 Test APIs . 143
20.2 Utilities APIs . 146
20.3 Internal (Core) APIs . 203
20.4 Extension (plugin) APIs . 243
20.5 Optional Plugins API . 257

21 Avocado Release Notes 267
21.1 Release Notes . 267

22 Request For Comments (RFCs) 327
22.1 Request For Comments (RFCs) . 327
22.2 Indices and tables . 333

Python Module Index 335

iii

iv

avocado Documentation, Release 63.0

Contents:

Contents 1

avocado Documentation, Release 63.0

2 Contents

CHAPTER 1

About Avocado

Avocado is a set of tools and libraries to help with automated testing.

One can call it a test framework with benefits. Native tests are written in Python and they follow the unittest
pattern, but any executable can serve as a test.

Avocado is composed of:

• A test runner that lets you execute tests. Those tests can be either written in your language of choice, or be
written in Python and use the available libraries. In both cases, you get facilities such as automated log and
system information collection.

• Libraries that help you write tests in a concise, yet expressive and powerful way. You can find more information
about what libraries are intended for test writers at Libraries and APIs.

• Plugins that can extend and add new functionality to the Avocado Framework.

Avocado is built on the experience accumulated with Autotest, while improving on its weaknesses and shortcomings.

Avocado tries as much as possible to comply with standard Python testing technology. Tests written using the Avocado
API are derived from the unittest class, while other methods suited to functional and performance testing were added.
The test runner is designed to help people to run their tests while providing an assortment of system and logging
facilities, with no effort, and if you want more features, then you can start using the API features progressively.

3

http://autotest.github.io/

avocado Documentation, Release 63.0

4 Chapter 1. About Avocado

CHAPTER 2

Getting Started

Those who prefer video-introduction, take a look at Other Resources. Either way first step towards using Avocado is,
quite obviously, installing it.

2.1 Installing Avocado

Avocado is primarily written in Python, so a standard Python installation is possible and often preferable.

Tip: If you are looking for Virtualization specific testing, also consider looking at Avocado-VT installation instruc-
tions after finishing the Avocado installation.

2.1.1 Installing with standard Python tools

The simplest installation method is through pip. On most POSIX systems with Python 2.7 and pip available,
installation can be performed with a single command:

pip install --user avocado-framework

This will fetch the Avocado package (and possibly some of its dependecies) from the PyPI repository, and will attempt
to install it in the user’s home directory (usually under ~/.local).

Tip: If you want to perform a system-wide installation, drop the --user switch.

If you want even more isolation, Avocado can also be installed in a Python virtual environment. with no additional
steps besides creating and activating the “venv” itself:

python -m virtualenv /path/to/new/virtual_environment
. /path/to/new/virtual_environment/bin/activate
pip install avocado-framework

5

https://avocado-vt.readthedocs.io/en/latest/GetStartedGuide.html#installing-avocado-vt
https://avocado-vt.readthedocs.io/en/latest/GetStartedGuide.html#installing-avocado-vt

avocado Documentation, Release 63.0

Please note that this installs the Avocado core functionality. Many Avocado features are distributed as non-
core plugins, also available as additional packages on PyPI. You should be able to find them via pip search
avocado-framework-plugin | grep avocado-framework-plugin. Some of them are listed below:

• avocado-framework-plugin-result-html: HTML Report for Jobs

• avocado-framework-plugin-resultsdb: Propagate Job results to Resultsdb

• avocado-framework-plugin-runner-remote: Runner for Remote Execution

• avocado-framework-plugin-runner-vm: Runner for libvirt VM Execution

• avocado-framework-plugin-runner-docker: Runner for Execution on Docker Containers

• avocado-framework-plugin-loader-yaml: Loads tests from YAML files

• avocado-framework-plugin-robot: Execution of Robot Framework tests

• avocado-framework-plugin-varianter-yaml-to-mux: Parse YAML file into variants

2.1.2 Installing from Packages

Fedora

Avocado is available in stock Fedora 24 and later. The main package name is python-avocado, and can be installed
with:

dnf install python-avocado

Other available packages (depending on the Avocado version) may include:

• python-avocado-examples: contains example tests and other example files

• python2-avocado-plugins-output-html: HTML job report plugin

• python2-avocado-plugins-resultsdb: propagate Job results to Resultsdb

• python2-avocado-plugins-runner-remote: execution of jobs on a remote machine

• python2-avocado-plugins-runner-vm: execution of jobs on a libvirt based VM

• python2-avocado-plugins-runner-docker: execution of jobs on a Docker container

• python-avocado-plugins-varianter-yaml-to-mux: parse YAML file into variants

• python2-avocado-plugins-varianter-pict: varianter with combinatorial capabilities by PICT

Fedora from Avocado’s own Repo

The Avocado project also makes the latest release, and the LTS (Long Term Stability) releases available from its own
package repository. To use it, first get the package repositories configuration file by running the following command:

sudo curl https://avocado-project.org/data/repos/avocado-fedora.repo -o /etc/yum.
→˓repos.d/avocado.repo

Now check if you have the avocado and avocado-lts repositories configured by running:

6 Chapter 2. Getting Started

https://pypi.python.org/pypi/avocado-framework-plugin-result-html
https://pypi.python.org/pypi/avocado-framework-plugin-resultsdb
https://pypi.python.org/pypi/avocado-framework-plugin-runner-remote
https://pypi.python.org/pypi/avocado-framework-plugin-runner-vm
https://pypi.python.org/pypi/avocado-framework-plugin-runner-docker
https://pypi.python.org/pypi/avocado-framework-plugin-loader-yaml
https://pypi.python.org/pypi/avocado-framework-plugin-robot
https://pypi.python.org/pypi/avocado-framework-plugin-varianter-yaml-to-mux

avocado Documentation, Release 63.0

sudo dnf repolist avocado avocado-lts
...
repo id repo name status
avocado Avocado 50
avocado-lts Avocado LTS (Long Term Stability) disabled

Regular users of Avocado will want to use the standard avocado repository, which tracks the latest Avocado re-
leases. For more information about the LTS releases, please refer to RFC: Long Term Stability and to your package
management docs on how to switch to the avocado-lts repo.

Finally, after deciding between regular Avocado releases or LTS, you can install the RPM packages by running the
following commands:

dnf install python-avocado

Additionally, other Avocado packages are available for Fedora:

• python-avocado-examples: contains example tests and other example files

• python2-avocado-plugins-output-html: HTML job report plugin

• python2-avocado-plugins-resultsdb: propagate Job results to Resultsdb

• python2-avocado-plugins-runner-remote: execution of jobs on a remote machine

• python2-avocado-plugins-runner-vm: execution of jobs on a libvirt based VM

• python2-avocado-plugins-runner-docker: execution of jobs on a Docker container

• python-avocado-plugins-varianter-yaml-to-mux: parse YAML file into variants

• python2-avocado-plugins-varianter-pict: varianter with combinatorial capabilities by PICT

Enterprise Linux

Avocado packages for Enterprise Linux are available from the Avocado project RPM repository. Additionally, some
packages from the EPEL repo are necessary, so you need to enable it first. For EL7, running the following command
should do it:

yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Then you must use the Avocado project RHEL repo (https://avocado-project.org/data/repos/avocado-el.repo). Run-
ning the following command should give you the basic Avocado installation ready:

curl https://avocado-project.org/data/repos/avocado-el.repo -o /etc/yum.repos.d/
→˓avocado.repo
yum install python-avocado

Other available packages (depending on the Avocado version) may include:

• python-avocado-examples: contains example tests and other example files

• python2-avocado-plugins-output-html: HTML job report plugin

• python2-avocado-plugins-resultsdb: propagate Job results to Resultsdb

• python2-avocado-plugins-runner-remote: execution of jobs on a remote machine

• python2-avocado-plugins-runner-vm: execution of jobs on a libvirt based VM

• python2-avocado-plugins-runner-docker: execution of jobs on a Docker container

2.1. Installing Avocado 7

https://avocado-project.org/data/repos/avocado-el.repo

avocado Documentation, Release 63.0

• python-avocado-plugins-varianter-yaml-to-mux: parse YAML file into variants

• python2-avocado-plugins-varianter-pict: varianter with combinatorial capabilities by PICT

The LTS (Long Term Stability) repositories are also available for Enterprise Linux. Please refer to RFC: Long Term
Stability and to your package management docs on how to switch to the avocado-lts repo.

OpenSUSE

The OpenSUSE project packages LTS versions of Avocado. You can install packages by running the following com-
mands:

sudo zypper install avocado

Debian

DEB package support is available in the source tree (look at the contrib/packages/debian directory. No
actual packages are provided by the Avocado project or the Debian repos.

2.1.3 Generic installation from a GIT repository

First make sure you have a basic set of packages installed. The following applies to Fedora based distributions, please
adapt to your platform:

sudo dnf install -y python2 git gcc python-devel python-pip libvirt-devel libffi-
→˓devel openssl-devel libyaml-devel redhat-rpm-config xz-devel

Then to install Avocado from the git repository run:

git clone git://github.com/avocado-framework/avocado.git
cd avocado
sudo make requirements
sudo python setup.py install

Note that python and pip should point to the Python interpreter version 2.7.x. If you’re having trouble to install, you
can try again and use the command line utilities python2.7 and pip2.7.

Please note that some Avocado functionality may be implemented by optional plugins. To install say, the HTML report
plugin, run:

cd optional_plugins/html
sudo python setup.py install

If you intend to hack on Avocado, you may want to look at Hacking and Using Avocado.

2.2 Using Avocado

You should first experience Avocado by using the test runner, that is, the command line tool that will conveniently run
your tests and collect their results.

8 Chapter 2. Getting Started

https://build.opensuse.org/package/show/Virtualization:Tests/avocado

avocado Documentation, Release 63.0

2.2.1 Running Tests

To do so, please run avocado with the run sub-command followed by a test reference, which could be either a path
to the file, or a recognizable name:

$ avocado run /bin/true
JOB ID : 381b849a62784228d2fd208d929cc49f310412dc
JOB LOG : $HOME/avocado/job-results/job-2014-08-12T15.39-381b849a/job.log
(1/1) /bin/true: PASS (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s
JOB HTML : $HOME/avocado/job-results/job-2014-08-12T15.39-381b849a/html/results.html

You probably noticed that we used /bin/true as a test, and in accordance with our expectations, it passed! These
are known as simple tests, but there is also another type of test, which we call instrumented tests. See more at Test
Types or just keep reading.

Note: Although in most cases running avocado run $test1 $test3 ... is fine, it can lead to argument
vs. test name clashes. The safest way to execute tests is avocado run --$argument1 --$argument2 --
$test1 $test2. Everything after – will be considered positional arguments, therefore test names (in case of
avocado run)

2.2.2 Listing tests

You have two ways of discovering the tests. You can simulate the execution by using the --dry-run argument:

avocado run /bin/true --dry-run
JOB ID : 00
JOB LOG : /tmp/avocado-dry-runSeWniM/job-2015-10-16T15.46-0000000/job.log
(1/1) /bin/true: SKIP

RESULTS : PASS 0 | ERROR 0 | FAIL 0 | SKIP 1 | WARN 0 | INTERRUPT 0
JOB TIME : 0.10 s
JOB HTML : /tmp/avocado-dry-runSeWniM/job-2015-10-16T15.46-0000000/html/results.html

which supports all run arguments, simulates the run and even lists the test params.

The other way is to use list subcommand that lists the discovered tests If no arguments provided, Avocado lists
“default” tests per each plugin. The output might look like this:

$ avocado list
INSTRUMENTED /usr/share/doc/avocado/tests/abort.py
INSTRUMENTED /usr/share/doc/avocado/tests/datadir.py
INSTRUMENTED /usr/share/doc/avocado/tests/doublefail.py
INSTRUMENTED /usr/share/doc/avocado/tests/doublefree.py
INSTRUMENTED /usr/share/doc/avocado/tests/errortest.py
INSTRUMENTED /usr/share/doc/avocado/tests/failtest.py
INSTRUMENTED /usr/share/doc/avocado/tests/fiotest.py
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py
INSTRUMENTED /usr/share/doc/avocado/tests/gendata.py
INSTRUMENTED /usr/share/doc/avocado/tests/linuxbuild.py
INSTRUMENTED /usr/share/doc/avocado/tests/multiplextest.py
INSTRUMENTED /usr/share/doc/avocado/tests/passtest.py
INSTRUMENTED /usr/share/doc/avocado/tests/sleeptenmin.py
INSTRUMENTED /usr/share/doc/avocado/tests/sleeptest.py

(continues on next page)

2.2. Using Avocado 9

avocado Documentation, Release 63.0

(continued from previous page)

INSTRUMENTED /usr/share/doc/avocado/tests/synctest.py
INSTRUMENTED /usr/share/doc/avocado/tests/timeouttest.py
INSTRUMENTED /usr/share/doc/avocado/tests/warntest.py
INSTRUMENTED /usr/share/doc/avocado/tests/whiteboard.py
...

These Python files are considered by Avocado to contain INSTRUMENTED tests.

Let’s now list only the executable shell scripts:

$ avocado list | grep ^SIMPLE
SIMPLE /usr/share/doc/avocado/tests/env_variables.sh
SIMPLE /usr/share/doc/avocado/tests/output_check.sh
SIMPLE /usr/share/doc/avocado/tests/simplewarning.sh
SIMPLE /usr/share/doc/avocado/tests/failtest.sh
SIMPLE /usr/share/doc/avocado/tests/passtest.sh

Here, as mentioned before, SIMPLE means that those files are executables treated as simple tests. You can also give
the --verbose or -V flag to display files that were found by Avocado, but are not considered Avocado tests:

$ avocado list examples/gdb-prerun-scripts/ -V
Type Test Tag(s)
NOT_A_TEST examples/gdb-prerun-scripts/README
NOT_A_TEST examples/gdb-prerun-scripts/pass-sigusr1

TEST TYPES SUMMARY
==================
SIMPLE: 0
INSTRUMENTED: 0
MISSING: 0
NOT_A_TEST: 2

Notice that the verbose flag also adds summary information.

2.3 Writing a Simple Test

This very simple example of simple test written in shell script:

$ echo '#!/bin/bash' > /tmp/simple_test.sh
$ echo 'exit 0' >> /tmp/simple_test.sh
$ chmod +x /tmp/simple_test.sh

Notice that the file is given executable permissions, which is a requirement for Avocado to treat it as a simple test.
Also notice that the script exits with status code 0, which signals a successful result to Avocado.

2.4 Running A More Complex Test Job

You can run any number of test in an arbitrary order, as well as mix and match instrumented and simple tests:

$ avocado run failtest.py sleeptest.py synctest.py failtest.py synctest.py /tmp/
→˓simple_test.sh
JOB ID : 86911e49b5f2c36caeea41307cee4fecdcdfa121

(continues on next page)

10 Chapter 2. Getting Started

avocado Documentation, Release 63.0

(continued from previous page)

JOB LOG : $HOME/avocado/job-results/job-2014-08-12T15.42-86911e49/job.log
(1/6) failtest.py:FailTest.test: FAIL (0.00 s)
(2/6) sleeptest.py:SleepTest.test: PASS (1.00 s)
(3/6) synctest.py:SyncTest.test: PASS (2.43 s)
(4/6) failtest.py:FailTest.test: FAIL (0.00 s)
(5/6) synctest.py:SyncTest.test: PASS (2.44 s)
(6/6) /tmp/simple_test.sh.1: PASS (0.02 s)

RESULTS : PASS 4 | ERROR 0 | FAIL 2 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 5.98 s
JOB HTML : $HOME/avocado/job-results/job-2014-08-12T15.42-86911e49/html/results.html

2.5 Interrupting The Job On First Failed Test (failfast)

The Avocado run command has the option --failfast on to exit the job on first failed test:

$ avocado run --failfast on /bin/true /bin/false /bin/true /bin/true
JOB ID : eaf51b8c7d6be966bdf5562c9611b1ec2db3f68a
JOB LOG : $HOME/avocado/job-results/job-2016-07-19T09.43-eaf51b8/job.log
(1/4) /bin/true: PASS (0.01 s)
(2/4) /bin/false: FAIL (0.01 s)

Interrupting job (failfast).
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 2 | WARN 0 | INTERRUPT 0
JOB TIME : 0.12 s
JOB HTML : /home/apahim/avocado/job-results/job-2016-07-19T09.43-eaf51b8/html/
→˓results.html

One can also use --failfast off in order to force-disable failfast mode when replaying a job executed with
--failfast on.

2.6 Ignoring Missing Test References

When you provide a list of test references, Avocado will try to resolve all of them to tests. If one or more test references
can not be resolved to tests, the Job will not be created. Example:

$ avocado run passtest.py badtest.py
Unable to resolve reference(s) 'badtest.py' with plugins(s) 'file', 'robot', 'external
→˓', try running 'avocado list -V badtest.py' to see the details.

But if you want to execute the Job anyway, with the tests that could be resolved, you can use
--ignore-missing-references on. The same message will appear in the UI, but the Job will be executed:

$ avocado run passtest.py badtest.py --ignore-missing-references on
Unable to resolve reference(s) 'badtest.py' with plugins(s) 'file', 'robot', 'external
→˓', try running 'avocado list -V badtest.py' to see the details.
JOB ID : 85927c113074b9defd64ea595d6d1c3fdfc1f58f
JOB LOG : $HOME/avocado/job-results/job-2017-05-17T10.54-85927c1/job.log
(1/1) passtest.py:PassTest.test: PASS (0.02 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 0.11 s
JOB HTML : $HOME/avocado/job-results/job-2017-05-17T10.54-85927c1/html/results.html

2.5. Interrupting The Job On First Failed Test (failfast) 11

avocado Documentation, Release 63.0

The --ignore-missing-references option accepts the argument off. Since it’s disabled by de-
fault, the off argument only makes sense in replay jobs, when the original job was executed with
--ignore-missing-references on.

2.7 Running Tests With An External Runner

It’s quite common to have organically grown test suites in most software projects. These usually include a custom
built, very specific test runner that knows how to find and run their own tests.

Still, running those tests inside Avocado may be a good idea for various reasons, including being able to have results
in different human and machine readable formats, collecting system information alongside those tests (the Avocado’s
sysinfo functionality), and more.

Avocado makes that possible by means of its “external runner” feature. The most basic way of using it is:

$ avocado run --external-runner=/path/to/external_runner foo bar baz

In this example, Avocado will report individual test results for tests foo, bar and baz. The actual results will be based
on the return code of individual executions of /path/to/external_runner foo, /path/to/external_runner bar and finally
/path/to/external_runner baz.

As another way to explain an show how this feature works, think of the “external runner” as some kind of interpreter
and the individual tests as anything that this interpreter recognizes and is able to execute. A UNIX shell, say /bin/sh
could be considered an external runner, and files with shell code could be considered tests:

$ echo "exit 0" > /tmp/pass
$ echo "exit 1" > /tmp/fail
$ avocado run --external-runner=/bin/sh /tmp/pass /tmp/fail
JOB ID : 4a2a1d259690cc7b226e33facdde4f628ab30741
JOB LOG : /home/<user>/avocado/job-results/job-<date>-<shortid>/job.log
(1/2) /tmp/pass: PASS (0.01 s)
(2/2) /tmp/fail: FAIL (0.01 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s
JOB HTML : /home/<user>/avocado/job-results/job-<date>-<shortid>/html/results.html

This example is pretty obvious, and could be achieved by giving /tmp/pass and /tmp/fail shell “shebangs” (#!/bin/sh),
making them executable (chmod +x /tmp/pass /tmp/fail), and running them as “SIMPLE” tests.

But now consider the following example:

$ avocado run --external-runner=/bin/curl http://local-avocado-server:9405/jobs/ \
http://remote-avocado-server:9405/jobs/

JOB ID : 56016a1ffffaba02492fdbd5662ac0b958f51e11
JOB LOG : /home/<user>/avocado/job-results/job-<date>-<shortid>/job.log
(1/2) http://local-avocado-server:9405/jobs/: PASS (0.02 s)
(2/2) http://remote-avocado-server:9405/jobs/: FAIL (3.02 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 3.14 s
JOB HTML : /home/<user>/avocado/job-results/job-<date>-<shortid>/html/results.html

This effectively makes /bin/curl an “external test runner”, responsible for trying to fetch those URLs, and reporting
PASS or FAIL for each of them.

12 Chapter 2. Getting Started

avocado Documentation, Release 63.0

2.8 Debugging tests

2.8.1 Showing test output

When developing new tests, you frequently want to look straight at the job log, without switching screens or having to
“tail” the job log.

In order to do that, you can use avocado --show test run ... or avocado run --show-job-log
... options:

$ avocado --show test run examples/tests/sleeptest.py
...
Job ID: f9ea1742134e5352dec82335af584d1f151d4b85

START 1-sleeptest.py:SleepTest.test

PARAMS (key=timeout, path=*, default=None) => None
PARAMS (key=sleep_length, path=*, default=1) => 1
Sleeping for 1.00 seconds
PASS 1-sleeptest.py:SleepTest.test

Test results available in $HOME/avocado/job-results/job-2015-06-02T10.45-f9ea174

As you can see, the UI output is suppressed and only the job log is shown, making this a useful feature for test
development and debugging.

2.8.2 Interrupting tests execution

To interrupt a job execution a user can press ctrl+c which after a single press sends SIGTERM to the main test’s
process and waits for it to finish. If this does not help user can press ctrl+c again (after 2s grace period) which
destroys the test’s process ungracefully and safely finishes the job execution always providing the test results.

To pause the test execution a user can use ctrl+z which sends SIGSTOP to all processes inherited from the test’s
PID. We do our best to stop all processes, but the operation is not atomic and some new processes might not be stopped.
Another ctrl+z sends SIGCONT to all processes inherited by the test’s PID resuming the execution. Note the test
execution time (concerning the test timeout) are still running while the test’s process is stopped.

The test can also be interrupted by an Avocado feature. One example would be the Debugging with GDB Debugging
with GDB feature.

For custom interactions it is also possible to use other means like pdb or pydevd Avocado development tips break-
points. Beware it’s not possible to use STDIN from tests (unless dark magic is used).

2.8. Debugging tests 13

avocado Documentation, Release 63.0

14 Chapter 2. Getting Started

CHAPTER 3

Writing Avocado Tests

We are going to write an Avocado test in Python and we are going to inherit from avocado.Test. This makes this
test a so-called instrumented test.

3.1 Basic example

Let’s re-create an old time favorite, sleeptest1. It is so simple, it does nothing besides sleeping for a while:

import time

from avocado import Test

class SleepTest(Test):

def test(self):
sleep_length = self.params.get('sleep_length', default=1)
self.log.debug("Sleeping for %.2f seconds", sleep_length)
time.sleep(sleep_length)

This is about the simplest test you can write for Avocado, while still leveraging its API power.

3.1.1 What is an Avocado Test

As can be seen in the example above, an Avocado test is a method that starts with test in a class that inherits from
avocado.Test.

3.1.2 Multiple tests and naming conventions

You can have multiple tests in a single class.

1 sleeptest is a functional test for Avocado. It’s “old” because we also have had such a test for Autotest for a long time.

15

http://autotest.github.io

avocado Documentation, Release 63.0

To do so, just give the methods names that start with test, say test_foo, test_bar and so on. We recommend
you follow this naming style, as defined in the PEP8 Function Names section.

For the class name, you can pick any name you like, but we also recommend that it follows the CamelCase convention,
also known as CapWords, defined in the PEP 8 document under Class Names.

3.1.3 Convenience Attributes

Note that the test class provides you with a number of convenience attributes:

• A ready to use log mechanism for your test, that can be accessed by means of self.log. It lets you log debug,
info, error and warning messages.

• A parameter passing system (and fetching system) that can be accessed by means of self.params. This is
hooked to the Varianter, about which you can find that more information at Test parameters.

• And many more (see avocado.core.test.Test)

To minimize the accidental clashes we define the public ones as properties so if you see something like
AttributeError: can't set attribute double you are not overriding these.

3.2 Test statuses

Avocado supports the most common exit statuses:

• PASS - test passed, there were no untreated exceptions

• WARN - a variant of PASS that keeps track of noteworthy events that ultimately do not affect the test outcome.
An example could be soft lockup present in the dmesg output. It’s not related to the test results and unless
there are failures in the test it means the feature probably works as expected, but there were certain condition
which might be nice to review. (some result plugins does not support this and report PASS instead)

• SKIP - the test’s pre-requisites were not satisfied and the test’s body was not executed (nor its setUp() and
tearDown).

• CANCEL - the test was canceled somewhere during the setUp(), the test method or the tearDown(). The
setUp() and tearDown methods are executed.

• FAIL - test did not result in the expected outcome. A failure points at a (possible) bug in the tested subject, and
not in the test itself. When the test (and its) execution breaks, an ERROR and not a FAIL is reported.”

• ERROR - this points (probably) at a bug in the test itself, and not in the subject being tested.It is usually caused
by uncaught exception and such failures needs to be thoroughly explored and should lead to test modification to
avoid this failure or to use self.fail along with description how the subject under testing failed to perform
it’s task.

• INTERRUPTED - this result can’t be set by the test writer, it is only possible when the timeout is reached or
when the user hits CTRL+C while executing this test.

• other - there are some other internal test statuses, but you should not ever face them.

As you can see the FAIL is a neat status, if tests are developed correctly. When writing tests always think about what
its setUp should be, what the test body and is expected to go wrong in the test. To support you Avocado supports
several methods:

16 Chapter 3. Writing Avocado Tests

https://www.python.org/dev/peps/pep-0008/#function-names
https://www.python.org/dev/peps/pep-0008/

avocado Documentation, Release 63.0

3.2.1 Test methods

The simplest way to set the status is to use self.fail, self.error or self.cancel directly from test.

To remember a warning, one simply writes to self.log.warning logger. This won’t interrupt the test execution,
but it will remember the condition and, if there are no failures, will report the test as WARN.

3.2.2 Turning errors into failures

Errors on Python code are commonly signaled in the form of exceptions being thrown. When Avocado runs a test, any
unhandled exception will be seen as a test ERROR, and not as a FAIL.

Still, it’s common to rely on libraries, which usually raise custom (or builtin) exceptions. Those exceptions would
normally result in ERROR but if you are certain this is an odd behavior of the object under testing, you should catch
the exception and explain the failure in self.fail method:

try:
process.run("stress_my_feature")

except process.CmdError as details:
self.fail("The stress comamnd failed: %s" % details)

If your test compounds of many executions and you can’t get this exception in other case then expected failure, you
can simplify the code by using fail_on decorator:

@avocado.fail_on(process.CmdError)
def test(self):

process.run("first cmd")
process.run("second cmd")
process.run("third cmd")

Once again, keeping your tests up-to-date and distinguishing between FAIL and ERROR will save you a lot of time
while reviewing the test results.

3.3 Saving test generated (custom) data

Each test instance provides a so called whiteboard. It can be accessed through self.whiteboard. This white-
board is simply a string that will be automatically saved to test results after the test finishes (it’s not synced during the
execution so when the machine or python crashes badly it might not be present and one should use direct io to the
outputdir for critical data). If you choose to save binary data to the whiteboard, it’s your responsibility to encode
it first (base64 is the obvious choice).

Building on the previously demonstrated sleeptest, suppose that you want to save the sleep length to be used by
some other script or data analysis tool:

def test(self):
sleep_length = self.params.get('sleep_length', default=1)
self.log.debug("Sleeping for %.2f seconds", sleep_length)
time.sleep(sleep_length)
self.whiteboard = "%.2f" % sleep_length

The whiteboard can and should be exposed by files generated by the available test result plugins. The results.
json file already includes the whiteboard for each test. Additionally, we’ll save a raw copy of the whiteboard contents
on a file named whiteboard, in the same level as the results.json file, for your convenience (maybe you want
to use the result of a benchmark directly with your custom made scripts to analyze that particular benchmark result).

3.3. Saving test generated (custom) data 17

avocado Documentation, Release 63.0

If you need to attach several output files, you can also use self.outputdir, which points to the $RESULTS/
test-results/$TEST_ID/data location and is reserved for arbitrary test result data.

3.4 Accessing test data files

Some tests can depend on data files, external to the test file itself. Avocado provides a test API that makes it really
easy to access such files: get_data().

For Avocado tests (that is, INSTRUMENTED tests) get_data() allows test data files to be accessed from up to three
sources:

• file level data directory: a directory named after the test file, but ending with .data. For a test file /home/
user/test.py, the file level data directory is /home/user/test.py.data/.

• test level data directory: a directory named after the test file and the specific test name. These are useful
when different tests part of the same file need different data files (with the same name or not). Considering
the previous example of /home/user/test.py, and supposing it contains two tests, MyTest.test_foo
and MyTest.test_bar, the test level data directories will be, /home/user/test.py.data/MyTest.
test_foo/ and home/user/test.py.data/MyTest.test_bar/ respectively.

• variant level data directory: if variants are being used during the test execution, a directory named after the
variant will also be considered when looking for test data files. For test file /home/user/test.py, and test
MyTest.test_foo, with variant debug-ffff, the data directory path will be /home/user/test.py.
data/MyTest.test_foo/debug-ffff/.

Note: Unlike INSTRUMENTED tests, SIMPLE tests only define file and variant data_dirs, therefore the
most-specific data-dir might look like /bin/echo.data/debug-ffff/.

Avocado looks for data files in the order defined at DATA_SOURCES, which are from most specific one, to most
generic one. That means that, if a variant is being used, the variant directory is used first. Then the test level
directory is attempted, and finally the file level directory. Additionally you can use get_data(filename,
must_exist=False) to get expected location of a possibly non-existing file, which is useful when you intend
to create it.

Tip: When running tests you can use the --log-test-data-directories command line option log the test
data directories that will be used for that specific test and execution conditions (such as with or without variants). Look
for “Test data directories” in the test logs.

Note: The previously existing API avocado.core.test.Test.datadir, used to allow access to the data
directory based on the test file location only. This API has been removed. If, for whatever reason you still
need to access the data directory based on the test file location only, you can use get_data(filename='',
source='file', must_exist=False) instead.

3.5 Accessing test parameters

Each test has a set of parameters that can be accessed through self.params.get($name, $path=None,
$default=None) where:

• name - name of the parameter (key)

18 Chapter 3. Writing Avocado Tests

avocado Documentation, Release 63.0

• path - where to look for this parameter (when not specified uses mux-path)

• default - what to return when param not found

The path is a bit tricky. Avocado uses tree to represent parameters. In simple scenarios you don’t need to worry and
you’ll find all your values in default path, but eventually you might want to check-out Test parameters to understand
the details.

Let’s say your test receives following params (you’ll learn how to execute them in the following section):

$ avocado variants -m examples/tests/sleeptenmin.py.data/sleeptenmin.yaml --variants 2
...
Variant 1: /run/sleeptenmin/builtin, /run/variants/one_cycle

/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/one_cycle:sleep_cycles => 1
/run/variants/one_cycle:sleep_length => 600

...

In test you can access those params by:

self.params.get("sleep_method") # returns "builtin"
self.params.get("sleep_cycles", '*', 10) # returns 1
self.params.get("sleep_length", "/*/variants/*" # returns 600

Note: The path is important in complex scenarios where clashes might occur, because when there are multiple values
with the same key matching the query avocado raises an exception. As mentioned you can avoid those by using
specific paths or by defining custom mux-path which allows specifying resolving hierarchy. More details can be found
in Test parameters.

3.6 Running multiple variants of tests

In the previous section we described how parameters are handled. Now, let’s have a look at how to produce them and
execute your tests with different parameters.

The variants subsystem is what allows the creation of multiple variations of parameters, and the execution of tests with
those parameter variations. This subsystem is pluggable, so you might use custom plugins to produce variants. To
keep things simple, let’s use Avocado’s primary implementation, called “yaml_to_mux”.

The “yaml_to_mux” plugin accepts YAML files. Those will create a tree-like structure, store the variables as parame-
ters and use custom tags to mark locations as “multiplex” domains.

Let’s use examples/tests/sleeptenmin.py.data/sleeptenmin.yaml file as an example:

sleeptenmin: !mux
builtin:

sleep_method: builtin
shell:

sleep_method: shell
variants: !mux

one_cycle:
sleep_cycles: 1
sleep_length: 600

six_cycles:
sleep_cycles: 6
sleep_length: 100

(continues on next page)

3.6. Running multiple variants of tests 19

avocado Documentation, Release 63.0

(continued from previous page)

one_hundred_cycles:
sleep_cycles: 100
sleep_length: 6

six_hundred_cycles:
sleep_cycles: 600
sleep_length: 1

Which produces following structure and parameters:

$ avocado variants -m examples/tests/sleeptenmin.py.data/sleeptenmin.yaml --summary 2
→˓--variants 2
Multiplex tree representation:

run
sleeptenmin

builtin
→ sleep_method: builtin

shell
→ sleep_method: shell

variants
one_cycle

→ sleep_length: 600
→ sleep_cycles: 1

six_cycles
→ sleep_length: 100
→ sleep_cycles: 6

one_hundred_cycles
→ sleep_length: 6
→ sleep_cycles: 100

six_hundred_cycles
→ sleep_length: 1
→ sleep_cycles: 600

Multiplex variants (8):

Variant builtin-one_cycle-f659: /run/sleeptenmin/builtin, /run/variants/one_cycle
/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/one_cycle:sleep_cycles => 1
/run/variants/one_cycle:sleep_length => 600

Variant builtin-six_cycles-723b: /run/sleeptenmin/builtin, /run/variants/six_cycles
/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/six_cycles:sleep_cycles => 6
/run/variants/six_cycles:sleep_length => 100

Variant builtin-one_hundred_cycles-633a: /run/sleeptenmin/builtin, /run/variants/
→˓one_hundred_cycles

/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/one_hundred_cycles:sleep_cycles => 100
/run/variants/one_hundred_cycles:sleep_length => 6

Variant builtin-six_hundred_cycles-a570: /run/sleeptenmin/builtin, /run/variants/
→˓six_hundred_cycles

/run/sleeptenmin/builtin:sleep_method => builtin
/run/variants/six_hundred_cycles:sleep_cycles => 600
/run/variants/six_hundred_cycles:sleep_length => 1

Variant shell-one_cycle-55f5: /run/sleeptenmin/shell, /run/variants/one_cycle
(continues on next page)

20 Chapter 3. Writing Avocado Tests

avocado Documentation, Release 63.0

(continued from previous page)

/run/sleeptenmin/shell:sleep_method => shell
/run/variants/one_cycle:sleep_cycles => 1
/run/variants/one_cycle:sleep_length => 600

Variant shell-six_cycles-9e23: /run/sleeptenmin/shell, /run/variants/six_cycles
/run/sleeptenmin/shell:sleep_method => shell
/run/variants/six_cycles:sleep_cycles => 6
/run/variants/six_cycles:sleep_length => 100

Variant shell-one_hundred_cycles-586f: /run/sleeptenmin/shell, /run/variants/one_
→˓hundred_cycles

/run/sleeptenmin/shell:sleep_method => shell
/run/variants/one_hundred_cycles:sleep_cycles => 100
/run/variants/one_hundred_cycles:sleep_length => 6

Variant shell-six_hundred_cycles-1e84: /run/sleeptenmin/shell, /run/variants/six_
→˓hundred_cycles

/run/sleeptenmin/shell:sleep_method => shell
/run/variants/six_hundred_cycles:sleep_cycles => 600
/run/variants/six_hundred_cycles:sleep_length => 1

You can see that it creates all possible variants of each multiplex domain, which are defined by !mux tag in the
YAML file and displayed as single lines in tree view (compare to double lines which are individual nodes with values).
In total it’ll produce 8 variants of each test:

$ avocado run --mux-yaml examples/tests/sleeptenmin.py.data/sleeptenmin.yaml --
→˓passtest.py
JOB ID : cc7ef22654c683b73174af6f97bc385da5a0f02f
JOB LOG : /home/medic/avocado/job-results/job-2017-01-22T11.26-cc7ef22/job.log
(1/8) passtest.py:PassTest.test;builtin-one_cycle-f659: PASS (0.01 s)
(2/8) passtest.py:PassTest.test;builtin-six_cycles-723b: PASS (0.01 s)
(3/8) passtest.py:PassTest.test;builtin-one_hundred_cycles-633a: PASS (0.01 s)
(4/8) passtest.py:PassTest.test;builtin-six_hundred_cycles-a570: PASS (0.01 s)
(5/8) passtest.py:PassTest.test;shell-one_cycle-55f5: PASS (0.01 s)
(6/8) passtest.py:PassTest.test;shell-six_cycles-9e23: PASS (0.01 s)
(7/8) passtest.py:PassTest.test;shell-one_hundred_cycles-586f: PASS (0.01 s)
(8/8) passtest.py:PassTest.test;shell-six_hundred_cycles-1e84: PASS (0.01 s)

RESULTS : PASS 8 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.16 s

There are other options to influence the params so please check out avocado run -h and for details use Test
parameters.

3.7 Advanced logging capabilities

Avocado provides advanced logging capabilities at test run time. These can be combined with the standard Python
library APIs on tests.

One common example is the need to follow specific progress on longer or more complex tests. Let’s look at a very
simple test example, but one multiple clear stages on a single test:

import logging
import time

(continues on next page)

3.7. Advanced logging capabilities 21

avocado Documentation, Release 63.0

(continued from previous page)

from avocado import Test

progress_log = logging.getLogger("progress")

class Plant(Test):

def test_plant_organic(self):
rows = self.params.get("rows", default=3)

Preparing soil
for row in range(rows):

progress_log.info("%s: preparing soil on row %s",
self.name, row)

Letting soil rest
progress_log.info("%s: letting soil rest before throwing seeds",

self.name)
time.sleep(2)

Throwing seeds
for row in range(rows):

progress_log.info("%s: throwing seeds on row %s",
self.name, row)

Let them grow
progress_log.info("%s: waiting for Avocados to grow",

self.name)
time.sleep(5)

Harvest them
for row in range(rows):

progress_log.info("%s: harvesting organic avocados on row %s",
self.name, row)

From this point on, you can ask Avocado to show your logging stream, either exclusively or in addition to other builtin
streams:

$ avocado --show app,progress run plant.py

The outcome should be similar to:

JOB ID : af786f86db530bff26cd6a92c36e99bedcdca95b
JOB LOG : /home/cleber/avocado/job-results/job-2016-03-18T10.29-af786f8/job.log
(1/1) plant.py:Plant.test_plant_organic: progress: 1-plant.py:Plant.test_plant_
→˓organic: preparing soil on row 0
progress: 1-plant.py:Plant.test_plant_organic: preparing soil on row 1
progress: 1-plant.py:Plant.test_plant_organic: preparing soil on row 2
progress: 1-plant.py:Plant.test_plant_organic: letting soil rest before throwing seeds
-progress: 1-plant.py:Plant.test_plant_organic: throwing seeds on row 0
progress: 1-plant.py:Plant.test_plant_organic: throwing seeds on row 1
progress: 1-plant.py:Plant.test_plant_organic: throwing seeds on row 2
progress: 1-plant.py:Plant.test_plant_organic: waiting for Avocados to grow
\progress: 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 0
progress: 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 1
progress: 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on row 2
PASS (7.01 s)

(continues on next page)

22 Chapter 3. Writing Avocado Tests

avocado Documentation, Release 63.0

(continued from previous page)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 7.11 s
JOB HTML : /home/cleber/avocado/job-results/job-2016-03-18T10.29-af786f8/html/
→˓results.html

The custom progress stream is combined with the application output, which may or may not suit your needs or
preferences. If you want the progress stream to be sent to a separate file, both for clarity and for persistence, you
can run Avocado like this:

$ avocado run plant.py --store-logging-stream progress

The result is that, besides all the other log files commonly generated, there will be another log file named progress.
INFO at the job results dir. During the test run, one could watch the progress with:

$ tail -f ~/avocado/job-results/latest/progress.INFO
10:36:59 INFO | 1-plant.py:Plant.test_plant_organic: preparing soil on row 0
10:36:59 INFO | 1-plant.py:Plant.test_plant_organic: preparing soil on row 1
10:36:59 INFO | 1-plant.py:Plant.test_plant_organic: preparing soil on row 2
10:36:59 INFO | 1-plant.py:Plant.test_plant_organic: letting soil rest before
→˓throwing seeds
10:37:01 INFO | 1-plant.py:Plant.test_plant_organic: throwing seeds on row 0
10:37:01 INFO | 1-plant.py:Plant.test_plant_organic: throwing seeds on row 1
10:37:01 INFO | 1-plant.py:Plant.test_plant_organic: throwing seeds on row 2
10:37:01 INFO | 1-plant.py:Plant.test_plant_organic: waiting for Avocados to grow
10:37:06 INFO | 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on
→˓row 0
10:37:06 INFO | 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on
→˓row 1
10:37:06 INFO | 1-plant.py:Plant.test_plant_organic: harvesting organic avocados on
→˓row 2

The very same progress logger, could be used across multiple test methods and across multiple test modules. In
the example given, the test name is used to give extra context.

3.8 unittest.TestCase heritage

Since an Avocado test inherits from unittest.TestCase, you can use all the assertion methods that its parent.

The code example bellow uses assertEqual, assertTrue and assertIsInstace:

from avocado import Test

class RandomExamples(Test):
def test(self):

self.log.debug("Verifying some random math...")
four = 2 * 2
four_ = 2 + 2
self.assertEqual(four, four_, "something is very wrong here!")

self.log.debug("Verifying if a variable is set to True...")
variable = True
self.assertTrue(variable)

self.log.debug("Verifying if this test is an instance of test.Test")
self.assertIsInstance(self, test.Test)

3.8. unittest.TestCase heritage 23

avocado Documentation, Release 63.0

3.8.1 Running tests under other unittest runners

nose is another Python testing framework that is also compatible with unittest.

Because of that, you can run avocado tests with the nosetests application:

$ nosetests examples/tests/sleeptest.py
.
--
Ran 1 test in 1.004s

OK

Conversely, you can also use the standard unittest.main() entry point to run an Avocado test. Check out the
following code, to be saved as dummy.py:

from avocado import Test
from unittest import main

class Dummy(Test):
def test(self):

self.assertTrue(True)

if __name__ == '__main__':
main()

It can be run by:

$ python dummy.py
.
--
Ran 1 test in 0.000s

OK

But we’d still recommend using avocado.main instead which is our main entry point.

3.9 Setup and cleanup methods

To perform setup actions before/after your test, you may use setUp and tearDown methods. The tearDown
method is always executed even on setUp failure so don’t forget to initialize your variables early in the setUp.
Example of usage is in the next section Running third party test suites.

3.10 Running third party test suites

It is very common in test automation workloads to use test suites developed by third parties. By wrapping the execution
code inside an Avocado test module, you gain access to the facilities and API provided by the framework. Let’s say
you want to pick up a test suite written in C that it is in a tarball, uncompress it, compile the suite code, and then
executing the test. Here’s an example that does that:

#!/usr/bin/env python

import os
(continues on next page)

24 Chapter 3. Writing Avocado Tests

https://nose.readthedocs.org/

avocado Documentation, Release 63.0

(continued from previous page)

from avocado import Test
from avocado import main
from avocado.utils import archive
from avocado.utils import build
from avocado.utils import process

class SyncTest(Test):

"""
Execute the synctest test suite.
"""
def setUp(self):

"""
Set default params and build the synctest suite.
"""
sync_tarball = self.params.get('sync_tarball',

default='synctest.tar.bz2')
self.sync_length = self.params.get('sync_length', default=100)
self.sync_loop = self.params.get('sync_loop', default=10)
Build the synctest suite
self.cwd = os.getcwd()
tarball_path = self.get_data(sync_tarball)
archive.extract(tarball_path, self.workdir)
self.workdir = os.path.join(self.workdir, 'synctest')
build.make(self.workdir)

def test(self):
"""
Execute synctest with the appropriate params.
"""
os.chdir(self.workdir)
cmd = ('./synctest %s %s' %

(self.sync_length, self.sync_loop))
process.system(cmd)
os.chdir(self.cwd)

if __name__ == "__main__":
main()

Here we have an example of the setUp method in action: Here we get the location of the test suite code (tarball)
through avocado.Test.get_data(), then uncompress the tarball through avocado.utils.archive.
extract(), an API that will decompress the suite tarball, followed by avocado.utils.build.make(), that
will build the suite.

In this example, the test method just gets into the base directory of the compiled suite and executes the ./
synctest command, with appropriate parameters, using avocado.utils.process.system().

3.11 Fetching asset files

To run third party test suites as mentioned above, or for any other purpose, we offer an asset fetcher as a method of
Avocado Test class. The asset method looks for a list of directories in the cache_dirs key, inside the [datadir.
paths] section from the configuration files. Read-only directories are also supported. When the asset file is not

3.11. Fetching asset files 25

avocado Documentation, Release 63.0

present in any of the provided directories, we will try to download the file from the provided locations, copying it to
the first writable cache directory. Example:

cache_dirs = ['/usr/local/src/', '~/avocado/cache']

In the example above, /usr/local/src/ is a read-only directory. In that case, when we need to fetch the asset
from the locations, it will be copied to the ~/avocado/cache directory.

If you don’t provide a cache_dirs, we will create a cache directory inside the avocado data_dir location to
put the fetched files in.

• Use case 1: no cache_dirs key in config files, only the asset name provided in the full url format:

...
def setUp(self):

stress = 'http://people.seas.harvard.edu/~apw/stress/stress-1.0.4.tar.gz'
tarball = self.fetch_asset(stress)
archive.extract(tarball, self.workdir)

...

In this case, fetch_asset() will download the file from the url provided, copying it to the $data_dir/
cache directory. tarball variable will contains, for example, /home/user/avocado/data/cache/
stress-1.0.4.tar.gz.

• Use case 2: Read-only cache directory provided. cache_dirs = ['/mnt/files']:

...
def setUp(self):

stress = 'http://people.seas.harvard.edu/~apw/stress/stress-1.0.4.tar.gz'
tarball = self.fetch_asset(stress)
archive.extract(tarball, self.workdir)

...

In this case, we try to find stress-1.0.4.tar.gz file in /mnt/files directory. If it’s not there, since
/mnt/files is read-only, we will try to download the asset file to the $data_dir/cache directory.

• Use case 3: Writable cache directory provided, along with a list of locations. cache_dirs = ['~/
avocado/cache']:

...
def setUp(self):

st_name = 'stress-1.0.4.tar.gz'
st_hash = 'e1533bc704928ba6e26a362452e6db8fd58b1f0b'
st_loc = ['http://people.seas.harvard.edu/~apw/stress/stress-1.0.4.tar.gz

→˓',
'ftp://foo.bar/stress-1.0.4.tar.gz']

tarball = self.fetch_asset(st_name, asset_hash=st_hash,
locations=st_loc)

archive.extract(tarball, self.workdir)
...

In this case, we try to download stress-1.0.4.tar.gz from the provided locations list (if it’s not already
in ~/avocado/cache). The hash was also provided, so we will verify the hash. To do so, we first look for
a hashfile named stress-1.0.4.tar.gz.sha1 in the same directory. If the hashfile is not present we
compute the hash and create the hashfile for further usage.

The resulting tarball variable content will be ~/avocado/cache/stress-1.0.4.tar.gz. An ex-
ception will take place if we fail to download or to verify the file.

Detailing the fetch_asset() attributes:

26 Chapter 3. Writing Avocado Tests

avocado Documentation, Release 63.0

• name: The name used to name the fetched file. It can also contains a full URL, that will be used as the first
location to try (after serching into the cache directories).

• asset_hash: (optional) The expected file hash. If missing, we skip the check. If provided, before computing
the hash, we look for a hashfile to verify the asset. If the hashfile is nor present, we compute the hash and create
the hashfile in the same cache directory for further usage.

• algorithm: (optional) Provided hash algorithm format. Defaults to sha1.

• locations: (optional) List of locations that will be used to try to fetch the file from. The supported schemes
are http://, https://, ftp:// and file://. You’re required to inform the full url to the file, including
the file name. The first success will skip the next locations. Notice that for file:// we just create a symbolic
link in the cache directory, pointing to the file original location.

• expire: (optional) time period that the cached file will be considered valid. After that period, the file will be
dowloaded again. The value can be an integer or a string containing the time and the unit. Example: ‘10d’ (ten
days). Valid units are s (second), m (minute), h (hour) and d (day).

The expected return is the asset file path or an exception.

3.12 Test Output Check and Output Record Mode

In a lot of occasions, you want to go simpler: just check if the output of a given test matches an expected output. In
order to help with this common use case, Avocado provides the --output-check-record option:

--output-check-record {none,stdout,stderr,both,combined,all}
Record the output produced by each test (from stdout
and stderr) into both the current executing result and
into reference files. Reference files are used on
subsequent runs to determine if the test produced the
expected output or not, and the current executing
result is used to check against a previously recorded
reference file. Valid values: 'none' (to explicitly
disable all recording) 'stdout' (to record standard
output *only*), 'stderr' (to record standard error

only), 'both' (to record standard output and error
in separate files), 'combined' (for standard output
and error in a single file). 'all' is also a valid but
deprecated option that is a synonym of 'both'. This
option does not have a default value, but the Avocado
test runner will record the test under execution in
the most suitable way unless it's explicitly disabled
with value 'none'

If this option is used, Avocado will store the content generated by the test in the standard (POSIX) streams, that is,
STDOUT and STDERR. Depending on the option chosen, you may end up with different files recorded (into what we
call “reference files”):

• stdout will produce a file named stdout.expected with the contents from the test process standard
output stream (file descriptor 1)

• stderr will produce a file named stderr.expected with the contents from the test process standard error
stream (file descriptor 2)

• both will produce both a file named stdout.expected and a file named stderr.expected

• combined: will produce a single file named output.expected, with the content from both test process
standard output and error streams (file descriptors 1 and 2)

3.12. Test Output Check and Output Record Mode 27

avocado Documentation, Release 63.0

• none will explicitly disable all recording of test generated output and the generation reference files with that
content

The reference files will be recorded in the first (most specific) test’s data dir (Accessing test data files). Let’s take
as an example the test synctest.py. In a fresh checkout of the Avocado source code you can find the following
reference files:

examples/tests/synctest.py.data/stderr.expected
examples/tests/synctest.py.data/stdout.expected

From those 2 files, only stdout.expected has some content:

$ cat examples/tests/synctest.py.data/stdout.expected
PAR : waiting
PASS : sync interrupted

This means that during a previous test execution, output was recorded with option --output-check-record
both and content was generated on the STDOUT stream only:

$ avocado run --output-check-record both synctest.py
JOB ID : b6306504351b037fa304885c0baa923710f34f4a
JOB LOG : $JOB_RESULTS_DIR/job-2017-11-26T16.42-b630650/job.log
(1/1) examples/tests/synctest.py:SyncTest.test: PASS (2.03 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 2.26 s

After the reference files are added, the check process is transparent, in the sense that you do not need to provide special
flags to the test runner. From this point on, after such as test (one with a reference file recorded) has finished running,
Avocado will check if the output generated match the reference(s) file(s) content. If they don’t match, the test will
finish with a FAIL status.

You can disable this automatic check when a reference file exists by passing --output-check=off to the test
runner.

Tip: The avocado.utils.process APIs have a parameter called allow_output_check that let you indi-
vidually select the output that will be part of the test output and recorded reference files. Some other APIs built on top
of avocado.utils.process, such as the ones in avocado.utils.build also provide the same parameter.

This process works fine also with simple tests, which are programs or shell scripts that returns 0 (PASSed) or != 0
(FAILed). Let’s consider our bogus example:

$ cat output_record.sh
#!/bin/bash
echo "Hello, world!"

Let’s record the output for this one:

$ scripts/avocado run output_record.sh --output-check-record all
JOB ID : 25c4244dda71d0570b7f849319cd71fe1722be8b
JOB LOG : $HOME/avocado/job-results/job-2014-09-25T20.49-25c4244/job.log
(1/1) output_record.sh: PASS (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s

After this is done, you’ll notice that a the test data directory appeared in the same level of our shell script, containing
2 files:

28 Chapter 3. Writing Avocado Tests

avocado Documentation, Release 63.0

$ ls output_record.sh.data/
stderr.expected stdout.expected

Let’s look what’s in each of them:

$ cat output_record.sh.data/stdout.expected
Hello, world!
$ cat output_record.sh.data/stderr.expected
$

Now, every time this test runs, it’ll take into account the expected files that were recorded, no need to do anything else
but run the test. Let’s see what happens if we change the stdout.expected file contents to Hello, Avocado!:

$ scripts/avocado run output_record.sh
JOB ID : f0521e524face93019d7cb99c5765aedd933cb2e
JOB LOG : $HOME/avocado/job-results/job-2014-09-25T20.52-f0521e5/job.log
(1/1) output_record.sh: FAIL (0.02 s)

RESULTS : PASS 0 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.12 s

Verifying the failure reason:

$ cat $HOME/avocado/job-results/latest/job.log
2017-10-16 14:23:02,567 test L0381 INFO | START 1-output_record.sh
2017-10-16 14:23:02,568 test L0402 DEBUG| Test metadata:
2017-10-16 14:23:02,568 test L0403 DEBUG| filename: $HOME/output_

→˓record.sh
2017-10-16 14:23:02,596 process L0389 INFO | Running '$HOME/output_

→˓record.sh'
2017-10-16 14:23:02,603 process L0499 INFO | Command '$HOME/output_

→˓record.sh' finished with 0 after 0.00131011009216s
2017-10-16 14:23:02,602 process L0479 DEBUG| [stdout] Hello, world!
2017-10-16 14:23:02,603 test L1084 INFO | Exit status: 0
2017-10-16 14:23:02,604 test L1085 INFO | Duration: 0.00131011009216
2017-10-16 14:23:02,604 test L0274 DEBUG| DATA (filename=stdout.

→˓expected) => $HOME/output_record.sh.data/stdout.expected (found at file source dir)
2017-10-16 14:23:02,605 test L0740 DEBUG| Stdout Diff:
2017-10-16 14:23:02,605 test L0742 DEBUG| --- $HOME/output_record.sh.

→˓data/stdout.expected
2017-10-16 14:23:02,605 test L0742 DEBUG| +++ $HOME/avocado/job-

→˓results/job-2017-10-16T14.23-8cba866/test-results/1-output_record.sh/stdout
2017-10-16 14:23:02,605 test L0742 DEBUG| @@ -1 +1 @@
2017-10-16 14:23:02,605 test L0742 DEBUG| -Hello, Avocado!
2017-10-16 14:23:02,605 test L0742 DEBUG| +Hello, world!
2017-10-16 14:23:02,606 stacktrace L0041 ERROR|
2017-10-16 14:23:02,606 stacktrace L0044 ERROR| Reproduced traceback from:

→˓$HOME/git/avocado/avocado/core/test.py:872
2017-10-16 14:23:02,606 stacktrace L0047 ERROR| Traceback (most recent call

→˓last):
2017-10-16 14:23:02,606 stacktrace L0047 ERROR| File "$HOME/git/avocado/

→˓avocado/core/test.py", line 743, in _check_reference_stdout
2017-10-16 14:23:02,606 stacktrace L0047 ERROR| self.fail('Actual test

→˓sdtout differs from expected one')
2017-10-16 14:23:02,606 stacktrace L0047 ERROR| File "$HOME//git/avocado/

→˓avocado/core/test.py", line 983, in fail
2017-10-16 14:23:02,607 stacktrace L0047 ERROR| raise exceptions.

→˓TestFail(message)

(continues on next page)

3.12. Test Output Check and Output Record Mode 29

avocado Documentation, Release 63.0

(continued from previous page)

2017-10-16 14:23:02,607 stacktrace L0047 ERROR| TestFail: Actual test
→˓sdtout differs from expected one

2017-10-16 14:23:02,607 stacktrace L0048 ERROR|
2017-10-16 14:23:02,607 test L0274 DEBUG| DATA (filename=stderr.

→˓expected) => $HOME//output_record.sh.data/stderr.expected (found at file source dir)
2017-10-16 14:23:02,608 test L0965 ERROR| FAIL 1-output_record.sh ->

→˓TestFail: Actual test sdtout differs from expected one

As expected, the test failed because we changed its expectations, so an unified diff was logged. The unified diffs are
also present in the files stdout.diff and stderr.diff, present in the test results directory:

$ cat $HOME/avocado/job-results/latest/test-results/1-output_record.sh/stdout.diff
--- $HOME/output_record.sh.data/stdout.expected
+++ $HOME/avocado/job-results/job-2017-10-16T14.23-8cba866/test-results/1-output_
→˓record.sh/stdout
@@ -1 +1 @@
-Hello, Avocado!
+Hello, world!

Note: Currently the stdout, stderr and output files are stored in text mode. Data that can not be decoded according
to current locale settings, will be replaced according to https://docs.python.org/3/library/codecs.html#codecs.replace_
errors.

3.13 Test log, stdout and stderr in native Avocado modules

If needed, you can write directly to the expected stdout and stderr files from the native test scope. It is important to
make the distinction between the following entities:

• The test logs

• The test expected stdout

• The test expected stderr

The first one is used for debugging and informational purposes. Additionally writing to self.log.warning causes test to
be marked as dirty and when everything else goes well the test ends with WARN. This means that the test passed but
there were non-related unexpected situations described in warning log.

You may log something into the test logs using the methods in avocado.Test.log class attributes. Consider the
example:

class output_test(Test):

def test(self):
self.log.info('This goes to the log and it is only informational')
self.log.warn('Oh, something unexpected, non-critical happened, '

'but we can continue.')
self.log.error('Describe the error here and don't forget to raise '

'an exception yourself. Writing to self.log.error '
'won't do that for you.')

self.log.debug('Everybody look, I had a good lunch today...')

If you need to write directly to the test stdout and stderr streams, Avocado makes two preconfigured loggers available
for that purpose, named avocado.test.stdout and avocado.test.stderr. You can use Python’s standard

30 Chapter 3. Writing Avocado Tests

https://docs.python.org/3/library/codecs.html#codecs.replace_errors
https://docs.python.org/3/library/codecs.html#codecs.replace_errors

avocado Documentation, Release 63.0

logging API to write to them. Example:

import logging

class output_test(Test):

def test(self):
stdout = logging.getLogger('avocado.test.stdout')
stdout.info('Informational line that will go to stdout')
...
stderr = logging.getLogger('avocado.test.stderr')
stderr.info('Informational line that will go to stderr')

Avocado will automatically save anything a test generates on STDOUT into a stdout file, to be found at the test
results directory. The same applies to anything a test generates on STDERR, that is, it will be saved into a stderr
file at the same location.

Additionally, when using the runner’s output recording features, namely the --output-check-record argu-
ment with values stdout, stderr or all, everything given to those loggers will be saved to the files stdout.
expected and stderr.expected at the test’s data directory (which is different from the job/test results direc-
tory).

3.14 Setting a Test Timeout

Sometimes your test suite/test might get stuck forever, and this might impact your test grid. You can account for that
possibility and set up a timeout parameter for your test. The test timeout can be set through the test parameters, as
shown below.

sleep_length: 5
timeout: 3

$ avocado run sleeptest.py --mux-yaml /tmp/sleeptest-example.yaml
JOB ID : c78464bde9072a0b5601157989a99f0ba32a288e
JOB LOG : $HOME/avocado/job-results/job-2016-11-02T11.13-c78464b/job.log
(1/1) sleeptest.py:SleepTest.test: INTERRUPTED (3.04 s)

RESULTS : PASS 0 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 1
JOB TIME : 3.14 s
JOB HTML : $HOME/avocado/job-results/job-2016-11-02T11.13-c78464b/html/results.html

$ cat $HOME/avocado/job-results/job-2016-11-02T11.13-c78464b/job.log
2016-11-02 11:13:01,133 job L0384 INFO | Multiplex tree representation:
2016-11-02 11:13:01,133 job L0386 INFO | \-- run
2016-11-02 11:13:01,133 job L0386 INFO | -> sleep_length: 5
2016-11-02 11:13:01,133 job L0386 INFO | -> timeout: 3
2016-11-02 11:13:01,133 job L0387 INFO |
2016-11-02 11:13:01,134 job L0391 INFO | Temporary dir: /var/tmp/avocado_
→˓PqDEyC
2016-11-02 11:13:01,134 job L0392 INFO |
2016-11-02 11:13:01,134 job L0399 INFO | Variant 1: /run
2016-11-02 11:13:01,134 job L0402 INFO |
2016-11-02 11:13:01,134 job L0311 INFO | Job ID:
→˓c78464bde9072a0b5601157989a99f0ba32a288e
2016-11-02 11:13:01,134 job L0314 INFO |
2016-11-02 11:13:01,345 sysinfo L0107 DEBUG| Not logging /proc/pci (file
→˓does not exist)

(continues on next page)

3.14. Setting a Test Timeout 31

avocado Documentation, Release 63.0

(continued from previous page)

2016-11-02 11:13:01,351 sysinfo L0105 DEBUG| Not logging /proc/slabinfo
→˓(lack of permissions)
2016-11-02 11:13:01,355 sysinfo L0107 DEBUG| Not logging /sys/kernel/debug/
→˓sched_features (file does not exist)
2016-11-02 11:13:01,388 sysinfo L0388 INFO | Commands configured by file: /
→˓etc/avocado/sysinfo/commands
2016-11-02 11:13:01,388 sysinfo L0399 INFO | Files configured by file: /etc/
→˓avocado/sysinfo/files
2016-11-02 11:13:01,388 sysinfo L0419 INFO | Profilers configured by file: /
→˓etc/avocado/sysinfo/profilers
2016-11-02 11:13:01,388 sysinfo L0427 INFO | Profiler disabled
2016-11-02 11:13:01,394 multiplexer L0166 DEBUG| PARAMS (key=timeout, path=*,
→˓default=None) => 3
2016-11-02 11:13:01,395 test L0216 INFO | START 1-sleeptest.py:SleepTest.
→˓test
2016-11-02 11:13:01,396 multiplexer L0166 DEBUG| PARAMS (key=sleep_length,
→˓path=*, default=1) => 5
2016-11-02 11:13:01,396 sleeptest L0022 DEBUG| Sleeping for 5.00 seconds
2016-11-02 11:13:04,411 stacktrace L0038 ERROR|
2016-11-02 11:13:04,412 stacktrace L0041 ERROR| Reproduced traceback from:
→˓$HOME/src/avocado/avocado/core/test.py:454
2016-11-02 11:13:04,412 stacktrace L0044 ERROR| Traceback (most recent call
→˓last):
2016-11-02 11:13:04,413 stacktrace L0044 ERROR| File "/usr/share/doc/avocado/
→˓tests/sleeptest.py", line 23, in test
2016-11-02 11:13:04,413 stacktrace L0044 ERROR| time.sleep(sleep_length)
2016-11-02 11:13:04,413 stacktrace L0044 ERROR| File "$HOME/src/avocado/
→˓avocado/core/runner.py", line 293, in sigterm_handler
2016-11-02 11:13:04,413 stacktrace L0044 ERROR| raise SystemExit("Test
→˓interrupted by SIGTERM")
2016-11-02 11:13:04,414 stacktrace L0044 ERROR| SystemExit: Test interrupted by
→˓SIGTERM
2016-11-02 11:13:04,414 stacktrace L0045 ERROR|
2016-11-02 11:13:04,414 test L0459 DEBUG| Local variables:
2016-11-02 11:13:04,440 test L0462 DEBUG| -> self <class 'sleeptest.
→˓SleepTest'>: 1-sleeptest.py:SleepTest.test
2016-11-02 11:13:04,440 test L0462 DEBUG| -> sleep_length <type 'int'>: 5
2016-11-02 11:13:04,440 test L0592 ERROR| ERROR 1-sleeptest.py:SleepTest.
→˓test -> TestError: SystemExit('Test interrupted by SIGTERM',): Test interrupted by
→˓SIGTERM

The YAML file defines a test parameter timeout which overrides the default test timeout before the runner ends the
test forcefully by sending a class:signal.SIGTERM to the test, making it raise a avocado.core.exceptions.
TestTimeoutError.

3.15 Skipping Tests

To skip tests is in Avocado, you must use one of the Avocado skip decorators:

• @avocado.skip(reason): Skips a test.

• @avocado.skipIf(condition, reason): Skips a test if the condition is True.

• @avocado.skipUnless(condition, reason): Skips a test if the condition is False

Those decorators can be used with both setUp() method and/or and in the test*() methods. The test below:

32 Chapter 3. Writing Avocado Tests

avocado Documentation, Release 63.0

import avocado

class MyTest(avocado.Test):

@avocado.skipIf(1 == 1, 'Skipping on True condition.')
def test1(self):

pass

@avocado.skip("Don't want this test now.")
def test2(self):

pass

@avocado.skipUnless(1 == 1, 'Skipping on False condition.')
def test3(self):

pass

Will produce the following result:

$ avocado run test_skip_decorators.py
JOB ID : 59c815f6a42269daeaf1e5b93e52269fb8a78119
JOB LOG : $HOME/avocado/job-results/job-2017-02-03T17.41-59c815f/job.log
(1/3) test_skip_decorators.py:MyTest.test1: SKIP
(2/3) test_skip_decorators.py:MyTest.test2: SKIP
(3/3) test_skip_decorators.py:MyTest.test3: PASS (0.02 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 2 | WARN 0 | INTERRUPT 0
JOB TIME : 0.13 s
JOB HTML : $HOME/avocado/job-results/job-2017-02-03T17.41-59c815f/html/results.html

Notice the test3 was not skipped because the provided condition was not False.

Using the skip decorators, nothing is actually executed. We will skip the setUp() method, the test method and the
tearDown() method.

Note: It’s an erroneous condition, reported with test status ERROR, to use any of the skip decorators on the
tearDown() method.

3.16 Cancelling Tests

You can cancel a test calling self.cancel() at any phase of the test (setUp(), test method or tearDown()). Test will finish
with CANCEL status and will not make the Job to exit with a non-0 status. Example:

#!/usr/bin/env python

from avocado import Test
from avocado import main

from avocado.utils.process import run
from avocado.utils.software_manager import SoftwareManager

class CancelTest(Test):

"""

(continues on next page)

3.16. Cancelling Tests 33

avocado Documentation, Release 63.0

(continued from previous page)

Example tests that cancel the current test from inside the test.
"""

def setUp(self):
sm = SoftwareManager()
self.pkgs = sm.list_all(software_components=False)

def test_iperf(self):
if 'iperf-2.0.8-6.fc25.x86_64' not in self.pkgs:

self.cancel('iperf is not installed or wrong version')
self.assertIn('pthreads',

run('iperf -v', ignore_status=True).stderr)

def test_gcc(self):
if 'gcc-6.3.1-1.fc25.x86_64' not in self.pkgs:

self.cancel('gcc is not installed or wrong version')
self.assertIn('enable-gnu-indirect-function',

run('gcc -v', ignore_status=True).stderr)

if __name__ == "__main__":
main()

In a system missing the iperf package but with gcc installed in the correct version, the result will be:

JOB ID : 39c1f120830b9769b42f5f70b6b7bad0b1b1f09f
JOB LOG : $HOME/avocado/job-results/job-2017-03-10T16.22-39c1f12/job.log
(1/2) /home/apahim/avocado/tests/test_cancel.py:CancelTest.test_iperf: CANCEL (1.15
→˓s)
(2/2) /home/apahim/avocado/tests/test_cancel.py:CancelTest.test_gcc: PASS (1.13 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 1
JOB TIME : 2.38 s
JOB HTML : $HOME/avocado/job-results/job-2017-03-10T16.22-39c1f12/html/results.html

Notice that using the self.cancel() will cancel the rest of the test from that point on, but the tearDown() will
still be executed.

Depending on the result format you’re referring to, the CANCEL status is mapped to a corresponding valid status in
that format. See the table below:

Format Corresponding Status
json cancel
xunit skipped
tap ok
html CANCEL (warning)

3.17 Docstring Directives

Some Avocado features, usually only available to instrumented tests, depend on setting directives on the test’s class
docstring. A docstring directive is composed of a marker (a literal :avocado: string), followed by the custom
content itself, such as :avocado: directive.

This is similar to docstring directives such as :param my_param: description and shouldn’t be a surprise
to most Python developers.

34 Chapter 3. Writing Avocado Tests

avocado Documentation, Release 63.0

The reason Avocado uses those docstring directives (instead of real Python code) is that the inspection done while
looking for tests does not involve any execution of code.

For a detailed explanation about what makes a docstring format valid or not, please refer to our section on Docstring
Directives Rules.

Now let’s follow with some docstring directives examples.

3.17.1 Explicitly enabling or disabling tests

If your test is a method in a class that directly inherits from avocado.Test, then Avocado will find it as one would
expect.

Now, the need may arise for more complex tests, to use more advanced Python features such as inheritance. For those
tests that are written in a class not directly inherting from avocado.Test, Avocado may need your help, because
Avocado uses only static analysis to examine the files.

For example, suppose that you define a new test class that inherits from the Avocado base test class, that is, avocado.
Test, and put it in mylibrary.py:

from avocado import Test

class MyOwnDerivedTest(Test):
def __init__(self, methodName='test', name=None, params=None,

base_logdir=None, job=None, runner_queue=None):
super(MyOwnDerivedTest, self).__init__(methodName, name, params,

base_logdir, job,
runner_queue)

self.log('Derived class example')

Then you implement your actual test using that derived class, in mytest.py:

import mylibrary

class MyTest(mylibrary.MyOwnDerivedTest):

def test1(self):
self.log('Testing something important')

def test2(self):
self.log('Testing something even more important')

If you try to list the tests in that file, this is what you’ll get:

scripts/avocado list mytest.py -V
Type Test Tag(s)
NOT_A_TEST mytest.py

TEST TYPES SUMMARY
==================
ACCESS_DENIED: 0
BROKEN_SYMLINK: 0
EXTERNAL: 0
FILTERED: 0
INSTRUMENTED: 0

(continues on next page)

3.17. Docstring Directives 35

avocado Documentation, Release 63.0

(continued from previous page)

MISSING: 0
NOT_A_TEST: 1
SIMPLE: 0
VT: 0

You need to give avocado a little help by adding a docstring directive. That docstring directive is :avocado:
enable. It tells the Avocado safe test detection code to consider it as an avocado test, regardless of what the (admit-
tedly simple) detection code thinks of it. Let’s see how that works out. Add the docstring, as you can see the example
below:

import mylibrary

class MyTest(mylibrary.MyOwnDerivedTest):
"""
:avocado: enable
"""
def test1(self):

self.log('Testing something important')

def test2(self):
self.log('Testing something even more important')

Now, trying to list the tests on the mytest.py file again:

scripts/avocado list mytest.py -V
Type Test Tag(s)
INSTRUMENTED mytest.py:MyTest.test1
INSTRUMENTED mytest.py:MyTest.test2

TEST TYPES SUMMARY
==================
ACCESS_DENIED: 0
BROKEN_SYMLINK: 0
EXTERNAL: 0
FILTERED: 0
INSTRUMENTED: 2
MISSING: 0
NOT_A_TEST: 0
SIMPLE: 0
VT: 0

You can also use the :avocado: disable docstring directive, that works the opposite way: something that
would be considered an Avocado test, but we force it to not be listed as one.

The docstring :avocado: disable is evaluated first by Avocado, meaning that if both :avocado:
disable and :avocado: enable are present in the same docstring, the test will not be listed.

3.17.2 Recursively Discovering Tests

In addition to the :avocado: enable and :avocado: disable docstring directives, Avocado has support
for the :avocado: recursive directive. It is intended to be used in inherited classes when you want to tell
Avocado to also discover the ancestor classes.

The :avocado: recursive directive will direct Avocado to evaluate all the ancestors of the class until the base
class, the one derived from from avocado.Test.

36 Chapter 3. Writing Avocado Tests

avocado Documentation, Release 63.0

Example:

File /usr/share/doc/avocado/tests/test_base_class.py:

from avocado import Test

class BaseClass(Test):

def test_basic(self):
pass

File /usr/share/doc/avocado/tests/test_first_child.py:

from test_base_class import BaseClass

class FirstChild(BaseClass):

def test_first_child(self):
pass

File /usr/share/doc/avocado/tests/test_second_child.py:

from test_first_child import FirstChild

class SecondChild(FirstChild):
"""
:avocado: recursive
"""

def test_second_child(self):
pass

Using only test_second_child.py as a test reference will result in:

$ avocado list test_second_child.py
INSTRUMENTED test_second_child.py:SecondChild.test_second_child
INSTRUMENTED test_second_child.py:SecondChild.test_first_child
INSTRUMENTED test_second_child.py:SecondChild.test_basic

Notice that the :avocado: disable docstring will be ignored in ancestors during the recursive discovery. What
means that even if an ancestor contains the docstring :avocado: disable, that ancestor will still be included in
the results.

3.17.3 Categorizing tests

Avocado allows tests to be given tags, which can be used to create test categories. With tags set, users can select a
subset of the tests found by the test resolver (also known as test loader).

To make this feature easier to grasp, let’s work with an example: a single Python source code file, named perf.py,
that contains both disk and network performance tests:

from avocado import Test

class Disk(Test):
(continues on next page)

3.17. Docstring Directives 37

avocado Documentation, Release 63.0

(continued from previous page)

"""
Disk performance tests

:avocado: tags=disk,slow,superuser,unsafe
"""

def test_device(self):
device = self.params.get('device', default='/dev/vdb')
self.whiteboard = measure_write_to_disk(device)

class Network(Test):

"""
Network performance tests

:avocado: tags=net,fast,safe
"""

def test_latency(self):
self.whiteboard = measure_latency()

def test_throughput(self):
self.whiteboard = measure_throughput()

class Idle(Test):

"""
Idle tests
"""

def test_idle(self):
self.whiteboard = "test achieved nothing"

Warning: All docstring directives in Avocado require a strict format, that is, :avocado: followed by one
or more spaces, and then followed by a single value with no white spaces in between. This means that an
attempt to write a docstring directive like :avocado: tags=foo, bar will be interpreted as :avocado:
tags=foo,.

Usually, listing and executing tests with the Avocado test runner would reveal all three tests:

$ avocado list perf.py
INSTRUMENTED perf.py:Disk.test_device
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput
INSTRUMENTED perf.py:Idle.test_idle

If you want to list or run only the network based tests, you can do so by requesting only tests that are tagged with net:

$ avocado list perf.py --filter-by-tags=net
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput

38 Chapter 3. Writing Avocado Tests

avocado Documentation, Release 63.0

Now, suppose you’re not in an environment where you’re confortable running a test that will write to your raw disk
devices (such as your development workstation). You know that some tests are tagged with safe while others are
tagged with unsafe. To only select the “safe” tests you can run:

$ avocado list perf.py --filter-by-tags=safe
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput

But you could also say that you do not want the “unsafe” tests (note the minus sign before the tag):

$ avocado list perf.py --filter-by-tags=-unsafe
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput

Tip: The - sign may cause issues with some shells. One know error condition is to use spaces between
--filter-by-tags and the negated tag, that is, --filter-by-tags -unsafe will most likely not work.
To be on the safe side, use --filter-by-tags=-tag.

If you require tests to be tagged with multiple tags, just add them separate by commas. Example:

$ avocado list perf.py --filter-by-tags=disk,slow,superuser,unsafe
INSTRUMENTED perf.py:Disk.test_device

If no test contains all tags given on a single –filter-by-tags parameter, no test will be included:

$ avocado list perf.py --filter-by-tags=disk,slow,superuser,safe | wc -l
0

Test tags can be applied to test classes and to test methods. Tags are evaluated per method, meaning that the class tags
will be inherited by all methods, being merged with method local tags. Example:

from avocado import Test

class MyClass(Test):
"""
:avocado: tags=furious
"""

def test1(self):
"""
:avocado: tags=fast
"""
pass

def test2(self):
"""
:avocado: tags=slow
"""
pass

If you use the tag furious, all tests will be included:

$ avocado list furious_tests.py --filter-by-tags=furious
INSTRUMENTED test_tags.py:MyClass.test1
INSTRUMENTED test_tags.py:MyClass.test2

3.17. Docstring Directives 39

avocado Documentation, Release 63.0

But using fast and furious will include only test1:

$ avocado list furious_tests.py --filter-by-tags=fast,furious
INSTRUMENTED test_tags.py:MyClass.test1

Multiple –filter-by-tags

While multiple tags in a single option will require tests with all the given tags (effectively a logical AND operation),
it’s also possible to use multiple --filter-by-tags (effectively a logical OR operation).

For instance To include all tests that have the disk tag and all tests that have the net tag, you can run:

$ avocado list perf.py --filter-by-tags=disk --filter-by-tags=net
INSTRUMENTED perf.py:Disk.test_device
INSTRUMENTED perf.py:Network.test_latency
INSTRUMENTED perf.py:Network.test_throughput

Including tests without tags

The normal behavior when using --filter-by-tags is to require the given tags on all tests. In some situations,
though, it may be desirable to include tests that have no tags set.

For instance, you may want to include tests of certain types that do not have support for tags (such as SIMPLE tests)
or tests that have not (yet) received tags. Consider this command:

$ avocado list perf.py /bin/true --filter-by-tags=disk
INSTRUMENTED perf.py:Disk.test_device

Since it requires the disk tag, only one test was returned. By using the --filter-by-tags-include-empty
option, you can force the inclusion of tests without tags:

$ avocado list perf.py /bin/true --filter-by-tags=disk --filter-by-tags-include-empty
SIMPLE /bin/true
INSTRUMENTED perf.py:Idle.test_idle
INSTRUMENTED perf.py:Disk.test_device

3.18 Python unittest Compatibility Limitations And Caveats

When executing tests, Avocado uses different techniques than most other Python unittest runners. This brings some
compatibility limitations that Avocado users should be aware.

3.18.1 Execution Model

One of the main differences is a consequence of the Avocado design decision that tests should be self contained and
isolated from other tests. Additionally, the Avocado test runner runs each test in a separate process.

If you have a unittest class with many test methods and run them using most test runners, you’ll find that all test
methods run under the same process. To check that behavior you could add to your setUp method:

def setUp(self):
print("PID: %s", os.getpid())

If you run the same test under Avocado, you’ll find that each test is run on a separate process.

40 Chapter 3. Writing Avocado Tests

avocado Documentation, Release 63.0

3.18.2 Class Level setUp and tearDown

Because of Avocado’s test execution model (each test is run on a separate process), it doesn’t make sense to support
unittest’s unittest.TestCase.setUpClass() and unittest.TestCase.tearDownClass(). Test
classes are freshly instantiated for each test, so it’s pointless to run code in those methods, since they’re supposed
to keep class state between tests.

The setUp method is the only place in avocado where you are allowed to call the skip method, given that, if a test
started to be executed, by definition it can’t be skipped anymore. Avocado will do its best to enforce this boundary,
so that if you use skip outside setUp, the test upon execution will be marked with the ERROR status, and the error
message will instruct you to fix your test’s code.

If you require a common setup to a number of tests, the current recommended approach is to to write regular setUp
and tearDown code that checks if a given state was already set. One example for such a test that requires a binary
installed by a package:

from avocado import Test

from avocado.utils import software_manager
from avocado.utils import path as utils_path
from avocado.utils import process

class BinSleep(Test):

"""
Sleeps using the /bin/sleep binary
"""
def setUp(self):

self.sleep = None
try:

self.sleep = utils_path.find_command('sleep')
except utils_path.CmdNotFoundError:

software_manager.install_distro_packages({'fedora': ['coreutils']})
self.sleep = utils_path.find_command('sleep')

def test(self):
process.run("%s 1" % self.sleep)

If your test setup is some kind of action that will last accross processes, like the installation of a software package
given in the previous example, you’re pretty much covered here.

If you need to keep other type of data a class across test executions, you’ll have to resort to saving and restoring the
data from an outside source (say a “pickle” file). Finding and using a reliable and safe location for saving such data is
currently not in the Avocado supported use cases.

3.19 Environment Variables for Tests

Avocado exports some information, including test parameters, as environment variables to the running test.

While these variables are available to all tests, they are usually more interesting to SIMPLE tests. The reason is that
SIMPLE tests can not make direct use of Avocado API. INSTRUMENTED tests will usually have more powerful
ways, to access the same information.

Here is a list of the variables that Avocado currently exports to tests:

3.19. Environment Variables for Tests 41

avocado Documentation, Release 63.0

Environemnt
Variable

Meaning Example

AVO-
CADO_VERSION

Version of Avocado test runner 0.12.0

AVO-
CADO_TEST_BASEDIR

Base directory of Avocado tests $HOME/Downloads/avocado-
source/avocado

AVO-
CADO_TEST_WORKDIR

Work directory for the test /var/tmp/avocado_Bjr_rd/my_test.sh

AVO-
CADO_TESTS_COMMON_TMPDIR

Temporary directory created by the teststmpdir
plugin. The directory is persistent throughout
the tests in the same Job

/var/tmp/avocado_XhEdo/

AVO-
CADO_TEST_LOGDIR

Log directory for the test $HOME/logs/job-results/job-
2014-09-16T14.38-ac332e6/test-
results/$HOME/my_test.sh.1

AVO-
CADO_TEST_LOGFILE

Log file for the test $HOME/logs/job-results/job-
2014-09-16T14.38-ac332e6/test-
results/$HOME/my_test.sh.1/debug.log

AVO-
CADO_TEST_OUTPUTDIR

Output directory for the test $HOME/logs/job-results/job-
2014-09-16T14.38-ac332e6/test-
results/$HOME/my_test.sh.1/data

AVO-
CADO_TEST_SYSINFODIR

The system information directory $HOME/logs/job-results/job-
2014-09-16T14.38-ac332e6/test-
results/$HOME/my_test.sh.1/sysinfo

*** All variables from –mux-yaml TIMEOUT=60; IO_WORKERS=10;
VM_BYTES=512M; . . .

Warning: AVOCADO_TEST_SRCDIR was present in earlier versions, but has been deprecated on version 60.0,
and removed on version 62.0. Please use AVOCADO_TEST_WORKDIR instead.

Warning: AVOCADO_TEST_DATADIR was present in earlier versions, but has been deprecated on version 60.0,
and removed on version 62.0. The test data files (and directories) are now dynamically evaluated and are not
available as environment variables

3.20 SIMPLE Tests BASH extensions

SIMPLE tests written in shell can use a few Avocado utilities. In your shell code, check if the libraries are available
with something like:

AVOCADO_SHELL_EXTENSIONS_DIR=$(avocado exec-path 2>/dev/null)

And if available, injects that directory containing those utilities into the PATH used by the shell, making those utilities
readily accessible:

if [$? == 0]; then
PATH=$AVOCADO_SHELL_EXTENSIONS_DIR:$PATH

fi

42 Chapter 3. Writing Avocado Tests

avocado Documentation, Release 63.0

For a full list of utilities, take a look into at the directory return by avocado exec-path (if any). Also, the example
test examples/tests/simplewarning.sh can serve as further inspiration.

Tip: These extensions may be available as a separate package. For RPM packages, look for the bash sub-package.

3.21 SIMPLE Tests Status

With SIMPLE tests, Avocado checks the exit code of the test to determine whether the test PASSed or FAILed.

If your test exits with exit code 0 but you still want to set a different test status in some conditions, Avocado can search
a given regular expression in the test outputs and, based on that, set the status to WARN or SKIP.

To use that feature, you have to set the proper keys in the configuration file. For instance, to set the test status to SKIP
when the test outputs a line like this: ‘11:08:24 Test Skipped’:

[simpletests.output]
skip_regex = ^\d\d:\d\d:\d\d Test Skipped$

That configuration will make avocado to search the Python Regular Expression on both stdout and stderr. If you want
to limit the search for only one of them, there’s another key for that configuration, resulting in:

[simpletests.output]
skip_regex = ^\d\d:\d\d:\d\d Test Skipped$
skip_location = stderr

The equivalent settings can be present for the WARN status. For instance, if you want to set the test status to WARN
when the test outputs a line starting with string WARNING:, the configuration file will look like this:

[simpletests.output]
skip_regex = ^\d\d:\d\d:\d\d Test Skipped$
skip_location = stderr
warn_regex = ^WARNING:
warn_location = all

3.22 Wrap Up

We recommend you take a look at the example tests present in the examples/tests directory, that contains a
few samples to take some inspiration from. That directory, besides containing examples, is also used by the Av-
ocado self test suite to do functional testing of Avocado itself. Although one can inspire in https://github.com/
avocado-framework-tests where people are allowed to share their basic system tests.

It is also recommended that you take a look at the API Reference. for more possibilities.

3.21. SIMPLE Tests Status 43

http://docs.python.org/2.7/howto/regex.html
https://github.com/avocado-framework-tests
https://github.com/avocado-framework-tests

avocado Documentation, Release 63.0

44 Chapter 3. Writing Avocado Tests

CHAPTER 4

Result Formats

A test runner must provide an assortment of ways to clearly communicate results to interested parties, be them humans
or machines.

Note: There are several optional result plugins, you can find them in Result plugins.

4.1 Results for human beings

Avocado has two different result formats that are intended for human beings:

• Its default UI, which shows the live test execution results on a command line, text based, UI.

• The HTML report, which is generated after the test job finishes running.

4.1.1 Avocado command line UI

A regular run of Avocado will present the test results in a live fashion, that is, the job and its test(s) results are constantly
updated:

$ avocado run sleeptest.py failtest.py synctest.py
JOB ID : 5ffe479262ea9025f2e4e84c4e92055b5c79bdc9
JOB LOG : $HOME/avocado/job-results/job-2014-08-12T15.57-5ffe4792/job.log
(1/3) sleeptest.py:SleepTest.test: PASS (1.01 s)
(2/3) failtest.py:FailTest.test: FAIL (0.00 s)
(3/3) synctest.py:SyncTest.test: PASS (1.98 s)

RESULTS : PASS 1 | ERROR 1 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 3.27 s
JOB HTML : $HOME/avocado/job-results/job-2014-08-12T15.57-5ffe4792/html/results.html

The most important thing is to remember that programs should never need to parse human output to figure out what
happened to a test job run.

