DIMS Ansible playbooks
Documentation
Release 2.14.0

Dave Dittrich

Dec 12, 2017

Contents:

Introduction 3
.1 Installation STEPS v v v v o i e e e e e e e e e e e e e e e e e e e 3
Ansible and Configuration Management 5
2.1 Ansible fundamentals L. e e e e e e e e e 6
2.2 Variables e 8
2.3 Configuration and Customization of ansible and ansible-playbook 16

2.3.1 Controlling account, SSH port,etc. e 17
2.4 Lessons from the Fedora Project Ansible Playbooks 18
2.5 Generating iptables Rules fromaTemplate 20
2.6 Customization of System and Service Configuration 22
27 TagsonTasks o o o o o e e e e e e e e e 23

2.77.1 DIMS Tagging Methodology 23

2.7.2 Examples of DIMS Tags o i i e 25
2.8 Ansible Best Practices and Related Documentation 26
Bootstrapping a VM Host as an Ansible Controller 31
3.1 Initial Connectivity o o i e e e e e e e e 32
3.2 Establishing Full Internet Connectivity o 0 v i v it e e e e e e e e 34
3.3 Bootstrapping Full Ansible Control e e 34
3.4 Integration into Working Inventory Lo e 41
3.5 Normal Playbook Operations it e e e 44
3.6 Validating VNC over SSH Tunnelling i 44
Creating VMs 47
4.1 Manual Installation of Virtual Machines i 47
4.2 Bootstrapping the New VMS oL L e e 51
4.3 Initial Provisioning of the New VMs o 53
Customizing a Private Deployment 57
5.1 CoOKIBCULIEr v v v v e e i e e e e e e e e e e e e e 57

5.1.1 TopLevel Files and Directories o v v v v v vt et e e et e e e e e 58

5.1.2 The dims—new-repo CooKiecutter v i i v, 58

5.1.3 The dims—private Cookiecutter ot v it i e 64
5.2 Populating the Private Configuration Repository 65
Testing System Components 73

6.1 Organizing Bats Tests e e

6.2 Organizing tests in DIMS Ansible Playbooks Roles

6.3 Running Bats Tests Using the DIMS test.runner

6.4 Controlling the Amount and Type of Output.
6.4.1 Using DIMS Bash functions in Batstests

Debugging with Ansible and Vagrant

7.1 Debugging Ansible L e e e e e
7.1.1 Examining Variables
7.1.2 Debugging Filter Logic
7.1.3 Developing Custom Jinja Filters e

Regular System Maintenance

8.1 Updating Operating System Packages

8.2 Renewing Letsencrypt Certificates o o 0 i i i i e e e e e e

8.3 Updating Secondary COmMpONENnts v v v v v v v vttt et e e e e e e e e
8.3.1 Updating VagrantPlugins
8.3.2 Updating PyCharm Community Edition

Backups and Restoration

9.1 Backup Directoriesand Files L

9.2 CreatingaBackup e

9.3 RestoringfromaBackup

9.4 Scheduled Backups o L e e e e e

9.5 Other System Backups o e e

10 License
11 Appendices

11.1 Quick Steps to Restarting Squid Proxy Container,

11.2 Recovering From Operating System Corruption v v v v vt v vt i e

11.3 Advanced Ansible Tasks or Jinja Templating
11.3.1 Multi-line fail ordebugOutput oo v it e e e

103
103
107
108
109
109

111
111
112
116
117
117

119

DIMS Ansible playbooks Documentation, Release 2.14.0

This document (version 2.14.0) describes the DIMS Ansible playbooks (ansible-dims—-playbooks for short)
repository contents.

Contents: 1

DIMS Ansible playbooks Documentation, Release 2.14.0

2 Contents:

CHAPTER 1

Introduction

This chapter documents the DIMS Ansible playbooks (ansible-dims-playbooks for short) repository.

This repository contains the Ansible playbooks and inventory for a development/test environment. This is convention-
ally known as a 1ocal deployment, as it comprises a baremetal host system intended to serve as an Ansible control
host, with a series of virtual machines to provide services.

1.1

Installation Steps

Before diving into the details, it is helpful to understand the high level tasks that must be performed to bootstrap a
functional deployment.

Install the base operating system for the initial Ansible control host that will be used for configuring the deploy-
ment (e.g., on a development laptop or server).

Set up host playbook and vars files for the Ansible control host.
Pre-populate artifacts on the Ansible control host for use by virtual machines under Ansible control.

Instantiate the virtual machines that will be used to provide the selected services and install the base operating
system on them, including an ansible account with initial password and/or SSH authorized_keys files
allowing access from the Ansible control host.

Set up host playbooks, host vars files, and inventory definitions for the selected virtual machines.

Validate that the Ansible control host is capable of connecting to all of the appropriate hosts defined in the
inventory using Ansible ad-hoc mode.

Finish customizing any templates, installed scripts, and secrets (e.g., passwords, certificates) unique to the
deployment.

DIMS Ansible playbooks Documentation, Release 2.14.0

4 Chapter 1. Introduction

CHAPTER 2

Ansible and Configuration Management

Ansible is an open source tool that can be used to automate system administration tasks related to installation, configu-
ration, account setup, and anything else required to manage system configurations across a large number of computers.

While it is possible to manually install and configure a hand-full of computer systems that do not change very often,
this kind of system deployment and system administration quickly becomes a limiting factor. It does not scale very
well, for one, and makes it very difficult to change or replicate. You may need to move hardware from one data center
to another, requiring reconfiguration of both hosts and dozens of VM guests. You may need to move from one Linux
distribution to another. You may wish to add another continuous integration build cluster to support another operating
system major/minor version, or a new processor architecture like ARM. Even if the number of hosts is small, having
the knowledge of how the systems were built and configured in the head of just one person (who may go on vacation,
or permanently leave the project) increases the risk of total disruption of the project in the event of an outage.

