
AntimonyCombinations
Release 0.0.1

Jan 15, 2020

Contents

1 Installation 3

2 Importing the package 5
2.1 Combinations . 5
2.2 HypothesisExtension . 12

Index 13

i

ii

AntimonyCombinations, Release 0.0.1

AntimonyCombinations is a package developed on top of tellurium and antimony for building sbml models in a com-
binatorial way.

The idea is that you have a core model which you are more confident in regarding its structure and an arbitrary number
of additional hypotheses, called hypothesis extensions. AntimonyCombinations provides a way of quickly building the
comprehensive set of model topologies, given the core hypothesis and hypothesis extensions.

Contents 1

http://tellurium.analogmachine.org/
http://antimony.sourceforge.net/
http://sbml.org/Main_Page

AntimonyCombinations, Release 0.0.1

2 Contents

CHAPTER 1

Installation

3

AntimonyCombinations, Release 0.0.1

4 Chapter 1. Installation

CHAPTER 2

Importing the package

2.1 Combinations

class antimony_combinations.Combinations(mutually_exclusive_reactions:
List[Tuple[AnyStr]] = [], directory: Op-
tional[str] = None)

Builds combinations of SBML model using antimony

Create every combination of core hypothesis and extension hypotheses and creates SBML models using anti-
mony from the tellurium package.

Combinations is designed to be subclassed. The necessary user input is given by overriding core functions
and providing hypothesis extensions.

The following methods must be implemented (see below for an example):

• core__reactions()

• core__parameters()

• core__variables()

However the following methods are optional:

• core__functions()

• core__events()

• core__units()

Each of these methods should return a valid antimony string, since these strings are used to build up a full
antimony model.

Extension hypotheses are added by adding methods to your subclass that begin with extension_hypothesis__.
Any method that begins with extension_hypothesis__ will be picked up and used to combinatorially build sbml
models.

Any extension_hypothesis__ method should return an instance of the HypothesisExtension class, which
is merely a container for some needed information.

5

https://tellurium.readthedocs.io/en/latest/antimony.html

AntimonyCombinations, Release 0.0.1

Note: Notice the double underscore after extension_hypothesis

Extension Hypotheses can operate in either additive or replace mode, depending on how the models should be
combined. additive is simpler. An extension hypothesis is additive when your reaction doesn’t override another,
or make another reaction superflous. Examples of such instances might be when adding a mass action reaction
to a preexisting set of mass action reactions.

replace mode on the other hand should be used when your reaction should be used instead of another reaction.

Examples:

1 # imports
2 from antimony_combinations import Combinations, ExtensionHypothesis
3 # Not needed to actually build the model set but we
4 # might as well import tellurium and pycotools since we'll probably
5 # want to use them for working with the model set.
6 import telluirum as te
7

8 class MyCombModel(Combinations):
9

10 # no __init__ is necessary as we use the __init__ from parent class
11

12 def core__functions(self):
13 return ''' '''
14

15 def core__variables(self):
16 return '''
17 compartment Cell;
18 var A in Cell;
19 var pA in Cell;
20 var B in Cell;
21 var pB in Cell;
22 var C in Cell;
23 var pC in Cell;
24

25 const S in Cell
26 '''
27

28 def core__reactions(self):
29 return '''
30 R1f: A -> pA; k1f*A*S;
31 R2f: B -> pB; k2f*B*A;
32 R3f: C -> pC; k3f*C*B;
33 '''
34

35 def core__parameters(self):
36 return '''
37 k1f = 0.1;
38 k2f = 0.1;
39 k3f = 0.1;
40

41 k2b = 0.1;
42 k3b = 0.1;
43 VmaxB = 0.1;
44 kmB = 0.1;
45 VmaxA = 0.1;
46 kmA = 0.1;

(continues on next page)

6 Chapter 2. Importing the package

AntimonyCombinations, Release 0.0.1

(continued from previous page)

