

Aniping

Aniping [https://github.org/kuruoujou/aniping] is a front-end for Sonarr [https://sonarr.tv] which collects the current season’s airing shows
from Anilist [https://anilist.co] and makes it easy to select and download whatever shows you want to see.

Aniping is self-hosted, so you don’t have to store your data in a random server
somewhere, unless you want to. It doesn’t even store a user account, instead it uses
Sonarr’s account system to handle useres, with no special configuration required.

It uses the power of indexers to determine who is subtiltling a show for you, to make it easy
to decide which group to watch. You can even highlight shows if you don’t want to start
watching them just yet, to make them easier to find later.

If you just want to get going, head over to the Quick Start Guide to get up and running.

User Guide:

	Quick Start Guide
	Installation

	Configuration

	Tutorial
	Logging In and Out

	Searching for shows

	Highlighting shows

	Selecting a show

	Editing a show

	Deleting a show

Developers Guide:

	Plugin Development
	Pluggable Framework

	Backend

	Search

	Scraper

	DB

Indices and tables

	API reference

Quick Start Guide

Installation

Right now, the fastest way to get going is using Docker [https://docker.com]. If you’re unfamiliar with Docker
or don’t want to set it up, head over to the Tutorial for instructions on setting up using
a virtual environment.

There are plans to set up the repository to be able to deploy in Heroku [https://heroku.com], but they aren’t yet
implemented.

To deploy using Docker, make sure you docker downloaded and installed according to the
Docker installation instructions [https://docs.docker.com/engine/installation/]. If you have a more complicated setup, using something like
Kubernetes, Docker Swarm, or Mesos, great! Setting those up is outside the scope of this guide,
unfortunately, but you should be able to figure out the settings you need based on this guide.

The run command is pretty straightforward:

docker run -d -v /etc/localtime:/etc/localtime:ro -v /etc/timezone:/etc/timezone:ro -v $LOCAL_CONFIG:/app/config -p 80:80 kuroshi/aniping

Let’s step through it:

	-d runs the container in a deamonized mode, as a service.

	-v /etc/localtime:/etc/localtime:ro maps your local time into the container as a read-only volume.

	-v /etc/timezone/etc/timezone:ro maps your timezone into the container as a read-only volume.

	-v $LOCAL_CONFIG:/app/config Replace $LOCAL_CONFIG with the directory you will store the config.yml file, and that will be mapped in appropriately.

	-p 80:80 maps port 80 in the container to port 80 outside the container.

	kuroshi/aniping is the container you’re downloading from the dockerhub.

Configuration

Now that you’ve got the docker container running, you’ll need to make a config file. In your
$LOCAL_CONFIG directory, place a file called config.yml with the following:

 SONARR:
 URL: https://my.sonarr.url
 API_KEY: my-sonarr-api-key
 QUALITY_PROFILE: HD - 720p/1080p
 LIBRARY_PATH: /path/to/sonarrs/library
DELETE_SHOWS: False
 NYAA:
 FILTER: Trusted Only
 CATEGORY: Anime - English-translated
 ANILIST:
 CLIENT_ID: anilist_client_id
 CLIENT_SECRET: anilist_client_secret
 SQLITE:
 FILE: db/aniping.sqlite
 SCHEMA: schema.ddl
 BACK_END: Sonarr
 DATABASE: Sqlite
 SEARCH:
 - Nyaa
 SCRAPER:
 - Anilist
 SECRET_KEY: this is a totally random string and can be whatever you want
 IMAGE_CACHE: static/images/cache

Spacing is important! The file will not be read correctly if it is not indented, with spaces, like
it is above. You will need to change the values above to suit your needs. Defaults you don’t need to change but you may want to change include BACK_END, DATABASE, SEARCH, SCRAPER, SQLITE-> FILE, SONARR-> QUALITY_PROFILE, and both options under NYAA. You absolutely should not change SQLITE-> SCHEMA unless you are using a different database, nor should you change IMAGE_CACHE unless you really know what you’re doing. Everything else you will need to change.

Tutorial

Once you have Aniping set up as in the Quick Start Guide, or using a more advanced setup, using it is pretty simple.

Before you do anything else, open up aniping in your web browser. If you followed the Quick Start Guide exactly, you should be able to open http://localhost on the same machine as your running container. Otherwise, you’ll need to get your running container’s IP address, or assign it a hostname. Once you are on the aniping home, you’ll see that it is trying to populate its database. This can take 5 to 10 minutes, so just sit back and let it do it’s thing.

It will refresh when it has data to show, but it might not be completely done at that point. After 10 minutes or so, refresh the page and you should see all of this season’s shows.

Logging In and Out

At the top right, next to the search box, is a simple log in and out form. This may already say “log out” if you have authentication disabled on sonarr. If you do not and it says “log in”, simply log in with the same username and password you use for sonarr. If you were successful, it will replace the link with a “log out” button. When you press it, it will instantly log you out.

Searching for shows

You can search for shows currently airing by using the search box. The search box is not very advanced, and cannot correct typos or misspellings, but it does search titles, studios, descriptions, and genres. It will not search sonarr, it will only search what it has in it’s database.

Highlighting shows

On desktop, when you are logged in, hover over a card and click the “star” button. The background of that card will turn yellow. Click it again to unhighlight it. This can be used to mark shows you want to watch, but you are waiting for whatever reason to start it.

On mobile, the star will always be visible.

Selecting a show

To select a show, hover over a card and click the “+” button. This should take you to a page with a more detailed description of the show, this time coming directly from sonarr’s search. If sonarr cannot find the show, you will be redirected back to the home page.

Once on the show description page, simply select which release group you would like working on the show, and click “Add show”. This will automatically create a tag with a restriction in sonarr if necessary, and add the show to sonarr’s list.

On mobile, the “+” will always be visible.

Editing a show

Any show in the “watching” category will have an edit button instead of a “+” button when rolled over. Click this button and you will be given the same interface as the show selection button. Make the appropriate change and click “Edit show”, and the show will be updated.