45

avocado Documentation, Release 63.0

4.2 Machine readable results

Another type of results are those intended to be parsed by other applications. Several standards exist in the test
community, and Avocado can in theory support pretty much every result standard out there.

Out of the box, Avocado supports a couple of machine readable results. They are always generated and stored in the
results directory in results.$type files, but you can ask for a different location too.

4.2.1 xunit

The default machine readable output in Avocado is xunit.

xunit is an XML format that contains test results in a structured form, and are used by other test automation projects,
such as jenkins. If you want to make Avocado to generate xunit output in the standard output of the runner, simply
use:

$ avocado run sleeptest.py failtest.py synctest.py --xunit -
<?xml version="1.0" encoding="UTF-8"?>
<testsuite name="avocado" tests="3" errors="0" failures="1" skipped="0" time="3.
→˓5769162178" timestamp="2016-05-04 14:46:52.803365">

<testcase classname="SleepTest" name="1-sleeptest.py:SleepTest.test" time="1.
→˓00204920769"/>

<testcase classname="FailTest" name="2-failtest.py:FailTest.test" time="0.
→˓00120401382446">

<failure type="TestFail" message="This test is supposed to fail"><!
→˓[CDATA[Traceback (most recent call last):
File "/home/medic/Work/Projekty/avocado/avocado/avocado/core/test.py", line 490, in

→˓_run_avocado
raise test_exception

TestFail: This test is supposed to fail
]]></failure>

<system-out><![CDATA[14:46:53 ERROR|
14:46:53 ERROR| Reproduced traceback from: /home/medic/Work/Projekty/avocado/avocado/
→˓avocado/core/test.py:435
14:46:53 ERROR| Traceback (most recent call last):
14:46:53 ERROR| File "/home/medic/Work/Projekty/avocado/avocado/examples/tests/
→˓failtest.py", line 17, in test
14:46:53 ERROR| self.fail('This test is supposed to fail')
14:46:53 ERROR| File "/home/medic/Work/Projekty/avocado/avocado/avocado/core/test.py
→˓", line 585, in fail
14:46:53 ERROR| raise exceptions.TestFail(message)
14:46:53 ERROR| TestFail: This test is supposed to fail
14:46:53 ERROR|
14:46:53 ERROR| FAIL 2-failtest.py:FailTest.test -> TestFail: This test is supposed
→˓to fail
14:46:53 INFO |
]]></system-out>

</testcase>
<testcase classname="SyncTest" name="3-synctest.py:SyncTest.test" time="2.

→˓57366299629"/>
</testsuite>

Note: The dash - in the option –xunit, it means that the xunit result should go to the standard output.

46 Chapter 4. Result Formats

http://help.catchsoftware.com/display/ET/JUnit+Format
http://jenkins-ci.org/

avocado Documentation, Release 63.0

Note: In case your tests produce very long outputs, you can limit the number of embedded characters by –xunit-
max-test-log-chars. If the output in the log file is longer it only attaches up-to max-test-log-chars characters one half
starting from the beginning of the content, the other half from the end of the content.

4.2.2 JSON

JSON is a widely used data exchange format. The JSON Avocado plugin outputs job information, similarly to the
xunit output plugin:

$ avocado run sleeptest.py failtest.py synctest.py --json -
{

"cancel": 0,
"debuglog": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/job.log

→˓",
"errors": 0,
"failures": 1,
"job_id": "10715c4645d2d2b57889d7a4317fcd01451b600e",
"pass": 2,
"skip": 0,
"tests": [

{
"end": 1470761623.176954,
"fail_reason": "None",
"logdir": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/

→˓test-results/1-sleeptest.py:SleepTest.test",
"logfile": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/

→˓test-results/1-sleeptest.py:SleepTest.test/debug.log",
"start": 1470761622.174918,
"status": "PASS",
"id": "1-sleeptest.py:SleepTest.test",
"time": 1.0020360946655273,
"whiteboard": ""

},
{

"end": 1470761623.193472,
"fail_reason": "This test is supposed to fail",
"logdir": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/

→˓test-results/2-failtest.py:FailTest.test",
"logfile": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/

→˓test-results/2-failtest.py:FailTest.test/debug.log",
"start": 1470761623.192334,
"status": "FAIL",
"id": "2-failtest.py:FailTest.test",
"time": 0.0011379718780517578,
"whiteboard": ""

},
{

"end": 1470761625.656061,
"fail_reason": "None",
"logdir": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/

→˓test-results/3-synctest.py:SyncTest.test",
"logfile": "/home/cleber/avocado/job-results/job-2016-08-09T13.53-10715c4/

→˓test-results/3-synctest.py:SyncTest.test/debug.log",
"start": 1470761623.208165,

(continues on next page)

4.2. Machine readable results 47

http://www.json.org/

avocado Documentation, Release 63.0

(continued from previous page)

"status": "PASS",
"id": "3-synctest.py:SyncTest.test",
"time": 2.4478960037231445,
"whiteboard": ""

}
],
"time": 3.4510700702667236,
"total": 3

}

Note: The dash - in the option –json, it means that the xunit result should go to the standard output.

Bear in mind that there’s no documented standard for the Avocado JSON result format. This means that it will probably
grow organically to accommodate newer Avocado features. A reasonable effort will be made to not break backwards
compatibility with applications that parse the current form of its JSON result.

4.2.3 TAP

Provides the basic TAP (Test Anything Protocol) results, currently in v12. Unlike most existing avocado machine
readable outputs this one is streamlined (per test results):

$ avocado run sleeptest.py --tap -
1..1
debug.log of sleeptest.py:SleepTest.test:
12:04:38 DEBUG| PARAMS (key=sleep_length, path=*, default=1) => 1
12:04:38 DEBUG| Sleeping for 1.00 seconds
12:04:39 INFO | PASS 1-sleeptest.py:SleepTest.test
12:04:39 INFO |
ok 1 sleeptest.py:SleepTest.test

4.2.4 Silent result

This result disables all stdout logging (while keeping the error messages being printed to stderr). One can then use the
return code to learn about the result:

$ avocado --silent run failtest.py
$ echo $?
1

In practice, this would usually be used by scripts that will in turn run Avocado and check its results:

#!/bin/bash
...
$ avocado --silent run /path/to/my/test.py
if [$? == 0]; then

echo "great success!"
elif

...

more details regarding exit codes in Exit Codes section.

48 Chapter 4. Result Formats

http://testanything.org/

avocado Documentation, Release 63.0

4.3 Multiple results at once

You can have multiple results formats at once, as long as only one of them uses the standard output. For example, it is
fine to use the xunit result on stdout and the JSON result to output to a file:

$ avocado run sleeptest.py synctest.py --xunit - --json /tmp/result.json
<?xml version="1.0" encoding="UTF-8"?>
<testsuite name="avocado" tests="2" errors="0" failures="0" skipped="0" time="3.
→˓64848303795" timestamp="2016-05-04 17:26:05.645665">

<testcase classname="SleepTest" name="1-sleeptest.py:SleepTest.test" time="1.
→˓00270605087"/>

<testcase classname="SyncTest" name="2-synctest.py:SyncTest.test" time="2.
→˓64577698708"/>
</testsuite>

$ cat /tmp/result.json
{

"debuglog": "/home/cleber/avocado/job-results/job-2016-08-09T13.55-1a94ad6/job.
→˓log",

"errors": 0,
...

}

But you won’t be able to do the same without the –json flag passed to the program:

$ avocado run sleeptest.py synctest.py --xunit - --json -
Options --json --xunit are trying to use stdout simultaneously
Please set at least one of them to a file to avoid conflicts

That’s basically the only rule, and a sane one, that you need to follow.

4.4 Exit Codes

Avocado exit code tries to represent different things that can happen during an execution. That means exit codes can
be a combination of codes that were ORed together as a single exit code. The final exit code can be de-bundled so
users can have a good idea on what happened to the job.

The single individual exit codes are:

• AVOCADO_ALL_OK (0)

• AVOCADO_TESTS_FAIL (1)

• AVOCADO_JOB_FAIL (2)

• AVOCADO_FAIL (4)

• AVOCADO_JOB_INTERRUPTED (8)

If a job finishes with exit code 9, for example, it means we had at least one test that failed and also we had at some
point a job interruption, probably due to the job timeout or a CTRL+C.

4.5 Implementing other result formats

If you are looking to implement a new machine or human readable output format, you can refer to avocado.
plugins.xunit and use it as a starting point.

4.3. Multiple results at once 49

avocado Documentation, Release 63.0

If your result is something that is produced at once, based on the complete job outcome, you should create a
new class that inherits from avocado.core.plugin_interfaces.Result and implements the avocado.
core.plugin_interfaces.Result.render() method.

But, if your result implementation is something that outputs information live before/during/after tests, then the
avocado.core.plugin_interfaces.ResultEvents interface is to one to look at. It will require you to
implement the methods that will perform actions (write to a file/stream) for each of the defined events on a Job and
test execution.

You can take a look at Plugin System for more information on how to write a plugin that will activate and execute the
new result format.

50 Chapter 4. Result Formats

CHAPTER 5

Configuration

Avocado utilities have a certain default behavior based on educated, reasonable (we hope) guesses about how users
like to use their systems. Of course, different people will have different needs and/or dislike our defaults, and that’s
why a configuration system is in place to help with those cases

The Avocado config file format is based on the (informal) INI file ‘specification’, that is implemented by Python’s
ConfigParser. The format is simple and straightforward, composed by sections, that contain a number of keys and
values. Take for example a basic Avocado config file:

[datadir.paths]
base_dir = /var/lib/avocado
test_dir = /usr/share/doc/avocado/tests
data_dir = /var/lib/avocado/data
logs_dir = ~/avocado/job-results

The datadir.paths section contains a number of keys, all of them related to directories used by the test runner.
The base_dir is the base directory to other important Avocado directories, such as log, data and test directories.
You can also choose to set those other important directories by means of the variables test_dir, data_dir and
logs_dir. You can do this by simply editing the config files available.

5.1 Config file parsing order

Avocado starts by parsing what it calls system wide config file, that is shipped to all Avocado users on a system
wide directory, /etc/avocado/avocado.conf. Then it’ll verify if there’s a local user config file, that is located
usually in ~/.config/avocado/avocado.conf. The order of the parsing matters, so the system wide file is
parsed, then the user config file is parsed last, so that the user can override values at will. There is another directory
that will be scanned by extra config files, /etc/avocado/conf.d. This directory may contain plugin config files,
and extra additional config files that the system administrator/avocado developers might judge necessary to put there.

Please note that for base directories, if you chose a directory that can’t be properly used by Avocado (some directories
require read access, others, read and write access), Avocado will fall back to some defaults. So if your regular user
wants to write logs to /root/avocado/logs, Avocado will not use that directory, since it can’t write files to that
place. A new location, by default ~/avocado/job-results will be selected instead.

51

http://en.wikipedia.org/wiki/INI_file

avocado Documentation, Release 63.0

The order of files described in this section is only valid if avocado was installed in the system. For people using
avocado from git repos (usually avocado developers), that did not install it in the system, keep in mind that avocado
will read the config files present in the git repos, and will ignore the system wide config files. Running avocado
config will let you know which files are actually being used.

5.2 Plugin config files

Plugins can also be configured by config files. In order to not disturb the main Avocado config file, those plugins, if
they wish so, may install additional config files to /etc/avocado/conf.d/[pluginname].conf, that will
be parsed after the system wide config file. Users can override those values as well at the local config file level.
Considering the config for the hypothethical plugin salad:

[salad.core]
base = ceasar
dressing = ceasar

If you want, you may change dressing in your config file by simply adding a [salad.core] new section in your
local config file, and set a different value for dressing there.

5.3 Parsing order recap

So the file parsing order is:

• /etc/avocado/avocado.conf

• /etc/avocado/conf.d/*.conf

• ~/.config/avocado/avocado.conf

In this order, meaning that what you set on your local config file may override what’s defined in the system wide files.

Note: Please note that if avocado is running from git repos, those files will be ignored in favor of in tree configuration
files. This is something that would normally only affect people developing avocado, and if you are in doubt, avocado
config will tell you exactly which files are being used in any given situation.

Note: When avocado runs inside virtualenv than path for global config files is also changed. For example, avo-
cado.conf comes from the virual-env path venv/etc/avocado/avocado.conf.

5.4 Order of precedence for values used in tests

Since you can use the config system to alter behavior and values used in tests (think paths to test programs, for
example), we established the following order of precedence for variables (from least precedence to most):

• default value (from library or test code)

• global config file

• local (user) config file

• command line switch

52 Chapter 5. Configuration

avocado Documentation, Release 63.0

• test parameters

So the least important value comes from the library or test code default, going all the way up to the test parameters
system.

5.5 Config plugin

A configuration plugin is provided for users that wish to quickly see what’s defined in all sections of their Avocado
configuration, after all the files are parsed in their correct resolution order. Example:

$ avocado config
Config files read (in order):

/etc/avocado/avocado.conf
$HOME/.config/avocado/avocado.conf

Section.Key Value
runner.base_dir /var/lib/avocado
runner.test_dir /usr/share/doc/avocado/tests
runner.data_dir /var/lib/avocado/data
runner.logs_dir ~/avocado/job-results

The command also shows the order in which your config files were parsed, giving you a better understanding of what’s
going on. The Section.Key nomenclature was inspired in git config --list output.

5.6 Avocado Data Directories

When running tests, we are frequently looking to:

• Locate tests

• Write logs to a given location

• Grab files that will be useful for tests, such as ISO files or VM disk images

Avocado has a module dedicated to find those paths, to avoid cumbersome path manipulation magic that people had
to do in previous test frameworks1.

If you want to list all relevant directories for your test, you can use avocado config –datadir command to list those
directories. Executing it will give you an output similar to the one seen below:

$ avocado config --datadir
Config files read (in order):

/etc/avocado/avocado.conf
$HOME/.config/avocado/avocado.conf

Avocado replaces config dirs that can't be accessed
with sensible defaults. Please edit your local config
file to customize values

Avocado Data Directories:
base $HOME/avocado
tests $HOME/Code/avocado/examples/tests
data $HOME/avocado/data
logs $HOME/avocado/job-results

1 For example, autotest.

5.5. Config plugin 53

avocado Documentation, Release 63.0

Note that, while Avocado will do its best to use the config values you provide in the config file, if it can’t write values
to the locations provided, it will fall back to (we hope) reasonable defaults, and we notify the user about that in the
output of the command.

The relevant API documentation and meaning of each of those data directories is in avocado.core.data_dir,
so it’s highly recommended you take a look.

You may set your preferred data dirs by setting them in the Avocado config files. The only exception for important
data dirs here is the Avocado tmp dir, used to place temporary files used by tests. That directory will be in normal cir-
cumstances /var/tmp/avocado_XXXXX, (where XXXXX is in actuality a random string) securely created on /var/tmp/,
unless the user has the $TMPDIR environment variable set, since that is customary among unix programs.

The next section of the documentation explains how you can see and set config values that modify the behavior for the
Avocado utilities and plugins.

54 Chapter 5. Configuration

CHAPTER 6

Test discovery

In this section you can learn how tests are being discovered and how to affect this process.

6.1 The order of test loaders

Avocado supports different types of test starting with SIMPLE tests, which are simply executable files, then unittest-
like tests called INSTRUMENTED up to some tests like the avocado-vt ones, which uses complex matrix of tests from
config files that don’t directly map to existing files. Given the number of loaders, the mapping from test names on the
command line to executed tests might not always be unique. Additionally some people might always (or for given run)
want to execute only tests of a single type.

To adjust this behavior you can either tweak plugins.loaders in avocado settings (/etc/avocado/), or tem-
porarily using --loaders (option of avocado run) option.

This option allows you to specify order and some params of the available test loaders. You can specify either
loader_name (file), loader_name + TEST_TYPE (file.SIMPLE) and for some loaders even additional params
passed after : (external:/bin/echo -e. You can also supply @DEFAULT, which injects into that position all
the remaining unused loaders.

To get help about --loaders:

$ avocado run --loaders ?
$ avocado run --loaders external:?

Example of how --loaders affects the produced tests (manually gathered as some of them result in error):

$ avocado run passtest.py boot this_does_not_exist /bin/echo
> INSTRUMENTED passtest.py:PassTest.test
> VT io-github-autotest-qemu.boot
> MISSING this_does_not_exist
> SIMPLE /bin/echo

$ avocado run passtest.py boot this_does_not_exist /bin/echo --loaders @DEFAULT
→˓"external:/bin/echo -e"

(continues on next page)

55

avocado Documentation, Release 63.0

(continued from previous page)

> INSTRUMENTED passtest.py:PassTest.test
> VT io-github-autotest-qemu.boot
> EXTERNAL this_does_not_exist
> SIMPLE /bin/echo

$ avocado run passtest.py boot this_does_not_exist /bin/echo --loaders file.SIMPLE
→˓file.INSTRUMENTED @DEFAULT external.EXTERNAL:/bin/echo

> INSTRUMENTED passtest.py:PassTest.test
> VT io-github-autotest-qemu.boot
> EXTERNAL this_does_not_exist
> SIMPLE /bin/echo

6.2 Running simple tests with arguments

This used to be supported out of the box by running avocado run "test arg1 arg2" but it was quite con-
fusing and removed. It is still possible to achieve that by using shell and one can even combine normal tests and the
parametrized ones:

$ avocado run --loaders file external:/bin/sh -- existing_file.py "'/bin/echo
→˓something'" nonexisting-file

This will run 3 tests, the first one is a normal test defined by existing_file.py (most probably an instrumented
test). Then we have /bin/echo which is going to be executed via /bin/sh -c '/bin/echo something'.
The last one would be nonexisting-file which would execute /bin/sh -c nonexisting-file which
most probably fails.

Note that you are responsible for quotating the test-id (see the "'/bin/echo something'" example).

6.3 Filtering tests by tags

Avocado allows tests to be given tags, which can be used to create test categories. With tags set, users can select a
subset of the tests found by the test resolver (also known as test loader). For more information about the test tags, visit
WritingTests.html#categorizing-tests

6.4 Test References

A Test Reference is a string that can be resolved into (interpreted as) one or more tests by the Avocado Test Resolver.

Each resolver (a.k.a. loader) can handle the Test References differently. For example, External Loader will use the
Test Reference as an argument for the external command, while the File Loader will expect a file path.

If you don’t specify the loader that you want to use, all of the available loaders will be used to resolve the provided
Test References. One by one, the Test References will be resolved by the first loader able to create a test list out of
that reference.

Below you can find some extra details about the specific builtin Avocado loaders. For Loaders introduced to Avocado
via plugins (VT, Robot, . . .), please refer to the corresponding loader/plugin documentation.

56 Chapter 6. Test discovery

WritingTests.html#categorizing-tests

avocado Documentation, Release 63.0

6.4.1 File Loader

For the File Loader, the loader responsible for discovering INSTRUMENTED, PyUNITTEST (classic python
unittests) and SIMPLE tests.

If the file corresponds to an INSTRUMENTED or PyUNITTEST test, you can filter the Test IDs by adding to the Test
Reference a : followed by a regular expression.

For instance, if you want to list all tests that are present in the gdbtest.py file, you can use the list command below:

$ avocado list /usr/share/doc/avocado/tests/gdbtest.py
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_start_exit
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_existing_commands_
→˓raw
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_existing_commands
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_load_set_breakpoint_
→˓run_exit_raw
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_load_set_breakpoint_
→˓run_exit
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_generate_core
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_set_multiple_break
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_disconnect_raw
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_disconnect
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_remote_exec
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_stream_messages
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_connect_multiple_
→˓clients
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_server_exit
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_multiple_servers
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_interactive
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_interactive_args
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_exit_status
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_server_stderr
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_server_stdout
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_interactive_stdout
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_remote

To filter the results, listing only the tests that have test_interactive in their test method names, you can execute:

$ avocado list /usr/share/doc/avocado/tests/gdbtest.py:test_interactive
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_interactive
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_interactive_args
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_interactive_stdout

As the string after the : is a regular expression, three tests were filtered in. You can manipulate the regular expression
to have only the test with that exact name:

$ avocado list /usr/share/doc/avocado/tests/gdbtest.py:test_interactive$
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_interactive

The regular expression enables you to have more complex filters. Example:

$ avocado list /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_[le].*raw
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_existing_commands_
→˓raw
INSTRUMENTED /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_load_set_breakpoint_
→˓run_exit_raw

6.4. Test References 57

avocado Documentation, Release 63.0

Once the test reference is providing you the expected outcome, you can replace the list subcommand with the run
subcommand to execute your tests:

$ avocado run /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_[le].*raw
JOB ID : 333912fb02698ed5339a400b832795a80757b8af
JOB LOG : $HOME/avocado/job-results/job-2017-06-14T14.54-333912f/job.log
(1/2) /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_existing_commands_raw:
→˓PASS (0.59 s)
(2/2) /usr/share/doc/avocado/tests/gdbtest.py:GdbTest.test_load_set_breakpoint_run_
→˓exit_raw: PASS (0.42 s)
RESULTS : PASS 2 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 1.15 s
JOB HTML : $HOME/avocado/job-results/job-2017-06-14T14.54-333912f/html/results.html

Warning: Specially when using regular expressions, it’s recommended to individually enclose your Test
References in quotes to avoid bash of corrupting them. In that case, the command from the exam-
ple above would be: avocado run "/usr/share/doc/avocado/tests/gdbtest.py:GdbTest.
test_[le].*raw"

6.4.2 External Loader

Using the External Loader, Avocado will consider that and External Runner will be in place and so Avocado doesn’t
really need to resolve the references. Instead, Avocado will pass the references as parameters to the External Runner.
Example:

$ avocado run 20
Unable to resolve reference(s) '20' with plugins(s) 'file', 'robot',
'vt', 'external', try running 'avocado list -V 20' to see the details.

In the command above, no loaders can resolve 20 as a test. But running the command above with the External Runner
/bin/sleep will make Avocado to actually execute /bin/sleep 20 and check for its return code:

$ avocado run 20 --loaders external:/bin/sleep
JOB ID : 42215ece2894134fb9379ee564aa00f1d1d6cb91
JOB LOG : $HOME/avocado/job-results/job-2017-06-19T11.17-42215ec/job.log
(1/1) 20: PASS (20.03 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 20.13 s
JOB HTML : $HOME/avocado/job-results/job-2017-06-19T11.17-42215ec/html/results.html

Warning: It’s safer to put your Test References at the end of the command line, after a –. That will avoid
argument vs. Test References clashes. In that case, everything after the – will be considered positional arguments,
therefore Test References. Considering that syntax, the command for the example above would be: avocado
run --loaders external:/bin/sleep -- 20

58 Chapter 6. Test discovery

CHAPTER 7

Logging system

This section describes the logging system used in avocado and avocado tests.

7.1 Tweaking the UI

Avocado uses python’s logging system to produce UI and to store test’s output. The system is quite flexible and allows
you to tweak the output to your needs either by built-in stream sets, or directly by using the stream name. To tweak
them you can use avocado –show STREAM[:LEVEL][,STREAM[:LEVEL],. . .]. Built-in streams with description
(followed by list of associated python streams):

app The text based UI (avocado.app)

test Output of the executed tests (avocado.test, “”)

debug Additional messages useful to debug avocado (avocado.app.debug)

remote Fabric/paramiko debug messages, useful to analyze remote execution (avocado.fabric, paramiko)

early Early logging before the logging system is set. It includes the test output and lots of output produced
by used libraries. (“”, avocado.test)

Additionally you can specify “all” or “none” to enable/disable all of pre-defined streams and you can also supply
custom python logging streams and they will be passed to the standard output.

Warning: Messages with importance greater or equal WARN in logging stream “avocado.app” are always enabled
and they go to the standard error.

7.2 Storing custom logs

When you run a test, you can also store custom logging streams into the results directory by avocado run –store-
logging-stream [STREAM[:LEVEL] [STREAM[:LEVEL] . . .]], which will produce $STREAM.$LEVEL files per each

59

avocado Documentation, Release 63.0

(unique) entry in the test results directory.

Note: You have to specify separated logging streams. You can’t use the built-in streams in this function.

Note: Currently the custom streams are stored only per job, not per each individual test.

7.3 Paginator

Some subcommands (list, plugins, . . .) support “paginator”, which, on compatible terminals, basically pipes the
colored output to less to simplify browsing of the produced output. One can disable it by –paginator {on|off}.

60 Chapter 7. Logging system

CHAPTER 8

Sysinfo collection

Avocado comes with a sysinfo plugin, which automatically gathers some system information per each job or even
between tests. This is very useful when later we want to know what caused the test’s failure. This system is config-
urable but we provide a sane set of defaults for you.

In the default Avocado configuration (/etc/avocado/avocado.conf) there is a section sysinfo.collect
where you can enable/disable the sysinfo collection as well as configure the basic environment. In sysinfo.
collectibles section you can define basic paths of where to look for what commands/tasks should be performed
before/during the sysinfo collection. Avocado supports three types of tasks:

1. commands - file with new-line separated list of commands to be executed before and after the job/test (sin-
gle execution commands). It is possible to set a timeout which is enforced per each executed command in
[sysinfo.collect] by setting “commands_timeout” to a positive number.

2. files - file with new-line separated list of files to be copied

3. profilers - file with new-line separated list of commands to be executed before the job/test and killed at the end
of the job/test (follow-like commands)

Additionally this plugin tries to follow the system log via journalctl if available.

By default these are collected per-job but you can also run them per-test by setting per_test = True in the
sysinfo.collect section.

The sysinfo can also be enabled/disabled on the cmdline if needed by --sysinfo on|off.

After the job execution you can find the collected information in $RESULTS/sysinfo of $RESULTS/
test-results/$TEST/sysinfo. They are categorized into pre, post and profile folders and the file-
names are safely-escaped executed commands or file-names. You can also see the sysinfo in html results when you
have html results plugin enabled.

Warning: If you are using avocado from sources, you need to manually place the
commands/files/profilers into the /etc/avocado/sysinfo directories or adjust the paths in
$AVOCADO_SRC/etc/avocado/avocado.conf.

61

avocado Documentation, Release 63.0

62 Chapter 8. Sysinfo collection

CHAPTER 9

Test parameters

Note: This section describes in detail what test parameters are and how the whole variants mechanism works in Avo-
cado. If you’re interested in the basics, see Accessing test parameters or practical view by examples in Yaml_to_mux
plugin.

Avocado allows passing parameters to tests, which effectively results in several different variants of each test. These
parameters are available in (test’s) self.params and are of avocado.core.varianter.AvocadoParams
type.

The data for self.params are supplied by avocado.core.varianter.Varianter which asks all regis-
tered plugins for variants or uses default when no variants are defined.

Overall picture of how the params handling works is:

+-----------+
| | // Test uses variant to produce AvocadoParams
| Test |
| |
+-----^-----+

| // single variant is passed to Test
|

+-----------+
| Runner | // iterates through tests and variants to run all
+-----^-----+ // desired combinations specified by "--execution-order"

|
|

+-------------------+ provide variants +-----------------------+
	<-----------------	
Varianter API		Varianter plugins API
	----------------->	
+-------------------+ update defaults +-----------------------+

^ ^
| |
| // default params injected | // All plugins are invoked

(continues on next page)

63

avocado Documentation, Release 63.0

(continued from previous page)

+--------------------------------------+ | // in turns
+--------------+ +-----------------+					
	avocado-virt		other providers		
+--------------+ +-----------------+					
+--------------------------------------+ |

|
+----------------------------+-----+
| |
| |
v v

+--------------------+ +-------------------------+
| yaml_to_mux plugin | | Other variant plugin(s) |
+-----^--------------+ +-------------------------+

|
| // yaml is parsed to MuxTree,
| // multiplexed and yields variants

+---------------------------------+
| +------------+ +--------------+ |
| | --mux-yaml | | --mux-inject | |
| +------------+ +--------------+ |
+---------------------------------+

Let’s introduce the basic keywords.

9.1 TreeNode

avocado.core.tree.TreeNode

Is a node object allowing to create tree-like structures with parent->multiple_children relations and storing params. It
can also report it’s environment, which is set of params gathered from root to this node. This is used in tests where
instead of passing the full tree only the leaf nodes are passed and their environment represents all the values of the
tree.

9.2 AvocadoParams

avocado.core.varianter.AvocadoParams

Is a “database” of params present in every (instrumented) avocado test. It’s produced during avocado.core.
test.Test’s __init__ from a variant. It accepts a list of TreeNode objects; test name avocado.core.test.
TestID (for logging purposes) and a list of default paths (Parameter Paths).

In test it allows querying for data by using:

self.params.get($name, $path=None, $default=None)

Where:

• name - name of the parameter (key)

• path - where to look for this parameter (when not specified uses mux-path)

• default - what to return when param not found

Each variant defines a hierarchy, which is preserved so AvocadoParams follows it to return the most appropriate value
or raise Exception on error.

64 Chapter 9. Test parameters

avocado Documentation, Release 63.0

9.3 Parameter Paths

As test params are organized in trees, it’s possible to have the same variant in several locations. When they are
produced from the same TreeNode, it’s not a problem, but when they are a different values there is no way to distinguish
which should be reported. One way is to use specific paths, when asking for params, but sometimes, usually when
combining upstream and downstream variants, we want to get our values first and fall-back to the upstream ones when
they are not found.

For example let’s say we have upstream values in /upstream/sleeptest and our values in /downstream/
sleeptest. If we asked for a value using path "*", it’d raise an exception being unable to distinguish whether we
want the value from /downstream or /upstream. We can set the parameter paths to ["/downstream/*",
"/upstream/*"] to make all relative calls (path starting with *) to first look in nodes in /downstream and if
not found look into /upstream.

More practical overview of parameter paths is in Yaml_to_mux plugin in Resolution order section.

9.4 Variant

Variant is a set of params produced by Varianter‘_s and passed to the test by the test runner as ‘‘params‘ argu-
ment. The simplest variant is None, which still produces an empty AvocadoParams. Also, the Variant can also be a
tuple(list, paths) or just the list of avocado.core.tree.TreeNode with the params.

9.5 Dumping/Loading Variants

Depending on the number of parameters, generating the Variants can be very compute intensive. As the Variants are
generated as part of the Job execution, that compute intensive task will be executed by the systems under test, causing
a possibly unwanted cpu load on those systems.

To avoid such situation, you can acquire the resulting JSON serialized variants file, generated out of the variants
computation, and load that file on the system where the Job will be executed.

There are two ways to acquire the JSON serialized variants file:

• Using the --json-variants-dump option of the avocado variants command:

$ avocado variants --mux-yaml examples/yaml_to_mux/hw/hw.yaml --json-variants-
→˓dump variants.json
...

$ file variants.json
variants.json: ASCII text, with very long lines, with no line terminators

• Getting the auto-generated JSON serialized variants file after a Avocado Job execution:

$ avocado run passtest.py --mux-yaml examples/yaml_to_mux/hw/hw.yaml
...

$ file $HOME/avocado/job-results/latest/jobdata/variants.json
$HOME/avocado/job-results/latest/jobdata/variants.json: ASCII text, with very
→˓long lines, with no line terminators

Once you have the variants.json file, you can load it on the system where the Job will take place:

9.3. Parameter Paths 65

avocado Documentation, Release 63.0

$ avocado run passtest.py --json-variants-load variants.json
JOB ID : f2022736b5b89d7f4cf62353d3fb4d7e3a06f075
JOB LOG : $HOME/avocado/job-results/job-2018-02-09T14.39-f202273/job.log
(1/6) passtest.py:PassTest.test;intel-scsi-56d0: PASS (0.04 s)
(2/6) passtest.py:PassTest.test;intel-virtio-3d4e: PASS (0.02 s)
(3/6) passtest.py:PassTest.test;amd-scsi-fa43: PASS (0.02 s)
(4/6) passtest.py:PassTest.test;amd-virtio-a59a: PASS (0.02 s)
(5/6) passtest.py:PassTest.test;arm-scsi-1c14: PASS (0.03 s)
(6/6) passtest.py:PassTest.test;arm-virtio-5ce1: PASS (0.04 s)

RESULTS : PASS 6 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 0.51 s
JOB HTML : $HOME/avocado/job-results/job-2018-02-09T14.39-f202273/results.html

9.6 Varianter

avocado.core.varianter.Varianter

Is an internal object which is used to interact with the variants mechanism in Avocado. It’s lifecycle is compound
of two stages. First it allows the core/plugins to inject default values, then it is parsed and only allows querying for
values, number of variants and such.

Example workflow of avocado run passtest.py -m example.yaml is:

avocado run passtest.py -m example.yaml
|
+ parser.finish -> Varianter.__init__ // dispatcher initializes all plugins
|
+ $PLUGIN -> args.default_avocado_params.add_default_param // could be used to

→˓insert default values
|
+ job.run_tests -> Varianter.is_parsed
|
+ job.run_tests -> Varianter.parse
| // processes default params
| // initializes the plugins
| // updates the default values
|
+ job._log_variants -> Varianter.to_str // prints the human readable

→˓representation to log
|
+ runner.run_suite -> Varianter.get_number_of_tests
|
+ runner._iter_variants -> Varianter.itertests // Yields variants

In order to allow force-updating the Varianter it supports ignore_new_data, which can be used to ignore new
data. This is used by Job Replay to replace the current run Varianter with the one loaded from the replayed job. The
workflow with ignore_new_data could look like this:

avocado run --replay latest -m example.yaml
|
+ $PLUGIN -> args.default_avocado_params.add_default_param // could be used to

→˓insert default values
|
+ replay.run -> Varianter.is_parsed
|

(continues on next page)

66 Chapter 9. Test parameters

avocado Documentation, Release 63.0

(continued from previous page)

+ replay.run // Varianter object is replaced with the replay job's one
| // Varianter.ignore_new_data is set
|
+ $PLUGIN -> args.default_avocado_params.add_default_param // is ignored as new

→˓data are not accepted
|
+ job.run_tests -> Varianter.is_parsed
|
+ job._log_variants -> Varianter.to_str
|
+ runner.run_suite -> Varianter.get_number_of_tests
|
+ runner._iter_variants -> Varianter.itertests

The Varianter itself can only produce an empty variant with the Default params, but it invokes all Varianter plugins
and if any of them reports variants it yields them instead of the default variant.

9.7 Default params

The Default params is a mechanism to specify default values in Varianter or Varianter plugins. Their purpose is
usually to define values dependent on the system which should not affect the test’s results. One example is a qemu
binary location which might differ from one host to another host, but in the end they should result in qemu being
executable in test. For this reason the Default params do not affects the test’s variant-id (at least not in the official
Varianter plugins).

These params can be set from plugin/core by getting default_avocado_params from args and using:

default_avocado_params.add_default_parma(self, name, key, value, path=None)

Where:

• name - name of the plugin which injects data (not yet used for anything, but we plan to allow white/black listing)

• key - the parameter’s name

• value - the parameter’s value

• path - the location of this parameter. When the path does not exists yet, it’s created out of TreeNode.

9.8 Varianter plugins

avocado.core.plugin_interfaces.Varianter

A plugin interface that can be used to build custom plugins which are used by Varianter to get test variants. For in-
spiration see avocado_varianter_yaml_to_mux.YamlToMux which is an optional varianter plugin. Details
about this plugin can be found here Yaml_to_mux plugin.

9.9 Multiplexer

avocado.core.mux

Multiplexer or simply Mux is an abstract concept, which was the basic idea behind the tree-like params struc-
ture with the support to produce all possible variants. There is a core implementation of basic building blocks

9.7. Default params 67

avocado Documentation, Release 63.0

that can be used when creating a custom plugin. There is a demonstration version of plugin using this concept in
avocado_varianter_yaml_to_mux which adds a parser and then uses this multiplexer concept to define an
avocado plugin to produce variants from yaml (or json) files.

9.9.1 Multiplexer concept

As mentioned earlier, this is an in-core implementation of building blocks intended for writing Varianter plugins based
on a tree with Multiplex domains defined. The available blocks are:

• MuxTree - Object which represents a part of the tree and handles the multiplexation, which means producing all
possible variants from a tree-like object.

• MuxPlugin - Base class to build Varianter plugins

• MuxTreeNode - Inherits from TreeNode and adds the support for control flags (MuxTreeNode.ctrl) and
multiplex domains (MuxTreeNode.multiplex).

And some support classes and methods eg. for filtering and so on.

9.10 Multiplex domains

A default AvocadoParams tree with variables could look like this:

Multiplex tree representation:
paths

→ tmp: /var/tmp
→ qemu: /usr/libexec/qemu-kvm

environ
→ debug: False

The multiplexer wants to produce similar structure, but also to be able to define not just one variant, but to define
all possible combinations and then report the slices as variants. We use the term Multiplex domains to define that
children of this node are not just different paths, but they are different values and we only want one at a time. In
the representation we use double-line to visibily distinguish between normal relation and multiplexed relation. Let’s
modify our example a bit:

Multiplex tree representation:
paths

→ tmp: /var/tmp
→ qemu: /usr/libexec/qemu-kvm

environ
production

→ debug: False
debug

→ debug: True

The difference is that environ is now a multiplex node and it’s children will be yielded one at a time producing
two variants:

Variant 1:
paths

→ tmp: /var/tmp
→ qemu: /usr/libexec/qemu-kvm

environ
production

(continues on next page)

68 Chapter 9. Test parameters

avocado Documentation, Release 63.0

(continued from previous page)

→ debug: False
Variant 2:

paths
→ tmp: /var/tmp
→ qemu: /usr/libexec/qemu-kvm

environ
debug

→ debug: False

Note that the multiplex is only about direct children, therefore the number of leaves in variants might differ:

Multiplex tree representation:
paths

→ tmp: /var/tmp
→ qemu: /usr/libexec/qemu-kvm

environ
production

→ debug: False
debug

system
→ debug: False

program
→ debug: True

Produces one variant with /paths and /environ/production and other variant with /paths, /environ/
debug/system and /environ/debug/program.

As mentioned earlier the power is not in producing one variant, but in defining huge scenarios with all possible variants.
By using tree-structure with multiplex domains you can avoid most of the ugly filters you might know from Jenkin’s
sparse matrix jobs. For comparison let’s have a look at the same example in avocado:

Multiplex tree representation:
os

distro
redhat

fedora
version

20
21

flavor
workstation
cloud

rhel
5
6

arch
i386
x86_64

Which produces:

Variant 1: /os/distro/redhat/fedora/version/20, /os/distro/redhat/fedora/flavor/
→˓workstation, /os/arch/i386
Variant 2: /os/distro/redhat/fedora/version/20, /os/distro/redhat/fedora/flavor/
→˓workstation, /os/arch/x86_64
Variant 3: /os/distro/redhat/fedora/version/20, /os/distro/redhat/fedora/flavor/
→˓cloud, /os/arch/i386

(continues on next page)

9.10. Multiplex domains 69

avocado Documentation, Release 63.0

(continued from previous page)

Variant 4: /os/distro/redhat/fedora/version/20, /os/distro/redhat/fedora/flavor/
→˓cloud, /os/arch/x86_64
Variant 5: /os/distro/redhat/fedora/version/21, /os/distro/redhat/fedora/flavor/
→˓workstation, /os/arch/i386
Variant 6: /os/distro/redhat/fedora/version/21, /os/distro/redhat/fedora/flavor/
→˓workstation, /os/arch/x86_64
Variant 7: /os/distro/redhat/fedora/version/21, /os/distro/redhat/fedora/flavor/
→˓cloud, /os/arch/i386
Variant 8: /os/distro/redhat/fedora/version/21, /os/distro/redhat/fedora/flavor/
→˓cloud, /os/arch/x86_64
Variant 9: /os/distro/redhat/rhel/5, /os/arch/i386
Variant 10: /os/distro/redhat/rhel/5, /os/arch/x86_64
Variant 11: /os/distro/redhat/rhel/6, /os/arch/i386
Variant 12: /os/distro/redhat/rhel/6, /os/arch/x86_64

Versus Jenkin’s sparse matrix:

os_version = fedora20 fedora21 rhel5 rhel6
os_flavor = none workstation cloud
arch = i386 x86_64

filter = ((os_version == "rhel5").implies(os_flavor == "none") &&
(os_version == "rhel6").implies(os_flavor == "none")) &&

!(os_version == "fedora20" && os_flavor == "none") &&
!(os_version == "fedora21" && os_flavor == "none")

Which is still relatively simple example, but it grows dramatically with inner-dependencies.

9.11 MuxPlugin

avocado.core.mux.MuxPlugin

Defines the full interface required by avocado.core.plugin_interfaces.Varianter. The plugin writer
should inherit from this MuxPlugin, then from the Varianter and call the:

self.initialize_mux(root, paths, debug)

Where:

• root - is the root of your params tree (compound of TreeNode -like nodes)

• paths - is the Parameter paths to be used in test with all variants

• debug - whether to use debug mode (requires the passed tree to be compound of TreeNodeDebug-like nodes
which stores the origin of the variant/value/environment as the value for listing purposes and is __NOT__ in-
tended for test execution.

This method must be called before the Varianter’s second stage (the latest opportunity is during self.
update_defaults). The MuxPlugin’s code will take care of the rest.

9.12 MuxTree

This is the core feature where the hard work happens. It walks the tree and remembers all leaf nodes or uses list of
MuxTrees when another multiplex domain is reached while searching for a leaf.

70 Chapter 9. Test parameters

avocado Documentation, Release 63.0

When it’s asked to report variants, it combines one variant of each remembered item (leaf node always stays the
same, but MuxTree circles through it’s values) which recursively produces all possible variants of different multiplex
domains.

9.12. MuxTree 71

avocado Documentation, Release 63.0

72 Chapter 9. Test parameters

CHAPTER 10

Job Replay

In order to reproduce a given job using the same data, one can use the --replay option for the run command,
informing the hash id from the original job to be replayed. The hash id can be partial, as long as the provided part
corresponds to the initial characters of the original job id and it is also unique enough. Or, instead of the job id, you
can use the string latest and avocado will replay the latest job executed.

Let’s see an example. First, running a simple job with two test references:

$ avocado run /bin/true /bin/false
JOB ID : 825b860b0c2f6ec48953c638432e3e323f8d7cad
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T16.14-825b860/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.12 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T16.14-825b860/html/results.html

Now we can replay the job by running:

$ avocado run --replay 825b86
JOB ID : 55a0d10132c02b8cc87deb2b480bfd8abbd956c3
SRC JOB ID : 825b860b0c2f6ec48953c638432e3e323f8d7cad
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T16.18-55a0d10/html/results.html

The replay feature will retrieve the original test references, the variants and the configuration. Let’s see another
example, now using a mux YAML file:

$ avocado run /bin/true /bin/false --mux-yaml mux-environment.yaml
JOB ID : bd6aa3b852d4290637b5e771b371537541043d1d
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T21.56-bd6aa3b/job.log

(continues on next page)

73

avocado Documentation, Release 63.0

(continued from previous page)

(1/4) /bin/true;first-c49a: PASS (0.01 s)
(2/4) /bin/true;second-f05f: PASS (0.01 s)
(3/4) /bin/false;first-c49a: FAIL (0.04 s)
(4/4) /bin/false;second-f05f: FAIL (0.04 s)

RESULTS : PASS 2 | ERROR 0 | FAIL 2 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.19 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T21.56-bd6aa3b/html/results.html

We can replay the job as is, using $ avocado run --replay latest, or replay the job ignoring the variants,
as below:

$ avocado run --replay bd6aa3b --replay-ignore variants
Ignoring variants from source job with --replay-ignore.
JOB ID : d5a46186ee0fb4645e3f7758814003d76c980bf9
SRC JOB ID : bd6aa3b852d4290637b5e771b371537541043d1d
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T22.01-d5a4618/job.log
(1/2) /bin/true: PASS (0.01 s)
(2/2) /bin/false: FAIL (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.12 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T22.01-d5a4618/html/results.html

Also, it is possible to replay only the variants that faced a given result, using the option --replay-test-status.
See the example below:

$ avocado run --replay bd6aa3b --replay-test-status FAIL
JOB ID : 2e1dc41af6ed64895f3bb45e3820c5cc62a9b6eb
SRC JOB ID : bd6aa3b852d4290637b5e771b371537541043d1d
JOB LOG : $HOME/avocado/job-results/job-2016-01-12T00.38-2e1dc41/job.log
(1/4) /bin/true;first-c49a: SKIP
(2/4) /bin/true;second-f05f: SKIP
(3/4) /bin/false;first-c49a: FAIL (0.03 s)
(4/4) /bin/false;second-f05f: FAIL (0.04 s)

RESULTS : PASS 0 | ERROR 0 | FAIL 24 | SKIP 24 | WARN 0 | INTERRUPT 0
JOB TIME : 0.29 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-12T00.38-2e1dc41/html/results.html

Of which one special example is --replay-test-status INTERRUPTED or simply --replay-resume,
which SKIPs the executed tests and only executes the ones which were CANCELED or not executed after a CAN-
CELED test. This feature should work even on hard interruptions like system crash.

When replaying jobs that were executed with the --failfast on option, you can disable the failfast option
using --failfast off in the replay job.

To be able to replay a job, avocado records the job data in the same job results directory, inside a subdirectory named
replay. If a given job has a non-default path to record the logs, when the replay time comes, we need to inform
where the logs are. See the example below:

$ avocado run /bin/true --job-results-dir /tmp/avocado_results/
JOB ID : f1b1c870ad892eac6064a5332f1bbe38cda0aaf3
JOB LOG : /tmp/avocado_results/job-2016-01-11T22.10-f1b1c87/job.log
(1/1) /bin/true: PASS (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s
JOB HTML : /tmp/avocado_results/job-2016-01-11T22.10-f1b1c87/html/results.html

Trying to replay the job, it fails:

74 Chapter 10. Job Replay

avocado Documentation, Release 63.0

$ avocado run --replay f1b1
can't find job results directory in '$HOME/avocado/job-results'

In this case, we have to inform where the job results directory is located:

$ avocado run --replay f1b1 --replay-data-dir /tmp/avocado_results
JOB ID : 19c76abb29f29fe410a9a3f4f4b66387570edffa
SRC JOB ID : f1b1c870ad892eac6064a5332f1bbe38cda0aaf3
JOB LOG : $HOME/avocado/job-results/job-2016-01-11T22.15-19c76ab/job.log
(1/1) /bin/true: PASS (0.01 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 0.11 s
JOB HTML : $HOME/avocado/job-results/job-2016-01-11T22.15-19c76ab/html/results.html

75

avocado Documentation, Release 63.0

76 Chapter 10. Job Replay

CHAPTER 11

Job Diff

Avocado Diff plugin allows users to easily compare several aspects of two given jobs. The basic usage is:

$ avocado diff 7025aaba 384b949c
--- 7025aaba9c2ab8b4bba2e33b64db3824810bb5df
+++ 384b949c991b8ab324ce67c9d9ba761fd07672ff
@@ -1,15 +1,15 @@

COMMAND LINE
-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-1.00 s
+0.00 s

TEST RESULTS
-1-sleeptest.py:SleepTest.test: PASS
+1-passtest.py:PassTest.test: PASS

...

Avocado Diff can compare and create an unified diff of:

• Command line.

• Job time.

• Variants and parameters.

• Tests results.

• Configuration.

• Sysinfo pre and post.

Only sections with different content will be included in the results. You can also enable/disable those sections with
--diff-filter. Please see avocado diff --help for more information.

77

avocado Documentation, Release 63.0

Jobs can be identified by the Job ID, by the results directory or by the key latest. Example:

$ avocado diff ~/avocado/job-results/job-2016-08-03T15.56-4b3cb5b/ latest
--- 4b3cb5bbbb2435c91c7b557eebc09997d4a0f544
+++ 57e5bbb3991718b216d787848171b446f60b3262
@@ -1,9 +1,9 @@

COMMAND LINE
-/usr/bin/avocado run perfmon.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
-11.91 s
+0.00 s

TEST RESULTS
-1-test.py:Perfmon.test: FAIL
+1-examples/tests/passtest.py:PassTest.test: PASS

Along with the unified diff, you can also generate the html (option --html) diff file and, optionally, open it on your
preferred browser (option --open-browser):

$ avocado diff 7025aaba 384b949c --html /tmp/myjobdiff.html
/tmp/myjobdiff.html

If the option --open-browser is used without the --html, we will create a temporary html file.

For those wiling to use a custom diff tool instead of the Avocado Diff tool, we offer the option --create-reports,
so we create two temporary files with the relevant content. The file names are printed and user can copy/paste to the
custom diff tool command line:

$ avocado diff 7025aaba 384b949c --create-reports
/var/tmp/avocado_diff_7025aab_zQJjJh.txt /var/tmp/avocado_diff_384b949_AcWq02.txt

$ diff -u /var/tmp/avocado_diff_7025aab_zQJjJh.txt /var/tmp/avocado_diff_384b949_
→˓AcWq02.txt
--- /var/tmp/avocado_diff_7025aab_zQJjJh.txt 2016-08-10 21:48:43.547776715 +0200
+++ /var/tmp/avocado_diff_384b949_AcWq02.txt 2016-08-10 21:48:43.547776715 +0200
@@ -1,250 +1,19 @@

COMMAND LINE
============

-/usr/bin/avocado run sleeptest.py
+/usr/bin/avocado run passtest.py

TOTAL TIME
==========

-1.00 s
+0.00 s

...

78 Chapter 11. Job Diff

CHAPTER 12

Running Tests Remotely

The Avocado results are easily copyable between machines, so you can manually run your jobs on various machines
and copy the results dir to your main machines while still being able to re-run/diff/. . . them. Anyway if you want even
smoother remote execution, you can use our Remote runner plugins optional plugins to run jobs on a remote systems
(machine, container, . . .) reporting the results locally.

79

avocado Documentation, Release 63.0

80 Chapter 12. Running Tests Remotely

CHAPTER 13

Subclassing Avocado

Subclassing Avocado Test class to extend its features is quite straight forward and it might constitute a very useful
resource to have some shared/recurrent code hosted in your project repository.

In this documentation we propose an project organization that will allow you to create and install your so called
sub-framework.

Let’s use, as an example, a project called Apricot Framework. Here’s the proposed filesystem structure:

~/git/apricot (master)$ tree
.

apricot
__init__.py
test.py

README.rst
setup.py
tests

test_example.py
VERSION

• setup.py: In the setup.py it is important to specify the avocado-framework package as a dependency:

from setuptools import setup, find_packages

setup(name='apricot',
description='Apricot - Avocado SubFramwork',
version=open("VERSION", "r").read().strip(),
author='Apricot Developers',
author_email='apricot-devel@example.com',
packages=['apricot'],
include_package_data=True,
install_requires=['avocado-framework']
)

• VERSION: Version your project as you wish:

81

avocado Documentation, Release 63.0

1.0

• apricot/__init__.py: Make your new test class available in your module root:

__all__ = ['ApricotTest']

from apricot.test import ApricotTest

• apricot/test.py: Here you will be basically extending the Avocado Test class with your own methods
and routines:

from avocado import Test

class ApricotTest(Test):
def setUp(self):

self.log.info("setUp() executed from Apricot")

def some_useful_method(self):
return True

• tests/test_example.py: And this is how your test will look like. The most important item here is to use
the docstring :avocado: recursive, so the Avocado test loader will be able to recognize your test class
as an Avocado Test class:

from apricot import ApricotTest

class MyTest(ApricotTest):
"""
:avocado: recursive
"""
def test(self):

self.assertTrue(self.some_useful_method())

To (non-intrusively) install your module, use:

~/git/apricot (master)$ python setup.py develop --user
running develop
running egg_info
writing requirements to apricot.egg-info/requires.txt
writing apricot.egg-info/PKG-INFO
writing top-level names to apricot.egg-info/top_level.txt
writing dependency_links to apricot.egg-info/dependency_links.txt
reading manifest file 'apricot.egg-info/SOURCES.txt'
writing manifest file 'apricot.egg-info/SOURCES.txt'
running build_ext
Creating /home/apahim/.local/lib/python2.7/site-packages/apricot.egg-link (link to .)
apricot 1.0 is already the active version in easy-install.pth

Installed /home/apahim/git/apricot
Processing dependencies for apricot==1.0
Searching for avocado-framework==55.0
Best match: avocado-framework 55.0
avocado-framework 55.0 is already the active version in easy-install.pth

Using /home/apahim/git/avocado
Searching for stevedore==1.25.0
Best match: stevedore 1.25.0

(continues on next page)

82 Chapter 13. Subclassing Avocado

avocado Documentation, Release 63.0

(continued from previous page)

Adding stevedore 1.25.0 to easy-install.pth file

Using /usr/lib/python2.7/site-packages
Searching for six==1.10.0
Best match: six 1.10.0
Adding six 1.10.0 to easy-install.pth file

Using /usr/lib/python2.7/site-packages
Searching for pbr==3.1.1
Best match: pbr 3.1.1
Adding pbr 3.1.1 to easy-install.pth file
Installing pbr script to /home/apahim/.local/bin

Using /usr/lib/python2.7/site-packages
Finished processing dependencies for apricot==1.0

And to run your test:

~/git/apricot$ avocado run tests/test_example.py
JOB ID : 02c663eb77e0ae6ce67462a398da6972791793bf
JOB LOG : $HOME/avocado/job-results/job-2017-11-16T12.44-02c663e/job.log
(1/1) tests/test_example.py:MyTest.test: PASS (0.03 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 0.95 s
JOB HTML : $HOME/avocado/job-results/job-2017-11-16T12.44-02c663e/results.html

83

avocado Documentation, Release 63.0

84 Chapter 13. Subclassing Avocado

CHAPTER 14

Debugging with GDB

Avocado has two different types of GDB support that complement each other:

• Transparent execution of executables inside the GNU Debugger. This takes standard and possibly unmodified
tests that uses the avocado.utils.process APIs for running processes. By using a command line option,
the executable is run on GDB. This allows the user to interact with GDB, but to the test itself, things are pretty
much transparent.

• The avocado.utils.gdb APIs that allows a test to interact with GDB, including setting a executable to be
run, setting breakpoints or any other types of commands. This requires a test written with that approach and
API in mind.

Tip: Even though this section describes the use of the Avocado GDB features, which allow live debugging of binaries
inside Avocado tests, it’s also possible to debug some application offline by using tools such as rr. Avocado ships with
an example wrapper script (to be used with --wrapper) for that purpose.

14.1 Transparent Execution of Executables

This feature adds a few command line options to the Avocado run command:

$ avocado run --help
...
GNU Debugger support:

--gdb-run-bin EXECUTABLE[:BREAKPOINT]
Run a given executable inside the GNU debugger,
pausing at a given breakpoint (defaults to "main")

--gdb-prerun-commands EXECUTABLE:COMMANDS
After loading an executable in GDB, but before
actually running it, execute the GDB commands in the
given file. EXECUTABLE is optional, if omitted

(continues on next page)

85

http://rr-project.org

avocado Documentation, Release 63.0

(continued from previous page)

COMMANDS will apply to all executables
--gdb-coredump {on,off}

Automatically generate a core dump when the inferior
process received a fatal signal such as SIGSEGV or
SIGABRT

...

To get started you want to use --gdb-run-bin, as shown in the example bellow.

14.1.1 Example

The simplest way is to just run avocado run --gdb-run-bin=doublefree examples/tests/
doublefree.py, which wraps each executed executable with name doublefree inside GDB server and stops at
the executable entry point.

Optionally you can specify single breakpoint using --gdb-run-bin=doublefree:$breakpoint (eg:
doublefree:1) or just doublefree: to stop only when an interruption happens (eg: SIGABRT).

It’s worth mentioning that when breakpoint is not reached, the test finishes without any interruption. This is helpful
when you identify regions where you should never get in your code, or places which interests you and you can run
your code in production and GDB variants. If after a long time you get to this place, the test notifies you and you can
investigate the problem. This is demonstrated in examples/tests/doublefree_nasty.py test. To unveil
the power of Avocado, run this test using:

avocado run --gdb-run-bin=doublefree: examples/tests/doublefree_nasty.py --gdb-prerun-
→˓commands examples/tests/doublefree_nasty.py.data/gdb_pre --mux-yaml examples/tests/
→˓doublefree_nasty.py.data/iterations.yaml

which executes 100 iterations of this test while setting all breakpoints from the examples/tests/
doublefree_nasty.py.data/gdb_pre file (you can specify whatever GDB supports, not only breakpoints).

As you can see this test usually passes, but once in a while it gets into the problematic area. Imagine this is very hard to
spot (dependent on HW registers, . . .) and this is one way to combine regular testing and the possibility of debugging
hard-to-get parts of your code.

14.1.2 Caveats

Currently, when using the Avocado GDB plugin, that is, when using the –gdb-run-bin option, there are some caveats
you should be aware of:

• It is not currently compatible with Avocado’s –output-check-record feature

• There’s no way to perform proper input to the process, that is, manipulate its STDIN

• The process STDERR content is mixed with the content generated by gdbserver on its own STDERR (because
they are in fact, the same thing)

But, you can still depend on the process STDOUT, as exemplified by this fictional test:

from avocado import Test
from avocado.utils import process

class HelloOutputTest(Test):

def test(self):

(continues on next page)

86 Chapter 14. Debugging with GDB

avocado Documentation, Release 63.0

(continued from previous page)

result = process.run("/path/to/hello", ignore_status=True)
self.assertIn("hello\n", result.stdout)

If run under GDB or not, result.stdout behavior and content is expected to be the same.

14.1.3 Reasons for the caveats

There are a two basic reasons for the mentioned caveats:

• The architecture of Avocado’s GDB feature

• GDB’s own behavior and limitations

When using the Avocado GDB plugin, that is, –gdb-run-bin, Avocado runs a gdbserver instance transparently and
controls it by means of a gdb process. When a given event happens, say a breakpoint is reached, it disconnects its own
gdb from the server, and allows the user to use a standard gdb to connect to the gdbserver. This provides a natural and
seamless user experience.

But, gdbserver has some limitations at this point, including:

• Not being able to set a controlling tty

• Not separating its own STDERR content from the application being run

These limitations are being addressed both on Avocado and GDB, and will be resolved in future Avocado versions.

14.1.4 Workaround

If the application you’re running as part of your test can read input from alternative sources (including devices, files
or the network) and generate output likewise, then you should not be further limited.

14.1.5 GDB support and avocado-virt

Another current limitation is the use of avocado-virt and avocado GDB support.

The supported API for transparent debugging is currently limited to avocado.utils.process.run(), and does
not cover advanced uses of the avocado.utils.process.SubProcess class. The avocado-virt extension,
though, uses avocado.utils.process.SubProcess class to execute qemu in the background.

This limitation will be addressed in future versions of avocado and avocado-virt.

14.2 avocado.utils.gdb APIs

Avocado’s GDB module, provides three main classes that lets a test writer interact with a gdb process, a gdbserver
process and also use the GDB remote protocol for interaction with a remote target.

Please refer to avocado.utils.gdb for more information.

14.2.1 Example

Take a look at examples/tests/modify_variable.py test:

14.2. avocado.utils.gdb APIs 87

avocado Documentation, Release 63.0

def test(self):
"""
Execute 'print_variable'.
"""
path = os.path.join(self.workdir, 'print_variable')
app = gdb.GDB()
app.set_file(path)
app.set_break(6)
app.run()
self.log.info("\n".join(app.read_until_break()))
app.cmd("set variable a = 0xff")
app.cmd("c")
out = "\n".join(app.read_until_break())
self.log.info(out)
app.exit()
self.assertIn("MY VARIABLE 'A' IS: ff", out)

You can see that instead of running the executable using process.run we invoke avocado.utils.gdb.GDB.
This allows us to automate the interaction with the GDB in means of setting breakpoints, executing commands and
querying for output.

When you check the output (--show-job-log) you can see that despite declaring the variable as 0, ff is injected
and printed instead.

88 Chapter 14. Debugging with GDB

CHAPTER 15

Wrap executables run by tests

Avocado allows the instrumentation of executables being run by a test in a transparent way. The user specifies a script
(“the wrapper”) to be used to run the actual program called by the test.

If the instrumentation script is implemented correctly, it should not interfere with the test behavior. That is, the wrapper
should avoid changing the return status, standard output and standard error messages of the original executable.

The user can be specific about which program to wrap (with a shell-like glob), or if that is omitted, a global wrapper
that will apply to all programs called by the test.

15.1 Usage

This feature is implemented as a plugin, that adds the –wrapper option to the Avocado run command. For a detailed
explanation, please consult the Avocado man page.

Example of a transparent way of running strace as a wrapper:

#!/bin/sh
exec strace -ff -o $AVOCADO_TEST_LOGDIR/strace.log -- $@

To have all programs started by test.py wrapped with ~/bin/my-wrapper.sh:

$ scripts/avocado run --wrapper ~/bin/my-wrapper.sh tests/test.py

To have only my-binary wrapped with ~/bin/my-wrapper.sh:

$ scripts/avocado run --wrapper ~/bin/my-wrapper.sh:*my-binary tests/test.py

15.2 Caveats

• It is not possible to debug with GDB (–gdb-run-bin) and use wrappers (–wrapper) at the same time. These two
options are mutually exclusive.

89

avocado Documentation, Release 63.0

• You can only set one (global) wrapper. If you need functionality present in two wrappers, you have to combine
those into a single wrapper script.

• Only executables that are run with the avocado.utils.process APIs (and other API modules that make
use of it, like mod:avocado.utils.build) are affected by this feature.

90 Chapter 15. Wrap executables run by tests

CHAPTER 16

Plugin System

Avocado has a plugin system that can be used to extended it in a clean way.

16.1 Listing plugins

The avocado command line tool has a builtin plugins command that lets you list available plugins. The usage is
pretty simple:

$ avocado plugins
Plugins that add new commands (avocado.plugins.cli.cmd):
exec-path Returns path to avocado bash libraries and exits.
run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information
...
Plugins that add new options to commands (avocado.plugins.cli):
remote Remote machine options for 'run' subcommand
journal Journal options for the 'run' subcommand
...

Since plugins are (usually small) bundles of Python code, they may fail to load if the Python code is broken for any
reason. Example:

$ avocado plugins
Failed to load plugin from module "avocado.plugins.exec_path": ImportError('No module
→˓named foo',)
Plugins that add new commands (avocado.plugins.cli.cmd):
run Run one or more tests (native test, test alias, binary or script)
sysinfo Collect system information
...

91

avocado Documentation, Release 63.0

16.2 Writing a plugin

What better way to understand how an Avocado plugin works than creating one? Let’s use another old time favorite
for that, the “Print hello world” theme.

16.2.1 Code example

Let’s say you want to write a plugin that adds a new subcommand to the test runner, hello. This is how you’d do it:

from avocado.core.output import LOG_JOB
from avocado.core.plugin_interfaces import CLICmd

class HelloWorld(CLICmd):

name = 'hello'
description = 'The classical Hello World! plugin example.'

def run(self, args):
LOG_JOB.info(self.description)

As you can see, this plugins inherits from avocado.core.plugin_interfaces.CLICmd. This specific base
class allows for the creation of new commands for the Avocado CLI tool. The only mandatory method to be imple-
mented is run and it’s the plugin main entry point.

This plugin uses avocado.core.output.LOG_JOB to produce the hello world output in the Job log. One can
also use avocado.core.output.LOG_UI to produce output in the human readable output.

16.2.2 Registering Plugins

Avocado makes use of the Stevedore library to load and activate plugins. Stevedore itself uses setuptools and its entry
points to register and find Python objects. So, to make your new plugin visible to Avocado, you need to add to your
setuptools based setup.py file something like:

setup(name='mypluginpack',
...
entry_points={

'avocado.plugins.cli': [
'hello = mypluginpack.hello:HelloWorld',

]
}
...

Then, by running either $ python setup.py install or $ python setup.py develop your plugin
should be visible to Avocado.

16.2.3 Fully qualified named for a plugin

The plugin registry mentioned earlier, (setuptools and its entry points) is global to a given Python installation. Avocado
uses the namespace prefix avocado.plugins. to avoid name clashes with other software. Now, inside Avocado
itself, there’s no need keep using the avocado.plugins. prefix.

Take for instance, the Job Pre/Post plugins are defined on setup.py:

92 Chapter 16. Plugin System

https://github.com/openstack/stevedore
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points
https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points
https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points

avocado Documentation, Release 63.0

'avocado.plugins.job.prepost': [
'jobscripts = avocado.plugins.jobscripts:JobScripts'

]

The setuptools entry point namespace is composed of the mentioned prefix avocado.plugins., which is is then
followed by the Avocado plugin type, in this case, job.prepost.

Inside avocado itself, the fully qualified name for a plugin is the plugin type, such as job.prepost concatenated to
the name used in the entry point definition itself, in this case, jobscripts.

To summarize, still using the same example, the fully qualified Avocado plugin name is going to be job.prepost.
jobscripts.

16.2.4 Disabling a plugin

Even though a plugin can be installed and registered under setuptools entry points, it can be explicitly disabled in
Avocado.

The mechanism available to do so is to add entries to the disable key under the plugins section of the Avocado
configuration file. Example:

[plugins]
disable = ['cli.hello', 'job.prepost.jobscripts']

The exact effect on Avocado when a plugin is disabled depends on the plugin type. For instance, by disabling plugins
of type cli.cmd, the command implemented by the plugin should no longer be available on the Avocado command
line application. Now, by disabling a job.prepost plugin, those won’t be executed before/after the execution of
the jobs.

16.2.5 Default plugin execution order

In many situations, such as result generation, not one, but all of the enabled plugin types will be executed. The order
in which the plugins are executed follows the lexical order of the entry point name.

For example, for the JSON result plugin, whose fully qualified name is result.json, has an entry point name of
json, as can be seen on its registration code in setup.py:

...
entry_points={

'avocado.plugins.result': [
'json = avocado.plugins.jsonresult:JSONResult',

...

If it sounds too complicated, it isn’t. It just means that for plugins of the same type, a plugin named automated will
be executed before the plugin named uploader.

In the default Avocado set of result plugins, it means that the JSON plugin (json) will be executed before the XUnit
plugin (xunit). If the HTML result plugin is installed and enabled (html) it will be executed before both JSON and
XUnit.

16.2.6 Configuring the plugin execution order

On some circumstances it may be necessary to change the order in which plugins are executed. To do so, add a order
entry a configuration file section named after the plugin type. For job.prepost plugin types, the section name has
to be named plugins.job.prepost, and it would look like this:

16.2. Writing a plugin 93

https://setuptools.readthedocs.io/en/latest/
https://setuptools.readthedocs.io/en/latest/pkg_resources.html#entry-points

avocado Documentation, Release 63.0

[plugins.job.prepost]
order = ['myplugin', 'jobscripts']

That configuration sets the job.prepost.myplugin plugin to execute before the standard Avocado job.
prepost.jobscripts does.

16.2.7 Wrap Up

We have briefly discussed the making of Avocado plugins. We recommend the Stevedore documentation and also a
look at the avocado.core.plugin_interfaces module for the various plugin interface definitions.

Some plugins examples are available in the Avocado source tree, under examples/plugins.

Finally, exploring the real plugins shipped with Avocado in avocado.plugins is the final “documentation” source.

94 Chapter 16. Plugin System

http://docs.openstack.org/developer/stevedore/index.html
https://github.com/avocado-framework/avocado/tree/master/examples/plugins

CHAPTER 17

Utilities

17.1 Utilities

The following pages are the documentation for some of the Avocado utilities:

17.1.1 vmimage

This utility provides a API to download/cache VM images (QCOW) from the official distributions repositories.

Basic Usage

Import vmimage module:

>>> from avocado.utils import vmimage

Get an image, which consists in an object with the path of the dowloaded/cached base image and the path of the
external snapshot created out of that base image:

>>> image = vmimage.get()
>>> image
<Image name=Fedora version=26 arch=x86_64>
>>> image.name
'Fedora'
>>> image.path
'/tmp/Fedora-Cloud-Base-26-1.5.x86_64-d369c285.qcow2'
>>> image.get()
'/tmp/Fedora-Cloud-Base-26-1.5.x86_64-e887c743.qcow2'
>>> image.path
'/tmp/Fedora-Cloud-Base-26-1.5.x86_64-e887c743.qcow2'
>>> image.version
26

(continues on next page)

95

avocado Documentation, Release 63.0

(continued from previous page)

>>> image.base_image
'/tmp/Fedora-Cloud-Base-26-1.5.x86_64.qcow2'

If you provide more details about the image, the object is expected to reflect those details:

>>> image = vmimage.get(arch='aarch64')
>>> image
<Image name=FedoraSecondary version=26 arch=aarch64>
>>> image.name
'FedoraSecondary'
>>> image.path
'/tmp/Fedora-Cloud-Base-26-1.5.aarch64-07b8fbda.qcow2'

>>> image = vmimage.get(version=7)
>>> image
<Image name=CentOS version=7 arch=x86_64>
>>> image.path
'/tmp/CentOS-7-x86_64-GenericCloud-1708-dd8139c5.qcow2'

Notice that, unlike the base_image attribute, the path attribute will be always different in each instance, as it
actually points to an external snapshot created out of the base image:

>>> i1 = vmimage.get()
>>> i2 = vmimage.get()
>>> i1.path == i2.path
False

Custom Image Provider

If you need your own Image Provider, you can extend the vmimage.IMAGE_PROVIDERS list, including your
provider class. For instance, using the vmimage utility in an Avocado test, we could add our own provider with:

from avocado import Test

from avocado.utils import vmimage

class MyProvider(vmimage.ImageProviderBase):

name = 'MyDistro'

def __init__(self, version='[0-9]+', build='[0-9]+.[0-9]+',
arch=os.uname()[4]):

"""
:params version: The regular expression that represents

your distro version numbering.
:params build: The regular expression that represents

your build version numbering.
:params arch: The default architecture to look images for.
"""
super(MyProvider, self).__init__(version, build, arch)

The URL which contains a list of the distro versions
self.url_versions = 'https://dl.fedoraproject.org/pub/fedora/linux/releases/'

The URL which contains a list of distro images

(continues on next page)

96 Chapter 17. Utilities

avocado Documentation, Release 63.0

(continued from previous page)

self.url_images = self.url_versions + '{version}/CloudImages/{arch}/images/'

The images naming pattern
self.image_pattern = 'Fedora-Cloud-Base-{version}-{build}.{arch}.qcow2$'

class MyTest(Test):

def setUp(self):
vmimage.IMAGE_PROVIDERS.add(MyProvider)
image = vmimage.get('MyDistro')
...

def test(self):
...

17.1. Utilities 97

avocado Documentation, Release 63.0

98 Chapter 17. Utilities

CHAPTER 18

Optional Plugins

18.1 Optional Plugins

The following pages are the documentation for some of the Avocado optional plugins:

18.1.1 Remote runner plugins

There are currently three optional plugins to help you run your tests remotely:

• Running Tests on a Remote Host - Over SSH

• Running Tests on a Virtual Machine - Using libvirt

• Running Tests on a Docker container - Using docker

Running Tests on a Remote Host

(avocado-framework-plugin-runner-remote)

Avocado lets you run tests directly in a remote machine with SSH connection, provided that you properly set it up by
installing Avocado in it.

You can check if this feature (a plugin) is enabled by running:

$ avocado plugins
...
remote Remote machine options for 'run' subcommand
...

Assuming this feature is enabled, you should be able to pass the following options when using the run command in
the Avocado command line tool:

99

avocado Documentation, Release 63.0

--remote-hostname REMOTE_HOSTNAME
Specify the hostname to login on remote machine

--remote-port REMOTE_PORT
Specify the port number to login on remote machine.
Default: 22

--remote-username REMOTE_USERNAME
Specify the username to login on remote machine

--remote-password REMOTE_PASSWORD
Specify the password to login on remote machine

From these options, you are normally going to use –remote-hostname and –remote-username in case you did set up
your VM with password-less SSH connection (through SSH keys).

Remote Setup

Make sure you have:

1. Avocado packages installed. You can see more info on how to do that in the Getting Started section.

2. The remote machine IP address or fully qualified hostname and the SSH port number.

3. All pre-requisites for your test to run installed inside the remote machine (gcc, make and others if you want to
compile a 3rd party test suite written in C, for example).

Optionally, you may have password less SSH login on your remote machine enabled.

Running your test

Once the remote machine is properly set, you may run your test. Example:

$ scripts/avocado run --remote-hostname 192.168.122.30 --remote-username fedora
→˓examples/tests/sleeptest.py examples/tests/failtest.py
REMOTE LOGIN : fedora@192.168.122.30:22
JOB ID : 60ddd718e7d7bb679f258920ce3c39ce73cb9779
JOB LOG : $HOME/avocado/job-results/job-2014-10-23T11.45-a329461/job.log
(1/2) examples/tests/sleeptest.py: PASS (1.00 s)
(2/2) examples/tests/failtest.py: FAIL (0.00 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 1.11 s

A bit of extra logging information is added to your job summary, mainly to distinguish the regular execution from the
remote one. Note here that we did not need –remote-password because an SSH key was already set.

Running Tests on a Virtual Machine

(avocado-framework-plugin-runner-vm)

Sometimes you don’t want to run a given test directly in your own machine (maybe the test is dangerous, maybe you
need to run it in another Linux distribution, so on and so forth).

For those scenarios, Avocado lets you run tests directly in VMs defined as libvirt domains in your system, provided
that you properly set them up.

You can check if this feature (a plugin) is enabled by running:

100 Chapter 18. Optional Plugins

avocado Documentation, Release 63.0

$ avocado plugins
...
vm Virtual Machine options for 'run' subcommand
...

Assuming this feature is enabled, you should be able to pass the following options when using the run command in
the Avocado command line tool:

--vm Run tests on Virtual Machine
--vm-hypervisor-uri VM_HYPERVISOR_URI

Specify hypervisor URI driver connection
--vm-domain VM_DOMAIN

Specify domain name (Virtual Machine name)
--vm-hostname VM_HOSTNAME

Specify VM hostname to login. By default Avocado
attempts to automatically find the VM IP address.

--vm-username VM_USERNAME
Specify the username to login on VM

--vm-password VM_PASSWORD
Specify the password to login on VM

--vm-cleanup Restore VM to a previous state, before running the
tests

From these options, you are normally going to use –vm-domain, –vm-hostname and –vm-username in case you did set
up your VM with password-less SSH connection (through SSH keys).

If your VM has the qemu-guest-agent installed, you can skip the --vm-hostname option. Avocado will then
probe the VM IP from the agent.

Virtual Machine Setup

Make sure you have:

1. A libvirt domain with the Avocado packages installed. You can see more info on how to do that in the Getting
Started section.

2. The domain IP address or fully qualified hostname.

3. All pre-requesites for your test to run installed inside the VM (gcc, make and others if you want to compile a
3rd party test suite written in C, for example).

Optionally, you may have password less SSH login on your VM enabled.

Running your test

Once the virtual machine is properly set, you may run your test. Example:

$ scripts/avocado run --vm-domain fedora20 --vm-username autotest --vm examples/tests/
→˓sleeptest.py examples/tests/failtest.py
VM DOMAIN : fedora20
VM LOGIN : autotest@192.168.122.30
JOB ID : 60ddd718e7d7bb679f258920ce3c39ce73cb9779
JOB LOG : $HOME/avocado/job-results/job-2014-09-16T18.41-60ddd71/job.log
(1/2) examples/tests/sleeptest.py:SleepTest.test: PASS (1.00 s)
(2/2) examples/tests/failtest.py:FailTest.test: FAIL (0.01 s)

(continues on next page)

18.1. Optional Plugins 101

avocado Documentation, Release 63.0

(continued from previous page)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB TIME : 1.11 s

A bit of extra logging information is added to your job summary, mainly to distinguish the regular execution from the
remote one. Note here that we did not need –vm-password because the SSH key is already set.

Running Tests on a Docker container

(avocado-framework-plugin-runner-docker)

Avocado also lets you run tests on a Docker container, starting and cleaning it up automatically with every execution.

You can check if this feature (a plugin) is enabled by running:

$ avocado plugins
...
docker Run tests inside docker container
...

Docker container images

Avocado needs to be present inside the container image in order for the test execution to be properly performed.
There’s one ready to use image (ldoktor/fedora-avocado) in the default image repository (docker.io):

$ sudo docker pull ldoktor/fedora-avocado
Using default tag: latest
Trying to pull repository docker.io/ldoktor/fedora-avocado ...
latest: Pulling from docker.io/ldoktor/fedora-avocado
...
Status: Downloaded newer image for docker.io/ldoktor/fedora-avocado:latest

Use custom docker images

One of the possible ways to use (and develop) Avocado is to create a docker image with your development tree. This
is a good way to test your development branch without breaking your system.

To do so, you can following a few simple steps. Begin by fetching the source code as usual:

$ git clone github.com/avocado-framework/avocado.git avocado.git

You may want to make some changes to Avocado:

$ cd avocado.git
$ patch -p1 < MY_PATCH

Finally build a docker image:

$ docker build -t fedora-avocado-custom -f contrib/docker/Dockerfile.fedora .

And now you can run tests with your modified Avocado inside your container:

$ avocado run --docker fedora-avocado-custom examples/tests/passtest.py

102 Chapter 18. Optional Plugins

avocado Documentation, Release 63.0

Running your test

Assuming your system is properly set to run Docker, including having an image with Avocado, you can run a test
inside the container with a command similar to:

$ avocado run passtest.py warntest.py failtest.py --docker ldoktor/fedora-avocado --
→˓docker-cmd "sudo docker"
JOB ID : db309f5daba562235834f97cad5f4458e3fe6e32
JOB LOG : $HOME/avocado/job-results/job-2016-07-25T08.01-db309f5/job.log
DOCKER : Container id
→˓'4bcbcd69801211501a0dde5926c0282a9630adbe29ecb17a21ef04f024366943'
DOCKER : Container name 'job-2016-07-25T08.01-db309f5.avocado'
(1/3) /avocado_remote_test_dir/$HOME/passtest.py:PassTest.test: PASS (0.00 s)
(2/3) /avocado_remote_test_dir/$HOME/warntest.py:WarnTest.test: WARN (0.00 s)
(3/3) /avocado_remote_test_dir/$HOME/failtest.py:FailTest.test: FAIL (0.00 s)

RESULTS : PASS 1 | ERROR 0 | FAIL 1 | SKIP 0 | WARN 1 | INTERRUPT 0
JOB TIME : 0.10 s
JOB HTML : $HOME/avocado/job-results/job-2016-07-25T08.01-db309f5/html/results.html

Environment Variables

Running remote instances os Avocado, for example using remote or vm plugins, the remote environment has a dif-
ferent set of environment variables. If you want to make available remotely variables that are available in the local
environment, you can use the run option –env-keep. See the example below:

$ export MYVAR1=foobar
$ env MYVAR2=foobar2 avocado run passtest.py --env-keep MYVAR1,MYVAR2 --remote-
→˓hostname 192.168.122.30 --remote-username fedora

By doing that, both MYVAR1 and MYVAR2 will be available in remote environment.

Known Issues

Given the modular architecture of Avocado, the fact that the remote feature is a plugin and also the fact that the
plugins are engaged in no particular order, other plugins will not have the information that we are in a remote execution.
As consequence, plugins that look for local resources that are available only remotely can fail. That’s the case of the
so called multiplex plugin. If you’re using the multiplex plugin (-m or --mux-yaml) options in addition to the
remote plugin (or any derived plugin, like vm or docker), the multiplex files must exist locally in the provided path.
Notice the multiplex files must be also available remotely in the provided path, since we don’t copy files for remote
executions.

18.1.2 Result plugins

Optional plugins providing various types of job results.

HTML results Plugin

This optional plugin creates beautiful human readable results.

To install the HTML plugin from pip, use:

pip install avocado-framework-plugin-result-html

18.1. Optional Plugins 103

avocado Documentation, Release 63.0

Once installed it produces the results in job results dir:

$ avocado run sleeptest.py failtest.py synctest.py
...
JOB HTML : /home/medic/avocado/job-results/job-2014-08-12T15.57-5ffe4792/html/
→˓results.html
...

This can be disabled via –html-job-result on|off. One can also specify a custom location via –html . Last but not least
–open-browser can be used to start browser automatically once the job finishes.

Results Upload Plugin

This optional plugin is intended to upload the Avocado Job results to a dedicated sever.

To install the Result Upload plugin from pip, use:

pip install avocado-framework-plugin-result-upload

Usage:

avocado run passtest.py --result-upload-url www@avocadologs.example.com:/var/www/html

Avocado logs will be available at following URL:

• ssh

www@avocadologs.example.com:/var/www/html/job-2017-04-21T12.54-1cefe11

• html (If web server is enabled)

http://avocadologs.example.com/job-2017-04-21T12.54-1cefe11/

Such links may be refered by other plugins, such as the ResultsDB plugin

By default upload will be handled by following command

rsync -arz -e 'ssh -o LogLevel=error -o stricthostkeychecking=no -o
→˓userknownhostsfile=/dev/null -o batchmode=yes -o passwordauthentication=no'

Optionally, you can customize uploader command, for example following command upload logs to Google storage:

avocado run passtest.py --result-upload-url='gs://avocadolog' --result-upload-cmd=
→˓'gsutil -m cp -r'

You can also set the ResultUpload URL and command using a config file:

[plugins.result_upload]
url = www@avocadologs.example.com:/var/www/htmlavocado/job-results
command='rsync -arzq'

And then run the Avocado command without the explicit cmd options. Notice that the command line options will have
precedence over the configuration file.

ResultsDB Plugin

This optional plugin is intended to propagate the Avocado Job results to a given ResultsDB API URL.

104 Chapter 18. Optional Plugins

avocado Documentation, Release 63.0

To install the ResultsDB plugin from pip, use:

pip install avocado-framework-plugin-resultsdb

Usage:

avocado run passtest.py --resultsdb-api http://resultsdb.example.com/api/v2.0/

Optionally, you can provide the URL where the Avocado logs are published:

avocado run passtest.py --resultsdb-api http://resultsdb.example.com/api/v2.0/ --
→˓resultsdb-logs http://avocadologs.example.com/

The –resultsdb-logs is a convenience option that will create links to the logs in the ResultsDB records. The links will
then have the following formats:

• ResultDB group (Avocado Job):

http://avocadologs.example.com/job-2017-04-21T12.54-1cefe11/

• ResultDB result (Avocado Test):

http://avocadologs.example.com/job-2017-04-21T12.54-1cefe11/test-results/1-
→˓passtest.py:PassTest.test/

You can also set the ResultsDB API URL and logs URL using a config file:

[plugins.resultsdb]
api_url = http://resultsdb.example.com/api/v2.0/
logs_url = http://avocadologs.example.com/

And then run the Avocado command without the –resultsdb-api and –resultsdb-logs options. Notice that the command
line options will have precedence over the configuration file.

18.1.3 Robot Plugin

This optional plugin enables Avocado to work with tests originally written using the Robot Framework API.

To install the Robot plugin from pip, use:

$ sudo pip install avocado-framework-plugin-robot

After installed, you can list/run Robot tests the same way you do with other types of tests.

To list the tests, execute:

$ avocado list ~/path/to/robot/tests/test.robot

Directories are also accepted. To run the tests, execute:

$ avocado run ~/path/to/robot/tests/test.robot

18.1.4 Yaml_to_mux plugin

avocado_varianter_yaml_to_mux

18.1. Optional Plugins 105

http://robotframework.org/

avocado Documentation, Release 63.0

This plugin utilizes the in-core multiplexation mechanism to produce variants out of a yaml file. This section
is example-based, if you are interested in test parameters and/or multiplexation overview, please take a look at
Test parameters.

As mentioned earlier, it inherits from the avocado.core.mux.MuxPlugin and the only thing it implements is
the argument parsing to get some input and a custom yaml parser (which is also capable of parsing json).

The YAML file is perfect for this task as it’s easily read by both, humans and machines. Let’s start with an example
(line numbers at the first columns are for documentation purposes only, they are not part of the multiplex file format):

1 hw:
2 cpu: !mux
3 intel:
4 cpu_CFLAGS: '-march=core2'
5 amd:
6 cpu_CFLAGS: '-march=athlon64'
7 arm:
8 cpu_CFLAGS: '-mabi=apcs-gnu -march=armv8-a -mtune=arm8'
9 disk: !mux

10 scsi:
11 disk_type: 'scsi'
12 virtio:
13 disk_type: 'virtio'
14 distro: !mux
15 fedora:
16 init: 'systemd'
17 mint:
18 init: 'systemv'
19 env: !mux
20 debug:
21 opt_CFLAGS: '-O0 -g'
22 prod:
23 opt_CFLAGS: '-O2'

Warning: On some architectures misbehaving versions of CYaml Python library were reported and Av-
ocado always fails with unacceptable character #x0000: control characters are not
allowed. To workaround this issue you need to either update the PyYaml to the version which works prop-
erly, or you need to remove the python2.7/site-packages/yaml/cyaml.py or disable CYaml import
in Avocado sources. For details check out the Github issue

There are couple of key=>value pairs (lines 4,6,8,11,13,. . .) and there are named nodes which define scope (lines
1,2,3,5,7,9,. . .). There are also additional flags (lines 2, 9, 14, 19) which modifies the behavior.

Nodes

They define context of the key=>value pairs allowing us to easily identify for what this values might be used for and
also it makes possible to define multiple values of the same keys with different scope.

