
Anaconda Documentation
Release 26.1

Anaconda Team

Sep 27, 2017

Contents

1 Introduction to Anaconda 3

2 Anaconda Boot Options 5

3 Anaconda Kickstart Documentation 17

4 Contribution guidelines 19

5 Rules for commit messages 23

6 Building a Release 25

7 Brief description of DriverDisc version 3 27

8 iSCSI and Anaconda 31

9 Multipath and Anaconda 35

10 The list-harddrives script 39

11 Specification of the user interaction configuration file 41

12 Testing Anaconda 45

i

ii

Anaconda Documentation, Release 26.1

Contents:

Contents 1

Anaconda Documentation, Release 26.1

2 Contents

CHAPTER 1

Introduction to Anaconda

Anaconda is the installation program used by Fedora, Red Hat Enterprise Linux and some other distributions.

During installation, a target computer’s hardware is identified and configured and the appropriate file systems for the
system’s architecture are created. Finally, anaconda allows the user to install the operating system software on the
target computer. anaconda can also upgrade existing installations of earlier versions of the same distribution. After the
installation is complete, you can reboot into your installed system and continue doing customization using the initial
setup program.

anaconda is a fairly sophisticated installer. It supports installation from local and remote sources such as CDs and
DVDs, images stored on a hard drive, NFS, HTTP, and FTP. Installation can be scripted with kickstart to provide a
fully unattended installation that can be duplicated on scores of machines. It can also be run over VNC on headless
machines. A variety of advanced storage devices including LVM, RAID, iSCSI, and multipath are supported from the
partitioning program. anaconda provides advanced debugging features such as remote logging, access to the python
interactive debugger, and remote saving of exception dumps.

3

Anaconda Documentation, Release 26.1

4 Chapter 1. Introduction to Anaconda

CHAPTER 2

Anaconda Boot Options

Authors Anaconda Developers <anaconda-devel-list@redhat.com> Will Woods
<wwoods@redhat.com> Anne Mulhern <amulhern@redhat.com>

These are the boot options that are useful when starting Anaconda. For more information refer to the appropriate
Installation Guide for your release and to the Anaconda wiki.

Anaconda bootup is handled by dracut, so most of the kernel arguments handled by dracut are also valid. See dra-
cut.kernel(7) for details on those options.

Throughout this guide, installer-specific options are prefixed with inst (e.g. inst.ks). Options specified without
the inst prefix are recognized, but the prefix may be required in a future release.

Installation Source

Note: An installable tree is a directory structure containing installer images, packages, and repodata.1

Usually this is either a copy of the DVD media (or loopback-mounted DVD image), or the <arch>/os/ directory
on the Fedora mirrors.

inst.repo

This gives the location of the Install Source - that is, the place where the installer can find its images and packages. It
can be specified in a few different ways:

inst.repo=cdrom Search the system’s CDROM drives for installer media. This is the default.

inst.repo=cdrom:<device> Look for installer media in the specified disk device.

inst.repo=hd:<device>:<path> Mount the given disk partition and install from ISO file on the given path.
This installation method requires ISO file, which contains an installable tree.

1 an installable tree must contain a valid .treeinfo file for inst.repo or inst.stage2 to work.

5

mailto:anaconda-devel-list@redhat.com
mailto:wwoods@redhat.com
mailto:amulhern@redhat.com
https://fedoraproject.org/wiki/Anaconda
http://www.kernel.org/pub/linux/utils/boot/dracut/dracut.html#dracutcmdline7
http://www.kernel.org/pub/linux/utils/boot/dracut/dracut.html#dracutcmdline7

Anaconda Documentation, Release 26.1

inst.repo=[http,https,ftp]://<host>/<path> Look for an installable tree at the given URL.

inst.repo=nfs:[<options>:]<server>:/<path> Mount the given NFS server and path. Uses NFS ver-
sion 3 by default.

You can specify what version of the NFS protocol to use by adding nfsvers=X to the options.

This accepts not just an installable tree directory in the <path> element, but you can also specify an .iso file.
That ISO file is then mounted and used as the installation tree. This is often used for simulating a standard DVD
installation using a remote DVD.iso image.

Note: Disk devices may be specified with any of the following forms:

Kernel Device Name /dev/sda1, sdb2

Filesystem Label LABEL=FLASH, LABEL=Fedora, CDLABEL=Fedora\x2023\x20x86_64

Filesystem UUID UUID=8176c7bf-04ff-403a-a832-9557f94e61db

Non-alphanumeric characters should be escaped with \xNN, where ‘NN’ is the hexidecimal representation of the
character (e.g. \x20 for the space character (‘ ‘).

inst.noverifyssl

Prevents Anaconda from verifying the ssl certificate for all HTTPS connections with an exception of the additional
kickstart repos (where –noverifyssl can be set per repo).

inst.proxy

inst.proxy=PROXY_URL

Use the given proxy settings when performing an installation from a HTTP/HTTPS/FTP source. The PROXY_URL
can be specified like this: [PROTOCOL://][USERNAME[:PASSWORD]@]HOST[:PORT].

inst.stage2

This specifies the location to fetch only the installer runtime image; packages will be ignored. Otherwise the same as
inst.repo.

inst.dd

This specifies the location for driver rpms. May be specified multiple times. Locations may be specified using any of
the formats allowed for inst.repo.

inst.multilib

This sets dnf’s multilib_policy to “all” (as opposed to “best”).

6 Chapter 2. Anaconda Boot Options

Anaconda Documentation, Release 26.1

Kickstart

inst.ks

Give the location of a kickstart file to be used to automate the install. Locations may be specified using any of the
formats allowed for inst.repo.