Tip: If you are not familiar with Ansible, take some time to look at the Ansible Get Started page, and/or watch the
following video series. While they are a little dated now (2015, pre- Ansible 2.x), they cover many useful concepts.

* 19 Minutes With Ansible (Part 1/4), Justin Weissig, sysadmincasts.com, January 13, 2015

e Learning Ansible with Vagrant (Part 2/4), Justin Weissig, sysadmincasts.com, March 19, 2015

» Configuration Management with Ansible (Part 3/4), Justin Weissig, sysadmincasts.com, March 26, 2015
e Zero-downtime Deployment with Ansible (Part 4/4), Justin Weissig, sysadmincasts.com, April 2, 2015

Also highly recommended is to immediately get and read all of Jeff Geerling’s book, Ansible for DevOps. This book
is more up-to-date in terms of covering Ansible 2.x features and coding style. It will save you countless hours of
floundering around and Jeff’s Ansible coding style is top quality.

Many more references can be found in Section bestpractices (originally collected at <https://staff.washington.edu/
dittrich/home/unix.html#ansible>).

http://www.ansible.com/get-started
https://www.ansible.com/get-started
https://sysadmincasts.com/episodes/43-19-minutes-with-ansible-part-1-4
https://sysadmincasts.com/episodes/45-learning-ansible-with-vagrant-part-2-4
https://sysadmincasts.com/episodes/46-configuration-management-with-ansible-part-3-4
https://sysadmincasts.com/episodes/47-zero-downtime-deployments-with-ansible-part-4-4
https://leanpub.com/ansible-for-devops
https://staff.washington.edu/dittrich/home/unix.html#ansible
https://staff.washington.edu/dittrich/home/unix.html#ansible

DIMS Ansible playbooks Documentation, Release 2.14.0

2.1 Ansible fundamentals

Ansible allows you to document all of the steps necessary to perform the required tasks, organize sets of computers on
which those steps should be performed, and then allow you to perform those tasks precisely and consistently across
all of those hosts. Figure Ansible Overview (source: 19 Minutes with Ansible (Part 1/4)) illustrates this process.

Veunturteus tybd
Ansilo le Mﬁ\m*' e e
9 =
Py
NOde. : ’/.' N 0on1L
qon 1
Veunturrastypd
VoKLY
SSH Tt
‘ e Veunturteus tybd
Sswy
7 N N
S§~ . 0V0%14
= \ '1’3;;
LAAJ L__J \\“ Veunturrastybd
H09+ P\ O.\i\ooo\ﬂ deirturtwrit 00615
Inven'&ow -
10015 welo Sl
00511

10.05.1%
Fig. 2.1: Ansible Overview

At the center of the left side of Figure Ansible Overview is the Ansible Management Node (also called by some a
Control node). This figure depicts the push model for using Ansible, where a Control machine holds the playbooks
and inventory files necessary to drive Ansible, and that Control machine reaches out to farget hosts on which the
actions take place. Another way to use Ansible is by using a 1ocalhost connection for the Control machine to also
be the Target machine (in which case the actions Ansible performs are done to the same computer on which Ansible
is running.)

A set of hosts can be specified with an inventory. Ansible supports two styles for static inventories, an INI format
style, and a YAML format style. The INI style format is known as a hosts file, by default stored in a file named
/etc/ansible/hosts.

An INI style inventory that implements the example above could look like this:

[web]

10.0.15.21
10.0.15.22
10.0.15.23
10.0.15.24
10.0.15.25
10.0.15.26

6 Chapter 2. Ansible and Configuration Management

https://sysadmincasts.com/episodes/43-19-minutes-with-ansible-part-1-4

DIMS Ansible playbooks Documentation, Release 2.14.0

Note: The —1i flag can be used to specify the inventory file to use, rather than always having to over-write the file
/etc/ansible/hosts. Alternatively, it can be specified in an ansible.cfg file, typically found in /etc/
ansible/ansible.cfg for the global file. This is covered more in Section Configuration and Customization of
ansible and ansible-playbook.)

Ansible has two main command line interface programs you can use. The first is just ansible and it allows you
to run individual modules against a set of hosts (also known as “running a play”). Here is a very simple example of
running the ping module against every host in the all group in the development inventory shown above:

$ ansible -i $GIT/ansible-playbooks/inventory/development all -m ping
floyd2-p.devops.develop | success >> {
"changed": false,

"ping": "pong"

hub.devops.develop | success >> {
"changed": false,
"ping" . "pong"

ul2-dev-svr-1l.devops.develop | success >> {
"changed": false,
llpingll . llpongll

linda-vml.devops.develop | success >> {
"changed": false,

"ping": "pongu

ul2-dev-ws-1.devops.develop | success >> {
"changed": false,
"ping" . "pong"

Using the command module, and passing in arguments, you can run arbitrary commands on hosts as a form of
distributed SSH:

$ ansible -i $GIT/ansible-playbooks/inventory/development all -m command -a /usr/bin/
—uptime
floyd2-p.devops.develop | success | rc=0 >>

01:02:52 up 22 days, 7:27, 1l user, load average: 0.04, 0.12, 1.11

ul2-dev-ws-1.devops.develop | success | rc=0 >>
01:02:52 up 148 days, 14:58, 1 user, load average: 0.00, 0.01, 0.05

ul2-dev-svr-1.devops.develop | success | rc=0 >>
01:02:45 up 144 days, 17:53, 1 user, load average: 0.03, 0.05, 0.05

hub.devops.develop | success | rc=0 >>
09:02:52 up 130 days, 15:14, 1 user, load average: 0.00, 0.01, 0.05

linda-vml.devops.develop | success | rc=0 >>
01:02:53 up 148 days, 14:58, 1 user, load average: 0.00, 0.01, 0.05

The other principal command line program is ansible-playbook, which is used to run more complex playbooks

2.1. Ansible fundamentals 7

DIMS Ansible playbooks Documentation, Release 2.14.0

made up of multiple sequentially organized plays with all kinds of complex logic and other organizational techniques
to manage complex processes. Examples of writing and running playbooks are found in the rest of this document.

