

 [image: _images/ansible_role_storage.png]

Welcome to Ansible Storage Role’s documentation!

[image: _images/galaxy-Akrog.storage-blue.svg]
 [https://galaxy.ansible.com/Akrog/storage/]The Ansible Storage Role is a vendor agnostic abstraction providing
infrastructure administrators with automation for storage solutions and to
access provisioned resources.

Contents:

	Introduction
	Features

	Concepts

	Configuration

	Example

	Installation
	Requirements

	Consumer requirements

	Usage
	Configuration

	Resource addressing

	Operations

	Examples
	Kaminario backend

	Faster playbooks

	Populating data

	Ceph backend

	Bulk create

	Migrating data

	Supported storage
	Block devices

	Shared filesystems

	Object storage

	Storage Providers
	Block storage

	Shared filesystems

	Object storage

	Internals

	Future work

Introduction

The Ansible Storage Role is a vendor agnostic abstraction providing
infrastructure administrators with automation for storage solutions and to
access provisioned resources.

Thanks to this abstraction it’s now possible to write reusable playbooks that
can automate tasks on any of the supported storage arrays.

The role will provide an abstraction for multiple storage types:

	Block storage.

	Shared filesystems.

	Object storage.

Use cases:

	Automate provisioning of volumes for:

	Bare metal hosts.

	VMs managed via the virt Ansible module [https://docs.ansible.com/ansible/latest/modules/virt_module.html].

	VMs managed on oVirt, OpenStack, and VMWare.

	Cloud providers.

	Take periodical snapshots of provisioned volumes.

Features

At the moment the only supported storage type is Block storage, with a
limited number of features:

	Get backend stats

	Create volumes

	Delete volumes

	Extend volumes

	Attach volumes

	Detach volumes

There are plans to add new features and provider for new storage types. Refer
to the Future work section for information on the plans for the role.

Concepts

The Storage Role includes support for over 80 block storage drivers out of the
box with the default provider, and this list can
be expanded even further with new storage providers.

A provider is the Ansible module responsible for carrying out operations on the
storage hardware. Each provider must support at least one specific hardware
from a vendor, but it may as well support more, like the default provider does.

Even though there are only two providers at the moment, they support a large
number of different storage vendors and storage backends.

To expose the functionality of these providers, the Storage Role introduces the
concept of backends. A backend is constructed passing a specific
configuration to a provider in order to manage a specific storage hardware.

There are two types of nodes in the Storage Role, controllers and
consumers.

[image: _images/ansible_diagram.svg]Ansible Storage Role nodes diagram

Controllers have access to the storage management network and know how to
connect to the storage hardware management interface and control it. For
example to create and export a volume.

Consumers only need access to the storage data network in order to connect
to the resources we have provisioned. For example to connect a volume via
iSCSI.

Configuration

Before we can provision or use our storage, we need to setup the controller
node, the one that will manage our storage.

There are two types of configuration options: One provides global configuration
options for the provider, and the other provides the configuration required to
access the storage’s management interface.

In both cases the valid contents for these configuration parameters depend on
the provider being used, as each provider has different options.

The names of the parameters are:

	storage_backends is a dictionary providing the configuration for all the
backends we want the controller node to manage.

	storage_$PROVIDER_config and storage_$PROVIDER_consumer_config are the
global provider configuration options to over-ride the defaults. Providers
are expected to provide sensible defaults to avoid users having to change
these.

All the information related to these configuration options is available on the
providers’ section, but here’s an example of how to setup a
node to manage an XtremIO array:

- hosts: storage_controller
 vars:
 storage_backends:
 xtremio:
 volume_driver: cinder.volume.drivers.dell_emc.xtremio.XtremIOISCSIDriver
 san_ip: w.x.y.z
 xtremio_cluster_name: CLUSTER-NAME
 san_login: admin
 san_password: nomoresecrets
 roles:
 - {role: storage, node_type: controller}

Example

Assuming our playbook has already been configured a backend on the controller
node, for example like we did above, we can proceed to use this backend to
provision and use the volumes like this:

- hosts: storage_consumers
 roles:
 - {role: storage, node_type: consumer}
 tasks:
 - name: Create volume
 storage:
 resource: volume
 state: present
 size: 1
 register: vol

 - name: Connect volume
 storage:
 resource: volume
 state: connected
 register: conn

 - debug:
 msg: "Volume {{ vol.id }} attached to {{ conn.path }}"

 - name: Disconnect volume
 storage:
 resource: volume
 state: disconnected

 - name: Delete volume
 storage:
 resource: volume
 state: absent

Installation

Like with any other role, before you can use this role in your playbooks you’ll
need to install it in the system where the playbooks are going to be run:

$ ansible-galaxy install Akrog.storage

Once installed, you can use it in your playbooks. Usage of the role is covered
in the Usage section.

The role has been tested with Ansible >= 2.4.1, but other versions may also
work.

Requirements

Ansible Storage Role providers have specific requirements to manage and
connect to the storage.

The Ansible Storage Role will try to automatically handle all the requirements
for the nodes based on the selected provider and type of node. This means that
using the storage role on nodes will install packages in order to perform the
node’s tasks (manage storage, or consume storage).

Attention

Right now requirements management has only been included for
Fedora, CentOS, and RHEL.

Each storage provider has its own requirements, and they are usually different
for the controller and the consumer nodes. Being lighter on the consumer
nodes. Refer to the providers section for information on
the requirements of each provider.