For any format the <path> component defaults to /ks.cfg if it is omitted.

For NFS kickstarts, if the <path> ends in /, <ip>-kickstart is added.

If inst.ks is used without a value, the installer will look for nfs:<next_server>:/<filename>

• <next_server> is the DHCP “next-server” option, or the IP of the DHCP server itself

• <filename> is the DHCP “filename” option, or /kickstart/, and if the filename given ends in /,
<ip>-kickstart is added (as above)

For example:

• DHCP server: 192.168.122.1

• client address: 192.168.122.100

• kickstart file: nfs:192.168.122.1:/kickstart/192.168.122.100-kickstart

inst.ks.sendmac

Add headers to outgoing HTTP requests which include the MAC addresses of all network interfaces. The header is of
the form:

• X-RHN-Provisioning-MAC-0: eth0 01:23:45:67:89:ab

This is helpful when using inst.ks=http... to provision systems.

inst.ks.sendsn

Add a header to outgoing HTTP requests which includes the system’s serial number.2

The header is of the form:

• X-System-Serial-Number: <serial>

Network Options

Initial network setup is handled by dracut. For detailed information consult the “Network” section of dracut.kernel(7).

The most common dracut network options are covered here, along with some installer-specific options.

2 as read from /sys/class/dmi/id/product_serial

2.2. Kickstart 7

http://www.kernel.org/pub/linux/utils/boot/dracut/dracut.html#dracutcmdline7

Anaconda Documentation, Release 26.1

ip

Configure one (or more) network interfaces. You can use multiple ip arguments to configure multiple interfaces, but
if you do you must specify an interface for every ip= argument, and you must specify which interface is the primary
boot interface with bootdev.

Accepts a few different forms; the most common are:

ip=<dhcp|dhcp6|auto6|ibft> Try to bring up every interface using the given autoconf method. Defaults to
ip=dhcp if network is required by inst.repo, inst.ks, inst.updates, etc.

ip=<interface>:<autoconf> Bring up only one interface using the given autoconf method, e.g.
ip=eth0:dhcp.

ip=<ip>::<gateway>:<netmask>:<hostname>:<interface>:none Bring up the given interface
with a static network config, where:

<ip> The client IP address. IPv6 addresses may be specified by putting them in square brackets,
like so: [2001:DB8::1].

<gateway> The default gateway. IPv6 addresses are accepted here too.

<netmask> The netmask (e.g. 255.255.255.0) or prefix (e.g. 64).

<hostname> Hostname for the client machine. This component is optional.

ip=<ip>::<gateway>:<netmask>:<hostname>:<interface>:<autoconf>:<mtu> Bring up the
given interface with the given autoconf method, but override the automatically obtained IP/gateway/etc. with
the provided values.

Technically all of the items are optional, so if you want to use dhcp but also set a hostname you can use
ip=::::<hostname>::dhcp.

nameserver

Specify the address of a nameserver to use. May be used multiple times.

bootdev

Specify which interface is the boot device. Required if multiple ip= options are used.

ifname

ifname=<interface>:<MAC> Assign the given interface name to the network device with the given MAC. May
be used multiple times.

Note: Dracut applies ifname option (which might involve renaming the device with given MAC) in initramfs only
if the device is activated in initramfs stage (based on ip= option). If it is not the case, installer still binds the current
device name to the MAC by adding HWADDR setting to the ifcfg file of the device.

inst.dhcpclass

Set the DHCP vendor class identifier [#dhcpd]. Defaults to anaconda-$(uname -srm).

8 Chapter 2. Anaconda Boot Options

Anaconda Documentation, Release 26.1

Console / Display Options

console

This is a kernel option that specifies what device to use as the primary console. For example, if your console should
be on the first serial port, use console=ttyS0.

You can use multiple console= options; boot messages will be displayed on all consoles, but anaconda will put its
display on the last console listed.

Implies inst.text.

inst.lang

Set the language to be used during installation. The language specified must be valid for the lang kickstart command.

inst.singlelang

Install in single language mode - no interactive options for installation language and language support configuration
will be available. If a language has been specified via the inst.lang boot option or the lang kickstart command it will
be used. If no language is specified Anaconda will default to en_US.UTF-8.

Note: Atomic installations always run in single language mode.

inst.geoloc

Configure geolocation usage in Anaconda. Geolocation is used to pre-set language and time zone.

inst.geoloc=0 Disables geolocation.

inst.geoloc=provider_fedora_geoip Use the Fedora GeoIP API (default).

inst.geoloc=provider_hostip Use the Hostip.info GeoIP API.

inst.keymap

Set the keyboard layout to use. The layout specified must be valid for use with the keyboard kickstart command.

inst.cmdline

Run the installer in command-line mode. This mode does not allow any interaction; all options must be specified in a
kickstart file or on the command line.

inst.graphical

Run the installer in graphical mode. This is the default.

2.4. Console / Display Options 9

Anaconda Documentation, Release 26.1

inst.text

Run the installer using a limited text-based UI. Unless you’re using a kickstart file this probably isn’t a good idea; you
should use VNC instead.

inst.noninteractive

Run the installer in a non-interactive mode. This mode does not allow any user interaction and can be used with
graphical or text mode. With text mode it behaves the same as the inst.cmdline mode.

inst.resolution

Specify screen size for the installer. Use format nxm, where n is the number of horizontal pixels, m the number of
vertical pixels. The lowest supported resolution is 800x600.

inst.vnc

Run the installer GUI in a VNC session. You will need a VNC client application to interact with the installer. VNC
sharing is enabled, so multiple clients may connect.