Due to their purpose the YAML automatic type conversion for nodes names is disabled, so the value of node name is
always as written in the YAML file (unlike values, where yes converts to True and such).

Nodes are organized in parent-child relationship and together they create a tree. To view this structure use avocado
variants --tree -m <file>:

106 Chapter 18. Optional Plugins

https://github.com/avocado-framework/avocado/issues/1190

avocado Documentation, Release 63.0

run
hw

cpu
intel
amd
arm

disk
scsi
virtio

distro
fedora
mint

env
debug
prod

You can see that hw has 2 children cpu and disk. All parameters defined in parent node are inherited to children
and extended/overwritten by their values up to the leaf nodes. The leaf nodes (intel, amd, arm, scsi, . . .) are the
most important as after multiplexation they form the parameters available in tests.

Keys and Values

Every value other than dict (4,6,8,11) is used as value of the antecedent node.

Each node can define key/value pairs (lines 4,6,8,11,. . .). Additionally each children node inherits values of it’s parent
and the result is called node environment.

Given the node structure bellow:

devtools:
compiler: 'cc'
flags:

- '-O2'
debug: '-g'
fedora:

compiler: 'gcc'
flags:

- '-Wall'
osx:

compiler: 'clang'
flags:

- '-arch i386'
- '-arch x86_64'

And the rules defined as:

• Scalar values (Booleans, Numbers and Strings) are overwritten by walking from the root until the final node.

• Lists are appended (to the tail) whenever we walk from the root to the final node.

The environment created for the nodes fedora and osx are:

• Node //devtools/fedora environment compiler: 'gcc', flags: ['-O2', '-Wall']

• Node //devtools/osx environment compiler: 'clang', flags: ['-O2', '-arch
i386', '-arch x86_64']

Note that due to different usage of key and values in environment we disabled the automatic value conversion for keys
while keeping it enabled for values. This means that the value can be of any YAML supported value, eg. bool, None,

18.1. Optional Plugins 107

avocado Documentation, Release 63.0

list or custom type, while the key is always string.

Variants

In the end all leaves are gathered and turned into parameters, more specifically into AvocadoParams:

setup:
graphic:

user: "guest"
password: "pass"

text:
user: "root"
password: "123456"

produces [graphic, text]. In the test code you’ll be able to query only those leaves. Intermediary or root nodes
are available.

The example above generates a single test execution with parameters separated by path. But the most powerful
multiplexer feature is that it can generate multiple variants. To do that you need to tag a node whose children are ment
to be multiplexed. Effectively it returns only leaves of one child at the time.In order to generate all possible variants
multiplexer creates cartesian product of all of these variants:

cpu: !mux
intel:
amd:
arm:

fmt: !mux
qcow2:
raw:

Produces 6 variants:

/cpu/intel, /fmt/qcow2
/cpu/intel, /fmt/raw
...
/cpu/arm, /fmt/raw

The !mux evaluation is recursive so one variant can expand to multiple ones:

fmt: !mux
qcow: !mux

2:
2v3:

raw:

Results in:

/fmt/qcow2/2
/fmt/qcow2/2v3
/raw

Resolution order

You can see that only leaves are part of the test parameters. It might happen that some of these leaves contain different
values of the same key. Then you need to make sure your queries separate them by different paths. When the

108 Chapter 18. Optional Plugins

avocado Documentation, Release 63.0

path matches multiple results with different origin, an exception is raised as it’s impossible to guess which key was
originally intended.

To avoid these problems it’s recommended to use unique names in test parameters if possible, to avoid the mentioned
clashes. It also makes it easier to extend or mix multiple YAML files for a test.

For multiplex YAML files that are part of a framework, contain default configurations, or serve as plugin configurations
and other advanced setups it is possible and commonly desirable to use non-unique names. But always keep those
points in mind and provide sensible paths.

Multiplexer also supports default paths. By default it’s /run/* but it can be overridden by --mux-path, which
accepts multiple arguments. What it does it splits leaves by the provided paths. Each query goes one by one through
those sub-trees and first one to hit the match returns the result. It might not solve all problems, but it can help to
combine existing YAML files with your ones:

qa: # large and complex read-only file, content injected into /qa
tests:

timeout: 10
...

my_variants: !mux # your YAML file injected into /my_variants
short:

timeout: 1
long:

timeout: 1000

You want to use an existing test which uses params.get('timeout', '*'). Then you can use --mux-path
'/my_variants/*' '/qa/*' and it’ll first look in your variants. If no matches are found, then it would proceed
to /qa/*

Keep in mind that only slices defined in mux-path are taken into account for relative paths (the ones starting with *)

Injecting files

You can run any test with any YAML file by:

avocado run sleeptest.py --mux-yaml file.yaml

This puts the content of file.yaml into /run location, which as mentioned in previous section, is the default
mux-path path. For most simple cases this is the expected behavior as your files are available in the default path and
you can safely use params.get(key).

When you need to put a file into a different location, for example when you have two files and you don’t want the
content to be merged into a single place becoming effectively a single blob, you can do that by giving a name to your
YAML file:

avocado run sleeptest.py --mux-yaml duration:duration.yaml

The content of duration.yaml is injected into /run/duration. Still when keys from other files don’t clash,
you can use params.get(key) and retrieve from this location as it’s in the default path, only extended by the
duration intermediary node. Another benefit is you can merge or separate multiple files by using the same or
different name, or even a complex (relative) path.

Last but not least, advanced users can inject the file into whatever location they prefer by:

avocado run sleeptest.py --mux-yaml /my/variants/duration:duration.yaml

Simple params.get(key) won’t look in this location, which might be the intention of the test writer. There are
several ways to access the values:

18.1. Optional Plugins 109

avocado Documentation, Release 63.0

• absolute location params.get(key, '/my/variants/duration')

• absolute location with wildcards params.get(key, '/my/*) (or /*/duration/*. . .)

• set the mux-path avocado run ... --mux-path /my/* and use relative path

It’s recommended to use the simple injection for single YAML files, relative injection for multiple simple YAML files
and the last option is for very advanced setups when you either can’t modify the YAML files and you need to specify
custom resolution order or you are specifying non-test parameters, for example parameters for your plugin, which you
need to separate from the test parameters.

Special values

As you might have noticed, we are using mapping/dicts to define the structure of the params. To avoid surprises we
disallowed the smart typing of mapping keys so:

on: on

Won’t become True: True, but the key will be preserved as string on: True.

You might also want to use dict as values in your params. This is also supported but as we can’t easily distinguish
whether that value is a value or a node (structure), you have to either embed it into another object (list, ..) or you have
to clearly state the type (yaml tag !!python/dict). Even then the value won’t be a standard dictionary, but it’ll be
collections.OrderedDict and similarly to nodes structure all keys are preserved as strings and no smart type
detection is used. Apart from that it should behave similarly as dict, only you get the values ordered by the order they
appear in the file.

Multiple files

You can provide multiple files. In such scenario final tree is a combination of the provided files where later nodes with
the same name override values of the preceding corresponding node. New nodes are appended as new children:

file-1.yaml:
debug:

CFLAGS: '-O0 -g'
prod:

CFLAGS: '-O2'

file-2.yaml:
prod:

CFLAGS: '-Os'
fast:

CFLAGS: '-Ofast'

results in:

debug:
CFLAGS: '-O0 -g'

prod:
CFLAGS: '-Os' # overriden

fast:
CFLAGS: '-Ofast' # appended

It’s also possible to include existing file into another a given node in another file. This is done by the !include : $path
directive:

110 Chapter 18. Optional Plugins

avocado Documentation, Release 63.0

os:
fedora:

!include : fedora.yaml
gentoo:

!include : gentoo.yaml

Warning: Due to YAML nature, it’s mandatory to put space between !include and the colon (:) that must follow
it.

The file location can be either absolute path or relative path to the YAML file where the !include is called (even when
it’s nested).

Whole file is merged into the node where it’s defined.

Advanced YAML tags

There are additional features related to YAML files. Most of them require values separated by ":". Again, in all such
cases it’s mandatory to add a white space (" ") between the tag and the ":", otherwise ":" is part of the tag name
and the parsing fails.

!include

Includes other file and injects it into the node it’s specified in:

my_other_file:
!include : other.yaml

The content of /my_other_file would be parsed from the other.yaml. It’s the hardcoded equivalent of the -m
$using:$path.

Relative paths start from the original file’s directory.

!using

Prepends path to the node it’s defined in:

!using : /foo
bar:

!using : baz

bar is put into baz becoming /baz/bar and everything is put into /foo. So the final path of bar is /foo/baz/
bar.

!remove_node

Removes node if it existed during the merge. It can be used to extend incompatible YAML files:

18.1. Optional Plugins 111

avocado Documentation, Release 63.0

os:
fedora:
windows:

3.11:
95:

os:
!remove_node : windows
windows:

win3.11:
win95:

Removes the windows node from structure. It’s different from filter-out as it really removes the node (and all children)
from the tree and it can be replaced by you new structure as shown in the example. It removes windows with all
children and then replaces this structure with slightly modified version.

As !remove_node is processed during merge, when you reverse the order, windows is not removed and you end-up
with /windows/{win3.11,win95,3.11,95} nodes.

!remove_value

It’s similar to !remove_node only with values.

!mux

Children of this node will be multiplexed. This means that in first variant it’ll return leaves of the first child, in second
the leaves of the second child, etc. Example is in section Variants

!filter-only

Defines internal filters. They are inherited by children and evaluated during multiplexation. It allows one to specify
the only compatible branch of the tree with the current variant, for example:

cpu:
arm:

!filter-only : /disk/virtio
disk:

virtio:
scsi:

will skip the [arm, scsi] variant and result only in [arm, virtio]

_Note: It’s possible to use !filter-only multiple times with the same parent and all allowed variants will be
included (unless they are filtered-out by !filter-out)_

_Note2: The evaluation order is 1. filter-out, 2. filter-only. This means when you booth filter-out and filter-only a
branch it won’t take part in the multiplexed variants._

!filter-out

Similarly to !filter-only only it skips the specified branches and leaves the remaining ones. (in the same example the
use of !filter-out : /disk/scsi results in the same behavior). The difference is when a new disk type is
introduced, !filter-only still allows just the specified variants, while !filter-out only removes the specified
ones.

112 Chapter 18. Optional Plugins

avocado Documentation, Release 63.0

As for the speed optimization, currently Avocado is strongly optimized towards fast !filter-out so it’s highly
recommended using them rather than !filter-only, which takes significantly longer to process.

Complete example

Let’s take a second look at the first example:

1 hw:
2 cpu: !mux
3 intel:
4 cpu_CFLAGS: '-march=core2'
5 amd:
6 cpu_CFLAGS: '-march=athlon64'
7 arm:
8 cpu_CFLAGS: '-mabi=apcs-gnu -march=armv8-a -mtune=arm8'
9 disk: !mux

10 scsi:
11 disk_type: 'scsi'
12 virtio:
13 disk_type: 'virtio'
14 distro: !mux
15 fedora:
16 init: 'systemd'
17 mint:
18 init: 'systemv'
19 env: !mux
20 debug:
21 opt_CFLAGS: '-O0 -g'
22 prod:
23 opt_CFLAGS: '-O2'

After filters are applied (simply removes non-matching variants), leaves are gathered and all variants are generated:

$ avocado variants -m selftests/.data/mux-environment.yaml
Variants generated:
Variant 1: /hw/cpu/intel, /hw/disk/scsi, /distro/fedora, /env/debug
Variant 2: /hw/cpu/intel, /hw/disk/scsi, /distro/fedora, /env/prod
Variant 3: /hw/cpu/intel, /hw/disk/scsi, /distro/mint, /env/debug
Variant 4: /hw/cpu/intel, /hw/disk/scsi, /distro/mint, /env/prod
Variant 5: /hw/cpu/intel, /hw/disk/virtio, /distro/fedora, /env/debug
Variant 6: /hw/cpu/intel, /hw/disk/virtio, /distro/fedora, /env/prod
Variant 7: /hw/cpu/intel, /hw/disk/virtio, /distro/mint, /env/debug
Variant 8: /hw/cpu/intel, /hw/disk/virtio, /distro/mint, /env/prod
Variant 9: /hw/cpu/amd, /hw/disk/scsi, /distro/fedora, /env/debug
Variant 10: /hw/cpu/amd, /hw/disk/scsi, /distro/fedora, /env/prod
Variant 11: /hw/cpu/amd, /hw/disk/scsi, /distro/mint, /env/debug
Variant 12: /hw/cpu/amd, /hw/disk/scsi, /distro/mint, /env/prod
Variant 13: /hw/cpu/amd, /hw/disk/virtio, /distro/fedora, /env/debug
Variant 14: /hw/cpu/amd, /hw/disk/virtio, /distro/fedora, /env/prod
Variant 15: /hw/cpu/amd, /hw/disk/virtio, /distro/mint, /env/debug
Variant 16: /hw/cpu/amd, /hw/disk/virtio, /distro/mint, /env/prod
Variant 17: /hw/cpu/arm, /hw/disk/scsi, /distro/fedora, /env/debug
Variant 18: /hw/cpu/arm, /hw/disk/scsi, /distro/fedora, /env/prod
Variant 19: /hw/cpu/arm, /hw/disk/scsi, /distro/mint, /env/debug
Variant 20: /hw/cpu/arm, /hw/disk/scsi, /distro/mint, /env/prod
Variant 21: /hw/cpu/arm, /hw/disk/virtio, /distro/fedora, /env/debug
Variant 22: /hw/cpu/arm, /hw/disk/virtio, /distro/fedora, /env/prod

(continues on next page)

18.1. Optional Plugins 113

avocado Documentation, Release 63.0

(continued from previous page)

Variant 23: /hw/cpu/arm, /hw/disk/virtio, /distro/mint, /env/debug
Variant 24: /hw/cpu/arm, /hw/disk/virtio, /distro/mint, /env/prod

Where the first variant contains:

/hw/cpu/intel/ => cpu_CFLAGS: -march=core2
/hw/disk/ => disk_type: scsi
/distro/fedora/ => init: systemd
/env/debug/ => opt_CFLAGS: -O0 -g

The second one:

/hw/cpu/intel/ => cpu_CFLAGS: -march=core2
/hw/disk/ => disk_type: scsi
/distro/fedora/ => init: systemd
/env/prod/ => opt_CFLAGS: -O2

From this example you can see that querying for /env/debug works only in the first variant, but returns nothing in
the second variant. Keep this in mind and when you use the !mux flag always query for the pre-mux path, /env/*
in this example.

18.1.5 PICT Varianter plugin

avocado_varianter_pict

This plugin uses a third-party tool to provide variants created by “Pair-Wise” algorithms, also known as Combinatorial
Independent Testing.

Installing PICT

PICT is a free software (MIT licensed) tool that implements combinatorial testing. More information about it can be
found at https://github.com/Microsoft/pict/ .

If you’re building from sources, make sure you have a C++ compiler such as GCC or clang, and make. The included
Makefile should work out of the box and give you a pict binary.

Then copy the pict binary to a location in your $PATH. Alternatively, you may use the plugin --pict-binary
command line option to provide a specific location of the pict binary, but that is not as convenient as having it on your
$PATH.

Using the PICT Varianter Plugin

The following listing is a sample (simple) PICT file:

arch: intel, amd
block_driver: scsi, ide, virtio
net_driver: rtl8139, e1000, virtio
guest: windows, linux
host: rhel6, rhel7, rhel8

To list the variants generated with the default combination order (2, that is, do a pairwise idenpendent combinatorial
testing):

114 Chapter 18. Optional Plugins

https://github.com/Microsoft/pict/

avocado Documentation, Release 63.0

$ avocado variants --pict-parameter-file=params.pict
Pict Variants (11):
Variant amd-scsi-rtl8139-windows-rhel6-acff: /run
...
Variant amd-ide-e1000-linux-rhel6-eb43: /run

To list the variants generated with a 3-way combination:

$ avocado variants --pict-parameter-file=examples/params.pict \
--pict-order-of-combinations=3

Pict Variants (28):
Variant intel-ide-virtio-windows-rhel7-aea5: /run
...
Variant intel-scsi-e1000-linux-rhel7-9f61: /run

To run tests, just replace the variants avocado command for run:

$ avocado run --pict-parameter-file=params.pict /bin/true

The tests given in the command line should then be executed with all variants produced by the combinatorial algorithm
implemented by PICT.

18.1.6 YAML Loader (yaml_loader)

This plugin is related to Yaml_to_mux plugin and it understands the same content, only it works on loader-level, rather
than on test variants level. The result is that this plugin tries to open the test reference as if it was a file specifying
variants and if it succeeds it iterates through variants and looks for test_reference entries. On success it attempts to
discover the reference using either loader defined by test_reference_resolver_class or it fall-backs to FileLoader when
not specified. Then it assigns the current variant’s params to all of the discovered tests. This way one can freely assign
various variants to different tests.

Currently supported special keys are:

• test_reference - reference to be discovered as test

• test_reference_resolver_class - loadable location of a loader class to be used to discover the
test_reference

• test_reference_resolver_args - those arguments will override the avocado arguments passed to the
test_resolver_class (only resolver args will be modified)

• test_reference_resolver_extra - extra_params to be passed to the test_resolver_class.

• mux_suite_test_name_prefix - test name prefix to be added to each discovered test (is useful to distin-
guish between different variants of the same test)

Keep in mind YAML files (in Avocado) are ordered, therefor variant name won’t re-arrange the test order. The only
exception is when you use the same variant name twice, then the second one will get merged into the first one.

Also note that in case of no test_reference or just when no tests are discovered in the current variant, there is no error,
no warning and the loader reports the discovered tests (if any) without the variant which did not produced any tests.

The simplest way to learn about this plugin is to look at examples in examples/yaml_to_mux_loader/.

18.1.7 Golang Plugin

This optional plugin enables Avocado to list and run tests written using the Go testing package.

18.1. Optional Plugins 115

https://golang.org/pkg/testing/

avocado Documentation, Release 63.0

To install the Golang plugin from pip, use:

$ sudo pip install avocado-framework-plugin-golang

After installed, you can list/run Golang tests providing the package name:

~$ avocado list golang.org/x/text/unicode/norm
GOLANG golang.org/x/text/unicode/norm:TestFlush
GOLANG golang.org/x/text/unicode/norm:TestInsert
GOLANG golang.org/x/text/unicode/norm:TestDecomposition
GOLANG golang.org/x/text/unicode/norm:TestComposition
GOLANG golang.org/x/text/unicode/norm:TestProperties
GOLANG golang.org/x/text/unicode/norm:TestIterNext
GOLANG golang.org/x/text/unicode/norm:TestIterSegmentation
GOLANG golang.org/x/text/unicode/norm:TestPlaceHolder
GOLANG golang.org/x/text/unicode/norm:TestDecomposeSegment
GOLANG golang.org/x/text/unicode/norm:TestFirstBoundary
GOLANG golang.org/x/text/unicode/norm:TestNextBoundary
GOLANG golang.org/x/text/unicode/norm:TestDecomposeToLastBoundary
GOLANG golang.org/x/text/unicode/norm:TestLastBoundary
GOLANG golang.org/x/text/unicode/norm:TestSpan
GOLANG golang.org/x/text/unicode/norm:TestIsNormal
GOLANG golang.org/x/text/unicode/norm:TestIsNormalString
GOLANG golang.org/x/text/unicode/norm:TestAppend
GOLANG golang.org/x/text/unicode/norm:TestAppendString
GOLANG golang.org/x/text/unicode/norm:TestBytes
GOLANG golang.org/x/text/unicode/norm:TestString
GOLANG golang.org/x/text/unicode/norm:TestLinking
GOLANG golang.org/x/text/unicode/norm:TestReader
GOLANG golang.org/x/text/unicode/norm:TestWriter
GOLANG golang.org/x/text/unicode/norm:TestTransform
GOLANG golang.org/x/text/unicode/norm:TestTransformNorm
GOLANG golang.org/x/text/unicode/norm:TestCharacterByCharacter
GOLANG golang.org/x/text/unicode/norm:TestStandardTests
GOLANG golang.org/x/text/unicode/norm:TestPerformance

And the Avocado test reference syntax to filter the tests you want to execute is also available in this plugin:

~$ avocado list golang.org/x/text/unicode/norm:TestTransform
GOLANG golang.org/x/text/unicode/norm:TestTransform
GOLANG golang.org/x/text/unicode/norm:TestTransformNorm

To run the tests, just switch from list to run:

~$ avocado run golang.org/x/text/unicode/norm:TestTransform
JOB ID : aa6e36547ba304fd724779eff741b6180ee78a54
JOB LOG : $HOME/avocado/job-results/job-2017-10-06T16.06-aa6e365/job.log
(1/2) golang.org/x/text/unicode/norm:TestTransform: PASS (1.89 s)
(2/2) golang.org/x/text/unicode/norm:TestTransformNorm: PASS (1.87 s)

RESULTS : PASS 2 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 4.61 s
JOB HTML : $HOME/avocado/job-results/job-2017-10-06T16.06-aa6e365/results.html

The content of the individual tests output is recorded in the default location:

~$ head ~/avocado/job-results/latest/test-results/1-golang.org_x_text_unicode_norm_
→˓TestTransform/debug.log
16:06:53 INFO | Running '/usr/bin/go test -v golang.org/x/text/unicode/norm -run
→˓TestTransform' (continues on next page)

116 Chapter 18. Optional Plugins

avocado Documentation, Release 63.0

(continued from previous page)

16:06:55 DEBUG| [stdout] === RUN TestTransform
16:06:55 DEBUG| [stdout] --- PASS: TestTransform (0.00s)
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0/fn
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0/NFD
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0/NFKC
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/0/NFKD
16:06:55 DEBUG| [stdout] === RUN TestTransformNorm/NFC/1

18.1.8 GLib Plugin

This optional plugin enables Avocado to list and run tests written using the GLib Test Framework.

To list the tests, just provide the test file path:

$ avocado list --loaders glib -- tests/check-qnum
GLIB tests/check-qnum:/qnum/from_int
GLIB tests/check-qnum:/qnum/from_uint
GLIB tests/check-qnum:/qnum/from_double
GLIB tests/check-qnum:/qnum/from_int64
GLIB tests/check-qnum:/qnum/get_int
GLIB tests/check-qnum:/qnum/get_uint
GLIB tests/check-qnum:/qnum/to_qnum
GLIB tests/check-qnum:/qnum/to_string

Notice that you have to be explicit about the test loader you’re using, otherwise, since the test files are executable
binaries, the FileLoader will report the file as a SIMPLE test, making the whole test suite to be executed as one test
only from the Avocado perspective.

The Avocado test reference syntax to filter the tests you want to execute is also available in this plugin:

$ avocado list --loaders glib -- tests/check-qnum:int
GLIB tests/check-qnum:/qnum/from_int
GLIB tests/check-qnum:/qnum/from_uint
GLIB tests/check-qnum:/qnum/from_int64
GLIB tests/check-qnum:/qnum/get_int
GLIB tests/check-qnum:/qnum/get_uint

To run the tests, just switch from list to run:

$ avocado run --loaders glib -- tests/check-qnum:int
JOB ID : 380a2b3d65b3fce9f8062d84f8635712d6e03133
JOB LOG : $HOME/avocado/job-results/job-2018-02-23T18.02-380a2b3/job.log
(1/5) tests/check-qnum:/qnum/from_int: PASS (0.03 s)
(2/5) tests/check-qnum:/qnum/from_uint: PASS (0.03 s)
(3/5) tests/check-qnum:/qnum/from_int64: PASS (0.04 s)
(4/5) tests/check-qnum:/qnum/get_int: PASS (0.03 s)
(5/5) tests/check-qnum:/qnum/get_uint: PASS (0.03 s)

RESULTS : PASS 5 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0 | CANCEL 0
JOB TIME : 0.46 s
JOB HTML : $HOME/avocado/job-results/job-2018-02-23T18.02-380a2b3/results.html

18.1. Optional Plugins 117

https://developer.gnome.org/glib/stable/glib-Testing.html

avocado Documentation, Release 63.0

18.1.9 Avocado-ec2 Plugin

This plugin allows you to run tests on Amazon EC2 instances. Details available here

18.1.10 Azure Plugin

This plugin allows you to run tests on Microsoft Azure Virtual Machine instances. Details available here

118 Chapter 18. Optional Plugins

https://github.com/avocado-framework/avocado-ec2
https://github.com/yuxisun1217/avocado-azure

CHAPTER 19

Advanced Topics and Maintenance

19.1 Reference Guide

This guide presents information on the Avocado basic design and its internals.

19.1.1 Job, test and identifiers

Job ID

The Job ID is a random SHA1 string that uniquely identifies a given job.

The full form of the SHA1 string is used is most references to a job:

$ avocado run sleeptest.py
JOB ID : 49ec339a6cca73397be21866453985f88713ac34
...

But a shorter version is also used at some places, such as in the job results location:

JOB LOG : $HOME/avocado/job-results/job-2015-06-10T10.44-49ec339/job.log

Test References

A Test Reference is a string that can be resolved into (interpreted as) one or more tests by the Avocado Test Resolver. A
given resolver plugin is free to interpret a test reference, it is completely abstract to the other components of Avocado.

Note: Mapping the Test References to tests can be affected by command-line switches like –external-runner, which
completelly changes the meaning of the given strings.

119

avocado Documentation, Release 63.0

Test Name

A test name is an arbitrarily long string that unambiguously points to the source of a single test. In other words the
Avocado Test Resolver, as configured for a particular job, should return one and only one test as the interpretation of
this name.

This name can be as specific as necessary to make it unique. Therefore it can contain an arbitrary number of variables,
prefixes, suffixes, tags, etc. It all depends on user preferences, what is supported by Avocado via its Test Resolvers
and the context of the job.

The output of the Test Resolver when resolving Test References should always be a list of unambiguous Test Names
(for that particular job).

Notice that although the Test Name has to be unique, one test can be run more than once inside a job.

By definition, a Test Name is a Test Reference, but the reciprocal is not necessarily true, as the latter can represent
more than one test.

Examples of Test Names:

'/bin/true'
'passtest.py:Passtest.test'
'file:///tmp/passtest.py:Passtest.test'
'multiple_tests.py:MultipleTests.test_hello'
'type_specific.io-github-autotest-qemu.systemtap_tracing.qemu.qemu_free'

Variant IDs

The varianter component creates different sets of variables (known as “variants”), to allow tests to be run individually
in each of them.

A Variant ID is an arbitrary and abstract string created by the varianter plugin to identify each variant. It should be
unique per variant inside a set. In other words, the varianter plugin generates a set of variants, identified by unique
IDs.

A simpler implementation of the varianter uses serial integers as Variant IDs. A more sophisticated implementation
could generate Variant IDs with more semantic, potentially representing their contents.

Test ID

A test ID is a string that uniquely identifies a test in the context of a job. When considering a single job, there are no
two tests with the same ID.

A test ID should encapsulate the Test Name and the Variant ID, to allow direct identification of a test. In other words,
by looking at the test ID it should be possible to identify:

• What’s the test name

• What’s the variant used to run this test (if any)

Test IDs don’t necessarily keep their uniqueness properties when considered outside of a particular job, but two
identical jobs run in the exact same environment should generate a identical sets of Test IDs.

Syntax:

<unique-id>-<test-name>[;<variant-id>]

Example of Test IDs:

120 Chapter 19. Advanced Topics and Maintenance

avocado Documentation, Release 63.0

'1-/bin/true'
'2-passtest.py:Passtest.test;quiet-'
'3-file:///tmp/passtest.py:Passtest.test'
'4-multiple_tests.py:MultipleTests.test_hello;maximum_debug-df2f'
'5-type_specific.io-github-autotest-qemu.systemtap_tracing.qemu.qemu_free'

19.1.2 Test Types

Avocado at its simplest configuration can run three different types of tests1. You can mix and match those in a single
job.

Instrumented

These are tests written in Python or BASH with the Avocado helpers that use the Avocado test API.

To be more precise, the Python file must contain a class derived from avocado.test.Test. This means that an
executable written in Python is not always an instrumented test, but may work as a simple test.

The instrumented tests allows the writer finer control over the process including logging, test result status and other
more sophisticated test APIs.

Test statuses PASS, WARN, START and SKIP are considered as successful builds. The ABORT, ERROR, FAIL,
ALERT, RUNNING, NOSTATUS and INTERRUPTED are considered as failed ones.

Python unittest

The discovery of classical python unittest is also supported, although unlike python unittest we still use static analysis
to get individual tests so dynamically created cases are not recognized. Also note that test result SKIP is reported as
CANCEL in Avocado as SKIP test meaning differs from our definition. Apart from that there should be no surprises
when running unittests via Avocado.

Simple

Any executable in your box. The criteria for PASS/FAIL is the return code of the executable. If it returns 0, the test
PASSes, if it returns anything else, it FAILs.

19.1.3 Test Statuses

Avocado sticks to the following definitions of test statuses:

• `PASS`: The test passed, which means all conditions being tested have passed.

• `FAIL`: The test failed, which means at least one condition being tested has failed. Ideally, it should mean a
problem in the software being tested has been found.

• `ERROR`: An error happened during the test execution. This can happen, for example, if there’s a bug in the
test runner, in its libraries or if a resource breaks unexpectedly. Uncaught exceptions in the test code will also
result in this status.

• `SKIP`: The test runner decided a requested test should not be run. This can happen, for example, due to
missing requirements in the test environment or when there’s a job timeout.

1 Avocado plugins can introduce additional test types.

19.1. Reference Guide 121

avocado Documentation, Release 63.0

19.1.4 Libraries and APIs

The Avocado libraries and its APIs are a big part of what Avocado is.

But, to avoid having any issues you should understand what parts of the Avocado libraries are intended for test writers
and their respective API stability promises.

Test APIs

At the most basic level there’s the Test APIs which you should use when writing tests in Python and planning to make
use of any other utility library.

The Test APIs can be found in the avocado main module, and its most important member is the avocado.Test
class. By conforming to the avocado.Test API, that is, by inheriting from it, you can use the full set of utility
libraries.

The Test APIs are guaranteed to be stable across a single major version of Avocado. That means that a test written for
a given version of Avocado should not break on later minor versions because of Test API changes.

Utility Libraries

There are also a large number of utility libraries that can be found under the avocado.utils namespace. These
are very general in nature and can help you speed up your test development.

The utility libraries may receive incompatible changes across minor versions, but these will be done in a staged fashion.
If a given change to an utility library can cause test breakage, it will first be documented and/or deprecated, and only
on the next subsequent minor version it will actually be changed.

What this means is that upon updating to later minor versions of Avocado, you should look at the Avocado Release
Notes for changes that may impact your tests.

Core (Application) Libraries

Finally, everything under avocado.core is part of the application’s infrastructure and should not be used by tests.

Extensions and Plugins can use the core libraries, but API stability is not guaranteed at any level.

19.1.5 Test Resolution

When you use the Avocado runner, frequently you’ll provide paths to files, that will be inspected, and acted upon
depending on their contents. The diagram below shows how Avocado analyzes a file and decides what to do with it:

It’s important to note that the inspection mechanism is safe (that is, python classes and files are not actually loaded
and executed on discovery and inspection stage). Due to the fact Avocado doesn’t actually load the code and classes,
the introspection is simple and will not catch things like buggy test modules, missing imports and miscellaneous bugs
in the code you want to list or run. We recommend only running tests from sources you trust, use of static checking
and reviews in your test development process.

Due to the simple test inspection mechanism, avocado will not recognize test classes that inherit from a class derived
from avocado.Test. Please refer to the Writing Avocado Tests documentation on how to use the tags functionality
to mark derived classes as avocado test classes.

122 Chapter 19. Advanced Topics and Maintenance

avocado Documentation, Release 63.0

19.1.6 Results Specification

On a machine that executed tests, job results are available under [job-results]/job-[timestamp]-[short
job ID], where logdir is the configured Avocado logs directory (see the data dir plugin), and the directory name
includes a timestamp, such as job-2014-08-12T15.44-565e8de. A typical results directory structure can be
seen below

$HOME/avocado/job-results/job-2014-08-13T00.45-4a92bc0/
id
jobdata

args
cmdline
config
multiplex
pwd
test_references

job.log
results.json
results.xml
sysinfo

post
brctl_show
cmdline
cpuinfo
current_clocksource
df_-mP

(continues on next page)

19.1. Reference Guide 123

avocado Documentation, Release 63.0

(continued from previous page)

dmesg_-c
dmidecode
fdisk_-l
gcc_--version
hostname
ifconfig_-a
interrupts
ip_link
ld_--version
lscpu
lspci_-vvnn
meminfo
modules
mount
mounts
numactl_--hardware_show
partitions
scaling_governor
uname_-a
uptime
version

pre
brctl_show
cmdline
cpuinfo
current_clocksource
df_-mP
dmesg_-c
dmidecode
fdisk_-l
gcc_--version
hostname
ifconfig_-a
interrupts
ip_link
ld_--version
lscpu
lspci_-vvnn
meminfo
modules
mount
mounts
numactl_--hardware_show
partitions
scaling_governor
uname_-a
uptime
version

profile
test-results

tests
sleeptest.py.1

data
debug.log
sysinfo

post
pre

(continues on next page)

124 Chapter 19. Advanced Topics and Maintenance

avocado Documentation, Release 63.0

(continued from previous page)

sleeptest.py.2
data
debug.log
sysinfo

post
pre

sleeptest.py.3
data
debug.log
sysinfo

post
pre

22 directories, 65 files

From what you can see, the results dir has:

1. A human readable id in the top level, with the job SHA1.

2. A human readable job.log in the top level, with human readable logs of the task

3. Subdirectory jobdata, that contains machine readable data about the job.

4. A machine readable results.xml and results.json in the top level, with a summary of the job infor-
mation in xUnit/json format.

5. A top level sysinfo dir, with sub directories pre, post and profile, that store sysinfo files pre/post/during
job, respectively.

6. Subdirectory test-results, that contains a number of subdirectories (filesystem-friendly test ids). Those
test ids represent instances of test execution results.

Test execution instances specification

The instances should have:

1. A top level human readable job.log, with job debug information

2. A sysinfo subdir, with sub directories pre, post and profile that store sysinfo files pre test, post test
and profiling info while the test was running, respectively.

3. A data subdir, where the test can output a number of files if necessary.

Test execution environment

Each test is executed in a separate process. Due to how the underlying operating system works, a lot of the attributes
of the parent process (the Avocado test runner) are passed down to the test process.

On GNU/Linux systems, a child process should be “an exact duplicate of the parent process, except” some items that
are documented in the fork(2) man page.

Besides those operating system exceptions, the Avocado test runner changes the test process in the following ways:

1. The standard input (STDIN) is set to a null device. This is truth both for sys.stdin and for file descrip-
tor 0. Both will point to the same open null device file.

2. The standard output (STDOUT), as in sys.stdout, is redirected so that it doesn’t interfere with the test
runner’s own output. All content written to the test’s sys.stdout will be available in the logs under the
output prefix.

19.1. Reference Guide 125

avocado Documentation, Release 63.0

Warning: The file descriptor 1 (AKA /dev/stdout, AKA /proc/self/fd/1, etc) is not currently
redirected for INSTRUMENTED tests. Any attempt to write directly to the file descriptor will interfere with
the runner’s own output stream. This behavior will be addressed in a future version.

3. The standard error (STDERR), as in sys.stderr, is redirected so that it doesn’t interfere with the test runner’s
own errors. All content written to the test’s sys.stderrwill be available in the logs under the output prefix.

Warning: The file descriptor 2 (AKA /dev/stderr, AKA /proc/self/fd/2, etc) is not currently
redirected for INSTRUMENTED tests. Any attempt to write directly to the file descriptor will interfere with
the runner’s own error stream. This behavior will be addressed in a future version.

4. A custom handler for signal SIGTERM which will simply raise an exception (with the appropriate message) to
be handled by the Avocado test runner, stating the fact that the test was interrupted by such a signal.

Tip: By following the backtrace that is given alongside the in the test log (look for RuntimeError: Test
interrupted by SIGTERM) a user can quickly grasp at which point the test was interrupted.

Note: If the test handles SIGTERM differently and doesn’t finish the test process quickly enough, it will receive
then a SIGKILL which is supposed to definitely end the test process.

5. A number of environment variables that are set by Avocado, all prefixed with AVOCADO_.

If you want to see for yourself what is described here, you may want to run the example test test_env.py and
examine its log messages.

19.1.7 Pre and post plugins

Avocado provides interfaces with which custom plugins can register to be called at various times. For instance, it’s
possible to trigger custom actions before and after the execution of a job, or before and after the execution of the tests
from a job test suite.

Let’s discuss each interface briefly.

Before and after jobs

Avocado supports plug-ins which are (guaranteed to be) executed before the first test and after all tests
finished. The interfaces are avocado.core.plugin_interfaces.JobPre and avocado.core.
plugin_interfaces.JobPost, respectively.

The pre method of each installed plugin of type job.prepost will be called by the run command, that is, anytime
an avocado run <valid_test_reference> command is executed.

Note: Conditions such as the SystemExit or KeyboardInterrupt execeptions being raised can interrupt the
execution of those plugins.

Then, immediately after that, the job’s run method is called, which attempts to run all job phases, from test suite
creation to test execution.

126 Chapter 19. Advanced Topics and Maintenance

avocado Documentation, Release 63.0

Unless a SystemExit or KeyboardInterrupt is raised, or yet another major external event (like a system
condition that Avocado can not control) it will attempt to run the post methods of all the installed plugins of type
job.prepost. This even includes job executions where the pre plugin executions were interrupted.

Before and after the execution of tests

If you followed the previous section, you noticed that the job’s run method was said to run all the test phases. Here’s
a sequence of the job phases:

1. Creation of the test suite

2. Pre tests hook

3. Tests execution

4. Post tests hook

Plugin writers can have their own code called at Avocado during a job by writing a that will be called at
phase number 2 (pre_tests) by writing a method according to the avocado.core.plugin_interfaces.
JobPreTests() interface. Accordingly, plugin writers can have their own called at phase num-
ber 4 (post_tests) by writing a method according to the avocado.core.plugin_interfaces.
JobPostTests() interface.

Note that there’s no guarantee that all of the first 3 job phases will be executed, so a failure in phase 1
(create_test_suite), may prevent the phase 2 (pre_tests) and/or 3 (run_tests) from from being ex-
ecuted.

Now, no matter what happens in the attempted execution of job phases 1 through 3, job phase 4 (post_tests) will
be attempted to be executed. To make it extra clear, as long as the Avocado test runner is still in execution (that is, has
not been terminated by a system condition that it can not control), it will execute plugin’s post_tests methods.

As a concrete example, a plugin’ post_tests method would not be executed after a SIGKILL is sent to the
Avocado test runner on phases 1 through 3, because the Avocado test runner would be promptly interrupted. But, a
SIGTERM and KeyboardInterrupt sent to the Avocado test runner under phases 1 though 3 would still cause the
test runner to run post_tests (phase 4). Now, if during phase 4 a KeyboardInterrupt or SystemExit is
received, the remaining plugins’ post_tests methods will NOT be executed.

Jobscripts plugin

Avocado ships with a plugin (installed by default) that allows running scripts before and after the actual execution of
Jobs. A user can be sure that, when a given “pre” script is run, no test in that job has been run, and when the “post”
scripts are run, all the tests in a given job have already finished running.

Configuration

By default, the script directory location is:

/etc/avocado/scripts/job

Inside that directory, that is a directory for pre-job scripts:

/etc/avocado/scripts/job/pre.d

And for post-job scripts:

19.1. Reference Guide 127

avocado Documentation, Release 63.0

/etc/avocado/scripts/job/post.d

All the configuration about the Pre/Post Job Scripts are placed under the avocado.plugins.jobscripts config
section. To change the location for the pre-job scripts, your configuration should look something like this:

[plugins.jobscripts]
pre = /my/custom/directory/for/pre/job/scripts/

Accordingly, to change the location for the post-job scripts, your configuration should look something like this:

[plugins.jobscripts]
post = /my/custom/directory/for/post/scripts/

A couple of other configuration options are available under the same section:

• warn_non_existing_dir: gives warnings if the configured (or default) directory set for either pre or post
scripts do not exist

• warn_non_zero_status: gives warnings if a given script (either pre or post) exits with non-zero status

Script Execution Environment

All scripts are run in separate process with some environment variables set. These can be used in your scripts in any
way you wish:

• AVOCADO_JOB_UNIQUE_ID: the unique job-id.

• AVOCADO_JOB_STATUS: the current status of the job.

• AVOCADO_JOB_LOGDIR: the filesystem location that holds the logs and various other files for a given job run.

Note: Even though these variables should all be set, it’s a good practice for scripts to check if they’re set before using
their values. This may prevent unintended actions such as writing to the current working directory instead of to the
AVOCADO_JOB_LOGDIR if this is not set.

Finally, any failures in the Pre/Post scripts will not alter the status of the corresponding jobs.

19.1.8 Job Cleanup

It’s possible to register a callback function that will be called when all the tests have finished running. This effectively
allows for a test job to clean some state it may have left behind.

At the moment, this feature is not intended to be used by test writers, but it’s seen as a feature for Avocado extensions
to make use.

To register a callback function, your code should put a message in a very specific format in the “runner queue”. The
Avocado test runner code will understand that this message contains a (serialized) function that will be called once all
tests finish running.

Example:

from avocado import Test

def my_cleanup(path_to_file):
if os.path.exists(path_to_file):

os.unlink(path_to_file)

(continues on next page)

128 Chapter 19. Advanced Topics and Maintenance

avocado Documentation, Release 63.0

(continued from previous page)

class MyCustomTest(Test):
...

cleanup_file = '/tmp/my-custom-state'
self.runner_queue.put({"func_at_exit": self.my_cleanup,

"args": (cleanup_file),
"once": True})

...

This results in the my_cleanup function being called with positional argument cleanup_file.

Because once was set to True, only one unique combination of function, positional arguments and keyword argu-
ments will be registered, not matter how many times they’re attempted to be registered. For more information check
avocado.utils.data_structures.CallbackRegister.register().

19.1.9 Docstring Directives Rules

Avocado INSTRUMENTED tests, those written in Python and using the avocado.Test API, can make use of
special directives specified as docstrings.

To be considered valid, the docstring must match this pattern: avocado.core.safeloader.
DOCSTRING_DIRECTIVE_RE_RAW .

An Avocado docstring directive has two parts:

1. The marker, which is the literal string :avocado:.

2. The content, a string that follows the marker, separated by at least one white space or tab.

The following is a list of rules that makes a docstring directive be a valid one:

• It should start with :avocado:, which is the docstring directive “marker”

• At least one whitespace or tab must follow the marker and preceed the docstring directive “content”

• The “content”, which follows the marker and the space, must begin with an alphanumeric character, that is,
characters within “a-z”, “A-Z” or “0-9”.

• After at least one alphanumeric character, the content may contain the following special symbols too: _, ,, =
and :.

• An end of string (or end of line) must immediately follow the content.

19.1.10 Signal Handlers

Avocado normal operation is related to run code written by users/test-writers. It means the test code can carry its own
handlers for different signals or even ignore then. Still, as the code is being executed by Avocado, we have to make
sure we will finish all the subprocesses we create before ending our execution.

Signals sent to the Avocado main process will be handled as follows:

• SIGSTP/Ctrl+Z: On SIGSTP, Avocado will pause the execution of the subprocesses, while the main process
will still be running, respecting the timeout timer and waiting for the subprocesses to finish. A new SIGSTP
will make the subprocesses to resume the execution.

• SIGINT/Ctrl+C: This signal will be forwarded to the test process and Avocado will wait until it’s finished. If
the test process does not finish after receiving a SIGINT, user can send a second SIGINT (after the 2 seconds
ignore period). The second SIGINT will make Avocado to send a SIGKILL to the whole subprocess tree and
then complete the main process execution.

19.1. Reference Guide 129

avocado Documentation, Release 63.0

• SIGTERM: This signal will make Avocado to terminate immediately. A SIGKILL will be sent to the whole
subprocess tree and the main process will exit without completing the execution. Notice that it’s a best-effort
attempt, meaning that in case of fork-bomb, newly created processes might still be left behind.

19.2 Contribution and Community Guide

Useful pointers on how to participate of the Avocado community and contribute.

19.2.1 Hacking and Using Avocado

Since version 0.31.0, our plugin system requires Setuptools entry points to be registered. If you’re hacking on Avocado
and want to use the same, possibly modified, source for running your tests and experiments, you may do so with one
additional step:

$ make develop

On POSIX systems this will create an “egg link” to your original source tree under “$HOME/.local/lib/pythonX.Y/site-
packages”. Then, on your original source tree, an “egg info” directory will be created, containing, among other things,
the Setuptools entry points mentioned before. This works like a symlink, so you only need to run this once (unless
you add a new entry-point, then you need to re-run it to make it available).

Avocado supports various plugins, which are distributed as separate projects, for example “avocado-vt” and “avocado-
virt”. These also need to be deployed and linked in order to work properly with the avocado from sources (installed
version works out of the box). To simplify this you can use make requirements-plugins from the main avocado project
to install requirements of the plugins and make link to link and develop the plugins. The workflow could be:

$ cd $AVOCADO_PROJECTS_DIR
$ git clone $AVOCADO_GIT
$ git clone $AVOCADO_PROJECT2
$ # Add more projects
$ cd avocado # go into the main avocado project dir
$ make requirements-plugins
$ make link

You should see the process and status for each directory.

19.2.2 Contact information

• Avocado-devel mailing list: https://www.redhat.com/mailman/listinfo/avocado-devel

• Avocado IRC channel: irc.oftc.net #avocado

19.2.3 Contributing to Avocado

Avocado uses github and the github pull request development model. You can find a primer on how to use github pull
requests here. Every Pull Request you send will be automatically tested by Travis CI and review will take place in the
Pull Request as well.

For people who don’t like the github development model, there is the option of sending the patches to the Mailing
List, following a workflow more traditional in Open Source development communities. The patches will be reviewed
in the Mailing List, should you opt for that. Then a maintainer will collect the patches, integrate them on a branch,
and then those patches will be submitted as a github Pull Request. This process tries to ensure that every contributed
patch goes through the CI jobs before it is considered good for inclusion.

130 Chapter 19. Advanced Topics and Maintenance

https://www.redhat.com/mailman/listinfo/avocado-devel
irc://irc.oftc.net/#avocado
https://help.github.com/articles/using-pull-requests
https://travis-ci.org/avocado-framework/avocado

avocado Documentation, Release 63.0

Git workflow

• Fork the repository in github.

• Clone from your fork:

$ git clone git@github.com:<username>/avocado.git

• Enter the directory:

$ cd avocado

• Create a remote, pointing to the upstream:

$ git remote add upstream git@github.com:avocado-framework/avocado.git

• Configure your name and e-mail in git:

$ git config --global user.name "Your Name"
$ git config --global user.email email@foo.bar

• Golden tip: never work on local branch master. Instead, create a new local branch and checkout to it:

$ git checkout -b my_new_local_branch

• Code and then commit your changes:

$ git add new-file.py
$ git commit -s
or "git commit -as" to commit all changes

• Write a good commit message, pointing motivation, issues that you’re addressing. Usually you should try to
explain 3 points in the commit message: motivation, approach and effects:

header <- Limited to 72 characters. No period.
<- Blank line

message <- Any number of lines, limited to 72 characters per line.
<- Blank line

Reference: <- External references, one per line (issue, trello, ...)
Signed-off-by: <- Signature and acknowledgment of licensing terms when

contributing to the project (created by git commit -s)

• Make sure your code is working (install your version of avocado, test your change, run make check to make
sure you didn’t introduce any regressions).

• Paste the job.log file content from the previous step in a pastebin service, like fpaste.org. If you have fpaste
installed, you can simply run:

$ fpaste ~/avocado/job-results/latest/job.log

• Rebase your local branch on top of upstream master:

$ git fetch
$ git rebase upstream/master
(resolve merge conflicts, if any)

• Push your commit(s) to your fork:

19.2. Contribution and Community Guide 131

avocado Documentation, Release 63.0

$ git push origin my_new_local_branch

• Create the Pull Request on github. Add the relevant information to the Pull Request description.

• In the Pull Request discussion page, comment with the link to the job.log output/file.

• Check if your Pull Request passes the CI (travis). Your Pull Request will probably be ignored until it’s all green.

Now you’re waiting for feedback on github Pull Request page. Once you get some, join the discussion, answer the
questions, make clear if you’re going to change the code based on some review and, if not, why. Feel free to disagree
with the reviewer, they probably have different use cases and opinions, which is expected. Try describing yours and
suggest other solutions, if necessary.

New versions of your code should not be force-updated (unless explicitly requested by the code reviewer). Instead,
you should:

• Create a new branch out of your previous branch:

$ git checkout my_new_local_branch
$ git checkout -b my_new_local_branch_v2

• Code, and amend the commit(s) and/or create new commits. If you have more than one commit in the PR, you
will probably need to rebase interactively to amend the right commits. git cola or git citool can be
handy here.

• Rebase your local branch on top of upstream master:

$ git fetch
$ git rebase upstream/master
(resolve merge conflicts, if any)

• Push your changes:

$ git push origin my_new_local_branch_v2

• Create a new Pull Request for this new branch. In the Pull Request description, point the previous Pull Request
and the changes the current Pull Request introduced when compared to the previous Pull Request(s).

• Close the previous Pull Request on github.

After your PR gets merged, you can sync the master branch on your local repository propagate the sync to the master
branch in your fork repository on github:

$ git checkout master
$ git pull upstream master
$ git push

From time to time, you can remove old branches to avoid pollution:

To list branches along with time reference:
$ git for-each-ref --sort='-authordate:iso8601' --format=' %(authordate:iso8601)%09
→˓%(refname)' refs/heads
To remove branches from your fork repository:
$ git push origin :my_old_branch

Signing commits

Optionally you can sign the commits using GPG signatures. Doing it is simple and it helps from unauthorized code
being merged without notice.

132 Chapter 19. Advanced Topics and Maintenance

avocado Documentation, Release 63.0

All you need is a valid GPG signature, git configuration, slightly modified workflow to use the signature and eventually
even setup in github so one benefits from the “nice” UI.

Get a GPG signature:

Google for howto, but generally it works like this
$ gpg --gen-key # defaults are usually fine (using expiration is recommended)
$ gpg --send-keys $YOUR_KEY # to propagate the key to outer world

Enable it in git:

$ git config --global user.signingkey $YOUR_KEY

(optional) Link the key with your GH account:

1. Login to github
2. Go to settings->SSH and GPG keys
3. Add New GPG key
4. run $(gpg -a --export $YOUR_EMAIL) in shell to see your key
5. paste the key there

Use it:

You can sign commits by using '-S'
$ git commit -S
You can sign merges by using '-S'
$ git merge -S

Warning: You can not use the merge button on github to do signed merges as github does not have your private
key.

Licensing

Except where otherwise indicated in a given source file, all original contributions to Avocado are licensed under the
GNU General Public License version 2 (GPLv2) or any later version.

By contributing you agree that these contributions are your own (or approved by your employer) and you grant a full,
complete, irrevocable copyright license to all users and developers of the Avocado project, present and future, pursuant
to the license of the project.

Code Review

Every single Pull Request in Avocado has to be reviewed by at least one other developer. All members of the core
team have permission to merge a Pull Request, but there are some conditions that have to be fulfilled before merging
the code:

• Pull Request has to pass the CI tests.

• One ‘Approved’ code review should be given.

• No explicit disapproval should be present.

Pull Requests failing in CI will not be merged, and reviews won’t be given to them until all the problems are sorted out.
In case of a weird failure, or false-negative (eg. due to too many commits in a single PR), please reach the developers
by @name/email/irc or other means.

19.2. Contribution and Community Guide 133

https://www.gnu.org/licenses/gpl-2.0.html

avocado Documentation, Release 63.0

While reviewing the code, one should:

• Verify that the code is sound and clean.

• Run the highest level of selftests per each new commit in the merge. The contrib/scripts/
avocado-check-pr.sh contrib script should simplify this step.

• Verify that code works to its purpose.

• Make sure the commits organization is proper (i.e. code is well organized in atomic commits, there’s no ex-
tra/unwanted commits, . . .).

• Provide an in-line feedback with explicit questions and/or requests of improvements.

• Provide a general feedback in the review message, being explicit about what’s expected for the next Pull Request
version, if that’s the case.

When the Pull Request is approved, the reviewer will merge the code or wait for someone with merge permission to
merge it.

Using avocado-check-pr.sh

The contrib/scripts/avocado-check-pr.sh script is here to simplify the per-commit-check.
You can simply prepare the merge and initiate AVOCADO_CHECK_LEVEL=99 contrib/scripts/
avocado-check-pr.sh to run all checks per each commit between your branch and the same branch on the
origin/master (you can specify different remote origin).

Use ./contrib/scripts/avocado-check-pr.sh -h to learn more about the options. I can
recommend: AVOCADO_PARALLEL_CHECK=yes AVOCADO_CHECK_LEVEL=99 ./contrib/scripts/
avocado-check-pr.sh -i -v and due to PARALLEL false-negatives running while :; do read
AAA; python -m unittest $AAA; done in second terminal to re-check potential failures.

Note: Before first use you might need to create ~/.config/github_checker.ini and fill github user/token
entries (while on it you can also specify some defaults)

19.2.4 Tests Repositories

We encourage you or your company to create public Avocado tests repositories so the community can also benefit of
your tests. We will be pleased to advertise your repository here in our documentation.

List of known community and third party maintained repositories:

• https://github.com/avocado-framework-tests/avocado-misc-tests: Community maintained Avocado miscella-
neous tests repository. There you will find, among others, performance tests like lmbench, stress, cpu
tests like ebizzy and generic tests like ltp. Some of them were ported from Autotest Client Tests repository.

• https://github.com/scylladb/scylla-cluster-tests: Avocado tests for Scylla Clusters. Those tests can automatically
create a scylla cluster, some loader machines and then run operations defined by the test writers, such as database
workloads.

134 Chapter 19. Advanced Topics and Maintenance

https://github.com/avocado-framework-tests/avocado-misc-tests
https://github.com/scylladb/scylla-cluster-tests

avocado Documentation, Release 63.0

19.3 Avocado development tips

19.3.1 Interrupting test

In case you want to “pause” the running test, you can use SIGTSTP (ctrl+z) signal sent to the main avocado process.
This signal is forwarded to test and it’s children processes. To resume testing you repeat the same signal.

Note: that the job/test timeouts are still enabled on stopped processes.

19.3.2 In tree utils

You can find handy utils in avocado.utils.debug:

measure_duration

Decorator can be used to print current duration of the executed function and accumulated duration of this decorated
function. It’s very handy when optimizing.

Usage:

from avocado.utils import debug
...
@debug.measure_duration
def your_function(...):

During the execution look for:

PERF: <function your_function at 0x29b17d0>: (0.1s, 11.3s)
PERF: <function your_function at 0x29b17d0>: (0.2s, 11.5s)

19.3.3 Line-profiler

You can measure line-by-line performance by using line_profiler. You can install it using pip:

pip install line_profiler

and then simply mark the desired function with @profile (no need to import it from anywhere). Then you execute:

kernprof -l -v ./scripts/avocado run ...

and when the process finishes you’ll see the profiling information. (sometimes the binary is called kernprof.py)

19.3.4 Remote debug with Eclipse

Eclipse is a nice debugging frontend which allows remote debugging. It’s very simple. The only thing you need is
Eclipse with pydev plugin. The simplest way is to use pip install pydevd and then you set the breakpoint by:

import pydevd
pydevd.settrace(host="$IP_ADDR_OF_ECLIPSE_MACHINE", stdoutToServer=False,
→˓stderrToServer=False, port=5678, suspend=True, trace_only_current_thread=False,
→˓overwrite_prev_trace=False, patch_multiprocessing=False)

19.3. Avocado development tips 135

avocado Documentation, Release 63.0

Before you run the code, you need to start the Eclipse’s debug server. Switch to Debug perspective (you might need
to open it first Window->Perspective->Open Perspective). Then start the server from Pydev->Start Debug Server.

Now whenever the pydev.settrace() code is executed, it contacts Eclipse debug server (port 8000 by default, don’t
forget to open it) and you can easily continue in execution. This works on every remote machine which has access to
your Eclipse’s port 8000 (you can override it).

19.3.5 Using Trello cards in Eclipse

Eclipse allows us to create tasks. They are pretty cool as you see the status (not started, started, current, done) and by
switching tasks it automatically resumes where you previously finished (opened files, . . .)

Avocado is planned using Trello, which is not yet supported by Eclipse. Anyway there is a way to
at least get read-only list of your commits. This guide is based on https://docs.google.com/document/d/
1jvmJcCStE6QkJ0z5ASddc3fNmJwhJPOFN7X9-GLyabM/ which didn’t work well with lables and descriptions. The
only difference is you need to use Query Pattern:

\"url\":\"https://trello.com/[^/]*/[^/]*/({Id}[^\"]+)({Description})\"

Setup Trello key:

1. Create a Trello account

2. Get (developer_key) here: https://trello.com/1/appKey/generate

3. Get user_token from following address (replace key with your key): https://trello.com/1/authorize?key=\protect\
T1\textdollardeveloper_key&name=Mylyn%20Tasks&expiration=never&response_type=token

4. Address with your assigned tasks (task_addr) is: https://trello.com/1/members/my/cards?key=developer_key&
token=\protect\T1\textdollaruser_token Open it in web browser and you should see [] or [$list_of_cards] with-
out any passwords.

Configure Eclipse:

1. We’re going to need Web Templates, which are not yet upstream. We need to use incubator version.

2. Help->Install New Software. . .

3. -> Add

4. Name: Incubator

5. Location: http://download.eclipse.org/mylyn/incubator/3.10

6. -> OK

7. Select Mylyn Tasks Connector: Web Templates (Advanced) (Incubation) (use filter text to find it)

8. Install it (Next->Agree->Next. . .)

9. Restart Eclipse

10. Open the Mylyn Team Repositories Window->Show View->Other. . . ->Mylyn->Team Repositories

11. Right click the Team Repositories and select New->Repository

12. Use Task Repository -> Next

13. Use Web Template (Advanced) -> Next

14. In the Properties for Task Repository dialog box, enter https://trello.com

15. In the Server field and give the repository a label (eg. Trello API).

16. In the Additional Settings section set applicationkey = $developer_key and userkey = $user_token.

136 Chapter 19. Advanced Topics and Maintenance

https://docs.google.com/document/d/1jvmJcCStE6QkJ0z5ASddc3fNmJwhJPOFN7X9-GLyabM/
https://docs.google.com/document/d/1jvmJcCStE6QkJ0z5ASddc3fNmJwhJPOFN7X9-GLyabM/
https://trello.com/1/appKey/generate
https://trello.com/1/authorize?key=\protect \T1\textdollar developer_key&name=Mylyn%20Tasks&expiration=never&response_type=token
https://trello.com/1/authorize?key=\protect \T1\textdollar developer_key&name=Mylyn%20Tasks&expiration=never&response_type=token
https://trello.com/1/members/my/cards?key=developer_key&token=\protect \T1\textdollar user_token
https://trello.com/1/members/my/cards?key=developer_key&token=\protect \T1\textdollar user_token
http://download.eclipse.org/mylyn/incubator/3.10
https://trello.com

avocado Documentation, Release 63.0

17. In the Advanced Configuration set the Task URL to https://trello.com/c/

18. Set New Task URL to https://trello.com

19. Set the Query Request URL (no changes required): https://trello.com/1/members/my/cards?key=\protect\
T1\textdollar\protect\T1\textbraceleftapplicationkey\protect\T1\textbraceright&token=\protect\T1\textdollar\
protect\T1\textbraceleftuserkey\protect\T1\textbraceright

20. For the Query Pattern enter “url”:”https://trello.com/[^/]*/[^/]*/({Id}[^”]+)({Description})”

21. -> Finish

Create task query:

1. Create a query by opening the Mylyn Task List.

2. Right click the pane and select New Query.

3. Select Trello API as the repository.

4. -> Next

5. Enter the name of your query.

6. Expand the Advanced Configuration and make sure the Query Pattern is filled in

7. Press Preview to confirm that there are no errors.

8. Press Finish.

9. Trello tasks assigned to you will now appear in the Mylyn Task List.

Note you can start using tasks by clicking the small bubble in front of the name. This closes all editors. Try opening
some and then click the bubble again. They should get closed. When you click the bubble third time, it should resume
all the open editors from before.

My usual workflow is:

1. git checkout $branch

2. Eclipse: select task

3. git commit . . .

4. Eclipse: unselect task

5. git checkout $other_branch

6. Eclipse: select another_task

This way you always have all the files present and you can easily resume your work.

19.4 Releasing avocado

So you have all PRs approved, the Sprint meeting is done and now Avocado is ready to be released. Great, let’s go
over (most of) the details you need to pay attention to.

19.4.1 Bump the version number

For the Avocado versioning, two files need to receive a manual version update:

• VERSION

• python-avocado.spec

19.4. Releasing avocado 137

https://trello.com/c/
https://trello.com
https://trello.com/1/members/my/cards?key=\protect \T1\textdollar \protect \T1\textbraceleft applicationkey\protect \T1\textbraceright &token=\protect \T1\textdollar \protect \T1\textbraceleft userkey\protect \T1\textbraceright
https://trello.com/1/members/my/cards?key=\protect \T1\textdollar \protect \T1\textbraceleft applicationkey\protect \T1\textbraceright &token=\protect \T1\textdollar \protect \T1\textbraceleft userkey\protect \T1\textbraceright
https://trello.com/1/members/my/cards?key=\protect \T1\textdollar \protect \T1\textbraceleft applicationkey\protect \T1\textbraceright &token=\protect \T1\textdollar \protect \T1\textbraceleft userkey\protect \T1\textbraceright

avocado Documentation, Release 63.0

followed by make propagate-version to propagate this change to all optional and “linkabe” plugins sharing
the parent dir (eg. avocado-vt). Don’t forget to commit the changes of “linked” plugins as they live in different
repositories.

An example diff (after the make propagate-version) looks like this:

diff --git a/VERSION b/VERSION
index dd0353d..aafccd8 100644
--- a/VERSION
+++ b/VERSION
@@ -1 +1 @@
-48.0
+49.0
diff --git a/optional_plugins/html/VERSION b/optional_plugins/html/VERSION
index dd0353d..aafccd8 100644
--- a/optional_plugins/html/VERSION
+++ b/optional_plugins/html/VERSION
@@ -1 +1 @@
-48.0
+49.0
diff --git a/optional_plugins/robot/VERSION b/optional_plugins/robot/VERSION
index dd0353d..aafccd8 100644
--- a/optional_plugins/robot/VERSION
+++ b/optional_plugins/robot/VERSION
@@ -1 +1 @@
-48.0
+49.0
diff --git a/optional_plugins/runner_docker/VERSION b/optional_plugins/runner_docker/
→˓VERSION
index dd0353d..aafccd8 100644
--- a/optional_plugins/runner_docker/VERSION
+++ b/optional_plugins/runner_docker/VERSION
@@ -1 +1 @@
-48.0
+49.0
diff --git a/optional_plugins/runner_remote/VERSION b/optional_plugins/runner_remote/
→˓VERSION
index dd0353d..aafccd8 100644
--- a/optional_plugins/runner_remote/VERSION
+++ b/optional_plugins/runner_remote/VERSION
@@ -1 +1 @@
-48.0
+49.0
diff --git a/optional_plugins/runner_vm/VERSION b/optional_plugins/runner_vm/VERSION
index dd0353d..aafccd8 100644
--- a/optional_plugins/runner_vm/VERSION
+++ b/optional_plugins/runner_vm/VERSION
@@ -1 +1 @@
-48.0
+49.0
diff --git a/python-avocado.spec b/python-avocado.spec
index 6a4b067..4b9dba8 100644
--- a/python-avocado.spec
+++ b/python-avocado.spec
@@ -12,7 +12,7 @@

Summary: Framework with tools and libraries for Automated Testing
Name: python-%{srcname}

(continues on next page)

138 Chapter 19. Advanced Topics and Maintenance

avocado Documentation, Release 63.0

(continued from previous page)

-Version: 48.0
+Version: 49.0
Release: 1%{?dist}
License: GPLv2
Group: Development/Tools

@@ -259,6 +259,9 @@ examples of how to write tests on your own.
%{_datadir}/avocado/wrappers

%changelog
+* Wed Apr 12 2017 Lukas Doktor <ldoktor@redhat.com> - 49.0-0
+- Testing release
+

* Mon Apr 3 2017 Cleber Rosa <cleber@localhost.localdomain> - 48.0-1
- Updated exclude directives and files for optional plugins

You can find on git such commits that will help you get oriented for other repos.

19.4.2 Which repositories you should pay attention to

In general, a release of avocado includes taking a look and eventually release content in the following repositories:

• avocado

• avocado-vt

19.4.3 Tag all repositories

When everything is in good shape, commit the version changes and tag that commit in master with:

$ git tag -u $(GPG_ID) -s $(RELEASE) -m 'Avocado Release $(RELEASE)'

Then the tag should be pushed to the GIT repository with:

$ git push --tags

19.4.4 Build RPMs

Go to the source directory and do:

$ make rpm
...
+ exit 0

This should be all. It will build packages using mock, targeting your default configuration. That usually means the
same platform you’re currently on.

19.4.5 Sign Packages

All the packages should be signed for safer public consumption. The process is, of course, dependent on the private
keys, put is based on running:

19.4. Releasing avocado 139

avocado Documentation, Release 63.0

$ rpm --resign

For more information look at the rpmsign(8) man page.

19.4.6 Upload packages to repository

The current distribution method is based on serving content over HTTP. That means that repository metadata is created
locally and synchronized to the well know public Web server. A process similar to:

$ cd $REPO_ROOT && for DIR in epel-?-noarch fedora-??-noarch; \
do cd $DIR && createrepo -v . && cd ..; done;

Creates the repo metadata locally. Then a command similar to:

$ rsync -va $REPO_ROOT user@repo_web_server:/path

Is used to copy the content over.

19.4.7 Write release notes

Release notes give an idea of what has changed on a given development cycle. Good places to go for release notes are:

1. Git logs

2. Trello Cards (Look for the Done lists)

3. Github compare views: https://github.com/avocado-framework/avocado/compare/0.28.0. . . 0.29.0

Go there and try to write a text that represents the changes that the release encompasses.

19.4.8 Upload package to PyPI

Users may also want to get Avocado from the PyPI repository, so please upload there as well. To help with the process,
please run:

$ make pypi

And follow the URL and brief instructions given.

19.4.9 Configure Read The Docs

On https://readthedocs.org/dashboard/avocado-framework/edit/:

• Click in Versions. In Choose Active Versions, find the version you’re releasing and check the Active option.
Submit.

• Click in Versions again. In Default Version, select the new version you’re releasing. Submit.

19.4.10 Send e-mails to avocado-devel and other places

Send the e-mail with the release notes to avocado-devel and virt-test-devel.

140 Chapter 19. Advanced Topics and Maintenance

https://github.com/avocado-framework/avocado/compare/0.28.0...0.29.0
https://readthedocs.org/dashboard/avocado-framework/edit/

avocado Documentation, Release 63.0

19.5 Other Resources

This is a collection of some other varied Avocado related sources on the web:

19.5.1 Presentations

• Testing Framework Internals (DevConf 2017)

• Auto Testing for AArch64 Virtualization (Linaro connect San Francisco 2017)

• libvirt integration and testing for enterprise KVM/ARM (Linaro Connect Budapest 2017)

• Automated Testing Framework (PyCon CZ 2016)

• Avocado and Jenkins (DevConf 2016)

• Avocado: Next Gen Testing Toolbox (DevConf 2015)

• Avocado workshop (DevConf 2015) mindmap with all commands/content and a partial video

• Avocado: Open Source Testing Made Easy (LinuxCon 2015)

19.5.2 Public test repositories

• Avocado Misc Tests

• Cockpit tests

• Modularity framework tests (uses custom docker image)

• Azure Tests (requires plugin)

19.5. Other Resources 141

https://www.youtube.com/watch?v=--fxmmJ5SBA&list=PLpLgrCSz067ao8NsOHdaYtq-06SmBMOBR
http://connect.linaro.org/resource/sfo17/sfo17-502/
http://connect.linaro.org/resource/bud17/bud17-213/
https://www.youtube.com/watch?v=eTR-LvW80pM&list=PLpLgrCSz067ao8NsOHdaYtq-06SmBMOBR&index=2
https://www.youtube.com/watch?v=XJ7IWQflM9g&list=PLpLgrCSz067ao8NsOHdaYtq-06SmBMOBR&index=4
https://www.youtube.com/watch?v=xMXS7NB4WSs&index=5&list=PLpLgrCSz067ao8NsOHdaYtq-06SmBMOBR
https://www.mindmeister.com/504616310/avocado-workshop
https://www.mindmeister.com/504616310/avocado-workshop
https://www.youtube.com/watch?v=tdEg07BfdBw&index=3&list=PLpLgrCSz067ao8NsOHdaYtq-06SmBMOBR
https://github.com/avocado-framework-tests/avocado-misc-tests
https://github.com/cockpit-project/cockpit/tree/master/test/avocado
https://github.com/fedora-modularity/meta-test-family
https://github.com/yuxisun1217/avocado-azure/

avocado Documentation, Release 63.0

142 Chapter 19. Advanced Topics and Maintenance

CHAPTER 20

API Reference

20.1 Test APIs

This is the bare mininum set of APIs that users should use, and can rely on, while writing tests.

20.1.1 Module contents

avocado.main
alias of avocado.core.job.TestProgram

class avocado.Test(methodName=’test’, name=None, params=None, base_logdir=None, job=None,
runner_queue=None)

Bases: unittest.case.TestCase, avocado.core.test.TestData

Base implementation for the test class.

You’ll inherit from this to write your own tests. Typically you’ll want to implement setUp(), test*() and tear-
Down() methods on your own tests.

Initializes the test.

Parameters

• methodName – Name of the main method to run. For the sake of compatibility with the
original unittest class, you should not set this.

• name (avocado.core.test.TestID) – Pretty name of the test name. For normal
tests, written with the avocado API, this should not be set. This is reserved for internal
Avocado use, such as when running random executables as tests.

• base_logdir – Directory where test logs should go. If None provided, it’ll use
avocado.data_dir.create_job_logs_dir().

• job – The job that this test is part of.

basedir
The directory where this test (when backed by a file) is located at

143

avocado Documentation, Release 63.0

cache_dirs
Returns a list of cache directories as set in config file.

cancel(message=None)
Cancels the test.

This method is expected to be called from the test method, not anywhere else, since by definition, we can
only cancel a test that is currently under execution. If you call this method outside the test method, avocado
will mark your test status as ERROR, and instruct you to fix your test in the error message.

Parameters message (str) – an optional message that will be recorded in the logs

error(message=None)
Errors the currently running test.

After calling this method a test will be terminated and have its status as ERROR.

Parameters message (str) – an optional message that will be recorded in the logs

fail(message=None)
Fails the currently running test.

After calling this method a test will be terminated and have its status as FAIL.

Parameters message (str) – an optional message that will be recorded in the logs

fail_class

fail_reason

fetch_asset(name, asset_hash=None, algorithm=None, locations=None, expire=None)
Method o call the utils.asset in order to fetch and asset file supporting hash check, caching and multiple
locations.

Parameters

• name – the asset filename or URL

• asset_hash – asset hash (optional)

• algorithm – hash algorithm (optional, defaults to avocado.utils.asset.
DEFAULT_HASH_ALGORITHM)

• locations – list of URLs from where the asset can be fetched (optional)

• expire – time for the asset to expire

Raises EnvironmentError – When it fails to fetch the asset

Returns asset file local path

filename
Returns the name of the file (path) that holds the current test

get_state()
Serialize selected attributes representing the test state

Returns a dictionary containing relevant test state data

Return type dict

job
The job this test is associated with

log
The enhanced test log

144 Chapter 20. API Reference

avocado Documentation, Release 63.0

logdir
Path to this test’s logging dir

logfile
Path to this test’s main debug.log file

name
Returns the Test ID, which includes the test name

Return type TestID

outputdir
Directory available to test writers to attach files to the results

params
Parameters of this test (AvocadoParam instance)

report_state()
Send the current test state to the test runner process

run_avocado()
Wraps the run method, for execution inside the avocado runner.

Result Unused param, compatibility with unittest.TestCase.

runner_queue
The communication channel between test and test runner

running
Whether this test is currently being executed

set_runner_queue(runner_queue)
Override the runner_queue

status
The result status of this test

teststmpdir
Returns the path of the temporary directory that will stay the same for all tests in a given Job.

time_elapsed = -1
duration of the test execution (always recalculated from time_end - time_start

time_end = -1
(unix) time when the test finished (could be forced from test)

time_start = -1
(unix) time when the test started (could be forced from test)

timeout = None
Test timeout (the timeout from params takes precedence)

traceback

whiteboard = ''
Arbitrary string which will be stored in $logdir/whiteboard location when the test finishes.

workdir
This property returns a writable directory that exists during the entire test execution, but will be cleaned
up once the test finishes.

It can be used on tasks such as decompressing source tarballs, building software, etc.

20.1. Test APIs 145

avocado Documentation, Release 63.0

avocado.fail_on(exceptions=None)
Fail the test when decorated function produces exception of the specified type.

(For example, our method may raise IndexError on tested software failure. We can either try/catch it or use this
decorator instead)

Parameters exceptions – Tuple or single exception to be assumed as test fail [Exception]

Note self.error and self.cancel behavior remains intact

Note To allow simple usage param “exceptions” must not be callable

avocado.skip(message=None)
Decorator to skip a test.

avocado.skipIf(condition, message=None)
Decorator to skip a test if a condition is True.

avocado.skipUnless(condition, message=None)
Decorator to skip a test if a condition is False.

exception avocado.TestError
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was not fully executed and an error happened.

This is the sort of exception you raise if the test was partially executed and could not complete due to a setup,
configuration, or another fatal condition.

status = 'ERROR'

exception avocado.TestFail
Bases: avocado.core.exceptions.TestBaseException, exceptions.AssertionError

Indicates that the test failed.

TestFail inherits from AssertionError in order to keep compatibility with vanilla python unittests (they only
consider failures the ones deriving from AssertionError).

status = 'FAIL'

exception avocado.TestCancel
Bases: avocado.core.exceptions.TestBaseException

Indicates that a test was canceled.

Should be thrown when the cancel() test method is used.

status = 'CANCEL'

20.2 Utilities APIs

This is a set of utility APIs that Avocado provides as added value to test writers.

It’s suppose to be generic, without any knowledge of Avocado and reusable in different projects.

Note: In the current version there is a hidden knowledge of avocado logging streams. More about this issue can be
found here https://trello.com/c/4QyUgWsW/720-get-rid-of-avocado-test-loggers-from-avocado-utils

146 Chapter 20. API Reference

https://trello.com/c/4QyUgWsW/720-get-rid-of-avocado-test-loggers-from-avocado-utils

avocado Documentation, Release 63.0

20.2.1 Subpackages

avocado.utils.external package

Submodules

avocado.utils.external.gdbmi_parser module

avocado.utils.external.gdbmi_parser.compare(a, b)

avocado.utils.external.gdbmi_parser.parse(tokens)

avocado.utils.external.gdbmi_parser.process(input_message)

avocado.utils.external.gdbmi_parser.scan(input_message)

avocado.utils.external.spark module

class avocado.utils.external.spark.GenericASTBuilder(AST, start)
Bases: avocado.utils.external.spark.GenericParser

buildASTNode(args, lhs)

nonterminal(token_type, args)

preprocess(rule, func)

terminal(token)

class avocado.utils.external.spark.GenericASTMatcher(start, ast)
Bases: avocado.utils.external.spark.GenericParser

foundMatch(args, func)

match(ast=None)

match_r(node)

preprocess(rule, func)

resolve(input_list)

class avocado.utils.external.spark.GenericASTTraversal(ast)

default(node)

postorder(node=None)

preorder(node=None)

prune()

typestring(node)

exception avocado.utils.external.spark.GenericASTTraversalPruningException
Bases: exceptions.Exception

class avocado.utils.external.spark.GenericParser(start)

add(input_set, item, i=None, predecessor=None, causal=None)

addRule(doc, func, _preprocess=1)

20.2. Utilities APIs 147

avocado Documentation, Release 63.0

ambiguity(rules)

augment(start)

buildTree(nt, item, tokens, k)

causal(key)

collectRules()

computeNull()

deriveEpsilon(nt)

error(token)

finalState(tokens)

goto(state, sym)

gotoST(state, st)

gotoT(state, t)

isnullable(sym)

makeNewRules()

makeSet(token, sets, i)

makeSet_fast(token, sets, i)

makeState(state, sym)

makeState0()

parse(tokens)

predecessor(key, causal)

preprocess(rule, func)

resolve(input_list)

skip(lhs_rhs, pos=0)

typestring(token)

class avocado.utils.external.spark.GenericScanner(flags=0)

error(s, pos)

makeRE(name)

position(newpos=None)

reflect()

t_default(s)
(. | n)+

tokenize(s)

148 Chapter 20. API Reference

avocado Documentation, Release 63.0

Module contents

20.2.2 Submodules

20.2.3 avocado.utils.archive module

Module to help extract and create compressed archives.

exception avocado.utils.archive.ArchiveException
Bases: exceptions.Exception

Base exception for all archive errors.

class avocado.utils.archive.ArchiveFile(filename, mode=’r’)
Bases: object

Class that represents an Archive file.

Archives are ZIP files or Tarballs.

Creates an instance of ArchiveFile.

Parameters

• filename – the archive file name.

• mode – file mode, r read, w write.

add(filename, arcname=None)
Add file to the archive.

Parameters

• filename – file to archive.

• arcname – alternative name for the file in the archive.

close()
Close archive.

extract(path=’.’)
Extract all files from the archive.

Parameters path – destination path.

list()
List files to the standard output.

classmethod open(filename, mode=’r’)
Creates an instance of ArchiveFile.

Parameters

• filename – the archive file name.

• mode – file mode, r read, w write.

avocado.utils.archive.compress(filename, path)
Compress files in an archive.

Parameters

• filename – archive file name.

• path – origin directory path to files to compress. No individual files allowed.

20.2. Utilities APIs 149

avocado Documentation, Release 63.0

avocado.utils.archive.create(filename, path)
Compress files in an archive.

Parameters

• filename – archive file name.

• path – origin directory path to files to compress. No individual files allowed.

avocado.utils.archive.extract(filename, path)
Extract files from an archive.

Parameters

• filename – archive file name.

• path – destination path to extract to.

avocado.utils.archive.is_archive(filename)
Test if a given file is an archive.

Parameters filename – file to test.

Returns True if it is an archive.

avocado.utils.archive.uncompress(filename, path)
Extract files from an archive.

Parameters

• filename – archive file name.

• path – destination path to extract to.

20.2.4 avocado.utils.asset module

Asset fetcher from multiple locations

class avocado.utils.asset.Asset(name, asset_hash, algorithm, locations, cache_dirs, ex-
pire=None)

Bases: object

Try to fetch/verify an asset file from multiple locations.

Initialize the Asset() class.

Parameters

• name – the asset filename. url is also supported

• asset_hash – asset hash

• algorithm – hash algorithm

• locations – list of locations fetch asset from

• cache_dirs – list of cache directories

• expire – time in seconds for the asset to expire

fetch()
Fetches the asset. First tries to find the asset on the provided cache_dirs list. Then tries to download the
asset from the locations list provided.

Raises EnvironmentError – When it fails to fetch the asset

Returns The path for the file on the cache directory.

150 Chapter 20. API Reference

avocado Documentation, Release 63.0

avocado.utils.asset.DEFAULT_HASH_ALGORITHM = 'sha1'
The default hash algorithm to use on asset cache operations

exception avocado.utils.asset.UnsupportedProtocolError
Bases: exceptions.EnvironmentError

Signals that the protocol of the asset URL is not supported

20.2.5 avocado.utils.astring module

Operations with strings (conversion and sanitation).

The unusual name aims to avoid causing name clashes with the stdlib module string. Even with the dot notation,
people may try to do things like

import string . . . from avocado.utils import string

And not notice until their code starts failing.

avocado.utils.astring.ENCODING = 'UTF-8'
On import evaluated value representing the system encoding based on system locales using locale.
getpreferredencoding(). Use this value wisely as some files are dumped in different encoding.

avocado.utils.astring.FS_UNSAFE_CHARS = '<>:"/\\|?*;'
String containing all fs-unfriendly chars (Windows-fat/Linux-ext3)

avocado.utils.astring.bitlist_to_string(data)
Transform from bit list to ASCII string.

Parameters data – Bit list to be transformed

avocado.utils.astring.is_bytes(data)
Checks if the data given is a sequence of bytes

And not a “text” type, that can be of multi-byte characters. Also, this does NOT mean a bytearray type.

Parameters data – the instance to be checked if it falls under the definition of an array of bytes.

avocado.utils.astring.is_text(data)
Checks if the data given is a suitable for holding text

That is, if it can hold text that requires more than one byte for each character.

avocado.utils.astring.iter_tabular_output(matrix, header=None, strip=False)
Generator for a pretty, aligned string representation of a nxm matrix.

This representation can be used to print any tabular data, such as database results. It works by scanning the
lengths of each element in each column, and determining the format string dynamically.

Parameters

• matrix – Matrix representation (list with n rows of m elements).

• header – Optional tuple or list with header elements to be displayed.

• strip – Optionally remove trailing whitespace from each row.

avocado.utils.astring.shell_escape(command)
Escape special characters from a command so that it can be passed as a double quoted (” “) string in a (ba)sh
command.

Parameters command – the command string to escape.

Returns The escaped command string. The required englobing double quotes are NOT added and
so should be added at some point by the caller.

20.2. Utilities APIs 151

avocado Documentation, Release 63.0

See also: http://www.tldp.org/LDP/abs/html/escapingsection.html

avocado.utils.astring.string_safe_encode(input_str)
People tend to mix unicode streams with encoded strings. This function tries to replace any input with a valid
utf-8 encoded ascii stream.

On Python 3, it’s a terrible idea to try to mess with encoding, so this function is limited to converting other types
into strings, such as numeric values that are often the members of a matrix.

Parameters input_str – possibly unsafe string or other object that can be turned into a string

Returns a utf-8 encoded ascii stream

avocado.utils.astring.string_to_bitlist(data)
Transform from ASCII string to bit list.

Parameters data – String to be transformed

avocado.utils.astring.string_to_safe_path(input_str)
Convert string to a valid file/dir name.

This takes a string that may contain characters that are not allowed on FAT (Windows) filesystems and/or ext3
(Linux) filesystems, and replaces them for safe (boring) underlines.

It limits the size of the path to be under 255 chars, and make hidden paths (starting with “.”) non-hidden by
making them start with “_”.

Parameters input_str – String to be converted

Returns String which is safe to pass as a file/dir name (on recent fs)

avocado.utils.astring.strip_console_codes(output, custom_codes=None)
Remove the Linux console escape and control sequences from the console output. Make the output readable
and can be used for result check. Now only remove some basic console codes using during boot up.

Parameters

• output (string) – The output from Linux console

• custom_codes – The codes added to the console codes which is not covered in the default
codes

Returns the string without any special codes

Return type string

avocado.utils.astring.tabular_output(matrix, header=None, strip=False)
Pretty, aligned string representation of a nxm matrix.

This representation can be used to print any tabular data, such as database results. It works by scanning the
lengths of each element in each column, and determining the format string dynamically.

Parameters

• matrix – Matrix representation (list with n rows of m elements).

• header – Optional tuple or list with header elements to be displayed.

• strip – Optionally remove trailing whitespace from each row.

Returns String with the tabular output, lines separated by unix line feeds.

Return type str

avocado.utils.astring.to_text(data, encoding=’UTF-8’, errors=’strict’)
Convert anything to text decoded text

152 Chapter 20. API Reference

http://www.tldp.org/LDP/abs/html/escapingsection.html

avocado Documentation, Release 63.0

When the data is bytes, it’s decoded. When it’s not of string types it’s re-formatted into text and returned.
Otherwise (it’s string) it’s returned unchanged.

Parameters

• data (either bytes or other data that will be returned
unchanged) – data to be transformed into text

• encoding – encoding of the data (only used when decoding is necessary)

• errors – how to handle encode/decode errors, see: https://docs.python.org/3/library/
codecs.html#error-handlers

20.2.6 avocado.utils.aurl module

URL related functions.

The strange name is to avoid accidental naming collisions in code.

avocado.utils.aurl.is_url(path)
Return True if path looks like an URL.

Parameters path – path to check.

Return type Boolean.

20.2.7 avocado.utils.build module

avocado.utils.build.configure(path, configure=None)
Configures the source tree for a subsequent build

Most source directories coming from official released tarballs will have a “configure” script, but source code
snapshots may have “autogen.sh” instead (which usually creates and runs a “configure” script itself). This
function will attempt to run the first one found (if a configure script name not given explicitly).

Parameters configure (str or None) – the name of the configure script (None for trying to
find one automatically)

Returns the configure script exit status, or None if no script was found and executed

avocado.utils.build.make(path, make=’make’, env=None, extra_args=”, ignore_status=None, al-
low_output_check=None, process_kwargs=None)

Run make, adding MAKEOPTS to the list of options.

Parameters

• make – what make command name to use.

• env – dictionary with environment variables to be set before calling make (e.g.: CFLAGS).

• extra – extra command line arguments to pass to make.

• allow_output_check (str) – Whether to log the command stream outputs (stdout and
stderr) of the make process in the test stream files. Valid values: ‘stdout’, for allowing only
standard output, ‘stderr’, to allow only standard error, ‘all’, to allow both standard output
and error, and ‘none’, to allow none to be recorded (default). The default here is ‘none’,
because usually we don’t want to use the compilation output as a reference in tests.