On mobile, the “edit” button will always be visible.

Deleting a show

If you no longer wish to have sonarr tracking a show, you can delete it by clicking the “x” button. It will not delete anything sonarr has already gathered.

Plugin Development

Pluggable Framework

Aniping is written as a pluggable framework. There are four major plugin categories:
back_end, search, scraper, and db. Each one performs a different task,
and aniping is basically the glue that puts them together. You can extend aniping
pretty easily just by building one of these plugins.

This page currently just has a high-level explanation of what these plugins are,
but building them is fairly easy. Most of the documentation is handled in the
plugins module in this guide, and you can use the existing plugins as templates,
though some are more complicated then they perhaps should be.

There are three things to do when developing plugins for aniping:

	Put them in the correct directory.

	Make sure the extend the correct class described in the plugins module.

	Ensure they override the functions defined in the extended class.

That’s all you need to do - the functions in the extended class will cause an
exception if they aren’t overridden.

Backend

In the default install, the backend for aniping is sonarr. The backend is the plugin
that handles downloading or watching of shows. These shows should not be licensed
in your country, of course.

Search

In the default install, the search engine for aniping is Nyaa. The search engine is
the plugin that handles finding the release groups for the show - other plugins
may use it to find specific results, however.

Scraper

In the default install, the scraper for aniping is anilist. The scraper is a bit
of a misnomer, it’s actually the repository of information for specific shows airing
this season. Another popular example is MyAnimeList.

DB

In the default install, the database for aniping is sqlite3. The database is where
the information from the scraper is held, as well as session ids, watching information,
and other details. It is a necessary component of aniping.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 aniping	

 	
 	
 aniping.back_end.sonarr	

 	
 	
 aniping.config	

 	
 	
 aniping.db.sqlite	

 	
 	
 aniping.front_end	

 	
 	
 aniping.plugins	

 	
 	
 aniping.scraper.anilist	

 	
 	
 aniping.search.nyaa	

Index

 _
 | A
 | B
 | C
 | D
 | F
 | G
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | U

_

 	
 	__author__ (aniping.plugins.AniPlugin attribute)

 	__id__ (aniping.plugins.AniPlugin attribute)

 	
 	__name__ (aniping.plugins.AniPlugin attribute)

 	__version__ (aniping.plugins.AniPlugin attribute)

A

 	
 	add_login_id() (aniping.plugins.DataBase method)

 	add_show() (aniping.plugins.DataBase method)

 	add_update_show() (aniping.back_end.sonarr.Sonarr method)

 	(aniping.front_end.FrontEnd method)

 	(aniping.plugins.BackEnd method)

 	Anilist (class in aniping.scraper.anilist)

 	aniping.back_end.sonarr (module)

 	aniping.config (module)

 	aniping.db.sqlite (module)

 	
 	aniping.front_end (module)

 	aniping.plugins (module)

 	aniping.scraper.anilist (module)

 	aniping.search.nyaa (module)

 	AniPlugin (class in aniping.plugins)

 	AniPluginManager (class in aniping.plugins)

 	api_key (aniping.back_end.sonarr.Sonarr attribute)

 	(aniping.plugins.BackEnd attribute)

 	apm (aniping.plugins.AniPlugin attribute)

 	available_plugins (aniping.plugins.AniPluginManager attribute)

B

 	
 	back_end() (aniping.plugins.AniPlugin method)

 	
 	BackEnd (class in aniping.plugins)

C

 	
 	category (aniping.search.nyaa.Nyaa attribute)

 	change_show() (aniping.plugins.DataBase method)

 	check_auth() (aniping.back_end.sonarr.Sonarr method)

 	(aniping.front_end.FrontEnd method)

 	(aniping.plugins.BackEnd method)

 	
 	check_for_login() (aniping.plugins.BackEnd method)

 	check_for_update() (aniping.plugins.DataBase method)

 	check_login_id() (aniping.front_end.FrontEnd method)

 	Config (class in aniping.config)

D

 	
 	DataBase (class in aniping.plugins)

 	db() (aniping.plugins.AniPlugin method)

 	db_loc (aniping.db.sqlite.Sqlite attribute)

 	(aniping.plugins.DataBase attribute)

 	
 	db_schema (aniping.db.sqlite.Sqlite attribute)

 	(aniping.plugins.DataBase attribute)

 	delete_login_id() (aniping.front_end.FrontEnd method)

 	(aniping.plugins.DataBase method)

 	do_first_time_setup() (aniping.front_end.FrontEnd method)

F

 	
 	fanart() (aniping.back_end.sonarr.Sonarr method)

 	(aniping.plugins.BackEnd method)

 	filter (aniping.search.nyaa.Nyaa attribute)

 	
 	Flask (class in aniping.config)

 	from_yaml() (aniping.config.Config method)

 	FrontEnd (class in aniping.front_end)

G

 	
 	get_all_shows() (aniping.plugins.DataBase method)

 	get_all_subgroups() (aniping.front_end.FrontEnd method)

 	get_fanart() (aniping.front_end.FrontEnd method)

 	get_login_id() (aniping.plugins.DataBase method)

 	get_selected_group() (aniping.front_end.FrontEnd method)

 	get_show() (aniping.back_end.sonarr.Sonarr method)

 	(aniping.plugins.BackEnd method)

 	(aniping.plugins.DataBase method)

 	
 	get_show_from_backend() (aniping.front_end.FrontEnd method)

 	get_show_from_db() (aniping.front_end.FrontEnd method)

 	get_shows_by_category() (aniping.plugins.Scraper method)

 	(aniping.scraper.anilist.Anilist method)

 	get_shows_for_display() (aniping.front_end.FrontEnd method)

 	get_subgroups() (aniping.front_end.FrontEnd method)

 	get_watching_shows() (aniping.back_end.sonarr.Sonarr method)

 	(aniping.plugins.BackEnd method)