Consumer requirements

At the time of this writing the consumer role can’t auto detect dependencies
based on the connection type of the backends. Though we expect this to change
in the future, at the moment any connection specific packages to connect
volumes, need to be already installed in the system or added via tasks in the
playbook.

Below are some of the packages required to use:

	Multipathing

	iSCSI

	Ceph/RBD

Other connection types will have different requirements. Please report an
issue [https://github.com/Akrog/ansible-role-storage/issues/new] for any missing connection types and we’ll add them.

Multipathing

Block storage multipathing requires package device-mapper-multipath to be
installed, configured, and running. We can do this with a task or in the
command line:

yum install device-mapper-multipath
mpathconf --enable --with_multipathd y \
> --user_friendly_names n \
> --find_multipaths y
systemctl enable --now multipathd

Or as Ansible tasks:

- name: Install multipath package
 package:
 name: device-mapper-multipath
 state: present
 become: yes

- name: Create configuration
 command: mpathconf --enable --with_multipathd y --user_friendly_names n --find_multipaths y
 args:
 creates: /etc/multipath.conf
 become: yes

- name: Start and enable on boot the multipath daemon
 service:
 name: multipathd
 state: started
 enabled: yes
 become: yes

iSCSI

To use iSCSI we need to install, configure, and run the iscsi-initiator-utils
package if it’s not already there:

yum install iscsi-initiator-utils
[! -e /etc/iscsi/initiatorname.iscsi] \
> && echo InitiatorName=`iscsi-iname` > /etc/iscsi/initiatorname.iscsi
systemctl enable --now iscsid

Or as Ansible tasks:

- name: Install iSCSI package
 package:
 name: iscsi-initiator-utils
 state: present
 become: yes

- name: Create initiator name
 shell: echo InitiatorName=`iscsi-iname` > /etc/iscsi/initiatorname.iscsi
 args:
 creates: /etc/iscsi/initiatorname.iscsi
 become: yes

- name: Start and enable on boot the iSCSI initiator
 service:
 name: iscsid
 state: started
 enabled: yes
 become: yes

Ceph/RBD

For Ceph/RBD connections we need to install the ceph-common package.

Usage

In this section we’ll cover how to use the storage role, the different
operations available, their return values, how to address resources in the
operations, and several examples.

One of the biggest differences between the Storage Role and other roles is that
in this role it is recommended to include your storage tasks on the consumer
nodes, even if part of the tasts are actually executed by the controller.

Instead of creating a task for the controller node to create as many volumes
as consumer nodes we have and store the results in variables (or use a naming
template), and then on the consumer nodes have a task that attaches one of
those volumes to each node, we just have a task on the consumers to create
the volume and connect it.

This way there’s no need for variables or naming templates, and the creation
and attaching tasks are together. This helps simplify the playbooks and the
number of variables we have to move around in our playbooks, resulting in
greater readability.

Configuration

The role needs to know what type of node we are defining, this is done using
the node_type parameter. Acceptable values are controller and consumer.
The default being consumer.

Note

When a node acts as controller and consumer we have to define it as
two separate role entries. There is no controller-consumer or all node
types.

Here’s an example of how to configure a node to be the controller and a
consumer.

- hosts: storage_controller
 vars:
 [...]
 roles:
 - { role: storage, node_type: controller }
 - { role: storage, node_type: consumer }

For a controller node, the role needs to know the backends it’s going to be
managing in order to set them up. A single controller node can manage
multiple backends, which are configured using the storage_backends
variable.

The keys of the storage_backends dictionary define the IDs of the backends
and must be preserved between runs to be able to access previously provisioned
resources. If we change the backend IDs (key in the dictionary) we will no
longer be able to access older resources.

The value part of each entry in the storage_backends dictionary corresponds
to another dictionary, this one with the configuration of the specific
backend. The key-value pairs in this dictionary will vary from one
provider to another. The only shared key between them is the provider key
used to select the provider we want to use for this backend.

The default value for the provider key is cinderlib, which is the default
provider. When using the default value it is common practice to not include
the provider key from the configuration.

We can have backends from different providers configured on the same
controller node. For example, we can have one using the default provider and
another using the cinderclient provider.

- hosts: storage_controller
 vars:
 storage_backends:
 backend1:
 [...]
 backend2:
 provider: cinderclient
 [...]
 roles:
 - { role: storage, node_type: controller }

A list of available parameters we can pass to each provider can be found in the
providers’ section.

Attention

Controller nodes must always be defined and setup in the
playbooks before any storage can be used on a consumer node.

Resource addressing

In this section we’ll cover the rules that are applied by the role to locate
resources for the purposes of idempotency and resource addressing.

The storage role is modestly smart about locating resources, reducing the
amount of information required to pass on task.

Volumes, which are the primary resource available at this moment, have the
following attributes:

	resource: Type of the resource, must be volume.

	backend: Backend id.

	provider: Provider for the backend.

	host: Who “owns” this backend.

	id: UUID for the resource.

	name: User defined identifier for the volume.

	size: Size of the volume in GBi.

The way providers identify resources is by applying the parameters passed to
tasks as if they were filters. If the result of applying the filters returns
more than one resource, the provider will return an error.

For single backend controllers there’s no need to pass backend or
provider parameters, as they will default to the only configured backend.
If we have configured multiple backends and at lest one of them is the
default provider, then it will default to the first backend that was added.
If there are multiple backends and none of them uses the default provider,
then the role won’t be able to determine a default value for these parameters.

