

Welcome to Annso’s documentation!

Contents:

	Quick guide
	Installation

	Using Annso

	Developer Guide
	Solution organisation

	Architecture

	Model

	API

	TUS.IO protocol

Indices and tables

	Index

	Module Index

	Search Page

Quick guide

	Deploye and use Annso in 5 minutes. In the below tutorial :

	
	<HOST> : is the server host, by example “www.annso.com”

	<PORT> ! is the port that will be use by the annso python application, by example 8080

	<ANNSO_PATH> : is the path on the server where is deployed the pirus python application, by example “/var/annso_v1”

Installation

The following tutorial will show you how to set up a quick development environment for the annso application on a linux server.
You may need to install first

sudo apt install build-essential libssl-dev libffi-dev python3-dev virtualenv libpq-dev

Annso need a postgresql database (9.5+). As ususal, you can customise value, just don’t forget to update the config.py file accordingly

sudo apt install postgresql
psql -U postgres -c "CREATE USER annso WITH PASSWORD 'annso';"
psql -U postgres -c "DROP DATABASE IF EXISTS annso;"
psql -U postgres -c "CREATE DATABASE annso;"
psql -U postgres -c "GRANT ALL PRIVILEGES ON DATABASE annso to annso;"

Then clone the repository and install requirements

git clone https://github.com/REGOVAR/Annso.git
cd Annso
virtualenv -p /usr/bin/python3.5 venv
source venv/bin/activate
pip install -r requirements.txt

You will need to create following empty folder in the /var directory (you can change the location, but don’t forget to update the config.py file)

mkdir -p /var/regovar/annso
mkdir /var/regovar/annso/cache
mkdir /var/regovar/annso/downloads
mkdir /var/regovar/annso/files

Init database

psql -U annso -d annso -f <ANNSO_PATH>/annso/database/create_all.sql
psql -U annso -d annso -f <ANNSO_PATH>/annso/database/scripts/import_refgen.sql

Using NginX

Create the file into /etc/nginx/sites-available/annso with the following content

Replace <PORT> and <HOST> with the good value:

#
Virtual Host configuration for pirus.absolumentg.fr
#
upstream aiohttp_annso
{
 server 127.0.0.1:<PORT> fail_timeout=0;
}

server
{
 listen 80;
 listen [::]:80;
 server_name <HOST>;

 location / {
 # Need for websockets
 proxy_http_version 1.1;
 proxy_set_header Upgrade $http_upgrade;
 proxy_set_header Connection "upgrade";

 proxy_set_header Host $http_host;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_redirect off;
 proxy_buffering off;
 proxy_pass http://aiohttp_annso;
 }

 location /static {
 root /var/regovar/annso;
 }
}

Enable this virtual host by creating a symbolic link

sudo ln -s /etc/nginx/sites-enable/annso /etc/nginx/sites-available/annso
sudo /etc/init.d/nginx restart

Don’t forget to modify the <ANNSO_PATH>/annso/config.py file according to your configuration.

Run Annso

just

cd <ANNSO_PATH>/annso
make app

Using Annso

Create an analysis

todo

Setup samples

todo

Create and apply filters

todo

Select variant and get result

todo

Developer Guide

Solution organisation

	
	The core team of Annso project:

	
	As sub project of Revogar, the core team of Annso, is the same as for Regovar : Ikit, dridk, Oodnadatta and Arkanosis. All of them are both consultant and developer.

	
	Coding Rules :

	
	https://www.python.org/dev/peps/pep-0008/

	
	Git branching strategy :

	
	Dev on master,

	One branch by release; with the version number as name (by example branch “v1.0.0” for the v1.0.0)

	
	Discussion :

	
	https://regovar.slack.com/

	dev@regovar.org

Architecture

See dedicated page

Model

Analyse

Static property :

public_fields <str[]> : liste des champs exportable pour le enduser (client annso)

Public properties :

id <int> : id of the sample in the database

name <str> : (required) name of the sample when imported (name in the vcf file by example)

comment <str> : user can add some comments about the sample

is_mosaic <bool> : true if the sample is [mosaic](https://www.wikiwand.com/en/Mosaic_(genetics)); false otherwithe

Internal properties :

-

Static methods :

from_id(pipe_id) : return a Pipeline object from the database

Internal methods :

export_server_data(self)

export_client_data(self)

import_data(self, data)

url(self) : return the url that shall be used to download the pipeline package

upload_url(self) : return the url that shall be used to upload the pipeline on the server