L

 	
 	load_plugins() (aniping.plugins.AniPluginManager method)

 	
 	loaded_plugins (aniping.plugins.AniPluginManager attribute)

M

 	
 	make_config() (aniping.config.Flask method)

N

 	
 	name (aniping.back_end.sonarr.Sonarr attribute)

 	(aniping.db.sqlite.Sqlite attribute)

 	(aniping.plugins.AniPlugin attribute)

 	(aniping.scraper.anilist.Anilist attribute)

 	(aniping.search.nyaa.Nyaa attribute)

 	
 	Nyaa (class in aniping.search.nyaa)

O

 	
 	output_display_lists() (aniping.front_end.FrontEnd method)

P

 	
 	password (aniping.plugins.BackEnd attribute)

 	plugin_categories (aniping.plugins.AniPluginManager attribute)

 	
 	plugin_category_function() (aniping.plugins.AniPluginManager method)

 	plugin_function() (aniping.plugins.AniPluginManager method)

R

 	
 	remove_show() (aniping.back_end.sonarr.Sonarr method)

 	(aniping.front_end.FrontEnd method)

 	(aniping.plugins.BackEnd method)

 	(aniping.plugins.DataBase method)

 	
 	results() (aniping.plugins.SearchEngine method)

 	(aniping.search.nyaa.Nyaa method)

S

 	
 	scan_for_plugins() (aniping.plugins.AniPluginManager method)

 	scrape_shows() (aniping.front_end.FrontEnd method)

 	(aniping.plugins.Scraper method)

 	(aniping.scraper.anilist.Anilist method)

 	Scraper (class in aniping.plugins)

 	scraper() (aniping.plugins.AniPlugin method)

 	search() (aniping.back_end.sonarr.Sonarr method)

 	(aniping.plugins.AniPlugin method)

 	(aniping.plugins.BackEnd method)

 	
 	search_show() (aniping.plugins.DataBase method)

 	search_show_from_backend() (aniping.front_end.FrontEnd method)

 	SearchEngine (class in aniping.plugins)

 	set_login_id() (aniping.front_end.FrontEnd method)

 	Sonarr (class in aniping.back_end.sonarr)

 	Sqlite (class in aniping.db.sqlite)

 	star_show() (aniping.front_end.FrontEnd method)

 	subgroup_selected() (aniping.back_end.sonarr.Sonarr method)

 	(aniping.plugins.BackEnd method)

U

 	
 	url (aniping.back_end.sonarr.Sonarr attribute)

 	(aniping.plugins.BackEnd attribute)

 	(aniping.plugins.Scraper attribute)

 	(aniping.plugins.SearchEngine attribute)

 	(aniping.scraper.anilist.Anilist attribute)

 	(aniping.search.nyaa.Nyaa attribute)

 	
 	username (aniping.plugins.BackEnd attribute)

aniping.config

config

This submodule handles reading the config yaml file.
Since we use flask to handle the config file, all this
submodule does is extend the existing flask modules to support
the yaml format.

This is a terminal submodule for the aniping package, and so should
not import any additional aniping submodules.

	
class aniping.config.Config(root_path, defaults=None)

	Extension of the flask config class.

Adds the from_yaml function to the flask Config class.
This function was found originally at
https://gist.github.com/mattupstate/2046115.

	
from_yaml(config_file)

	Yaml config getter function.

Reads a yaml flask config file and generates a config
dictionary out of it that flask and aniping can
both understand.

	Parameters

	config_file (str) – the path of the config file to load.
Can be relative or absolute.

	
class aniping.config.Flask(import_name, static_path=None, static_url_path=None, static_folder='static', template_folder='templates', instance_path=None, instance_relative_config=False, root_path=None)

	Extenstion of the flask class.

This modifies the make_config function to support
the Config.from_yaml function.

	
make_config(instance_relative=False)

	Config generation function.

Determines what the root path of the app is and
returns a config instance with that in mind.

	Parameters

	instance_relative (bool) – If this is a relative instance.

	Returns

	A config object with the determined root path.

aniping.front_end

front_end

This submodule handles functions required by the front_end - app.py.
Most functions should be defined here and called by app.py. Because
app.py will only call to this particular submodule, it is acceptable
to include functions that do nothing but call back to a different
function in the module.

	
class aniping.front_end.FrontEnd(config, plugin_manager=None)

	Front End plugin for Aniping.

This is a “special” plugin this is called directly from the main server thread,
and not handled by the plugin manager. This handles all front-end services the
application may need, and calls back to other plugins as necessary.

	
add_update_show(dbid, beid, subgroup)

	Adds a given show to the backend, or edits it if its already there.

Calls db.change_show to update the database with the backend id.

	Parameters

	
	dbid (int) – The database ID for the show.

	beid (int) – The backend ID for the show.

	subgroup (str) – The selected subgroup for the show, from our search engine.

	
check_auth(username, password)

	Authentication Check Function.

Checks if a user gives a correct username and password.
User and pass are checked back against our backend, we do not handle our own
authentication.

	Parameters

	
	username (str) – The username to check.

	password (str) – The password to check.

	Returns

	bool.

	True – user is authenticated

	False – user is not authenticated or an error occurred

	
check_login_id(session_id)

	Session ID Check Function.

Gets a session id from the database and checks that it’s valid.
If no session id is passed or if it’s invalid, check if the backend
has logins enabled.

	Parameters

	session_id (str) – The session ID for the user.

	Returns

	bool.

	True – Session id is valid or back end logins are disabled.

	False – Session id is not valid or has expired.

	
delete_login_id(session_id)

	Session id Delete Function.

Deletes a session id from the database. Used for logging out.
Just calls back to db.delete_login_id.

	Parameters

	session_id (str) – The session ID for the user.

	
do_first_time_setup()

	Begins first time setup for aniping. Starts a new thread to scrape shows.

	Returns

	bool. Always returns true.

	
get_all_subgroups()

	Gets the subgroups for all shows from the search engine.