A system installed with VNC will start in text mode (runlevel 3).

inst.vncpassword

Set a password on the VNC server used by the installer.

inst.vncconnect

inst.vncconnect=<host>[:<port>] Once the install starts, connect to a listening VNC client at the given
host. Default port is 5900.

Use with vncviewer -listen.

inst.headless

Specify that the machine being installed onto doesn’t have any display hardware, and that anaconda shouldn’t bother
looking for it.

inst.xdriver

Specify the X driver that should be used during installation and on the installed system.

inst.usefbx

Use the framebuffer X driver (fbdev) rather than a hardware-specific driver.

Equivalent to inst.xdriver=fbdev.

10 Chapter 2. Anaconda Boot Options

Anaconda Documentation, Release 26.1

inst.sshd

Start up sshd during system installation. You can then ssh in while the installation progresses to debug or monitor its
progress.

Caution: The root account has no password by default. You can set one using the sshpw kickstart command.

Debugging and Troubleshooting

inst.rescue

Run the rescue environment. This is useful for trying to diagnose and fix broken systems.

inst.updates

Give the location of an updates.img to be applied to the installer runtime. Locations may be specified using any
of the formats allowed for inst.repo.

For any format the <path> component defaults to /updates.img if it is omitted.

inst.nokill

A debugging option that prevents anaconda from and rebooting when a fatal error occurs or at the end of the installation
process.

inst.loglevel

inst.loglevel=<debug|info|warning|error|critical> Set the minimum level required for mes-
sages to be logged on a terminal (log files always contain messages of all levels). The default value is info.

inst.noshell

Do not put a shell on tty2 during install.

inst.syslog

inst.syslog=<host>[:<port>] Once installation is running, send log messages to the syslog process on the
given host. The default port is 514 (UDP).

Requires the remote syslog process to accept incoming connections.

inst.virtiolog

Forward logs through the named virtio port (a character device at /dev/virtio-ports/<name>).

If not provided, a port named org.fedoraproject.anaconda.log.0 will be used by default, if found.

See the Anaconda wiki logging page for more info on setting up logging via virtio.

2.5. Debugging and Troubleshooting 11

https://fedoraproject.org/wiki/Anaconda/Logging

Anaconda Documentation, Release 26.1

inst.zram

Forces/disables (on/off) usage of zRAM swap for the installation process.

Boot loader options

extlinux

Use extlinux as the bootloader. Note that there’s no attempt to validate that this will work for your platform or anything;
it assumes that if you ask for it, you want to try.

leavebootorder

Boot the drives in their existing order, to override the default of booting into the newly installed drive on Power
Systems servers and EFI systems. This is useful for systems that, for example, should network boot first before falling
back to a local boot.

Storage options

inst.nodmraid

Disable support for dmraid.

Warning: This option is never a good idea! If you have a disk that is erroneously identified as part of a firmware
RAID array, that means it has some stale RAID metadata on it which must be removed using an appropriate tool
(dmraid and/or wipefs).

inst.nompath

Disable support for multipath devices. This is for systems on which a false-positive is encountered which erroneously
identifies a normal block device as a multipath device. There is no other reason to use this option.

Warning: Not for use with actual multipath hardware! Using this to attempt to install to a single path of a
multipath is ill-advised, and not supported.

inst.gpt

Prefer creation of GPT disklabels.

12 Chapter 2. Anaconda Boot Options

Anaconda Documentation, Release 26.1

Other options

inst.selinux

Enable SELinux usage in the installed system (default). Note that when used as a boot option, “selinux” and
“inst.selinux” are not the same. The “selinux” option is picked up by both the kernel and Anaconda, but “inst.selinux”
is processed only by Anaconda. So when “selinux=0” is used, SELinux will be disabled both in the installation envi-
ronment and in the installed system, but when “inst.selinux=0” is used SELinux will only be disabled in the installed
system. Also note that while SELinux is running in the installation environment by default, it is running in permissive
mode so disabling it there does not make much sense.

inst.nosave

Controls what installation results should not be saved to the installed system, valid values are: “input_ks”, “output_ks”,
“all_ks”, “logs” and “all”.

input_ks Disables saving of the input kickstart (if any).

output_ks Disables saving of the output kickstart generated by Anaconda.

all_ks Disables saving of both input and output kickstarts.

logs Disables saving of all installation logs.

all Disables saving of all kickstarts and all logs.

Multiple values can be combined as a comma separated list, for example: input_ks,logs

Note: The nosave option is meant for excluding files from the installed system that can’t be removed by a kickstart
%post script, such as logs and input/output kickstarts.

Third-party options

Since Fedora 19 the Anaconda installer supports third-party extensions called addons. The addons can support their
own set of boot options which should be documented in their documentation or submitted here.

inst.kdump

inst.kdump_addon=on/off

Enable kdump anaconda addon to setup the kdump service.

Deprecated Options

These options should still be accepted by the installer, but they are deprecated and may be removed soon.

method

This is an alias for inst.repo.

2.8. Other options 13

Anaconda Documentation, Release 26.1

repo=nfsiso:...

The difference between an installable tree and a dir with an .iso file is autodetected, so this is the same as inst.
repo=nfs:...

dns

Use nameserver instead. Note that nameserver does not accept comma-separated lists; use multiple nameserver
options instead.

netmask, gateway, hostname

These can be provided as part of the ip option.

ip=bootif

A PXE-supplied BOOTIF option will be used automatically, so there’s no need

ksdevice

Not present The first device with a usable link is used

ksdevice=link Ignored (this is the same as the default behavior)

ksdevice=bootif Ignored (this is the default if BOOTIF= is present)

ksdevice=ibft Replaced with ip=ibft. See ip

ksdevice=<MAC> Replaced with BOOTIF=${MAC/:/-}

ksdevice=<DEV> Replaced with bootdev

Removed Options

These options are obsolete and have been removed.

askmethod, asknetwork

Anaconda’s initramfs is now is completely non-interactive, so these have been removed.