Default value for host is the FQDN of the consumer node. Thanks to this, if
we create resources as recommended, in a task on the consumer node, we won’t
need to create complicated templates to address volumes when performing tasks
on multiple consumers.

Now that we know the basics of addressing resources it’s probably best to have
a look at examples of how it affects operations. In each one of the
Operations we’ll present different addressing situations using the backends
defined in the previous Configuration section, where we have 2 backends:

	backend1 using the cinderlib provider.

	backend2 using the cinderclient provider.

Operations

Create

The most basic, and most common, operation is creating a volume on a backend,
which is accomplished by setting the state of a volume resource to
present. The default state for a volume is present, so there’s no need
to pass it. There are only 2 required attributes that must be passed on a
create task: resource and size.

The task provides the following keys in the returned value at the root level:

	Key

	Contents

	type

	Type of resource. Now it can only be volume.

	backend

	ID of the backend where the volume exists. Matches the key provided
in storage_backends.

	host

	Who “owns” this backend.

	id

	Resource’s ID generated by the provider. Most providers use a
UUID.

	name

	User defined identifier for the volume.

	size

	Size of the volume in GBi.

Here’s the smallest task that can be used to create a volume:

- storage:
 resource: volume
 size: 1

We only have 2 backends, and only one of them uses the default provider, so
following the addressing rules the volume will be created on backend1. This
create task is equivalent to:

- storage:
 resource: volume
 state: present
 size: 1
 backend: backend1
 provider: cinderlib

If we wanted to create the volume on backend2, we would have to specify the
backend or the provider. Passing the provider is also enough as there’s
only 1 backend for each provider:

- storage:
 resource: volume
 size: 1
 backend: backend2

The rest of the parameters will use defaults (state: present) or be detected
automatically based on provided parameters (provider: cinderclient).

Creating these 2 volumes on the same node doesn’t require any additional
parameters as each one is going to different backends:

- storage:
 resource: volume
 size: 1

- storage:
 resource: volume
 size: 1
 backend: backend2

But if we try to do the same to create 2 volumes of the same size on the same
backend like this:

- storage:
 resource: volume
 size: 1

- storage:
 resource: volume
 size: 1

We will end with only 1 volume, as the second call will be considered as a
repeated call by the controller node. And since these are idempotent
operations no new volume will be created.

To create multiple volumes of the same size on the same backend we need to
use the name attribute. Providing it just in one of the tasks is enough, but
we recommend passing it to both:

- storage:
 resource: volume
 size: 1
 name: first-volume

- storage:
 resource: volume
 size: 1
 name: second-volume

If each one of our volumes has a different size, then we don’t need to provide
a name, as one call cannot be mistaken for the other:

- storage:
 resource: volume
 size: 1

- storage:
 resource: volume
 size: 2

Delete

Deleting a specific volume is accomplished by setting the state of a volume
resource to absent. And there are no required parameters for this call,
but we can provide as many as we wan to narrow the volume we want to delete to
a single one.

The delete task only returns the changed key to reflect whether the volume
was present, and therefore was deleted, or if it wasn’t present in the first
place.

To reference a volume for deletion we usually use the same parameters that were
used on the create task. If we didn’t pass any parameters on create, passing
none as well on delete will remove that volume:

- storage:
 resource: volume
 size: 1

- storage:
 resource: volume
 state: absent

Warning

There is no confirmation required to delete a volume, and once the
volume is deleted it is usually impossible to recover its contents, so we
recommend specifying as may parameters as possible on deletion tasks.

We don’t need to provide the same parameters that we used on the create method
as long as we provide enough information. We can use the return value from the
create task to do the addressing:

- storage:
 resource: volume
 size: 1
 name: my_volume
 backend: backend2
 register: volume

- storage:
 resource: volume
 state: absent
 id: "{{volume.id}}"
 backend: "{{volume.backend}}"

Note

Keep in mind that there is no global database that stores all the
resources IDs. So when using multiple backends, even if an ID uniquely
identifies a resource in all your backends, the Storage Role has no way of
knowing on which backend it is, so the task needs enough parameters to
locate it. That’s why in the example above we pass the backend parameter
to the delete task.

When describin the create task we saw how we could create 2 volumes without a
name because they had different sizes. If we wanted to remove those volumes we
would have to provide the sizes on the delete task, otherwise the task would
fail because there are 2 volumes that matches the addressing.

- storage:
 resource: volume
 size: 1

- storage:
 resource: volume
 size: 2

- storage:
 resource: volume
 state: absent
 size: 1

- storage:
 resource: volume
 state: absent
 size: 2

Extend

Extending the size of a specific volume is accomplished by setting the state
of a volume resource to extended. There is only one required parameters
for this call, size which indicates the new size of the volume.

The task provides the following keys in the returned value at the root level:

Key Contents
================= ==
changed Following standard rules, will be False if the volume was

already connected, and True if it wasn’t but now it is.

	type Describes the type of device that is connected, which at the

	moment can only be block.

path Path to the device that has been added on the system.
additional_data (Optional) Provider specific additional information.
================= ==

If we only have 1 volume on the node the addressing for the connect task is
minimal.

- storage:
 resource: volume
 size: 1

- storage:
 resource: volume
 state: connected

Creating and connecting a volume is usually just the first step in our
automation, and following tasks will rely on the path key of the returned
value to use the volume on the consumer node.

