
ANVIL
Release 2015-dev

July 19, 2016

Contents

1 Summary 3
1.1 Features . 3

2 How anvil is architected 5
2.1 History . 5
2.2 Structure . 5

3 Getting started 7
3.1 Prerequisites . 7
3.2 Installation . 7
3.3 Issues . 9

4 Documentation 11
4.1 For admins/users . 11
4.2 For developers . 11

5 Questions and Answers 13
5.1 How do I cause the anvil dependencies to be reinstalled? . 13
5.2 How do I run a specific OpenStack milestone? . 13

6 Bugs & Hugs & Code 15
6.1 IRC . 15
6.2 Source code . 15
6.3 Bugs . 15
6.4 Branches . 15
6.5 Hacking . 15
6.6 Links . 16

7 Examples 17
7.1 Bootstrapping . 17
7.2 Preparing . 17
7.3 Building . 17
7.4 Packaging . 17

i

ii

ANVIL, Release 2015-dev

Everything about ANVIL, a set of python scripts and utilities to forge raw openstack into a productive tool!

Contents 1

ANVIL, Release 2015-dev

2 Contents

CHAPTER 1

Summary

Anvil is a forging tool to help build OpenStack components and their dependencies into a complete package-oriented
system.

It automates the git checkouts of the OpenStack components, analyzes & builds their dependencies and the components
themselves into packages.

It allows a developer to setup an environment using the automatically created packages (and dependencies, ex. RPMs)
with the help of anvil configuring the components to work correctly for the developer’s needs.

The distinguishing part from devstack (besides being written in Python and not shell), is that after building those
packages (currently RPMs) the same packages can be used later (or at the same time) to actually deploy at a larger
scale using tools such as chef, salt, or puppet (to name a few).

1.1 Features

1.1.1 Configurations

A set of configuration files (in yaml format) that is used for common, component, distribution, code origins configu-
ration...

All the yaml configuration files could be found in:

• conf/templates/keystone/

• conf/components/

• conf/distros/

• conf/origins/

• subdirectories of conf/personas/

1.1.2 Packaging

• Automatically downloading source from git and performing tag/branch checkouts.

• Automatically verifying and translating requirement files to known pypi/rpm packages.

• Automatically installing and building missing dependencies (pypi and rpm) for you.

• Automatically configuring the needed files, symlinks, adjustments, and any patches.

3

http://docs.openstack.org/developer/devstack/
http://www.opscode.com/chef/
http://saltstack.com/
http://puppetlabs.com/
http://www.yaml.org/
http://www.yaml.org/
http://pypi.python.org/pypi
http://www.rpm.org/
http://pypi.python.org/pypi
http://www.rpm.org/

ANVIL, Release 2015-dev

1.1.3 Pythonic

Written in python so it matches the style of other OpenStack components.

1.1.4 Code decoupling

• Components & actions are isolated as individual classes.

• Supports installation personas that define what is to be installed, thus decoupling the ‘what’ from the ‘how’.

Note: This encouraging re-use by others...

1.1.5 Extensive logging

• All commands executed are logged in standard output, all configuration files read/written (and so on).

Note: Debug mode can be activated with -v option...

1.1.6 Package tracking and building

• Creation of a single RPM set for your installation.

– This freezes what is needed for that release to a known set of packages and dependencies.

• Automatically building and/or including all needed dependencies.

• Includes your distributions existing native/pre-built packages (when and where applicable).

– For example uncommenting the following in the bootstrap file will allow anvil to find dependencies in the
epel repository.

4 Chapter 1. Summary

http://openstack.org/
http://github.com/openstack/anvil/blob/master/tools/bootstrap/CommonRedHat#L7
http://fedoraproject.org/wiki/EPEL

CHAPTER 2

How anvil is architected

This little HOWTO can be used by those who wish to understand how anvil does things and why some of its architectural
decisions were made.