Instead, use inst.repo or specify appropriate Network Options.

blacklist, nofirewire

modprobe handles blacklisting kernel modules on its own; try modprobe.blacklist=<mod1>,<mod2>...

You can blacklist the firewire module with modprobe.blacklist=firewire_ohci.

14 Chapter 2. Anaconda Boot Options

Anaconda Documentation, Release 26.1

serial

This option was never intended for public use; it was supposed to be used to force anaconda to use /dev/ttyS0 as
its console when testing it on a live machine.

Use console=ttyS0 or similar instead. See console for details.

updates

Use inst.updates instead.

essid, wepkey, wpakey

Dracut doesn’t support wireless networking, so these don’t do anything.

ethtool

Who needs to force half-duplex 10-base-T anymore?

gdb

This was used to debug loader, so it has been removed. There are plenty of options for debugging dracut-based
initramfs - see the dracut “Troubleshooting” guide.

inst.mediacheck

Use the dracut option rd.live.check instead.

ks=floppy

We no longer support floppy drives. Try inst.ks=hd:<device> instead.

display

For remote display of the UI, use inst.vnc.

utf8

All this option actually did was set TERM=vt100. The default TERM setting works fine these days, so this was no
longer necessary.

noipv6

ipv6 is built into the kernel and can’t be removed by anaconda.

You can disable ipv6 with ipv6.disable=1. This setting will be carried onto the installed system.

2.10. Removed Options 15

Anaconda Documentation, Release 26.1

upgradeany

Anaconda doesn’t handle upgrades anymore.

inst.repo=hd:<device>:<path> for installable tree

Anaconda can’t use this option with installable tree but only with an ISO file.

16 Chapter 2. Anaconda Boot Options

CHAPTER 3

Anaconda Kickstart Documentation

Authors Brian C. Lane <bcl@redhat.com>

Anaconda uses kickstart to automate installation and as a data store for the user interface. It also extends the kickstart
commands documented here by adding a new kickstart section named %anaconda where commands to control the
behavior of Anaconda will be defined.

pwpolicy

program: pwpolicy <name> [--minlen=LENGTH] [--minquality=QUALITY] [--strict|notstrict] [--emptyok|notempty] [--changesok|nochanges]
Set the policy to use for the named password entry.

name Name of the password entry, currently supported values are: root, user and luks

--minlen (8) Minimum password length. This is passed on to libpwquality.

--minquality (50) Minimum libpwquality to consider good. When using --strict it will not allow
passwords with a quality lower than this.

--strict (DEFAULT) Strict password enforcement. Passwords not meeting the --minquality level will
not be allowed.

--notstrict Passwords not meeting the --minquality level will be allowed after Done is clicked twice.

--emptyok (DEFAULT) Allow empty password.

--notempty Don’t allow an empty password

--changesok Allow UI to be used to change the password/user when it has already been set in the kickstart.

--nochanges (DEFAULT) Do not allow UI to be used to change the password/user if it has been set in the
kickstart.

The defaults for these are set in the /usr/share/anaconda/interactive-defaults.ks file provided by
Anaconda. If a product, such as Fedora Workstation, wishes to override them then a product.img needs to be
created with a new version of the file included.

17

mailto:bcl@redhat.com
https://github.com/rhinstaller/pykickstart
https://pykickstart.readthedocs.io/

Anaconda Documentation, Release 26.1

When using a kickstart the defaults can be overridded by placing a %anaconda section into the kickstart, like this:

%anaconda
pwpolicy root --minlen=10 --minquality=60 --strict --notempty --nochanges
%end

Note: The commit message for pwpolicy included some incorrect examples.

18 Chapter 3. Anaconda Kickstart Documentation

CHAPTER 4

Contribution guidelines

How to Contribute to the Anaconda Installer (the short version)

a) I want to contribute to the upstream Anaconda Installer (used in Fedora): - open a pull request for the <next
Fedora number>-devel branch (f25-devel, etc.) - check the Commit Messages section below for how to format
your commit messages

b) I want to contribute to the RHEL Anaconda installer: - open a pull request for the <RHEL number>-branch
branch (rhel7-branch, etc.) - check the Commits for RHEL Branches section below for how to format your commit
messages

If you want to contribute a change to both the upstream and RHEL Anaconda then follow both a) and b) separately.

Anaconda Installer Branching Policy (the long version)

The basic premise is that there are the following branches: - master - unstable - <next fedora number>-release - <next
fedora number>-devel

Master branch never waits for any release-related processes to take place. The spec file will remain there to track
dependencies. Master branch is not associated with Fedora Rawhide builds anymore. Its purpose is to function
purely as an upstream branch.

The unstable branch is used for making periodic Anaconda releases for Rawhide (or possibly anyone else wanting
to taste the cutting edge).