47 k4 = 0.1;
48

49 S = 1;
50 A = 10;
51 pA = 0;
52 B = 10;
53 pB = 0;
54 C = 10;
55 pC = 0;
56 Cell = 1;
57 '''
58

59 def core__units(self):
60 return None # Not needed for now
61

62 def core__events(self):
63 return None # No events needed
64

65 def extension_hypothesis__additive1(self):
66 return HypothesisExtension(
67 name='AdditiveReaction1',
68 reaction='pB -> B',
69 rate_law='k2b * pB',
70 mode='additive',
71 to_replace=None, # not needed for additive mode
72)
73

74 def extension_hypothesis__additive2(self):
75 return HypothesisExtension(
76 name='AdditiveReaction2',
77 reaction='pC -> C',
78 rate_law='k3b * C',
79 mode='additive',
80 to_replace=None, # not needed for additive mode
81)
82

83 def extension_hypothesis__replace_reaction(self):
84 return HypothesisExtension(
85 name='ReplaceReaction',
86 reaction='pB -> B',
87 rate_law='VmaxB * pB / (kmB + pB)',
88 mode='replace',
89 to_replace='R2f', # name of reaction we want to replace
90)
91

92 def extension_hypothesis__feedback1(self):
93 return HypothesisExtension(
94 name='Feedback1',
95 reaction='pA -> A',
96 rate_law='VmaxA * pA / (kmA + pA)',
97 mode='additive',
98 to_replace=None, # name of reaction we want to replace
99)

100

101 def extension_hypothesis__feedback2(self):
102 return HypothesisExtension(
103 name='Feedback2',

(continues on next page)

2.1. Combinations 7

AntimonyCombinations, Release 0.0.1

(continued from previous page)

104 reaction='pA -> A',
105 rate_law='k4 * pA', # mass action variant
106 mode='additive',
107 to_replace=None, # name of reaction we want to replace
108)

Now that we have built a Combinations subclass we can use it as follows:

>>> project_root = os.path.dirname(__file__)
>>> c = MyCombModel(mutually_exclusive_reactions=[
>>> ('Feedback1', 'Feedback2')
>>>], directory=project_root # optionally specify project root
>>>)

MyCombModel behaves like an iterator, though it doesn’t store all model topologies on the outset but builds
models of the fly as the topology attribute is incremented. Topology always starts on model 0, the core model
that doesn’t have additional hypothesis extensions.

>>> print(c)
MyCombModel(topology=0)

The complete set of model topologies is enumerated by the topology attribute. The __len__ method is set to the
size of this set, accounting for mutually exclusive topologies, which is a mechanism for reducing the topology
space.

>>> print(len(c))
24

You can pick out any of these topologies using the selection operator

>>> print(c[4])
MyCombModel(topology=4)

To see which topologies correspond to which hypothesis extensions we can use antimony_combinations.
get_topologies(), which returns a pandas.DataFrame.

>>> c.get_topologies()
Topology

ModelID
0 Null
1 additive1
2 additive2
3 feedback1
4 feedback2
5 replace_reaction
6 additive1__additive2
7 additive1__feedback1
8 additive1__feedback2
9 additive1__replace_reaction
10 additive2__feedback1
11 additive2__feedback2
12 additive2__replace_reaction
13 feedback1__replace_reaction
14 feedback2__replace_reaction
15 additive1__additive2__feedback1
16 additive1__additive2__feedback2

(continues on next page)

8 Chapter 2. Importing the package

AntimonyCombinations, Release 0.0.1

(continued from previous page)

17 additive1__additive2__replace_reaction
18 additive1__feedback1__replace_reaction
19 additive1__feedback2__replace_reaction
20 additive2__feedback1__replace_reaction
21 additive2__feedback2__replace_reaction
22 additive1__additive2__feedback1__replace_reaction
23 additive1__additive2__feedback2__replace_reaction

You can extract all topologies into a list using the antimony_combinations.Combinations.
to_list() method.