- storage:
 resource: volume
 size: 1
 register: vol

- storage:
 resource: volume
 state: connected
 register: conn

- debug:
 msg: "Volume {{vol.id}} is now attached to {{conn.path}}"

Disconnect

Disconnecting a volume from a node is a multi-step process that undoes the
steps performed during the connection in reverse. The consumer node detaches
the volume from the node, and then the controller unmaps and removes the
exported volume. These steps are opaque to the playbooks, where they are seen
as a single task.

Disconnecting a specific volume from a node is accomplished by setting the
state of a volume resource to disconnected. There are no specific
parameters for the disconnect task. All parameters are used for the addressing
of the volume. Addressing rules explained before apply here.

The disconnect task only returns the changed key to reflect whether the
volume was present, and therefore was disconnected, or if it wasn’t present in
the first place.

Note

Disconnecting a volume will properly flush devices before proceeding
to detach them. If it’s a multipath device, the multipath will be flushed
first and then the individual paths. If flushing is not possible due to
connectivity issues the volume won’t be disconnected.

When we using a single volume the disconnect doesn’t need any additional
parameters:

- storage:
 resource: volume
 size: 1

- storage:
 resource: volume
 state: connected

- storage:
 resource: volume
 state: disconnected

It’s when we have multiple volumes that we have to provide more parameters,
like we do in all the other tasks.

- storage:
 resource: volume
 size: 1

- storage:
 resource: volume
 size: 1
 backend: backend2

- storage:
 resource: volume
 backend: backend2
 state: connected

- storage:
 resource: volume
 backend: backend2
 state: disconnected

Stats

This is the only task that is meant to be executed on the controller node.

Stats gathering is a provider specific task that return arbitrary data. Each
provider specifies what information is returned in the providers’ section, but they must all return this data as the value for the result
key.

And example for the default provider:

- storage:
 resource: backend
 backend: lvm
 state: stats
 register: stats

- debug:
 msg: "Backend {{stats.result.volume_backend_name}} from vendor {{stats.result.vendor_name}} uses protocol {{stats.result.storage_protocol}}"

Examples

On the Introduction and Usage sections we provided some examples
and snippets. Here we’ll provide larger examples to show the specifics of some
backends, some interesting concepts, and advanced usage:

Kaminario backend

In this example we’ll see how to configure the Kaminario K2 backend on a
controller node using the default cinderlib provider.

Note

The Kaminario backend requires the krest PyPi package to be
installed on the controller, but we don’t need to worry about it, because
the cinderlib provider takes care of it during the role setup.

- hosts: storage_controller
 vars:
 storage_backends:
 kaminario:
 volume_driver: cinder.volume.drivers.kaminario.kaminario_iscsi.KaminarioISCSIDriver
 san_ip: w.x.y.z
 san_login: admin
 san_password: nomoresecrets
 roles:
 - { role: storage, node_type: controller }

Faster playbooks

If we are already certain that a node has everything installed, we can skip the
setup part using variables storage_setup_providers and
storage_setup_consumers.

For the controller:

- hosts: storage_controller
 vars:
 ansible_become: yes
 storage_setup_providers: no
 storage_backends:
 lvm:
 volume_driver: 'cinder.volume.drivers.lvm.LVMVolumeDriver'
 volume_group: 'ansible-volumes'
 target_protocol: 'iscsi'
 target_helper: 'lioadm'
 roles:
 - {role: storage, node_type: controller}

And for the consumers:

- hosts: storage_consumers
 vars:
 ansible_become: yes
 storage_setup_consumers: no
 roles:
 - {role: storage, node_type: consumer}

Populating data

Some applications may require specific data to be present in the system before
they are run.

Thanks to the Storage Role we can easily automate the deployment of our whole
application with custom configuration in an external disk:

	Install the application.

	Create a volume.

	Connect the volume.

	Format the volume.

	Populate the default configuration and data.

	Enable and start our application.

- hosts: storage_consumers
 roles:
 - {role: storage, node_type: consumer}
 tasks:
 - name: Install our application
 package:
 name: my-app
 state: present

 - name: Create the volume
 storage:
 resource: volume
 size: 20

 - name: Connect the volume
 storage:
 resource: volume
 state: connected
 register: conn

 - name: Format the disk
 filesystem:
 fstype: ext4
 dev: "{{conn.path}}"
 become: yes

 - name: Mount the disk
 mount:
 path: /mnt/my-app-data
 src: "{{conn.path}}"
 fstype: ext4
 mode: 0777
 become: yes

 - name: Get default configuration and data
 unarchive:
 remote_src: yes
 src: https://mydomain.com/initial-data.tar.gz
 dest: /mnt/my-app-data
 owner: myapp
 group: myapp
 creates: /mnt/my-app-data/lib

 - name: Link the data to the disk contents
 file:
 src: /mnt/my-app-data/lib
 dest: /var/lib/my-app
 owner: myapp
 group: myapp
 state: link

 - name: Link the configuration to the disk contents
 file:
 src: /mnt/my-app-data/etc
 dest: /etc/my-app
 owner: myapp
 group: myapp
 state: link

 - name: Enable and start the service
 service:
 enabled: yes
 name: my-app
 state: started

Ceph backend

Unlike other backends, the Ceph/RBD backend does not receive all the
backend configuration and credentials via parameters. It needs 2
configuration files present on the controller node, and the parameters must
point to these files. The role doesn’t know if these configuration files are
already present on the controller node, if they must be copied from the
Ansible controller, or from some other locations, so it’s our responsibility to
copy them to the controller node.