Concerning current RHEL branches, they are too divergent to integrate into this scheme. Thus, commits are merged
onto, and builds are done on the RHEL branches. In this case, two pull requests will very likely be needed: - one for
the rhel<number>-branch - one for the master or <fedora number>-devel branch (if the change is not
RHEL only)

19

Anaconda Documentation, Release 26.1

Releases

For specific Fedora version, the release process is as follows: - <next Fedora number>-devel is merged onto
<next Fedora number>-release - a release commit is made (which bumps version in spec file) & tagged

Concerning Fedora Rawhide, the release process is (very) slightly different: - master is merged onto the unstable
branch - a release commit is made (which bumps version in spec file) & tagged

Concerning the <next Fedora number> branches (which could also be called next stable release if we
wanted to decouple our versioning from Fedora in the future): - work which goes into the next Fedora goes to <next
Fedora number>-devel, which is periodically merged back to master - this way we can easily see what was
developed in which Fedora timeframe and possibly due to given Fedora testing phase feedback (bugfixes, etc.) - stuff
we don’t want to go to the next Fedora (too cutting edge, etc.) goes only to master branch - commits specific to
a given Fedora release (temporary fixes, etc.) go only to the <next Fedora number>-release branch - the
<next Fedora number>-release branch also contains release commits

Example for the F25 cycle

• master

• unstable

• f25-devel

• f25-release

This would continue until F25 is released, after which we: - drop the f25-devel branch - keep f25-release as an inactive
record of the f25 cycle - branch f26-devel and f26-release from the master branch

This will result in the following branches for the F26 cycle: - master - unstable - f26-devel - f26-release

Guidelines for Commits

Commit Messages

The first line should be a succinct description of what the commit does. If your commit is fixing a bug in Red Hat’s
bugzilla instance, you should add ‘‘ (#123456)‘‘ to the end of the first line of the commit message. The next line
should be blank, followed (optionally) by a more in-depth description of your changes. Here’s an example:

Stop kickstart when space check fails

Text mode kickstart behavior was inconsistent, it would allow an installation to continue even though the
space check failed. Every other install method stops, letting the user add more space before continuing.

Commits for RHEL Branches

If you are submitting a patch for any rhel-branch, the last line of your commit must identify the bugzilla bug id it fixes,
using the Resolves or Related keyword, e.g.: Resolves: rhbz#111111

or

Related: rhbz#1234567

Use Resolves if the patch fixes the core issue which caused the bug. Use Related if the patch fixes an ancillary
issue that is related to, but might not actually fix the bug.

20 Chapter 4. Contribution guidelines

Anaconda Documentation, Release 26.1

Pull Request Review

Please note that there is a minimum review period of 24 hours for any patch. The purpose of this rule is to ensure that
all interested parties have an opportunity to review every patch. When posting a patch before or after a holiday break
it is important to extend this period as appropriate.

All subsequent changes made to patches must be force-pushed to the PR branch before merging it into the main branch.

Merging examples

Merging the Fedora devel branch back to the master branch

(Fedora 25 is used as an example, don’t forget to use appropriate Fedora version.)

Checkout and pull the master branch:

git checkout master git pull

Merge the Fedora devel branch to the master branch:

git merge --no-ff f25-devel

Push the merge to the remote:

git push origin master

Merging a GitHub pull request

(Fedora 25 is used as an example, don’t forget to use appropriate Fedora version.)

Press the green Merge pull request button on the pull request page.

If the pull request has been opened for: - master - f25-release - rhel7-branch Then you are done.

If the pull request has been opened for the f25-devel branch, then you also need to merge the f25-devel branch
back to master once you merge your pull request (see “Merging the Fedora devel branch back to the master branch”
above).

Merging a topic branch manually

(Fedora 25 is used as an example, don’t forget to use appropriate Fedora version.)

Let’s say that there is a topic branch called “fix_foo_with_bar” that should be merged to a given Anaconda non-topic
branch.

Checkout the given target branch, pull it and merge your topic branch into it:

git checkout <target branch> git pull git merge --no-ff fix_foo_with_bar

Then push the merge to the remote:

git push origin <target branch>

If the <target branch> was one of: - master - f25-release - rhel7-branch Then you are done.

If the pull request has been opened for the f25-devel branch, then you also need to merge the f25-devel branch
back to master once you merge your pull request (see “Merging the Fedora devel branch back to the master branch”
above).

4.6. Merging examples 21

Anaconda Documentation, Release 26.1

22 Chapter 4. Contribution guidelines

CHAPTER 5

Rules for commit messages

git commit messages for anaconda should follow a consistent format. The following are rules to follow when commit-
ting a change to the git repo:

1. The first line of the commit message should be a short summary of the change in the patch. We also place
(#BUGNUMBER) at the end of this line to indicate the bugzilla.redhat.com bug number addressed in this patch.
The bug number is optional since there may be no bug number, but if you have one you are addressing, please
include it on the summary line. Lastly, the summary lines need to be short. Ideally less than 75 characters, but
certainly not longer than 80.

Here are acceptable first lines for git commit messages:

Check partition and filesystem type on upgrade (#123456) Fix bootloader configuration setup on
ppc64 (#987654) Introduce a new screen for setting your preferred email client

The last one would be a new feature that we didn’t have a bug number for.

2. The main body of the commit message should begin TWO LINES below the summary line you just entered
(that is, there needs to be a blank line between the one line summary and the start of the long commit message).
Please document the change and explain the patch here. Use multiple paragraphs and keep the lines < 75 chars.
DO NOT indent these lines. Everything in the git commit message should be left justified. PLEASE wrap long
lines. If you don’t, the ‘git log’ output ends up looking stupid on 80 column terminals.

3. For RHEL bugs, all commits need to reference a bug number. You may follow one of two formats for specifying
the bug number in a RHEL commit.

(a) Put the bug number on the summary line in (#BUGNUMBER) format. Bugs listed this way are treated as
‘Resolves’ patches in the RHEL universe.

(b) If you have a patch that is Related to or Conflicts with another bug, you may add those lines to the end of
the long commit message in this format:

Related: rhbz#BUGNUMBER
Conflicts: rhbz#BUGNUMBER
Resolves: rhbz#BUGNUMBER

These entries should come at the end of the long commit message and must follow the format above. You
may have as many of these lines as appropriate for the patch.