Returns exit status of the make process

avocado.utils.build.run_make(path, make=’make’, extra_args=”, process_kwargs=None)
Run make, adding MAKEOPTS to the list of options.

20.2. Utilities APIs 153

https://docs.python.org/3/library/codecs.html#error-handlers
https://docs.python.org/3/library/codecs.html#error-handlers

avocado Documentation, Release 63.0

Parameters

• path – directory from where to run make

• make – what make command name to use.

• extra_args – extra command line arguments to pass to make.

• process_kwargs – Additional key word arguments to the underlying process running
the make.

Returns the make command result object

20.2.8 avocado.utils.cpu module

Get information from the current’s machine CPU.

avocado.utils.cpu.cpu_has_flags(flags)
Check if a list of flags are available on current CPU info

Parameters flags (list) – A list of cpu flags that must exists on the current CPU.

Returns bool True if all the flags were found or False if not

Return type list

avocado.utils.cpu.cpu_online_list()
Reports a list of indexes of the online cpus

avocado.utils.cpu.get_cpu_arch()
Work out which CPU architecture we’re running on

avocado.utils.cpu.get_cpu_vendor_name()
Get the current cpu vendor name

Returns string ‘intel’ or ‘amd’ or ‘power7’ depending on the current CPU architecture.

Return type string

avocado.utils.cpu.get_cpufreq_governor()
Get current cpu frequency governor

avocado.utils.cpu.get_cpuidle_state()
Get current cpu idle values

Returns Dict of cpuidle states values for all cpus

Return type Dict of dicts

avocado.utils.cpu.offline(cpu)
Offline given CPU

avocado.utils.cpu.online(cpu)
Online given CPU

avocado.utils.cpu.online_cpus_count()
Return Number of Online cpus in the system

avocado.utils.cpu.set_cpufreq_governor(governor=’random’)
To change the given cpu frequency governor

Parameters governor – frequency governor profile name whereas random is default option to
choose random profile among available ones.

154 Chapter 20. API Reference

avocado Documentation, Release 63.0

avocado.utils.cpu.set_cpuidle_state(state_number=’all’, disable=True, setstate=None)
Set/Reset cpu idle states for all cpus

Parameters

• state_number – cpuidle state number, default: all all states

• disable – whether to disable/enable given cpu idle state, default is to disable (True)

• setstate – cpuidle state value, output of get_cpuidle_state()

avocado.utils.cpu.total_cpus_count()
Return Number of Total cpus in the system including offline cpus

20.2.9 avocado.utils.crypto module

avocado.utils.crypto.hash_file(filename, size=None, algorithm=’md5’)
Calculate the hash value of filename.

If size is not None, limit to first size bytes. Throw exception if something is wrong with filename. Can be also
implemented with bash one-liner (assuming size%1024==0):

dd if=filename bs=1024 count=size/1024 | sha1sum -

Parameters

• filename – Path of the file that will have its hash calculated.

• algorithm – Method used to calculate the hash (default is md5).

• size – If provided, hash only the first size bytes of the file.

Returns Hash of the file, if something goes wrong, return None.

20.2.10 avocado.utils.data_factory module

Generate data useful for the avocado framework and tests themselves.

avocado.utils.data_factory.generate_random_string(length, ignore=’!"#$%&\’()*+, -
./:;<=>?@[\\]^_‘{|}~’, convert=”)

Generate a random string using alphanumeric characters.

Parameters

• length (int) – Length of the string that will be generated.

• ignore (str) – Characters that will not include in generated string.

• convert (str) – Characters that need to be escaped (prepend “”).

Returns The generated random string.

avocado.utils.data_factory.make_dir_and_populate(basedir=’/tmp’)
Create a directory in basedir and populate with a number of files.

The files just have random text contents.

Parameters basedir (str) – Base directory where directory should be generated.

Returns Path of the dir created and populated.

Return type str

20.2. Utilities APIs 155

avocado Documentation, Release 63.0

20.2.11 avocado.utils.data_structures module

This module contains handy classes that can be used inside avocado core code or plugins.

class avocado.utils.data_structures.Borg
Multiple instances of this class will share the same state.

This is considered a better design pattern in Python than more popular patterns, such as the Singleton. Inspired
by Alex Martelli’s article mentioned below:

See http://www.aleax.it/5ep.html

class avocado.utils.data_structures.CallbackRegister(name, log)
Bases: object

Registers pickable functions to be executed later.

Parameters name – Human readable identifier of this register

register(func, args, kwargs, once=False)
Register function/args to be called on self.destroy() :param func: Pickable function :param args: Pick-
able positional arguments :param kwargs: Pickable keyword arguments :param once: Add unique
(func,args,kwargs) combination only once

run()
Call all registered function

unregister(func, args, kwargs)
Unregister (func,args,kwargs) combination :param func: Pickable function :param args: Pickable posi-
tional arguments :param kwargs: Pickable keyword arguments

class avocado.utils.data_structures.DataSize(data)
Bases: object

Data Size object with builtin unit-converted attributes.

Parameters data (str) – Data size plus optional unit string. i.e. ‘10m’. No unit string means the
data size is in bytes.

MULTIPLIERS = {'b': 1, 'g': 1073741824, 'k': 1024, 'm': 1048576, 't': 1099511627776}

b

g

k

m

t

unit

value

exception avocado.utils.data_structures.InvalidDataSize
Bases: exceptions.ValueError

Signals that the value given to DataSize is not valid.

class avocado.utils.data_structures.LazyProperty(f_get)
Bases: object

Lazily instantiated property.

156 Chapter 20. API Reference

http://www.aleax.it/5ep.html

avocado Documentation, Release 63.0

Use this decorator when you want to set a property that will only be evaluated the first time it’s accessed.
Inspired by the discussion in the Stack Overflow thread below:

See http://stackoverflow.com/questions/15226721/

avocado.utils.data_structures.comma_separated_ranges_to_list(string)
Provides a list from comma separated ranges

Parameters string – string of comma separated range

Return list list of integer values in comma separated range

avocado.utils.data_structures.compare_matrices(matrix1, matrix2, threshold=0.05)
Compare 2 matrices nxm and return a matrix nxm with comparison data and stats. When the first columns
match, they are considered as header and included in the results intact.

Parameters

• matrix1 – Reference Matrix of floats; first column could be header.

• matrix2 – Matrix that will be compared; first column could be header

• threshold – Any difference greater than this percent threshold will be reported.

Returns Matrix with the difference in comparison, number of improvements, number of regressions,
total number of comparisons.

avocado.utils.data_structures.geometric_mean(values)
Evaluates the geometric mean for a list of numeric values. This implementation is slower but allows unlimited
number of values. :param values: List with values. :return: Single value representing the geometric mean for
the list values. :see: http://en.wikipedia.org/wiki/Geometric_mean

avocado.utils.data_structures.ordered_list_unique(object_list)
Returns an unique list of objects, with their original order preserved

avocado.utils.data_structures.time_to_seconds(time)
Convert time in minutes, hours and days to seconds. :param time: Time, optionally including the unit (i.e. ‘10d’)

20.2.12 avocado.utils.debug module

This file contains tools for (not only) Avocado developers.

avocado.utils.debug.log_calls(length=None, cls_name=None)
Use this as decorator to log the function call altogether with arguments. :param length: Max message length
:param cls_name: Optional class name prefix

avocado.utils.debug.log_calls_class(length=None)
Use this as decorator to log the function methods’ calls. :param length: Max message length

avocado.utils.debug.measure_duration(func)
Use this as decorator to measure duration of the function execution. The output is “Function $name: ($cur-
rent_duration, $accumulated_duration)”

20.2.13 avocado.utils.disk module

Disk utilities

avocado.utils.disk.freespace(path)

20.2. Utilities APIs 157

http://stackoverflow.com/questions/15226721/
http://en.wikipedia.org/wiki/Geometric_mean

avocado Documentation, Release 63.0

20.2.14 avocado.utils.distro module

This module provides the client facilities to detect the Linux Distribution it’s running under.

class avocado.utils.distro.LinuxDistro(name, version, release, arch)
Bases: object

Simple collection of information for a Linux Distribution

Initializes a new Linux Distro

Parameters

• name (str) – a short name that precisely distinguishes this Linux Distribution among all
others.

• version (str) – the major version of the distribution. Usually this is a single number
that denotes a large development cycle and support file.

• release (str) – the release or minor version of the distribution. Usually this is also a
single number, that is often omitted or starts with a 0 when the major version is initially
release. It’s often associated with a shorter development cycle that contains incremental a
collection of improvements and fixes.

• arch (str) – the main target for this Linux Distribution. It’s common for some architec-
tures to ship with packages for previous and still compatible architectures, such as it’s the
case with Intel/AMD 64 bit architecture that support 32 bit code. In cases like this, this
should be set to the 64 bit architecture name.

class avocado.utils.distro.Probe
Bases: object

Probes the machine and does it best to confirm it’s the right distro

CHECK_FILE = None
Points to a file that can determine if this machine is running a given Linux Distribution. This servers a first
check that enables the extra checks to carry on.

CHECK_FILE_CONTAINS = None
Sets the content that should be checked on the file pointed to by CHECK_FILE_EXISTS. Leave it set to
None (its default) to check only if the file exists, and not check its contents

CHECK_FILE_DISTRO_NAME = None
The name of the Linux Distribution to be returned if the file defined by CHECK_FILE_EXISTS exist.

CHECK_VERSION_REGEX = None
A regular expression that will be run on the file pointed to by CHECK_FILE_EXISTS

check_name_for_file()
Checks if this class will look for a file and return a distro

The conditions that must be true include the file that identifies the distro file being set (CHECK_FILE)
and the name of the distro to be returned (CHECK_FILE_DISTRO_NAME)

check_name_for_file_contains()
Checks if this class will look for text on a file and return a distro

The conditions that must be true include the file that identifies the distro file being set (CHECK_FILE),
the text to look for inside the distro file (CHECK_FILE_CONTAINS) and the name of the distro to be
returned (CHECK_FILE_DISTRO_NAME)

check_release()
Checks if this has the conditions met to look for the release number

158 Chapter 20. API Reference

avocado Documentation, Release 63.0

check_version()
Checks if this class will look for a regex in file and return a distro

get_distro()
Returns the LinuxDistro this probe detected

name_for_file()
Get the distro name if the CHECK_FILE is set and exists

name_for_file_contains()
Get the distro if the CHECK_FILE is set and has content

release()
Returns the release of the distro

version()
Returns the version of the distro

avocado.utils.distro.register_probe(probe_class)
Register a probe to be run during autodetection

avocado.utils.distro.detect()
Attempts to detect the Linux Distribution running on this machine

Returns the detected LinuxDistro or UNKNOWN_DISTRO

Return type LinuxDistro

20.2.15 avocado.utils.download module

Methods to download URLs and regular files.

avocado.utils.download.get_file(src, dst, permissions=None, hash_expected=None,
hash_algorithm=’md5’, download_retries=1)

Gets a file from a source location, optionally using caching.

If no hash_expected is provided, simply download the file. Else, keep trying to download the file until down-
load_failures exceeds download_retries or the hashes match.

If the hashes match, return dst. If download_failures exceeds download_retries, raise an EnvironmentError.

Parameters

• src – source path or URL. May be local or a remote file.

• dst – destination path.

• permissions – (optional) set access permissions.

• hash_expected – Hash string that we expect the file downloaded to have.

• hash_algorithm – Algorithm used to calculate the hash string (md5, sha1).

• download_retries – Number of times we are going to retry a failed download.

Raise EnvironmentError.

Returns destination path.

avocado.utils.download.url_download(url, filename, data=None, timeout=300)
Retrieve a file from given url.

Parameters

• url – source URL.

20.2. Utilities APIs 159

avocado Documentation, Release 63.0

• filename – destination path.

• data – (optional) data to post.

• timeout – (optional) default timeout in seconds.

Returns None.

avocado.utils.download.url_download_interactive(url, output_file, title=”,
chunk_size=102400)

Interactively downloads a given file url to a given output file.

Parameters

• url (string) – URL for the file to be download

• output_file (string) – file name or absolute path on which to save the file to

• title (string) – optional title to go along the progress bar

• chunk_size (integer) – amount of data to read at a time

avocado.utils.download.url_open(url, data=None, timeout=5)
Wrapper to urllib2.urlopen() with timeout addition.

Parameters

• url – URL to open.

• data – (optional) data to post.

• timeout – (optional) default timeout in seconds.

Returns file-like object.

Raises URLError.

20.2.16 avocado.utils.filelock module

Utility for individual file access control implemented via PID lock files.

exception avocado.utils.filelock.AlreadyLocked
Bases: exceptions.Exception

class avocado.utils.filelock.FileLock(filename, timeout=0)
Bases: object

Creates an exclusive advisory lock for a file. All processes should use and honor the advisory locking scheme,
but uncooperative processes are free to ignore the lock and access the file in any way they choose.

exception avocado.utils.filelock.LockFailed
Bases: exceptions.Exception

20.2.17 avocado.utils.gdb module

Module that provides communication with GDB via its GDB/MI interpreter

class avocado.utils.gdb.GDB(path=’/usr/bin/gdb’, *extra_args)
Bases: object

Wraps a GDB subprocess for easier manipulation

DEFAULT_BREAK = 'main'

160 Chapter 20. API Reference

avocado Documentation, Release 63.0

REQUIRED_ARGS = ['--interpreter=mi', '--quiet']

cli_cmd(command)
Sends a cli command encoded as an MI command

Parameters command (str) – a regular GDB cli command

Returns a CommandResult instance

Return type CommandResult

cmd(command)
Sends a command and parses all lines until prompt is received

Parameters command (str) – the GDB command, hopefully in MI language

Returns a CommandResult instance

Return type CommandResult

cmd_exists(command)
Checks if a given command exists

Parameters command (str) – a GDB MI command, including the dash (-) prefix

Returns either True or False

Return type bool

connect(port)
Connects to a remote debugger (a gdbserver) at the given TCP port

This uses the “extended-remote” target type only

Parameters port (int) – the TCP port number

Returns a CommandResult instance

Return type CommandResult

del_break(number)
Deletes a breakpoint by its number

Parameters number (int) – the breakpoint number

Returns a CommandResult instance

Return type CommandResult

disconnect()
Disconnects from a remote debugger

Returns a CommandResult instance

Return type CommandResult

exit()
Exits the GDB application gracefully

Returns the result of subprocess.POpen.wait(), that is, a subprocess.POpen.
returncode

Return type int or None

read_gdb_response(timeout=0.01, max_tries=100)
Read raw responses from GDB

Parameters

20.2. Utilities APIs 161

avocado Documentation, Release 63.0

• timeout (float) – the amount of time to way between read attempts

• max_tries (int) – the maximum number of cycles to try to read until a response is
obtained

Returns a string containing a raw response from GDB

Return type str

read_until_break(max_lines=100)
Read lines from GDB until a break condition is reached

Parameters max_lines (int) – the maximum number of lines to read

Returns a list of messages read

Return type list of str

run(args=None)
Runs the application inside the debugger

Parameters args (builtin.list) – the arguments to be passed to the binary as command
line arguments

Returns a CommandResult instance

Return type CommandResult

send_gdb_command(command)
Send a raw command to the GNU debugger input

Parameters command (str) – the GDB command, hopefully in MI language

Returns None

set_break(location, ignore_error=False)
Sets a new breakpoint on the binary currently being debugged

Parameters location (str) – a breakpoint location expression as accepted by GDB

Returns a CommandResult instance

Return type CommandResult

set_file(path)
Sets the file that will be executed

Parameters path (str) – the path of the binary that will be executed

Returns a CommandResult instance

Return type CommandResult

class avocado.utils.gdb.GDBServer(path=’/usr/bin/gdbserver’, port=None,
wait_until_running=True, *extra_args)

Bases: object

Wraps a gdbserver instance

Initializes a new gdbserver instance

Parameters

• path (str) – location of the gdbserver binary

• port (int) – tcp port number to listen on for incoming connections

162 Chapter 20. API Reference

avocado Documentation, Release 63.0

• wait_until_running (bool) – wait until the gdbserver is running and accepting con-
nections. It may take a little after the process is started and it is actually bound to the
allocated port

• extra_args – optional extra arguments to be passed to gdbserver

INIT_TIMEOUT = 5.0
The time to optionally wait for the server to initialize itself and be ready to accept new connections

PORT_RANGE = (20000, 20999)
The range from which a port to GDB server will try to be allocated from

REQUIRED_ARGS = ['--multi']
The default arguments used when starting the GDB server process

exit(force=True)
Quits the gdb_server process

Most correct way of quitting the GDB server is by sending it a command. If no GDB client is connected,
then we can try to connect to it and send a quit command. If this is not possible, we send it a signal and
wait for it to finish.

Parameters force (bool) – if a forced exit (sending SIGTERM) should be attempted

Returns None

class avocado.utils.gdb.GDBRemote(host, port, no_ack_mode=True, extended_mode=True)
Bases: object

Initializes a new GDBRemote object.

A GDBRemote acts like a client that speaks the GDB remote protocol, documented at:

https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html

Caveat: we currently do not support communicating with devices, only with TCP sockets. This limitation is
basically due to the lack of use cases that justify an implementation, but not due to any technical shortcoming.

Parameters

• host (str) – the IP address or host name

• port (int) – the port number where the the remote GDB is listening on

• no_ack_mode (bool) – if the packet transmission confirmation mode should be disabled

• extended_mode – if the remote extended mode should be enabled

cmd(command_data, expected_response=None)
Sends a command data to a remote gdb server

Limitations: the current version does not deal with retransmissions.

Parameters

• command_data (str) – the remote command to send the the remote stub

• expected_response (str) – the (optional) response that is expected as a response
for the command sent

Raises RetransmissionRequestedError, UnexpectedResponseError

Returns raw data read from from the remote server

Return type str

20.2. Utilities APIs 163

https://sourceware.org/gdb/current/onlinedocs/gdb/Remote-Protocol.html

avocado Documentation, Release 63.0

connect()
Connects to the remote target and initializes the chosen modes

set_extended_mode()
Enable extended mode. In extended mode, the remote server is made persistent. The ‘R’ packet is used to
restart the program being debugged. Original documentation at:

https://sourceware.org/gdb/current/onlinedocs/gdb/Packets.html#extended-mode

start_no_ack_mode()
Request that the remote stub disable the normal +/- protocol acknowledgments. Original documentation
at:

https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html#QStartNoAckMode

20.2.18 avocado.utils.genio module

Avocado generic IO related functions.

exception avocado.utils.genio.GenIOError
Bases: exceptions.Exception

Base Exception Class for all IO exceptions

avocado.utils.genio.ask(question, auto=False)
Prompt the user with a (y/n) question.

Parameters

• question (str) – Question to be asked

• auto (bool) – Whether to return “y” instead of asking the question

Returns User answer

Return type str

avocado.utils.genio.close_log_file(filename)

avocado.utils.genio.log_line(filename, line)
Write a line to a file.

Parameters

• filename – Path of file to write to, either absolute or relative to the dir set by
set_log_file_dir().

• line – Line to write.

avocado.utils.genio.read_all_lines(filename)
Return all lines of a given file

This utility method returns an empty list in any error scenario, that is, it doesn’t attempt to identify error paths
and raise appropriate exceptions. It does exactly the opposite to that.

This should be used when it’s fine or desirable to have an empty set of lines if a file is missing or is unreadable.

Parameters filename (str) – Path to the file.

Returns all lines of the file as list

Return type builtin.list

avocado.utils.genio.read_file(filename)
Read the entire contents of file.

164 Chapter 20. API Reference

https://sourceware.org/gdb/current/onlinedocs/gdb/Packets.html#extended-mode
https://sourceware.org/gdb/current/onlinedocs/gdb/General-Query-Packets.html#QStartNoAckMode

avocado Documentation, Release 63.0

Parameters filename (str) – Path to the file.

Returns File contents

Return type str

avocado.utils.genio.read_one_line(filename)
Read the first line of filename.

Parameters filename (str) – Path to the file.

Returns First line contents

Return type str

avocado.utils.genio.set_log_file_dir(directory)
Set the base directory for log files created by log_line().

Parameters dir – Directory for log files.

avocado.utils.genio.write_file(filename, data)
Write data to a file.

Parameters

• filename (str) – Path to the file.

• line (str) – Line to be written.

avocado.utils.genio.write_file_or_fail(filename, data)
Write to a file and raise exception on write failure

Parameters

• filename (str) – Path to file

• data (str) – Data to be written to file

Raises GenIOError – On write Failure

avocado.utils.genio.write_one_line(filename, line)
Write one line of text to filename.

Parameters

• filename (str) – Path to the file.

• line (str) – Line to be written.

20.2.19 avocado.utils.git module

APIs to download/update git repositories from inside python scripts.

class avocado.utils.git.GitRepoHelper(uri, branch=’master’, lbranch=None, commit=None,
destination_dir=None, base_uri=None)

Bases: object

Helps to deal with git repos, mostly fetching content from a repo

Instantiates a new GitRepoHelper

Parameters

• uri (string) – git repository url

• branch (string) – git remote branch

20.2. Utilities APIs 165

avocado Documentation, Release 63.0

• lbranch (string) – git local branch name, if different from remote

• commit (string) – specific commit to download

• destination_dir (string) – path of a dir where to save downloaded code

• base_uri (string) – a closer, usually local, git repository url from where to fetch con-
tent first from

checkout(branch=None, commit=None)
Performs a git checkout for a given branch and start point (commit)

Parameters

• branch – Remote branch name.

• commit – Specific commit hash.

execute()
Performs all steps necessary to initialize and download a git repo.

This includes the init, fetch and checkout steps in one single utility method.

fetch(uri)
Performs a git fetch from the remote repo

get_top_commit()
Returns the topmost commit id for the current branch.

Returns Commit id.

get_top_tag()
Returns the topmost tag for the current branch.

Returns Tag.

git_cmd(cmd, ignore_status=False)
Wraps git commands.

Parameters

• cmd – Command to be executed.

• ignore_status – Whether we should suppress error.CmdError exceptions if the com-
mand did return exit code !=0 (True), or not suppress them (False).

init()
Initializes a directory for receiving a verbatim copy of git repo

This creates a directory if necessary, and either resets or inits the repo

avocado.utils.git.get_repo(uri, branch=’master’, lbranch=None, commit=None, destina-
tion_dir=None, base_uri=None)

Utility function that retrieves a given git code repository.

Parameters

• uri (string) – git repository url

• branch (string) – git remote branch

• lbranch (string) – git local branch name, if different from remote

• commit (string) – specific commit to download

• destination_dir (string) – path of a dir where to save downloaded code

166 Chapter 20. API Reference

avocado Documentation, Release 63.0

• base_uri (string) – a closer, usually local, git repository url from where to fetch con-
tent first from

20.2.20 avocado.utils.iso9660 module

Basic ISO9660 file-system support.

This code does not attempt (so far) to implement code that knows about ISO9660 internal structure. Instead, it uses
commonly available support either in userspace tools or on the Linux kernel itself (via mount).

avocado.utils.iso9660.iso9660(path)
Checks the available tools on a system and chooses class accordingly

This is a convenience function, that will pick the first available iso9660 capable tool.

Parameters path (str) – path to an iso9660 image file

Returns an instance of any iso9660 capable tool

Return type Iso9660IsoInfo, Iso9660IsoRead, Iso9660Mount or None

class avocado.utils.iso9660.Iso9660IsoInfo(path)
Bases: avocado.utils.iso9660.MixInMntDirMount, avocado.utils.iso9660.
BaseIso9660

Represents a ISO9660 filesystem

This implementation is based on the cdrkit’s isoinfo tool

read(path)
Abstract method to read data from path

Parameters path – path to the file

Returns data content from the file

Return type str

class avocado.utils.iso9660.Iso9660IsoRead(path)
Bases: avocado.utils.iso9660.MixInMntDirMount, avocado.utils.iso9660.
BaseIso9660

Represents a ISO9660 filesystem

This implementation is based on the libcdio’s iso-read tool

close()
Cleanups and frees any resources being used

copy(src, dst)
Simplistic version of copy that relies on read()

Parameters

• src (str) – source path

• dst (str) – destination path

Return type None

read(path)
Abstract method to read data from path

Parameters path – path to the file

Returns data content from the file

20.2. Utilities APIs 167

avocado Documentation, Release 63.0

Return type str

class avocado.utils.iso9660.Iso9660Mount(path)
Bases: avocado.utils.iso9660.BaseIso9660

Represents a mounted ISO9660 filesystem.

initializes a mounted ISO9660 filesystem

Parameters path (str) – path to the ISO9660 file

close()
Perform umount operation on the temporary dir

Return type None

copy(src, dst)

Parameters

• src (str) – source

• dst (str) – destination

Return type None

mnt_dir

read(path)
Read data from path

Parameters path (str) – path to read data

Returns data content

Return type str

20.2.21 avocado.utils.kernel module

class avocado.utils.kernel.KernelBuild(version, config_path=None, work_dir=None,
data_dirs=None)

Bases: object

Build the Linux Kernel from official tarballs.

Creates an instance of KernelBuild.

Parameters

• version – kernel version (“3.19.8”).

• config_path – path to config file.

• work_dir – work directory.

• data_dirs – list of directories to keep the downloaded kernel

Returns None.

SOURCE = 'linux-{version}.tar.gz'

URL = 'https://www.kernel.org/pub/linux/kernel/v{major}.x/'

build(binary_package=False)
Build kernel from source.

168 Chapter 20. API Reference

avocado Documentation, Release 63.0

Parameters binary_package – when True, the appropriate platform package is built for
install() to use

configure()
Configure/prepare kernel source to build.

download(url=None)
Download kernel source.

Parameters url (str or None) – override the url from where to fetch the kernel source
tarball

install()
Install built kernel.

uncompress()
Uncompress kernel source.

avocado.utils.kernel.check_version(version)
This utility function compares the current kernel version with the version parameter and gives assertion error if
the version parameter is greater.

Parameters version (string) – version to be compared with current kernel version

20.2.22 avocado.utils.linux_modules module

Linux kernel modules APIs

avocado.utils.linux_modules.BUILTIN = 2
Config built-in to kernel (=y)

avocado.utils.linux_modules.MODULE = 1
Config compiled as loadable module (=m)

avocado.utils.linux_modules.NOT_SET = 0
Config commented out or not set

avocado.utils.linux_modules.check_kernel_config(config_name)
Reports the configuration of $config_name of the current kernel

Parameters config_name (str) – Name of kernel config to search

Returns Config status in running kernel (NOT_SET, BUILTIN, MODULE)

Return type int

avocado.utils.linux_modules.get_loaded_modules()
Gets list of loaded modules. :return: List of loaded modules.

avocado.utils.linux_modules.get_submodules(module_name)
Get all submodules of the module.

Parameters module_name (str) – Name of module to search for

Returns List of the submodules

Return type builtin.list

avocado.utils.linux_modules.load_module(module_name)
Checks if a module has already been loaded. :param module_name: Name of module to check :return: True if
module is loaded, False otherwise :rtype: Bool

avocado.utils.linux_modules.loaded_module_info(module_name)
Get loaded module details: Size and Submodules.

20.2. Utilities APIs 169

avocado Documentation, Release 63.0

Parameters module_name (str) – Name of module to search for

Returns Dictionary of module name, size, submodules if present, filename, version, number of
modules using it, list of modules it is dependent on, list of dictionary of param name and type

Return type dict

avocado.utils.linux_modules.module_is_loaded(module_name)
Is module loaded

Parameters module_name (str) – Name of module to search for

Returns True if module is loaded

Return type bool

avocado.utils.linux_modules.parse_lsmod_for_module(l_raw, module_name, es-
cape=True)

Use a regexp to parse raw lsmod output and get module information :param l_raw: raw output of lsmod :type
l_raw: str :param module_name: Name of module to search for :type module_name: str :param escape: Escape
regexp tokens in module_name, default True :type escape: bool :return: Dictionary of module info, name, size,
submodules if present :rtype: dict

avocado.utils.linux_modules.unload_module(module_name)
Removes a module. Handles dependencies. If even then it’s not possible to remove one of the modules, it will
throw an error.CmdError exception.

Parameters module_name (str) – Name of the module we want to remove.

20.2.23 avocado.utils.lv_utils module

exception avocado.utils.lv_utils.LVException
Bases: exceptions.Exception

Base Exception Class for all exceptions

avocado.utils.lv_utils.get_diskspace(disk)
Get the entire disk space of a given disk

Parameters disk – Name of the disk to find free space

Returns size in bytes

avocado.utils.lv_utils.lv_check(vg_name, lv_name)
Check whether provided Logical volume exists.

Parameters

• vg_name – Name of the volume group

• lv_name – Name of the logical volume

avocado.utils.lv_utils.lv_create(vg_name, lv_name, lv_size, force_flag=True)
Create a Logical volume in a volume group. The volume group must already exist.

Parameters

• vg_name – Name of the volume group

• lv_name – Name of the logical volume

• lv_size – Size for the logical volume to be created

170 Chapter 20. API Reference

avocado Documentation, Release 63.0

avocado.utils.lv_utils.lv_list()
List available group volumes.

:return list available logical volumes

avocado.utils.lv_utils.lv_mount(vg_name, lv_name, mount_loc, create_filesystem=”)
Mount a Logical volume to a mount location.

Parameters

• vg_name – Name of volume group

• lv_name – Name of the logical volume

• create_filesystem – Can be one of ext2, ext3, ext4, vfat or empty if the filesystem
was already created and the mkfs process is skipped

Mount_loc Location to mount the logical volume

avocado.utils.lv_utils.lv_reactivate(vg_name, lv_name, timeout=10)
In case of unclean shutdowns some of the lvs is still active and merging is postponed. Use this function to
attempt to deactivate and reactivate all of them to cause the merge to happen.

Parameters

• vg_name – Name of volume group

• lv_name – Name of the logical volume

• timeout – Timeout between operations

avocado.utils.lv_utils.lv_remove(vg_name, lv_name)
Remove a logical volume.

Parameters

• vg_name – Name of the volume group

• lv_name – Name of the logical volume

avocado.utils.lv_utils.lv_revert(vg_name, lv_name, lv_snapshot_name)
Revert the origin to a snapshot.

Parameters

• vg_name – An existing volume group

• lv_name – An existing logical volume

• lv_snapshot_name – Name of the snapshot be to reverted

avocado.utils.lv_utils.lv_revert_with_snapshot(vg_name, lv_name, lv_snapshot_name,
lv_snapshot_size)

Perform Logical volume merge with snapshot and take a new snapshot.

Parameters

• vg_name – Name of volume group in which lv has to be reverted

• lv_name – Name of the logical volume to be reverted

• lv_snapshot_name – Name of the snapshot be to reverted

• lv_snapshot_size – Size of the snapshot

avocado.utils.lv_utils.lv_take_snapshot(vg_name, lv_name, lv_snapshot_name,
lv_snapshot_size)

Take a snapshot of the original Logical volume.

20.2. Utilities APIs 171

avocado Documentation, Release 63.0

Parameters

• vg_name – An existing volume group

• lv_name – An existing logical volume

• lv_snapshot_name – Name of the snapshot be to created

• lv_snapshot_size – Size of the snapshot

avocado.utils.lv_utils.lv_umount(vg_name, lv_name)
Unmount a Logical volume from a mount location.

Parameters

• vg_name – Name of volume group

• lv_name – Name of the logical volume

avocado.utils.lv_utils.thin_lv_create(vg_name, thinpool_name=’lvthinpool’, thin-
pool_size=’1.5G’, thinlv_name=’lvthin’,
thinlv_size=’1G’)

Create a thin volume from given volume group.

Parameters

• vg_name – An exist volume group

• thinpool_name – The name of thin pool

• thinpool_size – The size of thin pool to be created

• thinlv_name – The name of thin volume

• thinlv_size – The size of thin volume

avocado.utils.lv_utils.vg_check(vg_name)
Check whether provided volume group exists.

Parameters vg_name – Name of the volume group.

avocado.utils.lv_utils.vg_create(vg_name, pv_list, force=False)
Create a volume group by using the block special devices

Parameters

• vg_name – Name of the volume group

• pv_list – List of physical volumes

• force – Create volume group forcefully

avocado.utils.lv_utils.vg_list()
List available volume groups.

:return List of volume groups.

avocado.utils.lv_utils.vg_ramdisk(disk, vg_name, ramdisk_vg_size, ramdisk_basedir,
ramdisk_sparse_filename)

Create vg on top of ram memory to speed up lv performance. When disk is specified size of the physical volume
is taken from existing disk space.

Parameters

• disk – Name of the disk in which volume groups are created.

• vg_name – Name of the volume group.

• ramdisk_vg_size – Size of the ramdisk virtual group (MB).

172 Chapter 20. API Reference

avocado Documentation, Release 63.0

• ramdisk_basedir – Base directory for the ramdisk sparse file.

• ramdisk_sparse_filename – Name of the ramdisk sparse file.

Returns ramdisk_filename, vg_ramdisk_dir, vg_name, loop_device

Raises LVException – On failure

Sample ramdisk params: - ramdisk_vg_size = “40000” - ramdisk_basedir = “/tmp” - ramdisk_sparse_filename
= “virtual_hdd”

Sample general params: - vg_name=’autotest_vg’, - lv_name=’autotest_lv’, - lv_size=‘1G’, -
lv_snapshot_name=’autotest_sn’, - lv_snapshot_size=‘1G’ The ramdisk volume group size is in MB.

avocado.utils.lv_utils.vg_ramdisk_cleanup(ramdisk_filename=None,
vg_ramdisk_dir=None, vg_name=None,
loop_device=None)

Inline cleanup function in case of test error.

It detects whether the components were initialized and if so it tries to remove them. In case of failure it raises
summary exception.

Parameters

• ramdisk_filename – Name of the ramdisk sparse file.

• vg_ramdisk_dir – Location of the ramdisk file

Vg_name Name of the volume group

Loop_device Name of the disk or loop device

Raises LVException – In case it fail to clean things detected in system

avocado.utils.lv_utils.vg_remove(vg_name)
Remove a volume group.

Parameters vg_name – Name of the volume group

20.2.24 avocado.utils.memory module

exception avocado.utils.memory.MemError
Bases: exceptions.Exception

called when memory operations fails

class avocado.utils.memory.MemInfo
Bases: object

Representation of /proc/meminfo

avocado.utils.memory.check_hotplug()
Check kernel support for memory hotplug

Returns True if hotplug supported, else False

Return type ‘bool’

avocado.utils.memory.drop_caches()
Writes back all dirty pages to disk and clears all the caches.

avocado.utils.memory.freememtotal()
Read MemFree from meminfo.

20.2. Utilities APIs 173

avocado Documentation, Release 63.0

avocado.utils.memory.get_blk_string(block)
Format the given block id to string

Parameters block – memory block id or block string.

Returns returns string memory198 if id 198 is given

Return type string

avocado.utils.memory.get_buddy_info(chunk_sizes, nodes=’all’, zones=’all’)
Get the fragement status of the host.

It uses the same method to get the page size in buddyinfo. The expression to evaluate it is:

2^chunk_size * page_size

The chunk_sizes can be string make up by all orders that you want to check split with blank or a mathematical
expression with >, < or =.

For example:

• The input of chunk_size could be: 0 2 4, and the return will be {'0': 3, '2': 286,
'4': 687}

• If you are using expression: >=9 the return will be {'9': 63, '10': 225}

Parameters

• chunk_size (string) – The order number shows in buddyinfo. This is not the real page
size.

• nodes (string) – The numa node that you want to check. Default value is all

• zones (string) – The memory zone that you want to check. Default value is all

Returns A dict using the chunk_size as the keys

Return type dict

avocado.utils.memory.get_huge_page_size()
Get size of the huge pages for this system.

Returns Huge pages size (KB).

avocado.utils.memory.get_num_huge_pages()
Get number of huge pages for this system.

Returns Number of huge pages.

avocado.utils.memory.get_page_size()
Get linux page size for this system.

:return Kernel page size (Bytes).

avocado.utils.memory.get_thp_value(feature)
Gets the value of the thp feature arg passed

Param feature Thp feature to get value

avocado.utils.memory.hotplug(block)
Online the memory for the given block id.

Parameters block – memory block id or or memory198

avocado.utils.memory.hotunplug(block)
Offline the memory for the given block id.

174 Chapter 20. API Reference

avocado Documentation, Release 63.0

Parameters block – memory block id.

avocado.utils.memory.is_hot_pluggable(block)
Check if the given memory block is hotpluggable

Parameters block – memory block id.

Returns True if hotpluggable, else False

Return type ‘bool’

avocado.utils.memory.memtotal()
Read Memtotal from meminfo.

avocado.utils.memory.memtotal_sys()
Reports actual memory size according to online-memory blocks available via “/sys”

Returns system memory in Kb as float

avocado.utils.memory.node_size()
Return node size.

Returns Node size.

avocado.utils.memory.numa_nodes()
Get a list of NUMA nodes present on the system.

Returns List with nodes.

avocado.utils.memory.numa_nodes_with_memory()
Get a list of NUMA nodes present with memory on the system.

Returns List with nodes which has memory.

avocado.utils.memory.read_from_meminfo(key)
Retrieve key from meminfo.

Parameters key – Key name, such as MemTotal.

avocado.utils.memory.read_from_numa_maps(pid, key)
Get the process numa related info from numa_maps. This function only use to get the numbers like anon=1.

Parameters

• pid (String) – Process id

• key (String) – The item you want to check from numa_maps

Returns A dict using the address as the keys

Return type dict

avocado.utils.memory.read_from_smaps(pid, key)
Get specific item value from the smaps of a process include all sections.

Parameters

• pid (String) – Process id

• key (String) – The item you want to check from smaps

Returns The value of the item in kb

Return type int

avocado.utils.memory.read_from_vmstat(key)
Get specific item value from vmstat

20.2. Utilities APIs 175

avocado Documentation, Release 63.0

Parameters key (String) – The item you want to check from vmstat

Returns The value of the item

Return type int

avocado.utils.memory.rounded_memtotal()
Get memtotal, properly rounded.

Returns Total memory, KB.

avocado.utils.memory.set_num_huge_pages(num)
Set number of huge pages.

Parameters num – Target number of huge pages.

avocado.utils.memory.set_thp_value(feature, value)
Sets THP feature to a given value

Parameters

• feature (str) – Thp feature to set

• value (str) – Value to be set to feature

20.2.25 avocado.utils.multipath module

Module with multipath related utility functions. It needs root access.

avocado.utils.multipath.device_exists(path)
Checks if a given path exists.

Returns True if path exists, False if does not exist.

avocado.utils.multipath.fail_path(path)
failing the individual paths :param disk_path: disk path. Example: sda, sdb. :return: True or False

avocado.utils.multipath.flush_path(path_name)
Flushes the given multipath.

Returns Returns False if command fails, True otherwise.

avocado.utils.multipath.form_conf_mpath_file(blacklist=”, defaults_extra=”)
Form a multipath configuration file, and restart multipath service.

Parameters

• blacklist – Entry in conf file to indicate blacklist section.

• defaults_extra – Extra entry in conf file in defaults section.

avocado.utils.multipath.get_mpath_name(wwid)
Get multipath name for a given wwid.

Parameters wwid – wwid of multipath device.

Returns Name of multipath device.

avocado.utils.multipath.get_multipath_details()
Get multipath details as a dictionary, as given by the command: multipathd show maps json

Returns Dictionary of multipath output in json format.

avocado.utils.multipath.get_multipath_wwids()
Get list of multipath wwids.

176 Chapter 20. API Reference

avocado Documentation, Release 63.0

Returns List of multipath wwids.

avocado.utils.multipath.get_path_status(disk_path)
Return the status of a path in multipath.

Parameters disk_path – disk path. Example: sda, sdb.

Returns Tuple in the format of (dm status, dev status, checker status)

avocado.utils.multipath.get_paths(wwid)
Get list of paths, given a multipath wwid.

Returns List of paths.

avocado.utils.multipath.get_policy(wwid)
Gets path_checker policy, given a multipath wwid.

Returns path checker policy.

avocado.utils.multipath.get_size(wwid)
Gets size of device, given a multipath wwid.

Returns size of multipath device.

avocado.utils.multipath.get_svc_name()
Gets the multipath service name based on distro.

avocado.utils.multipath.is_path_a_multipath(disk_path)
Check if given disk path is part of a multipath.

Parameters disk_path – disk path. Example: sda, sdb.

Returns True if part of multipath, else False.

avocado.utils.multipath.reinstate_path(path)
reinstating the individual paths :param disk_path: disk path. Example: sda, sdb. :return: True or False

20.2.26 avocado.utils.network module

Module with network related utility functions

class avocado.utils.network.PortTracker
Bases: avocado.utils.data_structures.Borg

Tracks ports used in the host machine.

find_free_port(start_port=None)

register_port(port)

release_port(port)

avocado.utils.network.find_free_port(start_port, end_port, address=’localhost’, se-
quent=True)

Return a host free port in the range [start_port, end_port].

Parameters

• start_port – header of candidate port range

• end_port – ender of candidate port range

• sequent – Find port sequentially, random order if it’s False

• address – Socket address to bind or connect

20.2. Utilities APIs 177

avocado Documentation, Release 63.0

avocado.utils.network.find_free_ports(start_port, end_port, count, address=’localhost’, se-
quent=True)

Return count of host free ports in the range [start_port, end_port].

Parameters

• start_port – header of candidate port range

• end_port – ender of candidate port range

• count – Initial number of ports known to be free in the range.

• address – Socket address to bind or connect

• sequent – Find port sequentially, random order if it’s False

avocado.utils.network.is_port_free(port, address)
Return True if the given port is available for use.

Parameters

• port – Port number

• address – Socket address to bind or connect

20.2.27 avocado.utils.output module

Utility functions for user friendly display of information.

class avocado.utils.output.ProgressBar(minimum=0, maximum=100, width=75, title=”)
Bases: object

Displays interactively the progress of a given task

Inspired/adapted from https://gist.github.com/t0xicCode/3306295

Initializes a new progress bar

Parameters

• minimum (integer) – minimum (initial) value on the progress bar

• maximum (integer) – maximum (final) value on the progress bar

• with – number of columns, that is screen width

append_amount(amount)
Increments the current amount value.

draw()
Prints the updated text to the screen.

update_amount(amount)
Performs sanity checks and update the current amount.

update_percentage(percentage)
Updates the progress bar to the new percentage.

avocado.utils.output.display_data_size(size)
Display data size in human readable units (SI).

Parameters size (int) – Data size, in Bytes.

Returns Human readable string with data size, using SI prefixes.

178 Chapter 20. API Reference

https://gist.github.com/t0xicCode/3306295

avocado Documentation, Release 63.0

20.2.28 avocado.utils.partition module

Utility for handling partitions.

class avocado.utils.partition.MtabLock
Bases: object

mtab = None

class avocado.utils.partition.Partition(device, loop_size=0, mountpoint=None)
Bases: object

Class for handling partitions and filesystems

Parameters

• device – The device in question (e.g.”/dev/hda2”). If device is a file it will be mounted as
loopback.

• loop_size – Size of loopback device (in MB). Defaults to 0.

• mountpoint – Where the partition to be mounted to.

get_mountpoint(filename=None)
Find the mount point of this partition object.

Parameters filename – where to look for the mounted partitions information (default None
which means it will search /proc/mounts and/or /etc/mtab)

Returns a string with the mount point of the partition or None if not mounted

static list_mount_devices()
Lists mounted file systems and swap on devices.

static list_mount_points()
Lists the mount points.

mkfs(fstype=None, args=”)
Format a partition to filesystem type

Parameters

• fstype – the filesystem type, such as “ext3”, “ext2”. Defaults to previously set type or
“ext2” if none has set.

• args – arguments to be passed to mkfs command.

mount(mountpoint=None, fstype=None, args=”)
Mount this partition to a mount point

Parameters

• mountpoint – If you have not provided a mountpoint to partition object or want to use
a different one, you may specify it here.

• fstype – Filesystem type. If not provided partition object value will be used.

• args – Arguments to be passed to “mount” command.

unmount(force=True)
Umount this partition.

It’s easier said than done to umount a partition. We need to lock the mtab file to make sure we don’t have
any locking problems if we are umounting in parallel.

When the unmount fails and force==True we unmount the partition ungracefully.

20.2. Utilities APIs 179

avocado Documentation, Release 63.0

Returns 1 on success, 2 on force umount success

Raises PartitionError – On failure

exception avocado.utils.partition.PartitionError(partition, reason, details=None)
Bases: exceptions.Exception

Generic PartitionError

20.2.29 avocado.utils.path module

Avocado path related functions.

exception avocado.utils.path.CmdNotFoundError(cmd, paths)
Bases: exceptions.Exception

Indicates that the command was not found in the system after a search.

Parameters

• cmd – String with the command.

• paths – List of paths where we looked after.

class avocado.utils.path.PathInspector(path)
Bases: object

get_first_line()

has_exec_permission()

is_empty()

is_python()

is_script(language=None)

avocado.utils.path.find_command(cmd, default=None)
Try to find a command in the PATH, paranoid version.

Parameters

• cmd – Command to be found.

• default – Command path to use as a fallback if not found in the standard directories.

Raise avocado.utils.path.CmdNotFoundError in case the command was not found and
no default was given.

avocado.utils.path.get_path(base_path, user_path)
Translate a user specified path to a real path. If user_path is relative, append it to base_path. If user_path is
absolute, return it as is.

Parameters

• base_path – The base path of relative user specified paths.

• user_path – The user specified path.

avocado.utils.path.init_dir(*args)
Wrapper around os.path.join that creates dirs based on the final path.

Parameters args – List of dir arguments that will be os.path.joined.

Returns directory.

Return type str

180 Chapter 20. API Reference

avocado Documentation, Release 63.0

avocado.utils.path.usable_ro_dir(directory)
Verify whether dir exists and we can access its contents.

If a usable RO is there, use it no questions asked. If not, let’s at least try to create one.

Parameters directory – Directory

avocado.utils.path.usable_rw_dir(directory)
Verify whether we can use this dir (read/write).

Checks for appropriate permissions, and creates missing dirs as needed.

Parameters directory – Directory

20.2.30 avocado.utils.pci module

Module for all PCI devices related functions.

avocado.utils.pci.get_cfg(dom_pci_address)
Gets the hardware configuration data of the given PCI address.

Note Specific for ppc64 processor.

Parameters dom_pci_address – Partial PCI address including domain addr and at least bus
addr (0003:00, 0003:00:1f.2, . . .)

Returns dictionary of configuration data of a PCI address.

avocado.utils.pci.get_disks_in_pci_address(pci_address)
Gets disks in a PCI address.

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns list of disks in a PCI address.

avocado.utils.pci.get_domains()
Gets all PCI domains. Example, it returns [‘0000’, ‘0001’, . . .]

Returns List of PCI domains.

avocado.utils.pci.get_driver(pci_address)
Gets the kernel driver in use of given PCI address. (first match only)

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns driver of a PCI address.

avocado.utils.pci.get_interfaces_in_pci_address(pci_address, pci_class)
Gets interface in a PCI address.

e.g: host = pci.get_interfaces_in_pci_address(“0001:01:00.0”, “net”) [‘enP1p1s0f0’] host =
pci.get_interfaces_in_pci_address(“0004:01:00.0”, “fc_host”) [‘host6’]

Parameters

• pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

• class – Adapter type (FC(fc_host), FCoE(net), NIC(net), SCSI(scsi)..)

Returns list of generic interfaces in a PCI address.

avocado.utils.pci.get_mask(pci_address)
Gets the mask of PCI address. (first match only)

Note There may be multiple memory entries for a PCI address.

20.2. Utilities APIs 181

avocado Documentation, Release 63.0

Note This mask is calculated only with the first such entry.

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns mask of a PCI address.

avocado.utils.pci.get_memory_address(pci_address)
Gets the memory address of a PCI address. (first match only)

Note There may be multiple memory address for a PCI address.

Note This function returns only the first such address.

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns memory address of a pci_address.

avocado.utils.pci.get_nics_in_pci_address(pci_address)
Gets network interface(nic) in a PCI address.

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns list of network interfaces in a PCI address.

avocado.utils.pci.get_num_interfaces_in_pci(dom_pci_address)
Gets number of interfaces of a given partial PCI address starting with full domain address.

Parameters dom_pci_address – Partial PCI address including domain address (0000,
0000:00:1f, 0000:00:1f.2, etc)

Returns number of devices in a PCI domain.

avocado.utils.pci.get_pci_addresses()
Gets list of PCI addresses in the system. Does not return the PCI Bridges/Switches.

Returns list of full PCI addresses including domain (0000:00:14.0)

avocado.utils.pci.get_pci_class_name(pci_address)
Gets pci class name for given pci bus address

e.g: >>> pci.get_pci_class_name(“0000:01:00.0”) ‘scsi_host’

Parameters pci_address – Any segment of a PCI address(1f, 0000:00:if, . . .)

Returns class name for corresponding pci bus address

avocado.utils.pci.get_pci_fun_list(pci_address)
Gets list of functions in the given PCI address. Example: in address 0000:03:00, functions are 0000:03:00.0 and
0000:03:00.1

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns list of functions in a PCI address.

avocado.utils.pci.get_pci_id(pci_address)
Gets PCI id of given address. (first match only)

Parameters pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

Returns PCI ID of a PCI address.

avocado.utils.pci.get_pci_id_from_sysfs(full_pci_address)
Gets the PCI ID from sysfs of given PCI address.

Parameters full_pci_address – Full PCI address including domain (0000:03:00.0)

Returns PCI ID of a PCI address from sysfs.

182 Chapter 20. API Reference

avocado Documentation, Release 63.0

avocado.utils.pci.get_pci_prop(pci_address, prop)
Gets specific PCI ID of given PCI address. (first match only)

Parameters

• pci_address – Any segment of a PCI address (1f, 0000:00:1f, . . .)

• part – prop of PCI ID.

Returns specific PCI ID of a PCI address.

avocado.utils.pci.get_slot_from_sysfs(full_pci_address)
Gets the PCI slot of given address.

Note Specific for ppc64 processor.

Parameters full_pci_address – Full PCI address including domain (0000:03:00.0)

Returns Removed port related details using re, only returns till physical slot of the adapter.

avocado.utils.pci.get_slot_list()
Gets list of PCI slots in the system.

Note Specific for ppc64 processor.

Returns list of slots in the system.

avocado.utils.pci.get_vpd(dom_pci_address)
Gets the VPD (Virtual Product Data) of the given PCI address.

Note Specific for ppc64 processor.

Parameters dom_pci_address – Partial PCI address including domain addr and at least bus
addr (0003:00, 0003:00:1f.2, . . .)

Returns dictionary of VPD of a PCI address.

20.2.31 avocado.utils.process module

Functions dedicated to find and run external commands.

avocado.utils.process.CURRENT_WRAPPER = None
The active wrapper utility script.

exception avocado.utils.process.CmdError(command=None, result=None, addi-
tional_text=None)

Bases: exceptions.Exception

class avocado.utils.process.CmdResult(command=”, stdout=”, stderr=”, exit_status=None,
duration=0, pid=None, encoding=None)

Bases: object

Command execution result.

Parameters

• command (str) – the command line itself

• exit_status (int) – exit code of the process

• stdout (bytes) – content of the process stdout

• stderr (bytes) – content of the process stderr

• duration (float) – elapsed wall clock time running the process

20.2. Utilities APIs 183

avocado Documentation, Release 63.0

• pid (int) – ID of the process

• encoding (str) – the encoding to use for the text version of stdout and stderr, by default
avocado.utils.astring.ENCODING

stderr = None
The raw stderr (bytes)

stderr_text

stdout = None
The raw stdout (bytes)

stdout_text

class avocado.utils.process.FDDrainer(fd, result, name=None, logger=None, log-
ger_prefix=’%s’, stream_logger=None, ig-
nore_bg_processes=False, verbose=False)

Bases: object

Reads data from a file descriptor in a thread, storing locally in a file-like data object.

Parameters

• fd (int) – a file descriptor that will be read (drained) from

• result (a CmdResult instance) – a CmdResult instance associated with the process
used to detect if the process is still running and if there’s still data to be read.

• name (str) – a descriptive name that will be passed to the Thread name

• logger (logging.Logger) – the logger that will be used to (interactively) write the
content from the file descriptor

• logger_prefix (str with one %-style string formatter) – the prefix
used when logging the data

• ignore_bg_processes (boolean) – When True the process does not wait for child
processes which keep opened stdout/stderr streams after the main process finishes (eg.
forked daemon which did not closed the stdout/stderr). Note this might result in missing
output produced by those daemons after the main thread finishes and also it allows those
daemons to be running after the process finishes.

• verbose (boolean) – whether to log in both the logger and stream_logger

flush()

start()

class avocado.utils.process.GDBSubProcess(cmd, verbose=True, allow_output_check=None,
shell=False, env=None, sudo=False, ig-
nore_bg_processes=False, encoding=None)

Bases: object

Runs a subprocess inside the GNU Debugger

Creates the subprocess object, stdout/err, reader threads and locks.

Parameters

• cmd (str) – Command line to run.

• allow_output_check – Currently ignored in GDBSubProcess

• shell – Currently ignored in GDBSubProcess

• env – Currently ignored in GDBSubProcess

184 Chapter 20. API Reference

avocado Documentation, Release 63.0

• sudo – Currently ignored in GDBSubProcess

• ignore_bg_processes – Currently ignored in GDBSubProcess

• encoding (str) – the encoding to use for the text representation of the command result
stdout and stderr, by default avocado.utils.astring.ENCODING

Params verbose Currently ignored in GDBSubProcess

create_and_wait_on_resume_fifo(path)
Creates a FIFO file and waits until it’s written to

Parameters path (str) – the path that the file will be created

Returns first character that was written to the fifo

Return type str

generate_core()

generate_gdb_connect_cmds()

generate_gdb_connect_sh()

handle_break_hit(response)

handle_fatal_signal(response)

run(timeout=None)

wait_for_exit()
Waits until debugger receives a message about the binary exit

avocado.utils.process.OUTPUT_CHECK_RECORD_MODE = None
The current output record mode. It’s not possible to record both the ‘stdout’ and ‘stderr’ streams, and at the
same time in the right order, the combined ‘output’ stream. So this setting defines the mode.

class avocado.utils.process.SubProcess(cmd, verbose=True, allow_output_check=None,
shell=False, env=None, sudo=False, ig-
nore_bg_processes=False, encoding=None)

Bases: object

Run a subprocess in the background, collecting stdout/stderr streams.

Creates the subprocess object, stdout/err, reader threads and locks.

Parameters

• cmd (str) – Command line to run.

• verbose (bool) – Whether to log the command run and stdout/stderr.

• allow_output_check (str) – Whether to record the output from this process (from
stdout and stderr) in the test’s output record files. Valid values: ‘stdout’, for standard output
only, ‘stderr’ for standard error only, ‘both’ for both standard output and error in separate
files, ‘combined’ for standard output and error in a single file, and ‘none’ to disable all
recording. ‘all’ is also a valid, but deprecated, option that is a synonym of ‘both’. If an
explicit value is not given to this parameter, that is, if None is given, it defaults to using
the module level configuration, as set by OUTPUT_CHECK_RECORD_MODE. If the module
level configuration itself is not set, it defaults to ‘none’.

• shell (bool) – Whether to run the subprocess in a subshell.

• env (dict) – Use extra environment variables.

20.2. Utilities APIs 185

avocado Documentation, Release 63.0

• sudo (bool) – Whether the command requires admin privileges to run, so that sudo will
be prepended to the command. The assumption here is that the user running the command
has a sudo configuration such that a password won’t be prompted. If that’s not the case, the
command will straight out fail.

• ignore_bg_processes – When True the process does not wait for child processes
which keep opened stdout/stderr streams after the main process finishes (eg. forked daemon
which did not closed the stdout/stderr). Note this might result in missing output produced by
those daemons after the main thread finishes and also it allows those daemons to be running
after the process finishes.

• encoding (str) – the encoding to use for the text representation of the command result
stdout and stderr, by default avocado.utils.astring.ENCODING

Raises ValueError if incorrect values are given to parameters

get_pid()
Reports PID of this process

get_stderr()
Get the full stderr of the subprocess so far.

Returns Standard error of the process.

Return type str

get_stdout()
Get the full stdout of the subprocess so far.

Returns Standard output of the process.

Return type str

kill()
Send a signal.SIGKILL to the process.

poll()
Call the subprocess poll() method, fill results if rc is not None.

run(timeout=None, sig=15)
Start a process and wait for it to end, returning the result attr.

If the process was already started using .start(), this will simply wait for it to end.

Parameters

• timeout (float) – Time (seconds) we’ll wait until the process is finished. If it’s not,
we’ll try to terminate it and get a status.

• sig (int) – Signal to send to the process in case it did not end after the specified timeout.

Returns The command result object.

Return type A CmdResult instance.

send_signal(sig)
Send the specified signal to the process.

Parameters sig – Signal to send.

start()
Start running the subprocess.

This method is particularly useful for background processes, since you can start the subprocess and not
block your test flow.

186 Chapter 20. API Reference

avocado Documentation, Release 63.0

Returns Subprocess PID.

Return type int

stop()
Stop background subprocess.

Call this method to terminate the background subprocess and wait for it results.

terminate()
Send a signal.SIGTERM to the process.

wait()
Call the subprocess poll() method, fill results if rc is not None.

avocado.utils.process.UNDEFINED_BEHAVIOR_EXCEPTION = None
Exception to be raised when users of this API need to know that the execution of a given process resulted in
undefined behavior. One concrete example when a user, in an interactive session, let the inferior process exit
before before avocado resumed the debugger session. Since the information is unknown, and the behavior is
undefined, this situation will be flagged by an exception.

avocado.utils.process.WRAP_PROCESS = None
The global wrapper. If set, run every process under this wrapper.

avocado.utils.process.WRAP_PROCESS_NAMES_EXPR = []
Set wrapper per program names. A list of wrappers and program names. Format: [(‘/path/to/wrapper.sh’,
‘progname’), . . .]

class avocado.utils.process.WrapSubProcess(cmd, verbose=True, al-
low_output_check=None, shell=False,
env=None, wrapper=None, sudo=False, ig-
nore_bg_processes=False, encoding=None)

Bases: avocado.utils.process.SubProcess

Wrap subprocess inside an utility program.

avocado.utils.process.binary_from_shell_cmd(cmd)
Tries to find the first binary path from a simple shell-like command.

Note It’s a naive implementation, but for commands like: VAR=VAL binary -args || true gives the
right result (binary)

Parameters cmd (unicode string) – simple shell-like binary

Returns first found binary from the cmd

avocado.utils.process.can_sudo(cmd=None)
Check whether sudo is available (or running as root)

Parameters cmd – unicode string with the commands

avocado.utils.process.cmd_split(cmd)
Splits a command line into individual components

This is a simple wrapper around shlex.split(), which has the requirement of having text (not bytes) as its
argument on Python 3, but bytes on Python 2.

Parameters cmd – text (a multi byte string) encoded as ‘utf-8’

avocado.utils.process.get_children_pids(ppid, recursive=False)
Get all PIDs of children/threads of parent ppid param ppid: parent PID param recursive: True to return all levels
of sub-processes return: list of PIDs of all children/threads of ppid

20.2. Utilities APIs 187

avocado Documentation, Release 63.0

avocado.utils.process.get_sub_process_klass(cmd)
Which sub process implementation should be used

Either the regular one, or the GNU Debugger version

Parameters cmd – the command arguments, from where we extract the binary name

avocado.utils.process.getoutput(cmd, timeout=None, verbose=False, ignore_status=True,
allow_output_check=’combined’, shell=True, env=None,
sudo=False, ignore_bg_processes=False)

Because commands module is removed in Python3 and it redirect stderr to stdout, we port commands.getoutput
to make code compatible Return output (stdout or stderr) of executing cmd in a shell.

Parameters

• cmd (str) – Command line to run.

• timeout (float) – Time limit in seconds before attempting to kill the running process.
This function will take a few seconds longer than ‘timeout’ to complete if it has to kill the
process.

• verbose (bool) – Whether to log the command run and stdout/stderr.

• ignore_status – Whether to raise an exception when command returns =! 0 (False), or
not (True).

• allow_output_check (str) – Whether to record the output from this process (from
stdout and stderr) in the test’s output record files. Valid values: ‘stdout’, for standard output
only, ‘stderr’ for standard error only, ‘both’ for both standard output and error in separate
files, ‘combined’ for standard output and error in a single file, and ‘none’ to disable all
recording. ‘all’ is also a valid, but deprecated, option that is a synonym of ‘both’. If an
explicit value is not given to this parameter, that is, if None is given, it defaults to using
the module level configuration, as set by OUTPUT_CHECK_RECORD_MODE. If the module
level configuration itself is not set, it defaults to ‘none’.

• shell (bool) – Whether to run the command on a subshell

• env (dict) – Use extra environment variables

• sudo (bool) – Whether the command requires admin privileges to run, so that sudo will
be prepended to the command. The assumption here is that the user running the command
has a sudo configuration such that a password won’t be prompted. If that’s not the case, the
command will straight out fail.

• ignore_bg_processes (bool) – Whether to ignore background processes

Returns Command output(stdout or stderr).

Return type str

avocado.utils.process.getstatusoutput(cmd, timeout=None, verbose=False, ig-
nore_status=True, allow_output_check=’combined’,
shell=True, env=None, sudo=False, ig-
nore_bg_processes=False)

Because commands module is removed in Python3 and it redirect stderr to stdout, we port com-
mands.getstatusoutput to make code compatible Return (status, output) of executing cmd in a shell.

Parameters

• cmd (str) – Command line to run.

• timeout (float) – Time limit in seconds before attempting to kill the running process.
This function will take a few seconds longer than ‘timeout’ to complete if it has to kill the
process.

188 Chapter 20. API Reference

avocado Documentation, Release 63.0

• verbose (bool) – Whether to log the command run and stdout/stderr.

• ignore_status – Whether to raise an exception when command returns =! 0 (False), or
not (True).

• allow_output_check (str) – Whether to record the output from this process (from
stdout and stderr) in the test’s output record files. Valid values: ‘stdout’, for standard output
only, ‘stderr’ for standard error only, ‘both’ for both standard output and error in separate
files, ‘combined’ for standard output and error in a single file, and ‘none’ to disable all
recording. ‘all’ is also a valid, but deprecated, option that is a synonym of ‘both’. If an
explicit value is not given to this parameter, that is, if None is given, it defaults to using
the module level configuration, as set by OUTPUT_CHECK_RECORD_MODE. If the module
level configuration itself is not set, it defaults to ‘none’.

• shell (bool) – Whether to run the command on a subshell

• env (dict) – Use extra environment variables

• sudo (bool) – Whether the command requires admin privileges to run, so that sudo will
be prepended to the command. The assumption here is that the user running the command
has a sudo configuration such that a password won’t be prompted. If that’s not the case, the
command will straight out fail.

• ignore_bg_processes (bool) – Whether to ignore background processes

Returns Exit status and command output(stdout and stderr).

Return type tuple

avocado.utils.process.kill_process_by_pattern(pattern)
Send SIGTERM signal to a process with matched pattern.

Parameters pattern – normally only matched against the process name

avocado.utils.process.kill_process_tree(pid, sig=9, send_sigcont=True)
Signal a process and all of its children.

If the process does not exist – return.

Parameters

• pid – The pid of the process to signal.

• sig – The signal to send to the processes.

avocado.utils.process.pid_exists(pid)
Return True if a given PID exists.

Parameters pid – Process ID number.

avocado.utils.process.process_in_ptree_is_defunct(ppid)
Verify if any processes deriving from PPID are in the defunct state.

Attempt to verify if parent process and any children from PPID is defunct (zombie) or not.

Parameters ppid – The parent PID of the process to verify.

avocado.utils.process.run(cmd, timeout=None, verbose=True, ignore_status=False, al-
low_output_check=None, shell=False, env=None, sudo=False,
ignore_bg_processes=False, encoding=None)

Run a subprocess, returning a CmdResult object.

Parameters

• cmd (str) – Command line to run.

20.2. Utilities APIs 189

avocado Documentation, Release 63.0

• timeout (float) – Time limit in seconds before attempting to kill the running process.
This function will take a few seconds longer than ‘timeout’ to complete if it has to kill the
process.

• verbose (bool) – Whether to log the command run and stdout/stderr.

• ignore_status (bool) – Whether to raise an exception when command returns =! 0
(False), or not (True).

• allow_output_check (str) – Whether to record the output from this process (from
stdout and stderr) in the test’s output record files. Valid values: ‘stdout’, for standard output
only, ‘stderr’ for standard error only, ‘both’ for both standard output and error in separate
files, ‘combined’ for standard output and error in a single file, and ‘none’ to disable all
recording. ‘all’ is also a valid, but deprecated, option that is a synonym of ‘both’. If an
explicit value is not given to this parameter, that is, if None is given, it defaults to using
the module level configuration, as set by OUTPUT_CHECK_RECORD_MODE. If the module
level configuration itself is not set, it defaults to ‘none’.

• shell (bool) – Whether to run the command on a subshell

• env (dict) – Use extra environment variables

• sudo – Whether the command requires admin privileges to run, so that sudo will be
prepended to the command. The assumption here is that the user running the command
has a sudo configuration such that a password won’t be prompted. If that’s not the case, the
command will straight out fail.

• encoding (str) – the encoding to use for the text representation of the command result
stdout and stderr, by default avocado.utils.astring.ENCODING

Returns An CmdResult object.

Raise CmdError, if ignore_status=False.

avocado.utils.process.safe_kill(pid, signal)
Attempt to send a signal to a given process that may or may not exist.

Parameters signal – Signal number.

avocado.utils.process.should_run_inside_gdb(cmd)
Whether the given command should be run inside the GNU debugger

Parameters cmd – the command arguments, from where we extract the binary name

avocado.utils.process.should_run_inside_wrapper(cmd)
Whether the given command should be run inside the wrapper utility.

Parameters cmd – the command arguments, from where we extract the binary name

avocado.utils.process.split_gdb_expr(expr)
Splits a GDB expr into (binary_name, breakpoint_location)

Returns avocado.gdb.GDB.DEFAULT_BREAK as the default breakpoint if one is not given.

Parameters expr (str) – an expression of the form <binary_name>[:<breakpoint>]

Returns a (binary_name, breakpoint_location) tuple

Return type tuple

avocado.utils.process.system(cmd, timeout=None, verbose=True, ignore_status=False, al-
low_output_check=None, shell=False, env=None, sudo=False, ig-
nore_bg_processes=False, encoding=None)

Run a subprocess, returning its exit code.

190 Chapter 20. API Reference

avocado Documentation, Release 63.0

Parameters

• cmd (str) – Command line to run.

• timeout (float) – Time limit in seconds before attempting to kill the running process.
This function will take a few seconds longer than ‘timeout’ to complete if it has to kill the
process.

• verbose (bool) – Whether to log the command run and stdout/stderr.

• ignore_status (bool) – Whether to raise an exception when command returns =! 0
(False), or not (True).

• allow_output_check (str) – Whether to record the output from this process (from
stdout and stderr) in the test’s output record files. Valid values: ‘stdout’, for standard output
only, ‘stderr’ for standard error only, ‘both’ for both standard output and error in separate
files, ‘combined’ for standard output and error in a single file, and ‘none’ to disable all
recording. ‘all’ is also a valid, but deprecated, option that is a synonym of ‘both’. If an
explicit value is not given to this parameter, that is, if None is given, it defaults to using
the module level configuration, as set by OUTPUT_CHECK_RECORD_MODE. If the module
level configuration itself is not set, it defaults to ‘none’.

• shell (bool) – Whether to run the command on a subshell

• env (dict) – Use extra environment variables.

• sudo – Whether the command requires admin privileges to run, so that sudo will be
prepended to the command. The assumption here is that the user running the command
has a sudo configuration such that a password won’t be prompted. If that’s not the case, the
command will straight out fail.

• encoding (str) – the encoding to use for the text representation of the command result
stdout and stderr, by default avocado.utils.astring.ENCODING

Returns Exit code.

Return type int

Raise CmdError, if ignore_status=False.

avocado.utils.process.system_output(cmd, timeout=None, verbose=True, ig-
nore_status=False, allow_output_check=None,
shell=False, env=None, sudo=False, ig-
nore_bg_processes=False, strip_trail_nl=True, en-
coding=None)

Run a subprocess, returning its output.

Parameters

• cmd (str) – Command line to run.

• timeout (float) – Time limit in seconds before attempting to kill the running process.
This function will take a few seconds longer than ‘timeout’ to complete if it has to kill the
process.

• verbose (bool) – Whether to log the command run and stdout/stderr.

• ignore_status – Whether to raise an exception when command returns =! 0 (False), or
not (True).

• allow_output_check (str) – Whether to record the output from this process (from
stdout and stderr) in the test’s output record files. Valid values: ‘stdout’, for standard output
only, ‘stderr’ for standard error only, ‘both’ for both standard output and error in separate
files, ‘combined’ for standard output and error in a single file, and ‘none’ to disable all

20.2. Utilities APIs 191

avocado Documentation, Release 63.0

recording. ‘all’ is also a valid, but deprecated, option that is a synonym of ‘both’. If an
explicit value is not given to this parameter, that is, if None is given, it defaults to using
the module level configuration, as set by OUTPUT_CHECK_RECORD_MODE. If the module
level configuration itself is not set, it defaults to ‘none’.

• shell (bool) – Whether to run the command on a subshell

• env (dict) – Use extra environment variables

• sudo (bool) – Whether the command requires admin privileges to run, so that sudo will
be prepended to the command. The assumption here is that the user running the command
has a sudo configuration such that a password won’t be prompted. If that’s not the case, the
command will straight out fail.

• ignore_bg_processes (bool) – Whether to ignore background processes

• strip_trail_nl (bool) – Whether to strip the trailing newline

• encoding (str) – the encoding to use for the text representation of the command result
stdout and stderr, by default avocado.utils.astring.ENCODING

Returns Command output.

Return type bytes

Raise CmdError, if ignore_status=False.

20.2.32 avocado.utils.runtime module

Module that contains runtime configuration

avocado.utils.runtime.CURRENT_JOB = None
Sometimes it’s useful for the framework and API to know about the job that is currently running, if one exists

avocado.utils.runtime.CURRENT_TEST = None
Sometimes it’s useful for the framework and API to know about the test that is currently running, if one exists

20.2.33 avocado.utils.script module

Module to handle scripts creation.

avocado.utils.script.DEFAULT_MODE = 509
What is commonly known as “0775” or “u=rwx,g=rwx,o=rx”

avocado.utils.script.READ_ONLY_MODE = 292
What is commonly known as “0444” or “u=r,g=r,o=r”

class avocado.utils.script.Script(path, content, mode=509, open_mode=’w’)
Bases: object

Class that represents a script.

Creates an instance of Script.

Note that when the instance inside a with statement, it will automatically call save() and then remove() for you.

Parameters

• path – the script file name.

• content – the script content.

• mode – set file mode, defaults what is commonly known as 0775.

192 Chapter 20. API Reference

avocado Documentation, Release 63.0

remove()
Remove script from the file system.

Returns True if script has been removed, otherwise False.

save()
Store script to file system.

Returns True if script has been stored, otherwise False.

class avocado.utils.script.TemporaryScript(name, content, prefix=’avocado_script’,
mode=509, open_mode=’w’)

Bases: avocado.utils.script.Script

Class that represents a temporary script.

Creates an instance of TemporaryScript.

Note that when the instance inside a with statement, it will automatically call save() and then remove() for you.

When the instance object is garbage collected, it will automatically call remove() for you.

Parameters

• name – the script file name.

• content – the script content.

• prefix – prefix for the temporary directory name.

• mode – set file mode, default to 0775.

remove()
Remove script from the file system.

Returns True if script has been removed, otherwise False.

avocado.utils.script.make_script(path, content, mode=509)
Creates a new script stored in the file system.

Parameters

• path – the script file name.

• content – the script content.

• mode – set file mode, default to 0775.

Returns the script path.

avocado.utils.script.make_temp_script(name, content, prefix=’avocado_script’, mode=509)
Creates a new temporary script stored in the file system.

Parameters

• path – the script file name.

• content – the script content.

• prefix – the directory prefix Default to ‘avocado_script’.

• mode – set file mode, default to 0775.

Returns the script path.

20.2. Utilities APIs 193

avocado Documentation, Release 63.0

20.2.34 avocado.utils.service module

avocado.utils.service.ServiceManager(run=<function run>)
Detect which init program is being used, init or systemd and return a class has methods to start/stop services.

Get the system service manager >> service_manager = ServiceManager()

Stating service/unit “sshd” >> service_manager.start(“sshd”)

Getting a list of available units >> units = service_manager.list()

Disabling and stopping a list of services >> services_to_disable = [‘ntpd’, ‘httpd’]

>> for s in services_to_disable: >> service_manager.disable(s) >> service_manager.stop(s)

Returns SysVInitServiceManager or SystemdServiceManager

Return type _GenericServiceManager

avocado.utils.service.SpecificServiceManager(service_name, run=<function run>)
Get the specific service manager for sshd >>> sshd = SpecificServiceManager(“sshd”) >>> sshd.start() >>>
sshd.stop() >>> sshd.reload() >>> sshd.restart() >>> sshd.condrestart() >>> sshd.status() >>> sshd.enable() >>>
sshd.disable() >>> sshd.is_enabled()

Parameters service_name (str) – systemd unit or init.d service to manager

Returns SpecificServiceManager that has start/stop methods

Return type _SpecificServiceManager

avocado.utils.service.convert_systemd_target_to_runlevel(target)
Convert systemd target to runlevel.

Parameters target (str) – systemd target

Returns sys_v runlevel

Return type str

Raises ValueError – when systemd target is unknown

avocado.utils.service.convert_sysv_runlevel(level)
Convert runlevel to systemd target.

Parameters level (str or int) – sys_v runlevel

Returns systemd target

Return type str

Raises ValueError – when runlevel is unknown

avocado.utils.service.get_name_of_init(run=<function run>)
Internal function to determine what executable is PID 1

It does that by checking /proc/1/exe. Fall back to checking /proc/1/cmdline (local execution).

Returns executable name for PID 1, aka init

Return type str

avocado.utils.service.service_manager(run=<function run>)
Detect which init program is being used, init or systemd and return a class has methods to start/stop services.

Get the system service manager >> service_manager = ServiceManager()

Stating service/unit “sshd” >> service_manager.start(“sshd”)

194 Chapter 20. API Reference

avocado Documentation, Release 63.0

Getting a list of available units >> units = service_manager.list()

Disabling and stopping a list of services >> services_to_disable = [‘ntpd’, ‘httpd’]

>> for s in services_to_disable: >> service_manager.disable(s) >> service_manager.stop(s)

Returns SysVInitServiceManager or SystemdServiceManager

Return type _GenericServiceManager

avocado.utils.service.specific_service_manager(service_name, run=<function run>)
Get the specific service manager for sshd >>> sshd = SpecificServiceManager(“sshd”) >>> sshd.start() >>>
sshd.stop() >>> sshd.reload() >>> sshd.restart() >>> sshd.condrestart() >>> sshd.status() >>> sshd.enable() >>>
sshd.disable() >>> sshd.is_enabled()

Parameters service_name (str) – systemd unit or init.d service to manager

Returns SpecificServiceManager that has start/stop methods

Return type _SpecificServiceManager

avocado.utils.service.sys_v_init_command_generator(command)
Generate lists of command arguments for sys_v style inits.

Parameters command (str) – start,stop,restart, etc.

Returns list of commands to pass to process.run or similar function

Return type builtin.list

avocado.utils.service.sys_v_init_result_parser(command)
Parse results from sys_v style commands.

command status: return true if service is running. command is_enabled: return true if service is enabled.
command list: return a dict from service name to status. command others: return true if operate success.

Parameters command (str.) – command.

Returns different from the command.

avocado.utils.service.systemd_command_generator(command)
Generate list of command line argument strings for systemctl.

One argument per string for compatibility Popen

WARNING: If systemctl detects that it is running on a tty it will use color, pipe to $PAGER, change column sizes
and not truncate unit names. Use –no-pager to suppress pager output, or set PAGER=cat in the environment. You
may need to take other steps to suppress color output. See https://bugzilla.redhat.com/show_bug.cgi?id=713567

Parameters command (str) – start,stop,restart, etc.

Returns List of command and arguments to pass to process.run or similar functions

Return type builtin.list

avocado.utils.service.systemd_result_parser(command)
Parse results from systemd style commands.

command status: return true if service is running. command is_enabled: return true if service is enabled.
command list: return a dict from service name to status. command others: return true if operate success.

Parameters command (str.) – command.

Returns different from the command.

20.2. Utilities APIs 195

https://bugzilla.redhat.com/show_bug.cgi?id=713567

avocado Documentation, Release 63.0

20.2.35 avocado.utils.software_manager module

Software package management library.

This is an abstraction layer on top of the existing distributions high level package managers. It supports package
operations useful for testing purposes, and multiple high level package managers (here called backends). If you want
to make this lib to support your particular package manager/distro, please implement the given backend class.

author Higor Vieira Alves <halves@br.ibm.com>

author Lucas Meneghel Rodrigues <lmr@redhat.com>

author Ramon de Carvalho Valle <rcvalle@br.ibm.com>

copyright IBM 2008-2009

copyright Red Hat 2009-2014

class avocado.utils.software_manager.AptBackend
Bases: avocado.utils.software_manager.DpkgBackend

Implements the apt backend for software manager.

Set of operations for the apt package manager, commonly found on Debian and Debian based distributions, such
as Ubuntu Linux.

Initializes the base command and the debian package repository.

add_repo(repo)
Add an apt repository.

Parameters repo – Repository string. Example: ‘deb http://archive.ubuntu.com/ubuntu/ mav-
erick universe’

build_dep(name)
Installed build-dependencies of a given package [name].

Parameters name – parameter package to install build-dependencies for.

Return True If packages are installed properly

get_source(name, path)
Download source for provided package. Returns the path with source placed.

Parameters name – parameter wildcard package to get the source for

Return path path of ready-to-build source

install(name)
Installs package [name].

Parameters name – Package name.

provides(path)
Return a list of packages that provide [path].

Parameters path – File path.

remove(name)
Remove package [name].

Parameters name – Package name.

remove_repo(repo)
Remove an apt repository.

196 Chapter 20. API Reference

mailto:halves@br.ibm.com
mailto:lmr@redhat.com
mailto:rcvalle@br.ibm.com
http://archive.ubuntu.com/ubuntu/

avocado Documentation, Release 63.0

Parameters repo – Repository string. Example: ‘deb http://archive.ubuntu.com/ubuntu/ mav-
erick universe’

upgrade(name=None)
Upgrade all packages of the system with eventual new versions.

Optionally, upgrade individual packages.

Parameters name (str) – optional parameter wildcard spec to upgrade

class avocado.utils.software_manager.BaseBackend
Bases: object

This class implements all common methods among backends.

install_what_provides(path)
Installs package that provides [path].

Parameters path – Path to file.

class avocado.utils.software_manager.DnfBackend
Bases: avocado.utils.software_manager.YumBackend

Implements the dnf backend for software manager.

DNF is the successor to yum in recent Fedora.

Initializes the base command and the DNF package repository.

class avocado.utils.software_manager.DpkgBackend
Bases: avocado.utils.software_manager.BaseBackend

This class implements operations executed with the dpkg package manager.

dpkg is a lower level package manager, used by higher level managers such as apt and aptitude.

INSTALLED_OUTPUT = 'install ok installed'

PACKAGE_TYPE = 'deb'

check_installed(name)

list_all()
List all packages available in the system.

list_files(package)
List files installed by package [package].

Parameters package – Package name.

Returns List of paths installed by package.

class avocado.utils.software_manager.RpmBackend
Bases: avocado.utils.software_manager.BaseBackend

This class implements operations executed with the rpm package manager.

rpm is a lower level package manager, used by higher level managers such as yum and zypper.

PACKAGE_TYPE = 'rpm'

SOFTWARE_COMPONENT_QRY = 'rpm %{NAME} %{VERSION} %{RELEASE} %{SIGMD5} %{ARCH}'

check_installed(name, version=None, arch=None)
Check if package [name] is installed.

Parameters

20.2. Utilities APIs 197

http://archive.ubuntu.com/ubuntu/

avocado Documentation, Release 63.0

• name – Package name.

• version – Package version.

• arch – Package architecture.

list_all(software_components=True)
List all installed packages.

Parameters software_components – log in a format suitable for the SoftwareComponent
schema

list_files(name)
List files installed on the system by package [name].

Parameters name – Package name.

prepare_source(spec_file, dest_path=None)
Rpmbuild the spec path and return build dir

Parameters spec_path – spec path to install

Return path build directory

rpm_install(file_path)
Install the rpm file [file_path] provided.

Parameters file_path – Rpm file path.

Return True if file is installed properly

class avocado.utils.software_manager.SoftwareManager
Bases: object

Package management abstraction layer.

It supports a set of common package operations for testing purposes, and it uses the concept of a backend, a
helper class that implements the set of operations of a given package management tool.

Lazily instantiate the object

class avocado.utils.software_manager.SystemInspector
Bases: object

System inspector class.

This may grow up to include more complete reports of operating system and machine properties.

Probe system, and save information for future reference.

get_package_management()
Determine the supported package management systems present on the system. If more than one package
management system installed, try to find the best supported system.

class avocado.utils.software_manager.YumBackend(cmd=’yum’)
Bases: avocado.utils.software_manager.RpmBackend

Implements the yum backend for software manager.

Set of operations for the yum package manager, commonly found on Yellow Dog Linux and Red Hat based
distributions, such as Fedora and Red Hat Enterprise Linux.

Initializes the base command and the yum package repository.

add_repo(url)
Adds package repository located on [url].

198 Chapter 20. API Reference

avocado Documentation, Release 63.0

Parameters url – Universal Resource Locator of the repository.

build_dep(name)
Install build-dependencies for package [name]

Parameters name – name of the package

Return True If build dependencies are installed properly

get_source(name, dest_path)
Downloads the source package and prepares it in the given dest_path to be ready to build.

Parameters

• name – name of the package

• dest_path – destination_path

Return final_dir path of ready-to-build directory

install(name)
Installs package [name]. Handles local installs.

provides(name)
Returns a list of packages that provides a given capability.

Parameters name – Capability name (eg, ‘foo’).

remove(name)
Removes package [name].

Parameters name – Package name (eg. ‘ipython’).

remove_repo(url)
Removes package repository located on [url].

Parameters url – Universal Resource Locator of the repository.

upgrade(name=None)
Upgrade all available packages.

Optionally, upgrade individual packages.

Parameters name (str) – optional parameter wildcard spec to upgrade

class avocado.utils.software_manager.ZypperBackend
Bases: avocado.utils.software_manager.RpmBackend

Implements the zypper backend for software manager.

Set of operations for the zypper package manager, found on SUSE Linux.

Initializes the base command and the yum package repository.

add_repo(url)
Adds repository [url].

Parameters url – URL for the package repository.

get_source(name, dest_path)
Downloads the source package and prepares it in the given dest_path to be ready to build

Parameters

• name – name of the package

• dest_path – destination_path

20.2. Utilities APIs 199

avocado Documentation, Release 63.0

Return final_dir path of ready-to-build directory

install(name)
Installs package [name]. Handles local installs.

Parameters name – Package Name.

provides(name)
Searches for what provides a given file.

Parameters name – File path.

remove(name)
Removes package [name].

remove_repo(url)
Removes repository [url].

Parameters url – URL for the package repository.

upgrade(name=None)
Upgrades all packages of the system.

Optionally, upgrade individual packages.

Parameters name (str) – Optional parameter wildcard spec to upgrade

avocado.utils.software_manager.install_distro_packages(distro_pkg_map, interac-
tive=False)

Installs packages for the currently running distribution

This utility function checks if the currently running distro is a key in the distro_pkg_map dictionary, and if there
is a list of packages set as its value.

If these conditions match, the packages will be installed using the software manager interface, thus the native
packaging system if the currently running distro.

Parameters distro_pkg_map (dict) – mapping of distro name, as returned by
utils.get_os_vendor(), to a list of package names

Returns True if any packages were actually installed, False otherwise

avocado.utils.software_manager.main()

20.2.36 avocado.utils.stacktrace module

Traceback standard module plus some additional APIs.

avocado.utils.stacktrace.analyze_unpickable_item(path_prefix, obj)
Recursive method to obtain unpickable objects along with location

Parameters

• path_prefix – Path to this object

• obj – The sub-object under introspection

Returns [($path_to_the_object, $value), . . .]

avocado.utils.stacktrace.log_exc_info(exc_info, logger=”)
Log exception info to logger_name.

Parameters

• exc_info – Exception info produced by sys.exc_info()

200 Chapter 20. API Reference

avocado Documentation, Release 63.0

• logger – Name or logger instance (defaults to ‘’)

avocado.utils.stacktrace.log_message(message, logger=”)
Log message to logger.

Parameters

• message – Message

• logger – Name or logger instance (defaults to ‘’)

avocado.utils.stacktrace.prepare_exc_info(exc_info)
Prepare traceback info.

Parameters exc_info – Exception info produced by sys.exc_info()

avocado.utils.stacktrace.str_unpickable_object(obj)
Return human readable string identifying the unpickable objects

Parameters obj – The object for analysis

Raises ValueError – In case the object is pickable

avocado.utils.stacktrace.tb_info(exc_info)
Prepare traceback info.

