

DIMS Ansible playbooks v 2.14.0

This document (version 2.14.0) describes the
DIMS Ansible playbooks (ansible-dims-playbooks
for short) repository contents.

Contents:

	1. Introduction
	1.1. Installation Steps

	2. Ansible and Configuration Management
	2.1. Ansible fundamentals

	2.2. Variables

	2.3. Configuration and Customization of ansible and ansible-playbook
	2.3.1. Controlling account, SSH port, etc.

	2.4. Lessons from the Fedora Project Ansible Playbooks

	2.5. Generating iptables Rules from a Template

	2.6. Customization of System and Service Configuration

	2.7. Tags on Tasks
	2.7.1. DIMS Tagging Methodology

	2.7.2. Examples of DIMS Tags

	2.8. Ansible Best Practices and Related Documentation

	3. Bootstrapping a VM Host as an Ansible Controller
	3.1. Initial Connectivity

	3.2. Establishing Full Internet Connectivity

	3.3. Bootstrapping Full Ansible Control

	3.4. Integration into Working Inventory

	3.5. Normal Playbook Operations

	3.6. Validating VNC over SSH Tunnelling

	4. Creating VMs
	4.1. Manual Installation of Virtual Machines

	4.2. Bootstrapping the New VMs

	4.3. Initial Provisioning of the New VMs

	5. Customizing a Private Deployment
	5.1. Cookiecutter
	5.1.1. Top Level Files and Directories

	5.1.2. The dims-new-repo Cookiecutter

	5.1.3. The dims-private Cookiecutter

	5.2. Populating the Private Configuration Repository

	6. Testing System Components
	6.1. Organizing Bats Tests

	6.2. Organizing tests in DIMS Ansible Playbooks Roles

	6.3. Running Bats Tests Using the DIMS test.runner

	6.4. Controlling the Amount and Type of Output
	6.4.1. Using DIMS Bash functions in Bats tests

	7. Debugging with Ansible and Vagrant
	7.1. Debugging Ansible
	7.1.1. Examining Variables

	7.1.2. Debugging Filter Logic

	7.1.3. Developing Custom Jinja Filters

	8. Regular System Maintenance
	8.1. Updating Operating System Packages

	8.2. Renewing Letsencrypt Certificates

	8.3. Updating Secondary Components
	8.3.1. Updating Vagrant Plugins

	8.3.2. Updating PyCharm Community Edition

	9. Backups and Restoration
	9.1. Backup Directories and Files

	9.2. Creating a Backup

	9.3. Restoring from a Backup

	9.4. Scheduled Backups

	9.5. Other System Backups

	10. License

	11. Appendices
	11.1. Quick Steps to Restarting Squid Proxy Container

	11.2. Recovering From Operating System Corruption

	11.3. Advanced Ansible Tasks or Jinja Templating
	11.3.1. Multi-line fail or debug Output

Section author: Dave Dittrich dittrich@u.washington.edu

Copyright © 2017 University of Washington. All rights reserved.

1. Introduction

This chapter documents the DIMS Ansible playbooks
(ansible-dims-playbooks for short) repository.

This repository contains the Ansible playbooks and inventory
for a development/test environment. This is conventionally
known as a local deployment, as it comprises a baremetal
host system intended to serve as an Ansible control host,
with a series of virtual machines to provide services.

1.1. Installation Steps

Before diving into the details, it is helpful to understand the
high level tasks that must be performed to bootstrap a functional
deployment.

	Install the base operating system for the initial Ansible
control host that will be used for configuring the deployment
(e.g., on a development laptop or server).

	Set up host playbook and vars files for the Ansible control host.

	Pre-populate artifacts on the Ansible control host for use
by virtual machines under Ansible control.

	Instantiate the virtual machines that will be used to
provide the selected services and install the base operating
system on them, including an ansible account with initial
password and/or SSH authorized_keys files allowing access
from the Ansible control host.

	Set up host playbooks, host vars files, and inventory definitions
for the selected virtual machines.

	Validate that the Ansible control host is capable of connecting
to all of the appropriate hosts defined in the inventory using
Ansible ad-hoc mode.

	Finish customizing any templates, installed scripts, and secrets
(e.g., passwords, certificates) unique to the deployment.

2. Ansible and Configuration Management

Ansible [http://www.ansible.com/get-started] is an open source tool that can be used to automate system
administration tasks related to installation, configuration, account setup, and
anything else required to manage system configurations across a large number of
computers.

While it is possible to manually install and configure a hand-full of
computer systems that do not change very often, this kind of system
deployment and system administration quickly becomes a limiting factor. It
does not scale very well, for one, and makes it very difficult to change
or replicate. You may need to move hardware from one data center to another,
requiring reconfiguration of both hosts and dozens of VM guests. You may
need to move from one Linux distribution to another. You may wish to add
another continuous integration build cluster to support another operating
system major/minor version, or a new processor architecture like ARM.
Even if the number of hosts is small, having the knowledge of how the
systems were built and configured in the head of just one person (who
may go on vacation, or permanently leave the project) increases the
risk of total disruption of the project in the event of an outage.

Tip

If you are not familiar with Ansible, take some time to look at
the Ansible Get Started [https://www.ansible.com/get-started] page, and/or watch the following
video series. While they are a little dated now (2015, pre-
Ansible 2.x), they cover many useful concepts.

	19 Minutes With Ansible (Part 1/4) [https://sysadmincasts.com/episodes/43-19-minutes-with-ansible-part-1-4], Justin Weissig, sysadmincasts.com, January 13, 2015

	Learning Ansible with Vagrant (Part 2/4) [https://sysadmincasts.com/episodes/45-learning-ansible-with-vagrant-part-2-4], Justin Weissig, sysadmincasts.com, March 19, 2015

	Configuration Management with Ansible (Part 3/4) [https://sysadmincasts.com/episodes/46-configuration-management-with-ansible-part-3-4], Justin Weissig, sysadmincasts.com, March 26, 2015

	Zero-downtime Deployment with Ansible (Part 4/4) [https://sysadmincasts.com/episodes/47-zero-downtime-deployments-with-ansible-part-4-4], Justin Weissig, sysadmincasts.com, April 2, 2015

Also highly recommended is to immediately get and read all of Jeff
Geerling’s book, Ansible for DevOps [https://leanpub.com/ansible-for-devops]. This book is more up-to-date in
terms of covering Ansible 2.x features and coding style. It will save you
countless hours of floundering around and Jeff’s Ansible coding style is top
quality.

Many more references can be found in Section bestpractices (originally
collected at <https://staff.washington.edu/dittrich/home/unix.html#ansible>).

2.1. Ansible fundamentals

Ansible allows you to document all of the steps necessary to perform the
required tasks, organize sets of computers on which those steps should
be performed, and then allow you to perform those tasks precisely and
consistently across all of those hosts. Figure Ansible Overview
(source: 19 Minutes with Ansible (Part 1/4) [https://sysadmincasts.com/episodes/43-19-minutes-with-ansible-part-1-4]) illustrates this process.

[image: _images/ansible-overview.png]
Ansible Overview

At the center of the left side of Figure Ansible Overview is the
Ansible Management Node (also called by some a Control node). This
figure depicts the push model for using Ansible, where a Control machine
holds the playbooks and inventory files necessary to drive Ansible, and that
Control machine reaches out to target hosts on which the actions take place.
Another way to use Ansible is by using a localhost connection for the
Control machine to also be the Target machine (in which case the actions
Ansible performs are done to the same computer on which Ansible is running.)

A set of hosts can be specified with an inventory. Ansible supports two
styles for static inventories, an INI format style, and a YAML format style.
The INI style format is known as a hosts file, by default stored in a file
named /etc/ansible/hosts.

An INI style inventory that implements the example above could look like this:

[web]
10.0.15.21
10.0.15.22
10.0.15.23
10.0.15.24
10.0.15.25
10.0.15.26

Note

The -i flag can be used to specify the inventory file to use,
rather than always having to over-write the file /etc/ansible/hosts.
Alternatively, it can be specified in an ansible.cfg file,
typically found in /etc/ansible/ansible.cfg for the global
file. This is covered more in Section Configuration and Customization of ansible and ansible-playbook.)

Ansible has two main command line interface programs you can use. The
first is just ansible and it allows you to run individual modules
against a set of hosts (also known as “running a play”). Here is a
very simple example of running the ping module against every
host in the all group in the development inventory shown
above:

$ ansible -i $GIT/ansible-playbooks/inventory/development all -m ping
floyd2-p.devops.develop | success >> {
 "changed": false,
 "ping": "pong"
}

hub.devops.develop | success >> {
 "changed": false,
 "ping": "pong"
}

u12-dev-svr-1.devops.develop | success >> {
 "changed": false,
 "ping": "pong"
}

linda-vm1.devops.develop | success >> {
 "changed": false,
 "ping": "pong"
}

u12-dev-ws-1.devops.develop | success >> {
 "changed": false,
 "ping": "pong"
}

Using the command module, and passing in arguments, you can run arbitrary
commands on hosts as a form of distributed SSH:

$ ansible -i $GIT/ansible-playbooks/inventory/development all -m command -a /usr/bin/uptime
floyd2-p.devops.develop | success | rc=0 >>
 01:02:52 up 22 days, 7:27, 1 user, load average: 0.04, 0.12, 1.11

u12-dev-ws-1.devops.develop | success | rc=0 >>
 01:02:52 up 148 days, 14:58, 1 user, load average: 0.00, 0.01, 0.05

u12-dev-svr-1.devops.develop | success | rc=0 >>
 01:02:45 up 144 days, 17:53, 1 user, load average: 0.03, 0.05, 0.05

hub.devops.develop | success | rc=0 >>
 09:02:52 up 130 days, 15:14, 1 user, load average: 0.00, 0.01, 0.05

linda-vm1.devops.develop | success | rc=0 >>
 01:02:53 up 148 days, 14:58, 1 user, load average: 0.00, 0.01, 0.05

The other principal command line program is ansible-playbook, which is used
to run more complex playbooks made up of multiple sequentially organized plays
with all kinds of complex logic and other organizational techniques to manage
complex processes. Examples of writing and running playbooks are found in the
rest of this document.

Note

Ansible also has a Python API that can be used to embed Ansible
functionality into other programs, or to write your own modules to perform
tasks. This is explained in the video Alejandro Guirao Rodríguez -
Extending and embedding Ansible with Python [https://youtu.be/qLoBHbVb0Fw] from EuroPython 2015.

Caution

Always remember that Ansible is used in a distributed system manner,
meaning that it has two execution contexts:

(1) it runs with the chosen Python interpreter on the control host,
which creates Python code that is then

	copied to and executed within the context of the target host.

Take another look at Figure Ansible Overview and realize that the
arrows pointing away from the blue node (the control host) to the many green
nodes (the targets) implicitly show this context switch.

This has ramifications for targets that run operating systems like CoreOS
(that don’t have Python installed, and don’t have a package manager), and
for use of modules like apt that call Python libraries to use operating
system specific package managers like APT from within Ansible’s Python code.

Since the DIMS project uses Python virtual environments to isolate
the Python interpreter used by developers from the interpreter used
by the system (to avoid breaking the system), this means by definition
there are multiple Python interpreters on DIMS hosts. This requires
that pay very close attention to configuration settings that affect
the Python interpreter used by Ansible and consciously do things (and
test the results of changes carefully to know when a change breaks
something in Ansible.) The result of changes the Python interpreter used by
Ansible can be random failures with cryptic error messages like these:

Traceback (most recent call last):
 File \"/home/core/.ansible/tmp/ansible-tmp-1462413293.33-173671562381843/file\", line 114, in <module>
 exitcode = invoke_module(module, zipped_mod, ZIPLOADER_PARAMS)
 File \"/home/core/.ansible/tmp/ansible-tmp-1462413293.33-173671562381843/file\", line 28, in invoke_module
 p = subprocess.Popen(['/opt/bin/python', module], env=os.environ, shell=False, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE)
 File \"/usr/lib/python2.7/subprocess.py\", line 710, in __init__
 errread, errwrite)
 File \"/usr/lib/python2.7/subprocess.py\", line 1335, in _execute_child
 raise child_exception
OSError: [Errno 2] No such file or directory

msg: Could not import python modules: apt, apt_pkg. Please install python-apt package.

Both of these messages are due to the Python interpreter being used by Ansible
on the target end being set to a non-system Python interpreter that does
not have the necessary libraries or programs that Ansible needs. In the
second case, commenters on blogs may say, “But I installed python-apt
and I still get this message. Why?” Yes, you may have installed the
python-apt package like it says, but it was installed into the
system Python interpreter, which is not the one that Ansible is
using if ansible_python_interpreter or $PATH would cause Ansible to
use a different one!

2.2. Variables

Note

As of the release of this repository, the DIMS project has adopted Ansible 2.x
and switched to using the little-documented (but much more powerful) YAML style
inventory. This will be described in more detail elsewhere.

Ansible playbooks are general rules and steps for performing actions.
These actions can be selected using logic (“If this is Redhat, do A, but if
it is Ubuntu, do B”), or by using Jinja templating [http://jinja.pocoo.org] to apply variables to
a generic template file, resulting in specific contents customized for a given host.

Some of these variables (known as “facts”) are set by Ansible when it first
starts to run on a target host, while others are defined in files that
accompany playbooks and inventories. You can see the dictionary of
ansible_facts for a given system using Ansible’s setup module:

$ ansible -m setup localhost -c local
localhost | success >> {
 "ansible_facts": {
 "ansible_all_ipv4_addresses": [
 "172.17.0.1",
 "10.88.88.5",
 "192.168.0.100",
 "10.86.86.7"
],
 "ansible_all_ipv6_addresses": [
 "fe80::d253:49ff:fed7:9ebd"
],
 "ansible_architecture": "x86_64",
 "ansible_bios_date": "01/29/2015",
 "ansible_bios_version": "A13",
 "ansible_cmdline": {
 "BOOT_IMAGE": "/vmlinuz-3.16.0-30-generic",
 "quiet": true,
 "ro": true,
 "root": "/dev/mapper/hostname_vg-root_lv",
 "splash": true,
 "vt.handoff": "7"
 },
 "ansible_date_time": {
 "date": "2016-03-10",
 "day": "10",
 "epoch": "1457653607",
 "hour": "15",
 "iso8601": "2016-03-10T23:46:47Z",
 "iso8601_micro": "2016-03-10T23:46:47.246903Z",
 "minute": "46",
 "month": "03",
 "second": "47",
 "time": "15:46:47",
 "tz": "PST",
 "tz_offset": "-0800",
 "weekday": "Thursday",
 "year": "2016"
 },
 "ansible_default_ipv4": {
 "address": "192.168.0.100",
 "alias": "wlan0",
 "gateway": "192.168.0.1",
 "interface": "wlan0",
 "macaddress": "d0:53:49:d7:9e:bd",
 "mtu": 1500,
 "netmask": "255.255.255.0",
 "network": "192.168.0.0",
 "type": "ether"
 },
 "ansible_default_ipv6": {},
 "ansible_devices": {
 "sda": {
 "holders": [],
 "host": "SATA controller: Intel Corporation 8 Series...",
 "model": "ST1000LM014-1EJ1",
 "partitions": {
 "sda1": {
 "sectors": "997376",
 "sectorsize": 512,
 "size": "487.00 MB",
 "start": "2048"
 },
 "sda2": {
 "sectors": "2",
 "sectorsize": 512,
 "size": "1.00 KB",
 "start": "1001470"
 },
 "sda5": {
 "sectors": "1952522240",
 "sectorsize": 512,
 "size": "931.04 GB",
 "start": "1001472"
 }
 },
 "removable": "0",
 "rotational": "1",
 "scheduler_mode": "deadline",
 "sectors": "1953525168",
 "sectorsize": "4096",
 "size": "7.28 TB",
 "support_discard": "0",
 "vendor": "ATA"
 },
 "sr0": {
 "holders": [],
 "host": "SATA controller: Intel Corporation 8 Series...",
 "model": "DVD-ROM SU-108GB",
 "partitions": {},
 "removable": "1",
 "rotational": "1",
 "scheduler_mode": "deadline",
 "sectors": "2097151",
 "sectorsize": "512",
 "size": "1024.00 MB",
 "support_discard": "0",
 "vendor": "TSSTcorp"
 }
 },
 "ansible_distribution": "Ubuntu",
 "ansible_distribution_major_version": "14",
 "ansible_distribution_release": "trusty",
 "ansible_distribution_version": "14.04",
 "ansible_docker0": {
 "active": false,
 "device": "docker0",
 "id": "8000.0242a37d17a7",
 "interfaces": [],
 "ipv4": {
 "address": "172.17.0.1",
 "netmask": "255.255.0.0",
 "network": "172.17.0.0"
 },
 "macaddress": "02:42:a3:7d:17:a7",
 "mtu": 1500,
 "promisc": false,
 "stp": false,
 "type": "bridge"
 },
 "ansible_domain": "",
 "ansible_env": {
 "BASE": "bash",
 "BYOBU_ACCENT": "#75507B",
 "BYOBU_BACKEND": "tmux",
 "BYOBU_CHARMAP": "UTF-8",
 "BYOBU_CONFIG_DIR": "/home/dittrich/.byobu",
 "BYOBU_DARK": "#333333",
 "BYOBU_DATE": "%Y-%m-%d ",
 "BYOBU_DISTRO": "Ubuntu",
 "BYOBU_HIGHLIGHT": "#DD4814",
 "BYOBU_LIGHT": "#EEEEEE",
 "BYOBU_PAGER": "sensible-pager",
 "BYOBU_PREFIX": "/usr",
 "BYOBU_PYTHON": "python3",
 "BYOBU_READLINK": "readlink",
 "BYOBU_RUN_DIR": "/dev/shm/byobu-dittrich-0R38I1Mb",
 "BYOBU_SED": "sed",
 "BYOBU_TIME": "%H:%M:%S",
 "BYOBU_TTY": "/dev/pts/24",
 "BYOBU_ULIMIT": "ulimit",
 "BYOBU_WINDOW_NAME": "-",
 "CFG": "/opt/dims/nas/scd",
 "CLUTTER_IM_MODULE": "xim",
 "COLORTERM": "gnome-terminal",
 "COMMAND": "",
 "COMPIZ_BIN_PATH": "/usr/bin/",
 "COMPIZ_CONFIG_PROFILE": "ubuntu",
 "CONSUL_LEADER": "10.142.29.116",
 "DBUS_SESSION_BUS_ADDRESS": "unix:abstract=/tmp/dbus-sYbG5zmdUA",
 "DEBUG": "0",
 "DEFAULTS_PATH": "/usr/share/gconf/ubuntu.default.path",
 "DESKTOP_SESSION": "ubuntu",
 "DIMS": "/opt/dims",
 "DIMS_REV": "unspecified",
 "DIMS_VERSION": "1.6.129 (dims-ci-utils)",
 "DISPLAY": ":0",
 "GDMSESSION": "ubuntu",
 "GDM_LANG": "en_US",
 "GIT": "/home/dittrich/dims/git",
 "GNOME_DESKTOP_SESSION_ID": "this-is-deprecated",
 "GNOME_KEYRING_CONTROL": "/run/user/1004/keyring-7kI0rA",
 "GNOME_KEYRING_PID": "2524",
 "GPG_AGENT_INFO": "/run/user/1004/keyring-7kI0rA/gpg:0:1",
 "GTK_IM_MODULE": "ibus",
 "GTK_MODULES": "overlay-scrollbar:unity-gtk-module",
 "HOME": "/home/dittrich",
 "IM_CONFIG_PHASE": "1",
 "INSTANCE": "",
 "JOB": "dbus",
 "LANG": "C",
 "LANGUAGE": "en_US",
 "LC_CTYPE": "C",
 "LESSCLOSE": "/usr/bin/lesspipe %s %s",
 "LESSOPEN": "| /usr/bin/lesspipe %s",
 "LOGNAME": "dittrich",
 "LS_COLORS": "rs=0:di=01;34:ln=01;36:mh=00:pi=40;33:a....",
 "MANDATORY_PATH": "/usr/share/gconf/ubuntu.mandatory.path",
 "NAS": "/opt/dims/nas",
 "OLDPWD": "/home/dittrich",
 "OS": "Linux",
 "PATH": "/home/dittrich/dims/envs/dimsenv/bin:/home/di...",
 "PROGRAM": "/bin/bash",
 "PROJECT_HOME": "/home/dittrich/dims/devel",
 "PS1": "\\[\\033[1;34m\\][dimsenv]\\[\\e[0m\\] \\[\\03...",
 "PWD": "/vm/vagrant-run-devserver",
 "QT4_IM_MODULE": "xim",
 "QT_IM_MODULE": "ibus",
 "QT_QPA_PLATFORMTHEME": "appmenu-qt5",
 "RECIPIENTS": "dims-devops@uw.ops-trust.net",
 "SELINUX_INIT": "YES",
 "SESSION": "ubuntu",
 "SESSIONTYPE": "gnome-session",
 "SESSION_MANAGER": "local/dimsdemo1:@/tmp/.ICE-unix/27...",
 "SHELL": "/bin/bash",
 "SHLVL": "3",
 "SSH_AUTH_SOCK": "/home/dittrich/.byobu/.ssh-agent",
 "STAT": "stat",
 "TERM": "screen-256color",
 "TEXTDOMAIN": "im-config",
 "TEXTDOMAINDIR": "/usr/share/locale/",
 "TMUX": "/tmp/tmux-1004/default,3276,1",
 "TMUX_PANE": "%16",
 "UPSTART_SESSION": "unix:abstract=/com/ubuntu/upstart-s...",
 "USER": "dittrich",
 "VERBOSE": "0",
 "VIRTUALENVWRAPPER_HOOK_DIR": "/home/dittrich/dims/envs",
 "VIRTUALENVWRAPPER_PROJECT_FILENAME": ".project",
 "VIRTUALENVWRAPPER_PYTHON": "/home/dittrich/dims/bin/python",
 "VIRTUALENVWRAPPER_SCRIPT": "/home/dittrich/dims/bin/vir...",
 "VIRTUALENVWRAPPER_WORKON_CD": "1",
 "VIRTUAL_ENV": "/home/dittrich/dims/envs/dimsenv",
 "VTE_VERSION": "3409",
 "WINDOWID": "23068683",
 "WORKON_HOME": "/home/dittrich/dims/envs",
 "XAUTHORITY": "/home/dittrich/.Xauthority",
 "XDG_CONFIG_DIRS": "/etc/xdg/xdg-ubuntu:/usr/share/upstar...",
 "XDG_CURRENT_DESKTOP": "Unity",
 "XDG_DATA_DIRS": "/usr/share/ubuntu:/usr/share/gnome:/usr...",
 "XDG_GREETER_DATA_DIR": "/var/lib/lightdm-data/dittrich",
 "XDG_MENU_PREFIX": "gnome-",
 "XDG_RUNTIME_DIR": "/run/user/1004",
 "XDG_SEAT": "seat0",
 "XDG_SEAT_PATH": "/org/freedesktop/DisplayManager/Seat0",
 "XDG_SESSION_ID": "c2",
 "XDG_SESSION_PATH": "/org/freedesktop/DisplayManager/Session0",
 "XDG_VTNR": "7",
 "XMODIFIERS": "@im=ibus",
 "_": "/home/dittrich/dims/envs/dimsenv/bin/ansible"
 },
 "ansible_eth0": {
 "active": false,
 "device": "eth0",
 "macaddress": "34:e6:d7:72:0d:b0",
 "module": "e1000e",
 "mtu": 1500,
 "promisc": false,
 "type": "ether"
 },
 "ansible_form_factor": "Laptop",
 "ansible_fqdn": "dimsdemo1",
 "ansible_hostname": "dimsdemo1",
 "ansible_interfaces": [
 "docker0",
 "tun88",
 "lo",
 "tun0",
 "wlan0",
 "vboxnet2",
 "vboxnet0",
 "vboxnet1",
 "eth0"
],
 "ansible_kernel": "3.16.0-30-generic",
 "ansible_lo": {
 "active": true,
 "device": "lo",
 "ipv4": {
 "address": "127.0.0.1",
 "netmask": "255.0.0.0",
 "network": "127.0.0.0"
 },
 "ipv6": [
 {
 "address": "::1",
 "prefix": "128",
 "scope": "host"
 }
],
 "mtu": 65536,
 "promisc": false,
 "type": "loopback"
 },
 "ansible_lsb": {
 "codename": "trusty",
 "description": "Ubuntu 14.04.3 LTS",
 "id": "Ubuntu",
 "major_release": "14",
 "release": "14.04"
 },
 "ansible_machine": "x86_64",
 "ansible_memfree_mb": 2261,
 "ansible_memtotal_mb": 15988,
 "ansible_mounts": [
 {
 "device": "/dev/mapper/hostname_vg-root_lv",
 "fstype": "ext4",
 "mount": "/",
 "options": "rw,errors=remount-ro",
 "size_available": 859396513792,
 "size_total": 982859030528
 },
 {
 "device": "/dev/sda1",
 "fstype": "ext3",
 "mount": "/boot",
 "options": "rw",
 "size_available": 419035136,
 "size_total": 486123520
 }
],
 "ansible_nodename": "dimsdemo1",
 "ansible_os_family": "Debian",
 "ansible_pkg_mgr": "apt",
 "ansible_processor": [
 "Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz",
 "Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz",
 "Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz",
 "Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz",
 "Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz",
 "Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz",
 "Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz",
 "Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz"
],
 "ansible_processor_cores": 4,
 "ansible_processor_count": 1,
 "ansible_processor_threads_per_core": 2,
 "ansible_processor_vcpus": 8,
 "ansible_product_name": "Precision M4800",
 "ansible_product_serial": "NA",
 "ansible_product_uuid": "NA",
 "ansible_product_version": "01",
 "ansible_python_version": "2.7.6",
 "ansible_selinux": false,
 "ansible_ssh_host_key_dsa_public": "AAAA...==",
 "ansible_ssh_host_key_ecdsa_public": "AA...==",
 "ansible_ssh_host_key_rsa_public": "AAAA...",
 "ansible_swapfree_mb": 975,
 "ansible_swaptotal_mb": 975,
 "ansible_system": "Linux",
 "ansible_system_vendor": "Dell Inc.",
 "ansible_tun0": {
 "active": true,
 "device": "tun0",
 "ipv4": {
 "address": "10.86.86.7",
 "netmask": "255.255.255.0",
 "network": "10.86.86.0"
 },
 "mtu": 1500,
 "promisc": false
 },
 "ansible_tun88": {
 "active": true,
 "device": "tun88",
 "ipv4": {
 "address": "10.88.88.5",
 "netmask": "255.255.255.0",
 "network": "10.88.88.0"
 },
 "mtu": 1500,
 "promisc": false
 },
 "ansible_user_id": "dittrich",
 "ansible_userspace_architecture": "x86_64",
 "ansible_userspace_bits": "64",
 "ansible_vboxnet0": {
 "active": false,
 "device": "vboxnet0",
 "macaddress": "0a:00:27:00:00:00",
 "mtu": 1500,
 "promisc": false,
 "type": "ether"
 },
 "ansible_vboxnet1": {
 "active": false,
 "device": "vboxnet1",
 "macaddress": "0a:00:27:00:00:01",
 "mtu": 1500,
 "promisc": false,
 "type": "ether"
 },
 "ansible_vboxnet2": {
 "active": false,
 "device": "vboxnet2",
 "macaddress": "0a:00:27:00:00:02",
 "mtu": 1500,
 "promisc": false,
 "type": "ether"
 },
 "ansible_virtualization_role": "host",
 "ansible_virtualization_type": "kvm",
 "ansible_wlan0": {
 "active": true,
 "device": "wlan0",
 "ipv4": {
 "address": "192.168.0.100",
 "netmask": "255.255.255.0",
 "network": "192.168.0.0"
 },
 "ipv6": [
 {
 "address": "fe80::d253:49ff:fed7:9ebd",
 "prefix": "64",
 "scope": "link"
 }
],
 "macaddress": "d0:53:49:d7:9e:bd",
 "module": "wl",
 "mtu": 1500,
 "promisc": false,
 "type": "ether"
 },
 "module_setup": true
 },
 "changed": false
}

Other variables are added from variables files found in defaults/ and
vars/ directories in a role, from group_vars/, from host_vars/,
from vars listed in a playbook, and from the command line with the -e
flag.

You can run playbooks using the ansible-playbook command directly,
by using a DIMS wrapper script (dims.ansible-playbook) which allows
you to run playbooks, tasks, or roles by name, or via the
dimscli Python CLI program.

Caution

As a general rule, interrupting ansible-playbook with CTRL-C in the
middle of a playbook run is a Bad Idea. The reason for this is that
some playbooks will disable a service temporarily and notify a handler
to restart the service at the end of the playbook run, or may successfully
change only some configuration files (leaving the ones that would have
been changed had the CTRL-C not been issued), either of which can leave
the system in an inconsistent and/or potentially inoperable state.

It is best to test playbooks on Vagrant hosts that are not critical if
they are accidentally rendered inoperable rather than getting into an
emergency debugging situation with a “production” server. If testing
with a “live” system, having an active SSH terminal session as a
fallback for local access helps, but not always. Be aware of this
risk and act accordingly!

2.3. Configuration and Customization of ansible and ansible-playbook

Like any good Unix program, you can use a global or local Configuration
file to customize default settings and/or program behavior. Ansible
provides the following alternatives:

	ANSIBLE_CONFIG (an environment variable)

	ansible.cfg (in the current directory)

	.ansible.cfg (in the home directory)

	/etc/ansible/ansible.cfg

There are many reasons why this configuration customization is useful. The
following subsections describe some.

Caution

Keep in mind that one or more of these configuration files may exist on a
host causing Ansible to potentially behave differently than expected between
different accounts, different systems, etc. If something appears to not
work the way you expected, look for these files and see how they are set,
add extra levels of verbosity with additional -v flags, or otherwise
check how Ansible is being configured to work within scripts that
run ansible or ansible-playbook.

To determine which one of these files might be used in a given working
directory, you can use the following loop to show which file or files
may exist:

$ pwd
/home/dittrich/dims/git/ansible-playbooks
$ for f in $ANSIBLE_CONFIG ansible.cfg ~/.ansible.cfg /etc/ansible/ansible.cfg; \
do [-f $f] && echo $f exists; done
/etc/ansible/ansible.cfg exists

$ cp /etc/ansible.cfg myconfig.cfg
$ vi myconfig.cfg
 [...]
$ ANSIBLE_CONFIG=myconfig.cfg
$ for f in $ANSIBLE_CONFIG ansible.cfg ~/.ansible.cfg /etc/ansible/ansible.cfg; \
do [-f $f] && echo $f exists; done
myconfig.cfg exists
/etc/ansible/ansible.cfg exists

2.3.1. Controlling account, SSH port, etc.

There are several parameters that affect SSH connections and
the number of simultaneous forked connections useful for accelerating
parallel execution of Ansible tasks across a hosts in an
inventory. In the example here, we set the number of forks
to 10, the default sudo user to root, the default
SSH port to 8422 and the transport mechanism to smart:

 # config file for ansible -- http://ansible.com/
 # ==

 # nearly all parameters can be overridden in ansible-playbook
 # or with command line flags. ansible will read ANSIBLE_CONFIG,
 # ansible.cfg in the current working directory, .ansible.cfg in
 # the home directory or /etc/ansible/ansible.cfg, whichever it
 # finds first

 [defaults]

 # some basic default values...

 #hostfile = /etc/ansible/hosts
 #library = /usr/share/ansible
 #remote_tmp = $HOME/.ansible/tmp
 #pattern = *
 forks = 10
 #poll_interval = 15
 sudo_user = root
 #ask_sudo_pass = True
 #ask_pass = True
 transport = smart
 remote_port = 8422
 module_lang = C
 . . .

2.4. Lessons from the Fedora Project Ansible Playbooks

One of the better models identified during the second year
of the DIMS Project was the Fedora Project’s public
ansible.git repo [https://infrastructure.fedoraproject.org/cgit/ansible.git]. The layout of their repo is described
in a README [https://infrastructure.fedoraproject.org/cgit/ansible.git/tree/README] file.

The Fedora Project puts very little in individual host_vars files [https://infrastructure.fedoraproject.org/cgit/ansible.git/tree/inventory/host_vars]
to store minimal host-specific settings for use in playbooks.
This will be examined here in the context of generating iptables rules
files from Jinja templates.

Note

You can view all of the files in sequence using a Bash for loop,
as follows:

$ cd ~/git/fedora-ansible/
$ for f in inventory/host_vars/*
> do
> echo $f
> echo "===================="
> cat $f
> echo "===================="
> echo ""
> done | less

The output looks like this:

 inventory/host_vars/aarch64-02a.arm.fedoraproject.org
 ====================
 fas_client_groups: sysadmin-noc,sysadmin-releng

 kojipkgs_url: armpkgs.fedoraproject.org
 kojihub_url: arm.koji.fedoraproject.org/kojihub
 kojihub_scheme: https
 eth0_ip: 10.5.78.75
 gw: 10.5.78.254

 koji_server_url: "http://arm.koji.fedoraproject.org/kojihub"
 koji_weburl: "http://arm.koji.fedoraproject.org/koji"
 koji_topurl: "http://armpkgs.fedoraproject.org/"

 nfs_mount_opts: rw,hard,bg,intr,noatime,nodev,nosuid,nfsvers=3,rsize=32768,wsize=32768

 fedmsg_certs:
 - service: releng
 owner: root
 group: sysadmin-releng
 can_send:
 # pungi-koji stuff (ask dgilmore)
 - pungi.compose.phase.start
 - pungi.compose.phase.stop
 - pungi.compose.status.change
 - pungi.compose.createiso.targets
 - pungi.compose.createiso.imagefail
 - pungi.compose.createiso.imagedone

 ====================

 inventory/host_vars/aarch64-03a.arm.fedoraproject.org
 ====================

 eth0_ip: 10.5.78.80
 ====================

 inventory/host_vars/aarch64-04a.arm.fedoraproject.org
 ====================

 eth0_ip: 10.5.78.85
 ====================

 ...

..

Let’s look at the file noc01.phx2.fedoraproject.org [https://infrastructure.fedoraproject.org/cgit/ansible.git/plain/inventory/host_vars/noc01.phx2.fedoraproject.org], specifically
the blocks at lines 12-18.

Note

The custom_rules array in this example was split into separate lines
here for better readability, as is found in other files such as
db-fas01.phx2.fedoraproject.org [https://infrastructure.fedoraproject.org/cgit/ansible.git/plain/inventory/host_vars/db-fas01.phx2.fedoraproject.org]. It is a single line in the original
file (which is perfectly acceptable, though more difficult to read
in a limited-column environment such as this documenation. The desire here
was to show a file with all three of tcp_ports, udp_ports, and
custom_rules variables, hence the cosmetic alteration.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

 nm: 255.255.255.0
 gw: 10.5.126.254
 dns: 10.5.126.21

 ks_url: http://10.5.126.23/repo/rhel/ks/kvm-rhel-7
 ks_repo: http://10.5.126.23/repo/rhel/RHEL7-x86_64/
 volgroup: /dev/vg_virthost
 vmhost: virthost17.phx2.fedoraproject.org
 datacenter: phx2

 tcp_ports: ['22', '80', '443', '67', '68']
 udp_ports: ['67','68','69']
 custom_rules: [
 '-A INPUT -p tcp -m tcp -s 192.168.1.20 --dport 5666 -j ACCEPT',
 '-A INPUT -p tcp -m tcp -s 10.5.126.13 --dport 873 -j ACCEPT',
 '-A INPUT -p tcp -m tcp -s 192.168.1.59 --dport 873 -j ACCEPT'
]

 eth0_ip: 10.5.126.41
 csi_relationship: |
 noc01 is the internal monitoring nagios instance to the phx datacenter.
 it is also the dhcp server serving all computing nodes

 * This host relies on:
 - the virthost it's hosted on (virthost17.phx2.fedoraproject.org)
 - FAS to authenticate users
 - VPN connectivity

 * Things that rely on this host:
 - Infrastructure team to be awair of the infra status. operations control process will fail
 - if this host is down, it will be difficult to know the status of infra and provide reactive/proactive support
 - if this host is down, dhcp/bootp leases/renew will fail. pxe booting will fail as well

2.5. Generating iptables Rules from a Template

Note

Ansible suggests that Jinja templates use the extension .j2, though
Ansible will process the template regardless of whether it has an extension
or not. The example iptables template used by the Fedora Project has
no .j2 extension, while the DIMS project uses the .j2 extension
to more easily locate Jinja template files using find . -name '*.j2'
or similar extension-based searching methods.