This should be done asynchronously after scraping all shows, to allow for
a quick and easy subgroup selection when trying to find a show.

	
get_fanart(beid)

	Gets some fanart for the show from the backend.

Calls back to back_end.fanart, but because that should be a list,
just get the first item from that list.

	Parameters

	beid (int) – the backend ID for the show.

	Returns

	str. A link to some fanart.

	
get_selected_group(beid)

	Gets the selected subgroup for the show from the backend.

Just calls back to back_end.subgroup_selected.

	Parameters

	beid (int) – the backend ID for the show.

	Returns

	str. The subgroup selected for the series.

	
get_show_from_backend(beid)

	Gets a known show from the backend system from its id.

	Parameters

	beid (int) – the backend ID for the show.

	Returns

	dict. The backend show information.

	
get_show_from_db(dbid=None)

	Gets the show information out of the database.

Just calls back to db.get_show.

	Parameters

	dbid (int) – the database ID for the show.

	Returns

	dict. The show information for the ID passed.

	
get_shows_for_display(term=None)

	Gets shows from the scraper and preps them for display.

If a term is provided, only get shows that include that term.

	Keyword Arguments

	term (str) – A search term to filter on.

	Returns

	tuple. 4 lists of shows.

	watching – Shows currently being watched.

	airing – TV shows being aired.

	specials – TV and Web Specials (OVA, ONA, etc.) airing or due to air.

	movies – Movies airing or due to premiere.

	
get_subgroups(dbid, show=None)

	Gets a list of sub groups from the search engine.

Generally this will be a torrent search site, like nyaa. Nothing is ever downloaded
directly with aniping! The backend should handle that, if downloading
is happening. This only gets a list of groups subtitling the show.

	Parameters

	dbid (int) – the database ID for the show.

	Returns

	list. A list of subgroups.

	
output_display_lists(watching, airing, specials, movies)

	Takes the display lists and massages them for output.

It does this by removing watching shows from the other lists,
handling date formats, and similar tasks.

	Parameters

	
	watching (list) – A list of shows currently being watched.

	airing (list) – A list of TV shows currently airing.

	specials (list) – A list of TV and web Specials airing or due to air this season.

	movies (list) – A list of Movies airing or due to premiere this season.

	Returns

	tuple. 4 lists of shows.

	watching – Shows currently being watched.

	airing – TV shows being aired.

	specials – TV and Web Specials (OVA, ONA, etc.) airing or due to air.

	movies – Movies airing or due to premiere.

	
remove_show(dbid)

	Removes a show from the backend given it’s database ID

	Parameters

	dbid (int) – The database ID for the show.

	
scrape_shows()

	Calls to the scraper to scrape shows and add them to the database.

Creates a lockfile in /tmp to ensure multiple scraping threads don’t run
simultaneously.

	Returns

	bool.

	True – Scrape is complete.

	False – Scrape lock file exists.

	
search_show_from_backend(dbid)

	Gets a show from the database and searches for it in the backend system.

	Parameters

	dbid (int) – the database ID for the show.

	Returns

	dict. The backend search results for the id passed. None if not found.

	
set_login_id()

	Session id Creator

Creates a session id and writes it to the database.

	Returns

	str. The id of the session.

	
star_show(dbid)

	Show starring/highlighting function.

Toggles a show starred status in the database.

	Parameters

	dbid (int) – The database ID of the show to star.

aniping.plugins

	
class aniping.plugins.AniPlugin(config, plugin_manager)

	Base Aniping Plugin Class.

This class should never be extended from directly by a plugin, with
the exception of the front-end. Everything else should extend from one of this
class’ subclasses.

Several attributes are defined here that should be defined for all plugins.

	
__name__

	str – The name of the plugin.

	
__id__

	str – The plugin’s ID. This is what is used to load the plugin.

	
__author__

	str – The plugin’s author.

	
__version__

	str – The version of the plugin. Optional, but set it to 0.01 if not in use.

	
apm

	AniPluginManager – An AniPluginManager instantiation. Should only be used by plugins sparingly, use helper methods when possible.

	
back_end(func, *args, **kwargs)

	Calls back_end functions.

This is a helper function which calls functions from the back_end category.
Remember back_ends are not multiloaded, so you will only get a single response
from whatever function is called.

	Parameters

	
	func (str) – The function to call from the back_end plugin.

	*args – The arguments to pass to the plugin.

	**kwargs – The keyword arguments to pass to the plugin.

	Returns

	The response of the function you called.

	
db(func, *args, **kwargs)

	Calls database functions.

This is a helper function which calls functions from the database category.
Remember databases are not multiloaded, so you will only get a single response
from whatever function is called.

	Parameters

	
	func (str) – The function to call from the database plugin.

	*args – The arguments to pass to the plugin.

	**kwargs – The keyword arguments to pass to the plugin.

	Returns

	The response of the function you called.

	
name

	str – Should return the name of your plugin, but is optional.

	
scraper(func, *args, **kwargs)

	Calls scraper functions.

This is a helper function which calls functions from the scraper category.
Remember that scrapers are multiloaded, so you will get a list of responses.

	Parameters

	
	func (str) – The function to call from the scraper plugins.

	*args – The arguments to pass to the plugins.

	**kwargs – The keyword arguments to pass to the plugins.

	Returns

	A list of responses of the function you called from each plugin.

	
search(func, *args, **kwargs)

	Calls search_engine functions.

This is a helper function which calls functions from the search_engine category.
Remember that search_engines are multiloaded, so you will get a list of responses.

	Parameters

	
	func (str) – The function to call from the search_engine plugins.

	*args – The arguments to pass to the plugins.

	**kwargs – The keyword arguments to pass to the plugins.

	Returns

	A list of responses of the function you called from each plugin.

	
class aniping.plugins.AniPluginManager(config)

	Plugin manager for aniping plugins.