2.1 History

Once upon a time there was a idea of replacing the then existing devstack with a more robust, more error-
tolerant and more user/developer friendly OpenStack setup toolkit. Since the existing devstack did (and still
does not support very well) complex intercomponent (and interpackage management system) dependencies and in-
stalling/packaging/starting/stopping/uninstalling of OpenStack components.

To solve this problem it was thought that there could be a toolkit that could handle this better. It would also be in Python
the language of choice for the rest of the OpenStack components thus making it easier to understand for programmers
who are already working in OpenStack code. Thus devstack2 was born which was later renamed devstack.py and after
a little while once again got renamed to anvil.

2.2 Structure

Anvil is designed to have the following set of software components:

• Actions: an action is a sequence of function calls on a set of implementing classes which follows a logically
flow from one step to the next. At the end of each step an action may choose to negate a step of another action.

– Preparing

* Downloading source code

* Post-download patching of the source code

* Deep dependency & requirement analysis

* Downloading and packaging of missing python dependencies

* Packaging downloaded source code into SRPMs (aka source RPMs) that is placed into a SRPM repos-
itory.

– Building

* Creation of a binary RPM repository with all built packages and dependencies (converting the pre-
pared source RPMs into binary RPMs).

5

http://devstack.org/
http://devstack.org/

ANVIL, Release 2015-dev

• Phases: a phase is a step of an action which can be tracked as an individual unit and can be marked as being
completed. In the above install action for each component that installed when each step occurs for that compo-
nent it will be recorded into a file so that if ctrl-c aborts anvil and later the install is restarted anvil can notice
that the previous phases have already been completed and those phases can be skipped.

– This is how anvil does action and step resuming.

• Components: a component is a class which implements the above steps (which are literally methods on an
instance) and is registered with the persona and configuration to be activated. To aid in making it easier to add in
new components a set of generic base classes exist that provide common functionality that should work in most
simplistic installs. These can be found in anvil/components/. All current components that exist either use
these base classes directly or inherit from them and override functions to provide additional capabilities needed
to perform the specified action.

• Distributions: a distribution is a yaml file that is tied to a operating system distribution and provides refer-
ences for components to use in a generic manner. Some of these references include how to map a components
pip-requires file dependencies to distribution specific dependencies (possibly using yum or apt) or what
non-specified dependencies are useful in getting the component up and running (such as guestfish for im-
age mounting and manipulation). Other helpful references include allowing for components to specify standard
identifiers for configuration such as pip. This allows the underlying yaml file to map the pip command to
a distribution-centric command (in RHEL it it’s really named pip-python), see the commands key in the
yaml files for examples of these settings. Note that each distribution yaml file that exists in conf/distros
provides this set of references for each component and gets selected based on the yaml key in that file named
platform_pattern.

• Configuration: central to how anvil operates is the ability to be largely configuration driven (code when you
need it but avoid it if you can). Distributions as seen by the conf/distros folder specify distribution-specific
configuration that can be referenced by standard keys by a given component. Each component also receives
additional configuration (accessible via a components get_option function) via the yaml files specified in
conf/components which provides for a way to have configuration that is not distribution specific but instead
is component specific (say for configuring nova to use kvm instead of qemu).

– This configuration drive approach (as much as can be possible) was a key design goal that drives how anvil
was and is developed. It has even seemed to be ahead of its time due to how anvil has a distribution yaml
file that has specified component dependencies long before the OpenStack community even recognized
such a dependency list was useful.

• Personas: a persona is a way for anvil to know what components (and possibly subsystems of those components)
you wish to have the given action applied to. Since not everyone can agree on what is an install of OpenStack
this concept allows for those who wish to have a different set to do so. It is as all other configuration another
yaml file and can be examined by looking into the conf/personas folders.

– Each yaml file contains the list of components to be performed for the given action, a simple set of options
for those components (for options that may not be applicable to be in the component configuration yaml)
and which subsystems a given component will have enabled (if the component supports this concept) as
well as which distribution the persona supports (if there is a desire to restrict a given persona to a given
distribution this field can be used to accomplish that goal).