The template roles/base/templates/iptables/iptables [https://infrastructure.fedoraproject.org/cgit/ansible.git/plain/roles/base/templates/iptables/iptables] (processed by
roles/base/tasks/main.yml [https://infrastructure.fedoraproject.org/cgit/ansible.git/plain/roles/base/tasks/main.yml] as part of the base
role) provides a Jinja template for an iptables rule set.

Note

The complete template file roles/base/templates/iptables/iptables [https://infrastructure.fedoraproject.org/cgit/ansible.git/plain/roles/base/templates/iptables/iptables]
is over 100 lines. It is edited here to remove lines that are irrelevant
to the discussion of Jinja templating.

Template for iptables rules

 # {{ ansible_managed }}
 *filter
 :INPUT ACCEPT [0:0]
 :FORWARD ACCEPT [0:0]
 :OUTPUT ACCEPT [0:0]

 # allow ping and traceroute
 -A INPUT -p icmp -j ACCEPT

 # localhost is fine
 -A INPUT -i lo -j ACCEPT

 # Established connections allowed
 -A INPUT -m state --state RELATED,ESTABLISHED -j ACCEPT
 -A OUTPUT -m state --state RELATED,ESTABLISHED -j ACCEPT

 # allow ssh - always
 -A INPUT -m conntrack --ctstate NEW -m tcp -p tcp --dport 22 -j ACCEPT

 {% if env != 'staging' and datacenter == 'phx2' and inventory_hostname not in groups['staging-friendly'] %}
 #
 # In the phx2 datacenter, both production and staging hosts are in the same
 # subnet/vlan. We want production hosts to reject connectons from staging group hosts
 # to prevent them from interfering with production. There are however a few hosts in
 # production we have marked 'staging-friendly' that we do allow staging to talk to for
 # mostly read-only data they need.
 #
 {% for host in groups['staging']|sort %}
 {% if 'eth0_ip' in hostvars[host] %}# {{ host }}
 -A INPUT -s {{ hostvars[host]['eth0_ip'] }} -j REJECT --reject-with icmp-host-prohibited
 {% else %}# {{ host }} has no 'eth0_ip' listed
 {% endif %}
 {% endfor %}
 {% endif %}

 {% if ansible_domain == 'qa.fedoraproject.org' and inventory_hostname not in groups['qa-isolated'] %}
 #
 # In the qa.fedoraproject.org network, we want machines not in the qa-isolated group
 # to block all access from that group. This is to protect them from any possible attack
 # vectors from qa-isolated machines.
 #
 {% for host in groups['qa-isolated']|sort %}
 {% if 'eth0_ip' in hostvars[host] %}# {{ host }}
 -A INPUT -s {{ hostvars[host]['eth0_ip'] }} -j REJECT --reject-with icmp-host-prohibited
 {% else %}# {{ host }} has no 'eth0_ip' listed
 {% endif %}
 {% endfor %}
 {% endif %}
 # if the host declares a fedmsg-enabled wsgi app, open ports for it
 {% if wsgi_fedmsg_service is defined %}
 {% for i in range(wsgi_procs * wsgi_threads) %}
 -A INPUT -p tcp -m tcp --dport 30{{ '%02d' % i }} -j ACCEPT
 {% endfor %}
 {% endif %}

 # if the host/group defines incoming tcp_ports - allow them
 {% if tcp_ports is defined %}
 {% for port in tcp_ports %}
 -A INPUT -p tcp -m tcp --dport {{ port }} -j ACCEPT
 {% endfor %}
 {% endif %}

 # if the host/group defines incoming udp_ports - allow them
 {% if udp_ports is defined %}
 {% for port in udp_ports %}
 -A INPUT -p udp -m udp --dport {{ port }} -j ACCEPT
 {% endfor %}
 {% endif %}

 # if there are custom rules - put them in as-is
 {% if custom_rules is defined %}
 {% for rule in custom_rules %}
 {{ rule }}
 {% endfor %}
 {% endif %}

 # otherwise kick everything out
 -A INPUT -j REJECT --reject-with icmp-host-prohibited
 -A FORWARD -j REJECT --reject-with icmp-host-prohibited
 COMMIT

2.6. Customization of System and Service Configuration

Ansible supports variables in playbooks, allowing a generalization of
steps to perform some task to be defined separate from the specifics
of the content used. Rather than hard-coding a value like a port number
into a command, a variable can be used to allow any port to be specified
at run time. Where and how the variable is set is somewhat complicated
in Ansible, as their are many places that variables can be set and
a specific order of precedence that is followed. This can be seen
in the Ansible documentation, Variable Precedence: Where Should I Put A Variable? [http://docs.ansible.com/ansible/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable].

The Fedora Project takes advantage of an advanced feature of Ansible
in the form of the conditional with_first_found combined with
the use of variables and variable precedence ordering. Ansible’s
own web page has a note saying, “This is an advanced topic that is
infrequently used. You can probably skip this section.”

(See Selecting Files And Templates Based On Variables [http://docs.ansible.com/ansible/playbooks_conditionals.html#selecting-files-and-templates-based-on-variables]).

An example of how this is used is found in roles/base/tasks/main.yml [https://infrastructure.fedoraproject.org/cgit/ansible.git/plain/roles/base/tasks/main.yml]
where the DNS resolver configuration file is applied:

Configuration file for DNS resolver

 - name: /etc/resolv.conf
 copy: src={{ item }} dest=/etc/resolv.conf
 with_first_found:
 - "{{ resolvconf }}"
 - resolv.conf/{{ ansible_fqdn }}
 - resolv.conf/{{ host_group }}
 - resolv.conf/{{ datacenter }}
 - resolv.conf/resolv.conf
 tags: [base, config, resolvconf]

The first thing to notice is that the base name of file being
installed here (resolv.conf) is used to name a directory
in which all variations of that file will be stored. This keeps
the directory for the role clean and organized.

The second thing to notice is well organized hierarchy of
precedence from most specific to least specific.

Search order for selecting customized file

	File name
	Derived from
	Specific to
	Relevant Content

	{{ resolvconf }}
	Extra var (-e)
	A single file
	Useful for dev/test

	{{ ansible_fqdn }}
	Ansible fact
	A single host
	Host-specific customizations

	{{ host_group }}
	Group name
	Hosts of a specific class
	Service-specific customizations

	{{ datacenter }}
	Defaults, vars, extra vars
	Hosts in specific datacenter
	Datacenter-specific customizations

	resolv.conf
	Not derived
	Not specific
	File of last resort

Using this kind of hierarchical naming scheme, it is easy to bring
any host under Ansible control. Say that the resolv.conf file
on a host that is not under Ansible control was created by editing
it with vi. That file (which we will assume is working at the
moment) can be copied into the resolv.conf/ directory as-is,
using the fully-qualified domain name of the host. Even better,
place the {{ ansible_managed }} template into the file to
make it clear that the file is now under Ansible control.
If it later becomes clear that a more generic configuration is
appropriate to make the host behave the same as other hosts in
the same group, or same datacenter, you can simply remove the
file with the fully-qualified domain name and the next file that
is found (be it for host group, datacenter, or the fallback
generic file) will be used.

Note

If the fallback resolv.conf file is a direct copy of the
file installed by default from the original parent distribution
package, having Ansible re-install a functionally equivalent
version meets the objective of being idempotent.

2.7. Tags on Tasks

Ansible has a feature known as tags, that provides a fine-grained mechanism
for isolating which plays within a playbook will be executed at runtime. This
feature is advanced, and complicated, and you will find both people
whole-heartedly embracing the use of tags (e.g., Ansible (Real Life) Good
Practices [https://www.reinteractive.net/posts/167-ansible-real-life-good-practices] and Tagging [http://thinkansible.com/ansible-tagging/]) and firmly shunning the use of tags (e.g., Best
practices to build great Ansible playbooks [https://www.theodo.fr/blog/2015/10/best-practices-to-build-great-ansible-playbooks/])

While it is true that using tags within roles adds to complexity, the
alternative of proliferating individual playbooks has its own drawbacks in
terms of tight coupling of logic between playbooks that share some common
actions, as well as an increased number of individual playbooks to be managed
and invoked. By limiting the number of category tags to a minimum, a
reasonable tradeoff is made between complexity within playbooks plus the need
to write playbooks carefully vs. complexity in managing and invoking playbooks
to perform system automation tasks.

2.7.1. DIMS Tagging Methodology

The ansible-dims-playbooks roles created by the DIMS Project, like those
from the Fedora Project, uses tags to allow fine-grained control of which
actions are applied during a given run of a complete host playbook. This
allows all roles to be defined and fewer playbooks to be used to execute tasks,
but requires that all tasks have tags in order for --tags and
--skip-tags to work properly.

The Fedora Project also uses a monolithic playbook that include host playbooks
for all hosts. Because tags are applied using an OR operation, rather than
an AND operation, the selection of which tasks are to be applied is then
made on either a per-host basis (using host tags or the --limit option), or
a per-category basis (using category tags).

Figure Ansible Tags for Vertical and Horizontal Control of Play Execution illustrates the conceptual layering of tags for
roles (vertical selection) and categories (horizontal selection) across
a set of playbooks.

	Using role tags will cause all of the plays in the playbook for the
specified roles to be executed (and no others).

	Using category tags will cause all of the plays in all playbooks
that have that category tag to be executed (and no others).

[image: _images/ansible_tags.png]
Ansible Tags for Vertical and Horizontal Control of Play Execution

The concept of vertical application of role tags is seen in the vertical
gray shaded boxes in Figure Ansible Tags for Vertical and Horizontal Control of Play Execution by the presence of a tag that
matches the name of the role in every play in each role’s playbook (e.g.,
rolea in every tags array for Role A, etc.) If every play in a playbook
is tagged with an identifier that matches the name of the role, using that tag
will limit execution to only those plays for the indicated role.

The concept of horizontal application of category tags is seen in Figure
Ansible Tags for Vertical and Horizontal Control of Play Execution by the presence of a tag that matches a small set of general
categories of actions that are common to multiple roles. Plays that are
related to package installation are shown in the red horizontal box with
package, plays related to system configuration files in the green box
tagged with config, and service activation state plays in the blue
horizontal box tagged with service. By changing variables that specify
package versions and then running all plays tagged with package, you can
update specific packages on all systems at once (seen in the red box in Figure
Ansible Tags for Vertical and Horizontal Control of Play Execution).

Attention

The DIMS project uses special pre_tasks.yml and post_tasks.yml task
playbooks that are included at the top and bottom of every role. This
mechanism supports standardized actions that apply to every role, such as
creating and cleaning up deployment directories, printing out debugging
information at the start of each role to expose run-time variable contents,
sending log messages to the continuous integration logging channel, etc.

In order to only run these pre- and post-tasks when tags are specified,
each include line must include the union of all possible tags that are
used. This can be seen in the following tasks file for the vagrant role.

Vagrant role tasks/main.yml file

File: roles/vagrant/tasks/main.yml

Prepare system for using Vagrant

- include: "{{ tasks_path }}/pre_tasks.yml"
 tags: [vagrant, packages]

- name: Get vagrant deb file
 get_url:
 url: "{{ vagrant_dist_url }}/{{ vagrant_artifact }}"
 dest: "{{ dims_deploy }}/{{ role_name }}"
 sha256sum: "{{ vagrant_deb_64bit_sum }}"
 become: yes
 when: ansible_os_family == "Debian"
 tags: [vagrant, packages]

- name: Ensure vagrant deb package present
 shell: "dpkg -i {{ dims_deploy }}/{{ role_name }}/{{ vagrant_artifact }}"
 become: yes
 when: ansible_os_family == "Debian"
 tags: [vagrant, packages]

- name: Ensure configure_networks.rb patch is present
 copy:
 src: "{{ patches }}/diffs.vagrant_configure_networks"
 dest: "{{ dims_deploy }}/{{ role_name }}diffs.vagrant_configure_networks"
 mode: 0o644
 when: ansible_os_family == "Debian"
 tags: [vagrant, packages]

- name: Hot patch CoreOS configure_networks.rb
 shell: >
 patch
 /opt/vagrant/embedded/gems/gems/vagrant-{{ vagrant_version }}/plugins/guests/coreos/cap/configure_networks.rb
 {{ dims_deploy }}/{{ role_name }}diffs.vagrant_configure_networks
 become: yes
 tags: [vagrant, packages]

2.7.2. Examples of DIMS Tags

Some of the general and specific tags that are used frequently for performing
regular system maintenance and development tasks are listed below. As a
general rule, all roles have a tag that matches the role’s name, allowing just
that one role to be applied out of a general host playbook. (For example,
you can apply all of the base role’s tasks to the host you are
currently logged in to using run.playbook --tags base.)

Attention

The tags listed in these tables are not the full set of tags that are
applied to tasks within playbooks. To easily identify all of the tags that
exist, a coding convention of placing all tags in an array on one line is
used, allowing one to search for them using grep as seen here:

roles/base/tasks/coreos.yml: tags: [base, config]
roles/base/tasks/dims_base.yml: tags: [base, config]
roles/base/tasks/dims_base.yml: tags: [base, config, tests]
roles/base/tasks/dnsmasq.yml: tags: [base, config]
roles/base/tasks/dnsmasq.yml: tags: [base, config, dns]
roles/base/tasks/dnsmasq.yml: tags: [base, packages, config]
roles/base/tasks/main.yml: tags: [base]
roles/base/tasks/main.yml: tags: [base, config]
roles/base/tasks/main.yml: tags: [base, config, dns]
roles/base/tasks/main.yml: tags: [base, config, dns, logrotate, packages, rsyslogd, tests, triggers]
roles/base/tasks/main.yml: tags: [base, config, iptables]
roles/base/tasks/main.yml: tags: [base, config, journald]
roles/base/tasks/main.yml: tags: [base, config, logrotate]
roles/base/tasks/main.yml: tags: [base, config, packages, updates, triggers]
roles/base/tasks/main.yml: tags: [base, config, rsyslogd]
roles/base/tasks/main.yml: tags: [base, hosts, config]
roles/base/tasks/main.yml: tags: [base, packages]
roles/base/tasks/main.yml: tags: [base, packages, scripts, tests]
roles/base/tasks/main.yml: tags: [base, packages, updates]
roles/base/tasks/main.yml: tags: [base, services]
roles/base/tasks/main.yml: tags: [base, tests]
roles/base/tasks/main.yml: tags: [base, triggers]

	Tag
	Description

	config
	Configuration files (usually requires notify of restart handlers to
apply changes.

	dns
	Applies any DNS resolution settings and service restarts for
resolv.conf, dnsmasq.

	packages
	Ensures package cache is updated and necessary packages (at specific
pinned versions in some cases) are installed and/or held.

	rsyslogd
	Applies any rsyslogd related configuration and log handling tasks.

	tests
	Installs/updates dims_functions.sh and generates bats tests for
applicable roles, etc.

	Tag
	Description

	hosts
	(Re)generates the /etc/hosts file and restarts dnsmasq server
to apply. (Define custom_hosts to add IP address mappings in
special cases, e.g., when bootstrapping a new deployment that does not
yet have its own DNS server configured.)

	iptables
	(Re)generates iptables V4 and V6 rules files and reloads rules.

	updates
	Updates installed packages that are not held back.

2.8. Ansible Best Practices and Related Documentation

Before doing too much writing of Ansible playbooks, you should familiarize
yourself with the recommended best practices for using Ansible for automating
program installation and system configuration tasks in a general, repeatable,
and scalable manner. Ansible provides recommended Playbooks Best Practices [http://docs.ansible.com/ansible/playbooks_best_practices.html] guidelines
in the the Ansible Documentation [http://docs.ansible.com/ansible/], but sometimes these don’t go far
enough in guiding a new Ansible user.

Two other sources of highly useful information are the following
books and related code examples:

	
	Ansible for DevOps [https://leanpub.com/ansible-for-devops], by Jeff Geerling

	
	geerlingguy/ansible-for-devops [https://github.com/geerlingguy/ansible-for-devops]

	
	The DevOps 2.0 Toolkit [https://leanpub.com/the-devops-2-toolkit], by Victor Farcic

	
	vfarcic/vfarcic.github.io [https://github.com/vfarcic/vfarcic.github.io]

Other useful references collected over the years of using Ansible
include:

	
	Ansible [http://www.ansible.com/get-started] (web site)

	
	Playbooks Best Practices [http://docs.ansible.com/ansible/playbooks_best_practices.html]

	GitHub ansible/ansible-examples [https://github.com/ansible/ansible-examples] (“A few starter examples of ansible playbooks, to show features and how they work together. See http://galaxy.ansible.com for example roles from the Ansible community for deploying many popular applications.”)

	docker - manage docker containers [http://docs.ansible.com/ansible/docker_module.html]

	
	Alternate “Best Practices” (possibly conflicting, but helpful to consider none the less)

	
	Laying out roles, inventories and playbooks [https://leucos.github.io/ansible-files-layout], by Michel Blanc, July 2, 2015

	Best practices to build great Ansible playbooks [https://www.theodo.fr/blog/2015/10/best-practices-to-build-great-ansible-playbooks/], by Maxime Thoonsen, October 12, 2015

	Ansible (Real Life) Good Practices [https://www.reinteractive.net/posts/167-ansible-real-life-good-practices], by Raphael Campardou, March 19, 2014 (has pre-commit Git hook for ansible-vault)

	Lessons from using Ansible exclusively for 2 years [https://blog.serverdensity.com/what-ive-learnt-from-using-ansible-exclusively-for-2-years/], by Corban Raun, March 24, 2015

	6 practices for super smooth Ansible experience [http://hakunin.com/six-ansible-practices], by Maxim Chernyak, June 18, 2014

	GitHub enginyoyen/ansible-best-practises [https://github.com/enginyoyen/ansible-best-practises/] (“A project structure that outlines some best practices of how to use ansible”)

	More Tips and Tricks [https://www.slideshare.net/bcoca/more-tips-n-tricks], slideshare by bcoca, October 11, 2016
https://www.slideshare.net/bcoca/more-tips-n-tricks

	Episode #43 - 19 Minutes With Ansible (Part 1/4) [https://sysadmincasts.com/episodes/43-19-minutes-with-ansible-part-1-4], Justin Weissig, sysadmincasts.com, January 13, 2015

	
	Episode #45 - Learning Ansible with Vagrant (Part 2/4) [https://sysadmincasts.com/episodes/45-learning-ansible-with-vagrant-part-2-4], Justin Weissig, sysadmincasts.com, March 19, 2015

	
	GitHub jweissig/episode-45 [https://github.com/jweissig/episode-45] (“Episode #45 - Learning Ansible with Vagrant”)

	Episode #46 - Configuration Management with Ansible (Part 3/4) [https://sysadmincasts.com/episodes/46-configuration-management-with-ansible-part-3-4], Justin Weissig, sysadmincasts.com, March 26, 2015

	
	Episode #47 - Zero-downtime Deployment with Ansible (Part 4/4) [https://sysadmincasts.com/episodes/47-zero-downtime-deployments-with-ansible-part-4-4], Justin Weissig, sysadmincasts.com, April 2, 2015

	
	GitHub jweissig/episode-47 [https://github.com/jweissig/episode-47] (“Episode #47 - Zero-downtime Deployments with Ansible (Part 4/4)”)

	
	Graduating Past Playbooks: How to Use Ansible When Your Infrastructure Grows Up [https://nylas.com/blog/graduating-past-playbooks], by Rob McQueen

	
	GitHub nylas/ansible-flask-example [https://github.com/nylas/ansible-flask-example] (“Example using ansible-test and wrapper roles to implement a simple flask webapp”)

	The Fedora Project ansible playbook/files/etc repository for fedora infrastructure [https://infrastructure.fedoraproject.org/cgit/ansible.git]

	How Twitter Uses Ansible [https://youtu.be/fwGrKXzocg4], YouTube video by Ansible, May 21, 2014

	GitHub ePages-de/mac-dev-setup [https://github.com/ePages-de/mac-dev-setup] (“Automated provisioning of your Apple Mac (Java) development machine using Ansible”)

	
	Advanced Ansible concepts, gotchas, things to keep in mind...

	
	
	Security hardening for openstack-ansible [http://docs.openstack.org/developer/openstack-ansible-security/], Openstack web site

	
	Automated Security Hardening with OpenStack-Ansible [https://www.openstack.org/videos/video/automated-security-hardening-with-openstack-ansible], by Major Hayden, Openstack Austin Summit, May 1, 2016

	GitHub openstack/openstack-ansible-security [https://github.com/openstack/openstack-ansible-security] (“Security Role for OpenStack-Ansible http://openstack.org”)

	
	Templating

	
	Jinja2 for better Ansible playbooks and templates [https://blog.codecentric.de/en/2014/08/jinja2-better-ansible-playbooks-templates/], by Daniel Schneller, August 25, 2014

	Ansible: “default” and “bool” filters [https://dddpaul.github.io/blog/2015/11/30/ansible-default-and-bool-filters/], by dddpaul-github, November 30, 2015

	Ansible loop through group vars in template [http://stackoverflow.com/questions/26989492/ansible-loop-through-group-vars-in-template], Stackoverflow post, November 18, 2014

	Ansible loop over variables [http://stackoverflow.com/questions/26606121/ansible-loop-over-variables], Stackoverflow post, October 28, 2014

	
	Dynamic Inventory

	
	Dynamic Inventory [http://docs.ansible.com/intro_dynamic_inventory.html], Ansible documentation

	Adapting inventory for Ansible [http://jpmens.net/2013/06/18/adapting-inventory-for-ansible/], by Jan-Piet Mens

	Creating custom dynamic inventories for Ansible [http://www.jeffgeerling.com/blog/creating-custom-dynamic-inventories-ansible], by Jeff Geerling, June 11, 2015

	Writing a Custom Ansible Dynamic Inventory Script [https://adamj.eu/tech/2016/12/04/writing-a-custom-ansible-dynamic-inventory-script/], by Adam Johnson, December 4, 2016

	Using DNS as an Ansible dynamic inventory [https://medium.com/@remie/using-dns-as-an-ansible-dynamic-inventory-e65a2ed6bc9#.9r4jlndnc], by Remie Bolte, January 1, 2016

	
	Facts vs. Variables

	
	Fact Caching [http://docs.ansible.com/ansible/playbooks_variables.html#fact-caching] and gathering [http://docs.ansible.com/ansible/intro_configuration.html#gathering], Ansible documentation

	Fastest way to gather facts to fact cache [http://stackoverflow.com/questions/32703874/fastest-way-to-gather-facts-to-fact-cache], Stackoverflow post, September 1, 2015

	Ansible Custom Facts [http://serverascode.com/2015/01/27/ansible-custom-facts.html], serverascode.com

	
	Ansible Plugins

	
	Ansible module development in Python - 101 [https://youtu.be/35UVffLINkc?t=31m16s], by Yves Fauser, Ansible Munich Meetup - going into 2016, February 23, 2016

	Ansible: Modules and Action Plugins [http://ndemengel.github.io/2015/01/20/ansible-modules-and-action-plugins/], by Nicholas Grisey Demengel, January 20, 2015

	An action plugin for Ansible to handle SSH host keys and DNS SSHFP records [http://jpmens.net/2012/11/03/an-action-plugin-for-ansible-to-handle-ssh-host-keys/], by Jan-Piet Mens, November 3, 2012

	v2 callback plugin migration (thread) [https://groups.google.com/d/msg/ansible-devel/DQiGednLgU0/JIvQ2Z-zFQAJ], Google Groups

	
	Front-ends for Ansible

	
	Ansible Tower [https://www.ansible.com/tower]

	
	DevOps Automation – Ansible+Semaphore is Indispensable! [https://code-complete.com/code/?p=40], by Thaddeus, code-complete.com

	
	GitHub ansible-semaphore/semaphore [https://github.com/ansible-semaphore/semaphore] (“Open Source Alternative to Ansible Tower https://ansible-semaphore.github.io/semaphore”)

	Building an Automated Config Management Server using Ansible+Flask+Redis [https://beingasysadmin.wordpress.com/2015/04/21/building-an-automated-config-management-server-using-ansibleflaskredis/], by deepakmdas (beingsysadmin), April 21, 2015

	rundeck [http://rundeck.org] (“Go fast. Be secure.”)

	
	stackstorm [https://stackstorm.com/] (“Event-Driven Automation”)

	
	GitHub StackStorm/st2 [https://github.com/StackStorm/st2] (“StackStorm (aka “IFTTT for Ops”) is event-driven automation commonly used for auto-remediation, security responses, facilitated troubleshooting, complex deployments, and more. Includes rules engine, workflow,1800+ integrations (see /st2contrib), native ChatOps and so forth.”

	New In StackStorm: Ansible Integration [https://stackstorm.com/2015/06/05/new-in-stackstorm-ansible-integration/], by Eugen C., June 5, 2015

	
	Handling multi-stage or multi-deployment environments

	
	Multistage environments with Ansible [http://rosstuck.com/multistage-environments-with-ansible/], by Ross Tuck, May 15, 2014

	Multi-stage provisioning [https://youtu.be/35UVffLINkc], by Victor Volle, Ansible Munich Meetup - going into 2016, February 23, 2016

	Ansible Tips and Tricks [https://ansible-tips-and-tricks.readthedocs.io/en/latest/] on ReadTheDocs

	How to Use Ansible Roles to Abstract your Infrastructure Environment [https://www.digitalocean.com/community/tutorials/how-to-use-ansible-roles-to-abstract-your-infrastructure-environment], by Justin Ellingwood, February 11, 2014

	Jinja2 for better Ansible playbooks and templates [https://blog.codecentric.de/en/2014/08/jinja2-better-ansible-playbooks-templates/], by Daniel Schneller, August 25, 2014

	In YAML, how do I break a string over multiple lines? [https://stackoverflow.com/questions/3790454/in-yaml-how-do-i-break-a-string-over-multiple-lines], stackoverflow post, September 24, 2010

	Ansible - some random useful things [https://codepoets.co.uk/2014/ansible-random-things/], by David Goodwin, August 4, 2014

	Tagging [http://thinkansible.com/ansible-tagging/], ThinkAnsible, June 4, 2014

	Scalable and Understandable Provisioning with Ansible and Vagrant [https://julien.ponge.org/blog/scalable-and-understandable-provisioning-with-ansible-and-vagrant/], by Julien Ponge, October 15, 2013

	Alejandro Guirao Rodríguez - Extending and embedding Ansible with Python [https://youtu.be/qLoBHbVb0Fw], YouTube video from EuroPython 2015

	etcd + ansible = crazy delicious [http://www.unicornclouds.com/blog_posts/etcd_ansible_integration], by UnicornClouds

	How I Fully Automated OS X Provisioning With Ansible [http://il.luminat.us/blog/2014/04/19/how-i-fully-automated-os-x-with-ansible/], by Daniel Jaouen

	Ansible tips [http://goodcode.io/articles/ansible-tips/], by Deni Bertović, October 13, 2014

	Debugging Ansible Tasks [https://wincent.com/wiki/Debugging_Ansible_tasks], by Greg Hurrell, August 7, 2015

	GitHub dellis23/ansible-toolkit [https://libraries.io/pypi/ansible-toolkit] (“Ansible toolkit hopes to solve [some Ansible playbook] problems by providing some simple visibility tools.”)

	GitHub ks888/ansible-playbook-debugger [https://github.com/ks888/ansible-playbook-debugger] (“A Debugger for Ansible Playbook”)

	Hacking ansible [http://www.slideshare.net/bcoca/hacking-ansible], slideshare, October 15, 2014 (“a quick presentation on ansible internals and a focus on the ease of expansion through the plugin”)

	ansible-exec: ansible-playbook wrapper for executing playbooks [https://www.bigpanda.io/blog/ansible-exec-ansible-playbook-wrapper-for-executing-playbooks], by Hagai Kariti, August 26, 2014

	Using virtualenv Python in local Ansible [https://www.zigg.com/2014/using-virtualenv-python-local-ansible.html], by Matt Behrens, April 5, 2014

	Ansible: A Simple Rollback Strategy for Roles and Playbooks [http://www.servermanaged.it/ansible/ansible-simple-rollback-strategy/], by Valentino Gagliardi, June 25, 2014

	Proposal for fixing playbooks with dynamic include problems [https://groups.google.com/forum/#!msg/ansible-devel/9aJaoVeRdOg/B4TvRTLgCAAJ], Ansible Development Google Group post

3. Bootstrapping a VM Host as an Ansible Controller

This chapter walks through the process of bootstrapping a
baremetal machine to serve as a Virtualbox hypervisor
for hosting multiple Virtual Machine guests, serving as
the Ansible control host for managing their configuration.

Note

Some of the examples here explicitly use -i to point to an inventory
directory, and some do not. When there is no -i flag, it is assumed
that /etc/ansible/ansible.cfg, or a perhaps ansible.cfg in the top
level of a private customization directory, is configured to point to the
correct inventory directory.

You can see what the default is using ansible --help:

Usage: ansible <host-pattern> [options]

Options:
 . . .
 -i INVENTORY, --inventory-file=INVENTORY
 specify inventory host path
 (default=/Users/dittrich/dims/git/ansible-dims-
 playbooks/inventory) or comma separated host list.
 . . .

..

... or by using ansible --version:

ansible 2.3.0.0
 config file = /etc/ansible/ansible.cfg
 configured module search path = [u'/home/dittrich/dims/git/private-develop/library',
 u'/home/dittrich/dims/git/ansible-dims-playbooks/library', u'/usr/share/ansible']
 python version = 2.7.13 (default, Jun 23 2017, 23:57:31) [GCC 4.8.4]

If this is set up properly, you should be able to list the all group
and see results for the correct deployment:

$ ansible --list-hosts
hosts (11):
 blue14.devops.local
 purple.devops.local
 node03.devops.local
 vmhost.devops.local
 node02.devops.local
 yellow.devops.local
 node01.devops.local
 orange.devops.local
 red.devops.local
 blue16.devops.local
 hub.devops.local

3.1. Initial Connectivity

The first step in putting hosts under Ansible control is to add them to an
inventory, setting parameters allowing access to them. We will add them to a
local “private” configuration repository, rooted at $GIT/private-develop.
Since these are systems newly installed using an Ubuntu Kickstart USB drive,
they only have a password on the ansible account that we set up, and were installed
with IP addresses that were assigned by DHCP on the local subnet at installation
time. Until they have been fully configured, they have been assigned an address
on (the original DHCP assignments are commented out on lines 12 and 15, and the
actively working addresses set on lines 24 and 26.)
were manually set up on ports connected to an internal VLAN.
The relevant portions of the YAML inventory file are shown here, listed in the
servers inventory, with host variables defined in the children subgroup
named bootstrap that we can refer to in Ansible ad-hoc mode:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

 # File: inventory/servers/nodes.yml

 servers:
 vars:
 ansible_port: 8422
 hosts:
 'other-hosts-not-shown':
 'stirling.devops.develop':
 #ansible_host: '140.142.29.161'
 'dellr510.devops.develop':
 #ansible_host: '140.142.29.186'
 children:
 bootstrap:
 vars:
 ansible_port: 22
 http_proxy: ''
 https_proxy: ''
 hosts:
 'stirling.devops.develop':
 ansible_host: '10.142.29.161'
 'dellr510.devops.develop':
 ansible_host: '10.142.29.186'

 # vim: ft=ansible :

Validate the temporary bootstrap group that defines the two hosts we are
setting up using the debug module to show the ansible_host variable and
ensure they match what we set them to.

$ ansible -i inventory/ -m debug -a 'var=vars.ansible_host' bootstrap
stirling.devops.develop | SUCCESS => {
 "changed": false,
 "vars.ansible_host": "10.142.29.161"
}
dellr510.devops.develop | SUCCESS => {
 "changed": false,
 "vars.ansible_host": "10.142.29.186"
}

Now use the password that was set up at install time to validate that
SSH is working using the ping or raw module (both are shown
here, though only one test is necessary to validate connectivity).

Note

For this example, SSH host key checking is being temporarily disabled as we
are using an internal VLAN. The host keys were written down in a journal
when the installation was performed and SSH used manually to validate the
key, which will be collected in a later step.

$ export ANSIBLE_HOST_KEY_CHECKING=False
$ ansible --ask-pass -m ping bootstrap
SSH password:
dellr510.devops.develop | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
stirling.devops.develop | SUCCESS => {
 "changed": false,
 "ping": "pong"
}
$ ansible -m raw -a uptime --ask-pass bootstrap
SSH password:
dellr510.devops.develop | SUCCESS | rc=0 >>
 22:21:50 up 3:37, 3 users, load average: 0.78, 1.45, 1.29
Shared connection to 140.142.29.186 closed.

stirling.devops.develop | SUCCESS | rc=0 >>
 22:21:51 up 4:15, 3 users, load average: 2.45, 1.49, 1.18
Shared connection to 140.142.29.161 closed.

Use the ansible account password with ad-hoc mode to invoke the
authorized_key module to insert the ansible SSH private key in the
account on the remote systems, using the file lookup and the
dims.function shell utility function to derive the path to the
private key, adding the .pub extension to get the public key.

$ ansible -m authorized_key -a "user=ansible state=present \
> key='{{ lookup('file', '$(dims.function get_ssh_private_key_file ansible).pub') }}'" \
> --ask-pass bootstrap
SSH password:
dellr510.devops.develop | SUCCESS => {
 "changed": true,
 "exclusive": false,
 "key": "ssh-rsa AAAAB3NzaC1yc2...",
 "key_options": null,
 "keyfile": "/home/ansible/.ssh/authorized_keys",
 "manage_dir": true,
 "path": null,
 "state": "present",
 "unique": false,
 "user": "ansible",
 "validate_certs": true
}
stirling.devops.develop | SUCCESS => {
 "changed": true,
 "exclusive": false,
 "key": "ssh-rsa AAAAB3NzaC1yc2...",
 "key_options": null,
 "keyfile": "/home/ansible/.ssh/authorized_keys",
 "manage_dir": true,
 "path": null,
 "state": "present",
 "unique": false,
 "user": "ansible",
 "validate_certs": true
}

3.2. Establishing Full Internet Connectivity

Now that the SSH public key is in the authorized_keys files, we can remove
the --ask-pass option and present the SSH private key to validate that
standard remote access with Ansible will now work. Let’s also use this
opportunity to test outbound network access by sending an ICMP packet
to one of Google’s DNS servers.

$ ansible -i inventory/ --ask-pass -m shell -a "ping -c 1 8.8.8.8" bootstrap
SSH password:
dellr510.devops.develop | SUCCESS | rc=0 >>
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=57 time=1.39 ms

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.395/1.395/1.395/0.000 ms

stirling.devops.develop | SUCCESS | rc=0 >>
PING 8.8.8.8 (8.8.8.8) 56(84) bytes of data.
64 bytes from 8.8.8.8: icmp_seq=1 ttl=57 time=1.44 ms

--- 8.8.8.8 ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 1.446/1.446/1.446/0.000 ms

3.3. Bootstrapping Full Ansible Control

At this point we have verified Ansible can access the systems and that
they can access the Internet. Those are the basics we need to now run
the bootstrap.yml playbook to prepare the system for being a
virtual machine hypervisor and Ansible control host. The tasks
performed (at the high level) are seen here:

File: roles/bootstrap/tasks/main.yml

This role is intended to be run once after initial
operating system installation to ensure that the system
is ready to be controlled remotely using Ansible. That
includes things like timezone setting and NTP time
synchronization, installation of required packages,
configuration of OpenSSH, initial firewall settings, 'sudo'
access for the 'ansible' account, etc.