Note: Ansible also has a Python API that can be used to embed Ansible functionality into other programs, or to
write your own modules to perform tasks. This is explained in the video Alejandro Guirao Rodriguez - Extending and
embedding Ansible with Python from EuroPython 2015.

Caution: Always remember that Ansible is used in a distributed system manner, meaning that it has two execution
contexts:

(1) it runs with the chosen Python interpreter on the control host, which creates Python code that is then
2. copied to and executed within the context of the target host.

Take another look at Figure Ansible Overview and realize that the arrows pointing away from the blue node (the
control host) to the many green nodes (the targets) implicitly show this context switch.

This has ramifications for targets that run operating systems like CoreOS (that don’t have Python installed, and
don’t have a package manager), and for use of modules like apt that call Python libraries to use operating system
specific package managers like APT from within Ansible’s Python code.

Since the DIMS project uses Python virtual environments to isolate the Python interpreter used by developers from
the interpreter used by the system (to avoid breaking the system), this means by definition there are multiple Python
interpreters on DIMS hosts. This requires that pay very close attention to configuration settings that affect the
Python interpreter used by Ansible and consciously do things (and test the results of changes carefully to know
when a change breaks something in Ansible.) The result of changes the Python interpreter used by Ansible can be
random failures with cryptic error messages like these:

Traceback (most recent call last):
File \"/home/core/.ansible/tmp/ansible-tmp-1462413293.33-173671562381843/file\",
—~line 114, in <module>
exitcode = invoke_module (module, zipped_mod, ZIPLOADER_PARAMS)
File \"/home/core/.ansible/tmp/ansible-tmp-1462413293.33-173671562381843/file\",
—~line 28, in invoke_module
p = subprocess.Popen(['/opt/bin/python', module], env=os.environ, shell=False,
—stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE)
File \"/usr/lib/python2.7/subprocess.py\", line 710, in __ init_
errread, errwrite)
File \"/usr/lib/python2.7/subprocess.py\", line 1335, in _execute_child
raise child_exception
OSError: [Errno 2] No such file or directory

msg: Could not import python modules: apt, apt_pkg. Please install python-apt,,
—package.

Both of these messages are due to the Python interpreter being used by Ansible on the target end being set to a
non-system Python interpreter that does not have the necessary libraries or programs that Ansible needs. In the
second case, commenters on blogs may say, “But I installed python-apt and I still get this message. Why?”
Yes, you may have installed the python-apt package like it says, but it was installed into the system Python
interpreter, which is not the one that Ansible is using if ansible_python_interpreter or $PATH would
cause Ansible to use a different one!

2.2 Variables

8 Chapter 2. Ansible and Configuration Management

https://youtu.be/qLoBHbVb0Fw
https://youtu.be/qLoBHbVb0Fw

DIMS Ansible playbooks Documentation, Release 2.14.0

Note: As of the release of this repository, the DIMS project has adopted Ansible 2.x and switched to using the
little-documented (but much more powerful) YAML style inventory. This will be described in more detail elsewhere.

Ansible playbooks are general rules and steps for performing actions. These actions can be selected using logic (“If
this is Redhat, do A, but if it is Ubuntu, do B”), or by using Jinja templating to apply variables to a generic template
file, resulting in specific contents customized for a given host.

Some of these variables (known as “facts”) are set by Ansible when it first starts to run on a target host, while others
are defined in files that accompany playbooks and inventories. You can see the dictionary of ansible_ facts fora
given system using Ansible’s setup module:

$ ansible -m setup localhost -c local
localhost | success >> {
"ansible_facts": {
"ansible_all_ipv4_addresses": |
"172.17.0.1",
"10.88.88.5",
"192.168.0.100",
"10.86.86.7"
1,
"ansible_all_ipv6_addresses": |
"fe80::d253:49ff:fed7:9ebd"
1,
"ansible_architecture": "x86_64",
"ansible_bios_date": "01/29/2015",
"ansible_bios_version": "Al1l3",
"ansible_cmdline": {
"BOOT_IMAGE": "/vmlinuz-3.16.0-30-generic",
"quiet": true,
"ro": true,
"root": "/dev/mapper/hostname_vg-root_1lv",
"splash": true,
"vt.handoff": "7"
}V
"ansible_date_time": {
"date": "2016-03-10",
"day": "10",
"epoch": "1457653607",
"hour": "15",
"iso8601": "2016-03-10T23:46:472",
"1is08601_micro": "2016-03-10T23:46:47.246903z",
"minute": "46",
"month": "03",
"second": "47",
"time": "15:46:47",
"tz": "PST",
"tz_offset": "-0800",
"weekday": "Thursday",
"year": "2016"
}I
"ansible_default_ipv4": {

"address": "192.168.0.100",
"alias": "wlanO",
"gateway": "192.168.0.1",
"interface": "wlanO",

"macaddress": "d0:53:49:d7:9e:bd",
"mtu": 1500,

2.2. Variables 9

http://jinja.pocoo.org

DIMS Ansible playbooks Documentation, Release 2.14.0

"netmask": "255.255.255.0",
"network": "192.168.0.0",
"type": "ether"

b
"ansible_default_ipvée": {},
"ansible_devices": {
"sda": {
"holders": [],

"host": "SATA controller: Intel Corporation 8 Series...