6 Chapter 2. How anvil is architected

CHAPTER 3

Getting started

Made to be as simple as possible, but not too simple...

3.1 Prerequisites

3.1.1 RTFM

Read the great documentation for developers/admins at

• http://docs.openstack.org/developer/

• http://docs.openstack.org/

This will vastly help you understand what the configurations and options do when ANVIL configures them.

3.1.2 Linux

One of the tested distributions.

• RHEL 6.2+

• CentOS 6.2+

• Oracle Enteprise Linux 6.2+

You can get CentOS 6.2+ (64-bit is preferred) from https://www.centos.org/

3.2 Installation

3.2.1 Pre-setup

Since RHEL requires a tty to perform sudo commands we need to disable this so sudo can run without a tty. This
seems needed since nova and other components attempt to do sudo commands. This isn’t possible in RHEL unless
you disable this (since those instances won’t have a tty).

$ sudo visudo

Then comment out line

7

http://docs.openstack.org/developer/
http://docs.openstack.org/
https://www.centos.org/
http://linux.die.net/man/4/tty
http://linux.die.net/man/4/tty
http://linux.die.net/man/4/tty

ANVIL, Release 2015-dev

Default requiretty

Also disable selinux:

$ sudo vi /etc/sysconfig/selinux

Change SELINUX=enforcing to SELINUX=disabled then reboot.

$ sudo reboot

Create specifc user to isolate all the Anvil processes from root user

$ sudo useradd <username>
$ sudo passwd <username>

Set user as sudoer

$ sudo visudo

Add <username> ALL=(ALL) ALL

Make all the rest of actions as <username> user

$ sudo su - <username>

3.2.2 Get git!

$ sudo yum install git -y

3.2.3 Download

We’ll grab the latest version of ANVIL via git:

$ git clone https://git.openstack.org/openstack/anvil.git
$ cd anvil

3.2.4 Configuration

Any configuration to be updated should now be done.

Please edit the corresponding yaml files in conf/components/ or conf/components/personas to fit your
desired configuration of nova/glance and the other OpenStack components.

Note: You can use -p <conf/components/required_file.yaml> to specify a different persona.

To specify which versions of OpenStack components you want to install select or edit an origins configuration file
from <conf/origins/>.

Note: You can use -o <conf/origins/origins_file.yaml> to specify this different origins file.

8 Chapter 3. Getting started

ANVIL, Release 2015-dev

Respository notes for those with RedHat subscriptions

To enable the needed repositories for various requirements please also run:

sudo subscription-manager repos --enable rhel-6-server-optional-rpms

You can also include the RDO repositories (which has even more of the needed requirements). This will ensure that
anvil has to build less dependencies overall.

• http://openstack.redhat.com/Repositories

3.2.5 Pre-installing

In order to ensure that anvil will have its correct dependencies you need to first run the bootstrapping code that will
setup said dependencies for your operating system.

sudo ./smithy --bootstrap

3.2.6 Preparing

Now prepare OpenStacks components by running the following:

./smithy -a prepare

You should see a corresponding OpenStack repositories getting downloaded using git, python setups occurring and
configuration files being written as well as source rpm packages being built and a repository setup from those compo-
nents 1.

3.2.7 Building

Now build OpenStacks components by running the following:

sudo ./smithy -a build

You should see a corresponding OpenStack components and dependencies at this stage being packaged into rpm files
and two repositories being setup for you 1. One repository will be the dependencies that the OpenStack components
need to run and th other will be the OpenStack components themselves.

3.3 Issues

Please report issues/bugs to https://launchpad.net/anvil. Much appreciated!

1 If you desire more informational output add a -v or a -vv to the command.

3.3. Issues 9

http://openstack.redhat.com/Main_Page
http://openstack.redhat.com/Repositories
https://launchpad.net/anvil

ANVIL, Release 2015-dev

10 Chapter 3. Getting started

CHAPTER 4

Documentation

For great documentation on all things OpenStack check out the following relevant links and webpages.