Parameters exc_info – Exception info produced by sys.exc_info()

20.2.37 avocado.utils.vmimage module

Provides VM images acquired from official repositories

class avocado.utils.vmimage.CentOSImageProvider(version=’[0-9]+’, build=’[0-9]{4}’,
arch=’x86_64’)

Bases: avocado.utils.vmimage.ImageProviderBase

CentOS Image Provider

name = 'CentOS'

class avocado.utils.vmimage.DebianImageProvider(version=’[0-9]+.[0-9]+.[0-9]+-.*’,
build=None, arch=’x86_64’)

Bases: avocado.utils.vmimage.ImageProviderBase

Debian Image Provider

name = 'Debian'

class avocado.utils.vmimage.FedoraImageProvider(version=’[0-9]+’, build=’[0-9]+.[0-
9]+’, arch=’x86_64’)

Bases: avocado.utils.vmimage.ImageProviderBase

Fedora Image Provider

get_image_url()
Probes the higher image available for the current parameters.

name = 'Fedora'

class avocado.utils.vmimage.FedoraSecondaryImageProvider(version=’[0-9]+’,
build=’[0-9]+.[0-9]+’,
arch=’x86_64’)

Bases: avocado.utils.vmimage.ImageProviderBase

Fedora Secondary Image Provider

20.2. Utilities APIs 201

avocado Documentation, Release 63.0

get_image_url()
Probes the higher image available for the current parameters.

name = 'FedoraSecondary'

avocado.utils.vmimage.IMAGE_PROVIDERS = set([<class 'avocado.utils.vmimage.DebianImageProvider'>, <class 'avocado.utils.vmimage.JeosImageProvider'>, <class 'avocado.utils.vmimage.FedoraSecondaryImageProvider'>, <class 'avocado.utils.vmimage.UbuntuImageProvider'>, <class 'avocado.utils.vmimage.FedoraImageProvider'>, <class 'avocado.utils.vmimage.CentOSImageProvider'>])
List of available providers classes

class avocado.utils.vmimage.Image(name, url, version, arch, checksum, algorithm, cache_dir)
Bases: object

base_image

get()

path

class avocado.utils.vmimage.ImageProviderBase(version, build, arch)
Bases: object

Base class to define the common methods and attributes of an image. Intended to be sub-classed by the specific
image providers.

get_image_url()
Probes the higher image available for the current parameters.

get_version()
Probes the higher version available for the current parameters.

version

exception avocado.utils.vmimage.ImageProviderError
Bases: exceptions.Exception

Generic error class for ImageProvider

class avocado.utils.vmimage.JeosImageProvider(version=’[0-9]+’, build=None,
arch=’x86_64’)

Bases: avocado.utils.vmimage.ImageProviderBase

JeOS Image Provider

name = 'JeOS'

class avocado.utils.vmimage.UbuntuImageProvider(version=’[0-9]+.[0-9]+’, build=None,
arch=’x86_64’)

Bases: avocado.utils.vmimage.ImageProviderBase

Ubuntu Image Provider

name = 'Ubuntu'

class avocado.utils.vmimage.VMImageHtmlParser(pattern)
Bases: HTMLParser.HTMLParser

Custom HTML parser to extract the href items that match a given pattern

handle_starttag(tag, attrs)

avocado.utils.vmimage.get(name=None, version=None, build=None, arch=None, checksum=None,
algorithm=None, cache_dir=None)

Wrapper to get the best Image Provider, according to the parameters provided.

Parameters

• name – (optional) Name of the Image Provider, usually matches the distro name.

• version – (optional) Version of the system image.

202 Chapter 20. API Reference

avocado Documentation, Release 63.0

• build – (optional) Build number of the system image.

• arch – (optional) Architecture of the system image.

• checksum – (optional) Hash of the system image to match after download.

• algorithm – (optional) Hash type, used when the checksum is provided.

• cache_dir – (optional) Local system path where the images and the snapshots will be
held.

Returns Image Provider instance that can provide the image according to the parameters.

avocado.utils.vmimage.list_providers()
List the available Image Providers

20.2.38 avocado.utils.wait module

avocado.utils.wait.wait_for(func, timeout, first=0.0, step=1.0, text=None, args=None,
kwargs=None)

Wait until func() evaluates to True.

If func() evaluates to True before timeout expires, return the value of func(). Otherwise return None.

Parameters

• timeout – Timeout in seconds

• first – Time to sleep before first attempt

• step – Time to sleep between attempts in seconds

• text – Text to print while waiting, for debug purposes

• args – Positional arguments to func

• kwargs – Keyword arguments to func

20.2.39 Module contents

20.3 Internal (Core) APIs

Internal APIs that may be of interest to Avocado hackers.

20.3. Internal (Core) APIs 203

avocado Documentation, Release 63.0

20.3.1 Subpackages

avocado.core.restclient package

Subpackages

avocado.core.restclient.cli package

Subpackages

avocado.core.restclient.cli.actions package

Submodules

avocado.core.restclient.cli.actions.base module

avocado.core.restclient.cli.actions.base.action(function)
Simple function that marks functions as CLI actions

Parameters function – the function that will receive the CLI action mark

avocado.core.restclient.cli.actions.server module

Module that implements the actions for the CLI App when the job toplevel command is used

avocado.core.restclient.cli.actions.server.list_brief(app)
Shows the server API list

avocado.core.restclient.cli.actions.server.status(app)
Shows the server status

Module contents

avocado.core.restclient.cli.args package

Submodules

avocado.core.restclient.cli.args.base module

This module has base action arguments that are used on other top level commands

These top level commands import these definitions for uniformity and consistency sake

avocado.core.restclient.cli.args.server module

This module has actions for the server command

204 Chapter 20. API Reference

avocado Documentation, Release 63.0

Module contents

Submodules

avocado.core.restclient.cli.app module

This is the main entry point for the rest client cli application

class avocado.core.restclient.cli.app.App
Bases: object

Base class for CLI application

Initializes a new app instance.

This class is intended both to be used by the stock client application and also to be reused by custom applications.
If you want, say, to limit the amount of command line actions and its arguments, you can simply supply another
argument parser class to this constructor. Of course another way to customize it is to inherit from this and
modify its members at will.

dispatch_action()
Calls the actions that was specified via command line arguments.

This involves loading the relevant module file.

initialize_connection()
Initialize the connection instance

run()
Main entry point for application

avocado.core.restclient.cli.parser module

REST client application command line parsing

class avocado.core.restclient.cli.parser.Parser(**kwargs)
Bases: argparse.ArgumentParser

The main CLI Argument Parser.

Initializes a new parser

add_arguments_on_all_modules(prefix=’avocado.core.restclient.cli.args’)
Add arguments that are present on all Python modules at a given prefix

Parameters prefix – a Python module namespace

add_arguments_on_module(name, prefix)
Add arguments that are present on a given Python module

Parameters name – the name of the Python module, without the namespace

20.3. Internal (Core) APIs 205

avocado Documentation, Release 63.0

Module contents

Submodules

avocado.core.restclient.connection module

This module provides connection classes the avocado server.

A connection is a simple wrapper around a HTTP request instance. It is this basic object that allows methods to be
called on the remote server.

avocado.core.restclient.connection.get_default()
Returns the global, default connection to avocado-server

Returns an avocado.core.restclient.connection.Connection instance

class avocado.core.restclient.connection.Connection(hostname=None, port=None,
username=None, pass-
word=None)

Bases: object

Connection to the avocado server

Initializes a connection to an avocado-server instance

Parameters

• hostname (str) – the hostname or IP address to connect to

• port (int) – the port number where avocado-server is running

• username (str) – the name of the user to be authenticated as

• password (str) – the password to use for authentication

check_min_version(data=None)
Checks the minimum server version

get_api_list()
Gets the list of APIs the server makes available to the current user

get_url(path=None)
Returns a representation of the current connection as an HTTP URL

ping()
Tests connectivity to the currently set avocado-server

This is intentionally a simple method that will only return True if a request is made, and a response is
received from the server.

request(path, method=<function get>, check_status=True, **data)
Performs a request to the server

This method is heavily used by upper level API methods, and more often than not, those upper level API
methods should be used instead.

Parameters

• path (str) – the path on the server where the resource lives

• method – the method you want to call on the remote server, defaults to a HTTP GET

206 Chapter 20. API Reference

avocado Documentation, Release 63.0

• check_status – whether to check the HTTP status code that comes with the response.
If set to True, it will depend on the method chosen. If set to False, no check will be
performed. If an integer is given then that specific status will be checked for.

• data – keyword arguments to be passed to the remote method

Returns JSON data

avocado.core.restclient.response module

Module with base model functions to manipulate JSON data

class avocado.core.restclient.response.BaseResponse(json_data)
Bases: object

Base class that provides commonly used features for response handling

REQUIRED_DATA = []

exception avocado.core.restclient.response.InvalidJSONError
Bases: exceptions.Exception

Data given to a loader/decoder is not valid JSON

exception avocado.core.restclient.response.InvalidResultResponseError
Bases: exceptions.Exception

Returned result response does not conform to expectation

Even though the result may be a valid json, it may not have the required or expected information that would
normally be sent by avocado-server.

class avocado.core.restclient.response.ResultResponse(json_data)
Bases: avocado.core.restclient.response.BaseResponse

Provides a wrapper around an ideal result response

This class should be instantiated with the JSON data received from an avocado-server, and will check if the
required data members are present and thus the response is well formed.

REQUIRED_DATA = ['count', 'next', 'previous', 'results']

Module contents

20.3.2 Submodules

20.3.3 avocado.core.app module

The core Avocado application.

class avocado.core.app.AvocadoApp
Bases: object

Avocado application.

run()

20.3. Internal (Core) APIs 207

avocado Documentation, Release 63.0

20.3.4 avocado.core.data_dir module

Library used to let avocado tests find important paths in the system.

The general reasoning to find paths is:

• When running in tree, don’t honor avocado.conf. Also, we get to run/display the example tests shipped in tree.

• When avocado.conf is in /etc/avocado, or ~/.config/avocado, then honor the values there as much as possible. If
they point to a location where we can’t write to, use the next best location available.

• The next best location is the default system wide one.

• The next best location is the default user specific one.

avocado.core.data_dir.clean_tmp_files()
Try to clean the tmp directory by removing it.

This is a useful function for avocado entry points looking to clean after tests/jobs are done. If OSError is raised,
silently ignore the error.

avocado.core.data_dir.create_job_logs_dir(base_dir=None, unique_id=None)
Create a log directory for a job, or a stand alone execution of a test.

Parameters

• base_dir – Base log directory, if None, use value from configuration.

• unique_id – The unique identification. If None, create one.

Return type str

avocado.core.data_dir.get_base_dir()
Get the most appropriate base dir.

The base dir is the parent location for most of the avocado other important directories.

Examples:

• Log directory

• Data directory

• Tests directory

avocado.core.data_dir.get_cache_dirs()
Returns the list of cache dirs, according to configuration and convention

avocado.core.data_dir.get_data_dir()
Get the most appropriate data dir location.

The data dir is the location where any data necessary to job and test operations are located.

Examples:

• ISO files

• GPG files

• VM images

• Reference bitmaps

avocado.core.data_dir.get_datafile_path(*args)
Get a path relative to the data dir.

Parameters args – Arguments passed to os.path.join. Ex (‘images’, ‘jeos.qcow2’)

208 Chapter 20. API Reference

avocado Documentation, Release 63.0

avocado.core.data_dir.get_logs_dir()
Get the most appropriate log dir location.

The log dir is where we store job/test logs in general.

avocado.core.data_dir.get_test_dir()
Get the most appropriate test location.

The test location is where we store tests written with the avocado API.

The heuristics used to determine the test dir are: 1) If an explicit test dir is set in the configuration system, it is
used. 2) If user is running Avocado out of the source tree, the example test dir is used 3) System wide test dir is
used 4) User default test dir (~/avocado/tests) is used

avocado.core.data_dir.get_tmp_dir(basedir=None)
Get the most appropriate tmp dir location.

The tmp dir is where artifacts produced by the test are kept.

Examples:

• Copies of a test suite source code

• Compiled test suite source code

20.3.5 avocado.core.decorators module

avocado.core.decorators.fail_on(exceptions=None)
Fail the test when decorated function produces exception of the specified type.

(For example, our method may raise IndexError on tested software failure. We can either try/catch it or use this
decorator instead)

Parameters exceptions – Tuple or single exception to be assumed as test fail [Exception]

Note self.error and self.cancel behavior remains intact

Note To allow simple usage param “exceptions” must not be callable

avocado.core.decorators.skip(message=None)
Decorator to skip a test.

avocado.core.decorators.skipIf(condition, message=None)
Decorator to skip a test if a condition is True.

avocado.core.decorators.skipUnless(condition, message=None)
Decorator to skip a test if a condition is False.

20.3.6 avocado.core.defaults module

The Avocado core defaults

avocado.core.defaults.ENCODING = 'utf-8'
The encoding used by default on all data input

20.3.7 avocado.core.dispatcher module

Extensions/plugins dispatchers.

20.3. Internal (Core) APIs 209

avocado Documentation, Release 63.0

class avocado.core.dispatcher.CLICmdDispatcher
Bases: avocado.core.dispatcher.Dispatcher

Calls extensions on configure/run

Automatically adds all the extension with entry points registered under ‘avocado.plugins.cli.cmd’

class avocado.core.dispatcher.CLIDispatcher
Bases: avocado.core.dispatcher.Dispatcher

Calls extensions on configure/run

Automatically adds all the extension with entry points registered under ‘avocado.plugins.cli’

class avocado.core.dispatcher.Dispatcher(namespace, invoke_kwds=None)
Bases: stevedore.enabled.EnabledExtensionManager

Base dispatcher for various extension types

NAMESPACE_PREFIX = 'avocado.plugins.'
Default namespace prefix for Avocado extensions

enabled(extension)
Checks configuration for explicit mention of plugin in a disable list

If configuration section or key doesn’t exist, it means no plugin is disabled.

fully_qualified_name(extension)
Returns the Avocado fully qualified plugin name

Parameters extension (stevedore.extension.Extension) – an Stevedore Exten-
sion instance

map_method(method_name, *args)
Maps method_name on each extension in case the extension has the attr

Parameters

• method_name – Name of the method to be called on each ext

• args – Arguments to be passed to all called functions

map_method_with_return(method_name, *args, **kwargs)
The same as map_method but additionally reports the list of returned values and optionally deepcopies the
passed arguments

Parameters

• method_name – Name of the method to be called on each ext

• args – Arguments to be passed to all called functions

• kwargs – Key-word arguments to be passed to all called functions if “deepcopy” ==
True is present in kwargs the args and kwargs are deepcopied before passing it to each
called function.

names()
Returns the names of the discovered extensions

This differs from stevedore.extension.ExtensionManager.names() in that it returns
names in a predictable order, by using standard sorted().

plugin_type()
Subset of entry points namespace for this dispatcher

210 Chapter 20. API Reference

avocado Documentation, Release 63.0

Given an entry point avocado.plugins.foo, plugin type is foo. If entry point does not conform to the
Avocado standard prefix, it’s returned unchanged.

settings_section()
Returns the config section name for the plugin type handled by itself

static store_load_failure(manager, entrypoint, exception)

class avocado.core.dispatcher.JobPrePostDispatcher
Bases: avocado.core.dispatcher.Dispatcher

Calls extensions before Job execution

Automatically adds all the extension with entry points registered under ‘avocado.plugins.job.prepost’

class avocado.core.dispatcher.ResultDispatcher
Bases: avocado.core.dispatcher.Dispatcher

class avocado.core.dispatcher.ResultEventsDispatcher(args)
Bases: avocado.core.dispatcher.Dispatcher

class avocado.core.dispatcher.VarianterDispatcher
Bases: avocado.core.dispatcher.Dispatcher

map_method(method_name, *args, **kwargs)
Maps method_name on each extension in case the extension has the attr

Parameters

• method_name – Name of the method to be called on each ext

• args – Arguments to be passed to all called functions

map_method_copy(method_name, *args, **kwargs)
The same as map_method, but use copy.deepcopy on each passed arg

20.3.8 avocado.core.exceptions module

Exception classes, useful for tests, and other parts of the framework code.

exception avocado.core.exceptions.JobBaseException
Bases: exceptions.Exception

The parent of all job exceptions.

You should be never raising this, but just in case, we’ll set its status’ as FAIL.

status = 'FAIL'

exception avocado.core.exceptions.JobError
Bases: avocado.core.exceptions.JobBaseException

A generic error happened during a job execution.

status = 'ERROR'

exception avocado.core.exceptions.OptionValidationError
Bases: exceptions.Exception

An invalid option was passed to the test runner

status = 'ERROR'

20.3. Internal (Core) APIs 211

avocado Documentation, Release 63.0

exception avocado.core.exceptions.TestAbortError
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was prematurely aborted.

status = 'ERROR'

exception avocado.core.exceptions.TestBaseException
Bases: exceptions.Exception

The parent of all test exceptions.

You should be never raising this, but just in case, we’ll set its status’ as FAIL.

status = 'FAIL'

exception avocado.core.exceptions.TestCancel
Bases: avocado.core.exceptions.TestBaseException

Indicates that a test was canceled.

Should be thrown when the cancel() test method is used.

status = 'CANCEL'

exception avocado.core.exceptions.TestError
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was not fully executed and an error happened.

This is the sort of exception you raise if the test was partially executed and could not complete due to a setup,
configuration, or another fatal condition.

status = 'ERROR'

exception avocado.core.exceptions.TestFail
Bases: avocado.core.exceptions.TestBaseException, exceptions.AssertionError

Indicates that the test failed.

TestFail inherits from AssertionError in order to keep compatibility with vanilla python unittests (they only
consider failures the ones deriving from AssertionError).

status = 'FAIL'

exception avocado.core.exceptions.TestInterruptedError
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was interrupted by the user (Ctrl+C)

status = 'INTERRUPTED'

exception avocado.core.exceptions.TestNotFoundError
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test was not found in the test directory.

status = 'ERROR'

exception avocado.core.exceptions.TestSetupFail
Bases: avocado.core.exceptions.TestBaseException

Indicates an error during a setup or cleanup procedure.

status = 'ERROR'

212 Chapter 20. API Reference

avocado Documentation, Release 63.0

exception avocado.core.exceptions.TestSkipError
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test is skipped.

Should be thrown when various conditions are such that the test is inappropriate. For example, inappropriate
architecture, wrong OS version, program being tested does not have the expected capability (older version).

status = 'SKIP'

exception avocado.core.exceptions.TestTimeoutInterrupted
Bases: avocado.core.exceptions.TestBaseException

Indicates that the test did not finish before the timeout specified.

status = 'INTERRUPTED'

exception avocado.core.exceptions.TestWarn
Bases: avocado.core.exceptions.TestBaseException

Indicates that bad things (may) have happened, but not an explicit failure.

status = 'WARN'

20.3.9 avocado.core.exit_codes module

Avocado exit codes.

These codes are returned on the command line and may be used by applications that interface (that is, run) the Avocado
command line application.

Besides main status about the execution of the command line application, these exit status may also give extra, although
limited, information about test statuses.

avocado.core.exit_codes.AVOCADO_ALL_OK = 0
Both job and tests PASSed

avocado.core.exit_codes.AVOCADO_FAIL = 4
Something else went wrong and avocado failed (or crashed). Commonly used on command line validation
errors.

avocado.core.exit_codes.AVOCADO_GENERIC_CRASH = -1
Avocado generic crash

avocado.core.exit_codes.AVOCADO_JOB_FAIL = 2
Something went wrong with an Avocado Job execution, usually by an explicit avocado.core.
exceptions.JobError exception.

avocado.core.exit_codes.AVOCADO_JOB_INTERRUPTED = 8
The job was explicitly interrupted. Usually this means that a user hit CTRL+C while the job was still running.

avocado.core.exit_codes.AVOCADO_TESTS_FAIL = 1
Job went fine, but some tests FAILed or ERRORed

20.3.10 avocado.core.job module

Job module - describes a sequence of automated test operations.

class avocado.core.job.Job(args=None)
Bases: object

A Job is a set of operations performed on a test machine.

20.3. Internal (Core) APIs 213

avocado Documentation, Release 63.0

Most of the time, we are interested in simply running tests, along with setup operations and event recording.

Creates an instance of Job class.

Parameters args – an instance of argparse.Namespace.

cleanup()
Cleanup the temporary job handlers (dirs, global setting, . . .)

create_test_suite()
Creates the test suite for this Job

This is a public Job API as part of the documented Job phases

logdir = None
The log directory for this job, also known as the job results directory. If it’s set to None, it means that the
job results directory has not yet been created.

post_tests()
Run the post tests execution hooks

By default this runs the plugins that implement the avocado.core.plugin_interfaces.
JobPostTests interface.

pre_tests()
Run the pre tests execution hooks

By default this runs the plugins that implement the avocado.core.plugin_interfaces.
JobPreTests interface.

run()
Runs all job phases, returning the test execution results.

This method is supposed to be the simplified interface for jobs, that is, they run all phases of a job.

Returns Integer with overall job status. See avocado.core.exit_codes for more infor-
mation.

run_tests()
The actual test execution phase

setup()
Setup the temporary job handlers (dirs, global setting, . . .)

test_suite = None
The list of discovered/resolved tests that will be attempted to be run by this job. If set to None, it means
that test resolution has not been attempted. If set to an empty list, it means that no test was found during
resolution.

time_elapsed = None
The total amount of time the job took from start to finish, or -1 if it has not been started by means of the
run() method

time_end = None
The time at which the job has finished or -1 if it has not been started by means of the run() method.

time_start = None
The time at which the job has started or -1 if it has not been started by means of the run() method.

class avocado.core.job.TestProgram
Bases: object

Convenience class to make avocado test modules executable.

parse_args(argv)

214 Chapter 20. API Reference

avocado Documentation, Release 63.0

run_tests()

avocado.core.job.main
alias of avocado.core.job.TestProgram

20.3.11 avocado.core.job_id module

avocado.core.job_id.create_unique_job_id()
Create a 40 digit hex number to be used as a job ID string. (similar to SHA1)

Returns 40 digit hex number string

Return type str

20.3.12 avocado.core.jobdata module

Record/retrieve job information

avocado.core.jobdata.get_id(path, jobid)
Gets the full Job ID using the results directory path and a partial Job ID or the string ‘latest’.

avocado.core.jobdata.get_resultsdir(logdir, jobid)
Gets the job results directory using a Job ID.

avocado.core.jobdata.record(args, logdir, variants, references=None, cmdline=None)
Records all required job information.

avocado.core.jobdata.retrieve_args(resultsdir)
Retrieves the job args from the results directory.

avocado.core.jobdata.retrieve_cmdline(resultsdir)
Retrieves the job command line from the results directory.

avocado.core.jobdata.retrieve_config(resultsdir)
Retrieves the job settings from the results directory.

avocado.core.jobdata.retrieve_pwd(resultsdir)
Retrieves the job pwd from the results directory.

avocado.core.jobdata.retrieve_references(resultsdir)
Retrieves the job test references from the results directory.

avocado.core.jobdata.retrieve_variants(resultsdir)
Retrieves the job variants object from the results directory.

20.3.13 avocado.core.loader module

Test loader module.

avocado.core.loader.ALL = <DiscoverMode.ALL: <object object>>
Compatibility alias (to be removed) to DiscoverMode.ALL

avocado.core.loader.AVAILABLE = <DiscoverMode.AVAILABLE: <object object>>
Compatibility alias (to be removed) to DiscoverMode.AVAILABLE

class avocado.core.loader.AccessDeniedPath
Bases: object

Dummy object to represent reference pointing to a inaccessible path

20.3. Internal (Core) APIs 215

avocado Documentation, Release 63.0

class avocado.core.loader.BrokenSymlink
Bases: object

Dummy object to represent reference pointing to a BrokenSymlink path

avocado.core.loader.DEFAULT = <DiscoverMode.DEFAULT: <object object>>
Compatibility alias (to be removed) to DiscoverMode.DEFAULT

class avocado.core.loader.DiscoverMode
Bases: enum.Enum

ALL = <object object>
All tests (including broken ones)

AVAILABLE = <object object>
Available tests (for listing purposes)

DEFAULT = <object object>
Show default tests (for execution)

class avocado.core.loader.ExternalLoader(args, extra_params)
Bases: avocado.core.loader.TestLoader

External-runner loader class

discover(reference, which_tests=<DiscoverMode.DEFAULT: <object object>>)

Parameters

• reference – arguments passed to the external_runner

• which_tests (DiscoverMode) – Limit tests to be displayed

Returns list of matching tests

static get_decorator_mapping()

static get_type_label_mapping()

name = 'external'

class avocado.core.loader.FileLoader(args, extra_params)
Bases: avocado.core.loader.TestLoader

Test loader class.

discover(reference, which_tests=<DiscoverMode.DEFAULT: <object object>>)
Discover (possible) tests from a directory.

Recursively walk in a directory and find tests params. The tests are returned in alphabetic order.

Afterwards when “allowed_test_types” is supplied it verifies if all found tests are of the allowed type. If
not return None (even on partial match).

Parameters

• reference – the directory path to inspect.

• which_tests (DiscoverMode) – Limit tests to be displayed

Returns list of matching tests

static get_decorator_mapping()

static get_type_label_mapping()

name = 'file'

216 Chapter 20. API Reference

avocado Documentation, Release 63.0

exception avocado.core.loader.InvalidLoaderPlugin
Bases: avocado.core.loader.LoaderError

Invalid loader plugin

exception avocado.core.loader.LoaderError
Bases: exceptions.Exception

Loader exception

exception avocado.core.loader.LoaderUnhandledReferenceError(unhandled_references,
plugins)

Bases: avocado.core.loader.LoaderError

Test References not handled by any resolver

class avocado.core.loader.MissingTest
Bases: object

Class representing reference which failed to be discovered

class avocado.core.loader.NotATest
Bases: object

Class representing something that is not a test

class avocado.core.loader.TestLoader(args, extra_params)
Bases: object

Base for test loader classes

discover(reference, which_tests=<DiscoverMode.DEFAULT: <object object>>)
Discover (possible) tests from an reference.

Parameters

• reference (str) – the reference to be inspected.

• which_tests (DiscoverMode) – Limit tests to be displayed

Returns a list of test matching the reference as params.

static get_decorator_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: decorator function}

get_extra_listing()

get_full_decorator_mapping()
Allows extending the decorator-mapping after the object is initialized

get_full_type_label_mapping()
Allows extending the type-label-mapping after the object is initialized

static get_type_label_mapping()
Get label mapping for display in test listing.

Returns Dict {TestClass: ‘TEST_LABEL_STRING’}

name = None

class avocado.core.loader.TestLoaderProxy
Bases: object

clear_plugins()

20.3. Internal (Core) APIs 217

avocado Documentation, Release 63.0

discover(references, which_tests=<DiscoverMode.DEFAULT: <object object>>, force=None)
Discover (possible) tests from test references.

Parameters

• references (builtin.list) – a list of tests references; if [] use plugin defaults

• which_tests (DiscoverMode) – Limit tests to be displayed

• force – don’t raise an exception when some test references are not resolved to tests.

Returns A list of test factories (tuples (TestClass, test_params))

get_base_keywords()

get_decorator_mapping()

get_extra_listing()

get_type_label_mapping()

load_plugins(args)

load_test(test_factory)
Load test from the test factory.

Parameters test_factory (tuple) – a pair of test class and parameters.

Returns an instance of avocado.core.test.Test.

register_plugin(plugin)

avocado.core.loader.add_loader_options(parser)

avocado.core.loader.filter_test_tags(test_suite, filter_by_tags, include_empty=False)
Filter the existing (unfiltered) test suite based on tags

The filtering mechanism is agnostic to test type. It means that if users request filtering by tag and the specific
test type does not populate the test tags, it will be considered to have empty tags.

Parameters

• test_suite (dict) – the unfiltered test suite

• filter_by_tags (list of comma separated tags (['foo,bar',
'fast'])) – the list of tag sets to use as filters

• include_empty (bool) – if true tests without tags will not be filtered out

20.3.14 avocado.core.output module

Manages output and logging in avocado applications.

avocado.core.output.BUILTIN_STREAMS = {'app': 'application output', 'debug': 'tracebacks and other debugging info', 'early': 'early logging of other streams, including test (very verbose)', 'remote': 'fabric/paramiko debug', 'test': 'test output'}
Builtin special keywords to enable set of logging streams

avocado.core.output.BUILTIN_STREAM_SETS = {'all': 'all builtin streams', 'none': 'disables regular output (leaving only errors enabled)'}
Groups of builtin streams

class avocado.core.output.FilterInfoAndLess(name=”)
Bases: logging.Filter

Initialize a filter.

Initialize with the name of the logger which, together with its children, will have its events allowed through the
filter. If no name is specified, allow every event.

218 Chapter 20. API Reference

avocado Documentation, Release 63.0

filter(record)
Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for yes. If deemed appropriate, the record
may be modified in-place.

class avocado.core.output.FilterWarnAndMore(name=”)
Bases: logging.Filter

Initialize a filter.

Initialize with the name of the logger which, together with its children, will have its events allowed through the
filter. If no name is specified, allow every event.

filter(record)
Determine if the specified record is to be logged.

Is the specified record to be logged? Returns 0 for no, nonzero for yes. If deemed appropriate, the record
may be modified in-place.

avocado.core.output.LOG_JOB = <logging.Logger object>
Pre-defined Avocado job/test logger

avocado.core.output.LOG_UI = <logging.Logger object>
Pre-defined Avocado human UI logger

class avocado.core.output.LoggingFile(prefixes=None, level=10, loggers=None)
Bases: object

File-like object that will receive messages pass them to logging.

Constructor. Sets prefixes and which loggers are going to be used.

Parameters

• prefixes – Prefix per logger to be prefixed to each line.

• level – Log level to be used when writing messages.

• loggers – Loggers into which write should be issued. (list)

add_logger(logger, prefix=”)

flush()

isatty()

rm_logger(logger)

write(data)
” Splits the line to individual lines and forwards them into loggers with expected prefixes. It includes the
tailing newline <lf> as well as the last partial message. Do configure your logging to not to add newline
<lf> automatically. :param data - Raw data (a string) that will be processed.

class avocado.core.output.MemStreamHandler(stream=None)
Bases: logging.StreamHandler

Handler that stores all records in self.log (shared in all instances)

Initialize the handler.

If stream is not specified, sys.stderr is used.

emit(record)
Emit a record.

20.3. Internal (Core) APIs 219

avocado Documentation, Release 63.0

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

flush()
This is in-mem object, it does not require flushing

log = []

exception avocado.core.output.PagerNotFoundError
Bases: exceptions.Exception

class avocado.core.output.Paginator
Bases: object

Paginator that uses less to display contents on the terminal.

Contains cleanup handling for when user presses ‘q’ (to quit less).

close()

flush()

write(msg)

class avocado.core.output.ProgressStreamHandler(stream=None)
Bases: logging.StreamHandler

Handler class that allows users to skip new lines on each emission.

Initialize the handler.

If stream is not specified, sys.stderr is used.

emit(record)
Emit a record.

If a formatter is specified, it is used to format the record. The record is then written to the stream with a
trailing newline. If exception information is present, it is formatted using traceback.print_exception and
appended to the stream. If the stream has an ‘encoding’ attribute, it is used to determine how to do the
output to the stream.

avocado.core.output.STD_OUTPUT = <avocado.core.output.StdOutput object>
Allows modifying the sys.stdout/sys.stderr

class avocado.core.output.StdOutput
Bases: object

Class to modify sys.stdout/sys.stderr

close()
Enable original sys.stdout/sys.stderr and cleanup

enable_outputs()
Enable sys.stdout/sys.stderr (either with 2 streams or with paginator)

enable_paginator()
Enable paginator

enable_stderr()
Enable sys.stderr and disable sys.stdout

fake_outputs()
Replace sys.stdout/sys.stderr with in-memory-objects

220 Chapter 20. API Reference

avocado Documentation, Release 63.0

print_records()
Prints all stored messages as they occurred into streams they were produced for.

records = []
List of records of stored output when stdout/stderr is disabled

avocado.core.output.TERM_SUPPORT = <avocado.core.output.TermSupport object>
Transparently handles colored terminal, when one is used

class avocado.core.output.TermSupport
Bases: object

COLOR_BLUE = '\x1b[94m'

COLOR_DARKGREY = '\x1b[90m'

COLOR_GREEN = '\x1b[92m'

COLOR_RED = '\x1b[91m'

COLOR_YELLOW = '\x1b[93m'

CONTROL_END = '\x1b[0m'

ESCAPE_CODES = ['\x1b[94m', '\x1b[92m', '\x1b[93m', '\x1b[91m', '\x1b[90m', '\x1b[0m', '\x1b[1D', '\x1b[1C']
Class to help applications to colorize their outputs for terminals.

This will probe the current terminal and colorize output only if the stdout is in a tty or the terminal type is
recognized.

MOVE_BACK = '\x1b[1D'

MOVE_FORWARD = '\x1b[1C'

disable()
Disable colors from the strings output by this class.

error_str()
Print a error string (red colored).

If the output does not support colors, just return the original string.

fail_header_str(msg)
Print a fail header string (red colored).

If the output does not support colors, just return the original string.

fail_str()
Print a fail string (red colored).

If the output does not support colors, just return the original string.

header_str(msg)
Print a header string (blue colored).

If the output does not support colors, just return the original string.

healthy_str(msg)
Print a healthy string (green colored).

If the output does not support colors, just return the original string.

interrupt_str()
Print an interrupt string (red colored).

If the output does not support colors, just return the original string.

20.3. Internal (Core) APIs 221

avocado Documentation, Release 63.0

partial_str(msg)
Print a string that denotes partial progress (yellow colored).

If the output does not support colors, just return the original string.

pass_str()
Print a pass string (green colored).

If the output does not support colors, just return the original string.

skip_str()
Print a skip string (yellow colored).

If the output does not support colors, just return the original string.

warn_header_str(msg)
Print a warning header string (yellow colored).

If the output does not support colors, just return the original string.

warn_str()
Print an warning string (yellow colored).

If the output does not support colors, just return the original string.

class avocado.core.output.Throbber
Bases: object

Produces a spinner used to notify progress in the application UI.

MOVES = ['', '', '', '']

STEPS = ['-', '\\', '|', '/']

render()

avocado.core.output.add_log_handler(logger, klass=<class ’logging.StreamHandler’>,
stream=<open file ’<stdout>’, mode ’w’>, level=20,
fmt=’%(name)s: %(message)s’)

Add handler to a logger.

Parameters

• logger_name – the name of a logging.Logger instance, that is, the parameter to
logging.getLogger()

• klass – Handler class (defaults to logging.StreamHandler)

• stream – Logging stream, to be passed as an argument to klass (defaults to sys.
stdout)

• level – Log level (defaults to INFO‘)

• fmt – Logging format (defaults to %(name)s: %(message)s)

avocado.core.output.disable_log_handler(logger)

avocado.core.output.early_start()
Replace all outputs with in-memory handlers

avocado.core.output.log_plugin_failures(failures)
Log in the application UI failures to load a set of plugins

Parameters failures – a list of load failures, usually coming from a avocado.core.
dispatcher.Dispatcher attribute load_failures

222 Chapter 20. API Reference

avocado Documentation, Release 63.0

avocado.core.output.reconfigure(args)
Adjust logging handlers accordingly to app args and re-log messages.

20.3.15 avocado.core.parameters module

Module related to test parameters

class avocado.core.parameters.AvocadoParam(leaves, name)
Bases: object

This is a single slice params. It can contain multiple leaves and tries to find matching results.

Parameters

• leaves – this slice’s leaves

• name – this slice’s name (identifier used in exceptions)

get_or_die(path, key)
Get a value or raise exception if not present :raise NoMatchError: When no matches :raise KeyError:
When value is not certain (multiple matches)

iteritems()
Very basic implementation which iterates through __ALL__ params, which generates lots of duplicate
entries due to inherited values.

str_leaves_variant
String with identifier and all params

class avocado.core.parameters.AvocadoParams(leaves, paths, logger_name=None)
Bases: object

Params object used to retrieve params from given path. It supports absolute and relative paths. For relative paths
one can define multiple paths to search for the value. It contains compatibility wrapper to act as the original
avocado Params, but by special usage you can utilize the new API. See get() docstring for details.

You can also iterate through all keys, but this can generate quite a lot of duplicate entries inherited from ancestor
nodes. It shouldn’t produce false values, though.

Parameters

• leaves – List of TreeNode leaves defining current variant

• paths – list of entry points

• logger_name (str) – the name of a logger to use to record attempts to get parameters

get(key, path=None, default=None)
Retrieve value associated with key from params :param key: Key you’re looking for :param path: names-
pace [‘*’] :param default: default value when not found :raise KeyError: In case of multiple different
values (params clash)

iteritems()
Iterate through all available params and yield origin, key and value of each unique value.

objects(key, path=None)
Return the names of objects defined using a given key.

Parameters key – The name of the key whose value lists the objects (e.g. ‘nics’).

exception avocado.core.parameters.NoMatchError
Bases: exceptions.KeyError

20.3. Internal (Core) APIs 223

avocado Documentation, Release 63.0

20.3.16 avocado.core.parser module

Avocado application command line parsing.

class avocado.core.parser.ArgumentParser(prog=None, usage=None, descrip-
tion=None, epilog=None, version=None,
parents=[], formatter_class=<class ’arg-
parse.HelpFormatter’>, prefix_chars=’-
’, fromfile_prefix_chars=None, argu-
ment_default=None, conflict_handler=’error’,
add_help=True)

Bases: argparse.ArgumentParser

Class to override argparse functions

error(message: string)
Prints a usage message incorporating the message to stderr and exits.

If you override this in a subclass, it should not return – it should either exit or raise an exception.

class avocado.core.parser.FileOrStdoutAction(option_strings, dest, nargs=None,
const=None, default=None, type=None,
choices=None, required=False,
help=None, metavar=None)

Bases: argparse.Action

Controls claiming the right to write to the application standard output

class avocado.core.parser.Parser
Bases: object

Class to Parse the command line arguments.

finish()
Finish the process of parsing arguments.

Side effect: set the final value for attribute args.

start()
Start to parsing arguments.

At the end of this method, the support for subparsers is activated. Side effect: update attribute args (the
namespace).

20.3.17 avocado.core.plugin_interfaces module

class avocado.core.plugin_interfaces.CLI
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding options (non-commands) to the command line

Plugins that want to add extra options to the core command line application or to sub commands should use the
‘avocado.plugins.cli’ namespace.

configure(parser)
Configures the command line parser with options specific to this plugin

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

224 Chapter 20. API Reference

avocado Documentation, Release 63.0

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.core.plugin_interfaces.CLICmd
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding new commands to the command line app

Plugins that want to add extensions to the run command should use the ‘avocado.plugins.cli.cmd’ namespace.

configure(parser)
Lets the extension add command line options and do early configuration

By default it will register its name as the command name and give its description as the help message.

description = None

name = None

run(args)
Entry point for actually running the command

class avocado.core.plugin_interfaces.JobPost
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding actions after a job runs

Plugins that want to add actions to be run after a job runs, should use the ‘avocado.plugins.job.prepost’ names-
pace and implement the defined interface.

post(job)
Entry point for actually running the post job action

class avocado.core.plugin_interfaces.JobPostTests
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding actions after a job runs tests

Plugins using this interface will run at the a time equivalent to plugins using the JobPost interface, that is, at
avocado.core.job.Job.post_tests(). This is because JobPost based plugins will eventually be
modified to really run after the job has finished, and not after it has run tests.

post_tests(job)
Entry point for job running actions after the tests execution

class avocado.core.plugin_interfaces.JobPre
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding actions before a job runs

Plugins that want to add actions to be run before a job runs, should use the ‘avocado.plugins.job.prepost’ names-
pace and implement the defined interface.

pre(job)
Entry point for actually running the pre job action

class avocado.core.plugin_interfaces.JobPreTests
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for adding actions before a job runs tests

This interface looks similar to JobPre, but it’s intended to be called at a very specific place, that
is, between avocado.core.job.Job.create_test_suite() and avocado.core.job.Job.
run_tests().

pre_tests(job)
Entry point for job running actions before tests execution

20.3. Internal (Core) APIs 225

avocado Documentation, Release 63.0

class avocado.core.plugin_interfaces.Plugin
Bases: object

class avocado.core.plugin_interfaces.Result
Bases: avocado.core.plugin_interfaces.Plugin

render(result, job)
Entry point with method that renders the result

This will usually be used to write the result to a file or directory.

Parameters

• result (avocado.core.result.Result) – the complete job result

• job (avocado.core.job.Job) – the finished job for which a result will be written

class avocado.core.plugin_interfaces.ResultEvents
Bases: avocado.core.plugin_interfaces.JobPreTests, avocado.core.
plugin_interfaces.JobPostTests

Base plugin interface for event based (stream-able) results

Plugins that want to add actions to be run after a job runs, should use the ‘avocado.plugins.result_events’ names-
pace and implement the defined interface.

end_test(result, state)
Event triggered when a test finishes running

start_test(result, state)
Event triggered when a test starts running

test_progress(progress=False)
Interface to notify progress (or not) of the running test

class avocado.core.plugin_interfaces.Varianter
Bases: avocado.core.plugin_interfaces.Plugin

Base plugin interface for producing test variants usually from cmd line options

to_str(summary, variants, **kwargs)
Return human readable representation

The summary/variants accepts verbosity where 0 means silent and maximum is up to the plugin.

Parameters

• summary – How verbose summary to output (int)

• variants – How verbose list of variants to output (int)

• kwargs – Other free-form arguments

Return type str

update_defaults(defaults)
Add default values

Note Those values should not be part of the variant_id

20.3.18 avocado.core.result module

Contains the Result class, used for result accounting.

226 Chapter 20. API Reference

avocado Documentation, Release 63.0

class avocado.core.result.Result(job)
Bases: object

Result class, holder for job (and its tests) result information.

Creates an instance of Result.

Parameters job – an instance of avocado.core.job.Job.

check_test(state)
Called once for a test to check status and report.

Parameters test – A dict with test internal state

end_test(state)
Called when the given test has been run.

Parameters state (dict) – result of avocado.core.test.Test.get_state.

end_tests()
Called once after all tests are executed.

start_test(state)
Called when the given test is about to run.

Parameters state (dict) – result of avocado.core.test.Test.get_state.

20.3.19 avocado.core.runner module

Test runner module.

avocado.core.runner.TIMEOUT_PROCESS_ALIVE = 60
when test reported status but the process did not finish

avocado.core.runner.TIMEOUT_PROCESS_DIED = 10
when the process died but the status was not yet delivered

avocado.core.runner.TIMEOUT_TEST_INTERRUPTED = 1
when test was interrupted (ctrl+c/timeout)

class avocado.core.runner.TestRunner(job, result)
Bases: object

A test runner class that displays tests results.

Creates an instance of TestRunner class.

Parameters

• job – an instance of avocado.core.job.Job.

• result – an instance of avocado.core.result.Result

DEFAULT_EXECUTION_ORDER = 'variants-per-test'
Mode in which this runner should iterate through tests and variants. The allowed values are “variants-per-
test” or “tests-per-variant”

DEFAULT_TIMEOUT = 86400

run_suite(test_suite, variants, timeout=0, replay_map=None, execution_order=None)
Run one or more tests and report with test result.

Parameters

• test_suite – a list of tests to run.

20.3. Internal (Core) APIs 227

avocado Documentation, Release 63.0

• variants – A varianter iterator to produce test params.

• timeout – maximum amount of time (in seconds) to execute.

• replay_map – optional list to override test class based on test index.

• execution_order – Mode in which we should iterate through tests and variants. If
not provided, will default to DEFAULT_EXECUTION_ORDER.

Returns a set with types of test failures.

run_test(test_factory, queue, summary, job_deadline=0)
Run a test instance inside a subprocess.

Parameters

• test_factory (tuple of avocado.core.test.Test and dict.) – Test factory (test
class and parameters).

• queue (:class`multiprocessing.Queue` instance.) – Multiprocess
queue.

• summary (set.) – Contains types of test failures.

• job_deadline (int.) – Maximum time to execute.

class avocado.core.runner.TestStatus(job, queue)
Bases: object

Test status handler

Parameters

• job – Associated job

• queue – test message queue

early_status
Get early status

finish(proc, started, step, deadline, result_dispatcher)
Wait for the test process to finish and report status or error status if unable to obtain the status till deadline.

Parameters

• proc – The test’s process

• started – Time when the test started

• first – Delay before first check

• step – Step between checks for the status

• deadline – Test execution deadline

• result_dispatcher – Result dispatcher (for test_progress notifications)

wait_for_early_status(proc, timeout)
Wait until early_status is obtained :param proc: test process :param timeout: timeout for early_state :raise
exceptions.TestError: On timeout/error

avocado.core.runner.add_runner_failure(test_state, new_status, message)
Append runner failure to the overall test status.

Parameters

• test_state – Original test state (dict)

228 Chapter 20. API Reference

avocado Documentation, Release 63.0

• new_status – New test status (PASS/FAIL/ERROR/INTERRUPTED/. . .)

• message – The error message

20.3.20 avocado.core.safeloader module

Safe (AST based) test loader module utilities

avocado.core.safeloader.DOCSTRING_DIRECTIVE_RE_RAW = '\\s*:avocado:[\\t]+([a-zA-Z0-9]+?[a-zA-Z0-9_:,\\=]*)\\s*$'
Gets the docstring directive value from a string. Used to tweak test behavior in various ways

avocado.core.safeloader.check_docstring_directive(docstring, directive)
Checks if there’s a given directive in a given docstring

Return type bool

avocado.core.safeloader.find_class_and_methods(path, method_pattern=None,
base_class=None)

Attempts to find methods names from a given Python source file

Parameters

• path (str) – path to a Python source code file

• method_pattern – compiled regex to match against method name

• base_class (str or None) – only consider classes that inherit from a given base
class (or classes that inherit from any class if None is given)

avocado.core.safeloader.get_docstring_directives(docstring)
Returns the values of the avocado docstring directives

Parameters docstring (str) – the complete text used as documentation

Return type builtin.list

avocado.core.safeloader.get_docstring_directives_tags(docstring)
Returns the test categories based on a :avocado: tags=category docstring

Return type set

avocado.core.safeloader.modules_imported_as(module)
Returns a mapping of imported module names whether using aliases or not

The goal of this utility function is to return the name of the import as used in the rest of the module, whether an
aliased import was used or not.

For code such as:

>>> import foo as bar

This function should return {“foo”: “bar”}

And for code such as:

>>> import foo

It should return {“foo”: “foo”}

Please note that only global level imports are looked at. If there are imports defined, say, inside functions or
class definitions, they will not be seen by this function.

Parameters module (_ast.Module) – module, as parsed by ast.parse()

20.3. Internal (Core) APIs 229

avocado Documentation, Release 63.0

Returns a mapping of names {<realname>: <alias>} of modules imported

Return type dict

20.3.21 avocado.core.settings module

Reads the avocado settings from a .ini file (from python ConfigParser).

exception avocado.core.settings.ConfigFileNotFound(path_list)
Bases: avocado.core.settings.SettingsError

Error thrown when the main settings file could not be found.

class avocado.core.settings.Settings(config_path=None)
Bases: object

Simple wrapper around ConfigParser, with a key type conversion available.

Constructor. Tries to find the main settings file and load it.

Parameters config_path – Path to a config file. Useful for unittesting.

get_value(section, key, key_type=<type ’str’>, default=<object object>, allow_blank=False)
Get value from key in a given config file section.

Parameters

• section (str) – Config file section.

• key (str) – Config file key, relative to section.

• key_type (either string based names representing types, including str, int, float, bool,
list and path, or the types themselves limited to str, int, float, bool and list.) –
Type of key.

• default – Default value for the key, if none found.

• allow_blank – Whether an empty value for the key is allowed.

Returns value, if one available in the config. default value, if one provided.

Raises SettingsError, in case key is not set and no default was provided.

no_default = <object object>

process_config_path(pth)

exception avocado.core.settings.SettingsError
Bases: exceptions.Exception

Base settings error.

exception avocado.core.settings.SettingsValueError
Bases: avocado.core.settings.SettingsError

Error thrown when we could not convert successfully a key to a value.

avocado.core.settings.convert_value_type(value, value_type)
Convert a string value to a given value type.

Parameters

• value (str.) – Value we want to convert.

• value_type (str or type.) – Type of the value we want to convert.

Returns Converted value type.

230 Chapter 20. API Reference

avocado Documentation, Release 63.0

Return type Dependent on value_type.

Raise TypeError, in case it was not possible to convert values.

20.3.22 avocado.core.status module

Maps the different status strings in avocado to booleans.

This is used by methods and functions to return a cut and dry answer to whether a test or a job in avocado PASSed or
FAILed.

20.3.23 avocado.core.sysinfo module

class avocado.core.sysinfo.Collectible(logf)
Bases: object

Abstract class for representing collectibles by sysinfo.

readline(logdir)
Read one line of the collectible object.

Parameters logdir – Path to a log directory.

class avocado.core.sysinfo.Command(cmd, logf=None, compress_log=False)
Bases: avocado.core.sysinfo.Collectible

Collectible command.

Parameters

• cmd – String with the command.

• logf – Basename of the file where output is logged (optional).

• compress_logf – Whether to compress the output of the command.

run(logdir)
Execute the command as a subprocess and log its output in logdir.

Parameters logdir – Path to a log directory.

class avocado.core.sysinfo.Daemon(cmd, logf=None, compress_log=False)
Bases: avocado.core.sysinfo.Command

Collectible daemon.

Parameters

• cmd – String with the daemon command.

• logf – Basename of the file where output is logged (optional).

• compress_logf – Whether to compress the output of the command.

run(logdir)
Execute the daemon as a subprocess and log its output in logdir.

Parameters logdir – Path to a log directory.

stop()
Stop daemon execution.

20.3. Internal (Core) APIs 231

avocado Documentation, Release 63.0

class avocado.core.sysinfo.JournalctlWatcher(logf=None)
Bases: avocado.core.sysinfo.Collectible

Track the content of systemd journal into a compressed file.

Parameters logf – Basename of the file where output is logged (optional).

run(logdir)

class avocado.core.sysinfo.LogWatcher(path, logf=None)
Bases: avocado.core.sysinfo.Collectible

Keep track of the contents of a log file in another compressed file.

This object is normally used to track contents of the system log (/var/log/messages), and the outputs are gzipped
since they can be potentially large, helping to save space.

Parameters

• path – Path to the log file.

• logf – Basename of the file where output is logged (optional).

run(logdir)
Log all of the new data present in the log file.

class avocado.core.sysinfo.Logfile(path, logf=None)
Bases: avocado.core.sysinfo.Collectible

Collectible system file.

Parameters

• path – Path to the log file.

• logf – Basename of the file where output is logged (optional).

run(logdir)
Copy the log file to the appropriate log dir.

Parameters logdir – Log directory which the file is going to be copied to.

class avocado.core.sysinfo.SysInfo(basedir=None, log_packages=None, profiler=None)
Bases: object

Log different system properties at some key control points:

• start_job

• start_test

• end_test

• end_job

Set sysinfo collectibles.

Parameters

• basedir – Base log dir where sysinfo files will be located.

• log_packages – Whether to log system packages (optional because logging packages is
a costly operation). If not given explicitly, tries to look in the config files, and if not found,
defaults to False.

• profiler – Whether to use the profiler. If not given explicitly, tries to look in the config
files.

232 Chapter 20. API Reference

avocado Documentation, Release 63.0

add_cmd(cmd, hook)
Add a command collectible.

Parameters

• cmd – Command to log.

• hook – In which hook this cmd should be logged (start job, end job).

add_file(filename, hook)
Add a system file collectible.

Parameters

• filename – Path to the file to be logged.

• hook – In which hook this file should be logged (start job, end job).

add_watcher(filename, hook)
Add a system file watcher collectible.

Parameters

• filename – Path to the file to be logged.

• hook – In which hook this watcher should be logged (start job, end job).

end_job_hook()
Logging hook called whenever a job finishes.

end_test_hook()
Logging hook called after a test finishes.

start_job_hook()
Logging hook called whenever a job starts.

start_test_hook()
Logging hook called before a test starts.

avocado.core.sysinfo.collect_sysinfo(args)
Collect sysinfo to a base directory.

Parameters args – argparse.Namespace object with command line params.

20.3.24 avocado.core.test module

Contains the base test implementation, used as a base for the actual framework tests.

avocado.core.test.COMMON_TMPDIR_NAME = 'AVOCADO_TESTS_COMMON_TMPDIR'
Environment variable used to store the location of a temporary directory which is preserved across all tests
execution (usually in one job)

class avocado.core.test.DryRunTest(*args, **kwargs)
Bases: avocado.core.test.MockingTest

Fake test which logs itself and reports as CANCEL

This class substitutes other classes. Let’s just ignore the remaining arguments and only set the ones supported
by avocado.Test

setUp()
Hook method for setting up the test fixture before exercising it.

20.3. Internal (Core) APIs 233

avocado Documentation, Release 63.0

class avocado.core.test.ExternalRunnerSpec(runner, chdir=None, test_dir=None)
Bases: object

Defines the basic options used by ExternalRunner

class avocado.core.test.ExternalRunnerTest(name, params=None, base_logdir=None,
job=None, external_runner=None, exter-
nal_runner_argument=None)

Bases: avocado.core.test.SimpleTest

filename

test()
Run the test and postprocess the results

class avocado.core.test.MockingTest(*args, **kwargs)
Bases: avocado.core.test.Test

Class intended as generic substitute for avocado tests which will not be executed for some reason. This class is
expected to be overridden by specific reason-oriented sub-classes.

This class substitutes other classes. Let’s just ignore the remaining arguments and only set the ones supported
by avocado.Test

test()

class avocado.core.test.PythonUnittest(name, params=None, base_logdir=None,
job=None, test_dir=None,
python_unittest_module=None)

Bases: avocado.core.test.ExternalRunnerTest

Python unittest test

test()
Run the test and postprocess the results

class avocado.core.test.RawFileHandler(filename, mode=’a’, encoding=None, delay=0)
Bases: logging.FileHandler

File Handler that doesn’t include arbitrary characters to the logged stream but still respects the formatter.

Open the specified file and use it as the stream for logging.

emit(record)
Modifying the original emit() to avoid including a new line in streams that should be logged in its purest
form, like in stdout/stderr recordings.

class avocado.core.test.ReplaySkipTest(*args, **kwargs)
Bases: avocado.core.test.MockingTest

Skip test due to job replay filter.

This test is skipped due to a job replay filter. It will never have a chance to execute.

This class substitutes other classes. Let’s just ignore the remaining arguments and only set the ones supported
by avocado.Test

test(**kwargs)

class avocado.core.test.SimpleTest(name, params=None, base_logdir=None, job=None, exe-
cutable=None)

Bases: avocado.core.test.Test

Run an arbitrary command that returns either 0 (PASS) or !=0 (FAIL).

DATA_SOURCES = ['variant', 'file']

234 Chapter 20. API Reference

avocado Documentation, Release 63.0

filename
Returns the name of the file (path) that holds the current test

test()
Run the test and postprocess the results

avocado.core.test.TEST_STATE_ATTRIBUTES = ('name', 'logdir', 'logfile', 'status', 'running', 'paused', 'time_start', 'time_elapsed', 'time_end', 'fail_reason', 'fail_class', 'traceback', 'timeout', 'whiteboard')
The list of test attributes that are used as the test state, which is given to the test runner via the queue they share

class avocado.core.test.Test(methodName=’test’, name=None, params=None,
base_logdir=None, job=None, runner_queue=None)

Bases: unittest.case.TestCase, avocado.core.test.TestData

Base implementation for the test class.

You’ll inherit from this to write your own tests. Typically you’ll want to implement setUp(), test*() and tear-
Down() methods on your own tests.

Initializes the test.

Parameters

• methodName – Name of the main method to run. For the sake of compatibility with the
original unittest class, you should not set this.

• name (avocado.core.test.TestID) – Pretty name of the test name. For normal
tests, written with the avocado API, this should not be set. This is reserved for internal
Avocado use, such as when running random executables as tests.

• base_logdir – Directory where test logs should go. If None provided, it’ll use
avocado.data_dir.create_job_logs_dir().

• job – The job that this test is part of.

basedir
The directory where this test (when backed by a file) is located at

cache_dirs
Returns a list of cache directories as set in config file.

cancel(message=None)
Cancels the test.

This method is expected to be called from the test method, not anywhere else, since by definition, we can
only cancel a test that is currently under execution. If you call this method outside the test method, avocado
will mark your test status as ERROR, and instruct you to fix your test in the error message.

Parameters message (str) – an optional message that will be recorded in the logs

error(message=None)
Errors the currently running test.

After calling this method a test will be terminated and have its status as ERROR.

Parameters message (str) – an optional message that will be recorded in the logs

fail(message=None)
Fails the currently running test.

After calling this method a test will be terminated and have its status as FAIL.

Parameters message (str) – an optional message that will be recorded in the logs

fail_class

fail_reason

20.3. Internal (Core) APIs 235

avocado Documentation, Release 63.0

fetch_asset(name, asset_hash=None, algorithm=None, locations=None, expire=None)
Method o call the utils.asset in order to fetch and asset file supporting hash check, caching and multiple
locations.

Parameters

• name – the asset filename or URL

• asset_hash – asset hash (optional)

• algorithm – hash algorithm (optional, defaults to avocado.utils.asset.
DEFAULT_HASH_ALGORITHM)

• locations – list of URLs from where the asset can be fetched (optional)

• expire – time for the asset to expire

Raises EnvironmentError – When it fails to fetch the asset

Returns asset file local path

filename
Returns the name of the file (path) that holds the current test

get_state()
Serialize selected attributes representing the test state

Returns a dictionary containing relevant test state data

Return type dict

job
The job this test is associated with

log
The enhanced test log

logdir
Path to this test’s logging dir

logfile
Path to this test’s main debug.log file

name
Returns the Test ID, which includes the test name

Return type TestID

outputdir
Directory available to test writers to attach files to the results

params
Parameters of this test (AvocadoParam instance)

report_state()
Send the current test state to the test runner process

run_avocado()
Wraps the run method, for execution inside the avocado runner.

Result Unused param, compatibility with unittest.TestCase.

runner_queue
The communication channel between test and test runner

236 Chapter 20. API Reference

avocado Documentation, Release 63.0

running
Whether this test is currently being executed

set_runner_queue(runner_queue)
Override the runner_queue

status
The result status of this test

teststmpdir
Returns the path of the temporary directory that will stay the same for all tests in a given Job.

time_elapsed = -1
duration of the test execution (always recalculated from time_end - time_start

time_end = -1
(unix) time when the test finished (could be forced from test)

time_start = -1
(unix) time when the test started (could be forced from test)

timeout = None
Test timeout (the timeout from params takes precedence)

traceback

whiteboard = ''
Arbitrary string which will be stored in $logdir/whiteboard location when the test finishes.

workdir
This property returns a writable directory that exists during the entire test execution, but will be cleaned
up once the test finishes.

It can be used on tasks such as decompressing source tarballs, building software, etc.

class avocado.core.test.TestData
Bases: object

Class that adds the ability for tests to have access to data files

Writers of new test types can change the completely change the behavior and still be compatible by providing
an DATA_SOURCES attribute and a meth:get_data method.

DATA_SOURCES = ['variant', 'test', 'file']
Defines the name of data sources that this implementation makes available. Users may choose to pick data
file from a specific source.

get_data(filename, source=None, must_exist=True)
Retrieves the path to a given data file.

This implementation looks for data file in one of the sources defined by the DATA_SOURCES attribute.

Parameters

• filename (str) – the name of the data file to be retrieved

• source (str) – one of the defined data sources. If not set, all of the DATA_SOURCES
will be attempted in the order they are defined

• must_exist (bool) – whether the existence of a file is checked for

Return type str or None

class avocado.core.test.TestError(*args, **kwargs)
Bases: avocado.core.test.Test

20.3. Internal (Core) APIs 237

avocado Documentation, Release 63.0

Generic test error.

test()

class avocado.core.test.TestID(uid, name, variant=None, no_digits=None)
Bases: object

Test ID construction and representation according to specification

This class wraps the representation of both Avocado’s Test ID specification and Avocado’s Test Name, which is
part of a Test ID.

Constructs a TestID instance

Parameters

• uid – unique test id (within the job)

• name – test name, as returned by the Avocado test resolver (AKA as test loader)

• variant (dict) – the variant applied to this Test ID

• no_digits – number of digits of the test uid

str_filesystem
Test ID in a format suitable for use in file systems

The string returned should be safe to be used as a file or directory name. This file system version of the
test ID may have to shorten either the Test Name or the Variant ID.

The first component of a Test ID, the numeric unique test id, AKA “uid”, will be used as a an stable
identifier between the Test ID and the file or directory created based on the return value of this method. If
the filesystem can not even represent the “uid”, than an exception will be raised.

For Test ID “001-mytest;foo”, examples of shortened file system versions include “001-mytest;f” or “001-
myte;foo”.

Raises RuntimeError if the test ID cannot be converted to a filesystem representation.

class avocado.core.test.TimeOutSkipTest(*args, **kwargs)
Bases: avocado.core.test.MockingTest

Skip test due job timeout.

This test is skipped due a job timeout. It will never have a chance to execute.

This class substitutes other classes. Let’s just ignore the remaining arguments and only set the ones supported
by avocado.Test

test(**kwargs)

20.3.25 avocado.core.tree module

Tree data structure with nodes.

This tree structure (Tree drawing code) was inspired in the base tree data structure of the ETE 2 project:

http://pythonhosted.org/ete2/

A library for analysis of phylogenetics trees.

Explicit permission has been given by the copyright owner of ETE 2 Jaime Huerta-Cepas <jhcepas@gmail.com> to
take ideas/use snippets from his original base tree code and re-license under GPLv2+, given that GPLv3 and GPLv2
(used in some avocado files) are incompatible.

238 Chapter 20. API Reference

http://pythonhosted.org/ete2/
mailto:jhcepas@gmail.com

avocado Documentation, Release 63.0

class avocado.core.tree.FilterSet
Bases: set

Set of filters in standardized form

add(item)
Add an element to a set.

This has no effect if the element is already present.

update(items)
Update a set with the union of itself and others.

class avocado.core.tree.TreeEnvironment
Bases: dict

TreeNode environment with values, origins and filters

copy()→ a shallow copy of D

class avocado.core.tree.TreeNode(name=”, value=None, parent=None, children=None)
Bases: object

Class for bounding nodes into tree-structure.

Parameters

• name (str) – a name for this node that will be used to define its path according to the name
of its parents

• value (dict) – a collection of keys and values that will be made into this node environ-
ment.

• parent (TreeNode) – the node that is directly above this one in the tree structure

• children (builtin.list) – the nodes that are directly beneath this one in the tree
structure

add_child(node)
Append node as child. Nodes with the same name gets merged into the existing position.

detach()
Detach this node from parent

environment
Node environment (values + preceding envs)

fingerprint()
Reports string which represents the value of this node.

get_environment()
Get node environment (values + preceding envs)

get_leaves()
Get list of leaf nodes

get_node(path, create=False)

Parameters

• path – Path of the desired node (relative to this node)

• create – Create the node (and intermediary ones) when not present

Returns the node associated with this path

Raises ValueError – When path doesn’t exist and create not set

20.3. Internal (Core) APIs 239

avocado Documentation, Release 63.0

get_parents()
Get list of parent nodes

get_path(sep=’/’)
Get node path

get_root()
Get root of this tree

is_leaf
Is this a leaf node?

iter_children_preorder()
Iterate through children

iter_leaves()
Iterate through leaf nodes

iter_parents()
Iterate through parent nodes to root

merge(other)
Merges other node into this one without checking the name of the other node. New values are appended,
existing values overwritten and unaffected ones are kept. Then all other node children are added as children
(recursively they get either appended at the end or merged into existing node in the previous position.

parents
List of parent nodes

path
Node path

root
Root of this tree

set_environment_dirty()
Set the environment cache dirty. You should call this always when you query for the environment and then
change the value or structure. Otherwise you’ll get the old environment instead.

class avocado.core.tree.TreeNodeEnvOnly(path, environment=None)
Bases: object

Minimal TreeNode-like class providing interface for AvocadoParams

Parameters

• path – Path of this node (must not end with ‘/’)

• environment – List of pair/key/value items

fingerprint()

get_environment()

get_path()

avocado.core.tree.tree_view(root, verbose=None, use_utf8=None)
Generate tree-view of the given node :param root: root node :param verbose: verbosity (0, 1, 2, 3) :param
use_utf8: Use utf-8 encoding (None=autodetect) :return: string representing this node’s tree structure

20.3.26 avocado.core.varianter module

Base classes for implementing the varianter interface

240 Chapter 20. API Reference

avocado Documentation, Release 63.0

class avocado.core.varianter.FakeVariantDispatcher(state)
Bases: object

This object can act instead of VarianterDispatcher to report loaded variants.

map_method(method, *args, **kwargs)
Reports list containing one result of map_method on self

to_str(summary=0, variants=0, **kwargs)

class avocado.core.varianter.Varianter(debug=False, state=None)
Bases: object

This object takes care of producing test variants

Parameters

• debug – Store whether this instance should debug varianter

• state – Force-varianter state

Note it’s necessary to check whether variants debug is enable in order to provide the right results.

add_default_param(name, key, value, path=None)
Stores the path/key/value into default params

This allow injecting default arguments which are mainly intended for machine/os-related params. It should
not affect the test results and by definition it should not affect the variant id.

Parameters

• name – Name of the component which injects this param

• key – Key to which we’d like to assign the value

• value – The key’s value

• path – Optional path to the node to which we assign the value, by default ‘/’.

dump()
Dump the variants in loadable-state

This is lossy representation which takes all yielded variants and replaces the list of nodes with TreeN-
odeEnvOnly representations:

[{'path': path,
'variant_id': variant_id,
'variant': dump_tree_nodes(original_variant)},

{'path': [str, str, ...],
'variant_id': str,
'variant': [(str, [(str, str, object), ...])],

{'path': ['/run/*'],
'variant_id': 'cat-26c0'
'variant': [('/pig/cat',

[('/pig', 'ant', 'fox'),
('/pig/cat', 'dog', 'bee')])]}

...]

where dump_tree_nodes looks like:

[(node.path, environment_representation),
(node.path, [(path1, key1, value1), (path2, key2, value2), ...]),
('/pig/cat', [('/pig', 'ant', 'fox')])

20.3. Internal (Core) APIs 241

avocado Documentation, Release 63.0

Returns loadable Varianter representation

get_number_of_tests(test_suite)

Returns overall number of tests * number of variants

is_parsed()
Reports whether the varianter was already parsed

itertests()
Yields all variants of all plugins

The variant is defined as dictionary with at least:

• variant_id - name of the current variant

• variant - AvocadoParams-compatible variant (usually a list of TreeNodes but dict or simply
None are also possible values)

• paths - default path(s)

:yield variant

load(state)
Load the variants state

Current implementation supports loading from a list of loadable variants. It replaces the VariantDispatcher
with fake implementation which reports the loaded (and initialized) variants.

Parameters state – loadable Varianter representation

parse(args)
Apply options defined on the cmdline and initialize the plugins.

Parameters args – Parsed cmdline arguments

to_str(summary=0, variants=0, **kwargs)
Return human readable representation

The summary/variants accepts verbosity where 0 means do not display at all and maximum is up to the
plugin.

Parameters

• summary – How verbose summary to output (int)

• variants – How verbose list of variants to output (int)

• kwargs – Other free-form arguments

Return type str

avocado.core.varianter.dump_ivariants(ivariants)
Walks the iterable variants and dumps them into json-serializable object

avocado.core.varianter.generate_variant_id(variant)
Basic function to generate variant-id from a variant

Parameters variant – Avocado test variant (list of TreeNode-like objects)

Returns String compounded of ordered node names and a hash of all values.

avocado.core.varianter.is_empty_variant(variant)
Reports whether the variant contains any data

Parameters variant – Avocado test variant (list of TreeNode-like objects)

242 Chapter 20. API Reference

avocado Documentation, Release 63.0

Returns True when the variant does not contain (any useful) data

avocado.core.varianter.variant_to_str(variant, verbosity, out_args=None, debug=False)
Reports human readable representation of a variant

Parameters

• variant – Valid variant (list of TreeNode-like objects)

• verbosity – Output verbosity where 0 means brief

• out_args – Extra output arguments (currently unused)

• debug – Whether the variant contains and should report debug info

Returns Human readable representation

20.3.27 avocado.core.version module

20.3.28 Module contents

20.4 Extension (plugin) APIs

Extension APIs that may be of interest to plugin writers.

20.4.1 Submodules

20.4.2 avocado.plugins.archive module

Result Archive Plugin

class avocado.plugins.archive.Archive
Bases: avocado.core.plugin_interfaces.Result

description = 'Result archive (ZIP) support'

name = 'zip_archive'

render(result, job)
Entry point with method that renders the result

This will usually be used to write the result to a file or directory.

Parameters

• result (avocado.core.result.Result) – the complete job result

• job (avocado.core.job.Job) – the finished job for which a result will be written

class avocado.plugins.archive.ArchiveCLI
Bases: avocado.core.plugin_interfaces.CLI

configure(parser)
Configures the command line parser with options specific to this plugin

description = 'Result archive (ZIP) support to run command'

name = 'zip_archive'

20.4. Extension (plugin) APIs 243

avocado Documentation, Release 63.0

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

20.4.3 avocado.plugins.config module

class avocado.plugins.config.Config
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘config’ subcommand

configure(parser)
Lets the extension add command line options and do early configuration

By default it will register its name as the command name and give its description as the help message.

description = 'Shows avocado config keys'

name = 'config'

run(args)
Entry point for actually running the command

20.4.4 avocado.plugins.diff module

Job Diff

class avocado.plugins.diff.Diff
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘diff’ subcommand

configure(parser)
Add the subparser for the diff action.

Parameters parser – Main test runner parser.

description = 'Shows the difference between 2 jobs.'

name = 'diff'

run(args)
Entry point for actually running the command

20.4.5 avocado.plugins.distro module

avocado.plugins.distro.DISTRO_PKG_INFO_LOADERS = {'deb': <class 'avocado.plugins.distro.DistroPkgInfoLoaderDeb'>, 'rpm': <class 'avocado.plugins.distro.DistroPkgInfoLoaderRpm'>}
the type of distro that will determine what loader will be used

class avocado.plugins.distro.Distro
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘distro’ subcommand

244 Chapter 20. API Reference

avocado Documentation, Release 63.0

configure(parser)
Lets the extension add command line options and do early configuration

By default it will register its name as the command name and give its description as the help message.

description = 'Shows detected Linux distribution'

get_output_file_name(args)
Adapt the output file name based on given args

It’s not uncommon for some distros to not have a release number, so adapt the output file name to that

name = 'distro'

run(args)
Entry point for actually running the command

class avocado.plugins.distro.DistroDef(name, version, release, arch)
Bases: avocado.utils.distro.LinuxDistro

More complete information on a given Linux Distribution

Can and should include all the software packages that ship with the distro, so that an analysis can be made on
whether a given package that may be responsible for a regression is part of the official set or an external package.

software_packages = None
All the software packages that ship with this Linux distro

software_packages_type = None
A simple text that denotes the software type that makes this distro

to_dict()
Returns the representation as a dictionary

to_json()
Returns the representation of the distro as JSON

class avocado.plugins.distro.DistroPkgInfoLoader(path)
Bases: object

Loads information from the distro installation tree into a DistroDef

It will go through all package files and inspect them with specific package utilities, collecting the necessary
information.

get_package_info(path)
Returns information about a given software package

Should be implemented by classes inheriting from DistroDefinitionLoader.

Parameters path (str) – path to the software package file

Returns tuple with name, version, release, checksum and arch

Return type tuple

get_packages_info()
This method will go through each file, checking if it’s a valid software package file by calling
is_software_package() and calling load_package_info() if it’s so.

is_software_package(path)
Determines if the given file at path is a software package

20.4. Extension (plugin) APIs 245

avocado Documentation, Release 63.0

This check will be used to determine if load_package_info() will be called for file at path. This
method should be implemented by classes inheriting from DistroPkgInfoLoader and could be as
simple as checking for a file suffix.

Parameters path (str) – path to the software package file

Returns either True if the file is a valid software package or False otherwise

Return type bool

class avocado.plugins.distro.DistroPkgInfoLoaderDeb(path)
Bases: avocado.plugins.distro.DistroPkgInfoLoader

Loads package information for DEB files

get_package_info(path)
Returns information about a given software package

Should be implemented by classes inheriting from DistroDefinitionLoader.

Parameters path (str) – path to the software package file

Returns tuple with name, version, release, checksum and arch

Return type tuple

is_software_package(path)
Determines if the given file at path is a software package

This check will be used to determine if load_package_info() will be called for file at path. This
method should be implemented by classes inheriting from DistroPkgInfoLoader and could be as
simple as checking for a file suffix.

Parameters path (str) – path to the software package file

Returns either True if the file is a valid software package or False otherwise

Return type bool

class avocado.plugins.distro.DistroPkgInfoLoaderRpm(path)
Bases: avocado.plugins.distro.DistroPkgInfoLoader

Loads package information for RPM files

get_package_info(path)
Returns information about a given software package

Should be implemented by classes inheriting from DistroDefinitionLoader.

Parameters path (str) – path to the software package file

Returns tuple with name, version, release, checksum and arch

Return type tuple

is_software_package(path)
Systems needs to be able to run the rpm binary in order to fetch information on package files. If the rpm
binary is not available on this system, we simply ignore the rpm files found

class avocado.plugins.distro.SoftwarePackage(name, version, release, checksum, arch)
Bases: object

Definition of relevant information on a software package

to_dict()
Returns the representation as a dictionary

246 Chapter 20. API Reference

avocado Documentation, Release 63.0

to_json()
Returns the representation of the distro as JSON

avocado.plugins.distro.load_distro(path)
Loads the distro from an external file

Parameters path (str) – the location for the input file

Returns a dict with the distro definition data

Return type dict

avocado.plugins.distro.load_from_tree(name, version, release, arch, package_type, path)
Loads a DistroDef from an installable tree

Parameters

• name (str) – a short name that precisely distinguishes this Linux Distribution among all
others.

• version (str) – the major version of the distribution. Usually this is a single number
that denotes a large development cycle and support file.

• release (str) – the release or minor version of the distribution. Usually this is also a
single number, that is often omitted or starts with a 0 when the major version is initially
release. It’s often associated with a shorter development cycle that contains incremental a
collection of improvements and fixes.

• arch (str) – the main target for this Linux Distribution. It’s common for some architec-
tures to ship with packages for previous and still compatible architectures, such as it’s the
case with Intel/AMD 64 bit architecture that support 32 bit code. In cases like this, this
should be set to the 64 bit architecture name.

• package_type (str) – one of the available package info loader types

• path (str) – top level directory of the distro installation tree files

avocado.plugins.distro.save_distro(linux_distro, path)
Saves the linux_distro to an external file format

Parameters

• linux_distro (DistroDef) – an DistroDef instance

• path (str) – the location for the output file

Returns None

20.4.6 avocado.plugins.envkeep module

class avocado.plugins.envkeep.EnvKeep
Bases: avocado.core.plugin_interfaces.CLI

Keep environment variables on remote executions

configure(parser)
Configures the command line parser with options specific to this plugin

description = 'Keep variables in remote environment'

name = 'envkeep'

20.4. Extension (plugin) APIs 247

avocado Documentation, Release 63.0

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

20.4.7 avocado.plugins.exec_path module

Libexec PATHs modifier

class avocado.plugins.exec_path.ExecPath
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘exec-path’ subcommand

description = 'Returns path to avocado bash libraries and exits.'

name = 'exec-path'

run(args)
Print libexec path and finish

Parameters args – Command line args received from the run subparser.

20.4.8 avocado.plugins.gdb module

Run tests with GDB goodies enabled.

class avocado.plugins.gdb.GDB
Bases: avocado.core.plugin_interfaces.CLI

Run tests with GDB goodies enabled

configure(parser)
Configures the command line parser with options specific to this plugin

description = "GDB options for the 'run' subcommand"

name = 'gdb'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

20.4.9 avocado.plugins.human module

Human result UI

class avocado.plugins.human.Human(args)
Bases: avocado.core.plugin_interfaces.ResultEvents

Human result UI

description = 'Human Interface UI'

248 Chapter 20. API Reference

avocado Documentation, Release 63.0

end_test(result, state)
Event triggered when a test finishes running

name = 'human'

output_mapping = {'CANCEL': '', 'ERROR': '', 'FAIL': '', 'INTERRUPTED': '', 'PASS': '', 'SKIP': '', 'WARN': ''}

post_tests(job)
Entry point for job running actions after the tests execution

pre_tests(job)
Entry point for job running actions before tests execution

start_test(result, state)
Event triggered when a test starts running

test_progress(progress=False)
Interface to notify progress (or not) of the running test

class avocado.plugins.human.HumanJob
Bases: avocado.core.plugin_interfaces.JobPre, avocado.core.plugin_interfaces.
JobPost

Human result UI

description = 'Human Interface UI'

name = 'human'

post(job)
Entry point for actually running the post job action

pre(job)
Entry point for actually running the pre job action

20.4.10 avocado.plugins.jobscripts module

class avocado.plugins.jobscripts.JobScripts
Bases: avocado.core.plugin_interfaces.JobPre, avocado.core.plugin_interfaces.
JobPost

description = 'Runs scripts before/after the job is run'

name = 'jobscripts'

post(job)
Entry point for actually running the post job action

pre(job)
Entry point for actually running the pre job action

20.4.11 avocado.plugins.journal module

Journal Plugin

class avocado.plugins.journal.Journal
Bases: avocado.core.plugin_interfaces.CLI

Test journal

configure(parser)
Configures the command line parser with options specific to this plugin

20.4. Extension (plugin) APIs 249

avocado Documentation, Release 63.0

description = "Journal options for the 'run' subcommand"

name = 'journal'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.plugins.journal.JournalResult(args)
Bases: avocado.core.plugin_interfaces.ResultEvents

Test Result Journal class.

This class keeps a log of the test updates: started running, finished, etc. This information can be forwarded live
to an avocado server and provide feedback to users from a central place.

Creates an instance of ResultJournal.

Parameters job – an instance of avocado.core.job.Job.

description = 'Journal event based results implementation'

end_test(result, state)
Event triggered when a test finishes running

lazy_init_journal(state)

name = 'journal'

post_tests(job)
Entry point for job running actions after the tests execution

pre_tests(job)
Entry point for job running actions before tests execution

start_test(result, state)
Event triggered when a test starts running

test_progress(progress=False)
Interface to notify progress (or not) of the running test

20.4.12 avocado.plugins.json_variants module

class avocado.plugins.json_variants.JsonVariants
Bases: avocado.core.plugin_interfaces.Varianter

Processes the serialized file into variants

description = 'JSON serialized based Varianter'

initialize(args)

name = 'json variants'

to_str(summary, variants, **kwargs)
Return human readable representation

The summary/variants accepts verbosity where 0 means silent and maximum is up to the plugin.

Parameters

• summary – How verbose summary to output (int)

250 Chapter 20. API Reference

avocado Documentation, Release 63.0

• variants – How verbose list of variants to output (int)

• kwargs – Other free-form arguments

Return type str

update_defaults(defaults)
Add default values

Note Those values should not be part of the variant_id

variants = None

class avocado.plugins.json_variants.JsonVariantsCLI
Bases: avocado.core.plugin_interfaces.CLI

Serialized based Varianter options

configure(parser)
Configures the command line parser with options specific to this plugin

description = "JSON serialized based Varianter options for the 'run' subcommand"

name = 'json variants'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

20.4.13 avocado.plugins.jsonresult module

JSON output module.

class avocado.plugins.jsonresult.JSONCLI
Bases: avocado.core.plugin_interfaces.CLI

JSON output

configure(parser)
Configures the command line parser with options specific to this plugin

description = "JSON output options for 'run' command"

name = 'json'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.plugins.jsonresult.JSONResult
Bases: avocado.core.plugin_interfaces.Result

description = 'JSON result support'

name = 'json'

20.4. Extension (plugin) APIs 251

avocado Documentation, Release 63.0

render(result, job)
Entry point with method that renders the result

This will usually be used to write the result to a file or directory.

Parameters

• result (avocado.core.result.Result) – the complete job result

• job (avocado.core.job.Job) – the finished job for which a result will be written

20.4.14 avocado.plugins.list module

class avocado.plugins.list.List
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘list’ subcommand

configure(parser)
Add the subparser for the list action.

Parameters parser – Main test runner parser.

description = 'List available tests'

name = 'list'

run(args)
Entry point for actually running the command

class avocado.plugins.list.TestLister(args)
Bases: object

Lists available test modules

list()

20.4.15 avocado.plugins.multiplex module

class avocado.plugins.multiplex.Multiplex(*args, **kwargs)
Bases: avocado.plugins.variants.Variants

DEPRECATED version of the “avocado multiplex” command which is replaced by “avocado variants” one.

name = 'multiplex'

run(args)
Entry point for actually running the command

20.4.16 avocado.plugins.plugins module

Plugins information plugin

class avocado.plugins.plugins.Plugins
Bases: avocado.core.plugin_interfaces.CLICmd

Plugins information

252 Chapter 20. API Reference

avocado Documentation, Release 63.0

configure(parser)
Lets the extension add command line options and do early configuration

By default it will register its name as the command name and give its description as the help message.

description = 'Displays plugin information'

name = 'plugins'

run(args)
Entry point for actually running the command

20.4.17 avocado.plugins.replay module

class avocado.plugins.replay.Replay
Bases: avocado.core.plugin_interfaces.CLI

Replay a job

configure(parser)
Configures the command line parser with options specific to this plugin

description = "Replay options for 'run' subcommand"

load_config(resultsdir)

name = 'replay'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

20.4.18 avocado.plugins.run module

Base Test Runner Plugins.

class avocado.plugins.run.Run
Bases: avocado.core.plugin_interfaces.CLICmd

Implements the avocado ‘run’ subcommand

configure(parser)
Add the subparser for the run action.

Parameters parser – Main test runner parser.

description = 'Runs one or more tests (native test, test alias, binary or script)'

name = 'run'

run(args)
Run test modules or simple tests.

Parameters args – Command line args received from the run subparser.

20.4. Extension (plugin) APIs 253

avocado Documentation, Release 63.0

20.4.19 avocado.plugins.sysinfo module

System information plugin

class avocado.plugins.sysinfo.SysInfo
Bases: avocado.core.plugin_interfaces.CLICmd

Collect system information

configure(parser)
Add the subparser for the run action.

Parameters parser – Main test runner parser.

description = 'Collect system information'

name = 'sysinfo'

run(args)
Entry point for actually running the command

20.4.20 avocado.plugins.tap module

TAP output module.

class avocado.plugins.tap.TAP
Bases: avocado.core.plugin_interfaces.CLI

TAP Test Anything Protocol output avocado plugin

configure(parser)
Configures the command line parser with options specific to this plugin

description = 'TAP - Test Anything Protocol results'

name = 'TAP'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.plugins.tap.TAPResult(args)
Bases: avocado.core.plugin_interfaces.ResultEvents

TAP output class

description = 'TAP - Test Anything Protocol results'

end_test(result, state)
Log the test status and details

name = 'tap'

post_tests(job)
Entry point for job running actions after the tests execution

pre_tests(job)
Log the test plan

254 Chapter 20. API Reference

avocado Documentation, Release 63.0

start_test(result, state)
Event triggered when a test starts running

test_progress(progress=False)
Interface to notify progress (or not) of the running test

avocado.plugins.tap.file_log_factory(log_file)
Generates a function which simulates writes to logger and outputs to file

Parameters log_file – The output file

20.4.21 avocado.plugins.teststmpdir module

Tests temporary directory plugin

class avocado.plugins.teststmpdir.TestsTmpDir
Bases: avocado.core.plugin_interfaces.JobPre, avocado.core.plugin_interfaces.
JobPost

description = 'Creates a temporary directory for tests consumption'

name = 'teststmpdir'

post(job)
Entry point for actually running the post job action

pre(job)
Entry point for actually running the pre job action

20.4.22 avocado.plugins.variants module

class avocado.plugins.variants.Variants(*args, **kwargs)
Bases: avocado.core.plugin_interfaces.CLICmd

Implements “variants” command to visualize/debug test variants and params

configure(parser)
Lets the extension add command line options and do early configuration

By default it will register its name as the command name and give its description as the help message.

description = 'Tool to analyze and visualize test variants and params'

name = 'variants'

run(args)
Entry point for actually running the command

avocado.plugins.variants.map_verbosity_level(level)

20.4.23 avocado.plugins.wrapper module

class avocado.plugins.wrapper.Wrapper
Bases: avocado.core.plugin_interfaces.CLI

Implements the ‘–wrapper’ flag for the ‘run’ subcommand

configure(parser)
Configures the command line parser with options specific to this plugin

20.4. Extension (plugin) APIs 255

avocado Documentation, Release 63.0

description = "Implements the '--wrapper' flag for the 'run' subcommand"

name = 'wrapper'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

20.4.24 avocado.plugins.xunit module

xUnit module.

class avocado.plugins.xunit.XUnitCLI
Bases: avocado.core.plugin_interfaces.CLI

xUnit output

configure(parser)
Configures the command line parser with options specific to this plugin

description = 'xUnit output options'

name = 'xunit'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado.plugins.xunit.XUnitResult
Bases: avocado.core.plugin_interfaces.Result

PRINTABLE = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~\n\r '

UNKNOWN = '<unknown>'

description = 'XUnit result support'

name = 'xunit'

render(result, job)
Entry point with method that renders the result

This will usually be used to write the result to a file or directory.