"model": "ST1000LMO14-1EJ1",
"partitions": {
"sdal": {
"sectors": "997376",
"sectorsize": 512,
"size": "487.00 MB",
"start": "2048"
}!
"sda2": {
"sectors": "2",
"sectorsize": 512,
"size": "1.00 KB",
"start": "1001470"
}!
"sdab5": {
"sectors": "1952522240",
"sectorsize": 512,
"size": "931.04 GB",
"start": "1001472"

}I
"removable": "0O",
"rotational": "1",
"scheduler_mode": "deadline",
"sectors": "1953525168",
"sectorsize": "4096",
"size": "7.28 TB",
"support_discard": "0",
"vendor": "ATA"

}I

"sro": {
"holders": [],

"host": "SATA controller: Intel Corporation 8 Series...

"model": "DVD-ROM SU-108GB",
"partitions": {},
"removable": "1",
"rotational": "1V,
"scheduler_mode": "deadline",
"sectors": "2097151",
"sectorsize": "512",

"size": "1024.00 MB",
"support_discard": "0",
"vendor": "TSSTcorp"

}I

"ansible_distribution”: "Ubuntu",
"ansible_distribution_major_version": "14",
"ansible_distribution_release": "trusty",
"ansible_distribution_version": "14.04",

10 Chapter 2. Ansible and Configuration Management

DIMS Ansible playbooks Documentation, Release 2.14.0

"ansible_docker0": {
"active": false,
"device": "dockerO",
"id": "8000.0242a37d17a7",
"interfaces": [],
"ipv4": |
"address": "172.17.0.1",
"netmask": "255.255.0.0",
"network": "172.17.0.0"
}I
"macaddress": "02:42:a3:7d:17:a7",
"mtu": 1500,
"promisc": false,
"stp": false,
"type": "bridge"
}I
"ansible_domain": "",
"ansible_env": {
"BASE": "bash",
"BYOBU_ACCENT": "#75507B",
"BYOBU_BACKEND": "tmux",
"BYOBU_CHARMAP": "UTF-8",
"BYOBU_CONFIG_DIR": "/home/dittrich/.byobu",
"BYOBU_DARK": "#333333",
"BYOBU_DATE": "$Y-%m-%d ",
"BYOBU_DISTRO": "Ubuntu",
"BYOBU_HIGHLIGHT": "#DD4814",
"BYOBU_LIGHT": "#EEEEEE",
"BYOBU_PAGER": "sensible-pager",
"BYOBU_PREFIX": "/usr",
"BYOBU_PYTHON": "python3",
"BYOBU_READLINK": "readlink",
"BYOBU_RUN_DIR": "/dev/shm/byobu-dittrich-0R38I1Mb",
"BYOBU_SED": "sed",
"BYOBU_TIME": "S%H:%M:%S",
"BYOBU_TTY": "/dev/pts/24",
"BYOBU_ULIMIT": "ulimit",
"BYOBU_WINDOW_NAME": "-",
"CFG": "/opt/dims/nas/scd",
"CLUTTER_IM_MODULE": "xim",
"COLORTERM": "gnome-terminal",
"COMMAND": "',
"COMPIZ_BIN_PATH": "/usr/bin/",
"COMPIZ_CONFIG_PROFILE": "ubuntu",
"CONSUL_LEADER": "10.142.29.116",
"DBUS_SESSION_BUS_ADDRESS": "unix:abstract=/tmp/dbus-sYbG5zmdUA",
"DEBUG": "0O",
"DEFAULTS_PATH": "/usr/share/gconf/ubuntu.default.path",
"DESKTOP_SESSION": "ubuntu",
"DIMS": "/opt/dims",
"DIMS_REV": "unspecified",
"DIMS_VERSION": "1.6.129 (dims-ci-utils)",
"DISPLAY": ":0",
"GDMSESSION": "ubuntu",
"GDM_LANG": "en_UsS",
"GIT": "/home/dittrich/dims/git",
"GNOME_DESKTOP_SESSION_ID": "this-is-deprecated",
"GNOME_KEYRING_CONTROL": "/run/user/1004/keyring-7kIOrA",

2.2. Variables 11

DIMS Ansible playbooks Documentation, Release 2.14.0

"GNOME_KEYRING_PID": "2524",

"GPG_AGENT_INFO": "/run/user/1004/keyring-7kI0rA/gpg:0:1",
"GTK_IM_MODULE": "ibus",

"GTK_MODULES": "overlay-scrollbar:unity-gtk-module",
"HOME": "/home/dittrich",

"IM_CONFIG_PHASE": "1",

"INSTANCE": "",

"JOB": "dbus",

"LANG": "C",

"LANGUAGE": "en_Us",

"LC_CTYPE": "C",

"LESSCLOSE": "/usr/bin/lesspipe %s %s",

"LESSOPEN": "| /usr/bin/lesspipe %s",

"LOGNAME": "dittrich",

"LS_COLORS": "rs=0:di=01;34:1n=01;36:mh=00:pi=40;33:a....",
"MANDATORY_PATH": "/usr/share/gconf/ubuntu.mandatory.path",
"NAS": "/opt/dims/nas",

"OLDPWD": "/home/dittrich",

"OS": "Linux",

"PATH": "/home/dittrich/dims/envs/dimsenv/bin:/home/di...",
"PROGRAM": "/bin/bash",