4.1 For admins/users

• http://docs.openstack.org/

4.2 For developers

4.2.1 Adding your own distribution

This little HOWTO can be used by those who wish to add-on to anvil to be able to support their own distribution or
unsupported operating system (so that it can be supported).

Diving in!

First you have to have a little background on anvil and how it operates. So let’s dive in and learn a little on how we
can add in your own distribution support.

smithy The main shell script that bootstraps the needed dependencies for anvil to be able to start (including items
such as termcolor, progressbar and netifaces). The code here is written in bash shell script so that it can execute
in an environment without the needed prerequisites.

When to adjust: Adjust the bootstrapping functions in this file to install any needed prerequisites for
your operating system to run anvil. Look at how we are bootstrapping rhel (and how we are detecting
rhel) for an example.

conf/distros This set of yaml files contains definitions for what packages, what pip to package mappings
and what code entrypoints are used when setting up a given component. The critical key here is
the platform_pattern key which is used as a regular expression to determine if the provided
yaml file will work in the given running distribution. Other keys are used to identify which packag-
ing class to use (ie packager_name) and how to map a component name to its action classes (i.e.
action_classes/install will be constructed when an install action occurs). The commands section
can be used to house arbitrary commands which may vary between operating systems (such as the pip exe-
cutable name)

11

http://docs.openstack.org/

ANVIL, Release 2015-dev

When to adjust the distro: If a suitable distribution already exists (which may be the case for
many rhel variants), just go ahead and add-on to the regular expression your pattern. Ensure that
your regular expression matches the output of the following command: python -c "import
platform; print(platform.platform())" which is what anvil uses internally to match
a given yaml file to a given distribution.

When to add a new file: If no suitable distribution exists (which may be the case for ubuntu), you
will need to go ahead and create a new file for that distribution and include its dependencies and
any variations in packaging and pip -> package mappings needed to setup that distribution with the
openstack component software.

anvil/distros These are typically subclasses of components that may override generic functionality to correct for
a given distribution doing or requiring something different to occur before/after or during an install or other
action.

When to adjust: Feel free to add-on your own subclasses here as needed to handle any special actions that your
new distribution may require and make sure you reference those classes/entrypoints in your conf/distros yaml
file so that the correct subclass will be used. The rhel distro has a good set of examples that overload various
key points so that rhel can work correctly.

anvil/packaging The modules in this folder will be referenced in your conf/distros yaml file and will control how
to install packages (i.e. using yum and pip) and how to uninstall those same packages. This code will also get
activated when a ‘package’ action occurs which currently will cause the necessary actions to occur to create a
RPM spec file which can be used with the rpmbuild command.

When to adjust: If needed it should be simple to look at the packaging interface and add your own. After
adding make sure you reference them in your conf/distros yaml file so that the correct subclass will be used.
If you are going to want to create package files from the installed code then you will need to hook-in to a file
similar to the RPM module that exists there.

12 Chapter 4. Documentation

CHAPTER 5

Questions and Answers

5.1 How do I cause the anvil dependencies to be reinstalled?

Anvil bootstraps itself via shell script (if you look at the code in the file smithy you will see that it is actually a bash
script).

This bootstrapping occurs to ensure that anvils pypi/rpm/deb dependencies are installed before anvil can actually
be used. To remove the files that are left behind to let the shell script know when this happens delete files located
at $HOME/.anvil_bootstrapped and at $PWD/.anvil_bootstrapped to cause bootstrapping to occur
again.

Another way to make this happen temporarily is to use the following:

sudo BOOT_FILES=/dev/null ./smithy

This will make anvil think those files are coming from /dev/null which will always return nothing. Using the same
variable also allows you to retarget the locations where the smithy shell script will look for the ‘marker’ files if you
so choose (say in a continuous integration environment).