Note

The Ceph/RBD backend requires the ceph-common package to be
installed on the controller, but we don’t need to worry about it, because
the cinderlib provider takes care of it during the role setup.

Contents of our ceph.conf file:

[global]
fsid = fb86a5b7-6473-492d-865c-60229c986b8a
mon_initial_members = localhost.localdomain
mon_host = 192.168.1.22
auth_cluster_required = cephx
auth_service_required = cephx
auth_client_required = cephx
filestore_xattr_use_omap = true
osd crush chooseleaf type = 0
osd journal size = 100
osd pool default size = 1
rbd default features = 1

Contents of our ceph.client.cinder.keyring file:

[client.cinder]
 key = AQAj7eZarZzUBBAAB72Q6CjCqoftz8ISlk5XKg==

Here’s how we would setup our controller using these files:

- hosts: storage_controller
 tasks:
 - file:
 path=/etc/ceph/
 state=directory
 mode: 0755
 become: yes
 - copy:
 src: ceph.conf
 dest: /etc/ceph/ceph.conf
 mode: 0644
 become: yes
 - copy:
 src: ceph.client.cinder.keyring
 dest: /etc/ceph/ceph.client.cinder.keyring
 mode: 0600
 owner: vagrant
 group: vagrant
 become: yes

- hosts: storage_controller
 vars:
 storage_backends:
 ceph:
 volume_driver: cinder.volume.drivers.rbd.RBDDriver
 rbd_user: cinder
 rbd_pool: volumes
 rbd_ceph_conf: /etc/ceph/ceph.conf
 rbd_keyring_conf: /etc/ceph/ceph.client.cinder.keyring
 roles:
 - {role: storage, node_type: controller}

Note

The storage role runs a minimum check on the backend during setup,
so we need to have the configuration files present before setting up the
role.

By default, the RBD client looks for the keyring under /etc/ceph/ regardless
of the configuration of the rbd_keyring_conf for the backend. If we want
to have the keyring in another location we need to point it in the
cinder.conf file.

Here’s an example of how to store the keyring file out of the /etc/ceph
directory.

- hosts: storage_controller
 tasks:
 - file:
 path=/home/vagrant/ceph
 state=directory
 owner=vagrant
 group=vagrant
 - copy:
 src: ceph.conf
 dest: /home/vagrant/ceph/ceph.conf
 - copy:
 src: ceph.client.cinder.keyring
 dest: /home/vagrant/ceph/ceph.client.cinder.keyring
 - ini_file:
 dest=/home/vagrant/ceph/ceph.conf
 section=global
 option=keyring
 value=/home/vagrant/ceph/$cluster.$name.keyring

- hosts: storage_controller
 vars:
 storage_backends:
 ceph:
 volume_driver: cinder.volume.drivers.rbd.RBDDriver
 rbd_user: cinder
 rbd_pool: volumes
 rbd_ceph_conf: /home/vagrant/ceph/ceph.conf
 rbd_keyring_conf: /home/vagrant/ceph/ceph.client.cinder.keyring
 roles:
 - {role: storage, node_type: controller}

Attention

Even if we are setting they keyring in the ceph.conf file we
must always pass the right rbd_keyring_conf parameter or we won’t be able
to attach from non controller nodes.

Bulk create

One case were we would be running a creation task on the controller would be
if we want to have a pool of volumes at our disposal.

In this case we’ll want to keep the host empty so it doesn’t get the
controller node’s FQDN.

Here’s an example creating 50 volumes of different sizes:

- hosts: storage_controller
 vars:
 num_disks: 50
 storage_backends:
 lvm:
 volume_driver: 'cinder.volume.drivers.lvm.LVMVolumeDriver'
 volume_group: 'cinder-volumes'
 target_protocol: 'iscsi'
 target_helper: 'lioadm'
 roles:
 - {role: storage, node_type: controller}
 tasks:
 - name: "Create {{num_disks}} volumes"
 storage:
 resource: volume
 state: present
 name: "mydisk{{item}}"
 host: ''
 size: "{{item}}"
 with_sequence: start=1 end={{num_disks}}

When using this kind of volumes we have to be careful with the addressing,
because an undefined host parameter will default to the node’s FQDN, which
won’t match the created volumes.

We can use the name parameter to connect to a volume, or we can use the size,
if they are all of different sizes.

- hosts: web_server
 roles:
 - {role: storage, node_type: consumer}
 tasks:
 - storage:
 resource: volume
 state: connected
 host: ''
 size: 20
 register: conn

Migrating data

There may come a time when we want to migrate a volume from one backend to
another. For example when moving volumes from a local testing backend to a
real backend.

There are at least two ways of doing it, copying the whole device, or mounting
the system and synchronizing the contents.

For simplicity we’ll only cover the easy case of copying the whole device,
which works fine when the destination is a thick volume. If the destination is
a thin volume we would be wasting space.