Parameters

• result (avocado.core.result.Result) – the complete job result

• job (avocado.core.job.Job) – the finished job for which a result will be written

256 Chapter 20. API Reference

avocado Documentation, Release 63.0

20.4.25 Module contents

20.5 Optional Plugins API

The following pages document the private APIs of optional Avocado plugins.

20.5.1 avocado_glib package

Module contents

Plugin to run GLib Test Framework tests in Avocado

class avocado_glib.GLibCLI
Bases: avocado.core.plugin_interfaces.CLI

Run GLib Test Framework tests

configure(parser)
Configures the command line parser with options specific to this plugin

description = "GLib Framework options for 'run' subcommand"

name = 'glib'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado_glib.GLibLoader(args, extra_params)
Bases: avocado.core.loader.TestLoader

GLib Test loader class

discover(reference, which_tests=<DiscoverMode.DEFAULT: <object object>>)
Discover (possible) tests from an reference.

Parameters

• reference (str) – the reference to be inspected.

• which_tests (DiscoverMode) – Limit tests to be displayed

Returns a list of test matching the reference as params.

static get_decorator_mapping()

static get_type_label_mapping()

name = 'glib'

class avocado_glib.GLibTest(name, params=None, base_logdir=None, job=None, exe-
cutable=None)

Bases: avocado.core.test.SimpleTest

Run a GLib test command as a SIMPLE test.

filename
Returns the path of the GLib test suite.

20.5. Optional Plugins API 257

avocado Documentation, Release 63.0

test()
Create the GLib command and execute it.

class avocado_glib.NotGLibTest
Bases: object

Not a GLib Test (for reporting purposes)

20.5.2 avocado_resultsdb package

Module contents

Avocado Plugin to propagate Job results to Resultsdb

class avocado_resultsdb.ResultsdbCLI
Bases: avocado.core.plugin_interfaces.CLI

Propagate Job results to Resultsdb

configure(parser)
Configures the command line parser with options specific to this plugin

description = "Resultsdb options for 'run' subcommand"

name = 'resultsdb'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado_resultsdb.ResultsdbResult
Bases: avocado.core.plugin_interfaces.Result

ResultsDB render class

description = 'Resultsdb result support'

name = 'resultsdb'

render(result, job)
Entry point with method that renders the result

This will usually be used to write the result to a file or directory.

Parameters

• result (avocado.core.result.Result) – the complete job result

• job (avocado.core.job.Job) – the finished job for which a result will be written

class avocado_resultsdb.ResultsdbResultEvent(args)
Bases: avocado.core.plugin_interfaces.ResultEvents

ResultsDB output class

description = 'Resultsdb result support'

end_test(result, state)
Create the ResultsDB result, which corresponds to one test from the Avocado Job

name = 'resultsdb'

258 Chapter 20. API Reference

avocado Documentation, Release 63.0

post_tests(job)
Entry point for job running actions after the tests execution

pre_tests(job)
Create the ResultsDB group, which corresponds to the Avocado Job

start_test(result, state)
Event triggered when a test starts running

test_progress(progress=False)
Interface to notify progress (or not) of the running test

20.5.3 avocado_varianter_yaml_to_mux package

Submodules

avocado_varianter_yaml_to_mux.mux module

This file contains mux-enabled implementations of parts useful for creating a custom Varianter plugin.

class avocado_varianter_yaml_to_mux.mux.Control(code, value=None)
Bases: object

Container used to identify node vs. control sequence

class avocado_varianter_yaml_to_mux.mux.MuxPlugin
Bases: object

Base implementation of Mux-like Varianter plugin. It should be used as a base class in conjunction with
avocado.core.plugin_interfaces.Varianter.

debug = None

default_params = None

initialize_mux(root, paths, debug)
Initialize the basic values

Note We can’t use __init__ as this object is intended to be used via dispatcher with no __init__
arguments.

paths = None

root = None

to_str(summary, variants, **kwargs)
See avocado.core.plugin_interfaces.Varianter.to_str()

update_defaults(defaults)
See avocado.core.plugin_interfaces.Varianter.update_defaults()

variants = None

class avocado_varianter_yaml_to_mux.mux.MuxTree(root)
Bases: object

Object representing part of the tree from the root to leaves or another multiplex domain. Recursively it creates
multiplexed variants of the full tree.

Parameters root – Root of this tree slice

20.5. Optional Plugins API 259

avocado Documentation, Release 63.0

iter_variants()
Iterates through variants without verifying the internal filters

:yield all existing variants

class avocado_varianter_yaml_to_mux.mux.MuxTreeNode(name=”, value=None, par-
ent=None, children=None)

Bases: avocado.core.tree.TreeNode

Class for bounding nodes into tree-structure with support for multiplexation

fingerprint()
Reports string which represents the value of this node.

merge(other)
Merges other node into this one without checking the name of the other node. New values are appended,
existing values overwritten and unaffected ones are kept. Then all other node children are added as children
(recursively they get either appended at the end or merged into existing node in the previous position.

class avocado_varianter_yaml_to_mux.mux.MuxTreeNodeDebug(name=”, value=None,
parent=None, chil-
dren=None, sr-
cyaml=None)

Bases: avocado_varianter_yaml_to_mux.mux.MuxTreeNode,
avocado_varianter_yaml_to_mux.mux.TreeNodeDebug

Debug version of TreeNodeDebug :warning: Origin of the value is appended to all values thus it’s not suitable
for running tests.

merge(other)
Merges other node into this one without checking the name of the other node. New values are appended,
existing values overwritten and unaffected ones are kept. Then all other node children are added as children
(recursively they get either appended at the end or merged into existing node in the previous position.

class avocado_varianter_yaml_to_mux.mux.OutputList(values, nodes, yamls)
Bases: list

List with some debug info

class avocado_varianter_yaml_to_mux.mux.OutputValue(value, node, srcyaml)
Bases: object

Ordinary value with some debug info

class avocado_varianter_yaml_to_mux.mux.TreeNodeDebug(name=”, value=None, par-
ent=None, children=None, sr-
cyaml=None)

Bases: avocado.core.tree.TreeNode

Debug version of TreeNodeDebug :warning: Origin of the value is appended to all values thus it’s not suitable
for running tests.

merge(other)
Override origin with the one from other tree. Updated/Newly set values are going to use this location as
origin.

class avocado_varianter_yaml_to_mux.mux.ValueDict(srcyaml, node, values)
Bases: dict

Dict which stores the origin of the items

iteritems()
Slower implementation with the use of __getitem__

260 Chapter 20. API Reference

avocado Documentation, Release 63.0

avocado_varianter_yaml_to_mux.mux.apply_filters(root, filter_only=None, fil-
ter_out=None)

Apply a set of filters to the tree.

The basic filtering is filter only, which includes nodes, and the filter out rules, that exclude nodes.

Note that filter_out is stronger than filter_only, so if you filter out something, you could not bypass some nodes
by using a filter_only rule.

Parameters

• root – Root node of the multiplex tree.

• filter_only – the list of paths which will include nodes.

• filter_out – the list of paths which will exclude nodes.

Returns the original tree minus the nodes filtered by the rules.

avocado_varianter_yaml_to_mux.mux.path_parent(path)
From a given path, return its parent path.

Parameters path – the node path as string.

Returns the parent path as string.

Module contents

Varianter plugin to parse yaml files to params

class avocado_varianter_yaml_to_mux.ListOfNodeObjects
Bases: list

Used to mark list as list of objects from whose node is going to be created

class avocado_varianter_yaml_to_mux.MappingDict
Bases: dict

Object representing mapping

class avocado_varianter_yaml_to_mux.Value
Bases: tuple

Used to mark values to simplify checking for node vs. value

class avocado_varianter_yaml_to_mux.YamlToMux
Bases: avocado_varianter_yaml_to_mux.mux.MuxPlugin, avocado.core.
plugin_interfaces.Varianter

Processes the mux options into varianter plugin

description = 'Multiplexer plugin to parse yaml files to params'

initialize(args)

name = 'yaml_to_mux'

class avocado_varianter_yaml_to_mux.YamlToMuxCLI
Bases: avocado.core.plugin_interfaces.CLI

Defines arguments for YamlToMux plugin

configure(parser)
Configures “run” and “variants” subparsers

description = "YamlToMux options for the 'run' subcommand"

20.5. Optional Plugins API 261

avocado Documentation, Release 63.0

name = 'yaml_to_mux'

run(args)
The YamlToMux varianter plugin handles these

avocado_varianter_yaml_to_mux.create_from_yaml(paths, debug=False)
Create tree structure from yaml-like file :param fileobj: File object to be processed :raise SyntaxError: When
yaml-file is corrupted :return: Root of the created tree structure

avocado_varianter_yaml_to_mux.get_named_tree_cls(path, klass)
Return TreeNodeDebug class with hardcoded yaml path

20.5.4 avocado_result_upload package

Module contents

Avocado Plugin to propagate Job results to remote host

class avocado_result_upload.ResultUpload
Bases: avocado.core.plugin_interfaces.Result

ResultsUpload output class

description = 'ResultUpload result support'

name = 'result_upload'

render(result, job)
Upload result, which corresponds to one test from the Avocado Job

if job.status == “RUNNING”: return # Don’t create results on unfinished jobs

class avocado_result_upload.ResultUploadCLI
Bases: avocado.core.plugin_interfaces.CLI

ResultsUpload output class

configure(parser)
Configures the command line parser with options specific to this plugin

description = "ResultUpload options for 'run' subcommand"

name = 'result_upload'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

20.5.5 avocado_robot package

Module contents

Plugin to run Robot Framework tests in Avocado

262 Chapter 20. API Reference

avocado Documentation, Release 63.0

class avocado_robot.NotRobotTest
Bases: object

Not a robot test (for reporting purposes)

class avocado_robot.RobotCLI
Bases: avocado.core.plugin_interfaces.CLI

Run Robot Framework tests

configure(parser)
Configures the command line parser with options specific to this plugin

description = "Robot Framework options for 'run' subcommand"

name = 'robot'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado_robot.RobotLoader(args, extra_params)
Bases: avocado.core.loader.TestLoader

Robot loader class

discover(url, which_tests=<DiscoverMode.DEFAULT: <object object>>)
Discover (possible) tests from an reference.

Parameters

• reference (str) – the reference to be inspected.

• which_tests (DiscoverMode) – Limit tests to be displayed

Returns a list of test matching the reference as params.

static get_decorator_mapping()

static get_type_label_mapping()

name = 'robot'

class avocado_robot.RobotTest(name, params=None, base_logdir=None, job=None, exe-
cutable=None)

Bases: avocado.core.test.SimpleTest

Run a Robot command as a SIMPLE test.

filename
Returns the path of the robot test suite.

test()
Create the Robot command and execute it.

20.5.6 avocado_loader_yaml package

Module contents

Avocado Plugin that loads tests from YAML files

20.5. Optional Plugins API 263

avocado Documentation, Release 63.0

class avocado_loader_yaml.LoaderYAML
Bases: avocado.core.plugin_interfaces.CLI

configure(parser)
Configures the command line parser with options specific to this plugin

description = "YAML test loader options for the 'run' subcommand"

name = 'loader_yaml'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado_loader_yaml.YamlTestsuiteLoader(args, extra_params)
Bases: avocado.core.loader.TestLoader

Gets variants from a YAML file and uses test_reference entries to create a test suite.

discover(reference, which_tests=<DiscoverMode.DEFAULT: <object object>>)
Discover (possible) tests from an reference.

Parameters

• reference (str) – the reference to be inspected.

• which_tests (DiscoverMode) – Limit tests to be displayed

Returns a list of test matching the reference as params.

static get_decorator_mapping()

get_full_decorator_mapping()
Allows extending the decorator-mapping after the object is initialized

get_full_type_label_mapping()
Allows extending the type-label-mapping after the object is initialized

static get_type_label_mapping()
No type is discovered by default, uses “full_*_mappings” to report the actual types after “discover()” is
called.

name = 'yaml_testsuite'

20.5.7 avocado_varianter_pict package

Module contents

class avocado_varianter_pict.VarianterPict
Bases: avocado.core.plugin_interfaces.Varianter

Processes the pict file into variants

description = 'PICT based Varianter'

initialize(args)

name = 'pict'

264 Chapter 20. API Reference

avocado Documentation, Release 63.0

to_str(summary, variants, **kwargs)
Return human readable representation

The summary/variants accepts verbosity where 0 means silent and maximum is up to the plugin.

Parameters

• summary – How verbose summary to output (int)

• variants – How verbose list of variants to output (int)

• kwargs – Other free-form arguments

Return type str

update_defaults(defaults)
Add default values

Note Those values should not be part of the variant_id

class avocado_varianter_pict.VarianterPictCLI
Bases: avocado.core.plugin_interfaces.CLI

Pict based Varianter options

configure(parser)
Configures the command line parser with options specific to this plugin

description = "PICT based Varianter options for the 'run' subcommand"

name = 'pict'

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

avocado_varianter_pict.parse_pict_output(output)

avocado_varianter_pict.run_pict(binary, parameter_file, order)

20.5.8 avocado_golang package

Module contents

Plugin to run Golang tests in Avocado

class avocado_golang.GolangCLI
Bases: avocado.core.plugin_interfaces.CLI

Run Golang tests

configure(parser)
Configures the command line parser with options specific to this plugin

description = "Golang options for 'run' subcommand"

name = 'golang'

20.5. Optional Plugins API 265

avocado Documentation, Release 63.0

run(args)
Execute any action the plugin intends.

Example of action may include activating a special features upon finding that the requested command line
options were set by the user.

Note: this plugin class is not intended for adding new commands, for that please use CLICmd.

class avocado_golang.GolangLoader(args, extra_params)
Bases: avocado.core.loader.TestLoader

Golang loader class

discover(url, which_tests=<DiscoverMode.DEFAULT: <object object>>)
Discover (possible) tests from an reference.

Parameters

• reference (str) – the reference to be inspected.

• which_tests (DiscoverMode) – Limit tests to be displayed

Returns a list of test matching the reference as params.

static get_decorator_mapping()

static get_type_label_mapping()

name = 'golang'

class avocado_golang.GolangTest(name, params=None, base_logdir=None, job=None, sub-
test=None, executable=None)

Bases: avocado.core.test.SimpleTest

Run a Golang Test command as a SIMPLE test.

filename
Returns the path of the golang test suite.

test()
Create the Golang command and execute it.

class avocado_golang.NotGolangTest
Bases: object

Not a golang test (for reporting purposes)

266 Chapter 20. API Reference

CHAPTER 21

Avocado Release Notes

21.1 Release Notes

The following pages summarize what is new in Avocado:

21.1.1 Regular Releases

The regular releases are released after each sprint, which usually takes 3 weeks. Regular releases are supported only
until the next version is released.

63.0 Greed in the Sun

The Avocado team is proud to present another release: Avocado version 63.0, AKA “Greed in the Sun”, is now
available!

Release documentation: Avocado 63.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Including test logs in TAP plugin is disabled by default and can be enabled using --tap-include-logs.

• Performance is improved for the TAP plugin by only using fsync() after writes of important content, instead
of doing it for all content, including the logs from tests.

• The command line options --filter-by-tags and --filter-by-tags-include-empty are now
white listed for the remote runner plugin.

• The remote runner plugin will now respect ~/.ssh/config configuration.

267

http://avocado-framework.readthedocs.io/en/63.0/

avocado Documentation, Release 63.0

• The asset fetcher, available to a test via avocado.core.Test.fetch_asset(), will prevent clashes from
downloaded files with the same name (when no hash is given), by using a directory named after the hash of the
location.

• The identification of PCI bridge devices in avocado.utils.pci is now more precise by using its class.

• A smarter wait, instead of a sleep, is now used on avocado.utils.multipath.

Bug Fixes

• The recording of output, used by the output check functionality, is done as text, via a RawFileHandler
logger. Now, instead of failing to encode data (depending on its content) and crashing, data is escaped using the
xmlcharrefreplace handling.

• Avocado won’t crash on systems without the less binary to be used as the paginator.

Internal Changes

• Self tests load failures are now caught on Python 3.4 environments (a workaround was needed due to Python
3.4 specific behavior, not necessary for 3.5+).

• Various build fixes related to the new Fabric packages and naming conventions.

• The avocado.core.loader module now makes use of better named symbolic values (based on enums),
such as avocado.core.loader.DiscoverMode.DEFAULT.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/EqauNWfL/1349-sprint-theme-greed-in-the-sun-1964

62.0 Farewell

The Avocado team is proud to present another release: Avocado version 62.0, AKA “Farewell”, is now available!

Release documentation: Avocado 62.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The avocado.Test.srcdir attribute has been removed, and with it, the AVOCADO_TEST_SRCDIR envi-
ronment variable set by Avocado. This was done after a deprecation period, so tests should have been modified
by now to make use of the avocado.Test.workdir instead.

268 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado/compare/62.0...63.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=Z0I_ukaLQLE
https://trello.com/c/EqauNWfL/1349-sprint-theme-greed-in-the-sun-1964
http://avocado-framework.readthedocs.io/en/62.0/

avocado Documentation, Release 63.0

• The avocado.Test.datadir attribute has been removed, and with it, the AVOCADO_TEST_DATADIR
environment variable set by Avocado. This was done after a deprecation period, so tests should have been
modified by now to make use of the avocado.Test.get_data() instead.

• The avocado.utils.cpu.set_cpuidle_state() function now takes a boolean value for its
disable parameter (while still allowing the previous integer (0/1) values to be used). The goal is to have
a more Pythonic interface, and to drop support legacy integer (0/1) use in the upcoming releases.

• avocado.utils.astring.ENCODING is a new addition, and holds the encoding used on many other
Avocado utilities. If your test needs to convert between binary data and text, we recommend you use it as the
default encoding (unless your test knows better).

• avocado.utils.astring.to_text() now supports setting the error handler. This means that when a
perfect decoding is not possible, users can choose how to handle it, like, for example, ignoring the offending
characters.

• When running a process by means of the avocado.utils.process module utilities, the output of such
a process is captured and can be logged in a stdout/stderr (or combined output) file. The logging is
now more resilient to decode errors, and will use the replace error handler by default. Please note that the
downside is that this may produce different content in those files, from what was actually output by the processes
if decoding error conditions happen.

• The avocado.utils.astring.tabular_output() will now properly strip trailing whitespace from
lines that don’t contain data for all “columns”. This is also reflected in the (tabular) output of commands such
as avocado list -v.

Bug Fixes

• Users of the avocado.utils.service module can now safely instantiate the service manager multiple
times. It was previously limited to a single instance per interpreter.

• The avocado.utils.vmimage library default usage broke with the release of Fedora 28, which added a
different directory layout for its cloud images. This has now been fixed and should allow for a successful image
= avocado.utils.vmimage() usage.

Internal Changes

• Refactor of the avocado.utils.asset module, in preparation for new functionality.

• The avocado.utils.cpu module now treats reads/writes to/from /proc/* and /sys/* as binary data.

• The selftests for the avocado.utils.cpu module will now run under Python 3 (>= 3.6), due to more
detailed checks of capable mock versions.

• The test that serves as the example for the whiteboard feature has been simplified, and the more complex test
moved to selftests.

• Package builds with make rpm are now done with the systemd-nspawn based chroot implementation for mock.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

21.1. Release Notes 269

https://github.com/avocado-framework/avocado/compare/61.0...62.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=cJXt0kzQta4

avocado Documentation, Release 63.0

Sprint theme: https://trello.com/c/4KtpSeGT/1305-sprint-theme-farewell-2009

61.0 Seven Pounds

The Avocado team is proud to present another release: Avocado version 60.0, AKA “Seven Pounds”, is now available!

Release documentation: Avocado 61.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The xunit result plugin can now limit the amount of output generated by individual tests that will make into
the XML based output file. This is intended for situations where tests can generate prohibitive amounts of output
that can render the file too large to be reused elsewhere (such as imported by Jenkins).

• SIMPLE tests can also finish with SKIP OR WARN status, depending on the output produced, and the Avocado
test runner configuration. It now supports patterns that span across multiple lines. For more information, refer
to SIMPLE Tests Status.

• Simple bytes and “unicode strings” utility functions have been added to avocado.utils.astring, and
can be used by extension and test writers that need consistent results across Python major versions.

• All of core Avocado and all but one plugin (yaml-to-mux) now have all their tests enabled on Python 3.
This means that for virtually all use cases, the experience of Python 3 users should be on par to the Python
2 experience. Please refer to https://trello.com/c/Q8QVmj8E/1254-bug-non-ascii-character-breaks-yaml2mux
and https://trello.com/c/eFY9Vw1R/1282-python-3-functional-tests-checklist for the outstanding issues.

Bug Fixes

• The TAP plugin was ommiting the output generated by the test from its own output. Now, that functionality is
back, and commented out output will be shown after the ok or not ok lines.

• Packaging issues which prevented proper use of RPM packages installations, due to the lack dependencies, were
fixed. Now, on both Python 2 and 3 packages, the right dependencies should be fulfilled.

• Replaying jobs that use the “YAML loader” is now possible. The fix was the implementation of the
fingerprint method, previously missing from the avocado.core.tree.TreeNodeEnvOnly class.

Internal Changes

• The glib test loader plugin won’t attempt to execute test references to list the glib tests, unless the test reference
is an executable file.

• Files created after the test name, which include the ; character, will now be properly mapped to a filesystem
safe _;

• A number of improvements to the code quality, as a result of having more “warning” checks enabled on our lint
check.

270 Chapter 21. Avocado Release Notes

https://trello.com/c/4KtpSeGT/1305-sprint-theme-farewell-2009
http://avocado-framework.readthedocs.io/en/61.0/
https://trello.com/c/Q8QVmj8E/1254-bug-non-ascii-character-breaks-yaml2mux
https://trello.com/c/eFY9Vw1R/1282-python-3-functional-tests-checklist

avocado Documentation, Release 63.0

• A significant reduction in the default timeout used when waiting for hotplug operations on memory devices, as
part of the utility module avocado.utils.memory .

• Improved support for non-ASCII input, including the internal use of “unicode” string types for avocado.
utils.process.run() and similar functions. The command parameter given to those functions are now
expected to be “unicode” strings.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/4KtpSeGT/1305-sprint-theme-farewell-2009

60.0 Better Call Saul

The Avocado team is proud to present another release: Avocado version 60.0, AKA “Better Call Saul”, is now avail-
able!

Release documentation: Avocado 60.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The legacy options --filter-only, --filter-out and --multiplex have now been removed.
Please adjust your usage, replacing those options with --mux-filter-only, --mux-filter-out and
--mux-yaml respectively.

• The deprecated skip method, previously part of the avocado.Test API, has been removed. To skip a test,
you can still use the avocado.skip(), avocado.skipIf() and avocado.skipUnless() decora-
tors.

• The avocado.Test.srcdir() property has been deprecated, and will be removed in the next release.
Please use avocado.Test.workdir() instead.

• Python 3 RPM packages are now available for the core Avocado and for many of the plugins. Users can
install both versions side by side, and they’ll share the same configuration. To run the Python 3 version, run
avocado-3 (or avocado-3.x, which x is the minor Python version) instead of avocado.

• The avocado.utils.kernel library now supports setting the URL that will be used to fetch the Linux
kernel from, and can also build installable packages on supported distributions (such as .deb packages on
Ubuntu).

• The avocado.utils.process library now contains helper functions similar to the Python 2 commands.
getstatusoutput() and commands.getoutput() which can be of help to people porting code from
Python 2 to Python 3.

21.1. Release Notes 271

https://github.com/avocado-framework/avocado/compare/60.0...61.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=1N0YiM6FC48
https://trello.com/c/4KtpSeGT/1305-sprint-theme-farewell-2009
http://avocado-framework.readthedocs.io/en/60.0/

avocado Documentation, Release 63.0

Bug Fixes

• Each job now gets its own temporary directory, which allows multiple jobs to be used in a single interpreter
execution.

• On some situations, Avocado would, internally, attempt to operate on a closed file, resulting in ValueError:
I/O operation on closed file. This has been fixed in the avocado.utils.process.
FDDrainer class, which will not only check if the file is not closed, but if the file-like object is capable
of operations such as fsync().

• Avocado can now (again) run tests that will produce output in encoding different than the Python standard one.
This has been implemented as an Avocado-wide, hard-coded setting, that defines the default encoding to be
utf-8. This may be made configurable in the future.

Internal Changes

• A memory optimization was applied, and allows test jobs with a large number of tests to run smoothly. Pre-
viously, Avocado would save the avocado.Test.params attribute, a avocado.core.parameters.
AvocadoParams instance to the test results. Now, it just keeps the relevant contents of the test parameters
instead.

• A number of warnings have been enabled on Avocado’s “lint” checks, and consequently a number of mistakes
have been fixed.

• The usage of the avocado.core.job.Job class now requires the use of avocado.core.job.Job.
setup() and avocado.core.job.Job.cleanup(), either explicitly or as a context manager. This
makes sure the temporary files are properly cleaned up after the job finishes.

• The exception raised by the utility functions in avocado.utils.memory has been renamed from
MemoryError and became avocado.utils.memory.MemError. The reason is that MemoryError is
a Python standard exception, that is intended to be used on different situations.

• A number of small improvements to the avocado.Test implementation, including making avocado.
Test.workdir() creation more consistent with other test temporary directories, extended logging of test
metadata, logging of test initialization (look for INIT in your test logs) in addition to the already existing start
of test execution (logged as START), etc.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/6a7jrsxA/1292-sprint-theme-better-call-saul

59.0 The Lobster

The Avocado team is proud to present another release: Avocado version 59.0, AKA “The Lobster”, is now available!

272 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado/compare/59.0...60.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=NPx6swhbMUs
https://trello.com/c/6a7jrsxA/1292-sprint-theme-better-call-saul

avocado Documentation, Release 63.0

Release documentation: Avocado 59.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• A new plugin enables users to list and execute tests based on the GLib test framework. This plugin allows
individual tests inside a single binary to be listed and executed.

• Users of the YAML test loader have now access to a few special keys that can tweak test attributes, including
adding prefixes to test names. This allows users to easily differentiate among execution of the same test, but
executed different configurations. For more information, look for “special keys” in the YAML Loader plugin
documentation.

• Users can now dump variants to a (JSON) file, and also reuse a previously created file in their future jobs
execution. This allows users to avoid recomputing the variants on every job, which might bring significant
speed ups in job execution or simply better control of the variants used during a job. Also notice that even when
users do not manually dump a variants file to a specific location, Avocado will automatically save a suitable file
at jobdata/variants.json as part of a Job results directory structure.

• SIMPLE tests were limited to returning PASS, FAIL and WARN statuses. Now SIMPLE tests can now also
return SKIP status. At the same time, SIMPLE tests were previously limited in how they would flag a WARN
or SKIP from the underlying executable. This is now configurable by means of regular expressions.

• The avocado.utils.process has seen a number of changes related to how it handles data from the ex-
ecuted processes. In a nutshell, process output (on both stdout and stderr) is now considered binary
data. Users that need to deal with text instead, should use the newly added avocado.utils.process.
CmdResult.stdout_text and avocado.utils.process.CmdResult.stderr_text, which
are convenience properties that will attempt to decode the stdout or stderr data into a string-like type
using the encoding set, and if none is set, falling back to the system default encoding. This change of behavior
was needed to accommodate Python’s 2 and Python’s 3 differences in bytes and string-like types and handling.

• The TAP result format plugin received improvements, including support for reporting Avocado tests with CAN-
CEL status as SKIP (which is the closest status available in the TAP specification), and providing more visible
warning information in case Avocado tests finish with WARN status (while maintaining the test as a PASS, since
TAP doesn’t define a WARN status).

• Removal of a number of already deprecated features related to the 36.0 LTS series, which reached End-Of-Life
during this sprint.

• Redundant (and deprecated) fields in the test sections of the JSON result output were removed. Now, instead of
url, test and id carrying the same information, only id remains.

• Python 3 (beta) support. After too many changes to mention individually, Avocado can now run satisfactorily
on Python 3. The Avocado team is aware of a small number of issues, which maps to a couple of functional
tests, and is conscientious of the fact that many other issues may come up as users deploy and run it on Python
3. Please notice that all code on Avocado already goes through the Python 3 versions of inspekt lint,
inspekt style and runs all unittests. Because of the few issues mentioned earlier, functional tests do yet
run on Avocado’s own CI, but are expected to be enable shortly after this release. For this release, expect
packages to be available on PyPI (and consequently installable via pip). RPM packages should be available in
the next release.

Bug Fixes

• Avocado won’t crash when attempting, and not succeeding, to create a user-level configuration file ~/.
config/avocado.conf. This is useful in restricted environments such as in containers, where the user

21.1. Release Notes 273

http://avocado-framework.readthedocs.io/en/59.0/
https://developer.gnome.org/glib/stable/glib-Testing.html

avocado Documentation, Release 63.0

may not have its own home directory. Avocado also won’t crash, but will report failure and exit, when it’s not
able to create the job results directory.

• Avocado will now properly respect the configuration files shipped in the Python module location, then the system
wide (usually in /etc) configuration file, and finally the user level configuration files.

• The YAML test loader will now correctly log messages intended to go the log files, instead of printing them in
the UI.

• Linux distributions detection code has been fixed for SuSE systems.

• The avocado.utils.kernel library now supports fetching all major versions of the Linux kernel, and not
only kernels from the 3.x series.

Internal Changes

• Tests that perform checks on core Avocado features should not rely on upper level Avocado code.
The functional/test_statuses.py selftest was changed in such a way, and doesn’t require the
varianter_yaml_to_mux plugin anymore.

• The Avocado assets and repository server now supports HTTPS connections. The documentation and code that
refers to these services have been updated to use secure connections.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/OTRQpSs7/1228-sprint-theme-the-lobster

58.0 Journey to the Christmas Star

The Avocado team is proud to present another release: Avocado version 58.0, AKA “Journey to the Christmas Star”,
is now available!

Release documentation: Avocado 58.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The avocado.utils.vmimage library now contains support for Avocado’s own JeOS image. A nice ad-
dition given the fact that it’s the default image used in Avocado-VT and the latest version is available in the
following architectures: x86_64, aarch64, ppc64, ppc64le and s390x.

• Avocado packages are now available in binary “wheel” format on PyPI. This brings faster, more convenient and
reliable installs via pip. Previously, the source-only tarballs would require the source to be built on the target
system, but the wheel package install is mostly an unpack of the already compiled files.

274 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado/compare/58.0...59.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=uL8ZW_WopDM
https://trello.com/c/OTRQpSs7/1228-sprint-theme-the-lobster
http://avocado-framework.readthedocs.io/en/58.0/

avocado Documentation, Release 63.0

• The installation of Avocado from sources has improved and moved towards a more “Pythonic” approach. In-
stallation of files in “non-Pythonic locations” such as /etc are no longer attempted by the Python setup.py
code. Configuration files, for instance, are now considered package data files of the avocado package. The
end result is that installation from source works fine outside virtual environments (in addition to installations
inside virtual environments).

• Python 3 has been enabled, in “allow failures mode” in Avocado’s CI environment. All static source code checks
pass, and most of the unittests (not the functional tests) also pass. It’s yet another incremental steps towards full
Python 3 support.

Bug Fixes

• The avocado.utils.software_manager library received improvements with regards to downloads of
source packages, working around bugs in older yumdownloader versions.

Internal Changes

• Spelling exceptions and fixes were added throughout and now make spell is back to a good shape.

• The Avocado CI checks (Travis-CI) are now run in parallel, similar to the stock make check behavior.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/lHnzJT06/1208-sprint-theme-journey-to-the-christmas-star

57.0 Star Trek: Discovery

The Avocado team is proud to present another release: Avocado version 57.0, AKA “Star Trek: Discovery”, is now
available!

Release documentation: Avocado 57.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• A new (optional) plugin is avaiable, the “result uploader”. It allows job results to be copied over to a centralized
results server at the end of job execution. Please refer to Results Upload Plugin for more information.

• The avocado.utils.cpu functions, such as avocado.utils.cpu.cpu_oneline_list() now
support the S390X architecture.

21.1. Release Notes 275

https://github.com/avocado-framework/avocado/compare/57.0...58.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=kjWilUSdEnw
https://trello.com/c/lHnzJT06/1208-sprint-theme-journey-to-the-christmas-star
http://avocado-framework.readthedocs.io/en/57.0/

avocado Documentation, Release 63.0

• The default_parameters mechanism for setting default parameters on tests has been removed. This was
introduced quite early in the Avocado development, and allowed users to set a dictionary at the class level with
keys/values that would serve as default parameter values. The recommended approach now, is to just provide
default values when calling self.parameters.get within a test method, such as self.parameters.
get("key", default="default_value_for_key").

• The __getattr__ interface for self.params has been removed. It used to allow users to use a syntax
such as self.params.key when attempting to access the value for key key. The supported syntax is
self.params.get("key") to achieve the same thing.

• Yet another batch of progress towards Python 3 support. On this release, we have only 3 unittests that FAIL
on a Python 3 environment. We even got bug reports of Avocado on Python 3, which makes us believe that
it’s already being used. Still, keep in mind that there are still issues, which will hopefully be iron out on the
upcoming release(s).

Bug Fixes

• The avocado.utils.crypto.hash_file() function received fixes for a bug caused by a badly in-
dented block.

• The Golang Plugin now won’t report a test as found if the GO binary is not available to subsequently run those
tests.

• The output record functionality receives fixes at the API level, so that it’s now possible to enable and disable at
the each API call.

• The subtests filter, that can be added to test references, was fixed and now works properly when added to
directories and SIMPLE tests.

• The avocado.utils.process.FDDrainer now properly flushes its contents and the once ocurring data
loss (last line read) is now fixed.

Internal Changes

• The “multiplexer” related code is being moved outside of the core Avocado. Only the variant plugin interface
and support code (but not such an implementation) will remain in core Avocado.

• A new core avocado.core.parameter module was added and it’s supposed to contain just the implemen-
tation of parameters, but no variants and/or multiplexer related code.

• The sysinfo feature implementation received a code clean up and now relies on the common avocado.
utils.process code, to run the commands that will be collected, instead of having its own custom code for
handling with output, timeouts, etc.

Other Changes

• The Avocado project now has a new server that hosts its RPM package repository and some other assets, in-
cluding the JeOS images used on Avocado-VT. The documentation now points towards the new server and its
updated URLs.

For more information, please check out the complete Avocado changelog.

276 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado/compare/56.0..57.0

avocado Documentation, Release 63.0

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/fJ1ilSuA/1198-sprint-theme-star-trek-discovery

56.0 The Second Mother

The Avocado team is proud to present another release: Avocado version 56.0, AKA “The Second Mother”, is now
available!

Release documentation: Avocado 56.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The avocado.core.utils.vmimage library now allows users to expand the builtin list of image
providers. If you have a local cache of public images, or your own images, you can quickly and easily reg-
ister your own providers and thus use your images on your tests.

• A documentation on how to create your own base classes for your tests, kind of like you own Avocado-based
test framework, was introduced. This should help users put common tasks into base classes and get even more
productive test development.

• Avocado can record the output generated from a test, which can then be used to determine if the test passed
or failed. This feature is commonly known as “output check”. Traditionally, users would choose to record
the output from STDOUT and/or STDERR into separate streams, which would be saved into different files.
Some tests suites actually put all content of STDOUT and STDERR together, and unless we record them to-
gether, it’d be impossible to record them in the right order. This version introduces the combined option to
--output-check-record option, which does exactly that: it records both STDOUT and STDERR into a
single stream and into a single file (named output in the test results, and output.expected in the test data
directory).

• A new varianter plugin has been introduced, based on PICT. PICT is a “Pair Wise” combinatorial tool, that
can generate optimal combination of parameters to tests, so that (by default) at least a unique pair of parameter
values will be tested at once.

• Further progress towards Python 3 support. While this version does not yet advertise full Python 3 support, the
next development cycle will tackle any Python 3 issue as a critical bug. On this release, some optional plugins,
including the remote and docker runner plugins, received attention and now execute correctly on a Python 3
stack.

Bug Fixes

• The remote plugin had a broken check for the timeout when executing commands remotely. It meant that the
out-most timeout loop would never reach a second iteration.

21.1. Release Notes 277

https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=TSE0q4OXG6U
https://trello.com/c/fJ1ilSuA/1198-sprint-theme-star-trek-discovery
http://avocado-framework.readthedocs.io/en/56.0/

avocado Documentation, Release 63.0

• The remote and docker plugins had issues on how they were checking the installed Avocado versions.

Internal Changes

• The CI checks on Travis received a lot of attention, and a new script that and should be used by maintainers was
introduced. contrib/scripts/avocado-check-pr.sh runs tests on all commits in a PR, and sends
the result over to GitHub, showing other developers that no regression was introduced within the series.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/s1WobkdE/1157-sprint-theme-the-second-mother-2015

55.0 Never Let Me Go

The Avocado team is proud to present another release: Avocado version 55.0, aka, “Never Let Me Go” is now avail-
able!

Release documentation: Avocado 55.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Improvements in the serialization of TestIDs allow test result directories to be properly stored and accessed on
Windows based filesystems.

• Support for listing and running golang tests has been introduced. Avocado can now discover tests written in Go,
and if Go is properly installed, Avocado can run them.

• The support for test data files has been improved to support more specific sources of data. For instance, when
a test file used to contain more than one test, all of them shared the same datadir property value, thus the
same directory which contained data files. Now, tests should use the newly introduced get_data() API,
which will attempt to locate data files specific to the variant (if used), test name, and finally file name. For more
information, please refer to the section Accessing test data files.

• The output check feature will now use the to the most specific data source location available, which is a conse-
quence of the switch to the use of the get_data() API discussed previously. This means that two tests in a
single file can generate different output, generate different stdout.expected or stderr.expected.

• When the output check feature finds a mismatch between expected and actual output, will now produce a unified
diff of those, instead of printing out their full content. This makes it a lot easier to read the logs and quickly spot
the differences and possibly the failure cause(s).

• Sysinfo collection can now be enabled on a test level basis.

278 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado/compare/56.0...55.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=PPFzrbA9AF0
https://trello.com/c/s1WobkdE/1157-sprint-theme-the-second-mother-2015
http://avocado-framework.readthedocs.io/en/55.0/

avocado Documentation, Release 63.0

• Progress towards Python 3 support. Avocado can now run most commands on a Python 3 environment, including
listing and running tests. The goal is to make Python 3 a “top tier” environment in the next release, being
supported in the same way that Python 2 is.

Bug Fixes

• Avocado logs its own version as part of a job log. In some situations Avocado could log the version of a source
repository, if the current working directory was an Avocado git source repo. That means that even when running,
say, from RPM packages, the version number based on the source code would be registered.

• The output check record feature used to mistakenly add a newline to the end of the record stdout/stderr files.

• Problems with newline based buffering prevented Avocado from properly recording test stdout/stderr. If no
newline was given at the end of a line, it would never show up in the stdout/stderr files.

Internal Changes

• The reference to examples/*.yaml, which isn’t a valid set of files, was removed from the package manifest.

• The flexmock library requirement, used on some unittests, has been removed. Those tests were rewritten using
mock, which is standard on Python 3 (unittest.mock) and available on Python 2 as a standalone module.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/Oplm42c0/1132-sprint-theme-never-let-me-go

54.1 House of Cards (minor release)

Right on the heels of the 54.0 release, the Avocado team would like to apologize for a mistake that made into that
version. The following change, as documented on 54.0 has been reverted on this 54.1 release:

• Test ID format Avocado has been using for a while received a minor tweak, to allow for better serialization
into some filesystem types, such as Microsoft Windows’ ones. Basically, the character that precedes the variant
name, a separator, used to be ;, which is not allowed on some filesystems. Now, a + character is used. A Test ID
sleeptest.py:SleepTest.test;short-beaf on a previous Avocado version is now sleeptest.
py:SleepTest.test+short-beaf.

The reason for the revert and the new release, is that the actual character causing trouble in Windows filesystems was
“lost in translation”. The culprit was the : character, and not ;. This means that the Variant ID separator character
change was unnecessary, and another fix is necessary.

Release documentation: Avocado 54.1

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

21.1. Release Notes 279

https://github.com/avocado-framework/avocado/compare/55.0...54.1
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=Zk4B8H6L53Y
https://trello.com/c/Oplm42c0/1132-sprint-theme-never-let-me-go
http://avocado-framework.readthedocs.io/en/54.1/

avocado Documentation, Release 63.0

For more information, please check out the complete Avocado changelog.

54.0 House of Cards

The Avocado team is proud to present another release: Avocado version 54.0, aka, “House of Cards” is now available!

Release documentation: Avocado 54.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Avocado can now run list and run standard Python unittests, that is, tests written in Python that use the
unittest library alone. This should help streamline the execution of tests on projects that use different
test types. Or, it may just be what plain unittest users were waiting for to start running them with Avocado.

• The Test ID format Avocado has been using for a while received a minor tweak, to allow for better serialization
into some filesystem types, such as Microsoft Windows’ ones. Basically, the character that precedes the variant
name, a separator, used to be ;, which is not allowed on some filesystems. Now, a + character is used. A Test ID
sleeptest.py:SleepTest.test;short-beaf on a previous Avocado version is now sleeptest.
py:SleepTest.test+short-beaf.

• The full path of the filename that holds the currently running test is now output is the test log, under the heading
Test metadata:.

• The yaml_to_mux varianter plugin, while parsing the YAML files, would convert objects into avocado.
core.tree.TreeNode. This caused when the variants were serialized (such as part of the job replay sup-
port). Objects are now converted into ordered dictionaries, which, besides supporting a proper serialization are
also more easily accessible as test parameters.

• The test profilers, which are defined by default in /etc/avocado/sysinfo/profilers, are now exe-
cuted without a backing shell. While Avocado doesn’t ship with examples of shell commands as profilers, or
suggests users to do so, it may be that some users could be using that functionality. If that’s the case, it will now
be necessary to write a script that wraps you previous shell command. The reason for doing so, was to fix a bug
that could leave profiler processes after the test had already finished.

• The newly introduced avocado.utils.vmimage library can immensely help test writers that need access
to virtual machine images in their tests. The simplest use of the API, vmimage.get() returns a ready to use
disposable image (snapshot based, backed by a complete base image). Users can ask for more specific images,
such as vmimage.get(arch='aarch64') for a image with a ARM OS ready to run.

• When installing and using Avocado in a Python virtual environment, the ubiquitous “venvs”, the base data
directory was one defined outside the virtual environment. Now, Avocado respects the virtual environment also
in this aspect.

• A new network related utility function, avocado.utils.network.PortTracker was ported from
Avocado-Virt, given the perceived general value in a variety of tests.

• A new memory utility utility, avocado.utils.memory.MemInfo, and its ready to use instance
avocado.utils.memory.meminfo, allows easy access to most memory related information on Linux
systems.

• The complete output of tests, that is the combination of STDOUT and STDERR is now also recorded in the test
result directory as a file named output.

280 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado/compare/54.0...54.1
http://avocado-framework.readthedocs.io/en/54.0/

avocado Documentation, Release 63.0

Bug Fixes

• As mentioned before, test profiler processes could be left running in the system, even after the test had already
finished.

• The change towards serializing YAML objects as ordered dicts, instead of as
:class:‘avocado.core.tree.TreeNode, also fixed a bug, that manifested itself in the command line applica-
tion UI.

• When the various skip* decorators were applied to setUp test methods, they would not be effective, and
tearDown would also be called.

• When a job was replayed, tests without variants in the original (AKA “source” job, would appear to have a
variant named None in the replayed job.

Internal Changes

• Avocado is now using the newest inspektor version 0.4.5. Developers should also update their installed versions
to have comparable results to the CI checks.

• The old avocado.test.TestName class was renamed to avocado.core.test.TestID, and its mem-
ber attributes updated to reflect the fact that it covers the complete Test ID, and not just a Test Name.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/fA4RL1eo/1100-sprint-theme-house-of-cards

53.0 Rear Window

The Avocado team is proud to present another release: Avocado version 53.0, aka, “Rear Window” now available!

Release documentation: Avocado 53.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• A new loader implementation, that reuses (and resembles) the YAML input used for the varianter yaml_to_mux
plugin. It allows the definition of test suite based on a YAML file, including different variants for different tests.
For more information refer to YAML Loader (yaml_loader).

• A better handling of interruption related signals, such as SIGINT and SIGTERM. Avocado will now try harder
to not leave test processes that don’t respond to those signals, and will itself behave better when it receives them.
For a complete description refer to Signal Handlers.

21.1. Release Notes 281

https://github.com/avocado-framework/avocado/compare/53.0...54.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=ssAYB0Kb-rw
https://trello.com/c/fA4RL1eo/1100-sprint-theme-house-of-cards
http://avocado-framework.readthedocs.io/en/53.0/

avocado Documentation, Release 63.0

• The output generated by tests on stdout and stderr are now properly prefixed with [stdout] and
[stderr] in the job.log. The prefix is not applied in the case of $test_result/stdout and
$test_result/stderr files, as one would expect.

• Test writers will get better protection against mistakes when trying to overwrite avocado.core.test.Test
“properties”. Some of those were previously implemented using avocado.utils.data_structures.
LazyProperty() which did not prevent test writers from overwriting them.

Internal Changes

• Some avocado.core.test.Test “properties” were implemented as lazy properties, but without the need
to be so. Those have now be converted to pure Python properties.

• The deprecated jobdata/urls link to jobdata/test_references has been removed.

• The avocado command line argument parser is now invoked before plugins are initialized, which allows the
use of --config with configuration file that influence plugin behavior.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/SfBg9gdl/1072-sprint-theme-rear-window-1954

52.0 Pat & Mat

The Avocado team is proud to present another LTS (Long Term Stability) release: Avocado version 52.0, aka, “Pat &
Mat” is now available!

Release documentation: Avocado 52.0

LTS Release

For more information on what a LTS release means, please read RFC: Long Term Stability.

For a complete list of changes from the last LTS release to this one, please refer to 52.0 LTS.

Changes

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

282 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado/compare/52.0...53.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=E4HpNZjBCYA
https://trello.com/c/SfBg9gdl/1072-sprint-theme-rear-window-1954
http://avocado-framework.readthedocs.io/en/52.0/

avocado Documentation, Release 63.0

Bugfixes

• The job replay option would not work with the --execution-order feature, but has now been fixed.

• The avocado variants --system-wide command is supposed to return one variant with the default
parameter tree. This was not functional on the last few releases, but has now been fixed.

• The replay of jobs executed with Avocado 36.4 is now possible with this release.

Documentation

A lot of the activity on this specific sprint was on documentation. It includes these new topics:

• A list of all differences that users should pay attention to, from the 36.X release to this one.

• The steps to take when migrating from 36.X to 52.0.

• A review guide, with the list of steps to be followed by developers when taking a look at Pull Requests.

• The environment in which a test runs (a different process) and its peculiarities.

• The interface for the pre/post plugins for both jobs and tests.

Other Changes

• The HTML reports (generated by an optional plugin) now output a single file containing all the resources needed
(JS, CSS and images). The original motivation of this change was to let users quickly access the HTML when
they are stored as test results artifacts on servers that compress those files. With multiple files, multiple files
had to be decompressed. If the process wasn’t automatic (server and client support decompression) this would
require a tedious process.

• Better examples of YAML files (to be used with the yaml_to_mux plugin) have been given. The other “ex-
ample” files where really files intended to be used by selftests, and having thus been moved to the selftests data
directory.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/6PuGdjJd/1054-sprint-theme-pat-mat-1976

51.0 The White Mountains

The Avocado team is proud to present another release: Avocado version 51.0, aka, “The White Mountains” now
available!

Release documentation: Avocado 51.0

21.1. Release Notes 283

https://github.com/avocado-framework/avocado/compare/51.0...52.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=nTeyu_XgFwM
https://trello.com/c/6PuGdjJd/1054-sprint-theme-pat-mat-1976
http://avocado-framework.readthedocs.io/en/51.0/

avocado Documentation, Release 63.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Users will be given more information when a test reference is not recognized by a given test loader.

• Users can now choose to proceed with the execution of a job even if one or more test references have
not been resolved by one Avocado test loader (AKA a test resolver). By giving the command line option
--ignore-missing-references=on, jobs will be executed (provided the job’s test suite has at least one
test).

• The yaml-to-mux varianter implementation (the only one at this point) is now an optional plugin. Basi-
cally, this means that users deploying this (and later) version of Avocado, should also explicitly install it. For
pip users, the module name is avocado-framework-plugin-varianter-yaml-to-mux. The RPM
package name is python-avocado-plugins-varianter-yaml-to-mux.

• Users can now choose in which order the job will execute tests (from its suite) and variants. Previously, users
would always get one test executed with all its variants, than the second tests with all variants, and so on. Now,
users can give the --execution-order=tests-per-variant command line option and all tests on the
job’s test suite will be executed with the first variant, then all tests will be executed with the second variant and
so on. The original (still the current default behavior) can also be available explicitly selected with the command
line option --execution-order=variants-per-test.

• Test methods on parent classes are now found upon the use of the new recursive docstring directive. While
:avocado: enable enables Avocado to find INSTRUMENTED tests that do not look like one (more
details here), recursive will do that while also finding test methods present on parent classes.

• The docstring directives now have a properly defined format. This applies to :avocado: tags= docstring
directives, used for categorizing tests.

• Users can now see the tags set on INSTRUMENTED test when listing tests with the -V (verbose) option.

Internal Changes

• The jobdata file responsible for keeping track of the variants on a given job (saved under $JOB_RESULTS/
jobdata/multiplex) is now called variants.json. As it names indicates, it’s now a JSON file that
contains the result of the variants generation. The previous file format was based on Python’s pickle, which was
not reliable across different Avocado versions and/or environments.

• Avocado is one step closer to Python 3 compatibility. The basic avocado command line application runs,
and loads some plugins. Still, the very much known byte versus string issues plague the code enough to
prevent tests from being loaded and executed. We anticipate that once the byte versus string is tackled,
most functionality will be available.

• Avocado now uniformly uses avocado.core.output.LOG_UI for outputting to the UI and avocado.
core.output.LOG_JOB to output to the job log.

• Some classes previously regarded as “test types” to flag error conditions have now be rewritten to not inherit
from avocado.core.test.Test. It’s now easier to identify real Avocado test types.

Improvements for Developers

• Developers now will also get Python “eggs” cleaned up when running make clean.

284 Chapter 21. Avocado Release Notes

avocado Documentation, Release 63.0

• Developers can now run make requirements-plugins to (attempt to) install external plugins dependen-
cies, provided they are located at the same base directory where Avocado is.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Next Release

The next Avocado release, 52.0, will be a LTS (Long Term Stability Release). For more information please read RFC:
Long Term Stability.

Sprint theme: https://trello.com/c/dDou6uk0/1034-sprint-theme-the-white-mountains-the-tripods

50.0 A Dog’s Will

The Avocado team is proud to present another release: Avocado version 50.0, aka, “A Dog’s Will” now available!

Release documentation: Avocado 50.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Avocado now supports resuming jobs that were interrupted. This means that a system crash, or even an in-
tentional interruption, won’t prevent you from continuing the execution of a job. To use this feature, provide
--replay-resume on the Avocado execution that proceeds the crash or interruption.

• The docstring directives that Avocado uses to allow for test categorization was previously limited to a class
docstring. Now, individual test methods can also have their own tags, while also respecting the ones at the class
level. The documentation has been updated with an example.

• The HTML report now presents the test ID and variant ID in separate columns, allowing users to also sort and
filter results based on those specific fields.

• The HTML report will now show the test parameters used in a test when the user hovers the cursor over the test
name.

• Avocado now reports the total job execution time on the UI, instead of just the tests execution time. This may
affect users that are looking for the TESTS TIME: line, and reinforce that machine readable formats such as
JSON and XUnit are more dependable than the UI intended for humans.

• The avocado.core.plugin_interfaces.JobPre is now properly called before avocado.
core.job.Job.run(), and accordingly avocado.core.plugin_interfaces.JobPost

21.1. Release Notes 285

https://github.com/avocado-framework/avocado/compare/50.0...51.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=NWfOvo2gWhE
https://trello.com/c/dDou6uk0/1034-sprint-theme-the-white-mountains-the-tripods
http://avocado-framework.readthedocs.io/en/50.0/

avocado Documentation, Release 63.0

is called after it. Some plugins which depended on the previous behavior can use the avocado.
core.plugin_interfaces.JobPreTests and avocado.core.plugin_interfaces.
JobPostTests for a similar behavior. As a example on how to write plugin code that works properly
this Avocado version, as well as on previous versions, take a look at this accompanying Avocado-VT plugin
commit.

• The Avocado multiplex command has been renamed to variants. Users of avocado multiplex will
notice a deprecation message, and are urged to switch to the new command. The command line options and
behavior of the variants command is identical to the multiplex one.

• The number of variants produced with the multiplex command (now variants) was missing in the previ-
ous version. It’s now been restored.

Internal Changes

• Avocado’s own internal tests now can be given different level marks, and will run a different level on different
environments. The idea is to increase coverage without having false positives on more restricted environments.

• The test_tests_tmp_dir selftests that was previously disable due to failure on our CI environment was
put back to be executed.

• The amount of the test runner will wait for the test process exit status has received tweaks and is now better doc-
umented (see avocado.core.runner.TIMEOUT_TEST_INTERRUPTED, avocado.core.runner.
TIMEOUT_PROCESS_DIED and avocado.core.runner.TIMEOUT_PROCESS_ALIVE).

• Some cleanups and refactors were made to how the SKIP and CANCEL test statuses are implemented.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/FleklxHi/1016-sprint-theme-a-dog-s-will-2000

49.0 The Physician

The Avocado team is proud to present another release: Avocado version 49.0, aka, “The Physician” now available!

Release documentation: Avocado 49.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• A brand new ResultsDB plugin. This allows Avocado jobs to send results directly to any ResultsDB server.

286 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado-vt/commit/d1cef6d
https://github.com/avocado-framework/avocado-vt/commit/d1cef6d
https://github.com/avocado-framework/avocado/compare/49.0...50.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=MHOZbj29hBQ
https://trello.com/c/FleklxHi/1016-sprint-theme-a-dog-s-will-2000
http://avocado-framework.readthedocs.io/en/49.0/
https://pagure.io/taskotron/resultsdb

avocado Documentation, Release 63.0

• Avocado’s data_dir is now set by default to /var/lib/avocado/data instead of /usr/share/
avocado/data. This was a problem because /usr must support read only mounts, and is not intended
for that purpose at all.

• When users run avocado list --loaders ? they used to receive a single list containing loader plugins
and test types, all mixed together. Now users will get one loader listed per line, along with the test types that
each loader supports.

• Variant-IDs created by the multiplexer are now much more meaningful. Previously, the Variant-ID would be a
simple sequential integer, it now combines information about the leaf names in the multiplexer tree and a 4 digit
fingerprint. As a quick example, users will now get sleeptest.py:SleepTest.test;short-beaf
instead of sleeptest.py:SleepTest.test;1 as test IDs when using the multiplexer.

• The multiplexer now supports the use filters defined inside the YAML files, and greatly expand its filtering
capabilities.

• [BUGFIX] Instrumented tests support docstring directives, but only one of the supported directives (either en-
able/disable or tags) at once. It’s now possible to use both in a single docstring.

• [BUGFIX] Some result plugins would generate some output even when the job did not contain a valid test suite.

• [BUGFIX] Avocado would crash when listing tests with the file loader disabled. MissingTests used to
be initialized by the file loader, but are now registered as a part of the loader proxy (similar to a plugin manager)
so this is not an issue anymore.

Distribution

• The packages on Avocado’s own RPM repository are now a lot more similar to the ones in the Fedora and EPEL
repositories. This will make future maintenance easier, and also allows users to switch between versions with
greater ease.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/CuQX9Mew/991-sprint-theme-the-physician-2013

48.0 Lost Boundaries

The Avocado team is proud to present another release: Avocado version 48.0, aka, “Lost Boundaries” now available!

Release documentation: Avocado 48.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

21.1. Release Notes 287

https://github.com/avocado-framework/avocado/compare/48.0...49.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=btrGGCInnD4
https://trello.com/c/CuQX9Mew/991-sprint-theme-the-physician-2013
http://avocado-framework.readthedocs.io/en/48.0/

avocado Documentation, Release 63.0

Users/Test Writers

• Users of avocado.utils.linux_modules functions will find that a richer set of information is provided
in their return values. It now includes module name, size, submodules if present, filename, version, number of
modules using it, list of modules it is dependent on and finally a list of params.

• avocado.TestFail, avocado.TestError and avocado.TestCancel are now public Avocado Test
APIs, available from the main avocado namespace. The reason is that test suites may want to define their own
exceptions that, while have some custom meaning, also act as a way to fail (or error or cancel) a test.

• Support for new type of test status, CANCEL, and of course the mechanisms to set a test with this status.
CANCEL is a lot like what many people think of SKIP, but, to keep solid definitions and predictable behavior,
a SKIP(ped) test is one that was never executed, and a CANCEL(ed) test is one that was partially executed,
and then canceled. Calling self.skip() from within a test is now deprecated to adhere even closer to these
definitions. Using the skip* decorators (which are outside of the test execution) is still permitted and won’t be
deprecated.

• Introduction of the robot plugin, which allows Robot Framework tests to be listed and executed natively within
Avocado. Just think of a super complete Avocado job that runs build tests, unit tests, functional and integration
tests. . . and, on top of it, interactive UI tests for your application!

• Adjustments to the use of AVOCADO_JOB_FAIL and AVOCADO_FAIL exit status code by Avocado. This
matters if you’re checking the exact exit status code that Avocado may return on error condtitions.

Documentation / Contrib

• Updates to the README and Getting Started documentation section, which now mention the updated package
names and are pretty much aligned with each other.

Distribution

• Avocado optional plugins are now also available on PyPI, that is, can be installed via pip. Here’s a list of the
current package pages:

• https://pypi.python.org/pypi/avocado-framework-plugin-result-html

• https://pypi.python.org/pypi/avocado-framework-plugin-runner-remote

• https://pypi.python.org/pypi/avocado-framework-plugin-runner-vm

• https://pypi.python.org/pypi/avocado-framework-plugin-runner-docker

• https://pypi.python.org/pypi/avocado-framework-plugin-robot

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/Y02Koizf/952-sprint-theme-lost-boundaries

288 Chapter 21. Avocado Release Notes

http://robotframework.org/
https://pypi.python.org/pypi/avocado-framework-plugin-result-html
https://pypi.python.org/pypi/avocado-framework-plugin-runner-remote
https://pypi.python.org/pypi/avocado-framework-plugin-runner-vm
https://pypi.python.org/pypi/avocado-framework-plugin-runner-docker
https://pypi.python.org/pypi/avocado-framework-plugin-robot
https://github.com/avocado-framework/avocado/compare/47.0...48.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=Wnh3odoph1M
https://trello.com/c/Y02Koizf/952-sprint-theme-lost-boundaries

avocado Documentation, Release 63.0

47.0 The Lost Wife

The Avocado team is proud to present another release: Avocado version 47.0, aka, “The Lost Wife” now available!

Release documentation: Avocado 47.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• The avocado.Test class now better exports (and protects) the core class attributes members (such as
params and runner_queue). These were turned into properties so that they’re better highlighted in the
docs and somehow protected when users would try to replace them.

• Users sending SIGTERM to Avocado can now expect it to be properly handled. The handling done by Avocado
includes sending the same SIGTERM to all children processes.

Internal improvements

• The multiplexer has just become a proper plugin, implementing the also new avocado.core.
plugin_interfaces.Varianter interface.

• The selftests wouldn’t check for the proper location of the avocado job results directory, and always assumed
that ~/avocado/job-results exists. This is now properly verified and fixed.

Bug fixes

• The UI used to show the number of tests in a TESTS: <no_of_tests> line, but that would not take into
account the number of variants. Since the following line also shows the current test and the total number of tests
(including the variants) the TESTS: <no_of_tests> was removed.

• The Journal plugin would crash when used with the remote (and derivative) runners.

• The whiteboard would not be created when the current working directory would change inside the test. This
was related to the datadir not being returned as an absolute path.

Documentation / Contrib

• The avocado man page (man 1 avocado) is now update and lists all currently available commands and
options. Since some command and options depend on installed plugins, the man page includes all “optional”
plugins (remote runner, vm runner, docker runner and html).

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

21.1. Release Notes 289

http://avocado-framework.readthedocs.io/en/47.0/
https://github.com/avocado-framework/avocado/compare/46.0...47.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=NdTmgl1Fl20

avocado Documentation, Release 63.0

Sprint theme: https://trello.com/c/HaFLiXyD/928-sprint-theme-the-lost-wife

46.0 Burning Bush

The Avocado team is proud to present another release: Avocado version 46.0, aka, “Burning Bush” now available!

Release documentation: Avocado 46.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Avocado test writers can now use a family of decorators, namely avocado.skip(), avocado.skipIf()
and avocado.skipUnless() to skip the execution of tests. These are similar to the well known unittest
decorators.

• Sysinfo collection based on command execution now allows a timeout to be set. This makes test job executions
with sysinfo enabled more reliable, because the job won’t hang until it reaches the job timeout.

• Users will receive better error messages from the multiplexer (variant subsystem) when the given YAML files
do not exist.

• Users of the avocado.utils.process.system_output() will now get the command output with the
trailing newline stripped by default. If needed, a parameter can be used to preserve the newline. This is now
consistent with most Python process execution utility APIs.

Distribution

• The non-local runner plugins are now distributed in separate RPM packages. Users installing
from RPM packages should also install packages such as avocado-plugins-runner-remote,
avocado-plugins-runner-vm and avocado-plugins-runner-docker. Users upgrading from
previous Avocado versions should also install these packages manually or they will lose the corresponding
functionality.

Internal improvements

• Python 2.6 support has been dropped. This now paves the way for our energy to be better spent on developing
new features and also bring proper support for Python 3.x.

Bug fixes

• The TAP result plugin was printing an incorrect test plan when using the multiplexer (variants) mechanism. The
total number of tests to be executed (the first line in TAP output) did not account for the number of variants.

• The remote, vm and docker runners would print some UI related messages even when other types of result (such
as TAP, json, etc) would be set to output to STDOUT.

• Under some scenarios, an Avocado test would create an undesirable and incomplete job result directory on
demand.

290 Chapter 21. Avocado Release Notes

https://trello.com/c/HaFLiXyD/928-sprint-theme-the-lost-wife
http://avocado-framework.readthedocs.io/en/46.0/

avocado Documentation, Release 63.0

Documentation / Contrib

• The Avocado page on PythonHosted.org now redirects to our official documentation page.

• We now document how to pause and unpause tests.

• A script to simplify bisecting with Avocado has been added to the contrib directory.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/I6KG9bpq/893-sprint-theme-burning-bush

45.0 Anthropoid

The Avocado team is proud to present another release: Avocado version 45.0, aka, “Anthropoid”, is now available!

Release documentation: Avocado 45.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Tests running with the external runner (--external-runner) feature will now have access to the extended
behavior for SIMPLE tests, such as being able to exit a test with the WARNING status.

• Users will now be able to properly run tests based on any Unicode string (as a test reference). To achieve that, the
support for arguments to SIMPLE tests was dropped, as it was impossible to have a consistent way to determine
if special characters were word separators, arguments or part of the main test name. To overcome the removal
of support for arguments on SIMPLE tests, one can use custom loader configurations and the external runner.

• Test writers now have access to a test temporary directory that will last not only for the duration of the test, but
for the duration of the whole job execution. This is a feature that has been requested by many users and one
practical example is a test reusing binaries built on by a previous test on the same job. Please note that Avocado
still provides as much test isolation and independence as before, but now allows tests to share this one directory.

• When running jobs with the TAP plugin enabled (the default), users will now also get a results.tap file cre-
ated by default in their job results directory. This is similar to how JSON, XUNIT and other supported result for-
mats already operate. To disable the TAP creation, either disable the plugin or use --tap-job-result=off.

21.1. Release Notes 291

http://pythonhosted.org/avocado-framework
http://avocado-framework.readthedocs.io
https://github.com/avocado-framework/avocado/compare/45.0...46.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=hj31AJq94Nk
https://trello.com/c/I6KG9bpq/893-sprint-theme-burning-bush
http://avocado-framework.readthedocs.io/en/45.0/

avocado Documentation, Release 63.0

Distribution

• Avocado is now available on Fedora. That’s great news for test writers and test runners, who will now be able
to rely on Avocado installed on test systems much more easily. Because of Fedora’s rules that favor the stability
of packages during a given release, users will find older Avocado versions (currently 43.0) on already released
Fedora versions. For users interested in packages for the latest Avocado releases, we’ll continue to provide
updated packages on our own repo.

• After some interruption, we’ve addressed issues that were preventing the update of Avocado packages on
PyPI, and thus, preventing users from getting the latest Avocado versions when running $ pip install
avocado-framework.

Internal improvements

• The HTML report plugin contained a font, included by the default bootstrap framework data files, that was not
really used. It has now been removed.

• The selfcheck will now require commits to have a Signed-off-by line, in order to make sure contributors
are aware of the terms of their contributions.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/fwEUquwd/881-sprint-theme-anthropoid

44.0 The Shadow Self

The Avocado team is proud to present another release: Avocado version 44.0, aka, “The Shadow Self”, is now avail-
able!

Release documentation: Avocado 44.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Avocado now supports filtering tests by user supplied “tags”. These tags are given in docstrings, similar to the
already existing docstring directives that force Avocado to either enable or disable the detection of a class as an
Avocado INSTRUMENTED test. With this feature, you can now write your tests more freely accross Python
files and choose to run only a subset of them, based on the their tag values. For more information, please take a
look at Categorizing tests.

• Users can now choose to keep the complete set of files, including temporary ones, created during an Avocado
job run by using the --keep-tmp option.

292 Chapter 21. Avocado Release Notes

https://admin.fedoraproject.org/pkgdb/package/rpms/python-avocado/
https://github.com/avocado-framework/avocado/compare/44.0...45.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=4LxdWAfnQB4
https://trello.com/c/fwEUquwd/881-sprint-theme-anthropoid
http://avocado-framework.readthedocs.io/en/44.0/

avocado Documentation, Release 63.0

• The --job-results-dir option was previously used to point to where the job results should be saved.
Some features, such as job replay, also look for content (jobdata) into the job results dir, and it now respects
the value given in --job-results-dir.

Documentation

• A warning is now present to help avocado users on some architectures and older PyYAML versions to work
around failures in the Multiplexer.

Bugfixes

• A quite nasty, logging related, RuntimeError would happen every now and then. While it was quite hard to
come up with a reproducer (and thus a precise fix), this should be now a thing of the past.

• The Journal plugin could not handle Unicode input, such as in test names.

Internal improvements

• Selftests are now also executed under EL7. This means that Avocado on EL7, and EL7 packages, have an
additional level of quality assurance.

• The old check-long Makefile target is now named check-full and includes both tests that take a long
time to run, but also tests that are time sensitive, and that usually fail when not enough computing resources are
present.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/CLTdFYLW/869-sprint-theme-the-shadow-self

43.0 The Emperor and the Golem

The Avocado team is proud to present another release: Avocado version 43.0, aka, “The Emperor and the Golem”, is
now available!

Release documentation: Avocado 43.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

21.1. Release Notes 293

https://github.com/avocado-framework/avocado/compare/43.0...44.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=cI4fInte9uI
https://trello.com/c/CLTdFYLW/869-sprint-theme-the-shadow-self
http://avocado-framework.readthedocs.io/en/43.0/

avocado Documentation, Release 63.0

Users/Test Writers

• The --remote-no-copy option has been removed. The reason is that the copying of tests to the remote
hosts (as set with --remote-hostname) was also removed. That feature, while useful to some, had a lot of
corner cases. Instead of keeping a feature with a lot of known caveats, it was decided that users should setup the
remote machines so that tests are available before Avocado attempts to run them.

• The avocado.utils.process library, one of the most complex pieces of utility code that Avocado ships,
now makes it possible to ignore background processes that never finish (while Avocado is reading from their file
descriptors to properly return their output to the caller). The reason for such a feature is that if a command spawn
many processes, specially daemon-like ones that never finish, the avocado.utils.process.run() func-
tion would hang indefinitely. Since waiting for all the children processes to finish is the right thing to do, users
need to set the ignore_bg_processes parameter to True to request this newly added behavior.

• When discovering tests on a directory, that is, when running avocado list /path/to/tests/
directory or avocado run /path/to/tests/directory, Avocado would return tests in a non
predictable way, based on os.walk(). Now, the result is a properly alphabetically ordered list of tests.

• The ZIP Archive feature (AKA as --archive or -z) feature, which allows to archive job results is now a
proper plugin.

• Plugins can now be setup to run at a specific order. This is a response to a user issue/request, where the
--archive feature would run before some other results would be generated. This feature is not limited to
plugins of type result. It allows any ordering on the enabled set of plugins of a given plugin type.

• A contrib script that looks for a job result directory based on a partial (or complete) job ID is now available at
contrib/scripts/avocado-get-job-results-dir.py. This should be useful inside automation
scripts or even for interactive users.

Documentation

• Users landing on http://avocado-framework.readthedocs.io would previously be redirect to the “latest” docu-
mentation, which tracks the development master branch. This could be confusing since the page titles would
contain a version notice with the latest released version. Users will now be redirected by default to the latest
released version, matching the page title, although the version tracking the master branch will still be available
at the http://avocado-framework.readthedocs.io/en/latest URL.

Bugfixes

• During the previous development cycle, a bug where journalctl would receive KeyboardInterrupt received
an workaround by using the subprocess library instead of Avocado’s own avocado.utils.process,
which was missing a default handler for SIGINT. With the misbehavior of Avocado’s library now properly
addressed, and consequently, we’ve reverted the workaround applied previously.

• The TAP plugin would fail at the end_test event with certain inputs. This has now been fixed, and in the event
of errors, a better error message will be presented.

Internal improvements

• The test_utils_partition.py selftest module now makes use of the avocado.core.utils.
process.can_sudo() function, and will only be run when the user is either running as root or has sudo
correctly configured.

294 Chapter 21. Avocado Release Notes

http://avocado-framework.readthedocs.io
http://avocado-framework.readthedocs.io/en/latest

avocado Documentation, Release 63.0

• Avocado itself preaches that tests should not attempt to skip themselves during their own execution. The idea
is that, once a test started executing, you can’t say it wasn’t executed (skipped). This is actually enforced in
avocado.Test based tests. But since Avocado’s own selftests are based on unittest.TestCase, some
of them were using skip at the “wrong” place. This is now fixed.

• The avocado.core.job.Job class received changes that make it more closer to be usable as a formally
announced and supported API. This is another set of changes towards the so-called “Job API” support.

• There is now a new plugin type, named result_events. This replaces the previous implementation that used
avocado.core.result.Result as a base class. There’s now a single avocado.core.result.
Result instance in a given job, which tracks the results, while the plugins that act on result events (such
as test has started, test has finished, etc) are based on the avocado.core.plugins_interfaces.
ResultEvents.

• A new result_events plugin called human now replaces the old HumanResult implementation.

• Ported versions of the TAP and journal plugins to the new result_events plugin type.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/r2fwf66S/853-sprint-theme-the-emperor-and-the-golem-1952

42.0 Stranger Things

The Avocado team is proud to present another release: Avocado version 42.0, aka, “Stranger Things”, is now available!

Release documentation: Avocado 42.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Multiplexer: it now defines an API to inject and merge data into the multiplexer tree. With that, it’s now possible
to come up with various mechanisms to feed data into the Multiplexer. The standard way to do so continues to be
by YAML files, which is now implemented in the avocado.plugins.yaml_to_mux plugin module. The
–multiplex option, which used to load YAML files into the multiplexer is now deprecated in favor of –mux-yaml.

• Docker improvements: Avocado will now name the container accordingly to the job it’s running. Also, it not
allows generic Docker options to be passed by using –docker-options on the Avocado command line.

• It’s now possible to disable plugins by using the configuration file. This is documented at Disabling a plugin.

• avocado.utils.iso9660: this utils module received a lot of TLC and it now provides a more complete
standard API across all backend implementations. Previously, only the mount based backend implementation
would support the mnt_dir API, which would point to a filesystem location where the contents of the ISO would

21.1. Release Notes 295

https://github.com/avocado-framework/avocado/compare/42.0...43.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=D746rSbuecc
https://trello.com/c/r2fwf66S/853-sprint-theme-the-emperor-and-the-golem-1952
http://avocado-framework.readthedocs.io/en/42.0/

avocado Documentation, Release 63.0

be available. Now all other backends can support that API, given that requirements (such as having the right
privileges) are met.

• Users of the avocado.utils.processmodule will now be able to access the process ID in the avocado.
utils.process.CmdResult

• Users of the avocado.utils.build module will find an improved version of avocado.utils.
build.make() which will now return the make process exit status code.

• Users of the virtual machine plugin (--vm-domain and related options) will now receive better messages
when errors occur.

Documentation

• Added section on how to use custom Docker images with user’s own version of Avocado (or anything else for
that matter).

• Added section on how to install Avocado using standard OpenSUSE packages.

• Added section on unittest compatibility limitations and caveats.

• A link to Scylla Clusters tests has been added to the list of Avocado test repos.

• Added section on how to install Avocado by using standard Python packages.

Developers

• The make develop target will now activate in-tree optional plugins, such as the HTML report plugin.

• The selftests/run script, usually called as part of make check, will now fail at the first failure (by default). This
is controlled by the SELF_CHECK_CONTINUOUS environment variable.

• The make check target can also run tests in parallel, which can be enabled by setting the environment variable
AVOCADO_PARALLEL_CHECK.

Bugfixes

• An issue where KeyboardInterrupts would be caught by the journalctl run as part of sysinfo was fixed with a
workaround. The root cause appears to be located in the avocado.utils.process library, and a task is
already on track to verify that possible bug.

• avocado.util.git module had an issue where git executions would generate content that would erro-
neously be considered as part of the output check mechanism.

Internal improvements

• Selftests are now run while building Enterprise Linux 6 packages. Since most Avocado developers use newer
platforms for development, this should make Avocado more reliable for users of those older platforms.

For more information, please check out the complete Avocado changelog.

296 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado/compare/41.0...42.0

avocado Documentation, Release 63.0

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/icVc5Szx/851-sprint-theme-stranger-things

41.0 Outlander

The Avocado team is proud to present another release: Avocado version 41.0, aka, “Outlander”, is now available!

Release documentation: Avocado 41.0

The major changes introduced on this version are listed below, roughly categorized into major topics and intended
audience:

Users/Test Writers

• Multiplex: remove the -s (system-wide) shortcut to avoid confusion with silent from main apps.

• New avocado.utils.linux_modules.check_kernel_config() method, with which users can
check if a kernel configuration is not set, a module or built-in.

• Show link to file which failed to be processed by sysinfo.

• New path key type for settings that auto-expand tilde notation, that is, when using avocado.core.
settings.Settings.get_value() you can get this special value treatment.

• The automatic VM IP detection that kicks in when one uses –vm-domain without a matching –vm-hostname,
now uses a more reliable method (libvirt/qemu-gust-agent query). On the other hand, the QEMU guest agent is
now required if you intend to omit the VM IP/hostname.

• Warn users when sysinfo configuration files are not present, and consequently no sysinfo is going to be collected.

• Set LC_ALL=C by default on sysinfo collection to simplify avocado diff comparison between different ma-
chines. It can be tweaked in the config file (locale option under sysinfo.collect).

• Remove deprecated option –multiplex-files.

• List result plugins (JSON, XUnit, HTML) in avocado plugins command output.

Documentation

• Mention to the community maintained repositories.

• Add GIT workflow to the contribution guide.

21.1. Release Notes 297

https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=LlrXKEOxeAY
https://trello.com/c/icVc5Szx/851-sprint-theme-stranger-things
http://avocado-framework.readthedocs.io/en/41.0/

avocado Documentation, Release 63.0

Developers

• New make check-long target to run long tests. For example, the new FileLockTest.

• New make variables target to display Makefile variables.

• Plugins: add optional plugins directory optional_plugins. This also adds all directories to be found under
optional_plugins to the list of candidate plugins when running make clean or make link.

Bugfixes

• Fix undefined name error avocado.core.remote.runner.

• Ignore r when checking for avocado in remote executions.

• Skip file if UnicodeDecodeError is raised when collecting sysinfo.

• Sysinfo: respect package collection on/off configuration.

• Use -y in lvcreate to ignore warnings avocado.utils.lv_utils.

• Fix crash in avocado.core.tree when printing non-string values.

• setup.py: fix the virtualenv detection so readthedocs.org can properly probe Avocado’s version.

Internal improvements

• Cleanup runner->multiplexer API

• Replay re-factoring, renamed avocado.core.replay to avocado.core.jobdata.

• Partition utility class defaults to ext2. We documented that and reinforced in the accompanying unittests.

• Unittests for avocado.utils.partition has now more specific checks for the conditions necessary to
run the Partition tests (sudo, mkfs.ext2 binary).

• Several Makefile improvements.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/5oShOR1D/812-sprint-theme-outlander

298 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado/compare/40.0...41.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=kGNiOk8UrMs
https://trello.com/c/5oShOR1D/812-sprint-theme-outlander

avocado Documentation, Release 63.0

40.0 Dr Who

The Avocado team is proud to present another release: Avocado version 40.0, aka, “Dr Who”, is now available!

Release documentation: Avocado 40.0

The major changes introduced on this version are listed below.

• The introduction of a tool that generated a diff-like report of two jobs. For more information on this feature,
please check out its own documentation.

• The avocado.utils.process library has been enhanced by adding the avocado.utils.process.
SubProcess.get_pid() method, and also by logging the command name, status and execution time when
verbose mode is set.

• The introduction of a rr based wrapper. With such a wrapper, it’s possible to transparently record the process
state (when executed via the avocado.utils.process APIs), and deterministically replay them later.

• The coredump generation contrib scripts will check if the user running Avocado is privileged to actually generate
those dumps. This means that it won’t give errors in the UI about failures on pre/post scripts, but will record
that in the appropriate job log.

• BUGFIX: The --remote-no-copy command line option, when added to the --remote-* options that
actually trigger the remote execution of tests, will now skip the local test discovery altogether.

• BUGFIX: The use of the asset fetcher by multiple avocado executions could result in a race condition. This is
now fixed, backed by a file based utility lock library: avocado.utils.filelock.

• BUGFIX: The asset fetcher will now properly check the hash on file: based URLs.

• BUGFIX: A busy loop in the avocado.utils.process library that was reported by our users was promptly
fixed.

• BUGFIX: Attempts to install Avocado on bare bones environments, such as virtualenvs, won’t fail anymore
due to dependencies required at setup.py execution time. Of course Avocado still requires some external
Python libraries, but these will only be required after installation. This should let users to pip install
avocado-framework successfully.

For more information, please check out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/P1Ps7T0F/782-sprint-theme-dr-who

39.0 The Hateful Eight

The Avocado team is proud to present another incremental release: version 39.0, aka, “The Hateful Eight”, is now
available!

Release documentation: Avocado 39.0

The major changes introduced on this version are listed below.

21.1. Release Notes 299

http://avocado-framework.readthedocs.io/en/40.0/
http://rr-project.org
https://github.com/avocado-framework/avocado/compare/39.0...40.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=bWL8JHYN_ec
https://trello.com/c/P1Ps7T0F/782-sprint-theme-dr-who
http://avocado-framework.readthedocs.io/en/39.0/

avocado Documentation, Release 63.0

• Support for running tests in Docker container. Now, in addition to running tests on a (libvirt based) Virtual
Machine or on a remote host, you can now run tests in transient Docker containers. The usage is as simple as:

$ avocado run mytests.py --docker ldoktor/fedora-avocado

The container will be started, using ldoktor/fedora-avocado as the image. This image contains a Fedora
based system with Avocado already installed, and it’s provided at the official Docker hub.

• Introduction of the “Fail Fast” feature.

By running a job with the --failfast flag, the job will be interrupted after the very first test failure. If your
job only makes sense if it’s a complete PASS, this feature can save you a lot of time.

• Avocado supports replaying previous jobs, selected by using their Job IDs. Now, it’s also possible to use the
special keyword latest, which will cause Avocado to rerun the very last job.

• Python’s standard signal handling is restored for SIGPIPE, and thus for all tests running on Avocado.

In previous releases, Avocado introduced a change that set the default handler to SIGPIPE, which caused the
application to be terminated. This seemed to be the right approach when testing how the Avocado app would
behave on broken pipes on the command line, but it introduced side effects to a lot of Python code. Instead of
exceptions, the affected Python code would receive the signal themselves.

This is now reverted to the Python standard, and the signal behavior of Python based tests running on Avocado
should not surprise anyone.

• The project release notes are now part of the official documentation. That means that users can quickly find
when a given change was introduced.

Together with those changes listed, a total of 38 changes made into this release. For more information, please check
out the complete Avocado changelog.

Release Meeting

The Avocado release meetings are now open to the community via Hangouts on Air. The meetings are recorded and
made available on the Avocado Test Framework YouTube channel.

For this release, you can watch the meeting on this link.

Sprint theme: https://trello.com/c/nEiT7IjJ/755-sprint-theme-the-hateful-eight

38.0 Love, Ken

You guessed it right: this is another Avocado release announcement: release 38.0, aka “Love, Ken”, is now out!

Release documentation: Avocado 38.0

Another development cycle has just finished, and our community will receive this new release containing a nice
assortment of bug fixes and new features.

• The download of assets in tests now allow for an expiration time. This means that tests that need to download
any kind of external asset, say a tarball, can now automatically benefit from the download cache, but can also
keep receiving new versions automatically.

300 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado/compare/38.0...39.0
https://www.youtube.com/channel/UC-RVZ_HFTbEztDM7wNY4NfA
https://www.youtube.com/watch?v=GotEH7SmHSw
https://trello.com/c/nEiT7IjJ/755-sprint-theme-the-hateful-eight
http://avocado-framework.readthedocs.io/en/38.0/

avocado Documentation, Release 63.0

Suppose your asset uses an asset named myproject-daily.tar.bz2, and that your test runs 50 times a day. By
setting the expire time to 1d (1 day), your test will benefit from cache on most runs, but will still fetch the new
version when the 24 hours from the first download have passed.

For more information, please check out the documentation on the expire parameter to the fetch_asset() method.

• Environment variables can be propagated into tests running on remote systems. It’s a known fact that one way
to influence application behavior, including test, is to set environment variables. A command line such as:

$ MYAPP_DEBUG=1 avocado run myapp_test.py

Will work as expected on a local system. But Avocado also allows running tests on remote machines, and up
until now, it has been lacking a way to propagate environment variables to the remote system.

Now, you can use:

$ MYAPP_DEBUG=1 avocado run --env-keep MYAPP_DEBUG \
--remote-host test-machine myapp_test.py

• The plugin interfaces have been moved into the avocado.core.plugin_interfaces module. This means that plugin
writers now have to import the interface definitions this namespace, example:

...
from avocado.core.plugin_interfaces import CLICmd

class MyCommand(CLICmd):
...

This is a way to keep ourselves honest, and say that there’s no difference from plugin interfaces to Avocado’s
core implementation, that is, they may change at will. For greater stability, one should be tracking the LTS
releases.

Also, it effectively makes all plugins the same, whether they’re implemented and shipped as part of Avocado, or
as part of external projects.

• A contrib script for running kvm-unit-tests. As some people are aware, Avocado has indeed a close relation to
virtualization testing. Avocado-VT is one obvious example, but there are other virtualization related test suites
can Avocado can run.

This release adds a contrib script that will fetch, download, compile and run kvm-unit-tests using Avocado’s
external runner feature. This gives results in a better granularity than the support that exists in Avocado-VT,
which gives only a single PASS/FAIL for the entire test suite execution.

For more information, please check out the Avocado changelog.

Avocado-VT

Also, while we focused on Avocado, let’s also not forget that Avocado-VT maintains it’s own fast pace of incoming
niceties.

• s390 support: Avocado-VT is breaking into new grounds, and now has support for the s390 architecture. Fedora
23 for s390 has been added as a valid guest OS, and s390-virtio has been added as a new machine type.

• Avocado-VT is now more resilient against failures to persist its environment file, and will only give warnings
instead of errors when it fails to save it.

• An improved implementation of the “job lock” plugin, which prevents multiple Avocado jobs with VT tests to
run simultaneously. Since there’s no finer grained resource locking in Avocado-VT, this is a global lock that will
prevent issues such as image corruption when two jobs are run at the same time.

21.1. Release Notes 301

http://avocado-framework.readthedocs.io/en/38.0/WritingTests.html
https://github.com/avocado-framework/avocado/compare/37.0...38.0

avocado Documentation, Release 63.0

This new implementation will now check if existing lock files are stale, that is, they are leftovers from previous
run. If the processes associated with these files are not present, the stale lock files are deleted, removing the
need to clean them up manually. It also outputs better debugging information when failures to acquire lock.

The complete list of changes to Avocado-VT are available on Avocado-VT changelog.

Miscellaneous

While not officially part of this release, this development cycle saw the introduction of new tests on our avocado-misc-
tests. Go check it out!

Finally, since Avocado and Avocado-VT are not newly born anymore, we decided to update information mentioning
KVM-Autotest, virt-test on so on around the web. This will hopefully redirect new users to the Avocado community
and avoid confusion.