23

Anaconda Documentation, Release 26.1

(c) Patches that are ‘Resolves’ patches have two methods to specify the bug numbers, but Related and Conflicts
can only be listed in the long commit message.

On RHEL branches, the ‘bumpver’ process will verify that each patch for the release references a RHEL bug
number. The scripts/makebumpver script will extract the bug numbers from RHEL branch commits and do
two things. First, it verifies that the bug referenced is a RHEL bug and in correct states. Second, it adds the
appropriate Resolves/Related/Conflicts line to the RPM spec file changelog.

It is recommended to use the pre-push hook checking commit messages for RHEL bug numbers and checking
the referenced bugs for all the necessary acks. To make it work, just copy the scripts/githooks/pre-push and
scripts/githooks/check_commit_msg.sh scripts to the .git/hooks/ directory.

24 Chapter 5. Rules for commit messages

CHAPTER 6

Building a Release

When the project is ready for a new release, follow these steps to build a new release tar.gz file and sign a new release
tag in git. This requires that you have a zanata account, and have permission to push the new .pot file to the branch
you are building. See the translations.txt file for more details.

• git clean -d -x -f

• ./autogen.sh && ./configure

• make bumpver

• VERSION=$(grep ^AC_INIT configure.ac | awk '{print $2}' | tr -d '[],')

• git commit -am "New version - $VERSION"

• make release

Check that the commit looks correct and push the new release with:

• git push && git push --tags

The anaconda-$VERSION.tar.gz file and anaconda.spec can now be used to by fedpkg to create a new anaconda rpm.

25

Anaconda Documentation, Release 26.1

26 Chapter 6. Building a Release

CHAPTER 7

Brief description of DriverDisc version 3

For a new major release we decided to introduce a new version of DriverDisc feature to ensure the smoothest vendor
and user experience possible. We had many reasons for it:

• the old DD didn’t support multiple architectures

• the old DD wasn’t particulary easy to create

• the old DD had two copys of modules, one for anaconda and one for instalation

• the modules in old DD weren’t checked for kernel version

We also changed the feature internal code to enable some functionality that was missing from the old version. More
about it below.

Devices which can contain DDs

The best place to save your DriverDisc to is USB flash device. We also support (or plan to) IDE and SATA block
devices with or without partitions, DriverDisc image stored on block device, initrd overlay (see documentation below)
and for special cases even network retrieval of DriverDisc image.

What can be updated using DDs?

All drivers for block devices, which weren’t used for retrieving DriverDiscs, the same applies also for network drivers
eg. you cannot upgrade network driver for device, which was used prior the DriverDisc extraction.

RPMs for installation. If the DriverDisc repo contains newer package, than the official repository, the newer package
will get used.

We also plan to support anaconda’s updates.img placement on the DriverDisc to update stage2 behaviour of anaconda.

27

Anaconda Documentation, Release 26.1

Selecting DD manually

Use the ‘inst.dd’ kernel command line option to trigger DD mode. If no argument is specified, the UI will prompt for
the location of the driver rpm. Otherwise, the rpm will be fetched from the specified location.

Please consult the appropriate Installer Guide for further information.

Automatic DriverDisc detection

Anaconda automatically looks for driverdiscs during startup.

The DriverDisc has to be on partition or filesystem which has been labeled with ‘OEMDRV’ label.

DDv3 structure

The new DriverDisc format uses simple layout which can be created on top of any anaconda’s supported filesystem
(vfat, squashfs, ext2 and ext3).

/
|rhdd3 - DD marker, contains the DD's description string
/rpms

| /i386 - contains RPMs for this arch and acts as package repo
| /i586
| /x86_64
| /ppc
| /... - any other architecture the DD provides drivers for

There is a special requirement for the RPMs used to update drivers. Anaconda picks up only RPMs which provide
“kernel-modules = <running kernel version>”.

Initrd overlay driverdisc image

We have designed another possible way of providing updates in network boot environments. It is possible to update all
modules this way, so if special storage module (which gets used early) needs to be updated, this is the preffered way.

This kind of driverdisc image is applied over the standard initrd and so has to respect some rules.

• All updated modules belong to /lib/modules/<kernel version>/.. according to their usual location

• All new modules belong to /lib/modules/<kernel version>/updates

• All new firmware files belong to /lib/firmware

• The rpm repo with updated packages belongs to /tmp/DD-initrd/

• The (empty) trigger file /.rundepmod must be present

Firmware and module update

The firmware files together with all .ko files from the RPMs are exploded to special module location, which has
preference over built-in Anaconda modules.

28 Chapter 7. Brief description of DriverDisc version 3

Anaconda Documentation, Release 26.1

Anaconda doesn’t use built-in modules (except some storage modules needed for the DD to function properly) during
the DriverDisc mode, so even in case when you are updating some modules with second (or later) DriverDisc, the
updated modules will be loaded. There is one exception though, if your module depends on a module which is only
present in built-in module directory, that built-in module gets also loaded.

Package installation

It is also possible to include arbitrary packages on the DriverDisc media and mark them for installation. You just have
to include the package name in the package repo for correct architecture and mark it as mandatory.

Summary

This new DriverDisc format should simplify the DD creation and usage a lot. We will gladly hear any comments as
this is partially still work in progress.

7.8. Package installation 29

Anaconda Documentation, Release 26.1

30 Chapter 7. Brief description of DriverDisc version 3

CHAPTER 8

iSCSI and Anaconda

Authors Ales Kozumplik <akozumpl@redhat.com>

Introduction

iSCSI device is a SCSI device connected to your computer via a TCP/IP network. The communication can be handled
either in hardware or in software, or as a hybrid — part software, part hardware.