Handles loading and scanning of plugins, as well as calling functions within those plugins.
Some plugins can be multiloaded - meaning multiple plugins of that type can be loaded -
and others can only be loaded once, like the database.

	
available_plugins

	dict – Dictionary of available plugins, keyed by plugin type.

	
load_plugins()

	Plugin loader.

Loads plugins that are configured in config.yml. Adds the instanciated
class instance to a dictionary for use by the plugin callers.

	Returns

	The loaded plugins dictionary.

	
loaded_plugins

	dict – Dictionary of loaded plugin classes, keyed by plugin type.

	
plugin_categories

	dict – Plugin categories that key available and loaded plugins.

	
plugin_category_function(category, func, *args, **kwargs)

	Call all plugins of a specified category with a function.

Attempts to call the function in all plugins. Function should only be something
defined in the plugin’s base class.

	Parameters

	
	category (str) – The plugin category to call.

	func (str) – The function to call in that category.

	*args – Arguments that will be passed to the function.

	**kwargs – Keyword arguments that will be passed to the function.

	Returns

	If it’s a multiloaded function, it will return a list of all of the responses
from the all of the plugins. If it is not, it will just return the response
from the function.

	
plugin_function(plugin, func, *args, **kwargs)

	Call a specific plugin’s function.

This is useful if you have plugins of different types that interact directly.
Should be used incredibly sparingly.

	Parameters

	
	plugin (str) – The plugin to call.

	func (str) – The function to call from the plugin.

	*args – Arguments that will be passed to the function.

	**kwargs – Keyword arguments that will be passed to the function.

	Returns

	The plugin function’s response.

	
scan_for_plugins()

	Plugin scanner.

Scans for plugins in the known plugin directories. Adds them to the
available plugins dictionary, ready to be loaded.

	Returns

	The available plugins dictionary.

	
class aniping.plugins.BackEnd(config, plugin_manager)

	Base backend class.

Extend this class if you are making a Back End plugin.

Backends are what actually perform the download operations, and keep track of everything
that is currently being watched. They can also be configured to perform other opeations,
such as adding things to a watch list or similar.

Examples of backends include sonarr and couchpotato.

Note

Check the AniPlugin Class documentation for details on what must
be included with all plugins. This documentation only describes what
is needed with search engine plugins.

	
add_update_show(beid, subgroup)

	Adds or edits a show in the backend.

As all aniping ever really deals with in the backend is the subgroup, that is all
that should be expected in this method. Additionally, this method should be capable of
both adding and editing a show. Ideally, it should also initiate a search and attempt
to download anything new once a show has been added or edited.

	Parameters

	
	beid (int) – The backend ID of the show we’re adding or editing.

	subgroup (str) – The subgroup or release group we’re using for this show.

	
api_key

	str – Should return the the API key of your backend, if it needs one.

	
check_auth(username, password)

	Authentication check function.

Should check if a user gives a correct username and password. These should be checked against
the backend login database somehow, a new username and password pair should not be necessary to
log into aniping.

	Parameters

	
	username (str) – The username to check.

	password (str) – The password to check.

	Returns

	bool.

	True – user is authenticated

	False – user is not authenticated or an error occurred

	
check_for_login()

	Checks if a login is necessary.

Not all backends require logins all the time, so this function
should check to see if one is necessary.

	Returns

	bool.

	True – Login is required.

	False – Login is not required, proceed assuming already logged in.

	
fanart(beid)

	Returns fanart from the backend.

If this backend does not support fanart, try calling to another service to collect it.
Returning an empty list is acceptable as well.

	Parameters

	beid (int) – The backend ID for the show to get fanart from.

	Returns

	list. All fanart urls in the results.

	
get_show(beid)

	Get a show from the backend.

Uses a backend id - typically something like the TVDB ID but can be whatever - to
get a show from the backend.

	Parameters

	id (int) – The backend ID for the show.

	Returns

	dict. A dictionary describing the show. The response format should contain

	title - the show’s title (str)

	overview - an overview of the show (str)

	tvdbId - the TVDB ID of the show (int)

	remotePoser - a URL to an image of the show’s poster (str)

	year - The year the show is airing (int)

	network - The network the show is airing on (str)

	beid - an ID this show can be used to refer to in the backend, usually the TVDB ID (int)

	images - A list of dictionaries describing images for the show, each in the following format: {“coverType”: “fanart, banner, or poster”, “url”: “image URL”} (list)

	
get_watching_shows()

	Get all of the shows being tracked by the backend for downloading or watching.

	Returns

	list. A list of dictionaries describing the show. The response format should contain

	title - the show’s title (str)

	overview - an overview of the show (str)

	tvdbId - the TVDB ID of the show (int)

	remotePoser - a URL to an image of the show’s poster (str)

	year - The year the show is airing (int)

	network - The network the show is airing on (str)

	beid - an ID this show can be used to refer to in the backend, usually the TVDB ID (int)

	
password

	str – Should return the password used to log into your backend if there is no api key.

	
remove_show(beid)

	Remove a given show from the backend.

This should only delete files if the end user wants it to.

	Parameters

	beid (int) – The Backend ID of the show.

	
search(title)

	Searches the backend for a particular show.

This should search whatever indexes the backend has configured. It should
return shows that may not yet be added to the backend. If the backend isn’t
capable of this, try calling search.query(title) and parsing the results
there.

	Parameters

	title (str) – The title of the show we’re searching for.

	Returns

	list. A list of dictionaries describing the show. The response format should contain

	title - the show’s title (str)

	overview - an overview of the show (str)

	tvdbId - the TVDB ID of the show (int)

	remotePoser - a URL to an image of the show’s poster (str)

	year - The year the show is airing (int)

	network - The network the show is airing on (str)

	beid - an ID this show can be used to refer to in the backend, usually the TVDB ID (int)

	images - A list of dictionaries describing images for the show, each in the following format: {“coverType”: “fanart, banner, or poster”, “url”: “image URL”} (list)

	
subgroup_selected(beid)

	Returns the selected subgroup for the show.

The backend is the only place this information should be stored.