"PROJECT_HOME": "/home/dittrich/dims/devel",

"PS1": "\\[\\033[1;34m\\] [dimsenv]I\\[\\e[Om\\] \\[\\03...",
"PWD": "/vm/vagrant-run-devserver",

"QT4_IM _MODULE": "xim",

"OT_IM MODULE": "ibus",

"QT_QPA_PLATFORMTHEME": "appmenu-gt5",

"RECIPIENTS": "dims-devops@uw.ops—trust.net",
"SELINUX_INIT": "YES",

"SESSION": "ubuntu",

"SESSIONTYPE": "gnome-session",

"SESSION_MANAGER": "local/dimsdemol:@/tmp/.ICE-unix/27...",
"SHELL": "/bin/bash",

"SHLVL": "3",

"SSH_AUTH_SOCK": "/home/dittrich/.byobu/.ssh-agent",
"STAT": "stat",

"TERM": "screen-256color",

"TEXTDOMAIN": "im-config",

"TEXTDOMAINDIR": "/usr/share/locale/",

"TMUX": "/tmp/tmux-1004/default, 3276,1",

"TMUX_PANE": "%16",

"UPSTART_SESSION": "unix:abstract=/com/ubuntu/upstart-s...",
"USER": "dittrich",

"VERBOSE": "0O",

"VIRTUALENVWRAPPER_HOOK_DIR": "/home/dittrich/dims/envs",
"VIRTUALENVWRAPPER_PROJECT_FILENAME": ".project",
"VIRTUALENVWRAPPER _PYTHON": "/home/dittrich/dims/bin/python",
"VIRTUALENVWRAPPER_SCRIPT": "/home/dittrich/dims/bin/vir...",
"VIRTUALENVWRAPPER_WORKON_CD": "1",

"VIRTUAL_ENV": "/home/dittrich/dims/envs/dimsenv",
"VTE_VERSION": "3409",

"WINDOWID": "23068683",

"WORKON_HOME": "/home/dittrich/dims/envs",

"XAUTHORITY": "/home/dittrich/.Xauthority",
"XDG_CONFIG_DIRS": "/etc/xdg/xdg-ubuntu:/usr/share/upstar...",
"XDG_CURRENT_DESKTOP": "Unity",

"XDG_DATA_DIRS": "/usr/share/ubuntu:/usr/share/gnome:/usr...",
"XDG_GREETER_DATA_DIR": "/var/lib/lightdm-data/dittrich",

12

Chapter 2. Ansible and Configuration Management

DIMS Ansible playbooks Documentation, Release 2.14.0

"XDG_MENU_PREFIX":
"XDG_RUNTIME_DIR":
"XDG_SEAT": "seatO"
"XDG_SEAT_PATH": "/
"XDG_SESSION_ID": "
"XDG_SESSION_PATH":
"XDG_VTNR": "7",
"XMODIFIERS":

b
"ansible_ethO":

{

"active": false,
"device": "ethO",
"macaddress": "34:e
"module": "el000e",
"mtu": 1500,
"promisc": false,
"type": "ether"

}I

"ansible_form factor":

"ansible_fqgdn":

"ansible_hostname":

"ansible_interfaces": [
"dockerO",
"tun88",
"lo",
"tunO",
"wlanO",
"vboxnet2",
"vboxnet0O",
"vboxnetl",
"ethO"

]I

"ansible_kernel":

"ansible_lo": {

"3.16

"active":
"device":
"ipv4": {

true,
Hloll
14

"127
"255
"127

"address":

"netmask":

"network":

}I
"ipve": [

{
"address":
"prefix":
"scope":

n

]I

"mtu": 65536,
"promisc": false,
"type": "loopback"

br

"ansible_1lsb": {
"codename": "trusty
"description":
"id": "Ubuntu",
"major_release":

"@Qim=
"/home/dittrich/dims/envs/dimsenv/bin/ansible"

"gnome-",
"/run/user/1004",

org/freedesktop/DisplayManager/Seat0",
c2",
"/org/freedesktop/DisplayManager/Session0",

ibus",

6:d7:72:0d:b0",

"Laptop",

"dimsdemol",
"dimsdemol",

.0-30-generic",

.0.0.1",
.0.0.0",
.0.0.0"

me.qmn
.. ’

128",

"host"

"
4

"Ubuntu 14.04.3 LTS",

"14",

2.2. Variables

13

DIMS Ansible playbooks Documentation,

Release 2.14.0

"release": "14.04"
}I
"ansible_machine":
"ansible _memfree_mb":
"ansible_memtotal_mb":
"ansible_mounts": [

{

"x86_64",
2261,
15988,

"device": "/dev/mapper/hostname_vg-root_1lv",
"fstype": "ext4",

"mount": "/",

"options": "rw,errors=remount-ro",
"size_available": 859396513792,
"size_total": 982859030528

"device": "/dev/sdal",
"fstype": "ext3",

"mount": "/boot",

"options": "rw",
"size_available": 419035136,
"size_total": 486123520

i

"ansible_nodename": "dimsdemol",

"ansible_os_family": "Debian",

"ansible_pkg_mgr": "apt",

"ansible_processor": [
"Intel (R) Core(TM) 17-4710MQ CPU @ 2.50GHz",
"Intel (R) Core(TM) 17-4710MQ CPU @ 2.50GHz",
"Intel (R) Core(TM) 1i7-4710MQ CPU @ 2.50GHz",
"Intel (R) Core(TM) 17-4710MQ CPU @ 2.50GHz",
"Intel (R) Core(TM) i7-4710MQ CPU @ 2.50GHz",
"Intel (R) Core(TM) 1i7-4710MQ CPU @ 2.50GHz",
"Intel (R) Core(TM) 17-4710MQ CPU @ 2.50GHz",
"Intel (R) Core(TM) 17-4710MQ CPU Q@ 2.50GHz"