- hosts: storage_controller
 vars:
 storage_backends:
 lvm:
 volume_driver: 'cinder.volume.drivers.lvm.LVMVolumeDriver'
 volume_group: 'cinder-volumes'
 target_protocol: 'iscsi'
 target_helper: 'lioadm'
 kaminario:
 volume_driver: cinder.volume.drivers.kaminario.kaminario_iscsi.KaminarioISCSIDriver
 san_ip: w.x.y.z
 san_login: admin
 san_password: nomoresecrets
 roles:
 - {role: storage, node_type: controller}

- hosts: storage_consumer
 tasks:
 - name: Retrieve the existing volume information
 storage:
 resource: volume
 backend: lvm
 state: present
 name: data-disk
 register: vol

 - name: Create a new volume on the destination backend using the source information.
 storage:
 resource: volume
 backend: kaminario
 state: present
 name: "{{vol.name}}"
 size: "{{vol.size}}"
 host: "{{vol.host}}"
 register: new_vol

 - storage:
 resource: volume
 backend: lvm
 state: connected
 id: "{{vol.id}}"
 register: conn

 - storage:
 resource: volume
 backend: kaminario
 state: connected
 id: "{{new_vol.id}}"
 register: new_conn

 - name: Copy the data
 command: "dd if={{conn.path}} of={{new_conn.path}} bs=1M"
 become: true

 - storage:
 resource: volume
 backend: lvm
 state: disconnected
 id: "{{vol.id}}"

 - storage:
 resource: volume
 backend: kaminario
 state: disconnected
 id: "{{new_vol.id}}"

Supported storage

Supported backends are separated by type of storage they provide:

	Block devices

	Shared filesystems

	Object storage

Block devices

Currently both Block storage providers (cinderlib and cinderclient)
support the same storage solutions, as they both use the same driver code. The
biggest difference in terms of backend support is that the cinderclient
provider relies on a Cinder service deployment, and that’s how all the
drivers have been validated by the automated testing system. The cinderlib
provider relies on the cinderlib library, which is still in the process of
automating the testing, and for the time being has only been manually validated
with a limited number of backends.

Unless stated otherwise, drivers have not been validated with cinderlib,
so even though they should work, they may not.

List of supported drivers in alphabetical order:

	Blockbridge EPS

	Ceph/RBD 2

	Coho Data NFS 1

	Dell EMC PS

	Dell EMC ScaleIO

	Dell EMC Unity

	Dell EMC VMAX FC

	Dell EMC VMAX iSCSI 2

	Dell EMC VNX

	Dell EMC XtremIO FC 2

	Dell EMC XtremIO iSCSI 2

	Dell Storage Center FC

	Dell Storage Center iSCSI

	DISCO

	DotHill FC

	DotHill iSCSI

	DRBD

	EMC CoprHD FC

	EMC CoprHD iSCSI

	EMC CoprHD ScaleIO

	FalconStor FSS FC

	FalconStor FSS iSCSI

	Fujitsu ETERNUS DX S3 FC

	Fujitsu ETERNUS DX S3 iSCSI

	Generic NFS 1

	HGST

	Hitachi HBSD iSCSI

	Hitachi Hitachi NFS 1

	Hitachi VSP FC

	Hitachi VSP iSCSI

	HPE 3PAR FC

	HPE 3PAR iSCSI

	HPE LeftHand iSCSI

	HPE MSA FC

	HPE MSA iSCSI

	HPE Nimble FC

	HPE Nimble iSCSI

	Huawei FusionStorage

	Huawei OceanStor FC

	Huawei OceanStor iSCSI

	IBM DS8000

	IBM FlashSystem A9000

	IBM FlashSystem A9000R

	IBM FlashSystem FC

	IBM FlashSystem iSCSI

	IBM GPFS

	IBM GPFS NFS 1

	IBM GPFS Remote

	IBM Spectrum Accelerate

	IBM Storwize V7000 FC

	IBM Storwize V7000 iSCSI

	IBM SVC FC

	IBM SVC iSCSI

	IBM XIV

	INFINIDAT InfiniBox

	Infortrend Eonstor DS FC

	Infortrend Eonstor DS iSCSI

	Kaminario K2

	Lenovo FC

	Lenovo iSCSI

	LVM 2

	NEC M-Series FC

	NEC M-Series iSCSI

	NetApp 7-mode FC

	NetApp 7-mode iSCSI

	NetApp 7-mode NFS 1

	NetApp C-mode FC

	NetApp C-mode iSCSI

	NetApp Data ONTAP NFS 1

	NetApp E-Series FC

	NetApp E-Series iSCSI

	NexentaEdge iSCSI

	NexentaEdge NFS 1

	NexentaStor iSCSI

	NexentaStor NFS 1

	Oracle ZFSSA iSCSI

	Oracle ZFSSA NFS 1

	ProphetStor FC

	ProphetStor iSCSI

	Pure FC

	Pure iSCSI

	QNAP iSCSI

	Quobyte USP

	Reduxio

	Sheepdog

	SolidFire 2

	Synology iSCSI

	Tegile FC

	Tegile iSCSI

	Tintri

	Veritas Clustered NFS 1

	Veritas HyperScale

	Violin V7000 FC

	Violin V7000 iSCSI

	Virtuozzo

	VMware vCenter

	Windows Smbfs

	X-IO ISE FC

	X-IO ISE iSCSI

	XTE iSCSI

	Zadara VPSA iSCSI/iSER

Shared filesystems

The Storage role has no Shared filesystem provider, so it doesn’t support any
backend at the moment.

Object storage

The Storage role has no Object storage provider, so it doesn’t support any
backend at the moment.

	1(1,2,3,4,5,6,7,8,9,10)

	NFS backends that use an image to provide block storage are not
supported yet.

	2(1,2,3,4,5,6)

	This driver has been validated with cinderlib as stated in its
documentation [https://cinderlib.readthedocs.io/en/latest/validated_backends.html]

Storage Providers

Providers are separated by type of storage they provide:

	Block storage

	Shared filesystems

	Object storage

Block storage

The Storage Role currently has 2 block storage providers:

	Cinderlib

	Cinderclient

Both use the same storage drivers, supporting the same storage solutions, but
using different approaches. The Supported storage section provides a detailed
list of supported backends.