	Parameters

	beid (int) – The backend id of the show to get the subgroup for.

	Returns

	A string of the subgroup the show is using. None if none is found.

	
url

	str – Should return the URL of your search engine.

	
username

	str – Should return the username used to log into your backend if there is no api key.

	
class aniping.plugins.DataBase(config, plugin_manager)

	Base Database Class.

Extend this class if you are making a database plugin.

Databases store the ongoing shows and shows being watched for aniping, as well
as the shows that are starred and the like. Check the add_show method for
the expected schema for that table, and the add_login_id method for the exepcted
schema for the session_id table.

Examples of databases include sqlite3 and mysql, but plugins
can also be configured for things such as json or even plain text.

Note

Check the AniPlugin Class documentation for details on what must
be included with all plugins. This documentation only describes what
is needed with search engine plugins.

	
add_login_id(session_id, expiry)

	Adds session IDs to the database.

Writes a session ID for a user to the database. The table should include
a minimum of the two columns below. They are the only two used by the rest
of aniping.

Note

The column names do not need to match the argument names, provided they are
stored as expected. Also, any additional columns you add will not be used by
aniping, so will be limited to internal use to this plugin, and potentially
other plugins.

	Parameters

	
	session_id (int) – the session ID to add to the database.

	expiry (int) – The expiration date and time of the session id
as a unix timestamp. Typically now + 2 hours.

	
add_show(aid, show_type, title, alt_title, synonyms, total_episodes, next_episode, next_episode_date, start_date, genre, studio, description, link, image, airing, season_name)

	Adds show to the database.

All arguments are required. The scraper should gather these arguments and pass them to
this function in the expected format, which is described below. Build your database
schema based on that.

Note

The column names do not need to match the argument names, provided they are stored
as expected. Also, any additional columns you add will not be used by aniping, so
will be limited to intenal use to this plugin, and potentially other plugins.

	Parameters

	
	aid (int) – The scraper ID of the show

	show_type (str) – The type of show being added (tv, ona, ova, movie, etc.)

	title (str) – The show’s title

	alt_title (str) – The show’s alternate title. May be the same as the title.

	synonyms (str) – A pipe-separated (|) list of synonyms for the show.

	total_episodes (int) – The show’s total number of episodes

	next_episode (int) – The next airing episode

	next_episode_date (int) – The next airing episode’s scheduled date as a unix timestamp.

	start_date (int) – The date the show starts or started as a unix timestamp.

	genre (str) – A comma-separated list of genres for the show

	studio (str) – The show’s primary studio

	description (str) – A brief description or synopsis for the show

	link (str) – A link to more info - anilist, mal, etc.

	image (str) – The locally cached link to the image for the show.

	airing (str) – The airing status of the show.

	season_name (str) – The season string of the show (winter, spring, summer, fall)

	
change_show(id=None, aid=None, beid=None, show_type=None, title=None, alt_title=None, synonyms=None, total_episodes=None, next_episode=None, next_episode_date=None, start_date=None, genre=None, studio=None, description=None, link=None, image=None, airing=None, season_name=None, starred=None, sub_groups=None)

	Modifies a show in the database.

One of id, aid, or beid is required to look up the show, but all other arguments are optional. If multiple of
id, aid, and beid are provided, they should be handled in the order id, aid, beid, and anything following the
first match should be considered an update for the database.

Example

If you want to change the title for a show and have it’s beid:

db.change_show(beid=12345, title="My Show")

But if you want to change the beid for a show and you have it’s
database id:

db.change_show(id=10, beid=54321)

	Keyword Arguments

	
	id (int) – The show’s database ID

	aid (int) – The scraper ID of the show

	beid (int) – The backend ID of the show

	show_type (str) – The type of show being added (tv, ona, ova, movie, etc.)

	title (str) – The show’s title

	alt_title (str) – The show’s alternate title. May be the same as the title.

	synonyms (str) – A pipe-separated (|) list of synonyms for the show.

	total_episodes (int) – The show’s total number of episodes

	next_episode (int) – The next airing episode

	next_episode_date (int) – The next airing episode’s scheduled date as a unix timestamp.

	start_date (int) – The date the show starts or started. as a unix timestamp.

	genre (str) – A comma-separated list of genres for the show

	studio (str) – The show’s primary studio

	description (str) – A brief description or synopsis for the show

	link (str) – A link to more info - anilist, mal, etc.

	image (str) – The locally cached link to the image for the show.

	airing (str) – The airing status of the show.

	season_name (str) – The season string of the show (winter, spring, summer, fall)

	starred (int) – The highlight status of the show. 1=True, 0=False.

	sub_groups (str) – A pipe-separated (|) list of subgroups running the show.

	
check_for_update()

	Check for update to database.

Occasionally aniping will need to make a change that involves updating the
way the database is configured - adding or removing columns and the like.
There should be a version field in your database somewhere that you can
check against, and this function should check if an update is needed.

If an update is needed, this function should also migrate the database forward,
or, in the unlikely event this requires user iteraction or data loss, error
out and notify the user in the logs.

	
db_loc

	str – the location of your database. Can be a url or a filename, or anything else really.

	
db_schema

	str – The database’s schema. Can be read from an external file or simply added here.

	
delete_login_id(session_id)

	Deletes session IDs from the database.

Deletes a session id from the database.

	Parameters

	session_id (int) – The session id to delete.

	
get_all_shows()

	Should get all shows from the database.

	Returns

	A list of dictionaries describing shows from the scraper.