Happy hacking and testing!

Sprint Theme: https://trello.com/c/Y6IIFXBS/732-sprint-theme

37.0 Trabant vs. South America

This is another proud announcement: Avocado release 37.0, aka “Trabant vs. South America”, is now out!

Release documentation: Avocado 37.0

This release is yet another collection of bug fixes and some new features. Along with the same changes that made the
36.0lts release[1], this brings the following additional changes:

• TAP[2] version 12 support, bringing better integration with other test tools that accept this streaming format as
input.

• Added niceties on Avocado’s utility libraries “build” and “kernel”, such as automatic parallelism and resource
caching. It makes tests such as “linuxbuild.py” (and your similar tests) run up to 10 times faster.

• Fixed an issue where Avocado could leave processes behind after the test was finished.

• Fixed a bug where the configuration for tests data directory would be ignored.

• Fixed a bug where SIMPLE tests would not properly exit with WARN status.

For a complete list of changes please check the Avocado changelog[3].

For Avocado-VT, please check the full Avocado-VT changelog[4].

Happy hacking and testing!

[1] https://www.redhat.com/archives/avocado-devel/2016-May/msg00025.html
[2] https://en.wikipedia.org/wiki/Test_Anything_Protocol
[3] https://github.com/avocado-framework/avocado/compare/35.0. . . 37.0
[4] https://github.com/avocado-framework/avocado-vt/compare/35.0. . . 37.0
[5] http://avocado-framework.readthedocs.io/en/37.0/GetStartedGuide.html#installing-avocado
Sprint Theme: https://trello.com/c/XbIUqU1Y/673-sprint-theme

302 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado-vt/compare/37.0...38.0
https://github.com/avocado-framework/avocado-misc-tests
https://github.com/avocado-framework/avocado-misc-tests
https://trello.com/c/Y6IIFXBS/732-sprint-theme
http://avocado-framework.readthedocs.io/en/37.0/
https://www.redhat.com/archives/avocado-devel/2016-May/msg00025.html
https://en.wikipedia.org/wiki/Test_Anything_Protocol
https://github.com/avocado-framework/avocado/compare/35.0...37.0
https://github.com/avocado-framework/avocado-vt/compare/35.0...37.0
http://avocado-framework.readthedocs.io/en/37.0/GetStartedGuide.html#installing-avocado
https://trello.com/c/XbIUqU1Y/673-sprint-theme

avocado Documentation, Release 63.0

36.0 LTS

This is a very proud announcement: Avocado release 36.0lts, our very first “Long Term Stability” release, is now out!

Release documentation: Avocado 36.0

LTS in a nutshell

This release marks the beginning of a special cycle that will last for 18 months. Avocado usage in production environ-
ments should favor the use of this LTS release, instead of non-LTS releases.

Bug fixes will be provided on the “36lts”[1] branch until, at least, September 2017. Minor releases, such as “36.1lts”,
“36.2lts” an so on, will be announced from time to time, incorporating those stability related improvements.

Keep in mind that no new feature will be added. For more information, please read the “Avocado Long Term Stability”
RFC[2].

Changes from 35.0

As mentioned in the release notes for the previous release (35.0), only bug fixes and other stability related changes
would be added to what is now 36.0lts. For the complete list of changes, please check the GIT repo change log[3].

Install avocado

The Avocado LTS packages are available on a separate repository, named “avocado-lts”. These repositories are avail-
able for Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Updated “.repo” files are available on the usual locations:

• https://repos-avocadoproject.rhcloud.com/static/avocado-fedora.repo

• https://repos-avocadoproject.rhcloud.com/static/avocado-el.repo

Those repo files now contain definitions for both the “LTS” and regular repositories. Users interested in the LTS
packages, should disable the regular repositories and enable the “avocado-lts” repo.

Instructions are available in our documentation on how to install either with packages or from source[4].

Happy hacking and testing!

[1] https://github.com/avocado-framework/avocado/tree/36lts
[2] https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html
[3] https://github.com/avocado-framework/avocado/compare/35.0. . . 36.0lts
[4] http://avocado-framework.readthedocs.io/en/36lts/GetStartedGuide.html#installing-avocado

35.0 Mr. Robot

This is another proud announcement: Avocado release 35.0, aka “Mr. Robot”, is now out!

This release, while a “regular” release, will also serve as a beta for our first “long term stability” (aka “lts”) release.
That means that the next release, will be version “36.0lts” and will receive only bug fixes and minor improvements.

21.1. Release Notes 303

http://avocado-framework.readthedocs.io/en/36lts/
https://repos-avocadoproject.rhcloud.com/static/avocado-fedora.repo
https://repos-avocadoproject.rhcloud.com/static/avocado-el.repo
https://github.com/avocado-framework/avocado/tree/36lts
https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html
https://github.com/avocado-framework/avocado/compare/35.0...36.0lts
http://avocado-framework.readthedocs.io/en/36lts/GetStartedGuide.html#installing-avocado

avocado Documentation, Release 63.0

So, expect release 35.0 to be pretty much like “36.0lts” feature-wise. New features will make into the “37.0” release,
to be released after “36.0lts”. Read more about the details on the specific RFC[9].

The main changes in Avocado for this release are:

• A big round of fixes and on machine readable output formats, such as xunit (aka JUnit) and JSON. The xunit
output, for instance, now includes tests with schema checking. This should make sure interoperability is even
better on this release.

• Much more robust handling of test references, aka test URLs. Avocado now properly handles very long test
references, and also test references with non-ascii characters.

• The avocado command line application now provides richer exit status[1]. If your application or custom script
depends on the avocado exit status code, you should be fine as avocado still returns zero for success and non-zero
for errors. On error conditions, though, the exit status code are richer and made of combinable (ORable) codes.
This way it’s possible to detect that, say, both a test failure and a job timeout occurred in a single execution.

• [SECURITY RELATED] The remote execution of tests (including in Virtual Machines) now allows for proper
checks of host keys[2]. Without these checks, avocado is susceptible to a man-in-the-middle attack, by connect-
ing and sending credentials to the wrong machine. This check is disabled by default, because users depend on
this behavior when using machines without any prior knowledge such as cloud based virtual machines. Also, a
bug in the underlying SSH library may prevent existing keys to be used if these are in ECDSA format[3]. There’s
an automated check in place to check for the resolution of the third party library bug. Expect this feature to be
enabled by default in the upcoming releases.

• Pre/Post Job hooks. Avocado now defines a proper interface for extension/plugin writers to execute actions while
a Job is runnning. Both Pre and Post hooks have access to the Job state (actually, the complete Job instance).
Pre job hooks are called before tests are run, and post job hooks are called at the very end of the job (after tests
would have usually finished executing).

• Pre/Post job scripts[4]. As a feature built on top of the Pre/Post job hooks described earlier, it’s now possible
to put executable scripts in a configurable location, such as /etc/avocado/scripts/job/pre.d and have them called
by Avocado before the execution of tests. The executed scripts will receive some information about the job via
environment variables[5].

• The implementation of proper Test-IDs[6] in the test result directory.

Also, while not everything is (yet) translated into code, this release saw various and major RFCs, which are definitely
shaping the future of Avocado. Among those:

• Introduce proper test IDs[6]

• Pre/Post test hooks[7]

• Multi-stream tests[8]

• Avocado maintainability and integration with avocado-vt[9]

• Improvements to job status (completely implemented)[10]

For a complete list of changes please check the Avocado changelog[11]. For Avocado-VT, please check the full
Avocado-VT changelog[12].

Install avocado

Instructions are available in our documentation on how to install either with packages or from source[13].

Updated RPM packages are be available in the project repos for Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

304 Chapter 21. Avocado Release Notes

avocado Documentation, Release 63.0

Packages

As a heads up, we still package the latest version of the various Avocado sub projects, such as the very popular
Avocado-VT and the pretty much experimental Avocado-Virt and Avocado-Server projects.

For the upcoming releases, there will be changes in our package offers, with a greater focus on long term stability
packages for Avocado. Other packages may still be offered as a convenience, or may see a change of ownership. All
in the best interest of our users. If you have any concerns or questions, please let us know.

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/35.0/ResultFormats.html#exit-codes
[2] https://github.com/avocado-framework/avocado/blob/35.0/etc/avocado/avocado.conf#L41
[3] https://github.com/avocado-framework/avocado/blob/35.0/selftests/functional/test_thirdparty_bugs.py#L17
[4] http://avocado-framework.readthedocs.org/en/35.0/ReferenceGuide.html#job-pre-and-post-scripts
[5] http://avocado-framework.readthedocs.org/en/35.0/ReferenceGuide.html#script-execution-environment
[6] https://www.redhat.com/archives/avocado-devel/2016-March/msg00024.html
[7] https://www.redhat.com/archives/avocado-devel/2016-April/msg00000.html
[8] https://www.redhat.com/archives/avocado-devel/2016-April/msg00042.html
[9] https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html
[10] https://www.redhat.com/archives/avocado-devel/2016-April/msg00010.html
[11] https://github.com/avocado-framework/avocado/compare/0.34.0. . . 35.0
[13] https://github.com/avocado-framework/avocado-vt/compare/0.34.0. . . 35.0
[12] http://avocado-framework.readthedocs.org/en/35.0/GetStartedGuide.html#installing-avocado
Sprint Theme: https://trello.com/c/7dWknPDJ/637-sprint-theme

0.34.0 The Hour of the Star

Hello to all test enthusiasts out there, specially to those that cherish, care or are just keeping an eye on the greenest
test framework there is: Avocado release 0.34.0, aka The Hour of the Star, is now out!

The main changes in Avocado for this release are:

• A complete overhaul of the logging and output implementation. This means that all Avocado output uses the
standard Python logging library making it very consistent and easy to understand [1].

• Based on the logging and output overhaul, the command line test runner is now very flexible with its output.
A user can choose exactly what should be output. Examples include application output only, test output only,
both application and test output or any other combination of the builtin streams. The user visible command
line option that controls this behavior is –show, which is an application level option, that is, it’s available to all
avocado commands. [2]

• Besides the builtin streams, test writers can use the standard Python logging API to create new streams. These
streams can be shown on the command line as mentioned before, or persisted automatically in the job results by
means of the –store-logging-stream command line option. [3][4]

• The new avocado.core.safeloader module, intends to make it easier to to write new test loaders for various types
of Python code. [5][6]

• Based on the new avocado.core.safeloader module, a contrib script called avocado-find-unittests, returns the
name of unittest.TestCase based tests found on a given number of Python source code files. [7]

21.1. Release Notes 305

http://avocado-framework.readthedocs.org/en/35.0/ResultFormats.html#exit-codes
https://github.com/avocado-framework/avocado/blob/35.0/etc/avocado/avocado.conf#L41
https://github.com/avocado-framework/avocado/blob/35.0/selftests/functional/test_thirdparty_bugs.py#L17
http://avocado-framework.readthedocs.org/en/35.0/ReferenceGuide.html#job-pre-and-post-scripts
http://avocado-framework.readthedocs.org/en/35.0/ReferenceGuide.html#script-execution-environment
https://www.redhat.com/archives/avocado-devel/2016-March/msg00024.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00000.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00042.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00010.html
https://github.com/avocado-framework/avocado/compare/0.34.0...35.0
https://github.com/avocado-framework/avocado-vt/compare/0.34.0...35.0
http://avocado-framework.readthedocs.org/en/35.0/GetStartedGuide.html#installing-avocado
https://trello.com/c/7dWknPDJ/637-sprint-theme

avocado Documentation, Release 63.0

• Avocado is now able to run its own selftest suite. By leveraging the avocado-find-unittests contrib script and the
External Runner [8] feature. A Makefile target is available, allowing developers to run make selfcheck to have
the selftest suite run by Avocado. [9]

• Partial Python 3 support. A number of changes were introduced that allow concurrent Python 2 and 3 support
on the same code base. Even though the support for Python 3 is still incomplete, the avocado command line
application can already run some limited commands at this point.

• Asset fetcher utility library. This new utility library, and INSTRUMENTED test feature, allows users to trans-
parently request external assets to be used in tests, having them cached for later use. [10]

• Further cleanups in the public namespace of the avocado Test class.

• [BUG FIX] Input from the local system was being passed to remote systems when running tests with either in
remote systems or VMs.

• [BUG FIX] HTML report stability improvements, including better Unicode handling and support for other
versions of the Pystache library.

• [BUG FIX] Atomic updates of the “latest” job symlink, allows for more reliable user experiences when running
multiple parallel jobs.

• [BUG FIX] The avocado.core.data_dir module now dynamically checks the configuration system when deciding
where the data directory should be located. This allows for later updates, such as when giving one extra –config
parameter in the command line, to be applied consistently throughout the framework and test code.

• [MAINTENANCE] The CI jobs now run full checks on each commit on any proposed PR, not only on its
topmost commit. This gives higher confidence that a commit in a series is not causing breakage that a later
commit then inadvertently fixes.

For a complete list of changes please check the Avocado changelog[11].

For Avocado-VT, please check the full Avocado-VT changelog[12].

Avocado Videos

As yet another way to let users know about what’s available in Avocado, we’re introducing short videos with very
targeted content on our very own YouTube channel: https://www.youtube.com/channel/UCP4xob52XwRad0bU_
8V28rQ

The first video available demonstrates a couple of new features related to the advanced logging mechanisms, introduced
on this release: https://www.youtube.com/watch?v=8Ur_p5p6YiQ

Install avocado

Instructions are available in our documentation on how to install either with packages or from source[13].

Updated RPM packages are be available in the project repos for Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html
[2] http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html#tweaking-the-ui
[3] http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html#storing-custom-logs
[4] http://avocado-framework.readthedocs.org/en/0.34.0/WritingTests.html#advanced-logging-capabilities

306 Chapter 21. Avocado Release Notes

https://www.youtube.com/channel/UCP4xob52XwRad0bU_8V28rQ
https://www.youtube.com/channel/UCP4xob52XwRad0bU_8V28rQ
https://www.youtube.com/watch?v=8Ur_p5p6YiQ
http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html
http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html#tweaking-the-ui
http://avocado-framework.readthedocs.org/en/0.34.0/LoggingSystem.html#storing-custom-logs
http://avocado-framework.readthedocs.org/en/0.34.0/WritingTests.html#advanced-logging-capabilities

avocado Documentation, Release 63.0

[5] https://github.com/avocado-framework/avocado/blob/0.34.0/avocado/core/safeloader.py
[6]
http://avocado-framework.readthedocs.org/en/0.34.0/api/core/avocado.core.html#module-avocado.core.safeloader
[7] https://github.com/avocado-framework/avocado/blob/0.34.0/contrib/avocado-find-unittests
[8]
http://avocado-framework.readthedocs.org/en/0.34.0/GetStartedGuide.html#running-tests-with-an-external-runner
[9] https://github.com/avocado-framework/avocado/blob/0.34.0/Makefile#L33
[10] http://avocado-framework.readthedocs.org/en/0.34.0/WritingTests.html#fetching-asset-files
[11] https://github.com/avocado-framework/avocado/compare/0.33.0. . . 0.34.0
[12] https://github.com/avocado-framework/avocado-vt/compare/0.33.0. . . 0.34.0
[13] http://avocado-framework.readthedocs.org/en/latest/GetStartedGuide.html#installing-avocado
Sprint Theme: https://trello.com/c/QIbM3NvY/590-sprint-theme

0.33.0 Lemonade Joe or Horse Opera

Hello big farmers, backyard gardeners and supermarket reapers! Here is a new announcement to all the appreciators
of the most delicious green fruit out here. Avocado release 0.33.0, aka, Lemonade Joe or Horse Opera, is now out!

The main changes in Avocado are:

• Minor refinements to the Job Replay feature introduced in the last release.

• More consistency naming for the status of tests that were not executed. Namely, the TEST_NA has been renamed
to SKIP all across the internal code and user visible places.

• The avocado Test class has received some cleanups and improvements. Some attributes that back the class
implementation but are not intended for users to rely upon are now hidden or removed. Additionally some the
internal attributes have been turned into proper documented properties that users should feel confident to rely
upon. Expect more work on this area, resulting in a cleaner and leaner base Test class on the upcoming releases.

• The avocado command line application used to show the main app help message even when help for a specific
command was asked for. This has now been fixed.

• It’s now possible to use the avocado process utility API to run privileged commands transparently via SUDO.
Just add the “sudo=True” parameter to the API calls and have your system configured to allow that command
without asking interactively for a password.

• The software manager and service utility API now knows about commands that require elevated privileges to be
run, such as installing new packages and starting and stopping services (as opposed to querying packages and
services status). Those utility APIs have been integrated with the new SUDO features allowing unprivileged
users to install packages, start and stop services more easily, given that the system is properly configured to
allow that.

• A nasty “fork bomb” situation was fixed. It was caused when a SIMPLE test written in Python used the Avo-
cado’s “main()” function to run itself.

• A bug that prevented SIMPLE tests from being run if Avocado was not given the absolute path of the executable
has been fixed.

• A cleaner internal API for registering test result classes has been put into place. If you have written your own
test result class, please take a look at avocado.core.result.register_test_result_class.

• Our CI jobs now also do quick “smoke” checks on every new commit (not only the PR’s branch HEAD) that are
proposed on github.

• A new utility function, binary_from_shell_cmd, has been added to process API allows to extract the executable
to be run from complex command lines, including ones that set shell variable names.

21.1. Release Notes 307

https://github.com/avocado-framework/avocado/blob/0.34.0/avocado/core/safeloader.py
http://avocado-framework.readthedocs.org/en/0.34.0/api/core/avocado.core.html#module-avocado.core.safeloader
https://github.com/avocado-framework/avocado/blob/0.34.0/contrib/avocado-find-unittests
http://avocado-framework.readthedocs.org/en/0.34.0/GetStartedGuide.html#running-tests-with-an-external-runner
https://github.com/avocado-framework/avocado/blob/0.34.0/Makefile#L33
http://avocado-framework.readthedocs.org/en/0.34.0/WritingTests.html#fetching-asset-files
https://github.com/avocado-framework/avocado/compare/0.33.0...0.34.0
https://github.com/avocado-framework/avocado-vt/compare/0.33.0...0.34.0
http://avocado-framework.readthedocs.org/en/latest/GetStartedGuide.html#installing-avocado
https://trello.com/c/QIbM3NvY/590-sprint-theme

avocado Documentation, Release 63.0

• There have been internal changes to how parameters, including the internally used timeout parameter, are han-
dled by the test loader.

• Test execution can now be PAUSED and RESUMED interactively! By hitting CTRL+Z on the Avocado com-
mand line application, all processes of the currently running test are PAUSED. By hitting CTRL+Z again, they
are RESUMED.

• The Remote/VM runners have received some refactors, and most of the code that used to live on the result test
classes have been moved to the test runner classes. The original goal was to fix a bug, but turns out test runners
were more suitable to house some parts of the needed functionality.

For a complete list of changes please check the Avocado changelog[1].

For Avocado-VT, there were also many changes, including:

• A new utility function, get_guest_service_status, to get service status in a VM.

• A fix for ssh login timeout error on remote servers.

• Fixes for usb ehci on PowerPC.

• Fixes for the screenshot path, when on a remote host

• Added libvirt function to create volumes with by XML files

• Added utility function to get QEMU threads (get_qemu_threads)

And many other changes. Again, for a complete list of changes please check the Avocado-VT changelog[2].

Install avocado

Instructions are available in our documentation on how to install either with packages or from source[3].

Updated RPM packages are be available in the project repos for Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Happy hacking and testing!

[1] https://github.com/avocado-framework/avocado/compare/0.32.0. . . 0.33.0
[2] https://github.com/avocado-framework/avocado-vt/compare/0.32.0. . . 0.33.0
[3] http://avocado-framework.readthedocs.org/en/latest/GetStartedGuide.html#installing-avocado
Sprint Theme: https://www.youtube.com/watch?v=H5Lg_14m-sM

0.32.0 Road Runner

Hi everyone! A new year brings a new Avocado release as the result of Sprint #32: Avocado 0.32.0, aka, “Road
Runner”.

The major changes introduced in the previous releases were put to trial on this release cycle, and as a result, we have
responded with documentation updates and also many fixes. This release also marks the introduction of a great feature
by a new member of our team: Amador Pahim brought us the Job Replay feature! Kudos!!!

So, for Avocado the main changes are:

• Job Replay: users can now easily re-run previous jobs by using the –replay command line option. This will
re-run the job with the same tests, configuration and multiplexer variants that were used on the origin one. By
using –replay-test-status, users can, for example, only rerun the failed tests of the previous job. For more check
our docs[1].

308 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado/compare/0.32.0...0.33.0
https://github.com/avocado-framework/avocado-vt/compare/0.32.0...0.33.0
http://avocado-framework.readthedocs.org/en/latest/GetStartedGuide.html#installing-avocado
https://www.youtube.com/watch?v=H5Lg_14m-sM

avocado Documentation, Release 63.0

• Documentation changes in response to our users feedback, specially regarding the setup.py install/develop re-
quirement.

• Fixed the static detection of test methods when using repeated names.

• Ported some Autotest tests to Avocado, now available on their own repository[2]. More contributions here are
very welcome!

For a complete list of changes please check the Avocado changelog[3].

For Avocado-VT, there were also many changes, including:

• Major documentation updates, making them simpler and more in sync with the Avocado documentation style.

• Refactor of the code under the avocado_vt namespace. Previously most of the code lived under the plugin file
itself, now it better resembles the structure in Avocado and the plugin files are hopefully easier to grasp.

Again, for a complete list of changes please check the Avocado-VT changelog[4].

Install avocado

Instructions are available in our documentation on how to install either with packages or from source[5].

Updated RPM packages are be available in the project repos for Fedora 22, Fedora 23, EPEL 6 and EPEL 7.

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.32.0/Replay.html
[2] http://github.com/avocado-framework/avocado-misc-tests
[3] https://github.com/avocado-framework/avocado/compare/0.31.0. . . 0.32.0
[4] https://github.com/avocado-framework/avocado-vt/compare/0.31.0. . . 0.32.0
[5] http://avocado-framework.readthedocs.org/en/0.32.0/GetStartedGuide.html

0.31.0 Lucky Luke

Hi everyone! Right on time for the holidays, Avocado reaches the end of Sprint 31, and together with it, we’re very
happy to announce a brand new release! This version brings stability fixes and improvements to both Avocado and
Avocado-VT, some new features and a major redesign of our plugin architecture.

For Avocado the main changes are:

• It’s now possible to register callback functions to be executed when all tests finish, that is, at the end of a
particular job[1].

• The software manager utility library received a lot of love on the Debian side of things. If you’re writing tests
that install software packages on Debian systems, you may be in for some nice treats and much more reliable
results.

• Passing malformed commands (such as ones that can not be properly split by the standard shlex library) to the
process utility library is now better dealt with.

• The test runner code received some refactors and it’s a lot easier to follow. If you want to understand how the
Avocado test runner communicates with the processes that run the test themselves, you may have a much better
code reading experience now.

21.1. Release Notes 309

http://avocado-framework.readthedocs.org/en/0.32.0/Replay.html
http://github.com/avocado-framework/avocado-misc-tests
https://github.com/avocado-framework/avocado/compare/0.31.0...0.32.0
https://github.com/avocado-framework/avocado-vt/compare/0.31.0...0.32.0
http://avocado-framework.readthedocs.org/en/0.32.0/GetStartedGuide.html

avocado Documentation, Release 63.0

• Updated inspektor to the latest and greatest, so that our code is kept is shiny and good looking (and performing)
as possible.

• Fixes to the utility GIT library when using a specific local branch name.

• Changes that allow our selftest suite to run properly on virtualenvs.

• Proper installation requirements definition for Python 2.6 systems.

• A completely new plugin architecture[2]. Now we offload all plugin discovery and loading to the Stevedore
library. Avocado now defines precise (and simpler) interfaces for plugin writers. Please be aware that the public
and documented interfaces for plugins, at the moment, allows adding new commands to the avocado command
line app, or adding new options to existing commands. Other functionality can be achived by “abusing” the core
avocado API from within plugins. Our goal is to expand the interfaces so that other areas of the framework can
be extended just as easily.

For a complete list of changes please check the Avocado changelog[3].

Avocado-VT received just too many fixes and improvements to list. Please refer to the changelog[4] for more infor-
mation.

Install avocado

Instructions are available in our documentation on how to install either with packages or from source[5].

Within a couple of hours, updated RPM packages will be available in the project repos for Fedora 22, Fedora 23, EPEL
6 and EPEL 7.

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.31.0/ReferenceGuide.html#job-cleanup
[2] http://avocado-framework.readthedocs.org/en/0.31.0/Plugins.html
[3] https://github.com/avocado-framework/avocado/compare/0.30.0. . . 0.31.0
[4] https://github.com/avocado-framework/avocado-vt/compare/0.30.0. . . 0.31.0
[5] http://avocado-framework.readthedocs.org/en/0.31.0/GetStartedGuide.html

0.30.0 Jimmy’s Hall

Hello! Avocado reaches the end of Sprint 30, and with it, we have a new release available! This version brings stability
fixes and improvements to both Avocado and Avocado-vt.

As software doesn’t spring out of life itself, we’d like to acknowledge the major contributions by Lucas (AKA lmr)
since the dawn of time for Avocado (and earlier projects like Autotest and virt-test). Although the Avocado team at
Red Hat was hit by some changes, we’re already extremely happy to see that this major contributor (and good friend)
has not gone too far.

Now back to the more informational part of the release notes. For Avocado the main changes are:

• New RPM repository location, check the docs[1] for instructions on how to install the latest releases

• Makefile rules for building RPMs are now based on mock, to ensure sound dependencies

• Packaged versions are now available for Fedora 22, newly released Fedora 23, EL6 and EL7

• The software manager utility library now supports DNF

310 Chapter 21. Avocado Release Notes

http://avocado-framework.readthedocs.org/en/0.31.0/ReferenceGuide.html#job-cleanup
http://avocado-framework.readthedocs.org/en/0.31.0/Plugins.html
https://github.com/avocado-framework/avocado/compare/0.30.0...0.31.0
https://github.com/avocado-framework/avocado-vt/compare/0.30.0...0.31.0
http://avocado-framework.readthedocs.org/en/0.31.0/GetStartedGuide.html

avocado Documentation, Release 63.0

• The avocado test runner now supports a dry run mode, which allows users to check how a job would be executed,
including tests that would be found and parameters that would be passed to it. This is currently complementary
to the avocado list command.

• The avocado test runner now supports running simple tests with parameters. This may come in handy for simple
use cases when Avocado will wrap a test suite, but the test suite needs some command line arguments.

Avocado-vt also received many bugfixes[3]. Please refer to the changelog for more information.

Install avocado

Instructions are available in our documentation on how to install either with packages or from source[1].

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.30.0/GetStartedGuide.html
[2] https://github.com/avocado-framework/avocado/compare/0.29.0. . . 0.30.0
[3] https://github.com/avocado-framework/avocado-vt/compare/0.29.0. . . 0.30.0

0.29.0 Steven Universe

Hello! Avocado reaches the end of Sprint 29, and with it, we have a great release coming! This version of avocado
once brings new features and plenty of bugfixes:

• The remote and VM plugins now work with –multiplex, so that you can use both features in conjunction. * The
VM plugin can now auto detect the IP of a given libvirt domain you pass to it, reducing typing and providing an
easier and more pleasant experience. * Temporary directories are now properly cleaned up and no re-creation
of directories happens, making avocado more secure.

• Avocado docs are now also tagged by release. You can see the specific documentation of this one at our readthe-
docs page [1]

• Test introspection/listing is safer: Now avocado does not load python modules to introspect its contents, an
alternative method, based on the Python AST parser is used, which means now avocado will not load possible
badly written/malicious code at listing stage. You can find more about that in our test resolution documentation
[2]

• You can now specify low level loaders to avocado to customize your test running experience. You can learn
more about that in the Test Discovery documentation [3]

• The usual many bugfixes and polishing commits. You can see the full amount of 96 commits at [4]

For our Avocado VT plugin, the main changes are:

• The vt-bootstrap process is now more robust against users interrupting previous bootstrap attempts

• Some issues with RPM install in RHEL hosts were fixed

• Issues with unsafe temporary directories were fixed, making the VT tests more secure.

• Issues with unattended installed were fixed

• Now the address of the virbr0 bridge is properly auto detected, which means that our unattended installation
content server will work out of the box as long as you have a working virbr0 bridge.

21.1. Release Notes 311

http://avocado-framework.readthedocs.org/en/0.30.0/GetStartedGuide.html
https://github.com/avocado-framework/avocado/compare/0.29.0...0.30.0
https://github.com/avocado-framework/avocado-vt/compare/0.29.0...0.30.0

avocado Documentation, Release 63.0

Install avocado

As usual, go to https://copr.fedoraproject.org/coprs/lmr/Autotest/ to install our YUM/DNF repo and get the latest
goodies!

Happy hacking and testing!

[1] http://avocado-framework.readthedocs.org/en/0.29.0
[2] http://avocado-framework.readthedocs.org/en/0.29.0/ReferenceGuide.html#test-resolution
[3] http://avocado-framework.readthedocs.org/en/0.29.0/Loaders.html
[4] https://github.com/avocado-framework/avocado/compare/0.28.0. . . 0.29.0

0.28.0 Jára Cimrman, The Investigation of the Missing Class Register

This release basically polishes avocado, fixing a number of small usability issues and bugs, and debuts avocado-vt as
the official virt-test replacement!

Let’s go with the changes from our last release, 0.27.0:

Changes in avocado:

• The avocado human output received another stream of tweaks and it’s more compact, while still being informa-
tive. Here’s an example:

JOB ID : f2f5060440bd57cba646c1f223ec8c40d03f539b
JOB LOG : /home/user/avocado/job-results/job-2015-07-27T17.13-f2f5060/job.log
TESTS : 1
(1/1) passtest.py:PassTest.test: PASS (0.00 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB HTML : /home/user/avocado/job-results/job-2015-07-27T17.13-f2f5060/html/
→˓results.html
TIME : 0.00 s

• The unittest system was completely revamped, paving the way for making avocado self-testable! Stay tuned for
what we have on store.

• Many bugfixes. Check [1] for more details.

Changes in avocado-vt:

• The Spice Test provider has been separated from tp-qemu, and changes reflected in avocado-vt [2].

• A number of bugfixes found by our contributors in the process of moving avocado-vt into the official virt-testing
project. Check [3] for more details.

See you in a few weeks for our next release! Happy testing!

The avocado development team

[1] https://github.com/avocado-framework/avocado/compare/0.27.0. . . 0.28.0
[2] https://github.com/avocado-framework/avocado-vt/commit/fd9b29bbf77d7f0f3041e66a66517f9ba6b8bf48
[3] https://github.com/avocado-framework/avocado-vt/compare/0.27.0. . . 0.28.0

312 Chapter 21. Avocado Release Notes

https://copr.fedoraproject.org/coprs/lmr/Autotest/
http://avocado-framework.readthedocs.org/en/0.29.0
http://avocado-framework.readthedocs.org/en/0.29.0/ReferenceGuide.html#test-resolution
http://avocado-framework.readthedocs.org/en/0.29.0/Loaders.html
https://github.com/avocado-framework/avocado/compare/0.28.0...0.29.0
https://github.com/avocado-framework/avocado/compare/0.27.0...0.28.0
https://github.com/avocado-framework/avocado-vt/commit/fd9b29bbf77d7f0f3041e66a66517f9ba6b8bf48
https://github.com/avocado-framework/avocado-vt/compare/0.27.0...0.28.0

avocado Documentation, Release 63.0

0.27.1

Hi guys, we’re up to a new avocado release! It’s basically a bugfix release, with a few usability tweaks.

• The avocado human output received some extra tweaks. Here’s how it looks now:

$ avocado run passtest
JOB ID : f186c729dd234c8fdf4a46f297ff0863684e2955
JOB LOG : /home/lmr/avocado/job-results/job-2015-08-15T08.09-f186c72/job.log
TESTS : 1
(1/1) passtest.py:PassTest.test: PASS (0.00 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
JOB HTML : /home/lmr/avocado/job-results/job-2015-08-15T08.09-f186c72/html/
→˓results.html
TIME : 0.00 s

• Bugfixes. You may refer to [1] for the full list of 58 commits.

Changes in avocado-vt:

• Bugfixes. In particular, a lot of issues related to –vt-type libvirt were fixed and now that backend is fully
functional.

News:

We, the people that bring you avocado will be at LinuxCon North America 2015 (Aug 17-19). If you are attending,
please don’t forget to drop by and say hello to yours truly (lmr). And of course, consider attending my presentation on
avocado [2].

[1] https://github.com/avocado-framework/avocado/compare/0.27.0. . . 0.27.1
[2] http://sched.co/3Xh9

0.27.0 Terminator: Genisys

Hi guys, here I am, announcing yet another avocado release! The most exciting news for this release is that
our avocado-vt plugin was merged with the virt-test project. The avocado-vt plugin will be very important for
QEMU/KVM/Libvirt developers, so the main avocado received updates to better support the goal of having a good
quality avocado-vt.

Changes in avocado:

• The avocado human output received some tweaks and it’s more compact, while still being informative. Here’s
an example:

JOB ID : f2f5060440bd57cba646c1f223ec8c40d03f539b
JOB LOG : /home/user/avocado/job-results/job-2015-07-27T17.13-f2f5060/job.log
JOB HTML : /home/user/avocado/job-results/job-2015-07-27T17.13-f2f5060/html/
→˓results.html
TESTS : 1
(1/1) passtest.py:PassTest.test: PASS (0.00 s)
RESULTS : PASS 1 | ERROR 0 | FAIL 0 | SKIP 0 | WARN 0 | INTERRUPT 0
TIME : 0.00 s

• The avocado test loader was refactored and behaves more consistently in different test loading scenarios.

• The utils API received new modules and functions:

21.1. Release Notes 313

https://github.com/avocado-framework/avocado/compare/0.27.0...0.27.1
http://sched.co/3Xh9

avocado Documentation, Release 63.0

• NEW avocado.utils.cpu: APIs related to CPU information on linux boxes [1]

• NEW avocado.utils.git: APIs to clone/update git repos [2]

• NEW avocado.utils.iso9660: Get information about ISO files [3]

• NEW avocado.utils.service: APIs to control services on linux boxes (systemv and systemd) [4]

• NEW avocado.utils.output: APIs that help avocado based CLI programs to display results to users [5]

• UPDATE avocado.utils.download: Add url_download_interactive

• UPDATE avocado.utils.download: Add new params to get_file

• Bugfixes. You may refer to [6] for the full list of 64 commits.

Changes in avocado-vt:

• Merged virt-test into avocado-vt. Basically, the virt-test core library (virttest) replaced most uses of autotest by
equivalent avocado API calls, and its code was brought up to the virt-test repository [7]. This means, among
other things, that you can simply install avocado-vt through RPM and enjoy all the virt tests without having to
clone another repository manually to bootstrap your tests. More details about the process will be sent on an
e-mail to the avocado and virt-test mailing lists. Please go to [7] for instructions on how to get started with all
our new tools.

See you in a couple of weeks for our next release! Happy testing!

[1] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.cpu
[2] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.git
[3] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.iso9660
[4] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.service
[5] http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.output
[6] https://github.com/avocado-framework/avocado/compare/0.26.0. . . 0.27.0
[7] https://github.com/avocado-framework/avocado-vt/commit/20dd39ef00db712f78419f07b10b8f8edbd19942
[8] http://avocado-vt.readthedocs.org/en/latest/GetStartedGuide.html

0.26.0 The Office

Hi guys, I’m here to announce avocado 0.26.0. This release was dedicated to polish aspects of the avocado user
experience, such as documentation and behavior.

Changes

• Now avocado tests that raise exceptions that don’t inherit from avocado.core.exceptions.TestBaseException now
will be marked as ERRORs. This change was made to make avocado to have clearly defined test statuses. A
new decorator, avocado.fail_on_error was added to let arbitrary exceptions to raise errors, if users need a more
relaxed behavior.

• The avocado.Test() utility method skip() now can only be called from inside the setUp() method. This was
made because by definition, if we get to the test execution step, by definition it can’t be skipped anymore. It’s
important to keep the concepts clear and well separated if we want to give users a good experience.

• More documentation polish and updates. Make sure you check out our documentation website http://
avocado-framework.readthedocs.org/en/latest/.

• A number of avocado command line options and help text was reviewed and updated.

314 Chapter 21. Avocado Release Notes

http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.cpu
http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.git
http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.iso9660
http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.service
http://avocado-framework.readthedocs.org/en/latest/api/utils/avocado.utils.html#module-avocado.utils.output
https://github.com/avocado-framework/avocado/compare/0.26.0...0.27.0
https://github.com/avocado-framework/avocado-vt/commit/20dd39ef00db712f78419f07b10b8f8edbd19942
http://avocado-vt.readthedocs.org/en/latest/GetStartedGuide.html
http://avocado-framework.readthedocs.org/en/latest/
http://avocado-framework.readthedocs.org/en/latest/

avocado Documentation, Release 63.0

• A new, leaner and mobile friendly version of the avocado website is live. Please check http://
avocado-framework.github.io/ for more information.

• We have the first version of the avocado dashboard! avocado dashboard is the initial version of an avocado
web interface, and will serve as the frontend to our testing database. You can check out a screenshot here:
https://cloud.githubusercontent.com/assets/296807/8536678/dc5da720-242a-11e5-921c-6abd46e0f51e.png

• And the usual bugfixes. You can take a look at the full list of 68 commits here: https://github.com/avocado-
framework/avocado/compare/0.25.0. . . 0.26.0

0.25.0 Blade

Hi guys, I’m here to announce the newest avocado release, 0.25.0. This is an important milestone in avocado develop-
ment, and we would like to invite you to be a part of the development process, by contributing PRs, testing and giving
feedback on the test runner’s usability and new plugins we came up with.

What to expect

This is the first release aimed for general use. We did our best to deliver a coherent and enjoyable experience, but keep
in mind that it’s a young project, so please set your expectations accordingly. What is expected to work well:

• Running avocado ‘instrumented’ tests

• Running arbitrary executables as tests

• Automatic test discovery and run of tests on directories

• xUnit/JSON report

Known Issues

• HTML report of test jobs with multiplexed tests has a minor naming display issue that is scheduled to be fixed
by next release.

• avocado-vt might fail to load if virt-test was not properly bootstrapped. Make sure you always run bootstrap in
the virt-test directory on any virt-test git updates to prevent the issue. Next release will have more mechanisms
to give the user better error messages on tough to judge situations (virt-test repo with stale or invalid config files
that need update).

Changes

• The Avocado API has been greatly streamlined. After a long discussion and several rounds of reviews and plan-
ning, now we have a clear separation of what is intended as functions useful for test developers and plugin/core
developers:

• avocado.core is intended for plugin/core developers. Things are more fluid on this space, so that we can move
fast with development

• avocado.utils is a generic library, with functions we found out to be useful for a variety of tests and core code
alike.

• avocado has some symbols exposed at its top level, with the test API:

• our Test() class, derived from the unittest.TestCase() class

• a main() entry point, similar to unittest.main()

21.1. Release Notes 315

http://avocado-framework.github.io/
http://avocado-framework.github.io/
https://cloud.githubusercontent.com/assets/296807/8536678/dc5da720-242a-11e5-921c-6abd46e0f51e.png
https://github.com/avocado-framework/avocado/compare/0.25.0...0.26.0
https://github.com/avocado-framework/avocado/compare/0.25.0...0.26.0

avocado Documentation, Release 63.0

• VERSION, that gives the user the avocado version (eg 0.25.0).

Those symbols and classes/APIs will be changed more carefully, and release notes will certainly contain API update
notices. In other words, we’ll be a lot more mindful of changes in this area, to reduce the maintenance cost of writing
avocado tests.

We believe this more strict separation between the available APIs will help test developers to quickly identify what
they need for test development, and reduce following a fast moving target, what usually happens when we have a new
project that does not have clear policies behind its API design.

• There’s a new plugin added to the avocado project: avocado-vt. This plugin acts as a wrapper for the virt-test
test suite (https://github.com/autotest/virt-test), allowing people to use avocado to list and run the tests available
for that test suite. This allows people to leverage a number of the new cool avocado features for the virt tests
themselves:

• HTML reports, a commonly asked feature for the virt-test suite. You can see a screen-
shot of what the report looks like here: https://cloud.githubusercontent.com/assets/296807/7406339/
7699689e-eed7-11e4-9214-38a678c105ec.png

• You can run virt-tests on arbitrary order, and multiple instances of a given test, something that is also currently
not possible with the virt test runner (also a commonly asked feature for the suite.

• System info collection. It’s a flexible feature, you get to configureeasily what gets logged/recorded between
tests.

• The avocado multiplexer (test matrix representation/generation system) also received a lot of work and fixes
during this release. One of the most visible (and cool) features of 0.25.0 is the new, improved –tree representation
of the multiplexer file:

$ avocado multiplex examples/mux-environment.yaml -tc
run

hw
cpu

intel
→ cpu_CFLAGS: -march=core2
amd
→ cpu_CFLAGS: -march=athlon64
arm
→ cpu_CFLAGS: -mabi=apcs-gnu -march=armv8-a -mtune=arm8

disk
scsi
→ disk_type: scsi
virtio
→ disk_type: virtio

distro
fedora
→ init: systemd
mint
→ init: systemv

env
debug
→ opt_CFLAGS: -O0 -g
prod
→ opt_CFLAGS: -O2

We hope you find the multiplexer useful and enjoyable.

• If an avocado plugin fails to load, due to factors such as missing dependencies, environment problems and
misconfiguration, in order to notify users and make them mindful of what it takes to fix the root causes for the
loading errors, those errors are displayed in the avocado stderr stream.

316 Chapter 21. Avocado Release Notes

https://github.com/autotest/virt-test
https://cloud.githubusercontent.com/assets/296807/7406339/7699689e-eed7-11e4-9214-38a678c105ec.png
https://cloud.githubusercontent.com/assets/296807/7406339/7699689e-eed7-11e4-9214-38a678c105ec.png

avocado Documentation, Release 63.0

However, often we can’t fix the problem right now and don’t need the constant stderr nagging. If that’s the case, you
can set in your local config file:

[plugins]
Suppress notification about broken plugins in the app standard error.
Add the name of each broken plugin you want to suppress the notification
in the list. The names can be easily seen from the stderr messages. Example:
avocado.core.plugins.htmlresult ImportError No module named pystache
add 'avocado.core.plugins.htmlresult' as an element of the list below.
skip_broken_plugin_notification = []

• Our documentation has received a big review, that led to a number of improvements. Those can be seen online
(http://avocado-framework.readthedocs.org/en/latest/), but if you feel so inclined, you can build the documenta-
tion for local viewing, provided that you have the sphinx python package installed by executing:

$ make -C docs html

Of course, if you find places where our documentation needs fixes/improvements, please send us a PR and we’ll gladly
review it.

• As one would expect, many bugs were fixed. You can take a look at the full list of 156 commits here:
https://github.com/avocado-framework/avocado/compare/0.24.0. . . 0.25.0

21.1.2 Long Term Stability Releases

The LTS releases are regular releases considering the release cycle, but a new branch is created and bugfixes are
backported on demand for a period of about 18 months after the release. Every year (or so) a new LTS version is
released. Two subsequent LTS versions are guaranteed to have 6 months of supportability overlap.

52.0 LTS

The Avocado team is proud to present another release: Avocado version 52.0, the second Avocado LTS version.

What’s new?

When compared to the last LTS (v36), the main changes introduced by this versions are:

• Support for TAP[2] version 12 results, which are generated by default in test results directory (results.tap
file).

• The download of assets in tests now allow for an expiration time.

• Environment variables can be propagated into tests running on remote systems.

• The plugin interfaces have been moved into the avocado.core.plugin_interfaces module.

• Support for running tests in a Docker container.

• Introduction of the “Fail Fast” feature (--failfast on option) to the run command, which interrupts the
Job on a first test failure.

• Special keyword latest for replaying previous jobs.

• Support to replay a Job by path (in addition to the Job ID method and the latest keyword).

• Diff-like categorized report of jobs (avocado diff <JOB_1> <JOB_2>).

• The introduction of a rr based wrapper.

21.1. Release Notes 317

http://avocado-framework.readthedocs.org/en/latest/
https://github.com/avocado-framework/avocado/compare/0.24.0...0.25.0

avocado Documentation, Release 63.0

• The automatic VM IP detection that kicks in when one uses --vm-domain without a matching
--vm-hostname, now uses a more reliable method (libvirt/qemu-gust-agent query).

• Set LC_ALL=C by default on sysinfo collection to simplify avocado diff comparison between different ma-
chines.

• Result plugins system is now pluggable and the results plugins (JSON, XUnit, HTML) were turned into steve-
dore plugins. They are now listed in the avocado plugins command.

• Multiplexer was replaced with Varianter plugging system with defined API to register plugins that generate test
variants.

• Old --multiplex argument, which used to turn yaml files into variants, is now handled by an optional plugin
called yaml_to_mux and the --multiplex option is being deprecated in favour of the --mux-yaml
option, which behaves the same way.

• It’s now possible to disable plugins by using the configuration file.

• Better error handling of the virtual machine plugin (--vm-domain and related options).

• When discovering tests on a directory, the result now is a properly alphabetically ordered list of tests.

• Plugins can now be setup in Avocado configuration file to run at a specific order.

• Support for filtering tests by user supplied “tags”.

• Users can now see the test tags when listing tests with the -V (verbose) option.

• Users can now choose to keep the complete set of files, including temporary ones, created during an Avocado
job run by using the --keep-tmp option (e.g. to keep those files for rr).

• Tests running with the external runner (--external-runner) feature will now have access to the extended
behavior for SIMPLE tests, such as being able to exit a test with the WARNING status.

• Encoding support was improved and now Avocado should safely treat localized test-names.

• Test writers now have access to a test temporary directory that will last not only for the duration of the
test, but for the duration of the whole job execution to allow sharing state/exchanging data between tests.
The path for that directory is available via Test API (self.teststmpdir) and via environment variable
(AVOCADO_TESTS_COMMON_TMPDIR).

• Avocado is now available on Fedora standard repository. The package name is python2-avocado. The
optional plugins and examples packages are also available. Run dnf search avocado to list them all.

• Optional plugins and examples packages are also available on PyPI under avocado-framework name.

• Avocado test writers can now use a family of decorators, namely avocado.skip(), avocado.skipIf()
and avocado.skipUnless() to skip the execution of tests.

• Sysinfo collection based on command execution now allows a timeout to be set in the Avocado configuration
file.

• The non-local runner plugins, the html plugin and the yaml_to_mux plugin are now distributed in separate
packages.

• The Avocado main process will now try to kill all test processes before terminating itself when it receives a
SIGTERM.

• Support for new type of test status, CANCEL, and of course the mechanisms to set a test with this status (e.g. via
self.cancel()).

• avocado.TestFail, avocado.TestError and avocado.TestCancel are now public Avocado Test
APIs, available in the main avocado namespace.

318 Chapter 21. Avocado Release Notes

avocado Documentation, Release 63.0

• Introduction of the robot plugin, which allows Robot Framework tests to be listed and executed natively within
Avocado.

• A brand new ResultsDB optional plugin.

• Listing of supported loaders (--loaders \?) was refined.

• Variant-IDs generated by yaml_to_mux plugin now include leaf node names to make them more meaningful,
making easier to skim through the results.

• yaml_to_mux now supports internal filters defined inside the YAML file expanding the filtering capabilities even
further.

• Avocado now supports resuming jobs that were interrupted.

• The HTML report now presents the test ID and variant ID in separate columns, allowing users to also sort and
filter results based on those specific fields.

• The HTML report will now show the test parameters used in a test when the user hovers the cursor over the test
name.

• Avocado now reports the total job execution time on the UI, instead of just the tests execution time.

• New avocado variants has been added which supersedes the avocado multiplex.

• Loaders were tweaked to provide more info on avocado list -V especially when they don’t recognize the
reference.

• Users can use --ignore-missing-references on to run a job with undiscovered test references

• Users can now choose in which order the job will execute tests (from its suite) and vari-
ants. The two available options are --execution-order=variants-per-test (default) or
--execution-order=tests-per-variant.

• Test methods can be recursively discovered from parent classes by upon the :avocado: recursive doc-
string directive.

Besides the list above, we had several improvements in our utils libraries that are important for test writers, some
of them are listed below:

• time_to_seconds, geometric_mean and compare_matrices were added in avocado.utils.
data_structures.

• avocado.utils.distro was refined.

• Many avocado.utils new modules were introduced, like filelock, lv_utils, multipath,
partition and pci.

• avocado.utils.memory contains several new methods.

• New avocado.utils.process.SubProcess.get_pid() method.

• sudo support in avocado.utils.process was improved

• The avocado.utils.process library makes it possible to ignore spawned background processes.

• New avocado.utils.linux_modules.check_kernel_config().

• Users of the avocado.utils.processmodule will now be able to access the process ID in the avocado.
utils.process.CmdResult.

• Improved avocado.utils.iso9660 with a more complete standard API across all back-end implementa-
tions.

• Improved avocado.utils.build.make(), which will now return the make process exit status code.

21.1. Release Notes 319

avocado Documentation, Release 63.0

• The avocado.Test class now better exports (and protects) the core class attributes members (such as
params and runner_queue).

• avocado.utils.linux_modules functions now returns module name, size, submodules if present, file-
name, version, number of modules using it, list of modules it is dependent on and finally a list of params.

It is also worth mentioning:

• Improved documentation, with new sections to Release Notes and Optional Plugins, very improved Contribution
and Community Guide. New content and new examples everywhere.

• The avocado-framework-tests GitHub organization was founded to encourage companies to share Avocado tests.

• Bugs were always handled as high priority and every single version was delivered with all the reported bugs
properly fixed.

When compared to the last LTS, we had:

• 1187 commits (and counting).

• 15 new versions.

• 4811 more lines of Python code (+27,42%).

• 1800 more lines of code comment (+24,67%).

• 31 more Python files (+16,48%).

• 69 closed GitHub issues.

• 34 contributors from at least 12 different companies, 26 of them contributing for the fist time to the project.

Switching from 36.4 to 52.0

You already know what new features you might expect, but let’s emphasize the main changes required to your work-
flows/tests when switching from 36.4 to 52.0

Installation

All the previously supported ways to install Avocado are still valid and few new ones were added, but beware that
Avocado was split into several optional plugins so you might want to adjust your scripts/workflows.

• Multiplexer (the YAML parser which used to generate variants) was turned into an optional plugin
yaml_to_mux also known as avocado_framework_plugin_varianter_yaml_to_mux. Without
it Avocado does not require PyYAML, but you need it to support the parsing of YAML files to variants (unless
you use a different plugin with similar functionality, which is now also possible).

• The HTML result plugin is now also an optional plugin so one has to install it separately.

• The remote execution features (--remote-hostname, --vm-domain, --docker) were also turned into
optional plugins so if you need those you need to install them separately.

• Support for virtual environment (venv) was greatly improved and we do encourage people who want to use
pip to do that via this method.

As for the available ways:

• Fedora/RHEL can use our custom repositories, either LTS-only or all releases. Note that latest versions (non-lts)
are also available directly in Fedora and also in EPEL.

• OpenSUSE - Ships the 36 LTS versions, hopefully they’ll start shipping the 52 ones as well (but we are not in
charge of that process)

320 Chapter 21. Avocado Release Notes

avocado Documentation, Release 63.0

• Debian - The contrib/packages/debian script is still available, although un-maintained for a long time

• PyPI/pip - Avocado as well as all optional plugins are available in PyPI and can be installed via pip install
avocado-framework*, or selectively one by one.

• From source - Makefile target install is still available but it does not install the optional plugins. You have to
install them one by one by going to their directory (eg. cd optional_plugins/html and running sudo
python setup.py install)

As before you can find the details in Installing Avocado.

Usage

Note: As mentioned in previous section some previously core features were turned into optional plugins. Do check
your install script if some command described here are missing on your system.

Most workflows should work the same, although there are few little changes and a few obsoleted constructs which are
still valid, but you should start using the new ones.

The hard changes which does not provide backward compatibility:

• Human result was tweaked a bit:

– The TESTS entry (displaying number of tests) was removed as one can easily get this information
from RESULTS.

– Instead of tests time (sum of test times) you get job time (duration of the job execution) in the human
result

• Json results also contain some changes:

– They are pretty-printed

– As cancel status was introduced, json result contain an entry of number of canceled tests (cancel)

– url was renamed to id (url entry is to be removed in 53.0 so this is actually a soft change with a
backward compatibility support)

• The avocado multilex|variants does not expect multiplex YAML files as positional arguments, one
has to use -m|--mux-yaml followed by one or more paths.

• Test variants are not serialized numbers anymore in the default yaml_to_mux (multiplexer), but ordered
list of leaf-node names of the variant followed by hash of the variant content (paths+environment). Therefor
instead of my_test:1 you can get something like my_test:arm64-virtio_scsi-RHEL7-4a3c.

• results.tap is now generated by default in job results along the results.json and results.xml
(unless disabled)

• The avocado run --replay and avocado diff are unable to parse results generated by 36.4 to this
date. We should be able to introduce such feature with not insignificant effort, but no one was interested yet.

And the still working but to be removed in 53.0 constructs:

• The long version of the -m|--multiplex argument available in avocado
run|multiplex|variants was renamed to -m|--mux-yaml which corresponds better to the
rest of --mux-* arguments.

• The avocado multiplex was renamed to avocado variants

• The avocado multiplex|variants arguments were reworked to better suite the possible multiple vari-
anter plugins:

21.1. Release Notes 321

avocado Documentation, Release 63.0

– Instead of picking between tree representation of list of variants one can use --summary,
resp --variants followed by verbosity, which supersedes -c|contents, -t|--tree,
-i|--inherit

– Instead of --filter-only|--filter-out the --mux-filter-only|--mux-filter-out
are available

– The --mux-path is now also available in avocado multiplex|variants

Test API

Main features stayed the same, there are few new ones so do check our documentation for details. Anyway while
porting tests you should pay attention to following changes:

• If you were overriding avocado.Test attributes (eg. name, params, runner_queue, . . .) you’ll get an
AttributeError: can't set attribute error as most of them were turned into properties to avoid
accidental override of the important attributes.

• The tearDown method is now executed almost always (always when the setUp is entered), including when
the test is interrupted while running setUp. This might require some changes to your setUp and tearDown
methods but generally it should make them simpler. (See Setup and cleanup methods and following chapters for
details)

• Test exceptions are publicly available directly in avocado (TestError, TestFail, TestCancel) and
when raised inside test they behave the same way as self.error, self.fail or self.cancel. (See
avocado)

• New status is available called CANCEL. It means the test (or even just setUp) started but the test does not
match prerequisites. It’s similar to SKIP in other frameworks, but the SKIP result is reserved for tests that were
not executed (nor the setUp was entered). The CANCEL status can be signaled by self.cancel or by rais-
ing avocado.TestCancel exception and the SKIP should be set only by avocado.skip, avocado.
skipIf or avocado.skipUnless decorators. The self.skip method is still supported but will be re-
moved after in 53.0 so you should replace it by self.cancel which has similar meaning but it additionally
executes the tearDown. (See Test statuses

• The tag argument of avocado.Test was removed as it is part of name, which can only be avocado.
core.test.TestName instance. (See avocado.core.test.Test())

• The self.job.logdir which used to be abused to share state/data between tests inside one job can now be
dropped towards the self.teststmpdir, which is a shared temporary directory which sustains throughout
job execution and even between job executions if set via AVOCADO_TESTS_COMMON_TMPDIR environmental
value. (See avocado.core.test.Test.teststmpdir())

• Those who write inherited test classes will be pleasantly surprised as it is now possible to mark a class as
avocado test including all test* methods coming from all parent classes (similarly to how dynamic discovery
works inside python unittest, see Recursively Discovering Tests for details)

• The self.text_output is not published after the test execution. If you were using it simply open the
self.logfile and read the content yourself.

Utils API

Focusing only on the changes you might need to adjust the usage of:

• avocado.utils.build.make calls as it now reports only exit_status. To get the full result object
you need to execute avocado.utils.build.run_make.

322 Chapter 21. Avocado Release Notes

avocado Documentation, Release 63.0

• avocado.utils.distro reports Red Hat Enterprise Linux/rhel instead of Red
Hat/redhat.

• avocado.process where the check for availability of sudo was improved, which might actually start exe-
cuting some code which used to fail in 36.4.

Also check out the avocado.utils for complete list of available utils as there were many additions between 36.4
and 52.0.

Complete list of changes

For a complete list of changes between the last LTS release (36.4) and this release, please check out the Avocado
commit changelog.

The Next LTS

The Long Term Stability releases of Avocado are the result of the accumulated changes on regular (non-LTS) releases.

This section tracks the changes introduced on each regular (non-LTS) Avocado release, and gives a sneak preview of
what will make into the next LTS release.

What’s new?

When compared to the last LTS (52.x), the main changes to be introduced by the next LTS version are:

• A new loader implementation, that reuses (and resembles) the YAML input used for the varianter yaml_to_mux
plugin. It allows the definition of test suite based on a YAML file, including different variants for different tests.
For more information refer to YAML Loader (yaml_loader).

• A better handling of interruption related signals, such as SIGINT and SIGTERM. Avocado will now try harder
to not leave test processes that don’t respond to those signals, and will itself behave better when it receives them.
For a complete description refer to Signal Handlers.

• The output generated by tests on stdout and stderr are now properly prefixed with [stdout] and
[stderr] in the job.log. The prefix is not applied in the case of $test_result/stdout and
$test_result/stderr files, as one would expect.

• Test writers will get better protection against mistakes when trying to overwrite avocado.core.test.Test
“properties”. Some of those were previously implemented using avocado.utils.data_structures.
LazyProperty() which did not prevent test writers from overwriting them.

• Avocado can now run list and run standard Python unittests, that is, tests written in Python that use the
unittest library alone.

• Improvements in the serialization of TestIDs allow test result directories to be properly stored and accessed on
Windows based filesystems.

• The complete output of tests, that is the combination of STDOUT and STDERR is now also recorded in the test
result directory as a file named output.

• Support for listing and running golang tests has been introduced. Avocado can now discover tests written in Go,
and if Go is properly installed, Avocado can run them.

• The support for test data files has been improved to support more specific sources of data. For instance, when
a test file used to contain more than one test, all of them shared the same datadir property value, thus the
same directory which contained data files. Now, tests should use the newly introduced get_data() API,

21.1. Release Notes 323

https://github.com/avocado-framework/avocado/compare/36.4...52.0
https://github.com/avocado-framework/avocado/compare/36.4...52.0

avocado Documentation, Release 63.0

which will attempt to locate data files specific to the variant (if used), test name, and finally file name. For more
information, please refer to the section Accessing test data files.

• The output check feature will now use the to the most specific data source location available, which is a conse-
quence of the switch to the use of the get_data() API discussed previously. This means that two tests in a
single file can generate different output, generate different stdout.expected or stderr.expected.

• When the output check feature finds a mismatch between expected and actual output, will now produce a unified
diff of those, instead of printing out their full content. This makes it a lot easier to read the logs and quickly spot
the differences and possibly the failure cause(s).

• Sysinfo collection can now be enabled on a test level basis.

• The avocado.core.utils.vmimage library now allows users to expand the builtin list of image
providers. If you have a local cache of public images, or your own images, you can quickly and easily reg-
ister your own providers and thus use your images on your tests.

• Avocado can record the output generated from a test, which can then be used to determine if the test passed
or failed. This feature is commonly known as “output check”. Traditionally, users would choose to record
the output from STDOUT and/or STDERR into separate streams, which would be saved into different files.
Some tests suites actually put all content of STDOUT and STDERR together, and unless we record them to-
gether, it’d be impossible to record them in the right order. This version introduces the combined option to
--output-check-record option, which does exactly that: it records both STDOUT and STDERR into a
single stream and into a single file (named output in the test results, and output.expected in the test data
directory).

• A new varianter plugin has been introduced, based on PICT. PICT is a “Pair Wise” combinatorial tool, that
can generate optimal combination of parameters to tests, so that (by default) at least a unique pair of parameter
values will be tested at once.

• A new (optional) plugin is avaiable, the “result uploader”. It allows job results to be copied over to a centralized
results server at the end of job execution. Please refer to Results Upload Plugin for more information.

• The avocado.Test.default_parameters mechanism for setting default parameters on tests has been
removed. This was introduced quite early in the Avocado development, and allowed users to set a dictionary
at the class level with keys/values that would serve as default parameter values. The recommended approach
now, is to just provide default values when calling the self.params.get within a test method, such as
self.params.get("key", default="default_value_for_key").

• The __getattr__ interface for self.params has been removed. It used to allow users to use a syntax
such as self.params.key when attempting to access the value for key key. The supported syntax is
self.params.get("key") to achieve the same thing.

• The avocado.utils.vmimage library now contains support for Avocado’s own JeOS (“Just Enough Op-
erating System”) image. A nice addition given the fact that it’s the default image used in Avocado-VT and the
latest version is available in the following architectures: x86_64, aarch64, ppc64, ppc64le and s390x.

• The installation of Avocado from sources has improved and moved towards a more “Pythonic” approach. In-
stallation of files in “non-Pythonic locations” such as /etc are no longer attempted by the Python setup.py
code. Configuration files, for instance, are now considered package data files of the avocado package. The
end result is that installation from source works fine outside virtual environments (in addition to installations
inside virtual environments). For instance, the locations of /etc (config) and /usr/libexec (libexec) files
changed to live within the pkg_data (eg. /usr/lib/python2.7/site-packages/avocado/etc) by
default in order to not to modify files outside the package dir, which allows user installation and also the dis-
tribution of wheel packages. GNU/Linux distributions might still modify this to better follow their conventions
(eg. for RPM the original locations are used). Please refer to the output of the avocado config command
to see the configuration files that are actively being used on your installation.

• A new plugin enables users to list and execute tests based on the GLib test framework. This plugin allows
individual tests inside a single binary to be listed and executed.

324 Chapter 21. Avocado Release Notes

https://developer.gnome.org/glib/stable/glib-Testing.html

avocado Documentation, Release 63.0

• Users of the YAML test loader have now access to a few special keys that can tweak test attributes, including
adding prefixes to test names. This allows users to easily differentiate among execution of the same test, but
executed different configurations. For more information, look for “special keys” in the YAML Loader plugin
documentation.

• Users can now dump variants to a (JSON) file, and also reuse a previously created file in their future jobs
execution. This allows users to avoid recomputing the variants on every job, which might bring significant
speed ups in job execution or simply better control of the variants used during a job. Also notice that even when
users do not manually dump a variants file to a specific location, Avocado will automatically save a suitable file
at jobdata/variants.json as part of a Job results directory structure.

• SIMPLE tests were limited to returning PASS, FAIL and WARN statuses. Now SIMPLE tests can now also
return SKIP status. At the same time, SIMPLE tests were previously limited in how they would flag a WARN
or SKIP from the underlying executable. This is now configurable by means of regular expressions.

• The avocado.utils.process has seen a number of changes related to how it handles data from the ex-
ecuted processes. In a nutshell, process output (on both stdout and stderr) is now considered binary
data. Users that need to deal with text instead, should use the newly added avocado.utils.process.
CmdResult.stdout_text and avocado.utils.process.CmdResult.stderr_text, which
are convenience properties that will attempt to decode the stdout or stderr data into a string-like type
using the encoding set, and if none is set, falling back to the Python default encoding. This change of behavior
was needed to accommodate Python’s 2 and Python’s 3 differences in bytes and string-like types and handling.

• The TAP result format plugin received improvements, including support for reporting Avocado tests with CAN-
CEL status as SKIP (which is the closest status available in the TAP specification), and providing more visible
warning information in the form of comments when Avocado tests finish with WARN status (while maintaining
the test as a PASS, since TAP doesn’t define a WARN status).

• Redundant (and deprecated) fields in the test sections of the JSON result output were removed. Now, instead of
url, test and id carrying the same information, only id remains.

• The exception raised by the utility functions in avocado.utils.memory has been renamed from
MemoryError and became avocado.utils.memory.MemError. The reason is that MemoryError is
a Python standard exception, that is intended to be used on different situations.

• Added possibility to limit the amount of characters embedded as “system-out” in the xunit output plugin
(--xunit-max-test-log-chars XX).

• The xunit result plugin can now limit the amount of output generated by individual tests that will make into
the XML based output file. This is intended for situations where tests can generate prohibitive amounts of output
that can render the file too large to be reused elsewhere (such as imported by Jenkins).

• SIMPLE tests can also finish with SKIP OR WARN status, depending on the output produced, and the Avocado
test runner configuration. It now supports patterns that span across multiple lines. For more information, refer
to SIMPLE Tests Status.

• Simple bytes and “unicode strings” utility functions have been added to avocado.utils.astring, and
can be used by extension and test writers that need consistent results across Python major versions.

• The avocado.Test.srcdir attribute has been removed, and with it, the AVOCADO_TEST_SRCDIR envi-
ronment variable set by Avocado. This was done after a deprecation period, so tests should have been modified
by now to make use of the avocado.Test.workdir instead.

• The avocado.Test.datadir attribute has been removed, and with it, the AVOCADO_TEST_DATADIR
environment variable set by Avocado. This was done after a deprecation period, so tests should have been
modified by now to make use of the avocado.Test.get_data() instead.

• The avocado.utils.cpu.set_cpuidle_state() function now takes a boolean value for its
disable parameter (while still allowing the previous integer (0/1) values to be used). The goal is to have
a more Pythonic interface, and to drop support legacy integer (0/1) use in the upcoming releases.

21.1. Release Notes 325

avocado Documentation, Release 63.0

• avocado.utils.astring.ENCODING is a new addition, and holds the encoding used on many other
Avocado utilities. If your test needs to convert between binary data and text, we recommend you use it as the
default encoding (unless your test knows better).

• avocado.utils.astring.to_text() now supports setting the error handler. This means that when a
perfect decoding is not possible, users can choose how to handle it, like, for example, ignoring the offending
characters.

• When running a process by means of the avocado.utils.process module utilities, the output of such
a process is captured and can be logged in a stdout/stderr (or combined output) file. The logging is
now more resilient to decode errors, and will use the replace error handler by default. Please note that the
downside is that this may produce different content in those files, from what was actually output by the processes
if decoding error conditions happen.

• The avocado.utils.astring.tabular_output() will now properly strip trailing whitespace from
lines that don’t contain data for all “columns”. This is also reflected in the (tabular) output of commands such
as avocado list -v.

• Including test logs in TAP plugin is disabled by default and can be enabled using --tap-include-logs.

Complete list of changes

For a complete list of changes between the last LTS release (52.0) and this release, please check out the Avocado
commit changelog.

326 Chapter 21. Avocado Release Notes

https://github.com/avocado-framework/avocado/compare/52.0...master
https://github.com/avocado-framework/avocado/compare/52.0...master

CHAPTER 22

Request For Comments (RFCs)

22.1 Request For Comments (RFCs)

The following list contains archivals of accepted, Request For Comments posted and discussed on the Avocado Devel
Mailing List.

22.1.1 RFC: Long Term Stability

This RFC contains proposals and clarifications regarding the maintenance and release processes of Avocado.

We understand there are multiple teams currently depending on the stability of Avocado and we don’t want their work
to be disrupted by incompatibilities nor instabilities in new releases.

This version is a minor update to previous versions of the same RFC (see Changelog) which drove the release of
Avocado 36.0 LTS. The Avocado team has plans for a new LTS release in the near future, so please consider reading
and providing feedback on the proposals here.

TL;DR

We plan to keep the current approach of sprint releases every 3-4 weeks, but we’re introducing “Long Term Stability”
releases which should be adopted in production environments where users can’t keep up with frequent upgrades.

Introduction

We make new releases of Avocado every 3-4 weeks on average. In theory at least, we’re very careful with backwards
compatibility. We test Avocado for regressions and we try to document any issues, so upgrading to a new version
should be (again, in theory) safe.

But in practice both intended and unintended changes are introduced during development, and both can be frustrat-
ing for conservative users. We also understand it’s not feasible for users to upgrade Avocado very frequently in a
production environment.

327

https://www.redhat.com/mailman/listinfo/avocado-devel
https://www.redhat.com/mailman/listinfo/avocado-devel

avocado Documentation, Release 63.0

The objective of this RFC is to clarify our maintenance practices and introduce Long Term Stability (LTS) releases,
which are intended to solve, or at least mitigate, these problems.

Our definition of maintained, or stable

First of all, Avocado and its sub-projects are provided ‘AS IS’ and WITHOUT ANY WARRANTY, as described in
the LICENSE file.

The process described here doesn’t imply any commitments or promises. It’s just a set of best practices and recom-
mendations.

When something is identified as “stable” or “maintained”, it means the development community makes a conscious
effort to keep it working and consider reports of bugs and issues as high priorities. Fixes submitted for these issues
will also be considered high priorities, although they will be accepted only if they pass the general acceptance criteria
for new contributions (design, quality, documentation, testing, etc), at the development team discretion.

Maintained projects and platforms

The only maintained project as of today is the Avocado Test Runner, including its APIs and core plugins (the contents
of the main avocado git repository).

Other projects kept under the “Avocado Umbrella” in github may be maintained by different teams (e.g.: Avocado-VT)
or be considered experimental (e.g.: avocado-server and avocado-virt).

More about Avocado-VT in its own section further down.

As a general rule, fixes and bug reports for Avocado when running in any modern Linux distribution are welcome.

But given the limited capacity of the development team, packaged versions of Avocado will be tested and maintained
only for the following Linux distributions:

• RHEL 7.x (latest)

• Fedora (stable releases from the Fedora projects)

Currently all packages produced by the Avocado projects are “noarch”. That means that they could be installable on
any hardware platform. Still, the development team will currently attempt to provide versions that are stable for the
following platforms:

• x86

• ppc64le

Contributions from the community to maintain other platforms and operating systems are very welcome.

The lists above may change without prior notice.

Avocado Releases

The proposal is to have two different types of Avocado releases:

Sprint Releases

(This is the model we currently adopt in Avocado)

They happen every 3-4 weeks (the schedule is not fixed) and their versions are numbered serially, with decimal digits
in the format <major>.<minor>. Examples: 47.0, 48.0, 49.0. Minor releases are rare, but necessary to correct some
major issue with the original release (47.1, 47.2, etc).

328 Chapter 22. Request For Comments (RFCs)

avocado Documentation, Release 63.0

Only the latest Sprint Release is maintained.

In Sprint Releases we make a conscious effort to keep backwards compatibility with the previous version (APIs and
behavior) and as a general rule and best practice, incompatible changes in Sprint Releases should be documented in
the release notes and if possible deprecated slowly, to give users time to adapt their environments.

But we understand changes are inevitable as the software evolves and therefore there’s no absolute promise for API
and behavioral stability.

Long Term Stability (LTS) Releases

LTS releases should happen whenever the team feels the code is stable enough to be maintained for a longer period of
time, ideally once or twice per year (no fixed schedule).

They should be maintained for 18 months, receiving fixes for major bugs in the form of minor (sub-)releases. With the
exception of these fixes, no API or behavior should change in a minor LTS release.

They will be versioned just like Sprint Releases, so looking at the version number alone will not reveal the differentiate
release process and stability characteristics.

In practice each major LTS release will imply in the creation of a git branch where only important issues affecting
users will be fixed, usually as a backport of a fix initially applied upstream. The code in a LTS branch is stable, frozen
for new features.

Notice that although within a LTS release there’s a expectation of stability because the code is frozen, different (major)
LTS releases may include changes in behavior, API incompatibilities and new features. The development team will
make a considerable effort to minimize and properly document these changes (changes when comparing it to the last
major LTS release).

Sprint Releases are replaced by LTS releases. I.e., in the cycle when 52.0 (LTS) is released, that’s also the version
used as a Sprint Release (there’s no 52.0 – non LTS – in this case).

New LTS releases should be done carefully, with ample time for announcements, testing and documentation. It’s
recommended that one or two sprints are dedicated as preparations for a LTS release, with a Sprint Release serving as
a “LTS beta” release.

Similarly, there should be announcements about the end-of-life (EOL) of a LTS release once it approaches its 18
months of life.

Deployment details

Sprint and LTS releases, when packaged, whenever possible, will be preferably distributed through different package
channels (repositories).

This is possible for repository types such as YUM/DNF repos. In such cases, users can disable the regular channel,
and enable the LTS version. A request for the installation of Avocado packages will fetch the latest version available
in the enabled repository. If the LTS repository channel is enabled, the packages will receive minor updates (bugfixes
only), until a new LTS version is released (roughly every 12 months).

If the non-LTS channel is enabled, users will receive updates every 3-4 weeks.

On other types of repos such as PyPI which have no concept of “sub-repos” or “channels”, users can request a version
smaller than the version that succeeds the current LTS to get the latest LTS (including minor releases). Suppose the
current LTS major version is 52, but there have been minor releases 52.1 and 52.2. By running:

pip install 'avocado-framework<53.0'

22.1. Request For Comments (RFCs) 329

https://pypi.python.org/pypi

avocado Documentation, Release 63.0

pip provide LTS version 52.2. If 52.3 gets released, they will be automatically deployed instead. When a new LTS is
released, users would still get the latest minor release from the 52.0 series, unless they update the version specification.

The existence of LTS releases should never be used as an excuse to break a Sprint Release or to introduce gratuitous
incompatibilities there. In other words, Sprint Releases should still be taken seriously, just as they are today.

Timeline example

Consider the release numbers as date markers. The bullet points beneath them are information about the release itself
or events that can happen anytime between one release and the other. Assume each sprint is taking 3 weeks.

36.0

• LTS release (the only LTS release available at the time of writing)

37.0 .. 49.0

• sprint releases

• 36.1 LTS release

• 36.2 LTS release

• 36.3 LTS release

• 36.4 LTS release

50.0

• sprint release

• start preparing a LTS release, so 51.0 will be a beta LTS

51.0

• sprint release

• beta LTS release

52.0

• LTS release

• 52lts branch is created

• packages go into LTS repo

• both 36.x LTS and 52.x LTS maintained from this point on

53.0

• sprint release

• minor bug that affects 52.0 is found, fix gets added to master and 52lts branches

• bug does not affect 36.x LTS, so a backport is not added to the 36lts branch

54.0

• sprint release 54.0

• LTS release 52.1

• minor bug that also affects 52.x LTS and 36.x LTS is found, fix gets added to master, 52lts and
36lts branches

55.0

330 Chapter 22. Request For Comments (RFCs)

avocado Documentation, Release 63.0

• sprint release

• LTS release 36.5

• LTS release 52.2

• critical bug that affects 52.2 only is found, fix gets added to 52lts and 52.3 LTS is immediately
released

56.0

• sprint release

57.0

• sprint release

58.0

• sprint release

59.0

• sprint release

• EOL for 36.x LTS (18 months since the release of 36.0), 36lts branch is frozen permanently.

A few points are worth taking notice here:

• Multiple LTS releases can co-exist before EOL

• Bug discovery can happen at any time

• The bugfix occurs ASAP after its discovery

• The severity of the defect determines the timing of the release

– moderate and minor bugfixes to lts branches are held until the next sprint release

– critical bugs are released asynchronously, without waiting for the next sprint release

Avocado-VT

Avocado-VT is an Avocado plugin that allows “VT tests” to be run inside Avocado. It’s a third-party project maintained
mostly by Engineers from Red Hat QE with assistance from the Avocado team and other community members.

It’s a general consensus that QE teams use Avocado-VT directly from git, usually following the master branch, which
they control.

There’s no official maintenance or stability statement for Avocado-VT. Even though the upstream community is quite
friendly and open to both contributions and bug reports, Avocado-VT is made available without any promises for
compatibility or supportability.

When packaged and versioned, Avocado-VT rpms should be considered just snapshots, available in packaged form as
a convenience to users outside of the Avocado-VT development community. Again, they are made available without
any promises of compatibility or stability.

• Which Avocado version should be used by Avocado-VT?

This is up to the Avocado-VT community to decide, but the current consensus is that to guarantee some stability
in production environments, Avocado-VT should stick to a specific LTS release of Avocado. In other words, the
Avocado team recommends production users of Avocado-VT not to install Avocado from its master branch or
upgrade it from Sprint Releases.

22.1. Request For Comments (RFCs) 331

avocado Documentation, Release 63.0

Given each LTS release will be maintained for 18 months, it should be reasonable to expect Avocado-VT to
upgrade to a new LTS release once a year or so. This process will be done with support from the Avocado team
to avoid disruptions, with proper coordination via the avocado mailing lists.

In practice the Avocado development team will keep watching Avocado-VT to detect and document incompati-
bilities, so when the time comes to do an upgrade in production, it’s expected that it should happen smoothly.

• Will it be possible to use the latest Avocado and Avocado-VT together?

Users are welcome to try this combination. The Avocado development team itself will do it internally as a way
to monitor incompatibilities and regressions.

Whenever Avocado is released, a matching versioned snapshot of Avocado-VT will be made. Packages con-
taining those Avocado-VT snapshots, for convenience only, will be made available in the regular Avocado
repository.