] 14

"ansible_processor_cores": 4,

"ansible_processor_count": 1,

"ansible_processor_threads_per_core": 2,

"ansible_processor_vcpus": 8,

"ansible_product_name":

"ansible_product_serial": "NA",
"ansible_product_uuid": "NA",
"ansible_product_version": "01",
"ansible_python_version": "2.7.6",

"ansible_selinux": false,
"ansible_ssh_host_key_dsa_public":

"ansible_ssh_host_key_ecdsa_public":

"ansible_ssh_host_key_rsa_public":

"ansible_swapfree_mb": 975,
"ansible_swaptotal_mb": 975,
"ansible_system": "Linux",

"ansible_system_vendor":

{

"ansible_tunO":

"active": true,
"device": "tunO",
"ipv4": {
"address": "10.86.86.7",

"Precision M4800",

"AAAA. ..
"AA. ..
"AAAA. ..

"Dell Inc.",

14

Chapter 2.

Ansible and Configuration Management

DIMS Ansible playbooks Documentation, Release 2.14.0

"netmask": "255.255.255.0",
"network": "10.86.86.0"
by
"mtu": 1500,
"promisc": false
s
"ansible_tun88": {
"active": true,
"device": "tun88",
"ipv4": |
"address": "10.88.88.5",
"netmask": "255.255.255.0",
"network": "10.88.88.0"
}I
"mtu": 1500,
"promisc": false
}V
"ansible_user_id": "dittrich",

"ansible_userspace_architecture":
ll64"’

"ansible_userspace_bits":
"ansible_vboxnet0": {
false,
"vboxnetO",

"active":
"device":
"macaddress":
"mtu": 1500,
"promisc": false,
"type": "ether"

}I

"ansible_vboxnetl": {
"active": false,
"device": "vboxnetl",
"macaddress":

1500,

"promisc": false,

"type": "ether"

"mtu":

}I

"ansible_vboxnet2": {
"active": false,
"device": "vboxnet2",
"macaddress":
"mtu": 1500,
"promisc": false,
"type": "ether"

b

"x86_64",

"0a:00:27:00:00:00",

"0a:00:27:00:00:01",

"0a:00:27:00:00:02",

"ansible_virtualization_role": "host",
"ansible_virtualization_type": "kvm",
"ansible_wlanO": {
"active": true,
"device": "wlanO",
"ipv4": |
"address": "192.168.0.100",
"netmask": "255.255.255.0",
"network": "192.168.0.0"
}I
"ipve": [
{
"address": "fe80::d253:49ff:fed7:9ebd",
"prefix": "64",

2.2. Variables

15

DIMS Ansible playbooks Documentation, Release 2.14.0

"scope": "link"
}

]I
"macaddress": "d0:53:49:d7:9e:bd",

"module": "wl",

"mtu": 1500,

"promisc": false,

"type": "ether"
}I

"module_setup": true

b
"changed": false

Other variables are added from variables files found in defaults/ and vars/ directories in a role, from
group_vars/, from host_vars/, from vars listed in a playbook, and from the command line with the —-e

flag.

You can run playbooks using the ansible-playbook command directly, by using a DIMS wrapper script (dims .
ansible—-playbook) which allows you to run playbooks, tasks, or roles by name, or via the dimscli Python
CLI program.

Caution: As a general rule, interrupting ansible—playbook with CTRL-C in the middle of a playbook run
is a Bad Idea. The reason for this is that some playbooks will disable a service temporarily and notify a handler to
restart the service at the end of the playbook run, or may successfully change only some configuration files (leaving
the ones that would have been changed had the CTRL-C not been issued), either of which can leave the system in
an inconsistent and/or potentially inoperable state.

It is best to test playbooks on Vagrant hosts that are not critical if they are accidentally rendered inoperable rather
than getting into an emergency debugging situation with a “production” server. If testing with a “live” system,
having an active SSH terminal session as a fallback for local access helps, but not always. Be aware of this risk
and act accordingly!

2.3 Configuration and Customization of ansible and
ansible-playbook

Like any good Unix program, you can use a global or local Configuration file to customize default settings and/or
program behavior. Ansible provides the following alternatives:

e ANSIBLE_CONFIG (an environment variable)
e ansible.cfg (in the current directory)

e .ansible.cfg (in the home directory)

e /etc/ansible/ansible.cfg

There are many reasons why this configuration customization is useful. The following subsections describe some.

Caution: Keep in mind that one or more of these configuration files may exist on a host causing Ansible to po-
tentially behave differently than expected between different accounts, different systems, etc. If something appears
to not work the way you expected, look for these files and see how they are set, add extra levels of verbosity with

16 Chapter 2. Ansible and Configuration Management

DIMS Ansible playbooks Documentation, Release 2.14.0

additional —v flags, or otherwise check how Ansible is being configured to work within scripts that run ansible
or ansible-playbook.