The default provider is cinderlib, as it doesn’t rely on any existing
service.

Cinderlib

The cinderlib Storage provider uses the cinderlib Python library to
leverage existing Cinder drivers outside of OpenStack, without running any
of the Cinder services: API, Scheduler, and Volume.

And when we say that cinderlib uses the same drivers as Cinder, we don’t
mean that these drivers have been copied out of the Cinder repository. We
mean that we install the same openstack-cinder package used by the Cinder
services, and use the exact same driver code on our controller nodes.

Thanks to the Cinder package, this provider supports a considerable
number of different drivers. Most of the storage drivers
included in the package don’t have external dependencies and can run as they
are. But there is a small number of drivers that require extra packages or
libraries to manage the storage.

The cinderlib provider has the mechanism to automatically install these
packages when deploying a controller based on the backend configuration.
At this moment the drivers supporting this automatic installation is not
complete, though it is growing.

As we mentioned, the provider uses the openstack-cinder package, which has
its advantages, but comes with the drawback of requiring more dependencies than
needed, such as the messaging and service libraries.

This, together with the specific driver requirements that we may be using, make
the cinderlib provider somewhat heavy in terms of packages being installed.
Making the most common deployment model to have only one controller node for
all the consumers. One way to do it is using the node running the Ansible
engine as the controller.

There is only 1 fixed parameter that the cinderlib provider requires:

	Key

	Contents

	volume_driver

	Namespace of the driver.

All other parameters depend on the driver we are using, and we recommend
looking into the specific driver configuration [https://docs.openstack.org/cinder/latest/configuration/block-storage/volume-drivers.html] page for more information on
what these parameters are. If the driver has been validated for the
cinderlib library we can see which parameters where used in its
documentation [https://cinderlib.readthedocs.io/en/latest/validated_backends.html].

Here is an example for XtremIO storage:

- hosts: storage_controller
 vars:
 storage_backends:
 xtremio:
 volume_driver: cinder.volume.drivers.dell_emc.xtremio.XtremIOISCSIDriver
 san_ip: w.x.y.z
 xtremio_cluster_name: CLUSTER-NAME
 san_login: admin
 san_password: nomoresecrets
 roles:
 - {role: storage, node_type: controller}

When working with the cinderlib provider there’s one thing we must be aware
of, the metadata persistence.

Cinder drivers are not required to be stateless, so most of them store
metadata in the Cinder database to reduce the number of queries to the
storage backend.

Since we use the Cinder drivers as they are, we cannot be stateless either.
We’ll use the metadata persistence plugin mechanism to store the driver’s
information. At this moment there’s only one plugin available, the database
one, allowing us to store the metadata in many different database engines.

Attention

If the metadata is lost, then the cinderlib role will no longer be able to
use any of the resource it has created.

Proper care is recommended when deciding where to store the metadata. It
can be stored in an external database, in a replicated shared filesystem,
etc.

The default configuration is to store it in a SQLite file called
storage_cinderlib.sqlite in the SSH user’s home directory:

storage_cinderlib_persistence:
 storage: db
 connection: sqlite:///storage_cinderlib.sqlite

But we can change it to use other databases passing the connection information
using SQLAlchemy database URLs format [http://docs.sqlalchemy.org/en/latest/core/engines.html#database-urls] in the connection key.

For example we could use a MySQL database:

- hosts: storage_controller
 vars:
 storage_cinderlib_persistence:
 storage: db
 connection: mysql+pymysql://root:stackdb@127.0.0.1/cinder?charset=utf8

In the future there will be more metadata persistence plugins, and they will be
referenced in cinderlib’s metadata persistence plugins documentation [https://cinderlib.readthedocs.io/en/latest/topics/metadata.html].

Having covered the controller nodes, we’ll now look into the consumer
nodes.

The consumer code is executed on a consumer node when we want to connect or
disconnect a volume to the node. To achieve this it implements 3 functions:

	Connect volume.

	Disconnect volume.

	Get connector information for the node.

Please have a look at the Consumer requirements section for relevant
information on the dependencies for connections on the consumer node.

Connection and disconnections are mostly managed using the OS-Brick [https://github.com/openstack/os-brick].
Although there are some exceptions like for Ceph/RBD connections where we
manage them ourselves.

To speed things when we receive a call to connect a volume that’s already
connected, we use a simple SQLite database. This may change in the future.

This database is stored by default on the SSH user’s home using filename
storage_cinderlib_consumer.sqlite. But we can change the location with the
storage_cinderlib_consumer_defaults variable. Default configuration is:

storage_cinderlib_consumer_defaults:
 db_file: storage_cinderlib_consumer.sqlite

Note

In future releases the use of the SQLite database on the consumer may be
removed.

Cinderclient

The cinderclient Storage provider wraps an OpenStack Cinder service to
expose it in Ansible using the Storage Role abstraction.

Communication between the Storage provider and the Cinder service is
accomplished via Cinder’s well defined REST API.

Relying on an external Cinder service to manage our block storage greatly
reduces the dependencies required by the controller nodes. The only
dependency is the python2-cinderclient package, making controllers for the
cinder provider very light.

With this provider, deploying all our nodes as controller and consumer
makes sense.