This role can be applied using the generic
'playbooks/base_playbook.yml' file, setting the 'host'
and 'role' variables appropriately for the target host(s).
Be sure to use '--become' as well, as all of these tasks
require root.
#
$ ansible-playbook $PBR/playbooks/bootstrap.yml \
> --ask-sudo-pass --ask-pass --become -e host=bootstrap

- name: Ensure hardware-specific packages present
 include: 'hardware.yml'
 tags: ['bootstrap', 'hardware']

- name: Ensure required packages are present
 include: 'packages.yml'
 tags: ['bootstrap', 'packages']

- name: Ensure timezone set
 include: 'timezone.yml'
 tags: ['bootstrap', 'timezone']

- name: Ensure NTP sync set up
 include: 'ntpcheck.yml'
 tags: ['bootstrap', 'ntpcheck']

- name: Establish sudo access
 include: 'sudo.yml'
 tags: ['bootstrap', 'sudo']

- name: Set up SSH access for Ansible control
 include: 'ssh.yml'
 tags: ['bootstrap', 'ssh']

- name: Display diagnostic and validation information
 include: 'info.yml'
 tags: ['bootstrap', 'info']

vim: ft=ansible :

Run the playbook as shown (or substitute the inventory host name
directly, e.g., dellr510.devops.develop, instead of the group
name bootstrap. Using the group, you can prepare as many hosts
as you wish at one time, in this case we show configuration of
two hosts simultaneously.

$ ansible-playbook -i inventory/ $PBR/playbooks/bootstrap.yml --ask-sudo-pass --ask-pass --become -e host=bootstrap
SSH password:
SUDO password[defaults to SSH password]:

PLAY [Bootstrapping 'bootstrap'] **

TASK [Debugging] **
Sunday 23 July 2017 12:41:06 -0700 (0:00:00.060) 0:00:00.060 ***********
skipping: [dellr510.devops.develop]
skipping: [stirling.devops.develop]

TASK [Include codename-specific variables] ************************************
Sunday 23 July 2017 12:41:07 -0700 (0:00:01.063) 0:00:01.124 ***********
ok: [dellr510.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/playbooks/../vars/trusty.yml)
ok: [stirling.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/playbooks/../vars/trusty.yml)

TASK [bootstrap : Check for Broadcom device 14e4:43b1] ************************
Sunday 23 July 2017 12:41:08 -0700 (0:00:01.075) 0:00:02.200 ***********
changed: [stirling.devops.develop]
changed: [dellr510.devops.develop]

TASK [bootstrap : Ensure Broadcom wireless kernel in place] *******************
Sunday 23 July 2017 12:41:10 -0700 (0:00:01.705) 0:00:03.905 ***********
skipping: [dellr510.devops.develop]
skipping: [stirling.devops.develop]

TASK [bootstrap : Make sure required APT packages are present (Debian)] *******
Sunday 23 July 2017 12:41:11 -0700 (0:00:01.633) 0:00:05.539 ***********
ok: [dellr510.devops.develop] => (item=[u'apt-transport-https', u'bash-completion', u'ca-certificates', u'cpanminus', u'curl', u'dconf-tools', u'git-core', u'default-jdk', u'gitk', u'gnupg2',
 u'htop', u'hunspell', u'iptables-persistent', u'ifstat', u'make', u'myrepos', u'netcat', u'nfs-common', u'chrony', u'ntpdate', u'openssh-server', u'patch', u'perl', u'postfix', u'python', u'
python-apt', u'remake', u'rsync', u'rsyslog', u'sshfs', u'strace', u'tree', u'vim', u'xsltproc', u'chrony', u'nfs-kernel-server', u'smartmontools', u'unzip'])
ok: [stirling.devops.develop] => (item=[u'apt-transport-https', u'bash-completion', u'ca-certificates', u'cpanminus', u'curl', u'dconf-tools', u'git-core', u'default-jdk', u'gitk', u'gnupg2',
 u'htop', u'hunspell', u'iptables-persistent', u'ifstat', u'make', u'myrepos', u'netcat', u'nfs-common', u'chrony', u'ntpdate', u'openssh-server', u'patch', u'perl', u'postfix', u'python', u'
python-apt', u'remake', u'rsync', u'rsyslog', u'sshfs', u'strace', u'tree', u'vim', u'xsltproc', u'chrony', u'nfs-kernel-server', u'smartmontools', u'unzip'])

TASK [bootstrap : Make sure required APT packages are present (RedHat)] *******
Sunday 23 July 2017 12:41:26 -0700 (0:00:15.023) 0:00:20.562 ***********
skipping: [dellr510.devops.develop] => (item=[])
skipping: [stirling.devops.develop] => (item=[])

TASK [bootstrap : Ensure dims_timezone is set] ********************************
Sunday 23 July 2017 12:41:27 -0700 (0:00:01.168) 0:00:21.731 ***********
skipping: [dellr510.devops.develop]
skipping: [stirling.devops.develop]

TASK [bootstrap : Set timezone variables] *************************************
Sunday 23 July 2017 12:41:28 -0700 (0:00:01.069) 0:00:22.800 ***********
changed: [dellr510.devops.develop]
changed: [stirling.devops.develop]

TASK [bootstrap : Ensure Debian chrony package is installed] ******************
Sunday 23 July 2017 12:41:31 -0700 (0:00:02.035) 0:00:24.836 ***********
ok: [dellr510.devops.develop]
ok: [stirling.devops.develop]

TASK [bootstrap : Ensure chrony is running on Debian] *************************
Sunday 23 July 2017 12:41:33 -0700 (0:00:02.679) 0:00:27.515 ***********
ok: [dellr510.devops.develop]
ok: [stirling.devops.develop]

TASK [bootstrap : Ensure RedHat chrony package is installed] ******************
Sunday 23 July 2017 12:41:35 -0700 (0:00:01.601) 0:00:29.116 ***********
skipping: [dellr510.devops.develop]
skipping: [stirling.devops.develop]

TASK [bootstrap : Ensure chrony is running on RedHat] *************************
Sunday 23 July 2017 12:41:36 -0700 (0:00:01.067) 0:00:30.184 ***********
skipping: [dellr510.devops.develop]
skipping: [stirling.devops.develop]

TASK [bootstrap : Verify that the sudo group exists] **************************
Sunday 23 July 2017 12:41:37 -0700 (0:00:01.066) 0:00:31.250 ***********
ok: [dellr510.devops.develop]
ok: [stirling.devops.develop]

TASK [bootstrap : Set fact with temp sudoers filename] ************************
Sunday 23 July 2017 12:41:38 -0700 (0:00:01.462) 0:00:32.712 ***********
ok: [dellr510.devops.develop]
ok: [stirling.devops.develop]

TASK [bootstrap : Copy sudoers template to temporary file] ********************
Sunday 23 July 2017 12:41:39 -0700 (0:00:01.068) 0:00:33.781 ***********
changed: [dellr510.devops.develop]
changed: [stirling.devops.develop]

TASK [bootstrap : Back up sudoers file] ***************************************
Sunday 23 July 2017 12:41:41 -0700 (0:00:01.914) 0:00:35.695 ***********
changed: [dellr510.devops.develop]
changed: [stirling.devops.develop]

TASK [bootstrap : Verify sudoers before replacing] ****************************
Sunday 23 July 2017 12:41:43 -0700 (0:00:01.398) 0:00:37.093 ***********
changed: [dellr510.devops.develop]
changed: [stirling.devops.develop]

TASK [bootstrap : Define variable with ansible public key] ********************
Sunday 23 July 2017 12:41:44 -0700 (0:00:01.508) 0:00:38.602 ***********
ok: [dellr510.devops.develop]
ok: [stirling.devops.develop]

TASK [bootstrap : Ensure ansible public key in authorized_keys] ***************
Sunday 23 July 2017 12:41:46 -0700 (0:00:02.083) 0:00:40.686 ***********
ok: [dellr510.devops.develop]
changed: [stirling.devops.develop]

TASK [bootstrap : Show interface details (Debian)] ****************************
Sunday 23 July 2017 12:41:48 -0700 (0:00:01.710) 0:00:42.397 ***********
changed: [dellr510.devops.develop]
changed: [stirling.devops.develop]

TASK [bootstrap : debug] **
Sunday 23 July 2017 12:41:49 -0700 (0:00:01.397) 0:00:43.794 ***********
ok: [dellr510.devops.develop] => {
 "_ifconfig.stdout_lines": [
 "em1 Link encap:Ethernet HWaddr 78:2b:cb:57:9b:e1 ",
 " UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1",
 "",
 "em2 Link encap:Ethernet HWaddr 78:2b:cb:57:9b:e2 ",
 " inet addr:10.142.29.186 Bcast:10.142.29.255 Mask:255.255.255.0",
 " UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1",
 "",
 "lo Link encap:Local Loopback ",
 " inet addr:127.0.0.1 Mask:255.0.0.0",
 " UP LOOPBACK RUNNING MTU:65536 Metric:1",
 "",
 "p2p1 Link encap:Ethernet HWaddr 00:1b:21:c0:ff:30 ",
 " UP BROADCAST MULTICAST MTU:1500 Metric:1",
 " Memory:de7c0000-de7dffff ",
 "",
 "p2p2 Link encap:Ethernet HWaddr 00:1b:21:c0:ff:31 ",
 " UP BROADCAST MULTICAST MTU:1500 Metric:1",
 " Memory:de7e0000-de7fffff ",
 "",
 "p3p1 Link encap:Ethernet HWaddr 00:1b:21:c1:1c:34 ",
 " UP BROADCAST MULTICAST MTU:1500 Metric:1",
 " Memory:dd7c0000-dd7dffff ",
 "",
 "p3p2 Link encap:Ethernet HWaddr 00:1b:21:c1:1c:35 ",
 " UP BROADCAST MULTICAST MTU:1500 Metric:1",
 " Memory:dd7e0000-dd7fffff "
],
 "changed": false
}
ok: [stirling.devops.develop] => {
 "_ifconfig.stdout_lines": [
 "em1 Link encap:Ethernet HWaddr f0:4d:a2:40:92:1d ",
 " UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1",
 "",
 "em2 Link encap:Ethernet HWaddr f0:4d:a2:40:92:1f ",
 " inet addr:10.142.29.161 Bcast:10.142.29.255 Mask:255.255.255.0",
 " UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1",
 "",
 "em3 Link encap:Ethernet HWaddr f0:4d:a2:40:92:21 ",
 " UP BROADCAST MULTICAST MTU:1500 Metric:1",
 "",
 "em4 Link encap:Ethernet HWaddr f0:4d:a2:40:92:23 ",
 " UP BROADCAST MULTICAST MTU:1500 Metric:1",
 "",
 "lo Link encap:Local Loopback ",
 " inet addr:127.0.0.1 Mask:255.0.0.0",
 " UP LOOPBACK RUNNING MTU:65536 Metric:1"
],
 "changed": false
}

TASK [bootstrap : Show interface details (MacOSX)] ****************************
Sunday 23 July 2017 12:41:51 -0700 (0:00:01.071) 0:00:44.866 ***********
skipping: [dellr510.devops.develop]
skipping: [stirling.devops.develop]

TASK [bootstrap : debug] **
Sunday 23 July 2017 12:41:52 -0700 (0:00:01.069) 0:00:45.936 ***********
skipping: [dellr510.devops.develop]
skipping: [stirling.devops.develop]

TASK [bootstrap : Determine SSH host MD5 key fingerprints] ********************
Sunday 23 July 2017 12:41:53 -0700 (0:00:01.068) 0:00:47.004 ***********
changed: [dellr510.devops.develop]
changed: [stirling.devops.develop]

TASK [bootstrap : debug] **
Sunday 23 July 2017 12:41:54 -0700 (0:00:01.472) 0:00:48.477 ***********
ok: [dellr510.devops.develop] => {
 "_md5.stdout_lines": [
 "1024 c9:58:58:f3:90:a6:1f:1c:ab:fb:8e:18:42:77:a2:88 root@D-140-142-29-186 (DSA)",
 "256 a2:61:50:25:6b:c3:02:43:55:a7:35:32:cb:96:f5:82 root@D-140-142-29-186 (ECDSA)",
 "256 e6:c8:11:ac:48:28:1f:bc:fd:ad:06:f4:0f:26:9e:5b root@D-140-142-29-186 (ED25519)",
 "2048 55:ae:94:22:e1:ce:d4:2a:b6:d3:8b:aa:09:70:d1:38 root@D-140-142-29-186 (RSA)"
],
 "changed": false
}
ok: [stirling.devops.develop] => {
 "_md5.stdout_lines": [
 "1024 b1:41:a2:bd:c2:e8:3b:bd:14:3b:3f:7d:eb:e5:ba:10 root@D-140-142-29-161 (DSA)",
 "256 41:68:1e:59:4e:bd:0c:5b:25:c8:24:60:a8:d6:f1:c6 root@D-140-142-29-161 (ECDSA)",
 "256 bb:4b:89:f5:6b:45:7c:d3:9e:56:54:ea:8c:1b:79:8f root@D-140-142-29-161 (ED25519)",
 "2048 96:95:e2:45:01:d2:45:2e:49:a8:7c:f6:39:28:0a:a5 root@D-140-142-29-161 (RSA)"
],
 "changed": false
}

TASK [bootstrap : Determine SSH host SHA256 key fingerprints] *****************
Sunday 23 July 2017 12:41:55 -0700 (0:00:01.076) 0:00:49.553 ***********
changed: [dellr510.devops.develop]
changed: [stirling.devops.develop]

TASK [bootstrap : debug] **
Sunday 23 July 2017 12:41:57 -0700 (0:00:01.471) 0:00:51.025 ***********
ok: [dellr510.devops.develop] => {
 "_sha256.stdout_lines": [
 "ssh-dss dl/W3IeTv3aPGZdfX8q3L0yZE8gAbW6IbHw9uZlyYDU. root@D-140-142-29-186",
 "ecdsa-sha2-nistp256 8qqzBI22OGTY29T3WCKnpIPbyl1K0My9xwPiGEt9PmE. root@D-140-142-29-186",
 "ssh-ed25519 K4Bc5IttYf5WHE2nzuxTr9w8QzTMzIKZYUewvwCcuPc. root@D-140-142-29-186",
 "ssh-rsa rVUD1b6raug2Pp01pJLyWEHzxUfGbzOkwUxvhRzvH30. root@D-140-142-29-186"
],
 "changed": false
}
ok: [stirling.devops.develop] => {
 "_sha256.stdout_lines": [
 "ssh-dss EdHHaFS7LRtVqCKzlzYG68OpQNnKqEygWoEoM9lYtWs. root@D-140-142-29-161",
 "ecdsa-sha2-nistp256 3MicWfvhufEiPRiANS43Z/7MbcHHTythyOAhYluyD+w. root@D-140-142-29-161",
 "ssh-ed25519 gT0duOWxArehJR08iR0iFO4gDUqDCjT6P+lJYPT0MwI. root@D-140-142-29-161",
 "ssh-rsa MQl68HQR5Oip9MPlozLddlXA9Emcz9QTJLk0IJgVJOs. root@D-140-142-29-161"
],
 "changed": false
}

TASK [bootstrap : Determine SSH host SHA256 key fingerprints] *****************
Sunday 23 July 2017 12:41:58 -0700 (0:00:01.072) 0:00:52.097 ***********
skipping: [dellr510.devops.develop]
skipping: [stirling.devops.develop]

TASK [bootstrap : debug] **
Sunday 23 July 2017 12:41:59 -0700 (0:00:01.069) 0:00:53.167 ***********
skipping: [dellr510.devops.develop]
skipping: [stirling.devops.develop]

RUNNING HANDLER [bootstrap : Update timezone] *********************************
Sunday 23 July 2017 12:42:00 -0700 (0:00:01.062) 0:00:54.229 ***********
changed: [dellr510.devops.develop]
changed: [stirling.devops.develop]

PLAY RECAP **
dellr510.devops.develop : ok=20 changed=9 unreachable=0 failed=0
stirling.devops.develop : ok=20 changed=10 unreachable=0 failed=0

Sunday 23 July 2017 12:42:02 -0700 (0:00:02.078) 0:00:56.307 ***********
===
bootstrap : Make sure required APT packages are present (Debian) ------- 15.02s
bootstrap : Ensure Debian chrony package is installed ------------------- 2.68s
bootstrap : Define variable with ansible public key --------------------- 2.08s
bootstrap : Update timezone --- 2.08s
bootstrap : Set timezone variables -------------------------------------- 2.04s
bootstrap : Copy sudoers template to temporary file --------------------- 1.91s
bootstrap : Ensure ansible public key in authorized_keys ---------------- 1.71s
bootstrap : Check for Broadcom device 14e4:43b1 ------------------------- 1.71s
bootstrap : Ensure Broadcom wireless kernel in place -------------------- 1.63s
bootstrap : Ensure chrony is running on Debian -------------------------- 1.60s
bootstrap : Verify sudoers before replacing ----------------------------- 1.51s
bootstrap : Determine SSH host MD5 key fingerprints --------------------- 1.47s
bootstrap : Determine SSH host SHA256 key fingerprints ------------------ 1.47s
bootstrap : Verify that the sudo group exists --------------------------- 1.46s
bootstrap : Back up sudoers file -- 1.40s
bootstrap : Show interface details (Debian) ----------------------------- 1.40s
bootstrap : Make sure required APT packages are present (RedHat) -------- 1.17s
bootstrap : debug --- 1.08s
Include codename-specific variables ------------------------------------- 1.08s
bootstrap : debug --- 1.07s

3.4. Integration into Working Inventory

After the bootstrap role has been applied, the host should now be ready for
Ansible control. Create the host’s playbook and ensure that any required
variables are added to a more permanant inventory file. If this is anything
beyond a basic development (i.e., local) deployment, create a new
private customization repository (this will be discussed in more detail in
Section Customizing a Private Deployment).

Attention

Do not forget to add the host being bootstrapped to the all group in the
inventory. While it may be accessible by simply being listed in the children
subgroup with an ansible_host value like shown earlier, its
host_vars file will not be loaded unless it is included in the
all group.

This problem would go away if all of the variables formerly placed in
host_vars files were moved directly into the inventory files instead.

Set up the following to ensure that the host will be functional and
under Ansible control for:

	iptables rules specified in tcp_ports, udp_ports, and/or
custom_rules that will be templated into the rules files. These should
lock the host down, while allowing access to hosts on internal VLANs
for remote Ansible control, accessing internal repositories or source
archives, etc.

	/etc/network/interfaces template or variables necessary to define all
desired network interfaces. This file should start out reflecting the
network settings used to install the system and provide access to
the internal VLAN.

	Any custom_hosts that need to be defined in /etc/hosts to ensure
connectivity out to remote systems (e.g., to an internal Git source
repository host that is required to get private repositories, serve
internal packages, etc.)

To separate these bootstrapping settings from normal settings, use
a children sub-group named bootstrap for the host being
set up. In this case, we are focusing on a host named
stirling.devops.develop.

File: inventory/servers/nodes.yml

servers:
 vars:
 ansible_port: 8422
 hosts:
 'other-hosts-not-shown...':
 'stirling.devops.develop':
 #ansible_host: '10.142.29.182'
 #ansible_host: '140.142.29.161'
 ansible_user: 'ansible'
 zone_iface:
 'public': 'em2'
 'prisem': 'em1'
 'develop': 'em2'
 'swarm': 'vboxnet1'
 'consul': 'vboxnet1'
 'yellow_bridge': 'em1'
 'purple_bridge': 'em1'
 zones:
 - develop
 net:
 iface:
 'em1':
 #ip: '140.142.29.161'
 #ip: '140.142.13.171'
 #cidr_bits: 27
 ip: '0.0.0.0'
 'em2':
 ip: '10.142.29.161'
 netmask: '255.255.255.0'
 cidr_bits: 24
 'em3':
 ip: '10.3.0.1'
 netmask: '255.255.255.0'
 cidr_bits: 24
 'em4':
 ip: '10.4.0.1'
 netmask: '255.255.255.0'
 cidr_bits: 24
 tcp_ports: [9999]
 udp_ports: []
 custom_hosts:
 - '10.142.29.98 source.devops.develop'
 - '10.142.29.115 eclipse.devops.develop'
 children:
 bootstrap:
 vars:
 ansible_port: 22
 http_proxy: ''
 https_proxy: ''
 hosts:
 'stirling.devops.develop':
 ansible_host: '10.142.29.161'
 private_develop: "{{ lookup('env','GIT') }}/private-develop"
 private_repository: "git@git.devops.develop:/var/opt/private-develop.git"
 private_repository_hostkey: "2048 78:82:74:66:56:93:a7:9d:54:ce:05:ed:8a:0d:fa:b4 root@git.devops.develop (RSA)"
 private_repository_hostname: "git.devops.develop"
 ansible_ssh_private_key_file: "{{ lookup('dims_function', 'get_ssh_private_key_file {{ ansible_user }} {{ private_develop }}') }}"
 install_ssh_keypair: true
 bootstrap_private: true
 artifacts_url: 'http://source.devops.develop/source/'
 ssh_config_hosts:
 - hostname_short: 'git'
 hostname: git.devops.develop
 user: git
 port: 8422

vim: ft=ansible :

As for the host playbook, here is an example of a complete playbook
for a virtual machine manager host with development capabilities.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

 # File: v2/playbooks/hosts/stirling.devops.develop.yml

 - name: Configure host "stirling.devops.develop"
 hosts: stirling.devops.develop

 vars:
 playbooks_root: "{{ lookup('env', 'PBR') }}"
 dims_private: "{{ lookup('env', 'GIT') }}/private-{{ deployment }}"
 https_proxy: 'https://127.0.0.1:8000'

 vars_files:
 - "{{ playbooks_root }}/vars/global.yml"
 - "{{ playbooks_root }}/vars/trusty.yml"

 remote_user: "ansible"
 become: yes

 roles:
 - { role: base, packages_upgrade: true }
 - { role: hosts }
 - { role: dns }
 - { role: dims-ci-utils }
 - { role: python-virtualenv, use_sphinx: true }
 - { role: ansible-server }
 - { role: docker }
 - { role: consul }
 - { role: packer }
 - { role: vagrant }
 - { role: virtualbox }
 - { role: vncserver }
 - { role: nginx }
 - { role: byobu }
 - { role: apache-directory-studio }

 handlers:
 - include: "{{ handlers_path }}/restart_services.yml"

 # vim: ft=ansible :

Some roles of note (highlighted above) are the following:

	ansible-server will set the host up for serving as an Ansible control
host. This includes installing shared public roles that are being used for
installing certain services, cloning the ansible-dims-playbooks
repository (master branch by default), and installing the ansible
user SSH key pair.

	dns will set up “split-horizon” DNS service, serving an internal
domain used by virtual machines and the hypervisor host for looking
up IP addresses on internal interfaces connected to private VLANs
and/or virtual networks. The zone(s) that will be served by this
host are defined by the zones array, which uses mappings
to dictionaries holding interface information in order to derive
the name-to-IP mappings for each zone.

	The roles vagrant, packer, and virtualbox set the host up
for serving as a Virtualbox hypervisor that can use DIMS helper scripts
for automated creation of Vagrant boxes. (This capability is useful for
development and testing, but is not recommended for “production” use.)

	vncserver will configure the host for remotely running graphical user
interface programs (e.g., the virtualbox management interface) using
VNC tunneled over SSH. (It also creates a helper script on the control
host running this playbook to facilitate setting up the SSH tunnel
that we will use to manually create virtual machines in the following
section).

	nginx sets up a reverse proxy web server that can be used to
serve box files, operating system installation ISO image files,
and packaged artifacts cached from public sources or non-public
sources (e.g., from an internal Jenkins build server).

Note

As a ballpark estimate of time-to-deploy for an initial virtual machine host
server, using a Dell R710 with a 1 Gbps ethernet connection, the initial
Ubuntu Kickstart operating system installation took approximately 30 minutes.
The bootstrap playbook to get the system to password-less Ansible control
took about another 5 minutes. The first complete run of the host playbook
(which, including the lengthy python-virtualenv build task) adds over a
thousand new packages, took about 45 minutes to complete. This is a total
time of just under 1.5 hours (and these steps could be done in
parallel with multiple hosts with just a small additional overhead for
setting variables for each host.)

3.5. Normal Playbook Operations

Now run the host’s playbook to fully configure it and update packages. This can
be done from the Ansible control host being used to remotely bootstrap the
new server, or from within the server itself. If the desire is to hand the
newly bootstrapped system off to a production operations group, the normal
means of administering the system may be for them to log in to it using
SSH and run the host’s playbook locally. To make this easier (or for developers
to keep their own systems up to date), a helper command run.playbook is
set up. Running just this command will execute the full playbook.
To only execute part of the playbook, use the --tags option to
select the set of tags you wish to apply as described in Section
Tags on Tasks. For example, to just apply any updated packages,
use run.playbook --tags updates, or to just apply changes to
iptables rules files and reload them, use run.playbook --tags iptables.

To run the playbook using Ansible directly, performing both of the
example tasks just listed at once, the command would look like this:

$ ansible-playbook $DIMS_PRIVATE/playbooks/hosts/dellr510.devops.develop --tags updates,iptables

3.6. Validating VNC over SSH Tunnelling

The last thing we will do to validate our VM hypervisor and Ansible
control host is ready to use for managing virtual machines is to
establish an SSH tunnelled VNC connection using Remmina. Run the
helper script to establish the tunnel:

$ vnc.dellr510.devops.develop
[+] X11 forwarding connection to dellr510.devops.develop established.
[+] Remote X11 DISPLAY is :1
[+] Configure your VNC client to use 127.0.0.1:5901
[+] Use CTRL-C or ENTER to break tunnel connection...

Now run the following command in a shell window, or use the task bar to
run the Remmina application:

$ remmina &

Note

The & at the end of the command line puts the application into the background. Remmina,
like other X11 or Gnome applications, does not use the command line for keyboard input. Instead,
it uses the X11 graphical user interface features. Leaving the & off will make the terminal
window appear to “hang” as the prompt will not be returned until the Remmina graphical application
quits. For more details, see How to clean launch a GUI app via the Terminal (so it doesn’t wait
for termination)? [https://askubuntu.com/questions/10547/how-to-clean-launch-a-gui-app-via-the-terminal-so-it-doesnt-wait-for-terminati]

[image: Remmina Main Screen]
Remmina Main Screen

Select Create a new remote desktop file (the sheet of paper with a green
+ sign) if this is the first time you are running Remmina. In this case, a
connection was already created so we will instead select Edit (the pencil
icon) to edit the settings. Save them when you are done to get back to the
main menu.

Note

The password to use here is one set by the variable vnc_server_default
in the roles/vncserver/defaults/main.yml file. As long as the VNC
server is bound to localhost, the risk is limited to the local system.
For improved security, set this password to something strong by over-riding
the default password with this variable in a private customization
repository and/or Ansible Vault file using the techniques described in
Section Customizing a Private Deployment.

[image: Remmina Edit Screen]
Remmina Edit Screen

When you then select the item (dellr510 in this case) and press Open the
connection to the selecetd remote desktop file (the icon that looks like a
light switch on the far left of the icon bar), you should now have a graphical
desktop with a terminal window open on the remote host as seen here:

[image: Initial Remmina VNC Connection]
Initial Remmina VNC Connection

The next chapter will go over the steps for running the Virtualbox mangement GUI
and manually creating VMs.

4. Creating VMs

The Ansible control host that was set up in Section Bootstrapping a VM Host as an Ansible Controller can be
used to control a set of virtual machines, bare metal hosts, or a combination.
It all depends on what services you wish to provide and how you chose to deploy
them.

There are several options for creating a hybrid “private-cloud” comprised
from a combination of bare-metal hosts, virtual machine hosts, and containerized
microservices. This flexibility comes at a cost in added complexity and
configuration management, but does afford for better linear horizontal
scalability and/or addition of compute or storage resources as the
system grows in size.

Hint

For the bigger picture of architectural design options considered while
designing and building the DIMS system components, see Section
DIMS architectural design [https://dims-ad.readthedocs.io/en/latest/dimsarchitecturaldesign.html#dimsarchitecturaldesign] of dimsad.

Figure Pure Virtual Machine Architecture shows a design similar to that being described in
this and the previous chapters. The Host is shown at the bottom, comprised
of a highly-provisioned server, a base operating system and a virtual machine
hypervisor. Each virtual machine Guest is then created and installed with its
own combination of base operating system, libraries and binaries, and
application software. In this illustration, we see a single physical computer
with a total of six servers (4 Ubuntu Linux, 1 Red Hat Enterprise Linux, and 1
Debian Linux).

[image: _images/VM-Architecture.png]
Pure Virtual Machine Architecture

The deployment we are currently creating is even simpler than Figure
Pure Virtual Machine Architecture. There is the one bare-metal server acting as the
Ansible control host and Virtualbox hypervisor (dellr510) and just two
virtual machine guests (yellow and purple, a.k.a. the trident
group). These guests will use bridged interfaces so they each have an
Internet-facing IP address and domain name, as well as a private virtual LAN
that is shared with the host for Ansible control and administration. For
increased security, the bare-metal VM host will only be accessible through an
internal VLAN.

4.1. Manual Installation of Virtual Machines

This section walks through the process of manually creating two
Debian 8.5 virtual machines to serve as Trident trust group
portal servers. This deployment combines all of the Trident
related services into one virtual machine. One of the two
vitual machines (yellow) will serve as the “production”
portal, and the other identical system (purple) will
serve as a development/test server. The latter can be used to
experiment with upgrades, test Ansible playbook changes,
train system administrators and trust group administrators.

Start the Virtualbox management GUI in the Remmina VNC
window.

[image: Running Virtualbox management GUI over VNC]
Running Virtualbox management GUI over VNC

This should bring up the Virtualbox management GUI.

[image: Virtualbox management GUI]
Virtualbox management GUI

Select New to create a new virtual machine. Most tabs have a Next>
button to go to the following tab, or select Settings after highlighting
the VM you want to configure, or and press the Right mouse button and chose
Settings... or use the keyboard shortcut CTRL-S.

[image: Initial ``yellow`` VM]
Initial yellow VM

Individual groupings of settings (e.g., System for boot order, processor
settings, etc., Storage for virtual hard drives, Network for NICs) are
on the left of the Settings panel.

[image: VM System Settings]
VM System Settings

Navigate through the menus to set the following attributes:

	Set Name: yellow

	Set Type: Linux

	Set Version: Ubuntu (64-bit)

	Set memory (e.g., 4096 MB)

	Create a virtual disk, type VDI (VirtualBox Disk Image), dynamically
allocated, making it generously large in relation to available disk space
to provide adequate storage space for Trident upload files (e.g., 200GB).

	Configure three NICs:

	Adapter 1 should be attached to NAT to provide host-only access with
NAT to get to the Internet while setting up the VM.

	Adapter 2 should be attached to Bridged Adapter, name em2 in this
case. (This is the host NIC attached to the internal VLAN in this configuration).
This interface in the guest (eth1) will be used for local Ansible control
and communication with internal hosts.

	Adapter 3 should be attached to Bridged Adapter, name em1 in this
case. (This is the host NIC attached to the Internet in this configuration,
which will be set to 0.0.0.0 to prevent direct communication from the
Internet to the VM host using this interface). This interface in the guest
(eth2) will have the public IP address for the Trident portal, email
delivery, etc.

	Set the system boot order to be Hard Disk first, followed by
Optical drive. The first boot with an empty hard drive will boot from
the Optical drive, while subsequent reboots will use the operating
system installed on the Hard Disk.

	Increase the number of CPUs (for a 16 core VM host, 3 or 4 cores is
reasonable.)

Note

All of these settings can be tuned later on if it is determined that they
are too low (or too high). Use a program like htop on the virtual machine
host to watch things like CPU saturation, memory saturation, swap usage,
etc.

After configuring the first VM yellow, produce a full clone of the VM and
name it purple. This will be the backup Trident server. Check the box to
regenerate MAC addresses for the network interfaces to ensure that they are
separable at the packet level in case network diagnostics need to be performed
using tcpdump or other network tools.

Once both of the VMs are set up, start them to boot from the Debian installation
ISO attached to the virtual DVD drive.

Note

We are not using Kickstart here, as we did for the baremetal host in Section
Bootstrapping a VM Host as an Ansible Controller, which means that a number of steps that were
automatically performed during system installation will need to be performed
manually. This is an area of automation that needs further work to unify
and standardize the boot process using Kickstart from Jinja templates and
inventory variables, allowing a consistent, configurable, repeatable, and
much faster system setup. This will result in time and cost savings that
scale better and help new teams more quickly deploy a full system.

	Use LVM on the entire drive, with separate partitions for /tmp, /home,
and /var.

	Choose Debian desktop environment, with Gnome, de-select print
server and select SSH server, leaving standard system utilities
selected, and press Tab and Enter to Continue.

	Create the ansible account using the password you created for this
deployment. Also set the root password (ideally to a different password
than the ansible account, to be used for emergency console access when
and if something disables access to the ansible account.)

At the end of the operating system installation process, it will ask you
to reboot. The guest should then show the Grub boot menu and proceed
to boot into Debian, presenting the login screen when the system is up
and running.

[image: Login screen for ``yellow`` VM]
Login screen for yellow VM

4.2. Bootstrapping the New VMs

Before you can perform the bootstrapping process using Ansible, you must
configure at least one network interface on each VM guest (as well as setting
an IP address in the same network block on the bridged interface of the host)
to allow host-to-guest SSH access.

Manually edit the /etc/network/interfaces file to configure the initial
eth1 NIC to have the IP addresses assigned for the hosts in the inventory
file. Bring the interface up using ifup eth1 and test after setting up all
of the interfaces using the same steps as shown in Section
Establishing Full Internet Connectivity.

Once connectivity has been verified, apply the bootstrap.yml playbook
as shown in Section Bootstrapping Full Ansible Control, using the
trident group this time to bootstrap both VMs at the same time.

[image: Bootstrapping the ``trident`` group]
Bootstrapping the trident group

4.3. Initial Provisioning of the New VMs

Lastly, we will run the initial provisioning steps to install and configure
the two new VMs. For the purposes of this example, we will start by only
applying the base role tasks to make sure the fundamentals of our
customized configuration will work. The command we use is:

$ ansible-playbook $GIT/private-develop/master.yml --tags base --limit trident

[image: Applying ``base`` role to ``trident`` group]
Applying base role to trident group

Having applied the base role, network interfaces are set up,
iptables rules are in place, /etc/hosts file and DNS
resolution are configured, and packages have been updated. This would
be a good time to reboot both systems to ensure everything is applied
and functions. You can use Ansible ad-hoc mode to do this with
the command:

$ ansible -m shell --become -a 'shutdown -r now' trident`

After a minute or two, you can test connectivity again with the
command:

$ ansible -m shell -a 'uptime' trident`
purple.devops.develop | SUCCESS | rc=0 >>
 14:22:33 up 0 min, 1 user, load average: 0.86, 0.22, 0.07

yellow.devops.develop | SUCCESS | rc=0 >>
 14:22:33 up 0 min, 1 user, load average: 0.79, 0.25, 0.09

At this point, the hosts are ready for application of their full playbooks.
Use --limit trident when running the master.yml playbook to only
operate on the two VMs in question.

Note

If Ansible Vault is being used to encrypt any secrets on disk, you will
need to either provide the password using the --ask-vault-pass
command line option or provide a path to the Vault password file
using the --vault-password-file command line option. We will use
the latter in this example:

[image: Applying full playbook to ``trident`` group]
Applying full playbook to trident group

Attention

The nginx role is designed to support use of Letsencrypt for SSL
certificate generation. Because Letsencrypt imposes a limit on the number of
certificates that can be generated for a given DNS domain name per week,
the default is to use the “staging” facility (i.e., the default is
certbot_staging: yes globally.) It may take a few full playbook
runs to ensure that all variables are defined and set properly, which
could exhaust the limit of certificates if the default was to generate
real certificates each time the nginx role gets applied.

After you are sure things are working properly, edit the
inventory/trident/nodes.yml file and change the setting to
certbot_staging: no and apply the nginx role one more time to get
valid certificates.

Once valid certificates have been generated once, you can create a backup
that can be restored later for development testing purposes in case you
have to destroy the /etc/letsencrypt directory and start again (as
occurs when using Vagrants and doing vagrant destroy, or terminating
virtual machines in cloud service providers.) This process is described
in Chapter Creating a Backup.

[image: Summary of full playbook run]
Summary of full playbook run

This completes the installation of the two VMs.

Attention

As these VMs were created using a NAT interface, but are meant to normally
operate using a bridged adapter for Internet facing access to the portal
and for email processing, one last configuration change is to disable the
eth0 NAT interface so its DHCP assigned default route does not conflict with
the default gateway setting of the eth2 interface. To do this, you will
need to go the Settings tab, then unselect Cable connected for
Adapter 1 on each VM as shown in Figure Disconecting cable to NAT interface.