5.2 How do I run a specific OpenStack milestone?

Anvil has the same tag names as OpenStack releases so to run against a specific milestone of OpenStack just checkout
the same tag in anvil and run the same actions as you would have ran previously.

An example of this, lets adjust nova to use the stable/essex branch.

• Open conf/origins/master.yaml file in your favorite editor

• Locate lines that describe the nova component

• Change branch parameter to the desired one

nova:
repo: https://github.com/openstack/nova.git
branch: stable/essex

• Component origin parameters are:

– repo: <repo_url> - required

– branch: <branch> - optional

– tag: <tag> - optional

13

ANVIL, Release 2015-dev

If no branch nor tag parameters were specified then branch: master is used by default.

Note: tag overrides branch (so you can’t really include both)

14 Chapter 5. Questions and Answers

CHAPTER 6

Bugs & Hugs & Code

ANVIL is an open-source tool released under the apache version 2.0 license. It depends on its community to keep it
alive.

6.1 IRC

You can also usually find us on #openstack-anvil on freenode.

6.2 Source code

The source code is on github located at:

http://git.openstack.org/cgit/openstack/anvil (mirrored @ http://github.com/openstack/anvil/).

Feel free to fork it and contribute to it.

6.3 Bugs

http://bugs.launchpad.net/anvil

6.4 Branches

Anvil tries to work across different OpenStack releases as of the havana release...

If it does not work across the majority of OpenStack releases please file a bug.

6.5 Hacking

Feel free to hack but please try to follow the hacking guidelines.

15

http://www.apache.org/licenses/LICENSE-2.0.html
http://freenode.net/irc_servers.shtml
http://git.openstack.org/cgit/openstack/anvil
http://github.com/openstack/anvil/
http://docs.openstack.org/infra/manual/developers.html
http://bugs.launchpad.net/anvil
http://wiki.openstack.org/wiki/Releases
http://wiki.openstack.org/wiki/Releases
http://bugs.launchpad.net/anvil
http://github.com/openstack/anvil/blob/master/HACKING.md

ANVIL, Release 2015-dev

6.6 Links

Please visit as often as you want at the following urls:

• http://launchpad.net/anvil (blueprints for features, bugs, q/a...)

• http://launchpad.net/~anvil-dev (talk to the devs directly)

Help and developer work/time is always much appreciated!

16 Chapter 6. Bugs & Hugs & Code

http://launchpad.net/anvil
http://launchpad.net/~anvil-dev

CHAPTER 7

Examples

7.1 Bootstrapping

This is needed to get ready for the rest of anvils stages by installing anvils python dependencies so that anvil can
correctly run using said dependencies.

$ sudo ./smithy --bootstrap

Terminal recording: http://showterm.io/effa75ea631777a2e74a0/

7.2 Preparing

This stage does the download of the source repositories, analysis of dependencies, download of missing dependencies
and building of source repositories and missing dependencies into source rpms.

$./smithy -a prepare

Terminal recording: http://showterm.io/12c29e87094f128d945fa/

7.3 Building

This is the stage responsible for translating the previously prepared source rpms into installable rpms (of the non-
source type). The output of this phase is two repositories, one with the dependencies and one with the rpms for the
openstack components themselves.

$ sudo ./smithy -a build

Terminal recording: http://showterm.io/2fee38794dcf536ccd437/

7.4 Packaging

To see the packages built (after prepare has finished).