Sample

Static property :

public_fields <str[]> : liste des champs exportable pour le enduser (client annso)

Public properties :

id <int> : id of the sample in the database

name <str> : (required) name of the sample when imported (name in the vcf file by example)

comment <str> : user can add some comments about the sample

is_mosaic <bool> : true if the sample is [mosaic](https://www.wikiwand.com/en/Mosaic_(genetics)); false otherwithe

Internal properties :

-

Static methods :

from_id(pipe_id) : return a Pipeline object from the database

Internal methods :

export_server_data(self)

export_client_data(self)

import_data(self, data)

url(self) : return the url that shall be used to download the pipeline package

upload_url(self) : return the url that shall be used to upload the pipeline on the server

API

See dedicated page for the current api implemented.

	How to update current api

	Implement a new version of the api

TUS.IO protocol

Index

Filter Engine and Database organisation

	Purpose of this page is to keep a trace of all technical issues, fixes, decision took regarding the filter engine

	
	Features : features that (shall) support (or not) the engine, and why.

	Database schema : design of the database, technical choices, optimisations, ...

	Technical points : list of hard point and what have been done

Features

Functional features :

	User shall be able to select which annotation’s fields he want to see

	
	User shall be able to compose any filter

	
	Basics conditions : ==, !=, >, <, <=, >=

	Logic operators : AND, OR

	
	Set condition : IN, NOT IN

	
	Set’s operators shall support 2 kinds of research : by variant (chr, ops, ref, alt) or by site (chr, pos)

	Set’s operators shall support 3 kinds of sets : over Sample, over Attribute (= group of sample) and over saved filter

	User shall be able to save its filters and used them in other filters (as subset of variant)

	User shall be able to do set-operation over sets like sample, saved filter or group of sample (see attribute notion)

	Engine shall support pagination of results

	In the context of an analysis, the user shall be able to rename sample (to have more human friendly names)

	Current work shall be automatically saved to allow user to retrieve its work in case of problem

	
	Result shall be presented in an human friendly way. That’s means :

	
	No duplicate entries

	
	Possibility to group results. By example having at firt level all distinct site (chr-pos), and then, by sample having variant (ref-alt) with associated annotation. Only 2 display modes will be implemented (see abandonned features to see why).

	
	Array mode : display all unique entries as a simple table (1 row = 1 entry). That means that if a variant match with several gene’s name by example, the user will see several row for the same variant.

	Variant list : result are grouped by variant.

	As UI shall be localized. It shall be also the same for annotation’s fields names and description

Abandonned features :

	Set condition : XOR (exclusive or). Because of the hight complexity to implement this condition, we decide to posponed it to a future version

	Custom group for result : Having a generic system to allow user to choose how results shall be grouped is very complex both for the UI and the Engine. There is also lot of case where grouping is more confusing than helpfull. By example if you group by gene, a same variant can be present in several groups, and mixing several grouping like that will do the mess. So only 2 display modes will be implemented (see implemented features). For complex presentation the report generator feature will allow users to do all they want (python module).

Database schema

	Topic to read about postgresql :

	
	
	Available Data types - https://www.postgresql.org/docs/9.5/static/datatype.html :

	
	Array Type : To avoid. _Arrays are not sets; searching for specific array elements can be a sign of database misdesign. Consider using a separate table with a row for each item that would be an array element. This will be easier to search, and is likely to scale better for a large number of elements._

	JSON Type : Usefull only if we need to make query inside JSON data. Prefer simple text or varchar type if just need to store json for the client.

	Enum Type : To simplify import of tierce database, consider their enum as simple text (carachter varia

	Range Type : Prefer this type for location’s (start-end) annotations.

	Pagination/ OFFSET over big data : http://stackoverflow.com/questions/34110504/optimize-query-with-offset-on-large-table/34291099#34291099

	Count total & Select subset in the same query : http://stackoverflow.com/questions/156114/best-way-to-get-result-count-before-limit-was-applied

Technical points

	

 _static/comment-bright.png

nav.xhtml

 Table of Contents

 		Welcome to Annso's documentation!

 		Quick guide

 		Installation

 		Using NginX

 		Run Annso

 		Using Annso

 		Create an analysis

 		Setup samples

 		Create and apply filters

 		Select variant and get result

 		Developer Guide

 		Solution organisation

 		Architecture

 		Model

 		Analyse

 		Sample

 		API

 		TUS.IO protocol

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/file.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