[image: Disconecting cable to NAT interface]
Disconecting cable to NAT interface

At this point, it would be a good idea to create snapshots of the VMs in this
initial working state to have something to fall back on in case of mistakes at
a later date. This is shown in Figure Creating Snapshots in Virtualbox and the steps
to perform are described in How to use snapshots in VirtualBox [http://www.techrepublic.com/article/how-to-use-snapshots-in-virtualbox/] and the
Virtualbox document, Chapter 1. First steps [https://www.virtualbox.org/manual/ch01.html].

[image: Creating Snapshots in Virtualbox]
Creating Snapshots in Virtualbox

5. Customizing a Private Deployment

The public Ansible playbooks in the ansible-dims-playbooks repository
are designed to be public, which means they must (by definition) not
contain real secrets. What is more, if someone wants to deploy their
own instance of DIMS subsystems, they will need to maintain their
own copies of inventory files, templates, and yes, secret files
like Ansible vault, certificates, private keys, etc. These
files obviously can’t be committed to the public repository
master or develop branches.

To facilitate keeping everything above (and more files, like
backups of databases) completely separate, the ansible-dims-playbooks
roles allow a second parallel repository that shares some of
same subdirectories is used. The common directories are
files/, roles/, and vars/. By convention, the
directory is named private- followed by an identifier
of your choice (e.g., private-devtest could be your
development test deployment). This location is pointed to
by the environment variable DIMS_PRIVATE and the
Ansible variable dims_private which is set in
the inventory, playbooks, or command line.

Note

Some wrapper scripts will automatically set dims_private from
the environment variable DIMS_PRIVATE. There is a helper function
in dims_functions.sh called get_private that returns the
directory path based on the DIMS_PRIVATE environment variable
or falling back to the ansible-dims-playbooks directory for
a pure local development environment.

To facilitate creating the private customization directory repository,
the cookiecutter program can be used.

5.1. Cookiecutter

Cookiecutter is a command-line utility used to template project
structures. It uses Jinja2 to take generalized templates of file
names and file contents and render them to create a new, unique
directory tree. A popular Cookiecutter template [https://cookiecutter.readthedocs.org/en/latest/readme.html], used by Cookiecutter
in their documentation, is a Python package project template.

Cookiecutter can be used to template more than Python packages and can
do so for projects using languages other than Python.

Cookiecutter documentation and examples:

	Latest Cookiecutter Docs [https://cookiecutter.readthedocs.org/en/latest/]

	Python Package Project Template Example [https://github.com/audreyr/cookiecutter]

	Cookiecutter Tutorial [http://www.pydanny.com/cookie-project-templates-made-easy.html]

Cookiecutter is being integrated into the DIMS project as a Continuous
Integration Utility. It’s command line interface, cookiecutter, is
installed along with other tools used in the DIMS project in the dimsenv
Python virtual environment.

$ which cookiecutter
/home/dittrich/dims/envs/dimsenv/bin/cookiecutter

The source files used by cookiecutter can be found in
ansible-dims-playbooks/files/cookiecutter.

The directory ansible-dims-playbooks/files/cookiecutter/dims-new-repo/ provides a
template for a new Git source code repository that contains a Sphinx
documentation directory suitable for publication on ReadTheDocs [https://readthedocs.org].

Note

This template is usable for a source code repository with documentation,
but can also be used for a documentation-only repository. If no Sphinx
documentation is necessary, simply delete the docs/ directory
prior to making the initial commit to Git. Documenting how to use
the repository is recommended.

5.1.1. Top Level Files and Directories

The cookiecutter template directory used for creating DIMS project
Git repositories contains the following files and directories:

../cookiecutter/
├── dims-new-repo
├── dims-new-repo.yml
├── dims-private
└── README.txt

1 directory, 4 files

	The directory dims-new-repo is the templated Cookiecutter.

	The directory dims-private adds additional files by overlaying them
into the appropriate places created by the main dims-new-repo templated
Cookiecutter. It marks the repo as being non-public with warnings in
documentation and a file named DO_NOT_PUBLISH_THIS_REPO in the top level
directory to remind against publishing. It also includes hooks to ensure
proper modes on SSH private key files.

	The file dims-new-repo.yml is a template for variables that can be
used to over-ride the defaults contained in the Cookiecutter directory.

	The file README.txt is an example of how to use this Cookiecutter.

Files at this top level are not propagated to the output by cookiecutter,
only the contents of the slug directory tree rooted at
{{cookiecutter.project_slug}} will be included.

5.1.2. The dims-new-repo Cookiecutter

Going one level deeper into the Cookiecutter template directory dims-new-repo,
you will find the following files and directories:

$ tree -a cookiecutter/dims-new-repo/
cookiecutter/dims-new-repo/
├── cookiecutter.json
├── {{cookiecutter.project_slug}}
│ ├── .bumpversion.cfg
│ ├── docs
│ │ ├── build
│ │ │ └── .gitignore
│ │ ├── Makefile
│ │ └── source
│ │ ├── conf.py
│ │ ├── index.rst
│ │ ├── introduction.rst
│ │ ├── license.rst
│ │ ├── license.txt
│ │ ├── static
│ │ │ └── .gitignore
│ │ ├── templates
│ │ │ └── .gitignore
│ │ ├── UW-logo-16x16.ico
│ │ ├── UW-logo-32x32.ico
│ │ ├── UW-logo.ico
│ │ └── UW-logo.png
│ ├── README.rst
│ └── VERSION
└── hooks
 └── post_gen_project.sh

7 directories, 18 files

	The directory {{cookiecutter.project_slug}} is what is called
the slug directory, a directory that will be processed as a
template to produce a new directory with specific content based
on variable expansion. It contains all the other files, pre-configured
for use by programs like Sphinx, bumpversion, and Git.

Note

Note the name of this directory includes paired curly braces ({{ and }})
that tell Jinja to substitute the value of a variable into the template.
In the Ansible world, some people call these “mustaches” (tilt you head and
squint a little and you’ll get it.)

The thing inside the mustaches in this directory name is a Jinja
dictionary variable reference, with cookiecutter being the top level
dictionary name and project_slug being the key to an entry in the
dictionary. You will see this variable name below in the cookiecutter.json
default file and dims-new-repo.yml configuration file.

The curly brace characters ({}) are also Unix shell metacharacters
used for advanced filename globbing [http://tldp.org/LDP/GNU-Linux-Tools-Summary/html/x11655.htm], so you may need to escape them
using '' or \ on a shell command line “remove the magic.” For
example, if you cd into the dims-new-repo directory, type ls {
and then press TAB for file name completion, you will see the
following:

$ ls \{\{cookiecutter.project_slug\}\}/

	The file cookiecutter.json is the set of defaults in JSON
format. Templated files in the slug directory will be substituted
from these variables. If desired, cookiecutter will use these
to produce prompts that you can fill in with specifics at run time.

	The directory hooks is holds scripts that are used for pre-
and post-processing of the template output directory. (You may not
need to pay any attention to this directory.)

5.1.2.1. Project Slug Directory

Path: $GIT/ansible-dims-playbooks/files/cookiecutter/dims-new-repo/{{ cookiecutter.project_slug }}

Every Cookiecutter includes a directory with a name in the format of
{{cookiecutter.project_slug}}. This is how the cookiecutter program
knows where to start templating. Everything outside of this directory is
ignored in the creation of the new project. The directory hierarchy of this
directory will be used to make the directory hierarchy of the new project. The
user can populate the {{cookiecutter.project_slug}} directory with any
subdirectory structure and any files they will need to instantiate templated
versions of their project. Any files in this directory can similarly use
variables of the same format as the slug directory. These variables must be
defined by either defaults or a configuration file or an undefined variable
error will occur.

Look back at the example cookiecutter.json file. For that Cookiecutter,
a new repo with the project name DIMS Test Repo would be found in a
directory called dims-test-repo (this is the {{cookiecutter.project_name}}
to {{cookiecutter.project_slug}} conversion).

Look back at the tree -a output. For that cookiecutter, a new
directory would have a docs/ subdirectory, with its own subdirectories
and files, a .bumpversion.cfg file, and a
VERSION file. Any time this cookiecutter is used, this is the hierarchy
and files the new repo directory will have.

{{cookiecutter.project_slug}}/
├── .bumpversion.cfg
├── docs
│ ├── Makefile
│ └── source
│ ├── conf.py
│ ├── index.rst
│ ├── license.rst
│ ├── license.txt
│ ├── UW-logo-16x16.ico
│ ├── UW-logo-32x32.ico
│ ├── UW-logo.ico
│ └── UW-logo.png
└── VERSION

4 directories, 10 files

	.bumpversion.cfg: used to keep track of the version in various
locations in the repo.

	VERSION: file containing current version number

	docs/:
	Makefile: used to build HTML and LaTeX documents

	source/:
	minimal doc set (index.rst and license.rst)

	.ico and .png files for branding the documents

	conf.py which configures the document theme,
section authors, project information, etc. Lots of variables
used in this file, set from cookiecutter.json values.

5.1.2.2. Template Defaults

Path: $GIT/ansible-dims-playbooks/files/cookiecutter/dims-new-repo/cookiecutter.json

Every cookiecutter has a cookiecutter.json file. This file contains
the default variable definitions for a template. When the user runs
the cookiecutter command, they can be prompted for this information.
If the user provides no information, the defaults already contained in
the .json file will be used to create the project.

The cookiecutter.json file in the dims-new-repo Cookiecutter slug
directory contains the following:

{
 "full_name": "_NAME_",
 "email": "_EMAIL_",
 "project_name": "_PROJECT_NAME_",
 "project_slug": "_PROJECT_SLUG_",
 "project_short_description": "_PROJECT_DESCRIPTION_",
 "release_date": "{% now 'utc', '%Y-%m-%d' %}",
 "project_version": "0.1.0",
 "project_copyright_name": "_COPYRIGHT_NAME_",
 "project_copyright_date": "{% now 'utc', '%Y' %}",
 "_extensions": ["jinja2_time.TimeExtension"]
}

Python commands can be used to manipulate the values of one field to
create the value of another field.

For example, you can generate the project slug from the repository
name using the following:

{

"project_name": "DIMS New Repo Boilerplate",
"project_slug": "{{ cookiecutter.project_name.lower().replace(' ', '-') }}",

}

The resulting slug would look like dims-new-repo-boilerplate.

You can also load Jinja extensions by including an array named _extensions
(shown array at the bottom of the JSON defaults file.) The variables
release_date and project_copyright_date are produced programmatically
using the Jinja2_time.TimeExtension extension. These are filled with the
current date/time as defined. You can over-ride them using the
dims-new-repo.yml YAML file adding the variables by name.

5.1.2.3. Custom Configuration File

Path: $GIT/ansible-dims-playbooks/files/cookiecutter/dims-new-repo/dims-new-repo.yml

The file dims-new-repo.yml is a configuration file that can
be passed to cookiecutter using the --config-file command
line option. It sets the dictionary default_context for
cookiecutter at runtime, over-riding the defaults from
the cookiecutter.json file.

default_context:
 full_name: "_NAME_"
 email: "_EMAIL_"
 project_name: "_PROJECT_NAME_"
 project_slug: "_PROJECT_SLUG_"
 project_short_description: "_PROJECT_DESCRIPTION_"
 project_copyright_name: "_COPYRIGHT_NAME_"

To use this file, copy the file dims-new-repo.yml and
give it a unique name to differentiate it from other configuration
files. This allows you to easily create more than one repository
directory at a time, as well as save the settings to easily repeat
the process for development and testing of the slug directory
when you need to update it. For this
example, we will use testrepo.yml for the configuration file.

$ cp dims-new-repo.yml testrepo.yml
$ vi testrepo.yml

Edit the template to customize is at necessary. It should end
up looking something like this:

$ cat testrepo.yml

default_context:
 full_name: "Dave Dittrich"
 email: "dittrich@u.washington.edu"
 project_name: "DIMS Ansible Playbooks"
 project_slug: "ansible-dims-playbooks"
 project_short_description: "Ansible Playbooks for DIMS System Configuration"
 project_copyright_name: "University of Washington"

5.1.2.4. Usage

By default, cookiecutter will generate the new directory with the
name specified by the cookiecutter.project_slug variable in
the current working directory. Provide a relative or absolute path
to another directory (e.g., $GIT, so place the new directory in
the standard DIMS repo directory) using the -o command line option.
In this example, we will let cookiecutter prompt for alternatives
to the defaults from the cookiecutter.json file:

$ cd $GIT/dims-ci-utils/cookiecutter
$ cookiecutter -o ~/ dims-new-repo/
full_name [DIMS User]: Megan Boggess
email []: mboggess@uw.edu
project_name [DIMS New Repo Boilerplate]: Test Repo
project_short_description [DIMS New Repo Boilerplate contains docs/ setup, conf.py template, .bumpversion.cfg, LICENSE file, and other resources needed for instantiating a new repo.]: This is just a test
release_date [20YY-MM-DD]: 2015-10-29
project_version [1.0.0]:
project_slug [test-repo]:
project_copyright_name [University of Washington]:
project_copyright_date [2014-2015]:
$ cd ~/test-repo
$ ls
docs VERSION
$ tree -a
.
├── .bumpversion.cfg
├── docs
│ ├── build
│ │ └── .gitignore
│ ├── Makefile
│ └── source
│ ├── conf.py
│ ├── images
│ ├── index.rst
│ ├── license.rst
│ ├── license.txt
│ ├── static
│ │ └── .gitignore
│ ├── templates
│ │ └── .gitignore
│ ├── UW-logo-16x16.ico
│ ├── UW-logo-32x32.ico
│ ├── UW-logo.ico
│ └── UW-logo.png
└── VERSION

3 directories, 14 files

The highlighted section in the above code block is the prompts for
cookiecutter.json configuring. As you can see, I answer the first five prompts,
the ones which require user input, and leave the rest blank because they don’t
require user input.

Following that, you can see the tree structure of the newly created repo
called “test-repo”. Once this is done, you can finish following repo setup
instructions found in dimsdevguide:sourcemanagement.

Alternatively, you can change your current working directory to be the location
where you want the templated directory to be created and specify the template
source using an absolute path. In this example, we also use a configuration file,
also specified with an absolute path:

$ mkdir -p /tmp/new/repo/location
$ cd /tmp/new/repo/location
$ cookiecutter --no-input \
> --config-file /home/dittrich/dims/git/dims-ci-utils/cookiecutter/testrepo.yml \
> /home/dittrich/dims/git/dims-ci-utils/cookiecutter/dims-new-repo
[+] Fix underlining in these files:
/tmp/new/repo/location/ansible-dims-playbooks/docs/source/index.rst
/tmp/new/repo/location/ansible-dims-playbooks/README.rst
$ tree
.
└── ansible-dims-playbooks
 ├── docs
 │ ├── build
 │ ├── Makefile
 │ └── source
 │ ├── conf.py
 │ ├── index.rst
 │ ├── introduction.rst
 │ ├── license.rst
 │ ├── license.txt
 │ ├── _static
 │ ├── _templates
 │ ├── UW-logo-16x16.ico
 │ ├── UW-logo-32x32.ico
 │ ├── UW-logo.ico
 │ └── UW-logo.png
 ├── README.rst
 └── VERSION

6 directories, 12 files

Note the lines that show up right after the command line
(highlighted here):

$ cookiecutter --no-input -f -o /tmp --config-file testrepo.yml dims-new-repo
[+] Fix underlining in these files:
/tmp/ansible-dims-playbooks/docs/source/index.rst
/tmp/ansible-dims-playbooks/README.rst

ReStructureText (RST) files must have section underlines that are
exactly the same length as the text for the section. Since the templated
output length is not known when the template is written, it is impossible
to correctly guess 100% of the time how many underline characters are
needed. This could be handled with post-processing using awk, perl,
etc., or it can just be called out by identifying a fixed string. The latter
is what this Cookiecutter uses.

To produce one of these warning messages, simply place a line containing
the string FIX_UNDERLINE in the template file, as shown here:

.. {{ cookiecutter.project_slug }} documentation master file, created by
 cookiecutter on {{ cookiecutter.release_date }}.
 You can adapt this file completely to your liking, but it should at least
 contain the root `toctree` directive.

{{ cookiecutter.project_name }} v |release|
.. FIX_UNDERLINE

This document (version |release|) describes the
{{ cookiecutter.project_name }} (``{{ cookiecutter.project_slug }}``
for short) repository contents.

.. toctree::
 :maxdepth: 3
 :numbered:
 :caption: Contents:

 introduction
 license

.. sectionauthor:: {{ cookiecutter.full_name }} {{ cookiecutter.email }}

.. include:: <isonum.txt>

Copyright |copy| {{ cookiecutter.project_copyright_date }} {{ cookiecutter.project_copyright_name }}. All rights reserved.

Edit these files to fix the underline before committing them to Git, as
shown here:

DIMS Ansible Playbooks v |release|
==================================

5.1.3. The dims-private Cookiecutter

If the repo is supposed to be non-public, use the same configuration file
to overlay files from the dims-private Cookiecutter onto the same output
directory as the main repo directory. It uses a symbolic link for the
cookiecutter.json file to have exactly the same defaults and using the
same configuration file ensures the same output directory and templated
values are output as appropriate.

$ cookiecutter --no-input -f -o /tmp --config-file testrepo.yml dims-private
[+] Fix underlining in these files:
/tmp/ansible-dims-playbooks/docs/source/index.rst
/tmp/ansible-dims-playbooks/README.rst

The dims-private Cookiecutter also adds a directory hooks/ and a Makefile
that installs post-checkout and post-merge hooks that Git will run
after checking out and merging branches to fix file permissions on SSH private
keys. Git has a limitation in its ability to track all Unix mode bits. It only
tracks whether the execute bit is set or not. This causes the wrong mode bits for
SSH keys that will prevent them from being used. These hooks fix this in a very
simplistic way (though it does work.)

The very first time after the repository is cloned, the hooks will not be
installed as they reside in the .git directory. Install them by typing
make at the top level of the repository:

$ make
[+] Installing .git/hooks/post-checkout
[+] Installing .git/hooks/post-merge

The hooks will be triggered when needed and you will see an added line
in the Git output:

$ git checkout master
Switched to branch 'master'
[+] Verifying private key permissions and correcting if necessary

5.2. Populating the Private Configuration Repository

Start creating your local customization repository using the cookiecutter
template discussed in the previous section. We will call this private
deployment devtest, thus creating a repository in a the directory named
$GIT/private-devtest. Here is the configuration file we will use:

$ cd $GIT
$ cat private-devtest.yml

default_context:
 full_name: "Dave Dittrich"
 email: "dittrich@u.washington.edu"
 project_name: "Deployment \"devtest\" private configuration"
 project_slug: "private-devtest"
 project_short_description: "Ansible playbooks private content for \"devtest\" deployment"
 project_copyright_name: "University of Washington"

First, generate the new repository from the dims-new-repo template, followed by adding
in the files from the dims-private template.

$ cookiecutter --no-input -f -o . --config-file private-devtest.yml $GIT/dims-ci-utils/cookiecutter/dims-new-repo
[+] Fix underlining in these files:
./private-devtest/docs/source/index.rst
./private-devtest/README.rst
$ cookiecutter --no-input -f -o . --config-file private-devtest.yml $GIT/dims-ci-utils/cookiecutter/dims-private

Note

Be sure to edit the two documents that are mentioned above right now to fix the
headings, and possibly to change the documentation in the README.rst file
to reference the actual location of the private GIT repository.

You now have a directory ready to be turned into a Git repository with
all of the requisite files for bumpversion version number tracking,
Sphinx documentation, and hooks for ensuring proper permissions on SSH
private key files.

 $ tree -a private-devtest
 private-devtest
 ├── .bumpversion.cfg
 ├── docs
 │ ├── .gitignore
 │ ├── Makefile
 │ └── source
 │ ├── conf.py
 │ ├── index.rst
 │ ├── introduction.rst
 │ ├── license.rst
 │ ├── license.txt
 │ ├── _static
 │ │ └── .gitignore
 │ ├── _templates
 │ │ └── .gitignore
 │ ├── UW-logo-16x16.ico
 │ ├── UW-logo-32x32.ico
 │ ├── UW-logo.ico
 │ └── UW-logo.png
 ├── DO_NOT_PUBLISH_THIS_REPO
 ├── hooks
 │ ├── post-checkout
 │ └── post-merge
 ├── Makefile
 ├── README.rst
 └── VERSION

 5 directories, 20 files

..

Next, begin by creating the Ansible inventory/ directory
that will describe your deployment. Copy the group_vars,
host_vars, and inventory directory trees to the new
custom directory.

$ cp -vrp $PBR/{group_vars,host_vars,inventory} -t private-devtest
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars’ -> ‘private-devtest/group_vars’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all’ -> ‘private-devtest/group_vars/all’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/consul.yml’ -> ‘private-devtest/group_vars/all/consul.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/rsyslog.yml’ -> ‘private-devtest/group_vars/all/rsyslog.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/prisem_rpc.yml’ -> ‘private-devtest/group_vars/all/prisem_rpc.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/trident.yml’ -> ‘private-devtest/group_vars/all/trident.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/postgresql.yml’ -> ‘private-devtest/group_vars/all/postgresql.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/nginx.yml’ -> ‘private-devtest/group_vars/all/nginx.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/.dims.yml.swp’ -> ‘private-devtest/group_vars/all/.dims.yml.swp’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/networks.yml’ -> ‘private-devtest/group_vars/all/networks.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/docker.yml’ -> ‘private-devtest/group_vars/all/docker.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/dnsmasq.yml’ -> ‘private-devtest/group_vars/all/dnsmasq.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/dims.yml’ -> ‘private-devtest/group_vars/all/dims.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/swarm.yml’ -> ‘private-devtest/group_vars/all/swarm.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/squid-deb-proxy.yml’ -> ‘private-devtest/group_vars/all/squid-deb-proxy.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/vagrant.yml’ -> ‘private-devtest/group_vars/all/vagrant.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/all/go.yml’ -> ‘private-devtest/group_vars/all/go.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/vault.yml’ -> ‘private-devtest/group_vars/vault.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/group_vars/README.txt’ -> ‘private-devtest/group_vars/README.txt’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars’ -> ‘private-devtest/host_vars’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/purple.devops.local.yml’ -> ‘private-devtest/host_vars/purple.devops.local.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/.gitignore’ -> ‘private-devtest/host_vars/.gitignore’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/node02.devops.local.yml’ -> ‘private-devtest/host_vars/node02.devops.local.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/yellow.devops.local.yml’ -> ‘private-devtest/host_vars/yellow.devops.local.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/green.devops.local.yml’ -> ‘private-devtest/host_vars/green.devops.local.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/red.devops.local.yml’ -> ‘private-devtest/host_vars/red.devops.local.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/orange.devops.local.yml’ -> ‘private-devtest/host_vars/orange.devops.local.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/vmhost.devops.local.yml’ -> ‘private-devtest/host_vars/vmhost.devops.local.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/node03.devops.local.yml’ -> ‘private-devtest/host_vars/node03.devops.local.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/node01.devops.local.yml’ -> ‘private-devtest/host_vars/node01.devops.local.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/blue14.devops.local.yml’ -> ‘private-devtest/host_vars/blue14.devops.local.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/blue16.devops.local.yml’ -> ‘private-devtest/host_vars/blue16.devops.local.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/host_vars/hub.devops.local.yml’ -> ‘private-devtest/host_vars/hub.devops.local.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory’ -> ‘private-devtest/inventory’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/dns_zones’ -> ‘private-devtest/inventory/dns_zones’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/dns_zones/nodes.yml’ -> ‘private-devtest/inventory/dns_zones/nodes.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/trident’ -> ‘private-devtest/inventory/trident’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/trident/nodes.yml’ -> ‘private-devtest/inventory/trident/nodes.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/vagrants’ -> ‘private-devtest/inventory/vagrants’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/vagrants/nodes.yml’ -> ‘private-devtest/inventory/vagrants/nodes.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/ci-server’ -> ‘private-devtest/inventory/ci-server’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/ci-server/nodes.yml’ -> ‘private-devtest/inventory/ci-server/nodes.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/swarm’ -> ‘private-devtest/inventory/swarm’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/swarm/nodes.yml’ -> ‘private-devtest/inventory/swarm/nodes.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/private’ -> ‘private-devtest/inventory/private’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/private/nodes.yml’ -> ‘private-devtest/inventory/private/nodes.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/host_vars’ -> ‘private-devtest/inventory/host_vars’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/group_vars’ -> ‘private-devtest/inventory/group_vars’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/all.yml’ -> ‘private-devtest/inventory/all.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/nameserver’ -> ‘private-devtest/inventory/nameserver’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/nameserver/nodes.yml’ -> ‘private-devtest/inventory/nameserver/nodes.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/ansible-server’ -> ‘private-devtest/inventory/ansible-server’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/ansible-server/nodes.yml’ -> ‘private-devtest/inventory/ansible-server/nodes.yml’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/coreos’ -> ‘private-devtest/inventory/coreos’
‘/home/dittrich/dims/git/ansible-dims-playbooks/inventory/coreos/nodes.yml’ -> ‘private-devtest/inventory/coreos/nodes.yml’

The names of hosts in the inventory need to be changed to match the new
deployment name. This is necessary for mapping inventory host names to
host_vars files, as well as to generate the proper split-DNS name to IP
address mappings (among other things). In the inventory, this process can
be automated a little bit.

Start by verifying that the word local only occurs in the inventory
in places where it can be cleanly edited using a simple inline string
editing (sed style) regular expression.

$ grep -r local inventory
inventory/dns_zones/nodes.yml: 'local':
inventory/dns_zones/nodes.yml: - 'red.devops.local'
inventory/dns_zones/nodes.yml: - 'vmhost.devops.local'
inventory/dns_zones/nodes.yml: mxserver: 'vmhost.devops.local'
inventory/dns_zones/nodes.yml: local:
inventory/dns_zones/nodes.yml: 'vmhost.devops.local':
inventory/dns_zones/nodes.yml: 'red.devops.local':
inventory/dns_zones/nodes.yml: 'orange.devops.local':
inventory/dns_zones/nodes.yml: 'blue14.devops.local':
inventory/dns_zones/nodes.yml: 'blue16.devops.local':
inventory/dns_zones/nodes.yml: 'yellow.devops.local':
inventory/dns_zones/nodes.yml: 'purple.devops.local':
inventory/dns_zones/nodes.yml: 'hub.devops.local':
inventory/dns_zones/nodes.yml: 'node01.devops.local':
inventory/dns_zones/nodes.yml: 'node02.devops.local':
inventory/dns_zones/nodes.yml: 'node03.devops.local':
inventory/dns_zones/nodes.yml: 'node01.devops.local':
inventory/dns_zones/nodes.yml: 'node02.devops.local':
inventory/dns_zones/nodes.yml: 'node03.devops.local':
inventory/trident/nodes.yml: 'yellow.devops.local':
inventory/trident/nodes.yml: 'purple.devops.local':
inventory/vagrants/nodes.yml: 'local': 'eth1'
inventory/vagrants/nodes.yml: 'red.devops.local':
inventory/vagrants/nodes.yml: 'node01.devops.local':
inventory/vagrants/nodes.yml: 'node02.devops.local':
inventory/vagrants/nodes.yml: 'node03.devops.local':
inventory/vagrants/nodes.yml: 'yellow.devops.local':
inventory/vagrants/nodes.yml: 'purple.devops.local':
inventory/vagrants/nodes.yml: 'blue14.devops.local':
inventory/vagrants/nodes.yml: 'orange.devops.local':
inventory/vagrants/nodes.yml: 'red.devops.local':
inventory/vagrants/nodes.yml: 'node01.devops.local':
inventory/vagrants/nodes.yml: 'node02.devops.local':
inventory/vagrants/nodes.yml: 'node03.devops.local':
inventory/vagrants/nodes.yml: 'yellow.devops.local':
inventory/vagrants/nodes.yml: 'orange.devops.local':
inventory/vagrants/nodes.yml: 'purple.devops.local':
inventory/vagrants/nodes.yml: 'blue14.devops.local':
inventory/vagrants/nodes.yml: 'red.devops.local':
inventory/vagrants/nodes.yml: 'yellow.devops.local':
inventory/vagrants/nodes.yml: 'orange.devops.local':
inventory/ci-server/nodes.yml:# jenkins_hostname: jenkins.devops.local
inventory/ci-server/nodes.yml: jenkins_hostname: localhost
inventory/ci-server/nodes.yml: 'orange.devops.local':
inventory/swarm/nodes.yml: 'red.devops.local':
inventory/swarm/nodes.yml: 'yellow.devops.local':
inventory/swarm/nodes.yml: 'purple.devops.local':
inventory/swarm/nodes.yml: 'node01.devops.local':
inventory/swarm/nodes.yml: 'node02.devops.local':
inventory/swarm/nodes.yml: 'node03.devops.local':
inventory/swarm/nodes.yml: 'node01.devops.local':
inventory/swarm/nodes.yml: 'node02.devops.local':
inventory/swarm/nodes.yml: 'node03.devops.local':
inventory/swarm/nodes.yml: 'red.devops.local':
inventory/swarm/nodes.yml: 'yellow.devops.local':
inventory/swarm/nodes.yml: 'purple.devops.local':
inventory/private/nodes.yml: 'vmhost.devops.local':
inventory/private/nodes.yml: 'red.devops.local':
inventory/private/nodes.yml: 'orange.devops.local':
inventory/private/nodes.yml: 'blue14.devops.local':
inventory/private/nodes.yml: 'blue16.devops.local':
inventory/private/nodes.yml: 'yellow.devops.local':
inventory/private/nodes.yml: 'purple.devops.local':
inventory/private/nodes.yml: 'hub.devops.local':
inventory/private/nodes.yml: 'node01.devops.local':
inventory/private/nodes.yml: 'node02.devops.local':
inventory/private/nodes.yml: 'node03.devops.local':
inventory/all.yml: deployment: 'local'
inventory/all.yml: dims_domain: 'devops.local'
inventory/all.yml: 'vmhost.devops.local':
inventory/all.yml: 'orange.devops.local':
inventory/all.yml: 'red.devops.local':
inventory/all.yml: 'node01.devops.local':
inventory/all.yml: 'node02.devops.local':
inventory/all.yml: 'node03.devops.local':
inventory/all.yml: 'yellow.devops.local':
inventory/all.yml: 'purple.devops.local':
inventory/all.yml: 'blue14.devops.local':
inventory/nameserver/nodes.yml: 'red.devops.local':
inventory/nameserver/nodes.yml: 'vmhost.devops.local':
inventory/ansible-server/nodes.yml: 'vmhost.devops.local':
inventory/ansible-server/nodes.yml: 'orange.devops.local':
inventory/coreos/nodes.yml: iptables_rules: rules.v4.coreos-local.j2
inventory/coreos/nodes.yml: dims_environment: environment.coreos-local.j2
inventory/coreos/nodes.yml: # This is not specific to "local" deployment, but is specific to coreos
inventory/coreos/nodes.yml: 'node01.devops.local':
inventory/coreos/nodes.yml: 'node02.devops.local':
inventory/coreos/nodes.yml: 'node03.devops.local':

Doing this on a BASH command line in Linux would highlight the
word local, making it easier to see, but there is no need
to do anything other than simply substitute local with
devtest.

Caution

The kind of bulk editing that will be shown next is powerful, which means
it is also risky. Accidental damage from typos on the command line can be
very difficult to recover from. For example, if you were to blindly change
the word local to devtest in the following files, you would break
many things:

. . .
../roles/postgresql/templates/postgresql/postgresql.conf.j2:listen_addresses = 'localhost' # what IP address(es) to listen on;
../roles/postgresql/templates/postgresql/postgresql.conf.j2:log_timezone = 'localtime'
../roles/postgresql/templates/postgresql/postgresql.conf.j2:timezone = 'localtime'
. . .
../roles/postgresql/templates/postgresql/pg_hba.conf.j2:local all all trust
../roles/postgresql/templates/postgresql/pg_hba.conf.j2:local replication postgres trust
 . . .
../roles/nginx/templates/nginx/nginx.conf.j2: access_log syslog:server=localhost,facility={{ syslog_facility }},tag=nginx,severity={{ syslog_severity }};
../roles/nginx/templates/nginx/nginx.conf.j2: error_log syslog:server=localhost,facility={{ syslog_facility }},tag=nginx,severity={{ syslog_severity }};
. . .
../roles/base/files/hub.bash_completion.sh: local line h k v host=${1:-github.com} config=${HUB_CONFIG:-~/.config/hub}
../roles/base/files/hub.bash_completion.sh: local f format=$1
../roles/base/files/hub.bash_completion.sh: local i remote repo branch dir=$(__gitdir)
../roles/base/files/hub.bash_completion.sh: local i remote=${1:-origin} dir=$(__gitdir)
. . .
../roles/base/files/git-prompt.sh: local upstream=git legacy="" verbose="" name=""
../roles/base/files/git-prompt.sh: local output="$(git config -z --get-regexp '^(svn-remote\..*\.url|bash\.showupstream)$' 2>/dev/null | tr '\0\n' '\n ')"
../roles/base/files/git-prompt.sh: local -a svn_upstream
../roles/base/files/git-prompt.sh: local n_stop="${#svn_remote[@]}"
../roles/base/files/git-prompt.sh: local commits
. . .
../roles/base/files/dims_functions.sh: local retval=$1 && shift
../roles/base/files/dims_functions.sh: local script=$1
../roles/base/files/dims_functions.sh: local n=${#on_exit_items[*]}
../roles/base/files/dims_functions.sh: local _deployment=${1:-${DEPLOYMENT}}
. . .

If you are not comfortable and confident that you know what you are doing,
practice first by making a copy of the directory tree to the /tmp
directory and trying the edits there. Using diff -r against both the
original directory and the temporary directory will show you the effects
and allow you to validate they reflect what you desire before applying to
the actual files.

Use the -l option of grep to get just
the file names, save them to a file, and use that file in
an inline command substitution in a for loop to edit
the files inline using perl.

$ grep -lr local inventory > /tmp/files
$ for F in $(cat /tmp/files); do perl -pi -e 's/local/devtest/' $F; done

Next, rename all of the host_vars files to have names that match
the deployment name devtest and the changes made to the inventory
files, and carefully change the internal contents like the last
step so they match as well.

$ cd private-devtest/host_vars/
$ ls
blue14.devops.local.yml green.devops.local.yml node01.devops.local.yml
node03.devops.local.yml purple.devops.local.yml vmhost.devops.local.yml
blue16.devops.local.yml hub.devops.local.yml node02.devops.local.yml
orange.devops.local.yml red.devops.local.yml yellow.devops.local.yml
$ for F in *.yml; do mv $F $(echo $F | sed 's/local/devtest/'); done
$ ls
blue14.devops.devtest.yml green.devops.devtest.yml node01.devops.devtest.yml
node03.devops.devtest.yml purple.devops.devtest.yml vmhost.devops.devtest.yml
blue16.devops.devtest.yml hub.devops.devtest.yml node02.devops.devtest.yml
orange.devops.devtest.yml red.devops.devtest.yml yellow.devops.devtest.yml
$ grep local *
blue14.devops.devtest.yml:# File: host_vars/blue14.devops.local.yml
blue16.devops.devtest.yml:# File: host_vars/blue16.devops.local.yml
green.devops.devtest.yml:# File: host_vars/green.devops.local.yml
hub.devops.devtest.yml:# File: host_vars/hub.devops.local.yml
node01.devops.devtest.yml:# File: host_vars/node01.devops.local.yml
node02.devops.devtest.yml:# File: host_vars/node02.devops.local.yml
node03.devops.devtest.yml:# File: host_vars/node03.devops.local.yml
orange.devops.devtest.yml:# file: host_vars/orange.devops.local
orange.devops.devtest.yml:jenkins_url_external: 'http://orange.devops.local:8080'
purple.devops.devtest.yml:# File: host_vars/purple.devops.local.yml
red.devops.devtest.yml:# File: host_vars/red.devops.local.yml
vmhost.devops.devtest.yml: 'local': 'vboxnet3'
yellow.devops.devtest.yml:# File: host_vars/yellow.devops.local.yml
$ grep -l local *.yml > /tmp/files
$ for F in $(cat /tmp/files); do perl -pi -e 's/local/devtest/' $F; done
$ cd -
/home/dittrich/dims/git

6. Testing System Components

The DIMS project has adopted use of the Bats: Bash Automated Testing System [https://github.com/sstephenson/bats#bats-bash-automated-testing-system]
(known as bats) to perform simple tests in a manner that produces
parsable output following the Test Anything Protocol [http://testanything.org] (TAP).