$ ls /home/harlowja/openstack/deps/rpmbuild/SPECS/ | cat

17

http://showterm.io/effa75ea631777a2e74a0/
http://showterm.io/12c29e87094f128d945fa/
http://showterm.io/2fee38794dcf536ccd437/

ANVIL, Release 2015-dev

1 openstack-deps.spec
2 pylint.spec
3 pyparsing.spec
4 python-babel.spec
5 python-cheetah.spec
6 python-cinderclient.spec
7 python-cinder.spec
8 python-cliff.spec
9 python-cliff-tablib.spec

10 python-cmd2.spec
11 python-colorama.spec
12 python-coverage.spec
13 python-crypto.spec
14 python-decorator.spec
15 python-discover.spec
16 python-docutils.spec
17 python-extras.spec
18 python-fixtures.spec
19 python-glanceclient.spec
20 python-glance.spec
21 python-hp3parclient.spec
22 python-httplib2.spec
23 python-jinja2.spec
24 python-jsonpatch.spec
25 python-jsonpointer.spec
26 python-jsonschema.spec
27 python-keystoneclient.spec
28 python-keystone.spec
29 python-ldap.spec
30 python-logilab-astng.spec
31 python-logilab-common.spec
32 python-lxml.spec
33 python-markdown.spec
34 python-markupsafe.spec
35 python-mimeparse.spec
36 python-netaddr.spec
37 python-nose-exclude.spec
38 python-nosehtmloutput.spec
39 python-nose.spec
40 python-nosexcover.spec
41 python-novaclient.spec
42 python-nova.spec
43 python-openstack-nose-plugin.spec
44 python-oslo-config.spec
45 python-pam.spec
46 python-pastedeploy.spec
47 python-pep8.spec
48 python-prettytable.spec
49 python-pygments.spec
50 python-pysqlite.spec
51 python-neutronclient.spec
52 python-repoze-lru.spec
53 python-routes.spec
54 python-setuptools-git.spec
55 python-setuptools.spec
56 python-sphinx.spec
57 python-sqlalchemy-migrate.spec
58 python-sqlalchemy.spec

18 Chapter 7. Examples

ANVIL, Release 2015-dev

59 python-subunit.spec
60 python-tablib.spec
61 python-tempita.spec
62 python-termcolor.spec
63 python-testrepository.spec
64 python-testtools.spec
65 python-unittest2.spec
66 python-warlock.spec
67 python-webob.spec
68 python-wsgiref.spec
69 python-xattr.spec

$ cat openstack-deps.spec

1 Name: openstack-deps
2 Version: 2013.6.3
3 Release: 0
4 License: Apache 2.0
5 Summary: OpenStack dependencies
6 BuildArch: noarch
7

8 Requires: MySQL-python
9 Requires: avahi

10 Requires: coreutils
11 Requires: curl
12 Requires: dnsmasq
13 Requires: dnsmasq-utils
14 Requires: ebtables
15 Requires: fuse
16 Requires: gawk
17 Requires: git
18 Requires: guestfish
19 Requires: iptables
20 Requires: iputils
21 Requires: iscsi-initiator-utils
22 Requires: kpartx
23 Requires: libguestfs
24 Requires: libguestfs-mount
25 Requires: libguestfs-tools
26 Requires: libvirt
27 Requires: libvirt-client
28 Requires: libvirt-python
29 Requires: libxml2-devel
30 Requires: libxslt-devel
31 Requires: lsof
32 Requires: mlocate
33 Requires: mysql
34 Requires: mysql-server
35 Requires: openssh-server
36 Requires: parted
37 Requires: postgresql-devel
38 Requires: psmisc
39 Requires: python
40 Requires: python-devel
41 Requires: python-distutils-extra
42 Requires: python-setuptools
43 Requires: qemu-img
44 Requires: qemu-kvm

7.4. Packaging 19

ANVIL, Release 2015-dev

45 Requires: rabbitmq-server
46 Requires: sqlite
47 Requires: sqlite-devel
48 Requires: sudo
49 Requires: tcpdump
50 Requires: unzip
51 Requires: vconfig
52 Requires: wget
53

54 %description
55

56

57 %pre
58

59 # rabbitmq-server
60 service qpidd stop 2>/dev/null || true
61 chkconfig qpidd off 2>/dev/null || true
62