The terminology:

• ‘initiator’, the client in the iscsi connection. The computer we are running Anaconda on is typically an initiator.

• ‘target’, the storage device behind the Network. This is where the data is physically stored and read from. You
can turn any Fedora/RHEL machine to a target (or several) via scsi-target-utils.

• ‘HBA’ or Host Bus Adapter. A device (PCI card typically) you connect to a computer. It acts as a NIC and if
you configure it properly it transparently connects to the target when started and all you can see is a block device
on your system.

• ‘software initiator’ is what you end up with if you emulate most of what HBA is doing and just use a regular
NIC for the iscsi communication. The modern Linux kernel has a software initiator. To use it, you need the
Open-ISCSI software stack [1, 2] installed. It is known as iscsi-initiator-utils in Fedora/RHEL.

• ‘partial offload card’. Similar to HBA but needs some support from kernel and iscsi-initiator-utils. The least
pleasant to work with, particularly because there is no standardized amount of the manual setting that needs to
be done (some connect to the target just like HBAs, some need you to bring their NIC part up manually etc.).
Partial offload cards exist to get better performing I/O with less processor load than with software initiator.

• ‘iBFT’ as in ‘Iscsi Boot Firmware Table’. A table in the card’s bios that contains its network and target settings.
This allows the card to configure itself, connect to a target and boot from it before any operating system or a
bootloader has the chance. We can also read this information from /sys/firmware/ibft after the system starts and
then use it to bring the card up (again) in Linux.

• ‘CHAP’ is the authentication used for iSCSI connections. The authentication can happen during target discovery
or target login or both. It can happen in both directions too: the initiator authenticates itself to the target and the
target is sometimes required to authenticate itself to the initiator.

31

mailto:akozumpl@redhat.com

Anaconda Documentation, Release 26.1

What is expected from Anaconda

We are expected to:

• use an HBA like an ordinary disk. It is usually smart enough to bring itself up during boot, connect to the target
and just act as an ordinary disk.

• allow creating new software initiator connections in the UI, both IPv4 and IPv6.

• facilitate bringing up iBFT connections for partial offload cards.

• install the root and/or /boot filesystems on any iSCSI initiator known to us

• remember to install dracut-network if we are booting from an iSCSI initiator that requires iscsi-initiator-utils in
the ramdisk (most of them do)

• boot from an iSCSI initiator using dracut, this requires generating an appropriate set of kernel boot arguments
for it [3].

How Anaconda handles iscsi

iSCSI comes into play several times while Anaconda does its thing:

In loader, when deciding what NIC we should setup, we check if we have iBFT information from one of the cards.
If we do we set that card up with what we found in the table, it usually boils down to an IPv4 static or IPv4 DHCP-
obtained address. [4][5]

Next, after the main UI startup during filtering (or storage scan, whatever comes first) we startup the iscsi support
code in Anaconda [6]. This currently involves: - manually modprobing related kernel modules - starting the iscsiuio
daemon (required by some partial offload cards) - most importantly, starting the iscsid daemon

All iBFT connections are brought up next by looking at the cards’ iBFT data, if any. The filtering screen has a feature
to add advanced storage devices, including iSCSI. Both connection types are handled by libiscsi (see below). The
brought up iSCSI devices appear as /dev/sdX and are treated as ordinary block devices.

When DeviceTree scans all the block devices it uses the udev data (particularly the ID_BUS and ID_PATH keys)
to decide if the device is an iscsi disk. If it is, it is represented with an iScsiDiskDevice class instance. This helps
Anaconda remember that:

• we need to install dracut-network so the generated dracut image is able to bring up the underlying NIC and
establish the iscsi connection.

• if we are booting from the device we need to pass dracut a proper set of arguments that will allow it to do so.

Libiscsi

How are iSCSI targets found and logged into? Originally Anaconda was just running iscsiadm as an external program
through execWithRedirect(). This ultimately proved awkward especially due to the difficulties of handling the CHAP
passphrases this way. That is why Hans de Goede <hdegoede@redhat.com>, the previous maintainer of the Anaconda
iscsi subsystem decided to write a better interface and created libiscsi (do not confuse this with the libiscsi.c in kernel).
Currently libiscsi lives as a couple of patches in the RHEL6 iscsi-initiator-utils CVS (and in Fedora package git, in
somewhat outdated version). Since Anaconda is libiscsi’s only client at the moment it is maintained by the Anaconda
team.

32 Chapter 8. iSCSI and Anaconda

mailto:hdegoede@redhat.com

Anaconda Documentation, Release 26.1

The promise of libiscsi is to provide a simple C/Python API to handle iSCSI connections while being somewhat stable
and independent of the changes in the underlying initiator-utils (while otherwise being tied to it on the implementation
level).

And at the moment libiscsi does just that. It has a set of functions to discover and login to targets software targets.
It supports making connections through partial offload interfaces, but the only discovery method supported at this
moment is through firmware (iBFT). Its public data structures are independent of iscsi-initiator-utils. And there is
some python boilerplate that wraps the core functions so we can easily call those from Anaconda.

To start nontrivial hacking on libiscsi prepare to spend some time familiarizing yourself with the iscsi-initiator-utils
internals (it is complex but quite nice).

Debugging iSCSI bugs

There is some information in anaconda.log and storage.log but libiscsi itself is quite bad at logging. Most times useful
information can be found by sshing onto the machine and inspecting the output of different iscsiadm commands [2][7],
especially querying the existing sessions and known interfaces.

If for some reason the DeviceTree fails at recognizing iscsi devices as such, ‘udevadm info –exportdb’ is of interest.

The booting problems are either due to incorrectly generated dracut boot arguments or they are simply dracut bugs.