A database show should be a dictionary with the following structure, based on the schema defined in add_show.

	id: database id (int)

	aid: scraper id (int)

	beid: backend id (int)

	type: type of show, such as ‘tv’, ‘ova’, or ‘movie’. (str)

	title: the official show title from the scraper (str)

	
	alt_title: the shows alternate title, such as an english

	translated title. (str)

	synonyms: A pipe-separated (|) list of synonyms for the show (str)

	total_episodes: The total number of episodes in the show (int)

	next_episode: The next episode to air, according to the scraper (int)

	next_episode_date:The day the next episode is due to air from the scraper (int)

	start_date: The day the first episode starts, from the scraper (int)

	genre: A comma separated list of show genres. (str)

	studio: The primary studio producing the show (str)

	description: A synopsis or description for the show (str)

	link: A link to a page describing the show, such as anilist. (str)

	image: A relative link to the show’s poster. (str)

	airing: The airing status of the show according to the scraper (str)

	season_name: The name of the season: winter, spring, summer, or fall (str)

	starred: Whether the show is highlighted or not (int)

	sub_groups: A pipe-separated (|) list of subgroups running the show (str)

	
get_login_id(session_id)

	Gets a session ID from the database.

Should get a session id from the database if it hasn’t expired.
Should delete it if it has.

	Parameters

	session_id (int) – The session id to lookup in the database.

	Returns

	Should return the session_id if it is valid, or None if it is not.

	
get_show(id=None, aid=None, beid=None)

	Should get a single show from the database.

Should get a given single show from the database. Only one of the three arguments is required,
and they should be handled in order: id, aid, beid.

	Keyword Arguments

	
	id (int) – The database ID for the show

	aid (int) – The scraper ID for the show

	beid (int) – The backend ID for the show

	Returns

	A database show dictionary with the following structure if it exists, None otherwise.

	id: database id (int)

	aid: scraper id (int)

	beid: backend id (int)

	type: type of show, such as ‘tv’, ‘ova’, or ‘movie’. (str)

	title: the official show title from the scraper (str)

	
	alt_title: the shows alternate title, such as an english

	translated title. (str)

	synonyms: A pipe-separated (|) list of synonyms for the show (str)

	total_episodes: The total number of episodes in the show (int)

	next_episode: The next episode to air, according to the scraper (int)

	next_episode_date:The day the next episode is due to air from the scraper (int)

	start_date: The day the first episode starts, from the scraper (int)

	genre: A comma separated list of show genres. (str)

	studio: The primary studio producing the show (str)

	description: A synopsis or description for the show (str)

	link: A link to a page describing the show, such as anilist. (str)

	image: A relative link to the show’s poster. (str)

	airing: The airing status of the show according to the scraper (str)

	season_name: The name of the season: winter, spring, summer, or fall (str)

	starred: Whether the show is highlighted or not (int)

	sub_groups: A pipe-separated (|) list of subgroups running the show (str)

	
remove_show(id=None, aid=None, beid=None)

	Show deleter.

Removes a given show from the database. Only one of the three arguments is required,
and they should be handled in order: id, aid, beid.

	Keyword Arguments

	
	id (int) – The database ID for the show.

	aid (int) – The scraper ID for the show.

	beid (int) – The backend ID for the show.

	
search_show(term)

	Show full-text search.

When this method is called, a full-text search is expected to be performed against
the database. If a full-test search can not be performed with your database of choice,
try returning None for this function.

	Parameters

	term (str) – The term to search for in the database.

	Returns

	A list of dictionaries describing shows from the scraper.

A database show is a dictionary with the following structure.

	id: database id (int)

	aid: scraper id (int)

	beid: backend id (int)

	type: type of show, such as ‘tv’, ‘ova’, or ‘movie’. (str)

	title: the official show title from the scraper (str)

	
	alt_title: the shows alternate title, such as an english

	translated title. (str)

	synonyms: A pipe-separated (|) list of synonyms of the show (str)

	total_episodes: The total number of episodes in the show (int)

	next_episode: The next episode to air, according to the scraper (int)

	next_episode_date:The day the next episode is due to air from the scraper (int)

	start_date: The day the first episode starts, from the scraper (int)

	genre: A comma separated list of show genres. (str)

	studio: The primary studio producing the show (str)

	description: A synopsis or description for the show (str)

	link: A link to a page describing the show, such as anilist. (str)

	image: A relative link to the show’s poster. (str)

	airing: The airing status of the show according to the scraper (str)

	season_name: The name of the season: winter, spring, summer, or fall (str)

	starred: Whether the show is highlighted or not (int)

	sub_groups: A pipe-separated (|) list of subgroups running the show (str)

	
class aniping.plugins.Scraper(config, plugin_manager)

	Base scraper class.

Extend this class if you are making a Scraper plugin.

Scrapers are used to collect the list of shows airing in a given season, as well as their
descriptions, air dates, images, and most of the other metadata. Most of this class is
usually run in a separate, spawned thread to download information without blocking the
web server.

Examples of scrapers include anilist, myanimelist, or hummingbird.

Note

Check the AniPlugin Class documentation for details on what must
be included with all plugins. This documentation only describes what
is needed with search engine plugins.

	
get_shows_by_category(search_results=None)

	Gets show from the database and backend by category.

Should gets all shows from the DB and seperates into watching,
tv, movies, and specials. You’ll probably need to contact the
backend to get shows being watched.

This is a scraper function because it relies on categories that
should be provided by the scraper. However, they should be separated
into the 4 described below.

	Keyword Arguments

	search_results (str) – A list of database shows to parse into
the separate lists instead of all shows.
When none, should return all shows from db
using self.db("get_all_shows")

	Returns

	tuple. 4 lists of shows.

	watching – Shows currently being watched.

	airing – TV shows being aired.

	specials – TV and Web Specials (OVA, ONA, etc.) airing or due to air.

	movies – Movies airing or due to premiere.

	
scrape_shows()

	Gets shows from the scraper service and adds them to the database.

Scraper is a bit of a misnomer, but don’t worry about that.

This should check your scraper service for all shows airing this season
and either add them to the database or update them if they are already there.
It should delete anything in the database that is not airing - the back end
should keep track of shows that have not yet finished but still ongoing.

This will almost always be run in a separate thread from the main server instance,
so keep that in mind when building and debugging, because things like “print” may
not work as expected.