63

64 %files
65

$ cat python-nova.spec

1 %define pkg_name nova
2 %define version 2013.1
3 %define unmangled_version 2013.1
4 %define unmangled_version 2013.1
5 %define release 1
6

7 Summary: cloud computing fabric controller
8 Name: python-nova
9 Epoch: 2

10 Version: %{version}
11 Release: %{release}
12 Source0: %{pkg_name}-%{unmangled_version}.tar.gz
13 License: UNKNOWN
14 Group: Development/Libraries
15 BuildRoot: %{_tmppath}/%{pkg_name}-%{version}-%{release}-buildroot
16 Prefix: %{_prefix}
17 BuildArch: noarch
18 Vendor: OpenStack <nova@lists.launchpad.net>
19 Requires: python-sqlalchemy >= 0.7.8 python-sqlalchemy < 0.7.99 python-cheetah >= 2.4.4 python-amqplib >= 0.6.1 python-anyjson >= 0.2.4 python-argparse python-boto python-eventlet >= 0.9.17 python-kombu >= 1.0.4 python-lxml >= 2.3 python-routes >= 1.12.3 python-webob = 1.2.3 python-greenlet >= 0.3.1 python-pastedeploy >= 1.5 python-paste python-sqlalchemy-migrate >= 0.7.2 python-netaddr >= 0.7.6 python-suds >= 0.4 python-paramiko python-pyasn1 python-babel >= 0.9.6 python-iso8601 >= 0.1.4 python-httplib2 python-setuptools-git >= 0.4 python-cinderclient >= 2:1.0.1 python-neutronclient >= 2:2.2 python-neutronclient < 2:3 python-glanceclient >= 2:0.5 python-glanceclient < 2:2 python-keystoneclient >= 2:0.2 python-stevedore >= 0.7 python-websockify < 0.4 python-oslo-config >= 2:1.1
20 Url: http://www.openstack.org/
21

22 %description
23 UNKNOWN
24

25 %prep
26 %setup -n %{pkg_name}-%{unmangled_version} -n %{pkg_name}-%{unmangled_version}
27

28 %build
29 python setup.py build
30

31 %install
32 python setup.py install --single-version-externally-managed -O1 --root=$RPM_BUILD_ROOT --record=INSTALLED_FILES
33 abspath_installed_files=$(readlink -f INSTALLED_FILES)
34 (

20 Chapter 7. Examples

ANVIL, Release 2015-dev

35 cd $RPM_BUILD_ROOT
36 for i in usr/*/python*/site-packages/* usr/bin/*; do
37 if [-e "$i"]; then
38 sed -i "s@/$i/@DELETE_ME@" "$abspath_installed_files"
39 echo "/$i"
40 fi
41 done
42 if [-d usr/man]; then
43 rm -rf usr/share/man
44 mkdir -p usr/share
45 mv usr/man usr/share/
46 sed -i "s@/usr/man/@DELETE_ME@" "$abspath_installed_files"
47 for i in usr/share/man/*; do
48 echo "/$i/*"
49 done
50 fi
51) >> GATHERED_FILES
52 { sed '/^DELETE_ME/d' INSTALLED_FILES; cat GATHERED_FILES; } | sort -u > INSTALLED_FILES.tmp
53 mv -f INSTALLED_FILES{.tmp,}
54

55

56 %clean
57 rm -rf $RPM_BUILD_ROOT
58

59 %files -f INSTALLED_FILES
60 %defattr(-,root,root)

7.4. Packaging 21

	Summary
	Features

	How anvil is architected
	History
	Structure

	Getting started
	Prerequisites
	Installation
	Issues

	Documentation
	For admins/users
	For developers

	Questions and Answers
	How do I cause the anvil dependencies to be reinstalled?
	How do I run a specific OpenStack milestone?

	Bugs & Hugs & Code
	IRC
	Source code
	Bugs
	Branches
	Hacking
	Links

	Examples
	Bootstrapping
	Preparing
	Building
	Packaging