Bats is a TAP Producer, whose output can be processed by one of
many TAP Consumers [http://testanything.org/consumers.html], including the Python program tap.py [https://pypi.python.org/pypi/tap.py].

6.1. Organizing Bats Tests

This section covers the basic functionality of bats and
how it can be used to produce test results.

We should start by looking at the --help output for bats to understand
how it works in general.

$ bats -h
Bats 0.4.0
Usage: bats [-c] [-p | -t] <test> [<test> ...]

 <test> is the path to a Bats test file, or the path to a directory
 containing Bats test files.

 -c, --count Count the number of test cases without running any tests
 -h, --help Display this help message
 -p, --pretty Show results in pretty format (default for terminals)
 -t, --tap Show results in TAP format
 -v, --version Display the version number

 For more information, see https://github.com/sstephenson/bats

As is seen, multiple tests – files that end in .bats – can be passed
as a series of arguments on the command line. This can be either individual
arguments, or a wildcard shell expression like *.bats.

If the argument evaluates to being a directory, bats will look through that
directory and run all files in it that end in .bats.

Caution

As we will see, bats has some limitations that do not allow mixing file
arguments and directory arguments. You can either give bats one or more
files, or you can give it one or more directories, but you cannot mix
files and directories.

To see how this works, let us start with a simple example that has tests that
do nothing other than report success with their name. In this case, test
a.bats looks like this:

#!/usr/bin/env bats

@test "a" {
 [[true]]
}

We produce three such tests, each in their own directory, following this
organizational structure:

$ tree tests
tests
├── a
│ └── a.bats
└── b
 ├── b.bats
 └── c
 └── c.bats

3 directories, 3 files

Since the hierarchy shown here does not contain tests itself, but rather holds
directories that in turn hold tests, how does we run the tests?

Running bats with an argument that includes the highest level of the
directory hierarchy does not work to run any of the tests in subordinate
directories:

$ bats tests

0 tests, 0 failures

Running bats and passing a directory that contains files with
names that end in .bats runs all of the tests in that
directory.

$ bats tests/a
 ✓ a

1 test, 0 failures

If we specify the next directory tests/b, then bats
will run the tests in that directory that end in .bats,
but will not traverse down into the tests/b/c/ directory.

$ bats tests/b
 ✓ b

1 test, 0 failures

To run the tests in the lowest directory, that specific
directory must be given on the command line:

$ bats tests/b/c
 ✓ c

1 test, 0 failures

Attempting to pass all of the directories along as arguments
does not work, as seen here:

$ bats tests/a /tests/b tests/b/c
bats: /tmp/b does not exist
/usr/local/Cellar/bats/0.4.0/libexec/bats-exec-suite: line 20: let: count+=: syntax error: operand expected (error token is "+=")

This means that we can separate tests into subdirectories, to
any depth or directory organizational structure, as needed,
but tests must be run on a per-directory basis, or identified
and run as a group of tests passed as file arguments using
wildcards:

$ bats tests/a/*.bats tests/b/*.bats tests/b/c/*.bats
 ✓ a
 ✓ b
 ✓ c

3 tests, 0 failures

Because specifying wildcards in this way, with arbitrary
depths in the hierarchy of directories below tests/
is too hard to predict, use a program like find
to identify tests by name (possibly using wildcards or
grep filters for names), passing the results on to
a program like xargs to invoke bats on each
identified test:

$ find tests -name '*.bats' | xargs bats
1..3
ok 1 a
ok 2 b
ok 3 c

Note

Note that the output changed from the examples above, which include the
arrow (“✓”) character, to now include the word ok instead in TAP
format. This is because the default for terminals (i.e., a program that is
using a TTY device, not a simple file handle to something like a pipe). To
get the pretty-print output, add the -p flag, like this:

$ find tests -name '*.bats' | xargs bats -p
 ✓ a
 ✓ b
 ✓ c

3 tests, 0 failures

A more realistic test is seen here. This file, pycharm.bats, is the product
of a Jinja template that is installed by Ansible along with the PyCharm [https://www.jetbrains.com/pycharm/] Community
Edition Python IDE.

#!/usr/bin/env bats
#
Ansible managed: /home/dittrich/dims/git/ansible-playbooks/v2/roles/pycharm/templates/../templates/tests/./system/pycharm.bats.j2 modified on 2016-09-15 20:14:38 by dittrich on dimsdemo1 [ansible-playbooks v1.3.33]
#
vim: set ts=4 sw=4 tw=0 et :

load helpers

@test "[S][EV] Pycharm is not an installed apt package." {
 ! is_installed_package pycharm
}

@test "[S][EV] Pycharm Community edition is installed in /opt" {
 results=$(ls -d /opt/pycharm-community-* | wc -l)
 echo $results >&2
 [$results -ne 0]
}

@test "[S][EV] \"pycharm\" is /opt/dims/bin/pycharm" {
 assert "pycharm is /opt/dims/bin/pycharm" type pycharm
}

@test "[S][EV] /opt/dims/bin/pycharm is a symbolic link to installed pycharm" {
 [-L /opt/dims/bin/pycharm]
}

@test "[S][EV] Pycharm Community installed version number is 2016.2.3" {
 assert "2016.2.3" bash -c "file $(which pycharm) | sed 's|\(.*/pycharm-community-\)\([^/]*\)\(/.*$\)|\2|'"
}

$ test.runner --level system --match pycharm
[+] Running test system/pycharm
 ✓ [S][EV] Pycharm is not an installed apt package.
 ✓ [S][EV] Pycharm Community edition is installed in /opt
 ✓ [S][EV] "pycharm" is /opt/dims/bin/pycharm
 ✓ [S][EV] /opt/dims/bin/pycharm is a symbolic link to installed pycharm
 ✓ [S][EV] Pycharm Community installed version number is 2016.2.3

5 tests, 0 failures

6.2. Organizing tests in DIMS Ansible Playbooks Roles

The DIMS project uses a more elaborate version of the above example, which
uses a drop-in model that allows any Ansible role to drop its own
tests into a structured hierarchy that supports fine-grained test
execution control. This drop-in model is implemented by the
tasks/bats-tests.yml task playbook.

To illustrate how this works, we start with an empty test directory:

$ tree /opt/dims/tests.d
/opt/dims/tests.d

0 directories, 0 files

The base role has the largest number of tests, since it does
the most complex foundational setup work for DIMS computer systems.
The template/tests directory is filled with Jinja template
Bash scripts and/or bats tests, in a hierarchy that includes
subdirectories for each of the defined test levels from Section
Test levels [https://dims-tp.readthedocs.io/en/latest/testidentification.html#testlevels] of dimstp.

$ tree roles/base/templates/tests
roles/base/templates/tests
├── component
├── helpers.bash.j2
├── integration
│ ├── dims-coreos.bats.j2
│ └── proxy.bats.j2
├── README.txt
├── rsyslog.bats
├── system
│ ├── deprecated.bats.j2
│ ├── dims-accounts.bats.j2
│ ├── dims-accounts-sudo.bats.j2
│ ├── dims-base.bats.j2
│ ├── dims-coreos.bats.j2
│ ├── dns.bats.j2
│ ├── iptables-sudo.bats.j2
│ ├── reboot.bats.j2
│ └── updates.bats.j2
├── unit
│ ├── ansible-yaml.bats.j2
│ ├── bats-helpers.bats.j2
│ ├── dims-filters.bats.j2
│ └── dims_functions.bats.j2
└── user
 ├── user-account.bats.j2
 └── user-deprecated.bats.j2

5 directories, 20 files

After running just the base role, the highlighted subdirectories that
correspond to each of the test levels are now present in the
/opt/dims/tests.d/ directory:

 $ tree /opt/dims/tests.d/
 /opt/dims/tests.d
 ├── component
 │ └── helpers.bash -> /opt/dims/tests.d/helpers.bash
 ├── helpers.bash
 ├── integration
 │ ├── dims-coreos.bats
 │ ├── helpers.bash -> /opt/dims/tests.d/helpers.bash
 │ └── proxy.bats
 ├── system
 │ ├── deprecated.bats
 │ ├── dims-accounts.bats
 │ ├── dims-accounts-sudo.bats
 │ ├── dims-base.bats
 │ ├── dims-ci-utils.bats
 │ ├── dims-coreos.bats
 │ ├── dns.bats
 │ ├── helpers.bash -> /opt/dims/tests.d/helpers.bash
 │ ├── iptables-sudo.bats
 │ ├── reboot.bats
 │ └── updates.bats
 ├── unit
 │ ├── ansible-yaml.bats
 │ ├── bats-helpers.bats
 │ ├── dims-filters.bats
 │ ├── dims_functions.bats
 │ └── helpers.bash -> /opt/dims/tests.d/helpers.bash
 └── user
 ├── helpers.bash -> /opt/dims/tests.d/helpers.bash
 ├── user-account.bats
 └── user-deprecated.bats

 5 directories, 24 files

Here is the directory structure for tests in the docker role:

/docker/templates/tests
└── system
 ├── docker-core.bats.j2
 └── docker-network.bats.j2

1 directories, 2 files

If we now run the docker role, it will drop these files into
the system subdirectory. There are now 3 additional files (see emphasized
lines for the new additions):

 $ tree /opt/dims/tests.d
 /opt/dims/tests.d
 ├── component
 │ └── helpers.bash -> /opt/dims/tests.d/helpers.bash
 ├── helpers.bash
 ├── integration
 │ ├── dims-coreos.bats
 │ ├── helpers.bash -> /opt/dims/tests.d/helpers.bash
 │ └── proxy.bats
 ├── system
 │ ├── deprecated.bats
 │ ├── dims-accounts.bats
 │ ├── dims-accounts-sudo.bats
 │ ├── dims-base.bats
 │ ├── dims-ci-utils.bats
 │ ├── dims-coreos.bats
 │ ├── dns.bats
 │ ├── docker-core.bats
 │ ├── docker-network.bats
 │ ├── helpers.bash -> /opt/dims/tests.d/helpers.bash
 │ ├── iptables-sudo.bats
 │ ├── reboot.bats
 │ └── updates.bats
 ├── unit
 │ ├── ansible-yaml.bats
 │ ├── bats-helpers.bats
 │ ├── dims-filters.bats
 │ ├── dims_functions.bats
 │ └── helpers.bash -> /opt/dims/tests.d/helpers.bash
 └── user
 ├── helpers.bash -> /opt/dims/tests.d/helpers.bash
 ├── user-account.bats
 └── user-deprecated.bats

 5 directories, 26 files

You will see the tests being installed during ansible-playbook runs, for
example (from the base role):

. . .

TASK [base : Identify bats test templates] ************************************
Sunday 03 September 2017 13:05:45 -0700 (0:00:05.496) 0:03:48.846 ******
ok: [dimsdemo1.devops.develop -> 127.0.0.1]

TASK [base : Initialize bats_test_templates list] *****************************
Sunday 03 September 2017 13:05:46 -0700 (0:00:01.152) 0:03:49.998 ******
ok: [dimsdemo1.devops.develop]

TASK [base : Set fact with list of test templates] ****************************
Sunday 03 September 2017 13:05:47 -0700 (0:00:01.047) 0:03:51.046 ******
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/system/dims-coreos.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/system/dims-base.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/system/dims-accounts-sudo.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/system/updates.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/system/reboot.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/system/dns.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/system/deprecated.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/system/dims-accounts.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/system/iptables-sudo.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/integration/dims-coreos.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/integration/proxy.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/user/user-account.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/user/user-deprecated.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/unit/bats-helpers.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/unit/dims-filters.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/unit/ansible-yaml.bats.j2)
ok: [dimsdemo1.devops.develop] => (item=/home/dittrich/dims/git/ansible-dims-playbooks/roles/base/templates/tests/unit/dims_functions.bats.j2)

TASK [base : debug] ***
Sunday 03 September 2017 13:06:04 -0700 (0:00:17.532) 0:04:08.578 ******
ok: [dimsdemo1.devops.develop] => {
 "bats_test_templates": [
 "system/dims-coreos.bats.j2",
 "system/dims-base.bats.j2",
 "system/dims-accounts-sudo.bats.j2",
 "system/updates.bats.j2",
 "system/reboot.bats.j2",
 "system/dns.bats.j2",
 "system/deprecated.bats.j2",
 "system/dims-accounts.bats.j2",
 "system/iptables-sudo.bats.j2",
 "integration/dims-coreos.bats.j2",
 "integration/proxy.bats.j2",
 "user/user-account.bats.j2",
 "user/user-deprecated.bats.j2",
 "unit/bats-helpers.bats.j2",
 "unit/dims-filters.bats.j2",
 "unit/ansible-yaml.bats.j2",
 "unit/dims_functions.bats.j2"
]
}

TASK [base : Make defined bats tests present] *********************************
Sunday 03 September 2017 13:06:05 -0700 (0:00:01.053) 0:04:09.631 ******
changed: [dimsdemo1.devops.develop] => (item=system/dims-coreos.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=system/dims-base.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=system/dims-accounts-sudo.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=system/updates.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=system/reboot.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=system/dns.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=system/deprecated.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=system/dims-accounts.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=system/iptables-sudo.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=integration/dims-coreos.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=integration/proxy.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=user/user-account.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=user/user-deprecated.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=unit/bats-helpers.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=unit/dims-filters.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=unit/ansible-yaml.bats.j2)
changed: [dimsdemo1.devops.develop] => (item=unit/dims_functions.bats.j2)

. . .

Tests can now be run by level, multiple levels at the same time,
or more fine-grained filtering can be performed using find
and grep filtering.

6.3. Running Bats Tests Using the DIMS test.runner

A test runner script (creatively named test.runner) is available to This
script builds on and extends the capabilities of scipts like test_runner.sh [https://github.com/docker/swarm/blob/master/test/integration/test_runner.sh]
from the GitHub docker/swarm/test/integration [https://github.com/docker/swarm/blob/master/test/integration] repository.

$ base/templates/tests/test.runner --help
usage: test.runner [options] args
flags:
 -d,--[no]debug: enable debug mode (default: false)
 -E,--exclude: tests to exclude (default: '')
 -L,--level: test level (default: 'system')
 -M,--match: regex to match tests (default: '.*')
 -l,--[no]list-tests: list available tests (default: false)
 -t,--[no]tap: output tap format (default: false)
 -S,--[no]sudo-tests: perform sudo tests (default: false)
 -T,--[no]terse: print only failed tests (default: false)
 -D,--testdir: test directory (default: '/opt/dims/tests.d/')
 -u,--[no]usage: print usage information (default: false)
 -v,--[no]verbose: be verbose (default: false)
 -h,--help: show this help (default: false)

To see a list of all tests under a given test level, specify the level using
the --level option. (The default is system). The following example
shows a list of all the available system level tests:

$ test.runner --list-tests
system/dims-base.bats
system/pycharm.bats
system/dns.bats
system/docker.bats
system/dims-accounts.bats
system/dims-ci-utils.bats
system/deprecated.bats
system/coreos-prereqs.bats
system/user/vpn.bats
system/proxy.bats

To see all tests under any level, use * or a space-separated list
of levels:

$ test.runner --level "*" --list-tests
system/dims-base.bats
system/pycharm.bats
system/dns.bats
system/docker.bats
system/dims-accounts.bats
system/dims-ci-utils.bats
system/deprecated.bats
system/coreos-prereqs.bats
system/user/vpn.bats
system/proxy.bats
unit/dims-filters.bats
unit/bats-helpers.bats

Certain tests that require elevated privileges (i.e., use of sudo)
are handled separately. To list or run these tests, use the --sudo-tests
option:

$ test.runner --list-tests --sudo-tests
system/dims-accounts-sudo.bats
system/iptables-sudo.bats

A subset of the tests can be selected using the --match option.
To see all tests that include the word dims, do:

$ test.runner --level system --match dims --list-tests
system/dims-base.bats
system/dims-accounts.bats
system/dims-ci-utils.bats

The --match option takes a an egrep expression to filter
the selected tests, so multiple substrings (or regular expressions)
can be passed with pipe separation:

$ test.runner --level system --match "dims|coreos" --list-tests
system/dims-base.bats
system/dims-accounts.bats
system/dims-ci-utils.bats
system/coreos-prereqs.bats

There is a similar option --exclude that filters out tests by
egrep regular expression. Two of the four selected tests are
then excluded like this:

$ test.runner --level system --match "dims|coreos" --exclude "base|utils" --list-tests
system/dims-accounts.bats
system/coreos-prereqs.bats

6.4. Controlling the Amount and Type of Output

The default for the bats program is to use --pretty formatting when
standard output is being sent to a terminal. This allows the use of colors and
characters like ✓ and ✗ to be used for passed and failed tests (respectively).

$ bats --help

[No write since last change]
Bats 0.4.0
Usage: bats [-c] [-p | -t] <test> [<test> ...]

 <test> is the path to a Bats test file, or the path to a directory
 containing Bats test files.

 -c, --count Count the number of test cases without running any tests
 -h, --help Display this help message
 -p, --pretty Show results in pretty format (default for terminals)
 -t, --tap Show results in TAP format
 -v, --version Display the version number

 For more information, see https://github.com/sstephenson/bats

Press ENTER or type command to continue

We will limit the tests in this example to just those for pycharm
and coreos in their names. These are relatively small tests, so it is
easier to see the effects of the options we will be examining.

$ test.runner --match "pycharm|coreos" --list-tests
system/pycharm.bats
system/coreos-prereqs.bats

The DIMS test.runner script follows this same default output
style of bats, so just running the two tests above gives
the following output:

$ test.runner --match "pycharm|coreos"
[+] Running test system/pycharm.bats
 ✓ [S][EV] Pycharm is not an installed apt package.
 ✓ [S][EV] Pycharm Community edition is installed in /opt
 ✓ [S][EV] "pycharm" is /opt/dims/bin/pycharm
 ✓ [S][EV] /opt/dims/bin/pycharm is a symbolic link to installed pycharm
 ✓ [S][EV] Pycharm Community installed version number is 2016.2.2

5 tests, 0 failures
[+] Running test system/coreos-prereqs.bats
 ✓ [S][EV] consul service is running
 ✓ [S][EV] consul is /opt/dims/bin/consul
 ✓ [S][EV] 10.142.29.116 is member of consul cluster
 ✓ [S][EV] 10.142.29.117 is member of consul cluster
 ✓ [S][EV] 10.142.29.120 is member of consul cluster
 ✓ [S][EV] docker overlay network "ingress" exists
 ✗ [S][EV] docker overlay network "app.develop" exists
 (from function `assert' in file system/helpers.bash, line 18,
 in test file system/coreos-prereqs.bats, line 41)
 `assert 'app.develop' bash -c "docker network ls --filter driver=overlay | awk '/app.develop/ { print \$2; }'"' failed
 expected: "app.develop"
 actual: ""
 ✗ [S][EV] docker overlay network "data.develop" exists
 (from function `assert' in file system/helpers.bash, line 18,
 in test file system/coreos-prereqs.bats, line 45)
 `assert 'data.develop' bash -c "docker network ls --filter driver=overlay | awk '/data.develop/ { print \$2; }'"' failed
 expected: "data.develop"
 actual: ""

8 tests, 2 failures

To get TAP compliant output, add the --tap (or
-t) option:

$ test.runner --match "pycharm|coreos" --tap
[+] Running test system/pycharm.bats
1..5
ok 1 [S][EV] Pycharm is not an installed apt package.
ok 2 [S][EV] Pycharm Community edition is installed in /opt
ok 3 [S][EV] "pycharm" is /opt/dims/bin/pycharm
ok 4 [S][EV] /opt/dims/bin/pycharm is a symbolic link to installed pycharm
ok 5 [S][EV] Pycharm Community installed version number is 2016.2.2
[+] Running test system/coreos-prereqs.bats
1..8
ok 1 [S][EV] consul service is running
ok 2 [S][EV] consul is /opt/dims/bin/consul
ok 3 [S][EV] 10.142.29.116 is member of consul cluster
ok 4 [S][EV] 10.142.29.117 is member of consul cluster
ok 5 [S][EV] 10.142.29.120 is member of consul cluster
ok 6 [S][EV] docker overlay network "ingress" exists
not ok 7 [S][EV] docker overlay network "app.develop" exists
(from function `assert' in file system/helpers.bash, line 18,
in test file system/coreos-prereqs.bats, line 41)
`assert 'app.develop' bash -c "docker network ls --filter driver=overlay | awk '/app.develop/ { print \$2; }'"' failed
expected: "app.develop"
actual: ""
not ok 8 [S][EV] docker overlay network "data.develop" exists
(from function `assert' in file system/helpers.bash, line 18,
in test file system/coreos-prereqs.bats, line 45)
`assert 'data.develop' bash -c "docker network ls --filter driver=overlay | awk '/data.develop/ { print \$2; }'"' failed
expected: "data.develop"
actual: ""

When running a large suite of tests, the total number of individual tests
can get very large (along with the resulting output). To increase the signal
to noise ratio, you can use the --terse option to filter out all of
the successful tests, just focusing on the remaining failed tests. This is
handy for things like validation of code changes and regression testing
of newly provisioned Vagrant virtual machines.

$ test.runner --match "pycharm|coreos" --terse
[+] Running test system/pycharm.bats

5 tests, 0 failures
[+] Running test system/coreos-prereqs.bats
 ✗ [S][EV] docker overlay network "app.develop" exists
 (from function `assert' in file system/helpers.bash, line 18,
 in test file system/coreos-prereqs.bats, line 41)
 `assert 'app.develop' bash -c "docker network ls --filter driver=overlay | awk '/app.develop/ { print \$2; }'"' failed
 expected: "app.develop"
 actual: ""
 ✗ [S][EV] docker overlay network "data.develop" exists
 (from function `assert' in file system/helpers.bash, line 18,
 in test file system/coreos-prereqs.bats, line 45)
 `assert 'data.develop' bash -c "docker network ls --filter driver=overlay | awk '/data.develop/ { print \$2; }'"' failed
 expected: "data.develop"
 actual: ""

8 tests, 2 failures

Here is the same examples as above, but this time using the TAP compliant
output:

$ test.runner --match "pycharm|coreos" --tap
[+] Running test system/pycharm.bats
1..5
ok 1 [S][EV] Pycharm is not an installed apt package.
ok 2 [S][EV] Pycharm Community edition is installed in /opt
ok 3 [S][EV] "pycharm" is /opt/dims/bin/pycharm
ok 4 [S][EV] /opt/dims/bin/pycharm is a symbolic link to installed pycharm
ok 5 [S][EV] Pycharm Community installed version number is 2016.2.2
[+] Running test system/coreos-prereqs.bats
1..8
ok 1 [S][EV] consul service is running
ok 2 [S][EV] consul is /opt/dims/bin/consul
ok 3 [S][EV] 10.142.29.116 is member of consul cluster
ok 4 [S][EV] 10.142.29.117 is member of consul cluster
ok 5 [S][EV] 10.142.29.120 is member of consul cluster
ok 6 [S][EV] docker overlay network "ingress" exists
not ok 7 [S][EV] docker overlay network "app.develop" exists
(from function `assert' in file system/helpers.bash, line 18,
in test file system/coreos-prereqs.bats, line 41)
`assert 'app.develop' bash -c "docker network ls --filter driver=overlay | awk '/app.develop/ { print \$2; }'"' failed
expected: "app.develop"
actual: ""
not ok 8 [S][EV] docker overlay network "data.develop" exists
(from function `assert' in file system/helpers.bash, line 18,
in test file system/coreos-prereqs.bats, line 45)
`assert 'data.develop' bash -c "docker network ls --filter driver=overlay | awk '/data.develop/ { print \$2; }'"' failed
expected: "data.develop"
actual: ""

$ test.runner --match "pycharm|coreos" --tap --terse
[+] Running test system/pycharm.bats
1..5
[+] Running test system/coreos-prereqs.bats
1..8
not ok 7 [S][EV] docker overlay network "app.develop" exists
(from function `assert' in file system/helpers.bash, line 18,
in test file system/coreos-prereqs.bats, line 41)
`assert 'app.develop' bash -c "docker network ls --filter driver=overlay | awk '/app.develop/ { print \$2; }'"' failed
expected: "app.develop"
actual: ""
not ok 8 [S][EV] docker overlay network "data.develop" exists
(from function `assert' in file system/helpers.bash, line 18,
in test file system/coreos-prereqs.bats, line 45)
`assert 'data.develop' bash -c "docker network ls --filter driver=overlay | awk '/data.develop/ { print \$2; }'"' failed
expected: "data.develop"
actual: ""

Figure Using test.runner in Vagrant Provisioning shows the output of
test.runner --level system --terse at the completion of provisioning
of two Vagrants. The one on the left has passed all tests, while the Vagrant
on the right has failed two tests. Note that the error result has been
passed on to make, which reports the failure and passes it along
to the shell (as seen by the red $ prompt on the right, indicating
a non-zero return value).

[image: Using ``test.runner`` in Vagrant Provisioning]
Using test.runner in Vagrant Provisioning

6.4.1. Using DIMS Bash functions in Bats tests

The DIMS project Bash shells take advantage of a library of functions
that are installed by the base role into $DIMS/bin/dims_functions.sh.

Bats has a pre- and post-test hooking feature that is very tersely documented
(see setup and teardown: Pre- and post-test hooks [https://github.com/sstephenson/bats#setup-and-teardown-pre–and-post-test-hooks]):

You can define special setup and teardown functions, which run before and
after each test case, respectively. Use these to load fixtures, set up your
environment, and clean up when you’re done.

What this means is that if you define a setup() function, it will be run
before every @test, and if you define a teardown() function, it will
be run after every @test.

We can take advantage of this to source the common DIMS dims_functions.sh
library, making any defined functions in that file available to be called
directly in a @TEST the same way it would be called in a Bash script.

An example of how this works can be seen in the unit tests for the
dims_functions.sh library itself. (We are only showing a sub-set of the
tests.)

	Lines 9-16 perform the setup() actions (e.g., creating directories
used in a later test.)

	Lines 18-21 perform the teardown() actions.

	All of the remaining highlighted lines use functions defined in dims_functions.sh
just as if sourced in a normal Bash script.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

	#!/usr/bin/env bats
#
{{ ansible_managed }} [ansible-playbooks v{{ ansibleplaybooks_version }}]
#
vim: set ts=4 sw=4 tw=0 et :

load helpers

function setup() {
 source $DIMS/bin/dims_functions.sh
 touch --reference=/bin/ls /tmp/bats.ls-marker
 for name in A B; do
 mkdir -p /tmp/bats.tmp/${name}.dir
 touch /tmp/bats.tmp/${name}.txt
 done
}

function teardown() {
 rm -f /tmp/bats.ls-marker
 rm -rf /tmp/bats.tmp
}

@test "[U][EV] say() strips whitespace properly" {
 assert '[+] unce, tice, fee times a madie...' say 'unce, tice, fee times a madie... '
}

@test "[U][EV] say_raw() does not strip whitespace" {
 assert '[+] unce, tice, fee times a madie... ' say_raw 'unce, tice, fee times a madie... '
}

This test needs to directly source dims_functions in bash command string because of multi-command structure.
@test "[U][EV] add_on_exit() saves and get_on_exit() returns content properly" {
 assert "'([0]=\"cat /dev/null\")'" bash -c ". $DIMS/bin/dims_functions.sh; touch /tmp/foo; add_on_exit cat /dev/null; get_on_exit"
}

@test "[U][EV] get_hostname() returns hostname" {
 assert "$(hostname)" get_hostname
}

@test "[U][EV] is_fqdn host.category.deployment returns success" {
 is_fqdn host.category.deployment
}

@test "[U][EV] is_fqdn host.subdomain.category.deployment returns success" {
 is_fqdn host.subdomain.category.deployment
}

@test "[U][EV] is_fqdn 12345 returns failure" {
 ! is_fqdn 12345
}

@test "[U][EV] parse_fqdn host.category.deployment returns 'host category deployment'" {
 assert "host category deployment" parse_fqdn host.category.deployment
}

@test "[U][EV] get_deployment_from_fqdn host.category.deployment returns 'deployment'" {
 assert "deployment" get_deployment_from_fqdn host.category.deployment
}

@test "[U][EV] get_category_from_fqdn host.category.deployment returns 'category'" {
 assert "category" get_category_from_fqdn host.category.deployment
}

@test "[U][EV] get_hostname_from_fqdn host.category.deployment returns 'host'" {
 assert "host" get_hostname_from_fqdn host.category.deployment
}

Attention

Note that there is one test, shown on lines 31 through 34, that has multiple
commands separated by semicolons. That compound command sequence needs to be
run as a single command string using bash -c, which means it is going
to be run as a new sub-process to the assert command line. Sourcing
the functions in the outer shell does not make them available in the sub-process,
so that command string must itself also source the dims_functions.sh library
in order to have the functions defined at that level.

Another place that a bats unit test is employed is the python-virtualenv
role, which loads a number of pip packages and utilities used for DIMS
development. This build process is quite extensive and produces thousands of
lines of output that may be necessary to debug a problem in the build process,
but create a huge amount of noise if no needed. To avoid spewing out so
much noisy text, it is only shown if -v (or higher verbosity level)
is selected.

Here is the output when a failure occurs without verbosity:

$ run.playbook --tags python-virtualenv
. . .
TASK [python-virtualenv : Run dimsenv.build script] ***************************
Tuesday 01 August 2017 19:00:10 -0700 (0:00:02.416) 0:01:13.310 ********
changed: [dimsdemo1.devops.develop]

TASK [python-virtualenv : Run unit test for Python virtualenv] ****************
Tuesday 01 August 2017 19:02:16 -0700 (0:02:06.294) 0:03:19.605 ********
fatal: [dimsdemo1.devops.develop]: FAILED! => {
 "changed": true,
 "cmd": [
 "/opt/dims/bin/test.runner",
 "--tap",
 "--level",
 "unit",
 "--match",
 "python-virtualenv"
],
 "delta": "0:00:00.562965",
 "end": "2017-08-01 19:02:18.579603",
 "failed": true,
 "rc": 1,
 "start": "2017-08-01 19:02:18.016638"
}

STDOUT:

[+] Running test unit/python-virtualenv
1..17
ok 1 [S][EV] Directory /opt/dims/envs/dimsenv exists
ok 2 [U][EV] Directory /opt/dims/envs/dimsenv is not empty
ok 3 [U][EV] Directories /opt/dims/envs/dimsenv/{bin,lib,share} exist
ok 4 [U][EV] Program /opt/dims/envs/dimsenv/bin/python exists
ok 5 [U][EV] Program /opt/dims/envs/dimsenv/bin/pip exists
ok 6 [U][EV] Program /opt/dims/envs/dimsenv/bin/easy_install exists
ok 7 [U][EV] Program /opt/dims/envs/dimsenv/bin/wheel exists
ok 8 [U][EV] Program /opt/dims/envs/dimsenv/bin/python-config exists
ok 9 [U][EV] Program /opt/dims/bin/virtualenvwrapper.sh exists
ok 10 [U][EV] Program /opt/dims/envs/dimsenv/bin/activate exists
ok 11 [U][EV] Program /opt/dims/envs/dimsenv/bin/logmon exists
not ok 12 [U][EV] Program /opt/dims/envs/dimsenv/bin/blueprint exists
(in test file unit/python-virtualenv.bats, line 54)
`[[-x /opt/dims/envs/dimsenv/bin/blueprint]]' failed
not ok 13 [U][EV] Program /opt/dims/envs/dimsenv/bin/dimscli exists
(in test file unit/python-virtualenv.bats, line 58)
`[[-x /opt/dims/envs/dimsenv/bin/dimscli]]' failed
not ok 14 [U][EV] Program /opt/dims/envs/dimsenv/bin/sphinx-autobuild exists
(in test file unit/python-virtualenv.bats, line 62)
`[[-x /opt/dims/envs/dimsenv/bin/sphinx-autobuild]]' failed
not ok 15 [U][EV] Program /opt/dims/envs/dimsenv/bin/ansible exists
(in test file unit/python-virtualenv.bats, line 66)
`[[-x /opt/dims/envs/dimsenv/bin/ansible]]' failed
not ok 16 [U][EV] /opt/dims/envs/dimsenv/bin/dimscli version is 0.26.0
(from function `assert' in file unit/helpers.bash, line 13,
in test file unit/python-virtualenv.bats, line 71)
`assert "dimscli 0.26.0" bash -c "/opt/dims/envs/dimsenv/bin/dimscli --version 2>&1"' failed with status 127
not ok 17 [U][EV] /opt/dims/envs/dimsenv/bin/ansible version is 2.3.1.0
(from function `assert' in file unit/helpers.bash, line 18,
in test file unit/python-virtualenv.bats, line 76)
`assert "ansible 2.3.1.0" bash -c "/opt/dims/envs/dimsenv/bin/ansible --version 2>&1 | head -n1"' failed
expected: "ansible 2.3.1.0"
actual: "bash: /opt/dims/envs/dimsenv/bin/ansible: No such file or directory"
#

PLAY RECAP **
dimsdemo1.devops.develop : ok=49 changed=7 unreachable=0 failed=1
. . .

To find out what the problem is, run the build again and add at least one -v:

 $ run.playbook -v --tags python-virtualenv
 . . .
 TASK [python-virtualenv : Run dimsenv.build script] ***************************
 Tuesday 01 August 2017 18:54:22 -0700 (0:00:02.437) 0:01:32.394 ********
 changed: [dimsdemo1.devops.develop] => {
 "changed": true,
 "cmd": [
 "bash",
 "/opt/dims/bin/dimsenv.build",
 "--verbose",
 "2>&1"
],
 "delta": "0:02:08.917329",
 "end": "2017-08-01 18:56:32.631252",
 "rc": 0,
 "start": "2017-08-01 18:54:23.713923"
 }

 STDOUT:

 [+] Starting /opt/dims/bin/dimsenv.build
 [+] Unpacking /opt/dims/src/Python-2.7.13.tgz archive
 [+] Configuring/compiling Python-2.7.13
 checking build system type... x86_64-pc-linux-gnu
 checking host system type... x86_64-pc-linux-gnu
 . . .
 [10129 lines deleted!]
 . . .
 virtualenvwrapper.user_scripts creating /opt/dims/envs/dimsenv/bin/get_env_details
 Retrying (Retry(total=4, connect=None, read=None, redirect=None)) after connection broken by 'ProxyError('Cannot connect to proxy.', error('Tunnel connection failed: 503 Service Unavailable',))': /source/python_dimscli-0.26.0-py2.py3-none-any.whl
 Retrying (Retry(total=3, connect=None, read=None, redirect=None)) after connection broken by 'ProxyError('Cannot connect to proxy.', error('Tunnel connection failed: 503 Service Unavailable',))': /source/python_dimscli-0.26.0-py2.py3-none-any.whl
 Retrying (Retry(total=2, connect=None, read=None, redirect=None)) after connection broken by 'ProxyError('Cannot connect to proxy.', error('Tunnel connection failed: 503 Service Unavailable',))': /source/python_dimscli-0.26.0-py2.py3-none-any.whl
 Retrying (Retry(total=1, connect=None, read=None, redirect=None)) after connection broken by 'ProxyError('Cannot connect to proxy.', error('Tunnel connection failed: 503 Service Unavailable',))': /source/python_dimscli-0.26.0-py2.py3-none-any.whl
 Retrying (Retry(total=0, connect=None, read=None, redirect=None)) after connection broken by 'ProxyError('Cannot connect to proxy.', error('Tunnel connection failed: 503 Service Unavailable',))': /source/python_dimscli-0.26.0-py2.py3-none-any.whl
 Exception:
 Traceback (most recent call last):
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/basecommand.py", line 215, in main
 status = self.run(options, args)
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/commands/install.py", line 335, in run
 wb.build(autobuilding=True)
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/wheel.py", line 749, in build
 self.requirement_set.prepare_files(self.finder)
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/req/req_set.py", line 380, in prepare_files
 ignore_dependencies=self.ignore_dependencies))
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/req/req_set.py", line 620, in _prepare_file
 session=self.session, hashes=hashes)
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/download.py", line 821, in unpack_url
 hashes=hashes
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/download.py", line 659, in unpack_http_url
 hashes)
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/download.py", line 853, in _download_http_url
 stream=True,
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/_vendor/requests/sessions.py", line 488, in get
 return self.request('GET', url, **kwargs)
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/download.py", line 386, in request
 return super(PipSession, self).request(method, url, *args, **kwargs)
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/_vendor/requests/sessions.py", line 475, in request
 resp = self.send(prep, **send_kwargs)
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/_vendor/requests/sessions.py", line 596, in send
 r = adapter.send(request, **kwargs)
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/_vendor/cachecontrol/adapter.py", line 47, in send
 resp = super(CacheControlAdapter, self).send(request, **kw)
 File "/opt/dims/envs/dimsenv/lib/python2.7/site-packages/pip/_vendor/requests/adapters.py", line 485, in send
 raise ProxyError(e, request=request)
 ProxyError: HTTPSConnectionPool(host='source.devops.develop', port=443): Max retries exceeded with url: /source/python_dimscli-0.26.0-py2.py3-none-any.whl (Caused by ProxyError('Cannot connect to proxy.', error('Tunnel connection failed: 503 Service Unavailable',)))
 zip_safe flag not set; analyzing archive contents...
 rpc.rpc_common: module MAY be using inspect.getouterframes
 /opt/dims/envs/dimsenv/lib/python2.7/site-packages/setuptools/dist.py:341: UserWarning: Normalizing '1.0.0-dev' to '1.0.0.dev0'
 normalized_version,
 warning: install_lib: 'build/lib' does not exist -- no Python modules to install

 zip_safe flag not set; analyzing archive contents...