To determine which one of these files might be used in a given working directory, you can use the following loop
to show which file or files may exist:

$ pwd

/home/dittrich/dims/git/ansible-playbooks

$ for £ in S$ANSIBLE_CONFIG ansible.cfg ~/.ansible.cfg /etc/ansible/ansible.cfg; \
do [—-f $f] && echo $f exists; done

/etc/ansible/ansible.cfg exists

$ cp /etc/ansible.cfg myconfig.cfg
$ vi myconfig.cfg
[...]
$ ANSIBLE_CONFIG=myconfig.cfg
$ for £ in S$ANSIBLE_CONFIG ansible.cfg ~/.ansible.cfg /etc/ansible/ansible.cfg; \
do [-f $f] && echo $f exists; done
myconfig.cfg exists
/etc/ansible/ansible.cfg exists

2.3.1 Controlling account, SSH port, etc.

There are several parameters that affect SSH connections and the number of simultaneous forked connections useful
for accelerating parallel execution of Ansible tasks across a hosts in an inventory. In the example here, we set the
number of forks to 10, the default sudo user to root, the default SSH port to 8422 and the transport mechanism to
smart:

config file for ansible —-- http://ansible.com/

4=

nearly all parameters can be overridden in ansible-playbook
or with command line flags. ansible will read ANSIBLE_CONFIG,
ansible.cfg in the current working directory, .ansible.cfg in
the home directory or /etc/ansible/ansible.cfg, whichever it
finds first

+H= = o

[defaults]

some basic default values...

#hostfile = /etc/ansible/hosts
#library = /usr/share/ansible
#remote_tmp = SHOME/.ansible/tmp
#pattern = x

forks = 10

#poll_interval = 15

sudo_user = root

#ask_sudo_pass = True

#ask_pass = True

transport = smart

remote_port = 8422

module_lang = C

2.3. Configuration and Customization of ansible and ansible-playbook 17

DIMS Ansible playbooks Documentation, Release 2.14.0

2.4 Lessons from the Fedora Project Ansible Playbooks

One of the better models identified during the second year of the DIMS Project was the Fedora Project’s public
ansible.git repo. The layout of their repo is described in a README file.

The Fedora Project puts very little in individual host_vars files to store minimal host-specific settings for use in play-
books. This will be examined here in the context of generating iptables rules files from Jinja templates.

Note: You can view all of the files in sequence using a Bash for loop, as follows:

cd ~/git/fedora-ansible/

for f in inventory/host_vars/=*
do

echo S$f

echo "=============—======"
cat Sf

echo "===================="
echo ""

done | less

V V.V V V V V ¥\ »n

The output looks like this:

inventory/host_vars/aarch64-02a.arm.fedoraproject.org

fas_client_groups: sysadmin-noc, sysadmin-releng

kojipkgs_url: armpkgs.fedoraproject.org
kojihub_url: arm.koji.fedoraproject.org/kojihub
kojihub_scheme: https

ethO_ip: 10.5.78.75

gw: 10.5.78.254

koji_server_url: "http://arm.koji.fedoraproject.org/kojihub"
koji_weburl: "http://arm.koji.fedoraproject.org/koji"
koji_topurl: "http://armpkgs.fedoraproject.org/"

nfs_mount_opts: rw,hard,bg, intr,noatime, nodev,nosuid,nfsvers=3, rsize=32768,
—wsize=32768

fedmsg_certs:
- service: releng
owner: root
group: sysadmin-releng
can_send:
pungi-koji stuff (ask dgilmore)
- pungi.compose.phase.start
- pungi.compose.phase.stop
— pungi.compose.status.change
- pungi.compose.createiso.targets
- pungi.compose.createiso.imagefail
- pungi.compose.createiso.imagedone

inventory/host_vars/aarch64-03a.arm.fedoraproject.org

18 Chapter 2. Ansible and Configuration Management

https://infrastructure.fedoraproject.org/cgit/ansible.git
https://infrastructure.fedoraproject.org/cgit/ansible.git/tree/README
https://infrastructure.fedoraproject.org/cgit/ansible.git/tree/inventory/host_vars

20

21

22

23

24

25

26

27

28

29

DIMS Ansible playbooks Documentation, Release 2.14.0

ethO_ip: 10.5.78.80

inventory/host_vars/aarch64-04a.arm.fedoraproject.org

ethO_ip: 10.5.78.85

Let’s look at the file nocO1.phx2.fedoraproject.org, specifically the blocks at lines 12-18.

Note: The custom_rules array in this example was split into separate lines here for better readability, as is
found in other files such as db-fasO1.phx2.fedoraproject.org. It is a single line in the original file (which is perfectly
acceptable, though more difficult to read in a limited-column environment such as this documenation. The desire here
was to show a file with all three of tcp_ports, udp_ports, and custom_rules variables, hence the cosmetic
alteration.

nm: 255.255.255.0
gw: 10.5.126.254
dns: 10.5.126.21

ks_url: http://10.5.126.23/repo/rhel/ks/kvm-rhel-7
ks_repo: http://10.5.126.23/repo/rhel/RHEL7-x86_64/
volgroup: /dev/vg_virthost

vmhost: virthostl7.phx2.fedoraproject.org
datacenter: phx2

tcp_ports: ['22', '80', "443', '67', '68'"]

udp_ports: ['67','68',"'69"]

custom_rules: [
'-A INPUT -p tcp —m tcp -s 192.168.1.20 —--dport 5666 —j ACCEPT',
'-A INPUT -p tcp —m tcp -s 10.5.126.13 —--dport 873 -3j ACCEPT',
'-A INPUT -p tcp -m tcp -s 192.168.1.59 —-—-dport 873 —7j ACCEPT'

ethO_ip: 10.5.126.41
csi_relationship: |

2.4. Lessons from the Fedora Project Ansible Playbooks 19

https://infrastructure.fedoraproject.org/cgit/ansible.git/plain/inventory/host_vars/noc01.phx2.fedoraproject.org
https://infrastructure.fedoraproject.org/cgit/ansible.git/plain/inventory/host_vars/db-fas01.phx2.fedoraproject.org

DIMS Ansible playbooks Documentation, Release 2.14.0

2.5 Generating iptables Rules from a Template

Note: Ansible suggests that Jinja templates use the extension . j2, though Ansible will process the template regard-
less of whether it has an extension or not. The example iptables template used by the Fedora Project has no . 32
extension, while the DIMS project uses the . 72 extension to more easily locate Jinja template files using £ind .
-name '=x.J2"' or similar extension-based searching methods.