>>> print(c.to_list()[:4])
[MyCombModel(topology=0),
MyCombModel(topology=1),
MyCombModel(topology=2),
MyCombModel(topology=3)]

You can iterate over the set of topologies

>>> for i in c[:3]:
>>> ... print(i)
MyCombModel(topology=0)
MyCombModel(topology=1)
MyCombModel(topology=2)

Or use the items method, which is similar to dict.items().

>>> for i, model in c.items()[:3]:
>>> ... print(i, model)
0 MyCombModel(topology=0)
1 MyCombModel(topology=1)
2 MyCombModel(topology=2)

Selecting a single model, we can create an antimony string

>>> first_model = c[0]
>>> print(first_model.to_antimony())
model MyCombModelTopology0

compartment Cell;
var A in Cell;
var pA in Cell;
var B in Cell;
var pB in Cell;
var C in Cell;
var pC in Cell;
const S in Cell
R1f: A -> pA; k1f*A*S;
R2f: B -> pB; k2f*B*A;
R3f: C -> pC; k3f*C*B;
k1f = 0.1;
k2f = 0.1;
k3f = 0.1;
S = 1;
A = 10;
pA = 0;
B = 10;

(continues on next page)

2.1. Combinations 9

AntimonyCombinations, Release 0.0.1

(continued from previous page)

pB = 0;
C = 10;
pC = 0;
Cell = 1;

end

or a tellurium model

>>> rr = first_model.to_roadrunner()
>>> print(rr)
<roadrunner.RoadRunner() {
'this' : 0x555a52c8cb90
'modelLoaded' : true
'modelName' :
'libSBMLVersion' : LibSBML Version: 5.17.2
'jacobianStepSize' : 1e-05
'conservedMoietyAnalysis' : false
'simulateOptions' :
< roadrunner.SimulateOptions()
{
'this' : 0x555a5309cd00,
'reset' : 0,
'structuredResult' : 0,
'copyResult' : 1,
'steps' : 50,
'start' : 0,
'duration' : 5
}>,
'integrator' :
< roadrunner.Integrator() >
name: cvode
settings:

relative_tolerance: 0.000001
absolute_tolerance: 0.000000000001

stiff: true
maximum_bdf_order: 5

maximum_adams_order: 12
maximum_num_steps: 20000
maximum_time_step: 0
minimum_time_step: 0
initial_time_step: 0

multiple_steps: false
variable_step_size: false

}>

>>> print(rr.simulate(0, 10, 11))
time, [A], [pA], [B], [pB], [C], [pC]

[[0, 10, 0, 10, 0, 10, 0],
[1, 9.04837, 0.951626, 3.86113, 6.13887, 5.27257, 4.72743],
[2, 8.18731, 1.81269, 1.63214, 8.36786, 4.07751, 5.92249],
[3, 7.40818, 2.59182, 0.748842, 9.25116, 3.64313, 6.35687],
[4, 6.7032, 3.2968, 0.370018, 9.62998, 3.45361, 6.54639],
[5, 6.06531, 3.93469, 0.195519, 9.80448, 3.3609, 6.6391],
[6, 5.48812, 4.51188, 0.109779, 9.89022, 3.31158, 6.68842],
[7, 4.96585, 5.03415, 0.0651185, 9.93488, 3.2835, 6.7165],
[8, 4.49329, 5.50671, 0.0405951, 9.9594, 3.26657, 6.73343],

(continues on next page)

10 Chapter 2. Importing the package

AntimonyCombinations, Release 0.0.1

(continued from previous page)

[9, 4.0657, 5.9343, 0.0264712, 9.97353, 3.25584, 6.74416],
[10, 3.67879, 6.32121, 0.0179781, 9.98202, 3.24872, 6.75128]]

Or an interface to copasi, via pycotools3

>>> c.to_copasi()
Model(name=NoName, time_unit=s, volume_unit=l, quantity_unit=mol)

Which could be used to configure parameter estimations. Currently, support for parameter estimation configu-
ration has in COPASI not been included but this is planned for the near future.