 TASK [python-virtualenv : Run unit test for Python virtualenv] ****************
 . . .
 PLAY RECAP **
 dimsdemo1.devops.develop : ok=50 changed=10 unreachable=0 failed=1

The highlighted lines show the problem, which is a proxy failure. This is typically due to
the Docker container used as a local squid-deb-proxy to optimize Vagrant installations
being hung and non-responsive. (To resolve this, see restartProxy in the Appendix.)

A final example here of a bats unit test being used to avoid hidden problems
resulting from subtle errors in Ansible playbooks is the unit test
ansible-yaml. This test is intended to perform validations checks of
YAML syntax and Ansible module requirements.

Perhaps the most important test (and the only shown here) has to do
with avoiding the way mode attributes to modules like copy
and template are used. Ansible is very powerful, but it has some
pedantic quirks related to the use of YAML to create Python data
structures that are used to run Unix command line programs. This is
perhaps nowhere more problematic than file permissions (which can
horribly break things on a Unix system). The problem has to do
with the way Unix modes (i.e., file permissions) were historically
defined using bit-maps expressed in numeric form using octal
(i.e., base-8) form, not decimal (i.e., base-10) form
that is more universally used for expressing numbers. An octal
value is expressed using the digits 0 through 7. Many
programming languages assume that if a given string representing a
numeric value starts with an alpha-numeric character in the range
[1..9], that string represents a decimal value, while a
string starting with a 0 instead represents an octal value.
Since YAML and JSON are text representations of data structures
that are interpretted to create binary data structures used
internally to Python

Note

Two other numeric bases used commonly in programming are
binary (base-2) and hexadecimal (base-16). Binary is used
so rarely that we can ignore it here. Because hexadecimal
goes beyond 9, using the letters in the range [A..F],
it doesn’t have the same conflict in being recognized as
decimal vs. octal, so its values typically start with 0x
followed by the number (e.g., 0x123ABCD).

You can find issues describing this decimal vs. octal/string vs. number
problem and related discussion of ways to deal with it in many places:

	4-digit octal mode works incorrectly unless quoted #9196 [https://github.com/ansible/ansible/issues/9196]

	Why am I getting this error from Ansible when trying to change the permissions on a file? [https://serverfault.com/questions/811915/why-am-i-getting-this-error-from-ansible-when-trying-to-change-the-permissions-o]

	Setting the setuid / setgid Bit with Ansible [https://blog.dbrgn.ch/2014/6/17/setting-setuid-setgid-bit-with-ansible/]

The ansible-dims-playbooks repository uses the convention of expressing
modes using the 0o format to explicitly ensure proper octal modes, e.g.:

- name: Ensure /etc/rsyslog.d present
 file:
 path: /etc/rsyslog.d
 state: directory
 mode: 0o644
 become: yes
 when: ansible_os_family != "Container Linux by CoreOS"
 tags: [base, config, rsyslogd]

Running the ansible-yaml unit test will detect when modes deviate from this
standard policy, as seen here:

$ test.runner unit/ansible-yaml
[+] Running test unit/ansible-yaml
 ✓ [U][EV] Modes in tasks under $PBR use valid '0o' notation
 ✗ [U][EV] Modes in tasks under $DIMS_PRIVATE use valid '0o' notation
 (in test file unit/ansible-yaml.bats, line 30)
 `[-z "$DIMS_PRIVATE"] && skip 'DIMS_PRIVATE is not defined'' failed
 /home/dittrich/dims/git/private-develop/inventory/all.yml: mode: 755

2 tests, 1 failure

Note

Exceptions to this check will likely need to be made, since the test
is for strings of the form mode: 0o or mode=0o (followed by
a few more numbers). These exceptions are put into a whitelist file
that the test uses to ignore them. To update the whitelist, add
any false positive failure strings to the variable
yaml_mode_whitelist in group_vars/all/dims.yml.

7. Debugging with Ansible and Vagrant

This chapter covers some tactics and procedures used for testing and debugging
Ansible inventories, playbooks, roles, etc. using Vagrants with bats tests
as the test and validation mechanisms.

More general debugging strategies and techniques are covered in Section
dimsdevguide:debugging of the dimsdevguide:dimsdevguide.

7.1. Debugging Ansible

Ansible has two primary methods with which it is invoked – ansible-playbook
to run playbooks, and ansible (a.k.a., “ad-hoc mode”) to run individual
modules one at a time.

	Debugging using the debug module in “ad-hoc” mode can be used to explore
the value of variables after processing of the inventory (i.e., group
definitions, group variables, host variables, etc.) This does not require
any remote connections, or even an internet connection at all, since the
debug module is processed locally on the Ansible control host. (The
flip side of this is that no Ansible “facts” are available, because of
the fact that no remote connections are made.)

	Debugging playbook execution with ansible-playbook involves controlling
the level of verbosity in output of program execution and/or exposing the
runtime state of variables (possibly obtaining that state remotely from
running systems) using the debug module. There is also “single-stepping”
of playbooks that can be used in conjunction with these mechanisms.

7.1.1. Examining Variables

To see the value of the variable inventory_hostname for a group of hosts
named manager, use the debug module, the specific inventory to
look at, and pass the group name:

$ ansible -m debug -a "var=inventory_hostname" manager
node03.devops.local | SUCCESS => {
 "inventory_hostname": "node03.devops.local"
}
node01.devops.local | SUCCESS => {
 "inventory_hostname": "node01.devops.local"
}
node02.devops.local | SUCCESS => {
 "inventory_hostname": "node02.devops.local"
}

Ansible variables are sometimes not as straightforward as that. Often
variables are composed from other variables using Jinja templating
expressions in strings which are recursively processed at run time
during template rendering. This means that you must either be
really good at resolving the nested variable references in your head, or
get used to using Ansible’s debug module with msg to do the
templating for you. What is more, Ansible variables are all effectively
in a deeply-nested Python dictionary structure that takes some getting
used to. Using data structures properly helps iterate over lists
or dictionary keys using clean algorithms involving Loops [http://docs.ansible.com/ansible/latest/playbooks_loops.html].

To see how this works, take a look at the following example of the bundle
of Trident packages that are part of a Trident deployment. We want to
validate each package using a common cryptographic hash, so a simple
dictionary keyed on url and sha256sum will work.

Trident components are all loaded at once as a bundle
trident_dist_bundle:
 - { 'url': '{{ trident_server_disturl }}', 'sha256sum': '{{ trident_server_sha256sum }}' }
 - { 'url': '{{ trident_cli_disturl }}', 'sha256sum': '{{ trident_cli_sha256sum }}' }
 - { 'url': '{{ trident_all_disturl }}', 'sha256sum': '{{ trident_all_sha256sum }}' }
 - { 'url': '{{ pitchfork_disturl }}', 'sha256sum': '{{ pitchfork_sha256sum }}' }
 - { 'url': '{{ trident_wikiexport_disturl }}', 'sha256sum': '{{ trident_wikiexport_sha256sum }}' }

trident_cli_version: '{{ trident_version }}'
trident_cli_archive: 'trident-cli_{{ trident_cli_version }}_amd64.deb'
trident_cli_disturl: '{{ trident_download_dir }}/{{ trident_cli_archive }}'
trident_cli_sha256sum: '15f11c986493a67e85aa9cffe6719a15a8c6a65b739a2b0adf62ce61e53f4203'
trident_cli_opts: ''

trident_server_version: '{{ trident_version }}'
trident_server_archive: 'trident-server_{{ trident_server_version }}_amd64.deb'
trident_server_disturl: '{{ trident_download_dir }}/{{ trident_server_archive }}'
trident_server_sha256sum: 'a8af27833ada651c9d15dc29d04451250a335ae89a0d2b66bf97a787dced9956'
trident_server_opts: '--syslog'

trident_all_version: '{{ trident_version }}'
trident_all_archive: 'trident_{{ trident_all_version }}_all.deb'
trident_all_disturl: '{{ trident_download_dir }}/{{ trident_all_archive }}'
trident_all_sha256sum: '67f57337861098c4e9c9407592c46b04bbc2d64d85f69e8c0b9c18e8d5352ea6' #trident_1.4.5_all.deb

trident_wikiexport_version: '{{ trident_version }}'
trident_wikiexport_archive: 'trident-wikiexport_{{ trident_wikiexport_version }}_amd64.deb'
trident_wikiexport_disturl: '{{ trident_download_dir }}/{{ trident_wikiexport_archive }}'
trident_wikiexport_sha256sum: '4d2f9d62989594dc5e839546da596094c16c34d129b86e4e323556f1ca1d8805'

Pitchfork tracks its own version
pitchfork_version: '1.9.4'
pitchfork_archive: 'pitchfork-data_{{ pitchfork_version }}_all.deb'
pitchfork_disturl: '{{ trident_download_dir }}/{{ pitchfork_archive }}'
pitchfork_sha256sum: '5b06ae4a20a16a7a5e59981255ba83818f67224b68f6aaec014acf51ca9d1a44'

Trident perl tracks its own version
TODO(dittrich): trident-perl is private artifact - using our cached copy
trident_perl_version: '0.1.0'
trident_perl_archive: 'trident-perl_{{ trident_perl_version }}_amd64.deb'
trident_perl_disturl: '{{ artifacts_url }}/{{ trident_perl_archive }}'
trident_perl_sha256sum: '2f120dc75f75f8b2c8e5cdf55a29984e24ee749a75687a10068ed8f353098ffb'

To see what the trident_dist_bundle looks like to better visualize how to
loop on it and process the values, we can use the following command:

$ ansible -i inventory/ -m debug -a "msg={{ trident_dist_bundle }}" yellow.devops.local
yellow.devops.local | SUCCESS => {
 "changed": false,
 "msg": [
 {
 "sha256sum": "a8af27833ada651c9d15dc29d04451250a335ae89a0d2b66bf97a787dced9956",
 "url": "https://github.com/tridentli/trident/releases/download/v1.4.5/trident-server_1.4.5_amd64.deb"
 },
 {
 "sha256sum": "15f11c986493a67e85aa9cffe6719a15a8c6a65b739a2b0adf62ce61e53f4203",
 "url": "https://github.com/tridentli/trident/releases/download/v1.4.5/trident-cli_1.4.5_amd64.deb"
 },
 {
 "sha256sum": "67f57337861098c4e9c9407592c46b04bbc2d64d85f69e8c0b9c18e8d5352ea6",
 "url": "https://github.com/tridentli/trident/releases/download/v1.4.5/trident_1.4.5_all.deb"
 },
 {
 "sha256sum": "5b06ae4a20a16a7a5e59981255ba83818f67224b68f6aaec014acf51ca9d1a44",
 "url": "https://github.com/tridentli/trident/releases/download/v1.4.5/pitchfork-data_1.9.4_all.deb"
 },
 {
 "sha256sum": "4d2f9d62989594dc5e839546da596094c16c34d129b86e4e323556f1ca1d8805",
 "url": "https://github.com/tridentli/trident/releases/download/v1.4.5/trident-wikiexport_1.4.5_amd64.deb"
 }
]
}

7.1.2. Debugging Filter Logic

Ansible supports Filters [http://docs.ansible.com/ansible/latest/playbooks_filters.html] in template expressions. These use not only the
default builtin Jinja filters [http://jinja.pocoo.org/docs/2.9/templates/#list-of-builtin-filters], but also added Ansible filters and
custom filters that user can easily add.

In general, these filters take some data structure as input and perform operations
on it to produce some desired output, such as replacing strings based on regular
expressions or turning keys in dictionary into a list.

Jinja filters can be chained when maniplating complex data structures. In some
cases they must be chained to achieve the desired result.

For example, take the following example data structure, which is an
array named trident_site_trust_groups that holds dictionaries
containing a name, initial_users, and additional_lists:

trident:
 vars:
 trident_site_trust_groups:
 - name: 'main'
 initial_users:
 - ident: 'dims'
 descr: 'DIMS Mail (no-reply)'
 email: 'noreply@{{ trident_site_email_domain }}'
 - ident: 'dittrich'
 descr: 'Dave Dittrich'
 email: 'dittrich@{{ trident_site_email_domain }}'
 additional_lists:
 - ident: 'demo'
 descr: 'LOCAL Trident Demonstration'
 - ident: 'warroom'
 descr: 'LOCAL Trust Group War Room'
 - ident: 'exercise'
 descr: 'LOCAL Trust Group Exercise Comms'
 - ident: 'events'
 descr: 'LOCAL Trust Group Social Events'

Start by just examining the variable using Ansible’s debug
module and var to select the top level variable in the
vars structure.

$ ansible -m debug -a "var=vars.trident_site_trust_groups" yellow.devops.local
yellow.devops.local | SUCCESS => {
 "changed": false,
 "vars.trident_site_trust_groups": [
 {
 "additional_lists": [
 {
 "descr": "LOCAL Trident Demonstration",
 "ident": "demo"
 },
 {
 "descr": "LOCAL Trust Group War Room",
 "ident": "warroom"
 },
 {
 "descr": "LOCAL Trust Group Exercise Comms",
 "ident": "exercise"
 },
 {
 "descr": "LOCAL Trust Group Social Events",
 "ident": "events"
 }
],
 "initial_users": [
 {
 "descr": "DIMS Mail (no-reply)",
 "email": "noreply@{{ trident_site_email_domain }}",
 "ident": "dims"
 },
 {
 "descr": "Dave Dittrich",
 "email": "dittrich@{{ trident_site_email_domain }}",
 "ident": "dittrich"
 }
],
 "name": "main",
 }
]
}

Next, we can isolate just the additional_lists sub-dictionary:

$ ansible -m debug -a "var=vars.trident_site_trust_groups[0].additional_lists" yellow.devops.local
yellow.devops.local | SUCCESS => {
 "changed": false,
 "vars.trident_site_trust_groups[0].additional_lists": [
 {
 "descr": "LOCAL Trident Demonstration",
 "ident": "demo"
 },
 {
 "descr": "LOCAL Trust Group War Room",
 "ident": "warroom"
 },
 {
 "descr": "LOCAL Trust Group Exercise Comms",
 "ident": "exercise"
 },
 {
 "descr": "LOCAL Trust Group Social Events",
 "ident": "events"
 }
]
}

The map filter is then used to extract just the key ident from each dictionary,
followed by list to turn the extracted sub-dictionary into an array, followed
by sort to put the list in alphabetic order for good measure.

$ ansible -m debug -a msg="{{ trident_site_trust_groups[0].additional_lists|map(attribute='ident')|list|sort }}" yellow.devops.local
yellow.devops.local | SUCCESS => {
 "changed": false,
 "msg": [
 "demo",
 "events",
 "exercise",
 "warroom"
]
}

In an Ansible playbook, it might look like this:

 - name: Create list of defined mailing lists
 set_fact: _additional_lists={{ trident_site_trust_groups[0].additional_lists|map(attribute='ident')|list|sort }}"

 - debug: var=_additional_lists

This will give the following results:

 TASK [Create list of defined mailing lists] ************************************
 Monday 13 February 2017 09:20:38 -0800 (0:00:01.037) 0:00:01.093 *******
 ok: [yellow.devops.local]

 TASK [debug] ***
 Monday 13 February 2017 09:20:38 -0800 (0:00:00.043) 0:00:01.136 *******
 ok: [yellow.devops.local] => {
 "_additional_lists": [
 "demo",
 "events",
 "exercise",
 "warroom"
]
 }

 PLAY RECAP ***
 yellow.devops.local : ok=3 changed=0 unreachable=0 failed=0

Our final example illustrates forced type conversion with a filter to drive the
proper logic of a boolean filter known as the ternary operator. This is a
useful, but somewhat terse, operator that takes a boolean expression as the
input and produces one of two outputs based on the value of the boolean
expression. This prevents having to do two separate tasks, one with
the true conditional and a second with the false conditional.
In the example we are about to see, the goal is to produce a ternary
filter expression that results in creating a variable that will be
added to a command line invoking certbot-auto that adds the
--staging option when an Ansible variable holds a boolean true
value.

A conditional operation in Jinja is an expression in parentheses (()).
Our first attempt looks like this:

$ ansible -m debug -e debug=true -a 'msg={{ (debug)|ternary("yes", "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "yes"
}

That looks perfect! Go!

No, that is not robust. It is unwise to try something, get the result you expect, and run with
it. Let’s try setting debug to false and see what happens.

$ ansible -m debug -e debug=false -a 'msg={{ (debug)|ternary("yes", "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "yes"
}

False is true? Fake news! What is happening here? Do we need to actually do an equivalence test
using == to get the right result? Let’s try it.

$ ansible -m debug -e debug=false -a 'msg={{ (debug == True)|ternary("yes", "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "no"
}
$ ansible -m debug -e debug=true -a 'msg={{ (debug == True)|ternary("yes", "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "no"
}

OK. Now we get the exact same result again, but this time it is the exact
opposite always-the-same result. What?!?! Ansible allows us to use yes,
true, or even on to set a boolean variable. The Gotcha here is that the
variable is being set on the command line, which sets the variable to be a
string rather than a boolean, and a non-null string (any string) resolves
to true.

Wait! Maybe the problem is we defined debug=true instead of debug=True?
That’s got to be it, yes?

$ ansible -m debug -e "debug=True" -a 'msg={{ (debug == True)|ternary("yes", "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "no"
}

As the msg says, no.

Let’s go back to the simple (debug) test and systematically try a bunch of
alternatives and see what actually happens in real-world experimentation.

$ ansible -m debug -e "debug=True" -a 'msg={{ (debug)|ternary("yes", "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "yes"
}
$ ansible -m debug -e "debug=False" -a 'msg={{ (debug)|ternary("yes", "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "yes"
}
$ ansible -m debug -e "debug=yes" -a 'msg={{ (debug)|ternary("yes", "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "yes"
}
$ ansible -m debug -e "debug=no" -a 'msg={{ (debug)|ternary("yes", "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "yes"
}

Spoiler Alert

It is not obvious at all, but the behavior hints at the problem which is
a typing conflict between boolean and string types, combined with the way
strings are interpreted in a conditional expression. Pretty much every
interpreted programming language, and even some compiled languages
without mandatory strong typing, have their own variation on this problem.
It takes programming experience with perhaps a dozen or more programming
languages to internalize this problem enough to reflexively avoid it it
seems (and even then it can still bite you!) The answer is to be explicit
about boolean typing and/or casting.

Jinja has a filter called bool that converts a string to a boolean the way we
expect from the Ansible documentation. Adding |bool results in the behavior
we expect:

$ ansible -m debug -e "debug=no" -a 'msg={{ (debug|bool)|ternary("yes", "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "no"
}
$ ansible -m debug -e "debug=yes" -a 'msg={{ (debug|bool)|ternary("yes" , "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "yes"
}
$ ansible -m debug -e "debug=False" -a 'msg={{ (debug|bool)|ternary("yes", "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "no"
}
$ ansible -m debug -e "debug=True" -a 'msg={{ (debug|bool)|ternary("yes" , "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "yes"
}
$ ansible -m debug -e "debug=off" -a 'msg={{ (debug|bool)|ternary("yes", "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "no"
}
$ ansible -m debug -e "debug=on" -a 'msg={{ (debug|bool)|ternary("yes" , "no") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "yes"
}

OK, that’s better!! Now that we have the syntax down to get the logic that
we expect, we can set the certbot_staging variable they way we want:

$ ansible -m debug -e "certbot_staging=no" -a 'msg={{ (certbot_staging|bool)|ternary("--staging", "") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": ""
}
$ ansible -m debug -e "certbot_staging=yes" -a 'msg={{ (certbot_staging|bool)|ternary("--staging", "") }}' yellow.devops.local
yellow.devops.local|SUCCESS => {
 "changed": false,
 "msg": "--staging"
}

Attention

Hopefully this shows the importance of using Ansible’s debug module to develop
tasks in playbooks such that they don’t result in hidden bugs that cause silent failures
deep within hundreds of tasks that blast by on the screen when you run a complex
Ansible playbook. Doing this every time a complex Jinja expression, or a
deeply nested complex data structure, will take a little extra time. But it
is almost guaranteed to be much less time (and less stress, less friction)
than debugging the playbook later on when something isn’t working right and
it isn’t clear why. Robust coding practice is good coding practice!

7.1.3. Developing Custom Jinja Filters

Here is a minimal sub-set of the DIMS filters module, dims_filters.py,
that implements a filter that converts an array into a string usable with
Consul for establishing an initial-cluster command line argument.

vim: set ts=4 sw=4 tw=0 et :

from netaddr import *
import socket
from ansible import errors

def _initial_cluster(_list, port=2380):
 '''
 Return a comma (no spaces!) separated list of Consul initial cluster
 members from fully qualified domain names (e.g., Ansible group member
 names). The "no spaces" is because this is used as a single command line
 argument.

 a = ['node01.devops.local','node02.devops.local','node03.devops.local']
 _initial_cluster(a)
 'node01=http://node01.devops.local:2380,node02=http://node02.devops.local:2380,node03=http://node03.devops.local:2380'

 '''

 if type(_list) == type([]):
 try:
 return ','.join(
 ['{0}=http://{1}:{2}'.format(
 i.decode('utf-8').split('.')[0],
 i.decode('utf-8'),
 port) for i in _list]
)
 except Exception as e:
 #raise errors.AnsibleFilterError(
 # 'initial_cluster() filed to convert: {0}'.format(str(e))
 #)
 return ''
 else:
 raise errors.AnsibleFilterError('Unrecognized input arguments to initial_cluster()')

class FilterModule(object):
 '''DIMS Ansible filters.'''

 def filters(self):
 return {
 # Docker/Consul/Swarm filters
 'initial_cluster': _initial_cluster,
 }

Here is how it works with the debug module:

$ ansible -m debug -a msg="{{ groups.consul|initial_cluster() }}" node01.devops.local
node01.devops.local | SUCCESS => {
 "changed": false,
 "msg": "node03=http://node03.devops.local:2380,node02=http://node02.devops.local:2380,node01=http://node01.devops.local:2380"
}

8. Regular System Maintenance

This chapter covers regular system maintenance tasks, such as updating the
ansible-dims-playbooks repo and related private customization repository,
upgrading operating system packages, and generally keeping system components
clean and up to date.

8.1. Updating Operating System Packages

Updating system packages, especially security patches, is an important
part of ensuring the integrity, availability, and confidentiality of
information and information systems. The availability aspect is sometimes
a concern when applying updates, so using the multi-deployment model
adopted by the DIMS Project to allow easier testing of system components
after patching on a test deployment before applying updates to
“production” deployment systems helps allay concerns.

There are two bats system tests that are designed to make the
normal system updating process easier to automate and apply across
the entire deployment: the system/updates and system/reboot
tests. Both of these tests can be run at once using the following
command line:

$ test.runner --match "updates|reboot"
[+] Running test system/updates
 ✗ [S][EV] All APT packages are up to date (Ubuntu)
 (from function `assert' in file system/helpers.bash, line 18,
 in test file system/updates.bats, line 11)
 `assert "0 packages can be updated. 0 updates are security updates." bash -c "/usr/lib/update-notifier/apt-check --human-readable"' failed
 linux-headers-4.4.0-92-generic
 google-chrome-stable
 xul-ext-ubufox
 firefox
 linux-image-4.4.0-92-generic
 linux-generic-lts-xenial
 libgd3
 linux-headers-4.4.0-92
 linux-headers-generic-lts-xenial
 linux-image-extra-4.4.0-92-generic
 linux-image-generic-lts-xenial
 expected: "0 packages can be updated. 0 updates are security updates."
 actual: "11 packages can be updated.10 updates are security updates."

1 test, 1 failure

[+] Running test system/reboot
 ✓ [S][EV] System does not require a reboot (Ubuntu)

1 test, 0 failures

In this case, the tests show that the system has updates most of them security
updates, ready to apply. The updates test failed, but the reboot test
passed.

Now apply the updates tag to update and install upgrades.

$ run.playbook --tags updates -e packages_upgrade=yes

PLAY [Configure host "dimsdemo1.devops.develop"] ******************************
. . .
TASK [base : Check to see if update-manager is running on Ubuntu] *************
Wednesday 16 August 2017 13:06:29 -0700 (0:00:01.049) 0:00:05.392 ******
changed: [dimsdemo1.devops.develop]

TASK [base : Kill update_manager to avoid dpkg lock contention] ***************
Wednesday 16 August 2017 13:06:30 -0700 (0:00:01.239) 0:00:06.631 ******
skipping: [dimsdemo1.devops.develop]

TASK [base : Check to see if gpk-update-viewer is running on Ubuntu] **********
Wednesday 16 August 2017 13:06:31 -0700 (0:00:01.049) 0:00:07.681 ******
skipping: [dimsdemo1.devops.develop]

TASK [base : Kill gpk-update-viewer to avoid dpkg lock contention] ************
Wednesday 16 August 2017 13:06:32 -0700 (0:00:01.048) 0:00:08.729 ******
skipping: [dimsdemo1.devops.develop]

TASK [base : Make sure blacklisted packages are absent (Debian)] **************
Wednesday 16 August 2017 13:06:33 -0700 (0:00:01.084) 0:00:09.814 ******
ok: [dimsdemo1.devops.develop] => (item=[u'modemmanager', u'resolvconf',
u'sendmail', u'whoopsie', u'libwhoopsie0'])

TASK [base : Only "update_cache=yes" if >3600s since last update (Debian)] ****
Wednesday 16 August 2017 13:06:35 -0700 (0:00:02.015) 0:00:11.829 ******
ok: [dimsdemo1.devops.develop]

TASK [base : Make sure required APT packages are present (Debian)] ************
Wednesday 16 August 2017 13:06:37 -0700 (0:00:01.610) 0:00:13.440 ******
ok: [dimsdemo1.devops.develop] => (item=[u'apt-transport-https', u'bash-completion',
u'ca-certificates', u'cpanminus', u'curl', u'dconf-tools', u'git-core',
u'default-jdk', u'gitk', u'gnupg2', u'htop', u'hunspell', u'iptables-persistent',
u'ifstat', u'make', u'myrepos', u'netcat', u'nfs-common', u'chrony', u'ntpdate',
u'openssh-server', u'patch', u'perl', u'postfix', u'python', u'python-apt',
u'remake', u'rsync', u'rsyslog', u'sshfs', u'sshpass', u'strace', u'tree', u'vim',
u'xsltproc', u'chrony', u'nfs-kernel-server', u'smartmontools', u'unzip'])

TASK [base : Make upgraded packages present if we are explicitly upgrading] ***
Wednesday 16 August 2017 13:06:38 -0700 (0:00:01.750) 0:00:15.190 ******
changed: [dimsdemo1.devops.develop]

TASK [base : Check proxy availability] **
Wednesday 16 August 2017 13:09:12 -0700 (0:02:33.389) 0:02:48.580 ******
. . .
PLAY RECAP **
dimsdemo1.devops.develop : ok=72 changed=4 unreachable=0 failed=0

Wednesday 16 August 2017 13:10:28 -0700 (0:00:01.069) 0:04:04.737 ******
===
base : Make upgraded packages present if we are explicitly upgrading -- 153.39s
. . .

Note

The flag -e packages_upgrade=yes sets the variable packages_upgrade that
must evaluate to true in order for packages to be updated in the role. This is
to ensure that package updates are done in a controlled manner. Set this
variable to something that Ansible evaluates as true on the command line, or
somewhere in the host vars section of the inventory.

Now re-run the two tests.

$ test.runner --match "updates|reboot"
[+] Running test system/updates
 ✓ [S][EV] All APT packages are up to date (Ubuntu)

1 test, 0 failures

[+] Running test system/reboot
 ✗ [S][EV] System does not require a reboot (Ubuntu)
 (in test file system/reboot.bats, line 8)
 `@test "[S][EV] System does not require a reboot (Ubuntu)" {' failed
 linux-image-4.4.0-92-generic
 linux-base
 linux-base

1 test, 1 failure

This time the updates test passes, but notice that some of the updates
require a reboot, so that test fails. This means that a reboot needs to
be planned and executed carefully, to ensure minimal disruption to anything
dependent on this system (e.g., running virtual machines on a development
system).

Attention

A developer workstation or production VM host running virtual machines
needs to have the virtual machines shut down or suspended prior to a
reboot of the VM host in order to ensure the VMs or the VM host does
not lose network interfaces that are using DHCP. The VM host may
lose a vboxnet interface, a VM may lose an eth interface,
or both.

	Vagrants are handled as part of the shutdown process when you
use the dims.shutdown wrapper script. After reboot, use
dims.shutdown --resume (optionally with --group to select
specific Vagrants by name or group) to resume them.

	Virtualbox VMs that were created by hand are not yet supported by
dims.shutdown. Use the virtualbox management GUI to cleanly
shut down any running VMs (and again after reboot, to bring them back
up.) If this is a remote VM host, use remmina and the VNC wrapper
script described in Section Validating VNC over SSH Tunnelling to run the
virtualbox management GUI remotely.

Using Ansible ad-hoc mode, the checks can be performed on multiple
hosts at once:

$ ansible -m shell -a 'test.runner --match reboot' trident
yellow.devops.develop | SUCCESS | rc=0 >>
[+] Running test system/reboot
1..1
ok 1 [S][EV] System does not require a reboot (Debian)
#

purple.devops.develop | SUCCESS | rc=0 >>
[+] Running test system/reboot
1..1
ok 1 [S][EV] System does not require a reboot (Debian)
#

As a convenience for the system administrator, a cron job
is managed by the base role that runs a script named
dims.updatecheck on a daily basis. The variables
that control the cron job are defined in the
group_vars/all/dims.yml file:

cronjobs:
 - name: 'dims.updatecheck'
 weekday: '*'
 hour: '6'
 minute: '0'
 user: 'ansible'
 job: '{{ dims_bin }}/dims.updatecheck'

The base role creates the following file:

$ cat /etc/cron.d/dims
#Ansible: dims.updatecheck
0 6 * * * ansible /opt/dims/bin/dims.updatecheck

When updates are available, or a reboot is required, email is
sent to the root account. Make sure that email to this
account is forwarded by setting the postmaster variable
to a valid email address. An example of the message that
will be sent is shown here:

To: dittrich@u.washington.edu
Subject: dims.updatecheck results from purple.ops.ectf (2017-09-01T23:06:02.211268+00:00)
Message-Id: <20170901230603.9D3C3582@breathe.prisem.washington.edu>
Date: Fri, 1 Sep 2017 16:06:03 -0700 (PDT)
From: root@breathe.prisem.washington.edu (root)

Host: purple.ops.ectf
Date: 2017-09-01T23:06:02.211268+00:00

This is a report of available package updates and/or required reboot
status. The output of the bats tests that were run is included below.

If package updates are necessary, this can be accomplished by running
the Ansible playbook for purple.ops.ectf with the following options:

 --tags updates -e packages_update=true

If a reboot is necessary, ensure that the host (and anyone using it)
is prepared for the reboot:

 o Ensure that all users of external services are aware of any
 potential outage of services provided by this host (or its
 (VMs).

 o Halt or suspend any VMs if this is a VM host (and be prepared
 to ensure they are restart after rebooting is complete.)
 (Use the "dims.shutdown" script to facilitate this. See
 documentation and/or "dims.shutdown --usage".)

 o Notify any active users to ensure no active development work
 is lost.

test.runner --tap --match "updates|reboot"

[+] Running test system/updates
1..1
not ok 1 [S][EV] All APT packages are up to date (Debian)
(from function `assert' in file system/helpers.bash, line 18,
in test file system/updates.bats, line 12)
`assert "0 packages can be updated." bash -c "apt list --upgradable 2>/dev/null"' failed
#
WARNING: apt does not have a stable CLI interface yet. Use with caution in scripts.
#
expected: "0 packages can be updated."
actual: "Listing...firefox-esr/oldstable 52.3.0esr-1~deb8u2 amd64 [upgradable fro
m: 52.2.0esr-1~deb8u1]gir1.2-soup-2.4/oldstable 2.48.0-1+deb8u1 amd64 [upgradable fro
m: 2.48.0-1]git/oldstable 1:2.1.4-2.1+deb8u4 amd64 [upgradable from: 1:2.1.4-2.1+deb8
u3]git-core/oldstable 1:2.1.4-2.1+deb8u4 all [upgradable from: 1:2.1.4-2.1+deb8u3]git
-man/oldstable 1:2.1.4-2.1+deb8u4 all [upgradable from: 1:2.1.4-2.1+deb8u3]gitk/oldst
able 1:2.1.4-2.1+deb8u4 all [upgradable from: 1:2.1.4-2.1+deb8u3]iceweasel/oldstable
52.3.0esr-1~deb8u2 all [upgradable from: 52.2.0esr-1~deb8u1]libdbd-pg-perl/jessie-pgd
g 3.6.2-1~pgdg80+1 amd64 [upgradable from: 3.4.2-1]libgd3/oldstable 2.1.0-5+deb8u10 a
md64 [upgradable from: 2.1.0-5+deb8u9]libpq5/jessie-pgdg 9.6.4-1.pgdg80+1 amd64 [upgr
adable from: 9.4.13-0+deb8u1]libsoup-gnome2.4-1/oldstable 2.48.0-1+deb8u1 amd64 [upgr
adable from: 2.48.0-1]libsoup2.4-1/oldstable 2.48.0-1+deb8u1 amd64 [upgradable from:
2.48.0-1]"
#
[+] Running test system/reboot
1..1
ok 1 [S][EV] System does not require a reboot (Debian)
#

8.2. Renewing Letsencrypt Certificates

The imported role ansible-role-certbot [https://github.com/geerlingguy/ansible-role-certbot] that is being used
for Letsencrypt [https://letsencrypt.org/] support creates a crontab entry in the ansible
account to automatically renew the certificate when it is about to expire. You
can see the crontab entry using Ansible ad-hoc mode:

$ ansible -m shell -a 'crontab -l' trident
yellow.devops.develop | SUCCESS | rc=0 >>
#Ansible: Certbot automatic renewal.
20 5 * * * /opt/certbot/certbot-auto renew --quiet --no-self-upgrade

purple.devops.develop | SUCCESS | rc=0 >>
#Ansible: Certbot automatic renewal.
20 5 * * * /opt/certbot/certbot-auto renew --quiet --no-self-upgrade

You can always run this command whenever you want, again using
Ansible ad-hoc mode:

$ ansible -m shell -a '/opt/certbot/certbot-auto renew --no-self-upgrade' trident
purple.devops.develop | SUCCESS | rc=0 >>
Requesting root privileges to run certbot...
 /home/ansible/.local/share/letsencrypt/bin/letsencrypt renew --no-self-upgrade

Processing /etc/letsencrypt/renewal/breathe.prisem.washington.edu.conf

The following certs are not due for renewal yet:
 /etc/letsencrypt/live/breathe.prisem.washington.edu/fullchain.pem (skipped)
No renewals were attempted.Saving debug log to /var/log/letsencrypt/letsencrypt.log
Cert not yet due for renewal

yellow.devops.develop | SUCCESS | rc=0 >>
Requesting root privileges to run certbot...
 /home/ansible/.local/share/letsencrypt/bin/letsencrypt renew --no-self-upgrade

Processing /etc/letsencrypt/renewal/echoes.prisem.washington.edu.conf

The following certs are not due for renewal yet:
 /etc/letsencrypt/live/echoes.prisem.washington.edu/fullchain.pem (skipped)
No renewals were attempted.Saving debug log to /var/log/letsencrypt/letsencrypt.log
Cert not yet due for renewal

8.3. Updating Secondary Components

The package update steps above perform what you could call a
first order update process, that is, updating the packages for
the major components of the operating system. Some of these components,
however, themselves use plugins or other sub-components that require
updating. This is most disruptive for major releases (e.g., going
from PyCharm 2016.2 to 2016.3, as shown in the next section).