This will run weekly or as configured.

	
url

	str – Should return the URL of your scraper.

	
class aniping.plugins.SearchEngine(config, plugin_manager)

	Base Search Engine Class.

Extend this class if you are making a SearchEngine plugin.

Search engines are only used by aniping to find specific sub and release groups
that are work on a given show. Examples of search engines include Nyaa Torrents
or Google if you’re ambitious.

Note

Check the AniPlugin Class documentation for details on what must
be included with all plugins. This documentation only describes what
is needed with search engine plugins.

	
results(query)

	Searches for a show and returns results.

This function will search the search engine for a given query, typically
a show title.

	Parameters

	query (str) – The query to pass to the search engine. Typically a show title.

	Returns

	Should return a tuple with two lists.

	groups - A list of subgroups parsed from search results.

	results - The raw search results.

	
url

	str – Should return the URL of your search engine.

aniping.db.sqlite

	
class aniping.db.sqlite.Sqlite(config, plugin_manager)

	Sqlite database plugin.

This plugin implements the sqlite database for aniping.

	
db_loc

	str – Returns the sqlite file we use.

	
db_schema

	str – Returns the contents of the schema file.

	
name

	str – Returns the name of this plugin.

aniping.back_end.sonarr

	
class aniping.back_end.sonarr.Sonarr(config, plugin_manager)

	Sonarr backend plugin.

This plugin implements the sonarr backend for finding and downloading shows.

	
add_update_show(beid, subgroup)

	Adds or edits a show in sonarr, then calls for a scan.

	Parameters

	
	beid (int) – The TVDB ID of the show we’re adding or editing.

	subgroup (str) – The subgroup we’re using for this show.

	
api_key

	str – Returns the configured sonarr api key.

	
check_auth(username, password)

	Checks if a user gives a correct username and password.

User and pass are checked back against sonarr,
we do not handle our own authentication. Unfortunately,
particularly with the form authentication, this is a bit
fragile.

	Parameters

	
	username (str) – The username to check.

	password (str) – The password to check.

	Returns

	bool.

	True – user is authenticated

	False – user is not authenticated or an error occurred

	
fanart(beid)

	Returns a list of fanart URLs based on search results.

	Parameters

	beid (int) – The TVDB ID for the show to get fanart from.

	Returns

	list. All fanart urls in the results.

	
get_show(beid)

	Gets a specific show from sonarr.

Because sonarr doesn’t have internal IDs we can always use, we use the TVDB id
to find a show, which should be just as unique. All this function
does is call back_end.search with a tvdb: search keyword.

	Parameters

	beid (int) – The TVDB ID for the show.

	Returns

	dict. A dictionary describing the show in sonarr’s format.

	
get_watching_shows()

	Get all of the shows we’re downloading in sonarr.

This is basically just a list of shows in sonarr, because it doesn’t store shows
that are not being downloaded.

	Returns

	list. A list of dictionaries decribing shows in sonarr’s format.

	
name

	str – Returns the plugin’s name.

	
remove_show(beid)

	Remove a given show from sonarr.

It will not delete files. The backend ID we’re given is not the ID we need, so the show
is looked up first. It will only delete shows if the DELETE_SHOWS config value is set.

	Parameters

	beid (int) – The TVDB ID of the show.

	
search(term)

	Searches sonarr for a particular show.

This searches whatever indexers sonarr has configured.

	Parameters

	term (str) – The title of the show we’re searching for.

	Returns

	list. A list of dictionaries describing the show in sonarr’s format.

	
subgroup_selected(beid)

	Uses results from search to determine which subgroup is selected.

We base it on the tags. Right now, the first tag is assumed to be the subgroup.

	Parameters

	beid (int) – The tvdb id of the show to get the subgroup for.

	Returns

	str. The first tag on the show, which we assume to be the subgroup.
None if none is found.

	
url

	str – Returns the configured url of the sonarr instance.

aniping.search.nyaa

	
class aniping.search.nyaa.Nyaa(config, plugin_manager)

	Nyaa Search Engine Plugin.

This plugin implements the nyaa.si search engine for finding shows
and subgroups.

	
category

	str. Returns the category ID we are looking at in Nyaa.

	
filter

	int. Returns the filter ID we are looking at in nyaa.

	
name

	str. Returns the name of the plugin.

	
results(query)

	Result gathering function.

Searches nyaa for a given show and returns the results.

	Parameters

	query (string) – The show title to search for.

	Returns

	tuple. Contains two lists.

	groups - A list of sub groups parsed from the results.

	results - A list of raw results.

	
url

	str. Returns the RSS url we are parsing from.

aniping.scraper.anilist

	
class aniping.scraper.anilist.Anilist(config, plugin_manager)

	Anilist Scraper Plugin.

This plugin implements the anilist scraper and tracker for getting show information.

	
get_shows_by_category(search_results=None)

	Gets all shows from the DB and seperates into watching, tv, movies, and specials.

	Keyword Arguments

	search_results (str) – A list of database shows to parse into
the separate lists instead of all shows.

	Returns

	tuple. 4 lists of shows.

	watching – Shows currently being watched.

	airing – TV shows being aired.

	specials – TV and Web Specials (OVA, ONA, etc.) airing or due to air.

	movies – Movies airing or due to premiere.

	
name

	str – Returns the name of the plugin.

	
scrape_shows()

	Checks our anilist for shows and updates them in the database if they’re there.

If not, adds them. Deletes everything else.
Typically run in a separate thread from the main server instance.
Should run regularly to keep the database up to date.

	Parameters

	config (dict) – The configuration dictionary.

	
url

	str – Returns the url of anilist.

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Aniping

 		
 Quick Start Guide

 		
 Installation

 		
 Configuration

 		
 Tutorial

 		
 Logging In and Out

 		
 Searching for shows

 		
 Highlighting shows

 		
 Selecting a show

 		
 Editing a show

 		
 Deleting a show

 		
 Plugin Development

 		
 Pluggable Framework

 		
 Backend

 		
 Search

 		
 Scraper

 		
 DB

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