__init__(mutually_exclusive_reactions: List[Tuple[AnyStr]] = [], directory: Optional[str] = None)
→ None

Args:

mutually_exclusive_reactions: An arbitrary length list of tuples of pairs that are names of reactions
that should never occur together in the same model. Defaults to an empty list.

directory: Root directory for analysis. The default is the directory containing the script being run or
the current working directory of the interpreter.

copasi_file
A full path to copasi file for current topology Returns:

core__events()
Antimony events string. Do not use directly but override in subclass. Optional method.

Examples:

Returns: str

core__functions()
An optional set of functions for use in rate laws. Do not use directly but instead override in subclass.

For example:

Returns: str

core__parameters()
Parameter list. Do not use directly but over ride in subclass. This method is required.

Examples:

Returns: str

core__reactions()
List of core reactions; reactions to be shared among all models. Do not use directly as this method is
designed to be subclassed. This method is required.

Examples:

Returns: str

core__variables()
List your variables whilst specifying their compartment. Method not to be used directly but overriden in
subclass. This is a required method.

Examples:

Returns: str

get_hypotheses()→ List[str]
Get a list of hypotheses and their index Returns:

2.1. Combinations 11

https://pycotools3.readthedocs.io/en/latest/

AntimonyCombinations, Release 0.0.1

get_parameters_as_list()→ List[str]
Returns:

get_reaction_names()→ List[str]

Returns: List of reaction names in current model

get_topologies()→ pandas.core.frame.DataFrame
Retrieve the topology indexes and the hypotheses contained within them. This is your map between topol-
ogy numbers and model hypotheses.

Returns: A pandas.DataFrame

items()→ List
Similar to a dict.items().

Returns: a list of tuples of the form [(i, Combinations(topology=i), . . .]

to_antimony()→ str
Construct the antimony string for the current topology Returns:

to_copasi()→ pycotools3.model.Model
Build a copasi file from the sbml generated from tellurium

Returns: A tasks.Model

topology
The ID of the current model, i.e. which topology you are currently pointing at.

Returns: Number

topology
The ID of the current model, i.e. which topology you are currently pointing at.

Returns: Number

topology_dir
A full path to a directory for files pertaining to the current topology. Currently only used for generating
copasi files.

Returns:

2.2 HypothesisExtension

class antimony_combinations.HypothesisExtension(name, reaction, rate_law,
mode=’additive’, to_replace=None)

Data class for storing information about a hypothesis extension. For usage see Combinations.

12 Chapter 2. Importing the package

Index

Symbols
__init__() (antimony_combinations.Combinations

method), 11

C
Combinations (class in antimony_combinations), 5
copasi_file (antimony_combinations.Combinations

attribute), 11
core__events() (anti-

mony_combinations.Combinations method),
11

core__functions() (anti-
mony_combinations.Combinations method),
11

core__parameters() (anti-
mony_combinations.Combinations method),
11

core__reactions() (anti-
mony_combinations.Combinations method),
11

core__variables() (anti-
mony_combinations.Combinations method),
11

G
get_hypotheses() (anti-

mony_combinations.Combinations method),
11

get_parameters_as_list() (anti-
mony_combinations.Combinations method),
11

get_reaction_names() (anti-
mony_combinations.Combinations method),
12

get_topologies() (anti-
mony_combinations.Combinations method),
12

H
HypothesisExtension (class in anti-

mony_combinations), 12

I
items() (antimony_combinations.Combinations

method), 12

T
to_antimony() (anti-

mony_combinations.Combinations method),
12

to_copasi() (antimony_combinations.Combinations
method), 12

topology (antimony_combinations.Combinations at-
tribute), 12

topology_dir (anti-
mony_combinations.Combinations attribute),
12

13

	Installation
	Importing the package
	Combinations
	HypothesisExtension

	Index