A development system will have more of these components requiring
secondary updates. Partly because of this reason, these type of
components are pinned to a specific version. When updating the
ansible-dims-playbooks, take note of the changes and check
for required secondary updates.

Attention

You will sometimes need to communicate the need for these secondary
updates to users of the system (e.g., to developers) because some
tools like Vagrant and PyCharm keep plugins in users’ accounts,
not in system directories. As it is difficult to automate this
process in a robust way, each user must take responsibility for
updating their own plugins to avoid having their toolset go
out-of-sync with other developers and cause random failures
that are difficult to track down.

In this section, we cover updating Vagrant and PyCharm.

8.3.1. Updating Vagrant Plugins

Vagrant is used for development using Virtualbox virtual
machines. It has a few plugins that were adopted (or at
least experimentally used) during DIMS development.

After upgrading Vagrant to a new version, users can update
their plugins with the following command:

$ vagrant plugin update
Updating installed plugins...
Fetching: vagrant-ignition-0.0.3.gem (100%)
Successfully uninstalled vagrant-ignition-0.0.1
Updated 'vagrant-ignition' to version '0.0.3'!
Updated 'vagrant-scp' to version '0.5.7'!
Updated 'vagrant-share' to version '1.1.9'!
Updated 'vagrant-triggers' to version '0.5.3'!
Updated 'vagrant-vbguest' to version '0.14.2'!

8.3.2. Updating PyCharm Community Edition

PyCharm is installed using Ansible. The normal workflow for updating a component
like PyCharm is to test the new version to ensure it works properly, then update
the variables for PyCharm in the Ansible inventory before exporting your old
settings and then running the pycharm role for your development system.

PyCharm keeps all of its state, including settings, breakpoints, indexes, in internal
data stores in a directory specific to the version of PyCharm being used. For example,
PyCharm 2016.2.3 files are kept in $HOME/.PyCharm2016.2. When updating to the
release 2016.3.1, the location changes to $HOME/.PyCharmCE2016.3. You need
to run PyCharm 2016.2.3 to export your settings, then run the new PyCharm
2016.3.1 version to import them.

To export settings, run PyCharm 2016.2.3 and select File>Export
Settings.... A dialog will pop up that allows you to select what to export and
where to export it. You can use the defaults (pay attention to where the exported
setting file is located, since you need to select it in the next step.) Select
Ok to complete the export. See Figure Exporting Settings from PyCharm 2016.2.3.

[image: Exporting Settings from PyCharm 2016.2.3]
Exporting Settings from PyCharm 2016.2.3

After PyCharm has been updated, select File>Import Settings... and select
the .jar file that was created in the previous step and then select Ok.
Again, the defaults can be used for selecting the elements to import.
See Figure Importing Settings to PyCharm 2016.3.1.

[image: Importing Settings from PyCharm 2016.3.1]
Importing Settings to PyCharm 2016.3.1

Once you have completed this process and are successfully using version 2016.3.1,
you can delete the old directory.

$ rm -rf ~/.PyCharm2016.2

9. Backups and Restoration

A good part of ongoing system administration is producing backups of files and
database content that is created after initial system setup and that cannot be
replaced by simply running a playbook again. Things like copies of Git
repositories and the content of the PostgreSQL database used by the Trident
portal are two primary sets of data that you will want to backup, and possibly
more importantly to restore in case of a drive failure or accidental deletion.

Built into the playbooks for Letsencrypt certificate installation as part
of the nginx role, and Trident database tables as part of the
trident-core role, are mechanisms for automatic restoration from
backups. This is very handy for development and testing using
Vagrant virtual machines, since these are typically destroyed and
rebuilt regularly. Restoring from backups helps more quickly get
back to a functional state that possibly would trigger certificate
generation limits (in the case of nginx and Letsencrypt) or
a lot of manual actions in a graphical user interface to set up user
accounts (in the case of the Trident portal).

This section will go through these backup and restoration utilities
and how to use them.

9.1. Backup Directories and Files

A directory is created on DIMS systems to be used for storing backup files.
In production, these files would be copied to tape, to encrypted external
storage (e.g., AWS buckets), to external removable hard drives, etc.

The location for storing these files is /opt/dims/backups (pointed
to by the Ansible global variable dims_backups.) After following
the steps outlined in Chapter Bootstrapping a VM Host as an Ansible Controller, this directory
will be empty:

$ tree /opt/dims/backups/
/opt/dims/backups/

0 directories, 0 files

After completing the steps in Chapter Creating VMs, there will be
two Trident portals (one for development/testing, and the other for production
use) that have initial content put in place by the trident-configure role.

Caution

The trident-configure role is not entirely idempotent in relation to
a running system that is manipulated manually by users and administrators.
That is to say, any configuration changes made through the tcli command
line interface, or the Trident portal interface, are not directly reflected
in the Ansible inventory used to bootstrap the Trident portals. That means that
any changes made will be reverted by the trident-configure role to what
the inventory says they should be (and any new trust groups or mailing lists
created manually will not be put back by the trident-configure role, which
is unaware they exist).

This is an area that needs further work to be completely idempotent for long-term
production systems. In the mean time, be aware of these limitations and only make
configuration changes by setting variables in the inventory files and create
database backups so as to keep copies of database content.

9.2. Creating a Backup

The playbook playbooks/postgresql_backup.yml exists to easily perform the backup
operation using ansible-playbook. The playbook is very simple, as seen here:

This playbook supports stand-alone use of the postgresql_backup.yml
task file to backup the database of a Trident portal installed using
DIMS Ansible playbooks and inventory. The tasks have been separated
to allow their use from within roles.

- name: Backup trident postgresql database
 hosts: '{{ host|default("trident") }}'
 gather_facts: true
 user: root
 vars_files:
 - "{{ playbooks_root }}/vars/global.yml"
 tasks:
 - include: '{{ tasks_path }}/postgresql_backup.yml'

vim: ft=ansible :

By default, the playbook is applied to the trident group:

$ ansible --list-hosts trident
 hosts (2):
 yellow.devops.develop
 purple.devops.develop
$ ansible-playbook /opt/dims/git/ansible-dims-playbooks/playbooks/postgresql_backup.yml

PLAY [Backup trident postgresql database] *************************************

TASK [include] **
Saturday 12 August 2017 20:50:29 -0700 (0:00:00.064) 0:00:00.064 *******
included: /opt/dims/git/ansible-dims-playbooks/tasks/postgresql_backup.yml for
yellow.devops.develop, purple.devops.develop

TASK [Define local postgresql backup directory] *******************************
Saturday 12 August 2017 20:50:30 -0700 (0:00:01.199) 0:00:01.264 *******
ok: [yellow.devops.develop]
ok: [purple.devops.develop]

TASK [debug] **
Saturday 12 August 2017 20:50:31 -0700 (0:00:01.129) 0:00:02.394 *******
ok: [yellow.devops.develop] => {
 "postgresql_backup_dir": "/opt/dims/backups/yellow.devops.develop"
}
ok: [purple.devops.develop] => {
 "postgresql_backup_dir": "/opt/dims/backups/purple.devops.develop"
}

TASK [Define backup_ts timestamp] ***
Saturday 12 August 2017 20:50:32 -0700 (0:00:01.125) 0:00:03.520 *******
ok: [yellow.devops.develop]
ok: [purple.devops.develop]

TASK [Define postgresql_backup_file] **
Saturday 12 August 2017 20:50:34 -0700 (0:00:02.161) 0:00:05.681 *******
ok: [yellow.devops.develop]
ok: [purple.devops.develop]

TASK [Ensure local postgresql backup directory exists] ************************
Saturday 12 August 2017 20:50:35 -0700 (0:00:01.162) 0:00:06.843 *******
changed: [purple.devops.develop -> 127.0.0.1]
changed: [yellow.devops.develop -> 127.0.0.1]

TASK [Create remote temporary directory] **************************************
Saturday 12 August 2017 20:50:37 -0700 (0:00:01.463) 0:00:08.307 *******
changed: [purple.devops.develop]
changed: [yellow.devops.develop]

TASK [Define _tmpdir variable] **
Saturday 12 August 2017 20:50:38 -0700 (0:00:01.635) 0:00:09.943 *******
ok: [yellow.devops.develop]
ok: [purple.devops.develop]

TASK [Create backup of postgresql database] ***********************************
Saturday 12 August 2017 20:50:40 -0700 (0:00:01.129) 0:00:11.072 *******
changed: [purple.devops.develop]
changed: [yellow.devops.develop]

TASK [Fetch postgresql backup file] ***
Saturday 12 August 2017 20:50:42 -0700 (0:00:02.076) 0:00:13.148 *******
changed: [purple.devops.develop]
changed: [yellow.devops.develop]

TASK [Set backup ownership] ***
Saturday 12 August 2017 20:50:43 -0700 (0:00:01.577) 0:00:14.726 *******
changed: [yellow.devops.develop -> 127.0.0.1]
changed: [purple.devops.develop -> 127.0.0.1]

TASK [Remove temporary directory] ***
Saturday 12 August 2017 20:50:45 -0700 (0:00:01.317) 0:00:16.044 *******
changed: [yellow.devops.develop]
changed: [purple.devops.develop]

PLAY RECAP **
purple.devops.develop : ok=12 changed=6 unreachable=0 failed=0
yellow.devops.develop : ok=12 changed=6 unreachable=0 failed=0

Saturday 12 August 2017 20:50:46 -0700 (0:00:01.344) 0:00:17.388 *******
===
Define backup_ts timestamp -- 2.16s
Create backup of postgresql database ------------------------------------ 2.08s
Create remote temporary directory --------------------------------------- 1.64s
Fetch postgresql backup file -- 1.58s
Ensure local postgresql backup directory exists ------------------------- 1.46s
Remove temporary directory -- 1.34s
Set backup ownership -- 1.32s
include --- 1.20s
Define postgresql_backup_file --- 1.16s
Define local postgresql backup directory -------------------------------- 1.13s
Define _tmpdir variable --- 1.13s
debug --- 1.13s

The backups will now show up, each in their own host’s directory tree:

$ tree /opt/dims/backups/
/opt/dims/backups/
├── purple.devops.develop
│ └── postgresql_2017-08-12T20:50:33PDT.pgdmp.bz2
└── yellow.devops.develop
 └── postgresql_2017-08-12T20:50:33PDT.pgdmp.bz2

2 directories, 2 files

There is a similar playbook for backing up the /etc/letsencrypt directory
with all of its certificate registration and archive history data.

This playbook supports stand-alone use of the letsencrypt_backup.yml
task file to backup the letsencrypt certificate store directory.
The tasks have been separated to allow their use from within roles.
#
See the tasks/letsencrypt_backup.yml file for usage.

- name: Backup letsencrypt certificate store
 hosts: '{{ host|default("nginx") }}'
 gather_facts: true
 user: root
 vars_files:
 - "{{ playbooks_root }}/vars/global.yml"
 tasks:
 - include: '{{ tasks_path }}/letsencrypt_backup.yml'

vim: ft=ansible :

The default for this playbook is the nginx group. If you do not have
an nginx group, or want to select a different group, define the variable
host on the command line:

$ ansible-playbook $PBR/playbooks/letsencrypt_backup.yml -e host=trident

PLAY [Backup letsencrypt certificate store] ***********************************

TASK [include] **
Saturday 12 August 2017 22:55:26 -0700 (0:00:00.063) 0:00:00.063 *******
included: /opt/dims/git/ansible-dims-playbooks/tasks/letsencrypt_backup.yml
for yellow.devops.develop, purple.devops.develop

TASK [Define _default_backups_dir] **
Saturday 12 August 2017 22:55:27 -0700 (0:00:01.200) 0:00:01.264 *******
ok: [yellow.devops.develop]
ok: [purple.devops.develop]

TASK [Create temporary directory for cert backup] *****************************
Saturday 12 August 2017 22:55:28 -0700 (0:00:01.126) 0:00:02.391 *******
changed: [yellow.devops.develop]
changed: [purple.devops.develop]

TASK [Define _tmpdir variable] **
Saturday 12 August 2017 22:55:30 -0700 (0:00:01.655) 0:00:04.046 *******
ok: [yellow.devops.develop]
ok: [purple.devops.develop]

TASK [Define backup_ts timestamp] ***
Saturday 12 August 2017 22:55:31 -0700 (0:00:01.123) 0:00:05.170 *******
ok: [yellow.devops.develop]
ok: [purple.devops.develop]

TASK [Define certbot_backup_file] ***
Saturday 12 August 2017 22:55:33 -0700 (0:00:02.157) 0:00:07.328 *******
ok: [yellow.devops.develop]
ok: [purple.devops.develop]

TASK [Create backup of letsencrypt certificates] ******************************
Saturday 12 August 2017 22:55:34 -0700 (0:00:01.123) 0:00:08.452 *******
changed: [yellow.devops.develop]
changed: [purple.devops.develop]

TASK [Ensure local cert directory exists] *************************************
Saturday 12 August 2017 22:55:36 -0700 (0:00:01.600) 0:00:10.052 *******
ok: [purple.devops.develop -> 127.0.0.1]
ok: [yellow.devops.develop -> 127.0.0.1]

TASK [Fetch backup copy of letsencrypt directory] *****************************
Saturday 12 August 2017 22:55:38 -0700 (0:00:01.465) 0:00:11.517 *******
changed: [yellow.devops.develop]
changed: [purple.devops.develop]

TASK [Note success in backing up certs] ***************************************
Saturday 12 August 2017 22:55:39 -0700 (0:00:01.488) 0:00:13.006 *******
ok: [yellow.devops.develop]
ok: [purple.devops.develop]

TASK [Set backup ownership] ***
Saturday 12 August 2017 22:55:40 -0700 (0:00:01.138) 0:00:14.145 *******
changed: [yellow.devops.develop -> 127.0.0.1]
changed: [purple.devops.develop -> 127.0.0.1]

TASK [Remove temporary directory] ***
Saturday 12 August 2017 22:55:41 -0700 (0:00:01.321) 0:00:15.467 *******
changed: [yellow.devops.develop]
changed: [purple.devops.develop]

TASK [fail] ***
Saturday 12 August 2017 22:55:43 -0700 (0:00:01.348) 0:00:16.816 *******
skipping: [yellow.devops.develop]
skipping: [purple.devops.develop]

PLAY RECAP **
purple.devops.develop : ok=12 changed=5 unreachable=0 failed=0
yellow.devops.develop : ok=12 changed=5 unreachable=0 failed=0

Saturday 12 August 2017 22:55:44 -0700 (0:00:01.103) 0:00:17.920 *******
===
Define backup_ts timestamp -- 2.16s
Create temporary directory for cert backup ------------------------------ 1.66s
Create backup of letsencrypt certificates ------------------------------- 1.60s
Fetch backup copy of letsencrypt directory ------------------------------ 1.49s
Ensure local cert directory exists -------------------------------------- 1.47s
Remove temporary directory -- 1.35s
Set backup ownership -- 1.32s
include --- 1.20s
Note success in backing up certs -- 1.14s
Define _default_backups_dir --- 1.13s
Define certbot_backup_file -- 1.12s
Define _tmpdir variable --- 1.12s
fail -- 1.10s

You will now have a backup of the Letsencrypt certificates for both
yellow and purple:

$ tree /opt/dims/backups/
/opt/dims/backups/
├── purple.devops.develop
│ ├── letsencrypt_2017-08-12T22:55:32PDT.tgz
│ └── postgresql_2017-08-12T20:50:33PDT.pgdmp.bz2
└── yellow.devops.develop
 ├── letsencrypt_2017-08-12T22:55:32PDT.tgz
 └── postgresql_2017-08-12T20:50:33PDT.pgdmp.bz2

2 directories, 4 files

9.3. Restoring from a Backup

To restore the Trident PostgreSQL backups, use the playbook
playbooks/postgresql_restore.yml. This playbook is similar to the backup
playbook, however it has no default (you must specify the host or group you
want to restore explicitly).

This playbook supports stand-alone use of the postgresql_restore.yml
task file to restore the database of a Trident portal installed
using DIMS Ansible playbooks and inventory. The tasks have been
separated to allow their use from within roles.

- name: Restore trident postgresql database
 hosts: '{{ host }}'
 gather_facts: true
 user: root
 vars_files:
 - "{{ playbooks_root }}/vars/global.yml"
 tasks:
 - include: '{{ tasks_path }}/postgresql_restore.yml'

vim: ft=ansible :

To invoke this task file from within the trident-core role, which will
pre-populate the Trident PostgreSQL database from a backup rather than
running tsetup, set the variable postgresql_backup_restorefrom
to point to a specific backup file, or to latest to have the most recent
backup be applied.

There is no restore playbook for Letsencrypt certificates, however if you
define the variable certbot_backup_restorefrom to a specific backup
file path, or to latest, it will be restored when the nginx
role is next applied.

9.4. Scheduled Backups

The last section showed how to manually trigger backups of Trident’s
PostgreSQL database or Letsencrypt certificates for NGINX, using
playbooks.

These tasks can be saved in crontab files to schedule backups for
whatever frequency is desired. This is not automated at this point
in time.

9.5. Other System Backups

All other backup operations will need to be performed manually, or
scheduled using crontab as discussed in the last section.

Note

If you do create a crontab entry to perform backups, note the size
of the backups and prepare to also prune older backups so as to not
fill your hard drive. This would be a nice feature to add when
resources allow it.

10. License

Berkeley Three Clause License
=============================

Copyright (c) 2014-2017 University of Washington. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

11. Appendices

11.1. Quick Steps to Restarting Squid Proxy Container

Downloading and installing several hundred packages per host while testing
provisioning of multiple Vagrant virtual machines can take several hours to
perform over a 1-5 Mbps network connection. Even a single Vagrant can take
around 45 minutes to fully provision after a vagrant destroy. Since
this task may need to be done over and over again, even for just one
system, the process becomes very tedious and time consuming.

To minimize the number of remote downloads, a local proxy can help immensely.
The DIMS project utilizes a squid-deb-proxy running in a Docker container
on VM host systems to allow all of the local VMs to take advantage of a single
cacheing proxy on the host. This significantly improves performance (cutting
the time down to just a few minutes), but this comes at a cost in occassional
instability due to the combination of iptables firewall rules that must
contain a DOCKER chain for Docker, which attempts to keep the
squid-deb-proxy container running across reboots of the VM host can result
in the the container effectively “hanging” from time to time. This manifests
as a random failure in an Ansible task that is trying to use the configured
proxy (e.g., see the python-virtualenv build failure in Section
_using_dims_functions_in_bats.)

A bats test exists to test the proxy:

$ test.runner integration/proxy
[+] Running test integration/proxy
 ✗ [S][EV] HTTP download test (using wget, w/proxy if configured)
 (in test file integration/proxy.bats, line 16)
 `[! -z "$(wget -q -O - http://http.us.debian.org/debian/dists/jessie/Release | grep non-free/source/Release 2>/dev/null)"]' failed
 ✗ [S][EV] HTTPS download test (using wget, w/proxy if configured)
 (in test file integration/proxy.bats, line 26)
 `[! -z "$(wget -q -O - https://packages.debian.org/jessie/amd64/0install/filelist | grep 0install 2>/dev/null)"]' failed

2 tests, 2 failures

This error will manifest itself sometimes when doing development
work on Vagrants, as can be seen here:

 $ cd /vm/run/purple
 $ make up && make DIMS_ANSIBLE_ARGS="--tags base" reprovision-local
 [+] Creating Vagrantfile
 . . .
 TASK [base : Only "update_cache=yes" if >3600s since last update (Debian)] ****
 Wednesday 16 August 2017 16:55:35 -0700 (0:00:01.968) 0:00:48.823 ******
 fatal: [purple.devops.local]: FAILED! => {
 "changed": false,
 "failed": true
 }

 MSG:

 Failed to update apt cache.

 RUNNING HANDLER [base : update timezone] **************************************
 Wednesday 16 August 2017 16:56:18 -0700 (0:00:43.205) 0:01:32.028 ******

 PLAY RECAP **
 purple.devops.local : ok=15 changed=7 unreachable=0 failed=1

 Wednesday 16 August 2017 16:56:18 -0700 (0:00:00.000) 0:01:32.029 ******
 ===
 base : Only "update_cache=yes" if >3600s since last update (Debian) ---- 43.21s
 . . .
 make[1]: *** [provision] Error 2
 make[1]: Leaving directory `/vm/run/purple'
 make: *** [reprovision-local] Error 2

When it fails like this, it usually means that iptables must be restarted,
followed by restarting the docker service. That usually is enough to fix
the problem. If not, it may be necessary to also restart the squid-deb-proxy
container.

Note

The cause of this the recreation of the DOCKER chain, which removes the rules added by
Docker, when restarting just the iptables-persistent service as can be seen here:

$ sudo iptables -nvL | grep "Chain DOCKER"
Chain DOCKER (2 references)
Chain DOCKER-ISOLATION (1 references)
$ sudo iptables-persistent restart
sudo: iptables-persistent: command not found
$ sudo service iptables-persistent restart
 * Loading iptables rules...
 * IPv4...
 * IPv6...
 ...done.
$ sudo iptables -nvL | grep "Chain DOCKER"
Chain DOCKER (0 references)

Restarting the docker service will restore the rules for containers
that Docker is keeping running across restarts.

$ sudo service docker restart
docker stop/waiting
docker start/running, process 18276
$ sudo iptables -nvL | grep "Chain DOCKER"
Chain DOCKER (2 references)
Chain DOCKER-ISOLATION (1 references)

The solution for this is to notify a special handler that conditionally
restarts the docker service after restarting iptables in order to
re-establish the proper firewall rules. The handler is shown here:

 - name: conditional restart docker
 service: name=docker state=restarted
 when: hostvars[inventory_hostname].ansible_docker0 is defined

Use of the handler (from roles/base/tasks/main.yml) is shown here:

 - name: iptables v4 rules (Debian)
 template:
 src: '{{ item }}'
 dest: /etc/iptables/rules.v4
 owner: '{{ root_user }}'
 group: '{{ root_group }}'
 mode: 0o600
 validate: '/sbin/iptables-restore --test %s'
 with_first_found:
 - files:
 - '{{ iptables_rules }}'
 - rules.v4.{{ inventory_hostname }}.j2
 - rules.v4.category-{{ category }}.j2
 - rules.v4.deployment-{{ deployment }}.j2
 - rules.v4.j2
 paths:
 - '{{ dims_private }}/roles/{{ role_name }}/templates/iptables/'
 - iptables/
 notify:
 - "restart iptables ({{ ansible_distribution }}/{{ ansible_distribution_release }})"
 - "conditional restart docker"
 become: yes
 when: ansible_os_family == "Debian"
 tags: [base, config, iptables]

A tag iptables exists to allow regeneration of the iptables rules and
perform the proper restarting sequence, which should be used instead of just
restarting the iptables-persistent service manually. Use ansible-playbook
instead (e.g., run.playbook --tags iptables) after making changes to
variables that affect iptables rules.

$ cd $GIT/dims-dockerfiles/dockerfiles/squid-deb-proxy

$ for S in iptables-persistent docker; do sudo service $S restart; done
 * Loading iptables rules...
 * IPv4...
 * IPv6...
 ...done.
docker stop/waiting
docker start/running, process 22065

$ make rm
docker stop dims.squid-deb-proxy
test.runner -dims.squid-deb-proxy
docker rm dims.squid-deb-proxy
-dims.squid-deb-proxy

$ make daemon
docker run \
 --name dims.squid-deb-proxy \
 --restart unless-stopped \
 -v /vm/cache/apt:/cachedir -p 127.0.0.1:8000:8000 squid-deb-proxy:0.7 2>&1 >/dev/null &
2017/07/22 19:31:29| strtokFile: /etc/squid-deb-proxy/autogenerated/pkg-blacklist-regexp.acl not found
2017/07/22 19:31:29| Warning: empty ACL: acl blockedpkgs urlpath_regex "/etc/squid-deb-proxy/autogenerated/pkg-blacklist-regexp.acl"

The test should now succeed:

$ test.runner --level '*' --match proxy
[+] Running test integration/proxy
 ✓ [S][EV] HTTP download test (using wget, w/proxy if configured)
 ✓ [S][EV] HTTPS download test (using wget, w/proxy if configured)

2 tests, 0 failures

11.2. Recovering From Operating System Corruption

Part of the reason for using a Python virtual environment for development
is to encapsulate the development Python and its libraries from the system
Python and its libraries, in case a failed upgrade breaks Python. Since
Python is a primary dependency of Ansible, a broken system Python is
a Very Bad Thing. ™

For example, the following change was attempted to try to upgrade
pip packages during application of the base role. Here are
the changes:

$ git diff
diff --git a/roles/base/tasks/main.yml b/roles/base/tasks/main.yml
index 3ce57d8..182e7d8 100644
--- a/roles/base/tasks/main.yml
+++ b/roles/base/tasks/main.yml
@@ -717,7 +717,7 @@
 - name: Ensure pip installed for system python
 apt:
 name: '{{ item }}'
- state: installed
+ state: latest
 with_items:
 - python-pip
 become: yes
@@ -725,7 +725,7 @@
 tags: [base, config]

 - name: Ensure required system python packages present
- shell: 'pip install {{ item }}'
+ shell: 'pip install -U {{ item }}'
 with_items:
 - urllib3
 - pyOpenSSL

Applying the base role against two systems resulted in a
series of error messages.

$ ansible-playbook master.yml --limit trident --tags base

. . .

PLAY [Configure host "purple.devops.local"] ***********************************

. . .

TASK [base : Ensure required system python packages present] ******************
Thursday 17 August 2017 10:36:13 -0700 (0:00:01.879) 0:02:22.637 *******
changed: [purple.devops.local] => (item=urllib3)
failed: [purple.devops.local] (item=pyOpenSSL) => {
 "changed": true,
 "cmd": "pip install -U pyOpenSSL",
 "delta": "0:00:07.516760",
 "end": "2017-08-17 10:36:24.256121",
 "failed": true,
 "item": "pyOpenSSL",
 "rc": 1,
 "start": "2017-08-17 10:36:16.739361"
}

STDOUT:

Downloading/unpacking pyOpenSSL from https://pypi.python.org/packages/41/bd/751560b317222ba6b6d2e7663a990ac36465aaa026621c6057db130e2faf/pyOpenSSL-17.2.0-py2.py3-none-any.whl#md5=0f8a4b784b6
81231f03edc8dd28612df
Downloading/unpacking six>=1.5.2 from https://pypi.python.org/packages/c8/0a/b6723e1bc4c516cb687841499455a8505b44607ab535be01091c0f24f079/six-1.10.0-py2.py3-none-any.whl#md5=3ab558cf5d4f7a72
611d59a81a315dc8 (from pyOpenSSL)
 Downloading six-1.10.0-py2.py3-none-any.whl
Downloading/unpacking cryptography>=1.9 (from pyOpenSSL)
 Running setup.py (path:/tmp/pip-build-FCbUwT/cryptography/setup.py) egg_info for package cryptography

 no previously-included directories found matching 'docs/_build'
 warning: no previously-included files matching '*' found under directory 'vectors'
Downloading/unpacking idna>=2.1 (from cryptography>=1.9->pyOpenSSL)
Downloading/unpacking asn1crypto>=0.21.0 (from cryptography>=1.9->pyOpenSSL)
Downloading/unpacking enum34 (from cryptography>=1.9->pyOpenSSL)
 Downloading enum34-1.1.6-py2-none-any.whl
Downloading/unpacking ipaddress (from cryptography>=1.9->pyOpenSSL)
 Downloading ipaddress-1.0.18-py2-none-any.whl
Downloading/unpacking cffi>=1.7 (from cryptography>=1.9->pyOpenSSL)
 Running setup.py (path:/tmp/pip-build-FCbUwT/cffi/setup.py) egg_info for package cffi

Downloading/unpacking pycparser from https://pypi.python.org/packages/8c/2d/aad7f16146f4197a11f8e91fb81df177adcc2073d36a17b1491fd09df6ed/pycparser-2.18.tar.gz#md5=72370da54358202a60130e223d4
88136 (from cffi>=1.7->cryptography>=1.9->pyOpenSSL)
 Running setup.py (path:/tmp/pip-build-FCbUwT/pycparser/setup.py) egg_info for package pycparser

 warning: no previously-included files matching 'yacctab.*' found under directory 'tests'
 warning: no previously-included files matching 'lextab.*' found under directory 'tests'
 warning: no previously-included files matching 'yacctab.*' found under directory 'examples'
 warning: no previously-included files matching 'lextab.*' found under directory 'examples'
Installing collected packages: pyOpenSSL, six, cryptography, idna, asn1crypto, enum34, ipaddress, cffi, pycparser
 Found existing installation: pyOpenSSL 0.14
 Not uninstalling pyOpenSSL at /usr/lib/python2.7/dist-packages, owned by OS
 Found existing installation: six 1.8.0
 Not uninstalling six at /usr/lib/python2.7/dist-packages, owned by OS
 Found existing installation: cryptography 0.6.1
 Not uninstalling cryptography at /usr/lib/python2.7/dist-packages, owned by OS
 Running setup.py install for cryptography

 Installed /tmp/pip-build-FCbUwT/cryptography/cffi-1.10.0-py2.7-linux-x86_64.egg
 Traceback (most recent call last):
 File "<string>", line 1, in <module>
 File "/tmp/pip-build-FCbUwT/cryptography/setup.py", line 312, in <module>
 **keywords_with_side_effects(sys.argv)
 File "/usr/lib/python2.7/distutils/core.py", line 111, in setup
 _setup_distribution = dist = klass(attrs)
 File "/usr/lib/python2.7/dist-packages/setuptools/dist.py", line 266, in __init__
 _Distribution.__init__(self,attrs)
 File "/usr/lib/python2.7/distutils/dist.py", line 287, in __init__
 self.finalize_options()
 File "/usr/lib/python2.7/dist-packages/setuptools/dist.py", line 301, in finalize_options
 ep.load()(self, ep.name, value)
 File "/usr/lib/python2.7/dist-packages/pkg_resources.py", line 2190, in load
 ['__name__'])
 ImportError: No module named setuptools_ext
 Complete output from command /usr/bin/python -c "import setuptools, tokenize;__file__='/tmp/pip-build-FCbUwT/cryptography/setup.py';exec(compile(getattr(tokenize, 'open', open)(__file__)
.read().replace('\r\n', '\n'), __file__, 'exec'))" install --record /tmp/pip-qKjzie-record/install-record.txt --single-version-externally-managed --compile:

Installed /tmp/pip-build-FCbUwT/cryptography/cffi-1.10.0-py2.7-linux-x86_64.egg

Traceback (most recent call last):

 File "<string>", line 1, in <module>

 File "/tmp/pip-build-FCbUwT/cryptography/setup.py", line 312, in <module>

 **keywords_with_side_effects(sys.argv)

 File "/usr/lib/python2.7/distutils/core.py", line 111, in setup

 _setup_distribution = dist = klass(attrs)

 File "/usr/lib/python2.7/dist-packages/setuptools/dist.py", line 266, in __init__

 _Distribution.__init__(self,attrs)

 File "/usr/lib/python2.7/distutils/dist.py", line 287, in __init__

 self.finalize_options()

 File "/usr/lib/python2.7/dist-packages/setuptools/dist.py", line 301, in finalize_options

 ep.load()(self, ep.name, value)

 File "/usr/lib/python2.7/dist-packages/pkg_resources.py", line 2190, in load

 ['__name__'])

ImportError: No module named setuptools_ext

--
 Can't roll back cryptography; was not uninstalled
Cleaning up...
Command /usr/bin/python -c "import setuptools, tokenize;__file__='/tmp/pip-build-FCbUwT/cryptography/setup.py';exec(compile(getattr(tokenize, 'open', open)(__file__).read().replace('\r\n', '
\n'), __file__, 'exec'))" install --record /tmp/pip-qKjzie-record/install-record.txt --single-version-externally-managed --compile failed with error code 1 in /tmp/pip-build-FCbUwT/cryptogra
phy
Storing debug log for failure in /root/.pip/pip.log

. . .

PLAY RECAP **
purple.devops.local : ok=60 changed=35 unreachable=0 failed=1

Thursday 17 August 2017 10:36:29 -0700 (0:00:00.001) 0:02:38.799 *******
===
base : Ensure required system python packages present ------------------ 16.16s
base : Ensure dims (system-level) subdirectories exist ----------------- 15.85s
base : Only "update_cache=yes" if >3600s since last update (Debian) ----- 5.65s
base : conditional restart docker --------------------------------------- 5.60s
base : Make sure required APT packages are present (Debian) ------------- 2.14s
base : Clean up dnsmasq build artifacts --------------------------------- 2.09s
base : Make sure blacklisted packages are absent (Debian) --------------- 2.03s
base : Check to see if https_proxy is working --------------------------- 1.99s
base : Log start of 'base' role --- 1.95s
base : Make backports present for APT on Debian jessie ------------------ 1.89s
base : Ensure pip installed for system python --------------------------- 1.88s
base : Only "update_cache=yes" if >3600s since last update -------------- 1.85s
base : Make dbus-1 development libraries present ------------------------ 1.85s
base : iptables v4 rules (Debian) --------------------------------------- 1.84s
base : iptables v6 rules (Debian) --------------------------------------- 1.84s
base : Make full dnsmasq package present (Debian, not Trusty) ----------- 1.82s
base : Create base /etc/hosts file (Debian, RedHat, CoreOS) ------------- 1.64s
base : Make /etc/rsyslog.d/49-consolidation.conf present ---------------- 1.63s
base : Make dnsmasq configuration present on Debian --------------------- 1.60s
base : Ensure DIMS system shell init hook is present (Debian, CoreOS) --- 1.56s

The base role is supposed to ensure the operating system has the
fundamental settings and pre-requisites necessary for all other DIMS
roles, so applying that role should hopefully fix things, right?

$ ansible-playbook master.yml --limit trident --tags base

. . .

PLAY [Configure host "purple.devops.local"] ***********************************

. . .