The cinderclient provider needs the following configuration parameters to
connect to a Cinder service:

	Key

	Contents

	username

	OpenStack user name.

	password

	Password for OpenStack user.

	project_name

	OpenStack project/tenant name.

	region_name

	OpenStack region name.

	auth_url

	URL for the authentication endpoint.

	volume_type

	Cinder volume type to use. When left undefined provider
will use Cinder’s default volume type.

There are no global configuration options for the cinderclient provider, so
values stored in the storage_cinderclient_defaults variable won’t be used.

Note

Current implementation only supports Cinder services that use Keystone
as the identity service. Standalone Cinder is not currently supported.

Here’s a configuration example for the cinderclient provider showing how to
use the default volume type from Cinder:

- hosts: storage_controller
 vars:
 storage_backends:
 default:
 provider: cinderclient
 password: nomoresecret
 auth_url: http://192.168.1.22/identity
 project_name: demo
 region_name: RegionOne
 username: admin
 roles:
 - {role: storage, node_type: controller}

Using a specific volume type is very easy, we just need to add the
volume_type parameter:

- hosts: storage_controller
 vars:
 storage_backends:
 default:
 provider: cinderclient
 password: nomoresecret
 auth_url: http://192.168.1.22/identity
 project_name: demo
 region_name: RegionOne
 username: admin
 volume_type: ceph
 roles:
 - {role: storage, node_type: controller}

Since the cinderclient and cinderlib providers use the same storage driver
code, the connection information to the storage obtained by the controller
node follows the same format. Since the connection information is the same,
both providers use the same consumer library code to present the storage on
the consumer node. Please refer to the Cinderlib provider section for
more information on this consumer module.

Note

Managed resources will be visible within OpenStack, and therefore can be
managed using Horizon (the web interface), or the cinderclient command
line. We don’t recommend mixing management tools, so it’d be best to only
manage Storage Role resources using Ansible. To help isolate our resources
we recommend using a specific tenant for the Storage Role.

Shared filesystems

There are no Shared filesystem providers at the moment.

Object storage

There are no Object storage providers at the moment.

Internals

In this section we’ll go over the Storage Role internals to explain the
architecture, flows, and other implementation details.

This information should help debug issues on existing roles, and provide
details on how to implement new roles.

Warning

This section is still in an early conceptualization phase, so it’s
not worth reading.

Todo

Do this whole section

Topics to cover:

	Installation tasks for the providers.

	Driver specific installation tasks for the cinderlib provider.

	How we send work to a controller when requested on the consumer.

	How we separate methods on the controller and consumer code.

	Data returned by the different method on the controller and consumer.

	How to create a new provider using storage_base.py classes.

	How a provider can reuse the cinderlib consumer code.

	Describe workarounds that have been implemented using callback and lookup
plugins.

	Explain why the work was split between consumer and controller:

	less requirements on consumer nodes

	consumers don’t need access to the management network

	reuse consumer code/requirements

	Example of a workflow for attach or detach.

- hosts: storage_consumers
 roles:
 - {role: storage, node_type: consumer}
 tasks:
 - name: Create volume
 storage:
 resource: volume
 state: present
 size: 1
 register: vol

 - name: Connect volume
 storage:
 resource: volume
 state: connected
 register: conn

 - debug:
 msg: "Volume {{ vol.id }} attached to {{ conn.path }}"

 - name: Disconnect volume
 storage:
 resource: volume
 state: disconnected

 - name: Delete volume
 storage:
 resource: volume
 state: absent

This will create a volume for each consumer host and attach it to the node,
then display the path where it has been connected before proceeding to
disconnect and delete it.

A descriptive explanation of above playbook is:

	Initialize the controller node: Installs required libraries on the controller

	For each consumer node:
- Install required libraries on the consumer node
- Create a volume: Created on the controller and associated to consumer
- Attach the volume created for that node:

	Controller node maps the volume to the node (other nodes can’t connect)

	Consumer uses iSCSI initiator to attach the volume

	Display where the volume has been attached

	Detach the volume:

	Consumer detaches the volume

	Controller unmaps the volume

Future work

The project being at the early development stages means that the current
features serve mostly to demonstrate the power behind a common storage
abstraction, but are somewhat limited.

There is work being done to add new features, and the next planned features
are:

	Volume cloning.

	Snapshot management.

	Extend volume.

	Amazon’s Elastic Block Storage (EBS).

	Manila provider for Shared filesystem.

	S3 provider for object storage.

	GCS provider for object storage.

Index

 _static/ajax-loader.gif

_images/ansible_role_storage.png

_static/comment-bright.png

_static/ansible_role_storage.png

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Ansible Storage Role’s documentation!

 		
 Introduction

 		
 Features

 		
 Concepts

 		
 Configuration

 		
 Example

 		
 Installation

 		
 Requirements

 		
 Consumer requirements

 		
 Multipathing

 		
 iSCSI

 		
 Ceph/RBD

 		
 Usage

 		
 Configuration

 		
 Resource addressing

 		
 Operations

 		
 Create

 		
 Delete

 		
 Extend

 		
 Disconnect

 		
 Stats

 		
 Examples

 		
 Kaminario backend

 		
 Faster playbooks

 		
 Populating data

 		
 Ceph backend

 		
 Bulk create

 		
 Migrating data

 		
 Supported storage

 		
 Block devices

 		
 Shared filesystems

 		
 Object storage

 		
 Storage Providers

 		
 Block storage

 		
 Cinderlib

 		
 Cinderclient

 		
 Shared filesystems

 		
 Object storage

 		
 Internals

 		
 Future work

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