Changelog

Changes from Version 4:

• Moved changelog to the bottom of the document

• Changed wording on bug handling for LTS releases (“important issues”)

• Removed ppc64 (big endian) from list of platforms

• If bugs also affect older LTS release during the transition period, a backport will also be added to the corre-
sponding branch

• Further work on the Timeline example, adding summary of important points and more release examples, such as
the whole list of 36.x releases and the (fictional) 36.5 and 52.3

Changes from Version 3:

• Converted formatting to REStructuredText

• Replaced “me” mentions on version 1 changelog with proper name (Ademar Reis)

• Renamed section “Misc Details” to Deployment Details

• Renamed “avocado-vt” to “Avocado-VT”

• Start the timeline example with version 36.0

• Be explicit on timeline example that a minor bug did not generate an immediate release

Changes from Version 2:

• Wording changes on second paragraph (“. . . nor instabilities. . . ”)

• Clarified on “Introduction” that change of behavior is introduced between regular releases

• Updated distro versions for which official packages are built

• Add more clear explanation on official packages on the various hardware platforms

• Used more recent version numbers as examples, and the planned new LTS version too

• Explain how users can get the LTS version when using tools such as pip

• Simplified the timeline example, with examples that will possibly match the future versions and releases

• Documented current status of Avocado-VT releases and packages

Changes from Version 1:

• Changed “Support” to “Stability” and “supported” to “maintained” [Jeff Nelson]

332 Chapter 22. Request For Comments (RFCs)

https://www.redhat.com/archives/avocado-devel/2017-April/msg00041.html
https://www.redhat.com/archives/avocado-devel/2017-April/msg00032.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00038.html
https://www.redhat.com/archives/avocado-devel/2016-April/msg00006.html

avocado Documentation, Release 63.0

• Misc improvements and clarifications in the supportability/stability statements [Jeff Nelson, Ademar Reis]

• Fixed a few typos [Jeff Nelson, Ademar Reis]

22.2 Indices and tables

• genindex

• modindex

• search

22.2. Indices and tables 333

avocado Documentation, Release 63.0

334 Chapter 22. Request For Comments (RFCs)

Python Module Index

a
avocado, 143
avocado.core, 243
avocado.core.app, 207
avocado.core.data_dir, 208
avocado.core.decorators, 209
avocado.core.defaults, 209
avocado.core.dispatcher, 209
avocado.core.exceptions, 211
avocado.core.exit_codes, 213
avocado.core.job, 213
avocado.core.job_id, 215
avocado.core.jobdata, 215
avocado.core.loader, 215
avocado.core.output, 218
avocado.core.parameters, 223
avocado.core.parser, 224
avocado.core.plugin_interfaces, 224
avocado.core.restclient, 207
avocado.core.restclient.cli, 206
avocado.core.restclient.cli.actions, 204
avocado.core.restclient.cli.actions.base,

204
avocado.core.restclient.cli.actions.server,

204
avocado.core.restclient.cli.app, 205
avocado.core.restclient.cli.args, 205
avocado.core.restclient.cli.args.base,

204
avocado.core.restclient.cli.args.server,

204
avocado.core.restclient.cli.parser, 205
avocado.core.restclient.connection, 206
avocado.core.restclient.response, 207
avocado.core.result, 226
avocado.core.runner, 227
avocado.core.safeloader, 229
avocado.core.settings, 230
avocado.core.status, 231

avocado.core.sysinfo, 231
avocado.core.test, 233
avocado.core.tree, 238
avocado.core.varianter, 240
avocado.core.version, 243
avocado.plugins, 257
avocado.plugins.archive, 243
avocado.plugins.config, 244
avocado.plugins.diff, 244
avocado.plugins.distro, 244
avocado.plugins.envkeep, 247
avocado.plugins.exec_path, 248
avocado.plugins.gdb, 248
avocado.plugins.human, 248
avocado.plugins.jobscripts, 249
avocado.plugins.journal, 249
avocado.plugins.json_variants, 250
avocado.plugins.jsonresult, 251
avocado.plugins.list, 252
avocado.plugins.multiplex, 252
avocado.plugins.plugins, 252
avocado.plugins.replay, 253
avocado.plugins.run, 253
avocado.plugins.sysinfo, 254
avocado.plugins.tap, 254
avocado.plugins.teststmpdir, 255
avocado.plugins.variants, 255
avocado.plugins.wrapper, 255
avocado.plugins.xunit, 256
avocado.utils, 203
avocado.utils.archive, 149
avocado.utils.asset, 150
avocado.utils.astring, 151
avocado.utils.aurl, 153
avocado.utils.build, 153
avocado.utils.cpu, 154
avocado.utils.crypto, 155
avocado.utils.data_factory, 155
avocado.utils.data_structures, 156
avocado.utils.debug, 157

335

avocado Documentation, Release 63.0

avocado.utils.disk, 157
avocado.utils.distro, 158
avocado.utils.download, 159
avocado.utils.external, 149
avocado.utils.external.gdbmi_parser, 147
avocado.utils.external.spark, 147
avocado.utils.filelock, 160
avocado.utils.gdb, 160
avocado.utils.genio, 164
avocado.utils.git, 165
avocado.utils.iso9660, 167
avocado.utils.kernel, 168
avocado.utils.linux_modules, 169
avocado.utils.lv_utils, 170
avocado.utils.memory, 173
avocado.utils.multipath, 176
avocado.utils.network, 177
avocado.utils.output, 178
avocado.utils.partition, 179
avocado.utils.path, 180
avocado.utils.pci, 181
avocado.utils.process, 183
avocado.utils.runtime, 192
avocado.utils.script, 192
avocado.utils.service, 194
avocado.utils.software_manager, 196
avocado.utils.stacktrace, 200
avocado.utils.vmimage, 201
avocado.utils.wait, 203
avocado_glib, 257
avocado_golang, 265
avocado_loader_yaml, 263
avocado_result_upload, 262
avocado_resultsdb, 258
avocado_robot, 262
avocado_varianter_pict, 264
avocado_varianter_yaml_to_mux, 261
avocado_varianter_yaml_to_mux.mux, 259

336 Python Module Index

Index

A
AccessDeniedPath (class in avocado.core.loader), 215
action() (in module avo-

cado.core.restclient.cli.actions.base), 204
add() (avocado.core.tree.FilterSet method), 239
add() (avocado.utils.archive.ArchiveFile method), 149
add() (avocado.utils.external.spark.GenericParser

method), 147
add_arguments_on_all_modules() (avo-

cado.core.restclient.cli.parser.Parser method),
205

add_arguments_on_module() (avo-
cado.core.restclient.cli.parser.Parser method),
205

add_child() (avocado.core.tree.TreeNode method), 239
add_cmd() (avocado.core.sysinfo.SysInfo method), 232
add_default_param() (avocado.core.varianter.Varianter

method), 241
add_file() (avocado.core.sysinfo.SysInfo method), 233
add_loader_options() (in module avocado.core.loader),

218
add_log_handler() (in module avocado.core.output), 222
add_logger() (avocado.core.output.LoggingFile method),

219
add_repo() (avocado.utils.software_manager.AptBackend

method), 196
add_repo() (avocado.utils.software_manager.YumBackend

method), 198
add_repo() (avocado.utils.software_manager.ZypperBackend

method), 199
add_runner_failure() (in module avocado.core.runner),

228
add_watcher() (avocado.core.sysinfo.SysInfo method),

233
addRule() (avocado.utils.external.spark.GenericParser

method), 147
ALL (avocado.core.loader.DiscoverMode attribute), 216
ALL (in module avocado.core.loader), 215
AlreadyLocked, 160

ambiguity() (avocado.utils.external.spark.GenericParser
method), 148

analyze_unpickable_item() (in module avo-
cado.utils.stacktrace), 200

App (class in avocado.core.restclient.cli.app), 205
append_amount() (avocado.utils.output.ProgressBar

method), 178
apply_filters() (in module avo-

cado_varianter_yaml_to_mux.mux), 260
AptBackend (class in avocado.utils.software_manager),

196
Archive (class in avocado.plugins.archive), 243
ArchiveCLI (class in avocado.plugins.archive), 243
ArchiveException, 149
ArchiveFile (class in avocado.utils.archive), 149
ArgumentParser (class in avocado.core.parser), 224
ask() (in module avocado.utils.genio), 164
Asset (class in avocado.utils.asset), 150
augment() (avocado.utils.external.spark.GenericParser

method), 148
AVAILABLE (avocado.core.loader.DiscoverMode

attribute), 216
AVAILABLE (in module avocado.core.loader), 215
avocado (module), 143
avocado.core (module), 243
avocado.core.app (module), 207
avocado.core.data_dir (module), 208
avocado.core.decorators (module), 209
avocado.core.defaults (module), 209
avocado.core.dispatcher (module), 209
avocado.core.exceptions (module), 211
avocado.core.exit_codes (module), 213
avocado.core.job (module), 213
avocado.core.job_id (module), 215
avocado.core.jobdata (module), 215
avocado.core.loader (module), 215
avocado.core.output (module), 218
avocado.core.parameters (module), 223
avocado.core.parser (module), 224
avocado.core.plugin_interfaces (module), 224

337

avocado Documentation, Release 63.0

avocado.core.restclient (module), 207
avocado.core.restclient.cli (module), 206
avocado.core.restclient.cli.actions (module), 204
avocado.core.restclient.cli.actions.base (module), 204
avocado.core.restclient.cli.actions.server (module), 204
avocado.core.restclient.cli.app (module), 205
avocado.core.restclient.cli.args (module), 205
avocado.core.restclient.cli.args.base (module), 204
avocado.core.restclient.cli.args.server (module), 204
avocado.core.restclient.cli.parser (module), 205
avocado.core.restclient.connection (module), 206
avocado.core.restclient.response (module), 207
avocado.core.result (module), 226
avocado.core.runner (module), 227
avocado.core.safeloader (module), 229
avocado.core.settings (module), 230
avocado.core.status (module), 231
avocado.core.sysinfo (module), 231
avocado.core.test (module), 233
avocado.core.tree (module), 238
avocado.core.varianter (module), 240
avocado.core.version (module), 243
avocado.plugins (module), 257
avocado.plugins.archive (module), 243
avocado.plugins.config (module), 244
avocado.plugins.diff (module), 244
avocado.plugins.distro (module), 244
avocado.plugins.envkeep (module), 247
avocado.plugins.exec_path (module), 248
avocado.plugins.gdb (module), 248
avocado.plugins.human (module), 248
avocado.plugins.jobscripts (module), 249
avocado.plugins.journal (module), 249
avocado.plugins.json_variants (module), 250
avocado.plugins.jsonresult (module), 251
avocado.plugins.list (module), 252
avocado.plugins.multiplex (module), 252
avocado.plugins.plugins (module), 252
avocado.plugins.replay (module), 253
avocado.plugins.run (module), 253
avocado.plugins.sysinfo (module), 254
avocado.plugins.tap (module), 254
avocado.plugins.teststmpdir (module), 255
avocado.plugins.variants (module), 255
avocado.plugins.wrapper (module), 255
avocado.plugins.xunit (module), 256
avocado.utils (module), 203
avocado.utils.archive (module), 149
avocado.utils.asset (module), 150
avocado.utils.astring (module), 151
avocado.utils.aurl (module), 153
avocado.utils.build (module), 153
avocado.utils.cpu (module), 154
avocado.utils.crypto (module), 155

avocado.utils.data_factory (module), 155
avocado.utils.data_structures (module), 156
avocado.utils.debug (module), 157
avocado.utils.disk (module), 157
avocado.utils.distro (module), 158
avocado.utils.download (module), 159
avocado.utils.external (module), 149
avocado.utils.external.gdbmi_parser (module), 147
avocado.utils.external.spark (module), 147
avocado.utils.filelock (module), 160
avocado.utils.gdb (module), 160
avocado.utils.genio (module), 164
avocado.utils.git (module), 165
avocado.utils.iso9660 (module), 167
avocado.utils.kernel (module), 168
avocado.utils.linux_modules (module), 169
avocado.utils.lv_utils (module), 170
avocado.utils.memory (module), 173
avocado.utils.multipath (module), 176
avocado.utils.network (module), 177
avocado.utils.output (module), 178
avocado.utils.partition (module), 179
avocado.utils.path (module), 180
avocado.utils.pci (module), 181
avocado.utils.process (module), 183
avocado.utils.runtime (module), 192
avocado.utils.script (module), 192
avocado.utils.service (module), 194
avocado.utils.software_manager (module), 196
avocado.utils.stacktrace (module), 200
avocado.utils.vmimage (module), 201
avocado.utils.wait (module), 203
AVOCADO_ALL_OK (in module avo-

cado.core.exit_codes), 213
AVOCADO_FAIL (in module avocado.core.exit_codes),

213
AVOCADO_GENERIC_CRASH (in module avo-

cado.core.exit_codes), 213
avocado_glib (module), 257
avocado_golang (module), 265
AVOCADO_JOB_FAIL (in module avo-

cado.core.exit_codes), 213
AVOCADO_JOB_INTERRUPTED (in module avo-

cado.core.exit_codes), 213
avocado_loader_yaml (module), 263
avocado_result_upload (module), 262
avocado_resultsdb (module), 258
avocado_robot (module), 262
AVOCADO_TESTS_FAIL (in module avo-

cado.core.exit_codes), 213
avocado_varianter_pict (module), 264
avocado_varianter_yaml_to_mux (module), 261
avocado_varianter_yaml_to_mux.mux (module), 259
AvocadoApp (class in avocado.core.app), 207

338 Index

avocado Documentation, Release 63.0

AvocadoParam (class in avocado.core.parameters), 223
AvocadoParams (class in avocado.core.parameters), 223

B
b (avocado.utils.data_structures.DataSize attribute), 156
base_image (avocado.utils.vmimage.Image attribute),

202
BaseBackend (class in avocado.utils.software_manager),

197
basedir (avocado.core.test.Test attribute), 235
basedir (avocado.Test attribute), 143
BaseResponse (class in avocado.core.restclient.response),

207
binary_from_shell_cmd() (in module avo-

cado.utils.process), 187
bitlist_to_string() (in module avocado.utils.astring), 151
Borg (class in avocado.utils.data_structures), 156
BrokenSymlink (class in avocado.core.loader), 215
build() (avocado.utils.kernel.KernelBuild method), 168
build_dep() (avocado.utils.software_manager.AptBackend

method), 196
build_dep() (avocado.utils.software_manager.YumBackend

method), 199
buildASTNode() (avocado.utils.external.spark.GenericASTBuilder

method), 147
buildTree() (avocado.utils.external.spark.GenericParser

method), 148
BUILTIN (in module avocado.utils.linux_modules), 169
BUILTIN_STREAM_SETS (in module avo-

cado.core.output), 218
BUILTIN_STREAMS (in module avocado.core.output),

218

C
cache_dirs (avocado.core.test.Test attribute), 235
cache_dirs (avocado.Test attribute), 144
CallbackRegister (class in avocado.utils.data_structures),

156
can_sudo() (in module avocado.utils.process), 187
cancel() (avocado.core.test.Test method), 235
cancel() (avocado.Test method), 144
causal() (avocado.utils.external.spark.GenericParser

method), 148
CentOSImageProvider (class in avocado.utils.vmimage),

201
check_docstring_directive() (in module avo-

cado.core.safeloader), 229
CHECK_FILE (avocado.utils.distro.Probe attribute), 158
CHECK_FILE_CONTAINS (avocado.utils.distro.Probe

attribute), 158
CHECK_FILE_DISTRO_NAME (avo-

cado.utils.distro.Probe attribute), 158
check_hotplug() (in module avocado.utils.memory), 173

check_installed() (avocado.utils.software_manager.DpkgBackend
method), 197

check_installed() (avocado.utils.software_manager.RpmBackend
method), 197

check_kernel_config() (in module avo-
cado.utils.linux_modules), 169

check_min_version() (avo-
cado.core.restclient.connection.Connection
method), 206

check_name_for_file() (avocado.utils.distro.Probe
method), 158

check_name_for_file_contains() (avo-
cado.utils.distro.Probe method), 158

check_release() (avocado.utils.distro.Probe method), 158
check_test() (avocado.core.result.Result method), 227
check_version() (avocado.utils.distro.Probe method), 158
check_version() (in module avocado.utils.kernel), 169
CHECK_VERSION_REGEX (avocado.utils.distro.Probe

attribute), 158
checkout() (avocado.utils.git.GitRepoHelper method),

166
clean_tmp_files() (in module avocado.core.data_dir), 208
cleanup() (avocado.core.job.Job method), 214
clear_plugins() (avocado.core.loader.TestLoaderProxy

method), 217
CLI (class in avocado.core.plugin_interfaces), 224
cli_cmd() (avocado.utils.gdb.GDB method), 161
CLICmd (class in avocado.core.plugin_interfaces), 225
CLICmdDispatcher (class in avocado.core.dispatcher),

209
CLIDispatcher (class in avocado.core.dispatcher), 210
close() (avocado.core.output.Paginator method), 220
close() (avocado.core.output.StdOutput method), 220
close() (avocado.utils.archive.ArchiveFile method), 149
close() (avocado.utils.iso9660.Iso9660IsoRead method),

167
close() (avocado.utils.iso9660.Iso9660Mount method),

168
close_log_file() (in module avocado.utils.genio), 164
cmd() (avocado.utils.gdb.GDB method), 161
cmd() (avocado.utils.gdb.GDBRemote method), 163
cmd_exists() (avocado.utils.gdb.GDB method), 161
cmd_split() (in module avocado.utils.process), 187
CmdError, 183
CmdNotFoundError, 180
CmdResult (class in avocado.utils.process), 183
collect_sysinfo() (in module avocado.core.sysinfo), 233
Collectible (class in avocado.core.sysinfo), 231
collectRules() (avocado.utils.external.spark.GenericParser

method), 148
COLOR_BLUE (avocado.core.output.TermSupport at-

tribute), 221
COLOR_DARKGREY (avo-

cado.core.output.TermSupport attribute),

Index 339

avocado Documentation, Release 63.0

221
COLOR_GREEN (avocado.core.output.TermSupport at-

tribute), 221
COLOR_RED (avocado.core.output.TermSupport at-

tribute), 221
COLOR_YELLOW (avocado.core.output.TermSupport

attribute), 221
comma_separated_ranges_to_list() (in module avo-

cado.utils.data_structures), 157
Command (class in avocado.core.sysinfo), 231
COMMON_TMPDIR_NAME (in module avo-

cado.core.test), 233
compare() (in module avo-

cado.utils.external.gdbmi_parser), 147
compare_matrices() (in module avo-

cado.utils.data_structures), 157
compress() (in module avocado.utils.archive), 149
computeNull() (avocado.utils.external.spark.GenericParser

method), 148
Config (class in avocado.plugins.config), 244
ConfigFileNotFound, 230
configure() (avocado.core.plugin_interfaces.CLI

method), 224
configure() (avocado.core.plugin_interfaces.CLICmd

method), 225
configure() (avocado.plugins.archive.ArchiveCLI

method), 243
configure() (avocado.plugins.config.Config method), 244
configure() (avocado.plugins.diff.Diff method), 244
configure() (avocado.plugins.distro.Distro method), 244
configure() (avocado.plugins.envkeep.EnvKeep method),

247
configure() (avocado.plugins.gdb.GDB method), 248
configure() (avocado.plugins.journal.Journal method),

249
configure() (avocado.plugins.json_variants.JsonVariantsCLI

method), 251
configure() (avocado.plugins.jsonresult.JSONCLI

method), 251
configure() (avocado.plugins.list.List method), 252
configure() (avocado.plugins.plugins.Plugins method),

252
configure() (avocado.plugins.replay.Replay method), 253
configure() (avocado.plugins.run.Run method), 253
configure() (avocado.plugins.sysinfo.SysInfo method),

254
configure() (avocado.plugins.tap.TAP method), 254
configure() (avocado.plugins.variants.Variants method),

255
configure() (avocado.plugins.wrapper.Wrapper method),

255
configure() (avocado.plugins.xunit.XUnitCLI method),

256
configure() (avocado.utils.kernel.KernelBuild method),

169
configure() (avocado_glib.GLibCLI method), 257
configure() (avocado_golang.GolangCLI method), 265
configure() (avocado_loader_yaml.LoaderYAML

method), 264
configure() (avocado_result_upload.ResultUploadCLI

method), 262
configure() (avocado_resultsdb.ResultsdbCLI method),

258
configure() (avocado_robot.RobotCLI method), 263
configure() (avocado_varianter_pict.VarianterPictCLI

method), 265
configure() (avocado_varianter_yaml_to_mux.YamlToMuxCLI

method), 261
configure() (in module avocado.utils.build), 153
connect() (avocado.utils.gdb.GDB method), 161
connect() (avocado.utils.gdb.GDBRemote method), 163
Connection (class in avocado.core.restclient.connection),

206
Control (class in avocado_varianter_yaml_to_mux.mux),

259
CONTROL_END (avocado.core.output.TermSupport at-

tribute), 221
convert_systemd_target_to_runlevel() (in module avo-

cado.utils.service), 194
convert_sysv_runlevel() (in module avo-

cado.utils.service), 194
convert_value_type() (in module avocado.core.settings),

230
copy() (avocado.core.tree.TreeEnvironment method), 239
copy() (avocado.utils.iso9660.Iso9660IsoRead method),

167
copy() (avocado.utils.iso9660.Iso9660Mount method),

168
cpu_has_flags() (in module avocado.utils.cpu), 154
cpu_online_list() (in module avocado.utils.cpu), 154
create() (in module avocado.utils.archive), 149
create_and_wait_on_resume_fifo() (avo-

cado.utils.process.GDBSubProcess method),
185

create_from_yaml() (in module avo-
cado_varianter_yaml_to_mux), 262

create_job_logs_dir() (in module avocado.core.data_dir),
208

create_test_suite() (avocado.core.job.Job method), 214
create_unique_job_id() (in module avocado.core.job_id),

215
CURRENT_JOB (in module avocado.utils.runtime), 192
CURRENT_TEST (in module avocado.utils.runtime),

192
CURRENT_WRAPPER (in module avo-

cado.utils.process), 183

340 Index

avocado Documentation, Release 63.0

D
Daemon (class in avocado.core.sysinfo), 231
DATA_SOURCES (avocado.core.test.SimpleTest at-

tribute), 234
DATA_SOURCES (avocado.core.test.TestData attribute),

237
DataSize (class in avocado.utils.data_structures), 156
DebianImageProvider (class in avocado.utils.vmimage),

201
debug (avocado_varianter_yaml_to_mux.mux.MuxPlugin

attribute), 259
DEFAULT (avocado.core.loader.DiscoverMode at-

tribute), 216
DEFAULT (in module avocado.core.loader), 216
default() (avocado.utils.external.spark.GenericASTTraversal

method), 147
DEFAULT_BREAK (avocado.utils.gdb.GDB attribute),

160
DEFAULT_EXECUTION_ORDER (avo-

cado.core.runner.TestRunner attribute), 227
DEFAULT_HASH_ALGORITHM (in module avo-

cado.utils.asset), 150
DEFAULT_MODE (in module avocado.utils.script), 192
default_params (avocado_varianter_yaml_to_mux.mux.MuxPlugin

attribute), 259
DEFAULT_TIMEOUT (avocado.core.runner.TestRunner

attribute), 227
del_break() (avocado.utils.gdb.GDB method), 161
deriveEpsilon() (avocado.utils.external.spark.GenericParser

method), 148
description (avocado.core.plugin_interfaces.CLICmd at-

tribute), 225
description (avocado.plugins.archive.Archive attribute),

243
description (avocado.plugins.archive.ArchiveCLI at-

tribute), 243
description (avocado.plugins.config.Config attribute), 244
description (avocado.plugins.diff.Diff attribute), 244
description (avocado.plugins.distro.Distro attribute), 245
description (avocado.plugins.envkeep.EnvKeep attribute),

247
description (avocado.plugins.exec_path.ExecPath at-

tribute), 248
description (avocado.plugins.gdb.GDB attribute), 248
description (avocado.plugins.human.Human attribute),

248
description (avocado.plugins.human.HumanJob at-

tribute), 249
description (avocado.plugins.jobscripts.JobScripts

attribute), 249
description (avocado.plugins.journal.Journal attribute),

250
description (avocado.plugins.journal.JournalResult

attribute), 250

description (avocado.plugins.json_variants.JsonVariants
attribute), 250

description (avocado.plugins.json_variants.JsonVariantsCLI
attribute), 251

description (avocado.plugins.jsonresult.JSONCLI at-
tribute), 251

description (avocado.plugins.jsonresult.JSONResult at-
tribute), 251

description (avocado.plugins.list.List attribute), 252
description (avocado.plugins.plugins.Plugins attribute),

253
description (avocado.plugins.replay.Replay attribute),

253
description (avocado.plugins.run.Run attribute), 253
description (avocado.plugins.sysinfo.SysInfo attribute),

254
description (avocado.plugins.tap.TAP attribute), 254
description (avocado.plugins.tap.TAPResult attribute),

254
description (avocado.plugins.teststmpdir.TestsTmpDir at-

tribute), 255
description (avocado.plugins.variants.Variants attribute),

255
description (avocado.plugins.wrapper.Wrapper attribute),

255
description (avocado.plugins.xunit.XUnitCLI attribute),

256
description (avocado.plugins.xunit.XUnitResult at-

tribute), 256
description (avocado_glib.GLibCLI attribute), 257
description (avocado_golang.GolangCLI attribute), 265
description (avocado_loader_yaml.LoaderYAML at-

tribute), 264
description (avocado_result_upload.ResultUpload at-

tribute), 262
description (avocado_result_upload.ResultUploadCLI at-

tribute), 262
description (avocado_resultsdb.ResultsdbCLI attribute),

258
description (avocado_resultsdb.ResultsdbResult at-

tribute), 258
description (avocado_resultsdb.ResultsdbResultEvent at-

tribute), 258
description (avocado_robot.RobotCLI attribute), 263
description (avocado_varianter_pict.VarianterPict at-

tribute), 264
description (avocado_varianter_pict.VarianterPictCLI at-

tribute), 265
description (avocado_varianter_yaml_to_mux.YamlToMux

attribute), 261
description (avocado_varianter_yaml_to_mux.YamlToMuxCLI

attribute), 261
detach() (avocado.core.tree.TreeNode method), 239
detect() (in module avocado.utils.distro), 159

Index 341

avocado Documentation, Release 63.0

device_exists() (in module avocado.utils.multipath), 176
Diff (class in avocado.plugins.diff), 244
disable() (avocado.core.output.TermSupport method),

221
disable_log_handler() (in module avocado.core.output),

222
disconnect() (avocado.utils.gdb.GDB method), 161
discover() (avocado.core.loader.ExternalLoader method),

216
discover() (avocado.core.loader.FileLoader method), 216
discover() (avocado.core.loader.TestLoader method), 217
discover() (avocado.core.loader.TestLoaderProxy

method), 217
discover() (avocado_glib.GLibLoader method), 257
discover() (avocado_golang.GolangLoader method), 266
discover() (avocado_loader_yaml.YamlTestsuiteLoader

method), 264
discover() (avocado_robot.RobotLoader method), 263
DiscoverMode (class in avocado.core.loader), 216
dispatch_action() (avocado.core.restclient.cli.app.App

method), 205
Dispatcher (class in avocado.core.dispatcher), 210
display_data_size() (in module avocado.utils.output), 178
Distro (class in avocado.plugins.distro), 244
DISTRO_PKG_INFO_LOADERS (in module avo-

cado.plugins.distro), 244
DistroDef (class in avocado.plugins.distro), 245
DistroPkgInfoLoader (class in avocado.plugins.distro),

245
DistroPkgInfoLoaderDeb (class in avo-

cado.plugins.distro), 246
DistroPkgInfoLoaderRpm (class in avo-

cado.plugins.distro), 246
DnfBackend (class in avocado.utils.software_manager),

197
DOCSTRING_DIRECTIVE_RE_RAW (in module avo-

cado.core.safeloader), 229
download() (avocado.utils.kernel.KernelBuild method),

169
DpkgBackend (class in avocado.utils.software_manager),

197
draw() (avocado.utils.output.ProgressBar method), 178
drop_caches() (in module avocado.utils.memory), 173
DryRunTest (class in avocado.core.test), 233
dump() (avocado.core.varianter.Varianter method), 241
dump_ivariants() (in module avocado.core.varianter), 242

E
early_start() (in module avocado.core.output), 222
early_status (avocado.core.runner.TestStatus attribute),

228
emit() (avocado.core.output.MemStreamHandler

method), 219

emit() (avocado.core.output.ProgressStreamHandler
method), 220

emit() (avocado.core.test.RawFileHandler method), 234
enable_outputs() (avocado.core.output.StdOutput

method), 220
enable_paginator() (avocado.core.output.StdOutput

method), 220
enable_stderr() (avocado.core.output.StdOutput method),

220
enabled() (avocado.core.dispatcher.Dispatcher method),

210
ENCODING (in module avocado.core.defaults), 209
ENCODING (in module avocado.utils.astring), 151
end_job_hook() (avocado.core.sysinfo.SysInfo method),

233
end_test() (avocado.core.plugin_interfaces.ResultEvents

method), 226
end_test() (avocado.core.result.Result method), 227
end_test() (avocado.plugins.human.Human method), 248
end_test() (avocado.plugins.journal.JournalResult

method), 250
end_test() (avocado.plugins.tap.TAPResult method), 254
end_test() (avocado_resultsdb.ResultsdbResultEvent

method), 258
end_test_hook() (avocado.core.sysinfo.SysInfo method),

233
end_tests() (avocado.core.result.Result method), 227
environment (avocado.core.tree.TreeNode attribute), 239
EnvKeep (class in avocado.plugins.envkeep), 247
error() (avocado.core.parser.ArgumentParser method),

224
error() (avocado.core.test.Test method), 235
error() (avocado.Test method), 144
error() (avocado.utils.external.spark.GenericParser

method), 148
error() (avocado.utils.external.spark.GenericScanner

method), 148
error_str() (avocado.core.output.TermSupport method),

221
ESCAPE_CODES (avocado.core.output.TermSupport at-

tribute), 221
ExecPath (class in avocado.plugins.exec_path), 248
execute() (avocado.utils.git.GitRepoHelper method), 166
exit() (avocado.utils.gdb.GDB method), 161
exit() (avocado.utils.gdb.GDBServer method), 163
ExternalLoader (class in avocado.core.loader), 216
ExternalRunnerSpec (class in avocado.core.test), 233
ExternalRunnerTest (class in avocado.core.test), 234
extract() (avocado.utils.archive.ArchiveFile method), 149
extract() (in module avocado.utils.archive), 150

F
fail() (avocado.core.test.Test method), 235
fail() (avocado.Test method), 144

342 Index

avocado Documentation, Release 63.0

fail_class (avocado.core.test.Test attribute), 235
fail_class (avocado.Test attribute), 144
fail_header_str() (avocado.core.output.TermSupport

method), 221
fail_on() (in module avocado), 145
fail_on() (in module avocado.core.decorators), 209
fail_path() (in module avocado.utils.multipath), 176
fail_reason (avocado.core.test.Test attribute), 235
fail_reason (avocado.Test attribute), 144
fail_str() (avocado.core.output.TermSupport method),

221
fake_outputs() (avocado.core.output.StdOutput method),

220
FakeVariantDispatcher (class in avocado.core.varianter),

240
FDDrainer (class in avocado.utils.process), 184
FedoraImageProvider (class in avocado.utils.vmimage),

201
FedoraSecondaryImageProvider (class in avo-

cado.utils.vmimage), 201
fetch() (avocado.utils.asset.Asset method), 150
fetch() (avocado.utils.git.GitRepoHelper method), 166
fetch_asset() (avocado.core.test.Test method), 235
fetch_asset() (avocado.Test method), 144
file_log_factory() (in module avocado.plugins.tap), 255
FileLoader (class in avocado.core.loader), 216
FileLock (class in avocado.utils.filelock), 160
filename (avocado.core.test.ExternalRunnerTest at-

tribute), 234
filename (avocado.core.test.SimpleTest attribute), 234
filename (avocado.core.test.Test attribute), 236
filename (avocado.Test attribute), 144
filename (avocado_glib.GLibTest attribute), 257
filename (avocado_golang.GolangTest attribute), 266
filename (avocado_robot.RobotTest attribute), 263
FileOrStdoutAction (class in avocado.core.parser), 224
filter() (avocado.core.output.FilterInfoAndLess method),

218
filter() (avocado.core.output.FilterWarnAndMore

method), 219
filter_test_tags() (in module avocado.core.loader), 218
FilterInfoAndLess (class in avocado.core.output), 218
FilterSet (class in avocado.core.tree), 238
FilterWarnAndMore (class in avocado.core.output), 219
finalState() (avocado.utils.external.spark.GenericParser

method), 148
find_class_and_methods() (in module avo-

cado.core.safeloader), 229
find_command() (in module avocado.utils.path), 180
find_free_port() (avocado.utils.network.PortTracker

method), 177
find_free_port() (in module avocado.utils.network), 177
find_free_ports() (in module avocado.utils.network), 177
fingerprint() (avocado.core.tree.TreeNode method), 239

fingerprint() (avocado.core.tree.TreeNodeEnvOnly
method), 240

fingerprint() (avocado_varianter_yaml_to_mux.mux.MuxTreeNode
method), 260

finish() (avocado.core.parser.Parser method), 224
finish() (avocado.core.runner.TestStatus method), 228
flush() (avocado.core.output.LoggingFile method), 219
flush() (avocado.core.output.MemStreamHandler

method), 220
flush() (avocado.core.output.Paginator method), 220
flush() (avocado.utils.process.FDDrainer method), 184
flush_path() (in module avocado.utils.multipath), 176
form_conf_mpath_file() (in module avo-

cado.utils.multipath), 176
foundMatch() (avocado.utils.external.spark.GenericASTMatcher

method), 147
freememtotal() (in module avocado.utils.memory), 173
freespace() (in module avocado.utils.disk), 157
FS_UNSAFE_CHARS (in module avocado.utils.astring),

151
fully_qualified_name() (avo-

cado.core.dispatcher.Dispatcher method),
210

G
g (avocado.utils.data_structures.DataSize attribute), 156
GDB (class in avocado.plugins.gdb), 248
GDB (class in avocado.utils.gdb), 160
GDBRemote (class in avocado.utils.gdb), 163
GDBServer (class in avocado.utils.gdb), 162
GDBSubProcess (class in avocado.utils.process), 184
generate_core() (avocado.utils.process.GDBSubProcess

method), 185
generate_gdb_connect_cmds() (avo-

cado.utils.process.GDBSubProcess method),
185

generate_gdb_connect_sh() (avo-
cado.utils.process.GDBSubProcess method),
185

generate_random_string() (in module avo-
cado.utils.data_factory), 155

generate_variant_id() (in module avocado.core.varianter),
242

GenericASTBuilder (class in avo-
cado.utils.external.spark), 147

GenericASTMatcher (class in avo-
cado.utils.external.spark), 147

GenericASTTraversal (class in avo-
cado.utils.external.spark), 147

GenericASTTraversalPruningException, 147
GenericParser (class in avocado.utils.external.spark), 147
GenericScanner (class in avocado.utils.external.spark),

148
GenIOError, 164

Index 343

avocado Documentation, Release 63.0

geometric_mean() (in module avo-
cado.utils.data_structures), 157

get() (avocado.core.parameters.AvocadoParams method),
223

get() (avocado.utils.vmimage.Image method), 202
get() (in module avocado.utils.vmimage), 202
get_api_list() (avocado.core.restclient.connection.Connection

method), 206
get_base_dir() (in module avocado.core.data_dir), 208
get_base_keywords() (avo-

cado.core.loader.TestLoaderProxy method),
218

get_blk_string() (in module avocado.utils.memory), 173
get_buddy_info() (in module avocado.utils.memory), 174
get_cache_dirs() (in module avocado.core.data_dir), 208
get_cfg() (in module avocado.utils.pci), 181
get_children_pids() (in module avocado.utils.process),

187
get_cpu_arch() (in module avocado.utils.cpu), 154
get_cpu_vendor_name() (in module avocado.utils.cpu),

154
get_cpufreq_governor() (in module avocado.utils.cpu),

154
get_cpuidle_state() (in module avocado.utils.cpu), 154
get_data() (avocado.core.test.TestData method), 237
get_data_dir() (in module avocado.core.data_dir), 208
get_datafile_path() (in module avocado.core.data_dir),

208
get_decorator_mapping() (avo-

cado.core.loader.ExternalLoader static
method), 216

get_decorator_mapping() (avo-
cado.core.loader.FileLoader static method),
216

get_decorator_mapping() (avo-
cado.core.loader.TestLoader static method),
217

get_decorator_mapping() (avo-
cado.core.loader.TestLoaderProxy method),
218

get_decorator_mapping() (avocado_glib.GLibLoader
static method), 257

get_decorator_mapping() (avo-
cado_golang.GolangLoader static method),
266

get_decorator_mapping() (avo-
cado_loader_yaml.YamlTestsuiteLoader
static method), 264

get_decorator_mapping() (avocado_robot.RobotLoader
static method), 263

get_default() (in module avo-
cado.core.restclient.connection), 206

get_disks_in_pci_address() (in module avocado.utils.pci),
181

get_diskspace() (in module avocado.utils.lv_utils), 170
get_distro() (avocado.utils.distro.Probe method), 159
get_docstring_directives() (in module avo-

cado.core.safeloader), 229
get_docstring_directives_tags() (in module avo-

cado.core.safeloader), 229
get_domains() (in module avocado.utils.pci), 181
get_driver() (in module avocado.utils.pci), 181
get_environment() (avocado.core.tree.TreeNode method),

239
get_environment() (avocado.core.tree.TreeNodeEnvOnly

method), 240
get_extra_listing() (avocado.core.loader.TestLoader

method), 217
get_extra_listing() (avocado.core.loader.TestLoaderProxy

method), 218
get_file() (in module avocado.utils.download), 159
get_first_line() (avocado.utils.path.PathInspector

method), 180
get_full_decorator_mapping() (avo-

cado.core.loader.TestLoader method), 217
get_full_decorator_mapping() (avo-

cado_loader_yaml.YamlTestsuiteLoader
method), 264

get_full_type_label_mapping() (avo-
cado.core.loader.TestLoader method), 217

get_full_type_label_mapping() (avo-
cado_loader_yaml.YamlTestsuiteLoader
method), 264

get_huge_page_size() (in module avocado.utils.memory),
174

get_id() (in module avocado.core.jobdata), 215
get_image_url() (avocado.utils.vmimage.FedoraImageProvider

method), 201
get_image_url() (avocado.utils.vmimage.FedoraSecondaryImageProvider

method), 201
get_image_url() (avocado.utils.vmimage.ImageProviderBase

method), 202
get_interfaces_in_pci_address() (in module avo-

cado.utils.pci), 181
get_leaves() (avocado.core.tree.TreeNode method), 239
get_loaded_modules() (in module avo-

cado.utils.linux_modules), 169
get_logs_dir() (in module avocado.core.data_dir), 208
get_mask() (in module avocado.utils.pci), 181
get_memory_address() (in module avocado.utils.pci), 182
get_mountpoint() (avocado.utils.partition.Partition

method), 179
get_mpath_name() (in module avocado.utils.multipath),

176
get_multipath_details() (in module avo-

cado.utils.multipath), 176
get_multipath_wwids() (in module avo-

cado.utils.multipath), 176

344 Index

avocado Documentation, Release 63.0

get_name_of_init() (in module avocado.utils.service),
194

get_named_tree_cls() (in module avo-
cado_varianter_yaml_to_mux), 262

get_nics_in_pci_address() (in module avocado.utils.pci),
182

get_node() (avocado.core.tree.TreeNode method), 239
get_num_huge_pages() (in module avo-

cado.utils.memory), 174
get_num_interfaces_in_pci() (in module avo-

cado.utils.pci), 182
get_number_of_tests() (avocado.core.varianter.Varianter

method), 242
get_or_die() (avocado.core.parameters.AvocadoParam

method), 223
get_output_file_name() (avocado.plugins.distro.Distro

method), 245
get_package_info() (avo-

cado.plugins.distro.DistroPkgInfoLoader
method), 245

get_package_info() (avo-
cado.plugins.distro.DistroPkgInfoLoaderDeb
method), 246

get_package_info() (avo-
cado.plugins.distro.DistroPkgInfoLoaderRpm
method), 246

get_package_management() (avo-
cado.utils.software_manager.SystemInspector
method), 198

get_packages_info() (avo-
cado.plugins.distro.DistroPkgInfoLoader
method), 245

get_page_size() (in module avocado.utils.memory), 174
get_parents() (avocado.core.tree.TreeNode method), 239
get_path() (avocado.core.tree.TreeNode method), 240
get_path() (avocado.core.tree.TreeNodeEnvOnly

method), 240
get_path() (in module avocado.utils.path), 180
get_path_status() (in module avocado.utils.multipath),

177
get_paths() (in module avocado.utils.multipath), 177
get_pci_addresses() (in module avocado.utils.pci), 182
get_pci_class_name() (in module avocado.utils.pci), 182
get_pci_fun_list() (in module avocado.utils.pci), 182
get_pci_id() (in module avocado.utils.pci), 182
get_pci_id_from_sysfs() (in module avocado.utils.pci),

182
get_pci_prop() (in module avocado.utils.pci), 182
get_pid() (avocado.utils.process.SubProcess method),

186
get_policy() (in module avocado.utils.multipath), 177
get_repo() (in module avocado.utils.git), 166
get_resultsdir() (in module avocado.core.jobdata), 215
get_root() (avocado.core.tree.TreeNode method), 240

get_size() (in module avocado.utils.multipath), 177
get_slot_from_sysfs() (in module avocado.utils.pci), 183
get_slot_list() (in module avocado.utils.pci), 183
get_source() (avocado.utils.software_manager.AptBackend

method), 196
get_source() (avocado.utils.software_manager.YumBackend

method), 199
get_source() (avocado.utils.software_manager.ZypperBackend

method), 199
get_state() (avocado.core.test.Test method), 236
get_state() (avocado.Test method), 144
get_stderr() (avocado.utils.process.SubProcess method),

186
get_stdout() (avocado.utils.process.SubProcess method),

186
get_sub_process_klass() (in module avo-

cado.utils.process), 187
get_submodules() (in module avo-

cado.utils.linux_modules), 169
get_svc_name() (in module avocado.utils.multipath), 177
get_test_dir() (in module avocado.core.data_dir), 209
get_thp_value() (in module avocado.utils.memory), 174
get_tmp_dir() (in module avocado.core.data_dir), 209
get_top_commit() (avocado.utils.git.GitRepoHelper

method), 166
get_top_tag() (avocado.utils.git.GitRepoHelper method),

166
get_type_label_mapping() (avo-

cado.core.loader.ExternalLoader static
method), 216

get_type_label_mapping() (avo-
cado.core.loader.FileLoader static method),
216

get_type_label_mapping() (avo-
cado.core.loader.TestLoader static method),
217

get_type_label_mapping() (avo-
cado.core.loader.TestLoaderProxy method),
218

get_type_label_mapping() (avocado_glib.GLibLoader
static method), 257

get_type_label_mapping() (avo-
cado_golang.GolangLoader static method),
266

get_type_label_mapping() (avo-
cado_loader_yaml.YamlTestsuiteLoader
static method), 264

get_type_label_mapping() (avocado_robot.RobotLoader
static method), 263

get_url() (avocado.core.restclient.connection.Connection
method), 206

get_value() (avocado.core.settings.Settings method), 230
get_version() (avocado.utils.vmimage.ImageProviderBase

method), 202

Index 345

avocado Documentation, Release 63.0

get_vpd() (in module avocado.utils.pci), 183
getoutput() (in module avocado.utils.process), 188
getstatusoutput() (in module avocado.utils.process), 188
git_cmd() (avocado.utils.git.GitRepoHelper method), 166
GitRepoHelper (class in avocado.utils.git), 165
GLibCLI (class in avocado_glib), 257
GLibLoader (class in avocado_glib), 257
GLibTest (class in avocado_glib), 257
GolangCLI (class in avocado_golang), 265
GolangLoader (class in avocado_golang), 266
GolangTest (class in avocado_golang), 266
goto() (avocado.utils.external.spark.GenericParser

method), 148
gotoST() (avocado.utils.external.spark.GenericParser

method), 148
gotoT() (avocado.utils.external.spark.GenericParser

method), 148

H
handle_break_hit() (avo-

cado.utils.process.GDBSubProcess method),
185

handle_fatal_signal() (avo-
cado.utils.process.GDBSubProcess method),
185

handle_starttag() (avocado.utils.vmimage.VMImageHtmlParser
method), 202

has_exec_permission() (avocado.utils.path.PathInspector
method), 180

hash_file() (in module avocado.utils.crypto), 155
header_str() (avocado.core.output.TermSupport method),

221
healthy_str() (avocado.core.output.TermSupport method),

221
hotplug() (in module avocado.utils.memory), 174
hotunplug() (in module avocado.utils.memory), 174
Human (class in avocado.plugins.human), 248
HumanJob (class in avocado.plugins.human), 249

I
Image (class in avocado.utils.vmimage), 202
IMAGE_PROVIDERS (in module avo-

cado.utils.vmimage), 202
ImageProviderBase (class in avocado.utils.vmimage),

202
ImageProviderError, 202
init() (avocado.utils.git.GitRepoHelper method), 166
init_dir() (in module avocado.utils.path), 180
INIT_TIMEOUT (avocado.utils.gdb.GDBServer at-

tribute), 163
initialize() (avocado.plugins.json_variants.JsonVariants

method), 250
initialize() (avocado_varianter_pict.VarianterPict

method), 264

initialize() (avocado_varianter_yaml_to_mux.YamlToMux
method), 261

initialize_connection() (avo-
cado.core.restclient.cli.app.App method),
205

initialize_mux() (avocado_varianter_yaml_to_mux.mux.MuxPlugin
method), 259

install() (avocado.utils.kernel.KernelBuild method), 169
install() (avocado.utils.software_manager.AptBackend

method), 196
install() (avocado.utils.software_manager.YumBackend

method), 199
install() (avocado.utils.software_manager.ZypperBackend

method), 200
install_distro_packages() (in module avo-

cado.utils.software_manager), 200
install_what_provides() (avo-

cado.utils.software_manager.BaseBackend
method), 197

INSTALLED_OUTPUT (avo-
cado.utils.software_manager.DpkgBackend
attribute), 197

interrupt_str() (avocado.core.output.TermSupport
method), 221

InvalidDataSize, 156
InvalidJSONError, 207
InvalidLoaderPlugin, 216
InvalidResultResponseError, 207
is_archive() (in module avocado.utils.archive), 150
is_bytes() (in module avocado.utils.astring), 151
is_empty() (avocado.utils.path.PathInspector method),

180
is_empty_variant() (in module avocado.core.varianter),

242
is_hot_pluggable() (in module avocado.utils.memory),

175
is_leaf (avocado.core.tree.TreeNode attribute), 240
is_parsed() (avocado.core.varianter.Varianter method),

242
is_path_a_multipath() (in module avo-

cado.utils.multipath), 177
is_port_free() (in module avocado.utils.network), 178
is_python() (avocado.utils.path.PathInspector method),

180
is_script() (avocado.utils.path.PathInspector method),

180
is_software_package() (avo-

cado.plugins.distro.DistroPkgInfoLoader
method), 245

is_software_package() (avo-
cado.plugins.distro.DistroPkgInfoLoaderDeb
method), 246

is_software_package() (avo-
cado.plugins.distro.DistroPkgInfoLoaderRpm

346 Index

avocado Documentation, Release 63.0

method), 246
is_text() (in module avocado.utils.astring), 151
is_url() (in module avocado.utils.aurl), 153
isatty() (avocado.core.output.LoggingFile method), 219
isnullable() (avocado.utils.external.spark.GenericParser

method), 148
iso9660() (in module avocado.utils.iso9660), 167
Iso9660IsoInfo (class in avocado.utils.iso9660), 167
Iso9660IsoRead (class in avocado.utils.iso9660), 167
Iso9660Mount (class in avocado.utils.iso9660), 168
iter_children_preorder() (avocado.core.tree.TreeNode

method), 240
iter_leaves() (avocado.core.tree.TreeNode method), 240
iter_parents() (avocado.core.tree.TreeNode method), 240
iter_tabular_output() (in module avocado.utils.astring),

151
iter_variants() (avocado_varianter_yaml_to_mux.mux.MuxTree

method), 259
iteritems() (avocado.core.parameters.AvocadoParam

method), 223
iteritems() (avocado.core.parameters.AvocadoParams

method), 223
iteritems() (avocado_varianter_yaml_to_mux.mux.ValueDict

method), 260
itertests() (avocado.core.varianter.Varianter method), 242

J
JeosImageProvider (class in avocado.utils.vmimage), 202
job (avocado.core.test.Test attribute), 236
job (avocado.Test attribute), 144
Job (class in avocado.core.job), 213
JobBaseException, 211
JobError, 211
JobPost (class in avocado.core.plugin_interfaces), 225
JobPostTests (class in avocado.core.plugin_interfaces),

225
JobPre (class in avocado.core.plugin_interfaces), 225
JobPrePostDispatcher (class in avocado.core.dispatcher),

211
JobPreTests (class in avocado.core.plugin_interfaces),

225
JobScripts (class in avocado.plugins.jobscripts), 249
Journal (class in avocado.plugins.journal), 249
JournalctlWatcher (class in avocado.core.sysinfo), 231
JournalResult (class in avocado.plugins.journal), 250
JSONCLI (class in avocado.plugins.jsonresult), 251
JSONResult (class in avocado.plugins.jsonresult), 251
JsonVariants (class in avocado.plugins.json_variants),

250
JsonVariantsCLI (class in avocado.plugins.json_variants),

251

K
k (avocado.utils.data_structures.DataSize attribute), 156

KernelBuild (class in avocado.utils.kernel), 168
kill() (avocado.utils.process.SubProcess method), 186
kill_process_by_pattern() (in module avo-

cado.utils.process), 189
kill_process_tree() (in module avocado.utils.process), 189

L
lazy_init_journal() (avo-

cado.plugins.journal.JournalResult method),
250

LazyProperty (class in avocado.utils.data_structures), 156
LinuxDistro (class in avocado.utils.distro), 158
List (class in avocado.plugins.list), 252
list() (avocado.plugins.list.TestLister method), 252
list() (avocado.utils.archive.ArchiveFile method), 149
list_all() (avocado.utils.software_manager.DpkgBackend

method), 197
list_all() (avocado.utils.software_manager.RpmBackend

method), 198
list_brief() (in module avo-

cado.core.restclient.cli.actions.server), 204
list_files() (avocado.utils.software_manager.DpkgBackend

method), 197
list_files() (avocado.utils.software_manager.RpmBackend

method), 198
list_mount_devices() (avocado.utils.partition.Partition

static method), 179
list_mount_points() (avocado.utils.partition.Partition

static method), 179
list_providers() (in module avocado.utils.vmimage), 203
ListOfNodeObjects (class in avo-

cado_varianter_yaml_to_mux), 261
load() (avocado.core.varianter.Varianter method), 242
load_config() (avocado.plugins.replay.Replay method),

253
load_distro() (in module avocado.plugins.distro), 247
load_from_tree() (in module avocado.plugins.distro), 247
load_module() (in module avocado.utils.linux_modules),

169
load_plugins() (avocado.core.loader.TestLoaderProxy

method), 218
load_test() (avocado.core.loader.TestLoaderProxy

method), 218
loaded_module_info() (in module avo-

cado.utils.linux_modules), 169
LoaderError, 217
LoaderUnhandledReferenceError, 217
LoaderYAML (class in avocado_loader_yaml), 263
LockFailed, 160
log (avocado.core.output.MemStreamHandler attribute),

220
log (avocado.core.test.Test attribute), 236
log (avocado.Test attribute), 144
log_calls() (in module avocado.utils.debug), 157

Index 347

avocado Documentation, Release 63.0

log_calls_class() (in module avocado.utils.debug), 157
log_exc_info() (in module avocado.utils.stacktrace), 200
LOG_JOB (in module avocado.core.output), 219
log_line() (in module avocado.utils.genio), 164
log_message() (in module avocado.utils.stacktrace), 201
log_plugin_failures() (in module avocado.core.output),

222
LOG_UI (in module avocado.core.output), 219
logdir (avocado.core.job.Job attribute), 214
logdir (avocado.core.test.Test attribute), 236
logdir (avocado.Test attribute), 144
logfile (avocado.core.test.Test attribute), 236
logfile (avocado.Test attribute), 145
Logfile (class in avocado.core.sysinfo), 232
LoggingFile (class in avocado.core.output), 219
LogWatcher (class in avocado.core.sysinfo), 232
lv_check() (in module avocado.utils.lv_utils), 170
lv_create() (in module avocado.utils.lv_utils), 170
lv_list() (in module avocado.utils.lv_utils), 170
lv_mount() (in module avocado.utils.lv_utils), 171
lv_reactivate() (in module avocado.utils.lv_utils), 171
lv_remove() (in module avocado.utils.lv_utils), 171
lv_revert() (in module avocado.utils.lv_utils), 171
lv_revert_with_snapshot() (in module avo-

cado.utils.lv_utils), 171
lv_take_snapshot() (in module avocado.utils.lv_utils),

171
lv_umount() (in module avocado.utils.lv_utils), 172
LVException, 170

M
m (avocado.utils.data_structures.DataSize attribute), 156
main (in module avocado), 143
main (in module avocado.core.job), 215
main() (in module avocado.utils.software_manager), 200
make() (in module avocado.utils.build), 153
make_dir_and_populate() (in module avo-

cado.utils.data_factory), 155
make_script() (in module avocado.utils.script), 193
make_temp_script() (in module avocado.utils.script), 193
makeNewRules() (avocado.utils.external.spark.GenericParser

method), 148
makeRE() (avocado.utils.external.spark.GenericScanner

method), 148
makeSet() (avocado.utils.external.spark.GenericParser

method), 148
makeSet_fast() (avocado.utils.external.spark.GenericParser

method), 148
makeState() (avocado.utils.external.spark.GenericParser

method), 148
makeState0() (avocado.utils.external.spark.GenericParser

method), 148
map_method() (avocado.core.dispatcher.Dispatcher

method), 210

map_method() (avocado.core.dispatcher.VarianterDispatcher
method), 211

map_method() (avocado.core.varianter.FakeVariantDispatcher
method), 241

map_method_copy() (avo-
cado.core.dispatcher.VarianterDispatcher
method), 211

map_method_with_return() (avo-
cado.core.dispatcher.Dispatcher method),
210

map_verbosity_level() (in module avo-
cado.plugins.variants), 255

MappingDict (class in avocado_varianter_yaml_to_mux),
261

match() (avocado.utils.external.spark.GenericASTMatcher
method), 147

match_r() (avocado.utils.external.spark.GenericASTMatcher
method), 147

measure_duration() (in module avocado.utils.debug), 157
MemError, 173
MemInfo (class in avocado.utils.memory), 173
MemStreamHandler (class in avocado.core.output), 219
memtotal() (in module avocado.utils.memory), 175
memtotal_sys() (in module avocado.utils.memory), 175
merge() (avocado.core.tree.TreeNode method), 240
merge() (avocado_varianter_yaml_to_mux.mux.MuxTreeNode

method), 260
merge() (avocado_varianter_yaml_to_mux.mux.MuxTreeNodeDebug

method), 260
merge() (avocado_varianter_yaml_to_mux.mux.TreeNodeDebug

method), 260
MissingTest (class in avocado.core.loader), 217
mkfs() (avocado.utils.partition.Partition method), 179
mnt_dir (avocado.utils.iso9660.Iso9660Mount attribute),

168
MockingTest (class in avocado.core.test), 234
MODULE (in module avocado.utils.linux_modules), 169
module_is_loaded() (in module avo-

cado.utils.linux_modules), 170
modules_imported_as() (in module avo-

cado.core.safeloader), 229
mount() (avocado.utils.partition.Partition method), 179
MOVE_BACK (avocado.core.output.TermSupport

attribute), 221
MOVE_FORWARD (avocado.core.output.TermSupport

attribute), 221
MOVES (avocado.core.output.Throbber attribute), 222
mtab (avocado.utils.partition.MtabLock attribute), 179
MtabLock (class in avocado.utils.partition), 179
Multiplex (class in avocado.plugins.multiplex), 252
MULTIPLIERS (avocado.utils.data_structures.DataSize

attribute), 156
MuxPlugin (class in avo-

cado_varianter_yaml_to_mux.mux), 259

348 Index

avocado Documentation, Release 63.0

MuxTree (class in avo-
cado_varianter_yaml_to_mux.mux), 259

MuxTreeNode (class in avo-
cado_varianter_yaml_to_mux.mux), 260

MuxTreeNodeDebug (class in avo-
cado_varianter_yaml_to_mux.mux), 260

N
name (avocado.core.loader.ExternalLoader attribute), 216
name (avocado.core.loader.FileLoader attribute), 216
name (avocado.core.loader.TestLoader attribute), 217
name (avocado.core.plugin_interfaces.CLICmd at-

tribute), 225
name (avocado.core.test.Test attribute), 236
name (avocado.plugins.archive.Archive attribute), 243
name (avocado.plugins.archive.ArchiveCLI attribute),

243
name (avocado.plugins.config.Config attribute), 244
name (avocado.plugins.diff.Diff attribute), 244
name (avocado.plugins.distro.Distro attribute), 245
name (avocado.plugins.envkeep.EnvKeep attribute), 247
name (avocado.plugins.exec_path.ExecPath attribute),

248
name (avocado.plugins.gdb.GDB attribute), 248
name (avocado.plugins.human.Human attribute), 249
name (avocado.plugins.human.HumanJob attribute), 249
name (avocado.plugins.jobscripts.JobScripts attribute),

249
name (avocado.plugins.journal.Journal attribute), 250
name (avocado.plugins.journal.JournalResult attribute),

250
name (avocado.plugins.json_variants.JsonVariants

attribute), 250
name (avocado.plugins.json_variants.JsonVariantsCLI at-

tribute), 251
name (avocado.plugins.jsonresult.JSONCLI attribute),

251
name (avocado.plugins.jsonresult.JSONResult attribute),

251
name (avocado.plugins.list.List attribute), 252
name (avocado.plugins.multiplex.Multiplex attribute),

252
name (avocado.plugins.plugins.Plugins attribute), 253
name (avocado.plugins.replay.Replay attribute), 253
name (avocado.plugins.run.Run attribute), 253
name (avocado.plugins.sysinfo.SysInfo attribute), 254
name (avocado.plugins.tap.TAP attribute), 254
name (avocado.plugins.tap.TAPResult attribute), 254
name (avocado.plugins.teststmpdir.TestsTmpDir at-

tribute), 255
name (avocado.plugins.variants.Variants attribute), 255
name (avocado.plugins.wrapper.Wrapper attribute), 256
name (avocado.plugins.xunit.XUnitCLI attribute), 256
name (avocado.plugins.xunit.XUnitResult attribute), 256

name (avocado.Test attribute), 145
name (avocado.utils.vmimage.CentOSImageProvider at-

tribute), 201
name (avocado.utils.vmimage.DebianImageProvider at-

tribute), 201
name (avocado.utils.vmimage.FedoraImageProvider at-

tribute), 201
name (avocado.utils.vmimage.FedoraSecondaryImageProvider

attribute), 202
name (avocado.utils.vmimage.JeosImageProvider at-

tribute), 202
name (avocado.utils.vmimage.UbuntuImageProvider at-

tribute), 202
name (avocado_glib.GLibCLI attribute), 257
name (avocado_glib.GLibLoader attribute), 257
name (avocado_golang.GolangCLI attribute), 265
name (avocado_golang.GolangLoader attribute), 266
name (avocado_loader_yaml.LoaderYAML attribute),

264
name (avocado_loader_yaml.YamlTestsuiteLoader

attribute), 264
name (avocado_result_upload.ResultUpload attribute),

262
name (avocado_result_upload.ResultUploadCLI at-

tribute), 262
name (avocado_resultsdb.ResultsdbCLI attribute), 258
name (avocado_resultsdb.ResultsdbResult attribute), 258
name (avocado_resultsdb.ResultsdbResultEvent at-

tribute), 258
name (avocado_robot.RobotCLI attribute), 263
name (avocado_robot.RobotLoader attribute), 263
name (avocado_varianter_pict.VarianterPict attribute),

264
name (avocado_varianter_pict.VarianterPictCLI at-

tribute), 265
name (avocado_varianter_yaml_to_mux.YamlToMux at-

tribute), 261
name (avocado_varianter_yaml_to_mux.YamlToMuxCLI

attribute), 261
name_for_file() (avocado.utils.distro.Probe method), 159
name_for_file_contains() (avocado.utils.distro.Probe

method), 159
names() (avocado.core.dispatcher.Dispatcher method),

210
NAMESPACE_PREFIX (avo-

cado.core.dispatcher.Dispatcher attribute),
210

no_default (avocado.core.settings.Settings attribute), 230
node_size() (in module avocado.utils.memory), 175
NoMatchError, 223
nonterminal() (avocado.utils.external.spark.GenericASTBuilder

method), 147
NOT_SET (in module avocado.utils.linux_modules), 169
NotATest (class in avocado.core.loader), 217

Index 349

avocado Documentation, Release 63.0

NotGLibTest (class in avocado_glib), 258
NotGolangTest (class in avocado_golang), 266
NotRobotTest (class in avocado_robot), 262
numa_nodes() (in module avocado.utils.memory), 175
numa_nodes_with_memory() (in module avo-

cado.utils.memory), 175

O
objects() (avocado.core.parameters.AvocadoParams

method), 223
offline() (in module avocado.utils.cpu), 154
online() (in module avocado.utils.cpu), 154
online_cpus_count() (in module avocado.utils.cpu), 154
open() (avocado.utils.archive.ArchiveFile class method),

149
OptionValidationError, 211
ordered_list_unique() (in module avo-

cado.utils.data_structures), 157
OUTPUT_CHECK_RECORD_MODE (in module avo-

cado.utils.process), 185
output_mapping (avocado.plugins.human.Human at-

tribute), 249
outputdir (avocado.core.test.Test attribute), 236
outputdir (avocado.Test attribute), 145
OutputList (class in avo-

cado_varianter_yaml_to_mux.mux), 260
OutputValue (class in avo-

cado_varianter_yaml_to_mux.mux), 260

P
PACKAGE_TYPE (avo-

cado.utils.software_manager.DpkgBackend
attribute), 197

PACKAGE_TYPE (avo-
cado.utils.software_manager.RpmBackend
attribute), 197

PagerNotFoundError, 220
Paginator (class in avocado.core.output), 220
params (avocado.core.test.Test attribute), 236
params (avocado.Test attribute), 145
parents (avocado.core.tree.TreeNode attribute), 240
parse() (avocado.core.varianter.Varianter method), 242
parse() (avocado.utils.external.spark.GenericParser

method), 148
parse() (in module avocado.utils.external.gdbmi_parser),

147
parse_args() (avocado.core.job.TestProgram method),

214
parse_lsmod_for_module() (in module avo-

cado.utils.linux_modules), 170
parse_pict_output() (in module avocado_varianter_pict),

265
Parser (class in avocado.core.parser), 224
Parser (class in avocado.core.restclient.cli.parser), 205

partial_str() (avocado.core.output.TermSupport method),
221

Partition (class in avocado.utils.partition), 179
PartitionError, 180
pass_str() (avocado.core.output.TermSupport method),

222
path (avocado.core.tree.TreeNode attribute), 240
path (avocado.utils.vmimage.Image attribute), 202
path_parent() (in module avo-

cado_varianter_yaml_to_mux.mux), 261
PathInspector (class in avocado.utils.path), 180
paths (avocado_varianter_yaml_to_mux.mux.MuxPlugin

attribute), 259
pid_exists() (in module avocado.utils.process), 189
ping() (avocado.core.restclient.connection.Connection

method), 206
Plugin (class in avocado.core.plugin_interfaces), 225
plugin_type() (avocado.core.dispatcher.Dispatcher

method), 210
Plugins (class in avocado.plugins.plugins), 252
poll() (avocado.utils.process.SubProcess method), 186
PORT_RANGE (avocado.utils.gdb.GDBServer attribute),

163
PortTracker (class in avocado.utils.network), 177
position() (avocado.utils.external.spark.GenericScanner

method), 148
post() (avocado.core.plugin_interfaces.JobPost method),

225
post() (avocado.plugins.human.HumanJob method), 249
post() (avocado.plugins.jobscripts.JobScripts method),

249
post() (avocado.plugins.teststmpdir.TestsTmpDir

method), 255
post_tests() (avocado.core.job.Job method), 214
post_tests() (avocado.core.plugin_interfaces.JobPostTests

method), 225
post_tests() (avocado.plugins.human.Human method),

249
post_tests() (avocado.plugins.journal.JournalResult

method), 250
post_tests() (avocado.plugins.tap.TAPResult method),

254
post_tests() (avocado_resultsdb.ResultsdbResultEvent

method), 258
postorder() (avocado.utils.external.spark.GenericASTTraversal

method), 147
pre() (avocado.core.plugin_interfaces.JobPre method),

225
pre() (avocado.plugins.human.HumanJob method), 249
pre() (avocado.plugins.jobscripts.JobScripts method), 249
pre() (avocado.plugins.teststmpdir.TestsTmpDir method),

255
pre_tests() (avocado.core.job.Job method), 214
pre_tests() (avocado.core.plugin_interfaces.JobPreTests

350 Index

avocado Documentation, Release 63.0

method), 225
pre_tests() (avocado.plugins.human.Human method), 249
pre_tests() (avocado.plugins.journal.JournalResult

method), 250
pre_tests() (avocado.plugins.tap.TAPResult method), 254
pre_tests() (avocado_resultsdb.ResultsdbResultEvent

method), 259
predecessor() (avocado.utils.external.spark.GenericParser

method), 148
preorder() (avocado.utils.external.spark.GenericASTTraversal

method), 147
prepare_exc_info() (in module avocado.utils.stacktrace),

201
prepare_source() (avocado.utils.software_manager.RpmBackend

method), 198
preprocess() (avocado.utils.external.spark.GenericASTBuilder

method), 147
preprocess() (avocado.utils.external.spark.GenericASTMatcher

method), 147
preprocess() (avocado.utils.external.spark.GenericParser

method), 148
print_records() (avocado.core.output.StdOutput method),

220
PRINTABLE (avocado.plugins.xunit.XUnitResult

attribute), 256
Probe (class in avocado.utils.distro), 158
process() (in module avo-

cado.utils.external.gdbmi_parser), 147
process_config_path() (avocado.core.settings.Settings

method), 230
process_in_ptree_is_defunct() (in module avo-

cado.utils.process), 189
ProgressBar (class in avocado.utils.output), 178
ProgressStreamHandler (class in avocado.core.output),

220
provides() (avocado.utils.software_manager.AptBackend

method), 196
provides() (avocado.utils.software_manager.YumBackend

method), 199
provides() (avocado.utils.software_manager.ZypperBackend

method), 200
prune() (avocado.utils.external.spark.GenericASTTraversal

method), 147
PythonUnittest (class in avocado.core.test), 234

R
RawFileHandler (class in avocado.core.test), 234
read() (avocado.utils.iso9660.Iso9660IsoInfo method),

167
read() (avocado.utils.iso9660.Iso9660IsoRead method),

167
read() (avocado.utils.iso9660.Iso9660Mount method),

168
read_all_lines() (in module avocado.utils.genio), 164

read_file() (in module avocado.utils.genio), 164
read_from_meminfo() (in module avo-

cado.utils.memory), 175
read_from_numa_maps() (in module avo-

cado.utils.memory), 175
read_from_smaps() (in module avocado.utils.memory),

175
read_from_vmstat() (in module avocado.utils.memory),

175
read_gdb_response() (avocado.utils.gdb.GDB method),

161
read_one_line() (in module avocado.utils.genio), 165
READ_ONLY_MODE (in module avocado.utils.script),

192
read_until_break() (avocado.utils.gdb.GDB method), 162
readline() (avocado.core.sysinfo.Collectible method), 231
reconfigure() (in module avocado.core.output), 222
record() (in module avocado.core.jobdata), 215
records (avocado.core.output.StdOutput attribute), 221
reflect() (avocado.utils.external.spark.GenericScanner

method), 148
register() (avocado.utils.data_structures.CallbackRegister

method), 156
register_plugin() (avocado.core.loader.TestLoaderProxy

method), 218
register_port() (avocado.utils.network.PortTracker

method), 177
register_probe() (in module avocado.utils.distro), 159
reinstate_path() (in module avocado.utils.multipath), 177
release() (avocado.utils.distro.Probe method), 159
release_port() (avocado.utils.network.PortTracker

method), 177
remove() (avocado.utils.script.Script method), 193
remove() (avocado.utils.script.TemporaryScript method),

193
remove() (avocado.utils.software_manager.AptBackend

method), 196
remove() (avocado.utils.software_manager.YumBackend

method), 199
remove() (avocado.utils.software_manager.ZypperBackend

method), 200
remove_repo() (avocado.utils.software_manager.AptBackend

method), 196
remove_repo() (avocado.utils.software_manager.YumBackend

method), 199
remove_repo() (avocado.utils.software_manager.ZypperBackend

method), 200
render() (avocado.core.output.Throbber method), 222
render() (avocado.core.plugin_interfaces.Result method),

226
render() (avocado.plugins.archive.Archive method), 243
render() (avocado.plugins.jsonresult.JSONResult

method), 251
render() (avocado.plugins.xunit.XUnitResult method),

Index 351

avocado Documentation, Release 63.0

256
render() (avocado_result_upload.ResultUpload method),

262
render() (avocado_resultsdb.ResultsdbResult method),

258
Replay (class in avocado.plugins.replay), 253
ReplaySkipTest (class in avocado.core.test), 234
report_state() (avocado.core.test.Test method), 236
report_state() (avocado.Test method), 145
request() (avocado.core.restclient.connection.Connection

method), 206
REQUIRED_ARGS (avocado.utils.gdb.GDB attribute),

160
REQUIRED_ARGS (avocado.utils.gdb.GDBServer at-

tribute), 163
REQUIRED_DATA (avo-

cado.core.restclient.response.BaseResponse
attribute), 207

REQUIRED_DATA (avo-
cado.core.restclient.response.ResultResponse
attribute), 207

resolve() (avocado.utils.external.spark.GenericASTMatcher
method), 147

resolve() (avocado.utils.external.spark.GenericParser
method), 148

Result (class in avocado.core.plugin_interfaces), 226
Result (class in avocado.core.result), 226
ResultDispatcher (class in avocado.core.dispatcher), 211
ResultEvents (class in avocado.core.plugin_interfaces),

226
ResultEventsDispatcher (class in avo-

cado.core.dispatcher), 211
ResultResponse (class in avo-

cado.core.restclient.response), 207
ResultsdbCLI (class in avocado_resultsdb), 258
ResultsdbResult (class in avocado_resultsdb), 258
ResultsdbResultEvent (class in avocado_resultsdb), 258
ResultUpload (class in avocado_result_upload), 262
ResultUploadCLI (class in avocado_result_upload), 262
retrieve_args() (in module avocado.core.jobdata), 215
retrieve_cmdline() (in module avocado.core.jobdata), 215
retrieve_config() (in module avocado.core.jobdata), 215
retrieve_pwd() (in module avocado.core.jobdata), 215
retrieve_references() (in module avocado.core.jobdata),

215
retrieve_variants() (in module avocado.core.jobdata), 215
rm_logger() (avocado.core.output.LoggingFile method),

219
RobotCLI (class in avocado_robot), 263
RobotLoader (class in avocado_robot), 263
RobotTest (class in avocado_robot), 263
root (avocado.core.tree.TreeNode attribute), 240
root (avocado_varianter_yaml_to_mux.mux.MuxPlugin

attribute), 259

rounded_memtotal() (in module avocado.utils.memory),
176

rpm_install() (avocado.utils.software_manager.RpmBackend
method), 198

RpmBackend (class in avocado.utils.software_manager),
197

Run (class in avocado.plugins.run), 253
run() (avocado.core.app.AvocadoApp method), 207
run() (avocado.core.job.Job method), 214
run() (avocado.core.plugin_interfaces.CLI method), 224
run() (avocado.core.plugin_interfaces.CLICmd method),

225
run() (avocado.core.restclient.cli.app.App method), 205
run() (avocado.core.sysinfo.Command method), 231
run() (avocado.core.sysinfo.Daemon method), 231
run() (avocado.core.sysinfo.JournalctlWatcher method),

232
run() (avocado.core.sysinfo.Logfile method), 232
run() (avocado.core.sysinfo.LogWatcher method), 232
run() (avocado.plugins.archive.ArchiveCLI method), 243
run() (avocado.plugins.config.Config method), 244
run() (avocado.plugins.diff.Diff method), 244
run() (avocado.plugins.distro.Distro method), 245
run() (avocado.plugins.envkeep.EnvKeep method), 247
run() (avocado.plugins.exec_path.ExecPath method), 248
run() (avocado.plugins.gdb.GDB method), 248
run() (avocado.plugins.journal.Journal method), 250
run() (avocado.plugins.json_variants.JsonVariantsCLI

method), 251
run() (avocado.plugins.jsonresult.JSONCLI method), 251
run() (avocado.plugins.list.List method), 252
run() (avocado.plugins.multiplex.Multiplex method), 252
run() (avocado.plugins.plugins.Plugins method), 253
run() (avocado.plugins.replay.Replay method), 253
run() (avocado.plugins.run.Run method), 253
run() (avocado.plugins.sysinfo.SysInfo method), 254
run() (avocado.plugins.tap.TAP method), 254
run() (avocado.plugins.variants.Variants method), 255
run() (avocado.plugins.wrapper.Wrapper method), 256
run() (avocado.plugins.xunit.XUnitCLI method), 256
run() (avocado.utils.data_structures.CallbackRegister

method), 156
run() (avocado.utils.gdb.GDB method), 162
run() (avocado.utils.process.GDBSubProcess method),

185
run() (avocado.utils.process.SubProcess method), 186
run() (avocado_glib.GLibCLI method), 257
run() (avocado_golang.GolangCLI method), 265
run() (avocado_loader_yaml.LoaderYAML method), 264
run() (avocado_result_upload.ResultUploadCLI method),

262
run() (avocado_resultsdb.ResultsdbCLI method), 258
run() (avocado_robot.RobotCLI method), 263

352 Index

avocado Documentation, Release 63.0

run() (avocado_varianter_pict.VarianterPictCLI method),
265

run() (avocado_varianter_yaml_to_mux.YamlToMuxCLI
method), 262

run() (in module avocado.utils.process), 189
run_avocado() (avocado.core.test.Test method), 236
run_avocado() (avocado.Test method), 145
run_make() (in module avocado.utils.build), 153
run_pict() (in module avocado_varianter_pict), 265
run_suite() (avocado.core.runner.TestRunner method),

227
run_test() (avocado.core.runner.TestRunner method), 228
run_tests() (avocado.core.job.Job method), 214
run_tests() (avocado.core.job.TestProgram method), 214
runner_queue (avocado.core.test.Test attribute), 236
runner_queue (avocado.Test attribute), 145
running (avocado.core.test.Test attribute), 236
running (avocado.Test attribute), 145

S
safe_kill() (in module avocado.utils.process), 190
save() (avocado.utils.script.Script method), 193
save_distro() (in module avocado.plugins.distro), 247
scan() (in module avocado.utils.external.gdbmi_parser),

147
Script (class in avocado.utils.script), 192
send_gdb_command() (avocado.utils.gdb.GDB method),

162
send_signal() (avocado.utils.process.SubProcess

method), 186
service_manager() (in module avocado.utils.service), 194
ServiceManager() (in module avocado.utils.service), 194
set_break() (avocado.utils.gdb.GDB method), 162
set_cpufreq_governor() (in module avocado.utils.cpu),

154
set_cpuidle_state() (in module avocado.utils.cpu), 154
set_environment_dirty() (avocado.core.tree.TreeNode

method), 240
set_extended_mode() (avocado.utils.gdb.GDBRemote

method), 164
set_file() (avocado.utils.gdb.GDB method), 162
set_log_file_dir() (in module avocado.utils.genio), 165
set_num_huge_pages() (in module avo-

cado.utils.memory), 176
set_runner_queue() (avocado.core.test.Test method), 237
set_runner_queue() (avocado.Test method), 145
set_thp_value() (in module avocado.utils.memory), 176
Settings (class in avocado.core.settings), 230
settings_section() (avocado.core.dispatcher.Dispatcher

method), 211
SettingsError, 230
SettingsValueError, 230
setup() (avocado.core.job.Job method), 214
setUp() (avocado.core.test.DryRunTest method), 233

shell_escape() (in module avocado.utils.astring), 151
should_run_inside_gdb() (in module avo-

cado.utils.process), 190
should_run_inside_wrapper() (in module avo-

cado.utils.process), 190
SimpleTest (class in avocado.core.test), 234
skip() (avocado.utils.external.spark.GenericParser

method), 148
skip() (in module avocado), 146
skip() (in module avocado.core.decorators), 209
skip_str() (avocado.core.output.TermSupport method),

222
skipIf() (in module avocado), 146
skipIf() (in module avocado.core.decorators), 209
skipUnless() (in module avocado), 146
skipUnless() (in module avocado.core.decorators), 209
SOFTWARE_COMPONENT_QRY (avo-

cado.utils.software_manager.RpmBackend
attribute), 197

software_packages (avocado.plugins.distro.DistroDef at-
tribute), 245

software_packages_type (avo-
cado.plugins.distro.DistroDef attribute),
245

SoftwareManager (class in avo-
cado.utils.software_manager), 198

SoftwarePackage (class in avocado.plugins.distro), 246
SOURCE (avocado.utils.kernel.KernelBuild attribute),

168
specific_service_manager() (in module avo-

cado.utils.service), 195
SpecificServiceManager() (in module avo-

cado.utils.service), 194
split_gdb_expr() (in module avocado.utils.process), 190
start() (avocado.core.parser.Parser method), 224
start() (avocado.utils.process.FDDrainer method), 184
start() (avocado.utils.process.SubProcess method), 186
start_job_hook() (avocado.core.sysinfo.SysInfo method),

233
start_no_ack_mode() (avocado.utils.gdb.GDBRemote

method), 164
start_test() (avocado.core.plugin_interfaces.ResultEvents

method), 226
start_test() (avocado.core.result.Result method), 227
start_test() (avocado.plugins.human.Human method), 249
start_test() (avocado.plugins.journal.JournalResult

method), 250
start_test() (avocado.plugins.tap.TAPResult method), 254
start_test() (avocado_resultsdb.ResultsdbResultEvent

method), 259
start_test_hook() (avocado.core.sysinfo.SysInfo method),

233
status (avocado.core.exceptions.JobBaseException

attribute), 211

Index 353

avocado Documentation, Release 63.0

status (avocado.core.exceptions.JobError attribute), 211
status (avocado.core.exceptions.OptionValidationError

attribute), 211
status (avocado.core.exceptions.TestAbortError at-

tribute), 212
status (avocado.core.exceptions.TestBaseException at-

tribute), 212
status (avocado.core.exceptions.TestCancel attribute),

212
status (avocado.core.exceptions.TestError attribute), 212
status (avocado.core.exceptions.TestFail attribute), 212
status (avocado.core.exceptions.TestInterruptedError at-

tribute), 212
status (avocado.core.exceptions.TestNotFoundError at-

tribute), 212
status (avocado.core.exceptions.TestSetupFail attribute),

212
status (avocado.core.exceptions.TestSkipError attribute),

213
status (avocado.core.exceptions.TestTimeoutInterrupted

attribute), 213
status (avocado.core.exceptions.TestWarn attribute), 213
status (avocado.core.test.Test attribute), 237
status (avocado.Test attribute), 145
status (avocado.TestCancel attribute), 146
status (avocado.TestError attribute), 146
status (avocado.TestFail attribute), 146
status() (in module avo-

cado.core.restclient.cli.actions.server), 204
STD_OUTPUT (in module avocado.core.output), 220
stderr (avocado.utils.process.CmdResult attribute), 184
stderr_text (avocado.utils.process.CmdResult attribute),

184
stdout (avocado.utils.process.CmdResult attribute), 184
stdout_text (avocado.utils.process.CmdResult attribute),

184
StdOutput (class in avocado.core.output), 220
STEPS (avocado.core.output.Throbber attribute), 222
stop() (avocado.core.sysinfo.Daemon method), 231
stop() (avocado.utils.process.SubProcess method), 187
store_load_failure() (avocado.core.dispatcher.Dispatcher

static method), 211
str_filesystem (avocado.core.test.TestID attribute), 238
str_leaves_variant (avo-

cado.core.parameters.AvocadoParam attribute),
223

str_unpickable_object() (in module avo-
cado.utils.stacktrace), 201

string_safe_encode() (in module avocado.utils.astring),
152

string_to_bitlist() (in module avocado.utils.astring), 152
string_to_safe_path() (in module avocado.utils.astring),

152
strip_console_codes() (in module avocado.utils.astring),

152
SubProcess (class in avocado.utils.process), 185
sys_v_init_command_generator() (in module avo-

cado.utils.service), 195
sys_v_init_result_parser() (in module avo-

cado.utils.service), 195
SysInfo (class in avocado.core.sysinfo), 232
SysInfo (class in avocado.plugins.sysinfo), 254
system() (in module avocado.utils.process), 190
system_output() (in module avocado.utils.process), 191
systemd_command_generator() (in module avo-

cado.utils.service), 195
systemd_result_parser() (in module avo-

cado.utils.service), 195
SystemInspector (class in avo-

cado.utils.software_manager), 198

T
t (avocado.utils.data_structures.DataSize attribute), 156
t_default() (avocado.utils.external.spark.GenericScanner

method), 148
tabular_output() (in module avocado.utils.astring), 152
TAP (class in avocado.plugins.tap), 254
TAPResult (class in avocado.plugins.tap), 254
tb_info() (in module avocado.utils.stacktrace), 201
TemporaryScript (class in avocado.utils.script), 193
TERM_SUPPORT (in module avocado.core.output), 221
terminal() (avocado.utils.external.spark.GenericASTBuilder

method), 147
terminate() (avocado.utils.process.SubProcess method),

187
TermSupport (class in avocado.core.output), 221
Test (class in avocado), 143
Test (class in avocado.core.test), 235
test() (avocado.core.test.ExternalRunnerTest method),

234
test() (avocado.core.test.MockingTest method), 234
test() (avocado.core.test.PythonUnittest method), 234
test() (avocado.core.test.ReplaySkipTest method), 234
test() (avocado.core.test.SimpleTest method), 235
test() (avocado.core.test.TestError method), 238
test() (avocado.core.test.TimeOutSkipTest method), 238
test() (avocado_glib.GLibTest method), 257
test() (avocado_golang.GolangTest method), 266
test() (avocado_robot.RobotTest method), 263
test_progress() (avocado.core.plugin_interfaces.ResultEvents

method), 226
test_progress() (avocado.plugins.human.Human method),

249
test_progress() (avocado.plugins.journal.JournalResult

method), 250
test_progress() (avocado.plugins.tap.TAPResult method),

255

354 Index

avocado Documentation, Release 63.0

test_progress() (avocado_resultsdb.ResultsdbResultEvent
method), 259

TEST_STATE_ATTRIBUTES (in module avo-
cado.core.test), 235

test_suite (avocado.core.job.Job attribute), 214
TestAbortError, 211
TestBaseException, 212
TestCancel, 146, 212
TestData (class in avocado.core.test), 237
TestError, 146, 212
TestError (class in avocado.core.test), 237
TestFail, 146, 212
TestID (class in avocado.core.test), 238
TestInterruptedError, 212
TestLister (class in avocado.plugins.list), 252
TestLoader (class in avocado.core.loader), 217
TestLoaderProxy (class in avocado.core.loader), 217
TestNotFoundError, 212
TestProgram (class in avocado.core.job), 214
TestRunner (class in avocado.core.runner), 227
TestSetupFail, 212
TestSkipError, 212
TestStatus (class in avocado.core.runner), 228
teststmpdir (avocado.core.test.Test attribute), 237
teststmpdir (avocado.Test attribute), 145
TestsTmpDir (class in avocado.plugins.teststmpdir), 255
TestTimeoutInterrupted, 213
TestWarn, 213
thin_lv_create() (in module avocado.utils.lv_utils), 172
Throbber (class in avocado.core.output), 222
time_elapsed (avocado.core.job.Job attribute), 214
time_elapsed (avocado.core.test.Test attribute), 237
time_elapsed (avocado.Test attribute), 145
time_end (avocado.core.job.Job attribute), 214
time_end (avocado.core.test.Test attribute), 237
time_end (avocado.Test attribute), 145
time_start (avocado.core.job.Job attribute), 214
time_start (avocado.core.test.Test attribute), 237
time_start (avocado.Test attribute), 145
time_to_seconds() (in module avo-

cado.utils.data_structures), 157
timeout (avocado.core.test.Test attribute), 237
timeout (avocado.Test attribute), 145
TIMEOUT_PROCESS_ALIVE (in module avo-

cado.core.runner), 227
TIMEOUT_PROCESS_DIED (in module avo-

cado.core.runner), 227
TIMEOUT_TEST_INTERRUPTED (in module avo-

cado.core.runner), 227
TimeOutSkipTest (class in avocado.core.test), 238
to_dict() (avocado.plugins.distro.DistroDef method), 245
to_dict() (avocado.plugins.distro.SoftwarePackage

method), 246
to_json() (avocado.plugins.distro.DistroDef method), 245

to_json() (avocado.plugins.distro.SoftwarePackage
method), 246

to_str() (avocado.core.plugin_interfaces.Varianter
method), 226

to_str() (avocado.core.varianter.FakeVariantDispatcher
method), 241

to_str() (avocado.core.varianter.Varianter method), 242
to_str() (avocado.plugins.json_variants.JsonVariants

method), 250
to_str() (avocado_varianter_pict.VarianterPict method),

264
to_str() (avocado_varianter_yaml_to_mux.mux.MuxPlugin

method), 259
to_text() (in module avocado.utils.astring), 152
tokenize() (avocado.utils.external.spark.GenericScanner

method), 148
total_cpus_count() (in module avocado.utils.cpu), 155
traceback (avocado.core.test.Test attribute), 237
traceback (avocado.Test attribute), 145
tree_view() (in module avocado.core.tree), 240
TreeEnvironment (class in avocado.core.tree), 239
TreeNode (class in avocado.core.tree), 239
TreeNodeDebug (class in avo-

cado_varianter_yaml_to_mux.mux), 260
TreeNodeEnvOnly (class in avocado.core.tree), 240
typestring() (avocado.utils.external.spark.GenericASTTraversal

method), 147
typestring() (avocado.utils.external.spark.GenericParser

method), 148

U
UbuntuImageProvider (class in avocado.utils.vmimage),

202
uncompress() (avocado.utils.kernel.KernelBuild method),

169
uncompress() (in module avocado.utils.archive), 150
UNDEFINED_BEHAVIOR_EXCEPTION (in module

avocado.utils.process), 187
unit (avocado.utils.data_structures.DataSize attribute),

156
UNKNOWN (avocado.plugins.xunit.XUnitResult at-

tribute), 256
unload_module() (in module avo-

cado.utils.linux_modules), 170
unmount() (avocado.utils.partition.Partition method), 179
unregister() (avocado.utils.data_structures.CallbackRegister

method), 156
UnsupportedProtocolError, 151
update() (avocado.core.tree.FilterSet method), 239
update_amount() (avocado.utils.output.ProgressBar

method), 178
update_defaults() (avo-

cado.core.plugin_interfaces.Varianter method),
226

Index 355

avocado Documentation, Release 63.0

update_defaults() (avo-
cado.plugins.json_variants.JsonVariants
method), 251

update_defaults() (avocado_varianter_pict.VarianterPict
method), 265

update_defaults() (avo-
cado_varianter_yaml_to_mux.mux.MuxPlugin
method), 259

update_percentage() (avocado.utils.output.ProgressBar
method), 178

upgrade() (avocado.utils.software_manager.AptBackend
method), 197

upgrade() (avocado.utils.software_manager.YumBackend
method), 199

upgrade() (avocado.utils.software_manager.ZypperBackend
method), 200

URL (avocado.utils.kernel.KernelBuild attribute), 168
url_download() (in module avocado.utils.download), 159
url_download_interactive() (in module avo-

cado.utils.download), 160
url_open() (in module avocado.utils.download), 160
usable_ro_dir() (in module avocado.utils.path), 181
usable_rw_dir() (in module avocado.utils.path), 181

V
value (avocado.utils.data_structures.DataSize attribute),

156
Value (class in avocado_varianter_yaml_to_mux), 261
ValueDict (class in avo-

cado_varianter_yaml_to_mux.mux), 260
variant_to_str() (in module avocado.core.varianter), 243
Varianter (class in avocado.core.plugin_interfaces), 226
Varianter (class in avocado.core.varianter), 241
VarianterDispatcher (class in avocado.core.dispatcher),

211
VarianterPict (class in avocado_varianter_pict), 264
VarianterPictCLI (class in avocado_varianter_pict), 265
variants (avocado.plugins.json_variants.JsonVariants at-

tribute), 251
variants (avocado_varianter_yaml_to_mux.mux.MuxPlugin

attribute), 259
Variants (class in avocado.plugins.variants), 255
version (avocado.utils.vmimage.ImageProviderBase at-

tribute), 202
version() (avocado.utils.distro.Probe method), 159
vg_check() (in module avocado.utils.lv_utils), 172
vg_create() (in module avocado.utils.lv_utils), 172
vg_list() (in module avocado.utils.lv_utils), 172
vg_ramdisk() (in module avocado.utils.lv_utils), 172
vg_ramdisk_cleanup() (in module avocado.utils.lv_utils),

173
vg_remove() (in module avocado.utils.lv_utils), 173
VMImageHtmlParser (class in avocado.utils.vmimage),

202

W
wait() (avocado.utils.process.SubProcess method), 187
wait_for() (in module avocado.utils.wait), 203
wait_for_early_status() (avocado.core.runner.TestStatus

method), 228
wait_for_exit() (avocado.utils.process.GDBSubProcess

method), 185
warn_header_str() (avocado.core.output.TermSupport

method), 222
warn_str() (avocado.core.output.TermSupport method),

222
whiteboard (avocado.core.test.Test attribute), 237
whiteboard (avocado.Test attribute), 145
workdir (avocado.core.test.Test attribute), 237
workdir (avocado.Test attribute), 145
WRAP_PROCESS (in module avocado.utils.process),

187
WRAP_PROCESS_NAMES_EXPR (in module avo-

cado.utils.process), 187
Wrapper (class in avocado.plugins.wrapper), 255
WrapSubProcess (class in avocado.utils.process), 187
write() (avocado.core.output.LoggingFile method), 219
write() (avocado.core.output.Paginator method), 220
write_file() (in module avocado.utils.genio), 165
write_file_or_fail() (in module avocado.utils.genio), 165
write_one_line() (in module avocado.utils.genio), 165

X
XUnitCLI (class in avocado.plugins.xunit), 256
XUnitResult (class in avocado.plugins.xunit), 256

Y
YamlTestsuiteLoader (class in avocado_loader_yaml),

264
YamlToMux (class in avocado_varianter_yaml_to_mux),

261
YamlToMuxCLI (class in avo-

cado_varianter_yaml_to_mux), 261
YumBackend (class in avocado.utils.software_manager),

198

Z
ZypperBackend (class in avo-

cado.utils.software_manager), 199

356 Index

	About Avocado
	Getting Started
	Installing Avocado
	Using Avocado
	Writing a Simple Test
	Running A More Complex Test Job
	Interrupting The Job On First Failed Test (failfast)
	Ignoring Missing Test References
	Running Tests With An External Runner
	Debugging tests

	Writing Avocado Tests
	Basic example
	Test statuses
	Saving test generated (custom) data
	Accessing test data files
	Accessing test parameters
	Running multiple variants of tests
	Advanced logging capabilities
	unittest.TestCase heritage
	Setup and cleanup methods
	Running third party test suites
	Fetching asset files
	Test Output Check and Output Record Mode
	Test log, stdout and stderr in native Avocado modules
	Setting a Test Timeout
	Skipping Tests
	Cancelling Tests
	Docstring Directives
	Python unittest Compatibility Limitations And Caveats
	Environment Variables for Tests
	SIMPLE Tests BASH extensions
	SIMPLE Tests Status
	Wrap Up

	Result Formats
	Results for human beings
	Machine readable results
	Multiple results at once
	Exit Codes
	Implementing other result formats

	Configuration
	Config file parsing order
	Plugin config files
	Parsing order recap
	Order of precedence for values used in tests
	Config plugin
	Avocado Data Directories

	Test discovery
	The order of test loaders
	Running simple tests with arguments
	Filtering tests by tags
	Test References

	Logging system
	Tweaking the UI
	Storing custom logs
	Paginator

	Sysinfo collection
	Test parameters
	TreeNode
	AvocadoParams
	Parameter Paths
	Variant
	Dumping/Loading Variants
	Varianter
	Default params
	Varianter plugins
	Multiplexer
	Multiplex domains
	MuxPlugin
	MuxTree

	Job Replay
	Job Diff
	Running Tests Remotely
	Subclassing Avocado
	Debugging with GDB
	Transparent Execution of Executables
	avocado.utils.gdb APIs

	Wrap executables run by tests
	Usage
	Caveats

	Plugin System
	Listing plugins
	Writing a plugin

	Utilities
	Utilities

	Optional Plugins
	Optional Plugins

	Advanced Topics and Maintenance
	Reference Guide
	Contribution and Community Guide
	Avocado development tips
	Releasing avocado
	Other Resources

	API Reference
	Test APIs
	Utilities APIs
	Internal (Core) APIs
	Extension (plugin) APIs
	Optional Plugins API

	Avocado Release Notes
	Release Notes

	Request For Comments (RFCs)
	Request For Comments (RFCs)
	Indices and tables

	Python Module Index