TASK [base : Make sure blacklisted packages are absent (Debian)] **************
Thursday 17 August 2017 11:05:08 -0700 (0:00:01.049) 0:00:30.456 *******
...ignoring
An exception occurred during task execution. To see the full traceback, use
-vvv. The error was: AttributeError: 'FFI' object has no attribute 'new_allocator'
failed: [purple.devops.local] (item=[u'modemmanager', u'resolvconf', u'sendmail']) => {
 "failed": true,
 "item": [
 "modemmanager",
 "resolvconf",
 "sendmail"
],
 "module_stderr": "Traceback (most recent call last):\n File \"/tmp/ansible_ehzfMx/
 ansible_module_apt.py\", line 239, in <module>\n from ansible.module_utils.urls import fetch_url\n
File \"/tmp/ansible_ehzfMx/ansible_modlib.zip/ansible/module_utils/urls.py\", line 153,
in <module>\n File \"/usr/local/lib/python2.7/dist-packages/urllib3/contrib/pyopenssl.py\", line 46,
in <module>\n import OpenSSL.SSL\n File \"/usr/local/lib/python2.7/dist-packages/OpenSSL/__init__.py\",
line 8, in <module>\n from OpenSSL import rand, crypto, SSL\n File \"/usr/local/lib/
python2.7/dist-packages/OpenSSL/rand.py\", line 10, in <module>\n from OpenSSL._util
import (\n File \"/usr/local/lib/python2.7/dist-packages/OpenSSL/_util.py\", line 18, in
<module>\n no_zero_allocator = ffi.new_allocator(should_clear_after_alloc=False)\n
AttributeError: 'FFI' object has no attribute 'new_allocator'\n",
 "module_stdout": "",
 "rc": 1
}

MSG:

MODULE FAILURE

TASK [base : Only "update_cache=yes" if >3600s since last update (Debian)] ****
Thursday 17 August 2017 11:05:10 -0700 (0:00:01.729) 0:00:32.186 *******
An exception occurred during task execution. To see the full traceback, use -vvv.
The error was: AttributeError: 'FFI' object has no attribute 'new_allocator'
fatal: [purple.devops.local]: FAILED! => {
 "changed": false,
 "failed": true,
 "module_stderr": "Traceback (most recent call last):\n File \"/tmp/ansible_ganqlZ/
 ansible_module_apt.py\", line 239, in <module>\n from ansible.module_utils.urls import fetch_url\n
File \"/tmp/ansible_ganqlZ/ansible_modlib.zip/ansible/module_utils/urls.py\", line 153, in
<module>\n File \"/usr/local/lib/python2.7/dist-packages/urllib3/contrib/pyopenssl.py\", line 46,
in <module>\n import OpenSSL.SSL\n File \"/usr/local/lib/python2.7/dist-packages/
OpenSSL/__init__.py\", line 8, in <module>\n from OpenSSL import rand, crypto, SSL\n
File \"/usr/local/lib/python2.7/dist-packages/OpenSSL/rand.py\", line 10, in <module>\n
from OpenSSL._util import (\n File \"/usr/local/lib/python2.7/dist-packages/OpenSSL/_util.py\",
line 18, in <module>\n no_zero_allocator = ffi.new_allocator(should_clear_after_alloc=False)\n
AttributeError: 'FFI' object has no attribute 'new_allocator'\n",
 "module_stdout": "",
 "rc": 1
}

MSG:

MODULE FAILURE

RUNNING HANDLER [base : update timezone] **************************************
Thursday 17 August 2017 11:05:11 -0700 (0:00:01.530) 0:00:33.716 *******

PLAY RECAP **
purple.devops.local : ok=14 changed=7 unreachable=0 failed=1

Thursday 17 August 2017 11:05:11 -0700 (0:00:00.001) 0:00:33.717 *******
===
base : Log start of 'base' role --- 1.88s
base : Make sure blacklisted packages are absent (Debian) --------------- 1.73s
base : Create base /etc/hosts file (Debian, RedHat, CoreOS) ------------- 1.55s
base : Only "update_cache=yes" if >3600s since last update (Debian) ----- 1.53s
base : Set timezone variables (Debian) ---------------------------------- 1.53s
base : iptables v6 rules (Debian) --------------------------------------- 1.48s
base : iptables v4 rules (Debian) --------------------------------------- 1.48s
base : Ensure getaddrinfo configuration is present (Debian) ------------- 1.48s
base : Check to see if dims.logger exists yet --------------------------- 1.31s
base : Set domainname (Debian, CoreOS) ---------------------------------- 1.17s
base : Check to see if gpk-update-viewer is running on Ubuntu ----------- 1.16s
base : Set hostname (runtime) (Debian, CoreOS) -------------------------- 1.16s
base : Make /etc/hostname present (Debian, CoreOS) ---------------------- 1.16s
base : Disable IPv6 in kernel on non-CoreOS ----------------------------- 1.16s
debug : include --- 1.07s
base : iptables v4 rules (CoreOS) --------------------------------------- 1.06s
base : iptables v6 rules (CoreOS) --------------------------------------- 1.06s
debug : debug --- 1.05s
debug : debug --- 1.05s
debug : debug --- 1.05s

Since Debian apt is a Python program, it requires Python to install
packages. The Python packages are corrupted, so Python will not work
properly. This creates a deadlock condition. There is another way to
install Python packages, however, so it can be used via Ansible ad-hoc
mode:

$ ansible -m shell --become -a 'easy_install -U cffi' trident
yellow.devops.local | SUCCESS | rc=0 >>
Searching for cffi
Reading https://pypi.python.org/simple/cffi/
Best match: cffi 1.10.0
Downloading https://pypi.python.org/packages/5b/b9/790f8eafcdab455bcd3bd908161f802c9ce5adbf702a83aa7712fcc345b7/cffi-1.10.0.tar.gz#md5=2b5fa41182ed0edaf929a789e602a070
Processing cffi-1.10.0.tar.gz
Writing /tmp/easy_install-RmOJBU/cffi-1.10.0/setup.cfg
Running cffi-1.10.0/setup.py -q bdist_egg --dist-dir /tmp/easy_install-RmOJBU/cffi-1.10.0/egg-dist-tmp-lNCOck
compiling '_configtest.c':
__thread int some_threadlocal_variable_42;

x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fno-strict-aliasing -D_FORTIFY_SOURCE=2 -g -fstack-protector-strong -Wformat -Werror=format-security -fPIC -c
 _configtest.c -o _configtest.o
success!
removing: _configtest.c _configtest.o
compiling '_configtest.c':
int main(void) { __sync_synchronize(); return 0; }

x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fno-strict-aliasing -D_FORTIFY_SOURCE=2 -g -fstack-protector-strong -Wformat -Werror=format-security -fPIC -c
 _configtest.c -o _configtest.o
x86_64-linux-gnu-gcc -pthread _configtest.o -o _configtest
success!
removing: _configtest.c _configtest.o _configtest
Adding cffi 1.10.0 to easy-install.pth file

Installed /usr/local/lib/python2.7/dist-packages/cffi-1.10.0-py2.7-linux-x86_64.egg
Processing dependencies for cffi
Finished processing dependencies for cffi

purple.devops.local | SUCCESS | rc=0 >>
Searching for cffi
Reading https://pypi.python.org/simple/cffi/
Best match: cffi 1.10.0
Downloading https://pypi.python.org/packages/5b/b9/790f8eafcdab455bcd3bd908161f802c9ce5adbf702a83aa7712fcc345b7/cffi-1.10.0.tar.gz#md5=2b5fa41182ed0edaf929a789e602a070
Processing cffi-1.10.0.tar.gz
Writing /tmp/easy_install-fuS4hd/cffi-1.10.0/setup.cfg
Running cffi-1.10.0/setup.py -q bdist_egg --dist-dir /tmp/easy_install-fuS4hd/cffi-1.10.0/egg-dist-tmp-nOgko4
compiling '_configtest.c':
__thread int some_threadlocal_variable_42;

x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fno-strict-aliasing -D_FORTIFY_SOURCE=2 -g -fstack-protector-strong -Wformat -Werror=format-security -fPIC -c
 _configtest.c -o _configtest.o
success!
removing: _configtest.c _configtest.o
compiling '_configtest.c':
int main(void) { __sync_synchronize(); return 0; }

x86_64-linux-gnu-gcc -pthread -DNDEBUG -g -fwrapv -O2 -Wall -Wstrict-prototypes -fno-strict-aliasing -D_FORTIFY_SOURCE=2 -g -fstack-protector-strong -Wformat -Werror=format-security -fPIC -c
 _configtest.c -o _configtest.o
x86_64-linux-gnu-gcc -pthread _configtest.o -o _configtest
success!
removing: _configtest.c _configtest.o _configtest
Adding cffi 1.10.0 to easy-install.pth file

Installed /usr/local/lib/python2.7/dist-packages/cffi-1.10.0-py2.7-linux-x86_64.egg
Processing dependencies for cffi
Finished processing dependencies for cffi

Now we can back out the addition of the -U flag that caused
the corruption and apply the base role to the two hosts using
the master.yml playbook.

$ ansible-playbook master.yml --limit trident --tags base

. . .

PLAY [Configure host "purple.devops.local"] ***********************************

. . .

PLAY [Configure host "yellow.devops.local"] ***********************************

. . .

PLAY RECAP **
purple.devops.local : ok=136 changed=29 unreachable=0 failed=0
yellow.devops.local : ok=139 changed=53 unreachable=0 failed=0

Thursday 17 August 2017 11:20:08 -0700 (0:00:01.175) 0:10:03.307 *******
===
base : Make defined bats tests present --------------------------------- 29.18s
base : Make defined bats tests present --------------------------------- 28.95s
base : Ensure dims (system-level) subdirectories exist ----------------- 15.89s
base : Ensure dims (system-level) subdirectories exist ----------------- 15.84s
base : Ensure required system python packages present ------------------- 8.81s
base : Make sure common (non-templated) BASH scripts are present -------- 8.79s
base : Make sure common (non-templated) BASH scripts are present -------- 8.74s
base : Ensure required system python packages present ------------------- 8.71s
base : Make subdirectories for test categories present ------------------ 6.84s
base : Make links to helper functions present --------------------------- 6.83s
base : Make subdirectories for test categories present ------------------ 6.83s
base : Make links to helper functions present --------------------------- 6.81s
base : Ensure bashrc additions are present ------------------------------ 4.63s
base : Ensure bashrc additions are present ------------------------------ 4.59s
base : Only "update_cache=yes" if >3600s since last update (Debian) ----- 4.45s
base : Make sure common (non-templated) Python scripts are present ------ 3.77s
base : Make sure common (non-templated) Python scripts are present ------ 3.77s
base : conditional restart docker --------------------------------------- 3.17s
base : Make sure common (templated) scripts are present ----------------- 2.96s
base : Make sure common (templated) scripts are present ----------------- 2.94s

In this case, the systems are now back to a functional state and the
disruptive change backed out. Were these Vagrants, the problem of a
broken system is lessened, so testing should always be done first
on throw-away VMs. But on those occassions where something goes wrong
on “production” hosts, Ansible ad-hoc mode is a powerful debugging
and corrective capability.

11.3. Advanced Ansible Tasks or Jinja Templating

This section includes some advanced uses of Ansible task declaration and/or
Jinja templating that may be difficult to learn from Ansible documentation
or other sources. Some useful resources that were identified during the
DIMS Project are listed in Section bestpractices.

11.3.1. Multi-line fail or debug Output

There are times when it is necessary to produce a long message
in a fail or debug play. An answer to the stackoverflow
post In YAML, how do I break a string over multiple lines? [https://stackoverflow.com/questions/3790454/in-yaml-how-do-i-break-a-string-over-multiple-lines]
includes multiple ways to do this. Here is one of them in action
in the virtualbox role:

File: roles/virtualbox/tasks/main.yml

Note: You can't just run 'vboxmanage list runningvms' to get
a list of running VMs, unless running as the user that started
the VMs. (Virtualbox keeps state on a per-user basis.)
Instead, we are looking for running processes.

- name: Look for running VM guests
 shell: "ps -Ao user,pid,cmd|egrep '^USER|virtualbox/VBox.* --startvm'|grep -v ' egrep '"
 register: _vbox_result
 delegate_to: '{{ inventory_hostname }}'
 tags: [virtualbox, packages]

- name: Register number of running VM guests
 set_fact:
 _running_vms: '{{ ((_vbox_result.stdout_lines|length) - 1) }}'
 when: _vbox_result is defined
 tags: [virtualbox, packages]

- block:
 - fail: msg='Could not determine number of running VMs'
 when: _vbox_result is not defined or _running_vms is not defined
 tags: [virtualbox, packages]

 rescue:
 - name: Register failure
 set_fact:
 _running_vms: -1
 tags: [virtualbox, packages]

- fail:
 msg: |
 Found {{ _running_vms }} running Virtualbox VM{{ (_running_vms|int == 1)|ternary("","s") }}.
 Virtualbox cannot be updated while VMs are running.
 Please halt or suspend {{ (_running_vms|int == 1)|ternary("this VM","these VMs") }} and apply this role again.
 {% raw %}{% endraw %}
 {% for line in _vbox_result.stdout_lines|default([]) %}
 {{ line }}
 {% endfor %}
 when: _running_vms is defined and _running_vms|int >= 1
 tags: [virtualbox, packages]

- include: virtualbox.yml
 when: _running_vms is defined and _running_vms|int == 0
 tags: [virtualbox, packages]

vim: ft=ansible :

When this code is triggered, the output is now clean and clear about what
to do.

TASK [virtualbox : fail] ***
task path: /home/dittrich/dims/git/ansible-dims-playbooks/roles/virtualbox/tasks/main.yml:33
Wednesday 06 September 2017 12:45:38 -0700 (0:00:01.046) 0:00:51.117 ***
fatal: [dimsdemo1.devops.develop]: FAILED! => {
 "changed": false,
 "failed": true
}

MSG:

Found 1 running Virtualbox VM.
Virtualbox cannot be updated while VMs are running.
Please halt or suspend this VM and apply this role again.

USER PID CMD
dittrich 15289 /usr/lib/virtualbox/VBoxHeadless --comment orange_default_1504485887221_79778 --startvm 62e20c31-7c2c-417a-a5ab-3a056aa81e2d --vrde config

Index

 _images/ansible_tags.png
Role Tags

ROLE A ROLE B ROLE C

tags: [rolea] tags: [roleb] tags: [rolec]

PACKAGE PACKAGE PACKAGE

tags: [rolea, package] |tags: [roleb, package] [tags: [rolec, package |

Category

CONFIG CONFIG Tags

tags: [roleb, config] tags: [rolec, config]

SERVICE SERVICE

tags: [rolea, service] |tags: [roleb, service]

_images/remmina_main.png
® - 0 Remmina Remote Desktop Client

< Lego X

7.0.0.1:5901

dellr510 (/home/dittrich/.remmina/1502216406443.remmina)

_images/remmina_vnc_connected_initial.png
& dellrs10

@® @ dellr510:1 (ansible) Desktop

Edit View Search Terminal Help

DIMS shell initialization [ansible-playbooks v2.9.6]

sourcing /opt/dins/etc/bashrc.dins.d/6e-virtualenv.bash ...
Activating USER virtual environment (/home/ansible/dims/envs/dinsenv) [ansible-playbooks v2.9.6]
(Create file /home/ansible/.DIMS_NO_DIMSENV_ACTIVATE to disable)
Virtual environment 'dimsenv' activated [ansible-playbooks v2.9.0]
sourcing /opt/dims/etc/bashrc.dins.d/10-network.bash

sourcing /opt/dins/etc/bashrc.dins.d/20-aliases.bash

sourcing /opt/dins/etc/bashrc.dins.d/30-environment.bash .

setting PBR to /opt/dims/git/ansible-dins-playbooks

sourcing /opt/dins/etc/bashrc.dins.d/docker-compose .

sourcing /opt/dins/etc/bashrc.dins.d/git-prompt.sh

sourcing /opt/dins/etc/bashrc.dins.d/hub.bash completion.sh ...

[dimsenv] ansible@dellrsie:~ () S| N

dellr510:1 (ansible) D.

_images/remmina_trident_fullplaybook_summary.png
- o dellrsio

dellrs10 %

® Applications Places
@O0 root@dellrs10: ~

File Edit View Search Terminal Help
changed: [purple.

RUNNING HANDLER [base : reStart poStQresql] **sssskskssksksrksksrksksrhskhhhskhhhhkhhhhkhhhhkhhhhkhhhhkhhhskhhhskhrksss
saturday 12 August 2017 19:08:11 -6700 (0:00:01.394) 0:41:03.883 **xxwxx

changed: [purple.

RUNNING HANDLER [base : reStart Nginx] **ssssssksssskssksksrksksrhskhhhhkhhhhkhhhhkhhhhkhhhhkhhhhkhhhhkhhkhkhhkskhrksss
saturday 12 August 2017 19:8:15 -6700 (0:00:04.731) 0:41:08.615 **xxssx

changed: [purple.

PLAY RECAP %k b kb kb

changed=129 unreachable= failed=0
changed=131 unreachabl. failed=0

saturday 12 August 2017 19:08:17 -0700 (0:00:01.456) 0:41:10.071 ***xxxk

: Generate Strong Diffie-Hellman Group - 129.59s

Make defined bats tests present - 38.79s

: Make defined bats tests present - 38.23s
trident-configure : Ensure system configuration is present (tcli) - 23.855
trident-configure : Ensure system configuration is present (tcli) - 23.84s
nginx : Run certbot standalone in Docker container -- 21.68s
nginx : Run certbot standalone in Docker container 21.50s
trident-core : Make core Trident packages present - 21.165
trident-core : Make core Trident packages present - 21.08s
trident-configure : Ensure settings are applied to trust groups 20.83s
trident-configure : Ensure settings are applied to trust groups 20.755
trident-core : Ensure core Trident packages are installed 19.86s
trident-core : Ensure core Trident packages are installed 19.36s
base : Ensure dims (system-level) subdirectories exist - 18.19s
base : Ensure dims (system-level) subdirectories exist - 18.05s
trident-configure : Add all members to all mailing lists 16.67s
: Generate Strong Diffie-Hellman Group --- 16.48s

: Make Docker machine present --- - 11.71s
trident-configure : Add all members to all mailing lists 11.15s
base : Make sure common (non-templated) BASH scripts are present - 10.95s

ansible@dellrs10: /opt/dins/git/private’ (develop*) s Il

debians

B root@dellr510: § OraclevMVirtualBo... f& vellow [Running] -Or... @ purple [Running] - Or...

_images/vagrant-bats-terse.png
dittrich@dimsdemo? (192.168.0.100) - byobu
[Es=C /usr/bin/python

rguments”: "", "enabled”: null, "name
"default”, "sleep”: null, "state”
"dnsmasq", "state": "started"}

PLAY RECAP s s b kb

red. devops.. Local : 0k=102 changed=35 unreachable=e

Om47.515s
6m17.070s
Om3.504s
[+] New Virtualbox VMs:
[+] Output saved to make-provision-201669181608. txt

[+] Running 'test.runner --level system --exclude vpn --terse' on vagrant:

[+] Running test system/proxy.bats

1 test, o failures

[+] Running test system/coreos-preregs.bats
7 tests, o failures

[+] Running test system/dims-base.bats

36 tests, o failures

[+] Running test system/docker.bats

7 tests, o failures

[+] Running test system/dns.bats

17 tests, o fatlures

[+] Running test system/deprecated.bats

1 test, o failures

[+] Running test system/dims-accounts.bats
1 test, o failures

[+] Running test system/dims-ci-utils.bats
2 tests, o failures

[Connection to 127.6.6.1 closed.
nake[1]: Leaving directory '/vm/run/red"

dinsenv] dittrich@dinsdemoi:/vn/run/red () $
14.04 0:coreos 2:logs- 3:- 4:-

[+] New Virtualbox VMs:
[+] Output saved to make-provision-201669181669.txt

[+] Running 'test.runner --level system --exclude vpn --terse' on vagrant

[+] Running test system/dims-accounts.bats
1 test, o failures

[+] Running test system/dns.bats

17 tests, o failures

[+] Running test system/proxy.bats

1 test, o failures

[+] Running test system/deprecated.bats
1 test, o failures

[+] Running test system/docker.bats

7 tests, o failures

[+] Running test system/dims-base.bats
36 tests, © failures

[+] Running test system/coreos-preregs.bats
X [SI[EV] docker overlay network "app.local” exists

(from function ‘assert' in file system/helpers.bash, line 18

in test file system/coreos-preregs.bats, line 37)

‘assert 'app.local' bash -c "docker network ls --filter driver=overlay | awk '/app.local/ { print \$2; }'"' failed

expected: "app.local"
actual: e
X [SI[EV] docker overlay network "data.local" exists

(from function ‘assert' in file system/helpers.bash, line 18

in test file system/coreos-preregs.bats, line 41)

‘assert 'data.local' bash -c "docker network ls --filter driver=overlay | awk '/data.local/ { print \$2; }'"' faild

expected: "data.local"
actual: "

7 tests, 2 failures
[+] Running test system/dims-ci-utils.bats
2 tests, o failures

onnection to 127.0.6.1 closed.

ake[1]: *** [provision] Error 1

ake[1]: Leaving directory '/vm/run/yellow

ake: *** [reprovision-local] Error 2

[dinsenv] dittrich@dimsdemo1:/vm/run/yellow (
895 25C ﬁ

ﬁ 8x304GHZ 31.4G40% dittrichgdimsdemol MEFIETT B 2616-09-18 16:24:12]

_images/remmina_yellow_vm_initial.png
® - o dellrs10

G @

New Settings

yellow
© Powered Off

Qt WAR

GL

P -

start

[General

Name: yellow
Operating System: Ubuntu (64-bit)

System

Base Memory: 4096 M8
Boot Order: ~ Floppy, Optical,
Hard Disk
VT-X/AMD-V,
Nested Paging,
KvM
Paravirtualization

B Preview

Acceleration:

Display

Video Memory: 16 MB
Remote Desktop Server: Disabled
Video Capture: Disabled

storage

Controller: IDE
IDE Secondary Master: [Optical Drive] Empty
Controller: SATA

SATA Port 0:

P Audio

Host Driver: PulseAudio
Controller: ICH AC97

yellow.vdi (Normal, 200,00 GB)

_images/remmina_base_role.png
- o dellrsio

dellrs10 %
® Applications Places
[root@dellr510: ~

[l File Edit View Search Terminal Help

changed: [purple.

RUNNING HANDLER [base : restart dnsmasq] **&kstikstisthrsdirshhsthkhsdhhs ks dkksbhkhs ks b kks kRS EER KRR LR S ERR RS LER SRR
Thursday 16 August 2017 20:58:01 -0700 (0:00:03.661) 0:14:11.316 ******x

changed: [purple.

RUNNING HANDLER [Dase : F@STArt Ssh] sikissisionsion ook kkhokdokkkkdokk ok kAo ok kR Kk kR
Thursday 16 August 2017 20:58:03 -0700 (0:00:01.393) 0:14:12.709 ***%**x
changed: [purple.

PLAY RECAP %k koot kb kb

purple. changed=81 unreachabl. failed=0
yellow. changed=82 unreachabl. failed=0

Thursday 10 August 2017 20:58:04 -0700 (0:00:01.378) ©:14:14.088 **xxxxx

base : Make defined bats tests present

base : Make defined bats tests present

base : Ensure pip installed for system python -

base : Ensure pip installed for system python -

base : Ensure dims (system-level) subdirectories exist -

base : Ensure dims (system-level) subdirectories exist -

base : Ensure required system python packages present

base : Ensure required system python packages present

base : Make sure common (non-templated) BASH scripts are present

base : Make sure common (non-templated) BASH scripts are present

base : Make links to helper functions present ----

base : Make subdirectories for test categories present -

base : Make links to helper functions present ----

base : Make subdirectories for test categories present -----

base : Make full dnsmasq package present (Debian, not Trusty) -

base : Make backports present for APT on Debian jessie -

base : Only "update_cache=yes" if >3660s since last update (Debian) -

base : Make full dnsmasq package present (Debian, not Trusty) -

base : Only "update_cache=yes" if >3660s since last update (Debian) -

base : Make backports present for APT on Debian jessie -
ansible@dellr510: /opt/dins/git/private! (develop*) s Il

debians

g
5 & @ @ @ right ctrl

¥ Oracle VM VirtualBo. @ purple [Running] - Or. i@ [vellow [Running] - Or.

_images/remmina_virtualbox.png
® - o dellrs10

Terminal Help

Oracle VM VirtualBox Manager
File Machine Help

L

2 Details

Welcome to VirtualBox!

The left part of this window is a list of all virtual machines on your computer. The
list is empty now because you haven't created any virtual machines yet.

In order to create a new virtual machine, press the New
button in the main tool bar located at the top of the
window.

You can press the F1 key to get instant help, or visit
www.virtualbox.org for the latest information and news.
ot WAR

bGL

nav.xhtml

 Table of Contents

 		DIMS Ansible playbooks v 2.14.0

 		Introduction

 		Installation Steps

 		Ansible and Configuration Management

 		Ansible fundamentals

 		Variables

 		Configuration and Customization of ansible and ansible-playbook

 		Controlling account, SSH port, etc.

 		Lessons from the Fedora Project Ansible Playbooks

 		Generating iptables Rules from a Template

 		Customization of System and Service Configuration

 		Tags on Tasks

 		DIMS Tagging Methodology

 		Examples of DIMS Tags

 		Ansible Best Practices and Related Documentation

 		Bootstrapping a VM Host as an Ansible Controller

 		Initial Connectivity

 		Establishing Full Internet Connectivity

 		Bootstrapping Full Ansible Control

 		Integration into Working Inventory

 		Normal Playbook Operations

 		Validating VNC over SSH Tunnelling

 		Creating VMs

 		Manual Installation of Virtual Machines

 		Bootstrapping the New VMs

 		Initial Provisioning of the New VMs

 		Customizing a Private Deployment

 		Cookiecutter

 		Top Level Files and Directories

 		The dims-new-repo Cookiecutter

 		The dims-private Cookiecutter

 		Populating the Private Configuration Repository

 		Testing System Components

 		Organizing Bats Tests

 		Organizing tests in DIMS Ansible Playbooks Roles

 		Running Bats Tests Using the DIMS test.runner

 		Controlling the Amount and Type of Output

 		Using DIMS Bash functions in Bats tests

 		Debugging with Ansible and Vagrant

 		Debugging Ansible

 		Examining Variables

 		Debugging Filter Logic

 		Developing Custom Jinja Filters

 		Regular System Maintenance

 		Updating Operating System Packages

 		Renewing Letsencrypt Certificates

 		Updating Secondary Components

 		Updating Vagrant Plugins

 		Updating PyCharm Community Edition

 		Backups and Restoration

 		Backup Directories and Files

 		Creating a Backup

 		Restoring from a Backup

 		Scheduled Backups

 		Other System Backups

 		License

 		Appendices

 		Quick Steps to Restarting Squid Proxy Container

 		Recovering From Operating System Corruption

 		Advanced Ansible Tasks or Jinja Templating

 		Multi-line fail or debug Output

_images/remmina_vnc_connected.png
& dellrs10

@® @ dellr510:1 (ansible) Desktop

Edit View Search Terminal Help

DIMS shell initialization [ansible-playbooks v2.9.6]

sourcing /opt/dins/etc/bashrc.dins.d/6e-virtualenv.bash ...
Activating USER virtual environment (/home/ansible/dims/envs/dinsenv) [ansible-playbooks v2.9.6]
(Create file /home/ansible/.DIMS_NO_DIMSENV_ACTIVATE to disable)
Virtual environment 'dimsenv' activated [ansible-playbooks v2.9.0]
sourcing /opt/dims/etc/bashrc.dins.d/10-network.bash

sourcing /opt/dins/etc/bashrc.dins.d/20-aliases.bash

sourcing /opt/dins/etc/bashrc.dins.d/30-environment.bash .

setting PBR to /opt/dims/git/ansible-dins-playbooks

sourcing /opt/dins/etc/bashrc.dins.d/docker-compose .

sourcing /opt/dins/etc/bashrc.dins.d/git-prompt.sh

sourcing /opt/dins/etc/bashrc.dins.d/hub.bash_completion.sh ...

[dinsenv] ansibleqdellrs1o:~ () § virtualbox all

dellr510:1 (ansible) D.

_images/pycharm-export-settings.png
File Edit View Navigate Code Refactor Run Tools VCS Window Help

9 Export Settings Q

=N) % [ot
Cigit
DProject v © % | #-
=1

» il External Libraries

Rinve

Please check the settings to export:
¥ Codelnsight
¥ Debugger
¥ Default project
¥ Diff
¥ Editor Colors
¥ Editor, Inspection profiles
¥ File templates
¥ Git
¥ Keymaps
¥ Look and Feel
¥ PycCondaPackageService
¥ PyPackageservice
¥ PyTestFrameworkservice
¥ Refactoring
¥/ Registry
¥ SDK Table
¥ smarterEditor
¥ Tools
¥ Ulsettings
¥ Web Browsers

Export settings to:

ist()

Select All Select None Invert

except Exception as e:

oK Cancel

_images/remmina_trident_fullplaybook_start.png
- o dellrs10

® Applications Places
@O0 root@dellrs10: ~
File Edit View Search Terminal Help

[dimsenv] ansible@dellr510: /opt/dins/git/private- (develop*) $ ansible-playbook master.yml --limit trident
--vault-password-file=vault_pass.txt

PLAY [Configure host "dellrsie. R .
skipping: no hosts matched

PLAY [Configure host "yellow. B L e

[TASK [base : Check to see Lf dims.logger exUSLS yet] **txsxsxsskskskskskskskskrtrtrthth ek sk sk sksksksksksks ks rr s res
saturday 12 August 2017 18:27:07 -6760 (0:00:00.416) 0:00:00.417 **xxrix

LT L T —
Saturday 12 August 2017 18:27:09 -0700 (0:00:01.669) 0:00:02.086 ***xxxx
changed: [yellow.

[TASK [Dase © debug] s ionso ook ko ok ko ko ko ko kR R kR
Saturday 12 August 2017 18:27:11 -0700 (0:00:02.634) 0:00:04.720 ***xxxx
skipping: [yellow!

[TASK [base : Set hostname (runtime) (Debian, COre0S)] **kskkkkskskksksrkskhhkskhhkskhhhhkhhhskhhhskhhhskhhhskhhhskhrkss
Saturday 12 August 2017 18:27:13 -0700 (i 101.094) 0:00:05.815 ***xxxx
changed: [yellow.

[TASK [base : Make /etc/hostname present (Debilan, COreQS)] **skkikkkskksksrkskshkskhhhskhhhskhhhskhhhskhhhskhhhskhhtsk
Saturday 12 August 2017 18:27:14 -0700 (0:00:01.349) 0:00:07.164 ***xxxx
changed: [yellow

[TASK [base : Set domainname (Debian, COreOS)] ***kkkkskikksksrksksrkskhhkskhhhskhhhhkhhhhkhhhskhhhskhhkskhhkskhhbskhhbsk

Saturday 12 August 2017 18:27:15 -8700 (i 1.344) 0:00:08.508 ***xxxx
changed: [yellow.

[TASK [base : Set dOMainname (MACOSK)] i ook ook koo kkk ok ko ko kR R R Rk
Saturday 12 August 2017 18:27:17 -8700 (i 1.346) 0:00:09.855 **xxxxx
skipping: [yellow.

debians

B root@dellr510: ~ Y OracleVMVirtualBo... @ vellow [Running]-Or... & purple [Running] -Or...

_images/remmina_disconnect_eth0_cable.png
® - o dellrs10
B
@ dellr510 %

® Applications Places

File Machine View Input Devices Help

purple - Settings

bd E General Network

New

System
& Adapter 1 | Adapter2 | Adapter3

((© Storage Attached to: | NAT

Audio
@ Advanced

Serial Ports

uss 11812

Shared Folders ; £
Cae Connected

User Interface

[When checked, the
virtual network
cable is plugged in.

Cor
SATA Port 0: purple.vdi (Normal, 200.00 G8)

P Audio

Host Driver: PulseAudio

& 15 @ @ @ [Right cul

=] dellr510:1 (ansible) D... § Oracle VM VirtualBo... @ purple (Snapshot20... f@ vellow (Snapshot 201...

_images/ansible-overview.png
Veunturteustybd

Aﬂglb\e M3W\+ 0061 Vourturtvortyia
. ot]
e ok VoKL
[
‘o = — Vounturtastybd
desktop e E
Sevvey S5H Teugy 100515
-
- Veunturtestypd
T
’ \ \M' E
S5 00524
l B =
Vevnturtstypd
P\a\l\ooo\(dontrrstgs 0%
Invevd-on'
00151 wel
00611 oosw

1005.1%

_images/remmina_bootstrap_trident.png
- o dellrsio

dellr510 %
@ Applications Places
[} root@dellr510: ~
[l File Edit View Search Terminal Help

PLAY RECAP %k kst ks bk kb

purple. changed=8 unreachable= failed=0
yellow. changed=7 unreachabl. failed=0

Wednesday 09 August 2017 16:26:38 -0700 (©:00:02.160) ©:01:40.992 **xxkx

bootstrap : Make sure required APT packages are present (Debian) -

bootstrap : Set timezone variables -- -

bootstrap : Define variable with ansible public key -

bootstrap : Update timezone - --

bootstrap : Ensure Debian chrony package is installed

bootstrap : Copy sudoers template to temporary file -

bootstrap : Ensure ansible public key in authorized_keys

bootstrap : Ensure chrony is running on Debian

bootstrap : Verify that the sudo group exists -

bootstrap : Back up sudoers file ----

bootstrap : Make sure required APT packages are present (RedHat) -

bootstrap : Verify sudoers before replacing

bootstrap : Show interface details (Debian)

bootstrap : Determine SSH host SHA256 key fingerprints

bootstrap : debug ---- - 5

Include codename-specific variables -

bootstrap : debug ---- 5

bootstrap : Ensure dims_timezone is set ----------

bootstrap : Ensure Broadcom wireless kernel in place -

bootstrap : Set fact with temp sudoers filename -
ansible@dellr510: /opt/dins/git/private (develop*) § ansible -m ping trident

ansible@dellrsie: jopt/dins/git/private- (develop) s

debians N

g
5 & @ @ @ right ctrl

¥ Oracle VM VirtualBo. @ purple [Running] - Or. i@ [vellow [Running] - Or.

_images/remmina_system_settings.png
® - o dellrs10
@ dellr510 %

System

Motherboard | Processor | Acceleration

Display —
Base Memory: 096 M8 |2
ams 12288 MB

) Hard pisk
Audio Boot Order:
2 N6 opical B N

Network & network
Serial Ports (2] Fioppy
uss Chipset: [PIX3 ~

Storage

Shared Folders Pointing Device: |USB Tablet

Extended Features: [¥] Enable /O APIC
User Interface

IDSPEYEE

Enable EFI (special OSes only)

7] Hardware Clock in UTC Time.

_images/VM-Architecture.png
"4 -
App2 App3 App4 App5
. J
Bins/ | Bins/ | Bins/ | Bins/
Libs Libs Libs Libs
Ubuntu | Ubuntu | Ubuntu
RHEL 14.04.4 | 14.04.4 | 14.044
LTS LTS LTS

Ubuntu 14.04.4 LTS

Virtual Machines

_images/pycharm-import-settings.png
le Edit View Navigate Code Refactor Run Tools VCS Window Help
[=NCN¢ < @dimsclinodeslistv b ¥ ‘¢ ' Q

Import File Location

Select the settings file to import or directory where the file is located ' ISEPY

> B git ess', 'Port'l, p.split(":")))
» il External Libraries @OE O X O 8 Hidepath consul.status.peers()] -

/home/dittrich/.Pycharm2016.2/config/settings jar] -
v config
> minspection
» B options
m plugins
B tasks
B tools en
& disabled_plugins.txt
& disabled_update.txt
i port.lock _peerspictList]:
L lsewngspr
> Busystem
v s PyCharmCE2016.3
> B config
> Bsystem
» = .python-eggs ‘consul_peers') or list()

vvv

’ oK Cancel

ot configuration problems
The following directories are registered as VCS
consul = consula roots, buttheyare not:. v

_images/remmina_yellow_up.png
® Applications Places
yellow [Running] - Oracle VM VirtualBox \

T TED
welyoz:05 ©- Do O~

. Ansible

% [dellr510:1(ansible) D... ¥ OracleVMVirtualBo... §@ vellow[Running]-Or... & purple [Running]-Or... el

_images/remmina_snapshots.png
@ - 0 dellrs10

He " @ -
@ dellr510 %
® Applications Pl

File Machine View Input Devices Help

File Machine Help
W O =

yellow (Snapshot 2017-08-13)
@ Running

Saving the machine state ... (3/4)

[____5>]

11 seconds remaining

y
)}

0t 201...

@ purple[

BOP ST 0@ rightcul
king

nline..

_static/comment-close.png

_images/remmina_edit.png
® - 0 Remote Desktop Preference
Profile

Name [dellrs10

Group |

Protocol | B VNC-Virtual Network Computing

@Basic @Advanced ©.SSH

Server [127.0.0.1:5901

Username | ansible

Password | seessssed N

Color depth | True color (24 bit)

Quality | Best (slowest)

(") Show remote cursor () Viewonly

(") Disable clipboard sync (") Disable encryption

(") Disable server input

_static/UW-logo.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/file.png

_static/plus.png

_static/ajax-loader.gif

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