The template roles/base/templates/iptables/iptables (processed by roles/base/tasks/main.yml as part of the base role)
provides a Jinja template for an iptables rule set.

Note: The complete template file roles/base/templates/iptables/iptables is over 100 lines. It is edited here to remove
lines that are irrelevant to the discussion of Jinja templating.

Listing 2.1: Template for iptables rules

{{ ansible_managed }}
«filter

:INPUT ACCEPT [0:0]
:FORWARD ACCEPT [0:0]
:OUTPUT ACCEPT [0:0]

allow ping and traceroute
—-A INPUT -p icmp —-3j ACCEPT

localhost is fine
—A INPUT -i lo —3j ACCEPT

Established connections allowed
—-A INPUT -m state --state RELATED,ESTABLISHED -3j ACCEPT
—-A OUTPUT -m state —--state RELATED,ESTABLISHED -3j ACCEPT

allow ssh - always
—A INPUT -m conntrack --ctstate NEW -m tcp -p tcp —--dport 22 -j ACCEPT

% env != 'staging' and datacenter == 'phx2' and inventory_hostname not in groups/|
'staging-friendly'] %}

{
-
#
In the phx2 datacenter, both production and staging hosts are in the same

subnet/vlan. We want production hosts to reject connectons from staging group hosts
to prevent them from interfering with production. There are however a few hosts in
production we have marked 'staging-friendly' that we do allow staging to talk to_
—fo
mostly read-only data they need.
#
{
{%

[a]

% for host in groups|['staging'] |sort %}

% 'ethO_ip' in hostvars[host] $}# {{ host }}
—A INPUT -s {{ hostvarslhost]['ethO_ip'] }} —-j REJECT --reject-with icmp-host-
—prohibited

{$ else &}# {{ host }} has no 'ethO_ip' listed

20 Chapter 2. Ansible and Configuration Management

https://infrastructure.fedoraproject.org/cgit/ansible.git/plain/roles/base/templates/iptables/iptables
https://infrastructure.fedoraproject.org/cgit/ansible.git/plain/roles/base/tasks/main.yml
https://infrastructure.fedoraproject.org/cgit/ansible.git/plain/roles/base/templates/iptables/iptables

DIMS Ansible playbooks Documentation, Release 2.14.0

{% endif %}
{% endfor %
{% endif %}

}

% if ansible_domain == 'ga.fedoraproject.org' and inventory_hostname not in groups]|
—'ga-isolated'] %}
#
In the ga.fedoraproject.org network, we want machines not in the ga-isolated group
to block all access from that group. This is to protect them from any possible
—attack
vectors from ga-isolated machines.

#
{% for host in groups|['ga-isolated'] |sort %}
{$ if 'ethO_ip' in hostvars[host] $}# {{ host }}

—A INPUT -s {{ hostvars[host]['ethO_ip'] }} —j REJECT --reject-with icmp-host-
—prohibited

{% else %}# {{ host }} has no 'ethO_ip' listed

{% endif %}

{% endfor %}

{% endif ¢}

if the host declares a fedmsg-enabled wsgi app, open ports for it
{% if wsgi_fedmsg_service is defined %}

{%$ for i in range (wsgi_procs x wsgi_threads) %}

-A INPUT -p tcp -m tcp —-dport 30{{ '%02d' i }J} —-3j ACCEPT

{% endfor %)

{% endif %}

if the host/group defines incoming tcp_ports - allow them
{$ if tcp_ports is defined %}

{%$ for port in tcp_ports %}

—-A INPUT -p tcp -m tcp --dport {{ port }} —3j ACCEPT

{% endfor %}

{% endif 3}

if the host/group defines incoming udp_ports - allow them
{$ if udp_ports is defined $}

{% for port in udp_ports $}

-A INPUT -p udp -m udp —--dport {{ port }} —j ACCEPT

¢ endfor 3%}

% endif %)

if there are custom rules - put them in as-is
{% if custom rules is defined %}

{% for rule in custom_rules %}

{{ rule }}

{% endfor %)

{% endif %}

otherwise kick everything out

—A INPUT -j REJECT --reject-with icmp-host-prohibited
—A FORWARD -j REJECT --reject-with icmp-host-prohibited
COMMIT

2.5. Generating iptables Rules from a Template

21

DIMS Ansible playbooks Documentation, Release 2.14.0

2.6 Customization of System and Service Configuration

Ansible supports variables in playbooks, allowing a generalization of steps to perform some task to be defined separate
from the specifics of the content used. Rather than hard-coding a value like a port number into a command, a variable
can be used to allow any port to be specified at run time. Where and how the variable is set is somewhat complicated
in Ansible, as their are many places that variables can be set and a specific order of precedence that is followed. This
can be seen in the Ansible documentation, Variable Precedence: Where Should I Put A Variable?.

The Fedora Project takes advantage of an advanced feature of Ansible in the form of the conditional
with_first_found combined with the use of variables and variable precedence ordering. Ansible’s own web
page has a note saying, “This is an advanced topic that is infrequently used. You can probably skip this section.”

(See Selecting Files And Templates Based On Variables).
An example of how this is used is found in roles/base/tasks/main.yml where the DNS resolver configuration file is

applied:

Listing 2.2: Configuration file for DNS resolver

- name: /etc/resolv.conf
copy: src={{ item }} dest=/etc/resolv.conf
with_f