Note that many of the iscsi adapters are installed in different Red Hat machines and so the issues can often be repro-
duced and debugged.

Future of iSCSI in Anaconda

• extend libiscsi to allow initializing arbitrary connections from a partial offload card. Implement the Anaconda
UI to utilize this. Difficulty hard.

• extend libiscsi with device binding support. Difficulty hard.

• work with iscsi-initiator-utils maintainer to get libiscsi.c upstream and then to rawhide Fedora. Then the partial
offload patches in the RHEL6 Anaconda can be migrated there too and partial offload can be tested. This is
something that needs to be done before RHEL7. Difficulty medium.

• improve libiscsi’s logging capabilities. Difficulty easy.

8.5. Debugging iSCSI bugs 33

Anaconda Documentation, Release 26.1

34 Chapter 8. iSCSI and Anaconda

CHAPTER 9

Multipath and Anaconda

Authors Ales Kozumplik <akozumpl@redhat.com>

Introduction

If there are two block devices in your /dev for which udev reports the same ‘ID_SERIAL’ then you can create a certain
device mapper device which arbitrarily uses those devices to access the physical device. And that is Multipath [1].

For instance, suppose there are:

/dev/sda, with ID_SERIAL of 20090ef12700001d2, and
/dev/sdb, with the same ID_SERIAL.

Those are probably some adapters in the system that just connect your box to a storage area network (SAN) somewhere.
There are perhaps two cables, one for sda, one for sdb, and if one of the cables gets cut the other can still transmit
data. Normally the system won’t recognize that sda and sdb have this special relation to each other, but by creating a
suitable device map using multipath tools [2] we can create a DM device /dev/mapper/mpatha and use it for storing
and retrieving data.

The device mapper then automatically routes IO requests to /dev/mapper/mpatha to either sda or sdb depending on the
load of the line or network congestion on the particular network etc.

The nomenclature I will use here is: - ‘multipath device’ for the smart /dev/mapper/mpathX device. - ‘multipath
member device’ for the ‘/dev/sdX’ devices. Also ‘a path’.

What is expected from Anaconda

Anaconda is expected to: - detect that there are multipath devices present - coalesce all relevant (e.g. exclusiveDisks)
multipath devices. - only let the user interact with the multipath devices in filtering,

cleardiskssel and partition screen, that is once we know ‘sdc’ and ‘sdd’ are part of ‘mpathb’ show only
‘mpathb’ and never the paths.

35

mailto:akozumpl@redhat.com

Anaconda Documentation, Release 26.1

• install bootloader and boot from an mpath device

• make it happen so all the multipath devices (carrying or not the root filesystem) we used for installation are
correctly coalesced in the booted system. This is achieved by generating a suitable /etc/multipath.conf and
writing it into sysroot.

• be able to refer to mpath devices from kickstart, either by name like ‘mpatha’ or by their id like ‘disk/by-id/scsi-
20090ef12700001d2’

How Anaconda handles multipath

To detect presence of multipath devices we rely on multipath tools. The same we do for coalescing, see pyana-
conda/storage/devicelibs/mpath.py, the file that provides some abstraction from mpath tools. During the device scan
we use the ‘multipath -d’ output to find out what devices are going to end up as multipath members. The Mul-
tipathTopology object also enhances the multipath member’s udev dictionaries with ‘ID_FS_TYPE’ set to ‘multi-
path_member’ (yes, this is a hack surviving from the original mpath implementation, and righteous is he who eradi-
cates it). This information is picked up by DeviceTree when populating itself. Meaning, if ‘sda’ and ‘sdb’ are multipath
member devices DeviceTree gives them MultipathMember format and creates one MultipathDevice for them (we know
its name from ‘multipath -d’). We end up with:

DiskDevice ‘sda’, format ‘MultipathMember’ DiskDevice ‘sdb’, format ‘MultipathMember’ MultipathDevice
‘mpatha’, parents are ‘sda’ and ‘sdb’.

From then on, Anaconda only deals with the MultipathDevice and generally leaves anything with ‘MultipathMember’
format alone (understand, this is an inert format that really is not there but we use it just to mark the device as “useless
beyond a multipath member”, kind of like MDRaidMember).

Partition happens over the multipath device and during the preinstallconfig step /mnt/sysimage/etc/multipath.conf is
created and filled with information about the coalesced devices. This is handled in the Storage.write() method. It is
important this file and /etc/multipath/wwids (autogenerated by mpath tools) make it to the sysimage before the dracut
image is generated.

Debugging multipath bugs

Unlike with iSCSI, to reproduce a multipath bug one does not need the same specific hardware as the reporter. Just
found any box connected to a multipathed SAN and you are fine (at the moment, connecting to the same iSCSI target
through its IPv4 and IPv6 address also produces a multipathed device).

On top of that, much of the necessary information is already included in the anaconda logs or can be easily extracted
from the reporter. The things to particularly look at are:

• storage.log, the output around ‘devices to scan for multipath’ and ‘devices post multipath scan’. The latter shows
a triple with regular disks, disks comprising multipath devices and partitions. This helps you quickly find out
what the target system is about.

• this information is also in program.log’s calls to ‘multipath’ [3]. If mpath devices are mysteriously appear-
ing/disappearing between filtering and partitioning screens look at those. ‘multipath -ll’ is called to display
currently coalesced mpath devices, ‘multipath -d’ is called to show the mpath devices that would be coalesced
if we ran ‘multipath’ now. This is exploited by the device filtering screen.

36 Chapter 9. Multipath and Anaconda

Anaconda Documentation, Release 26.1

Future of multipath in Anaconda

Overall as of RHEL6.2, the shape of multipath in Anaconda is good and what’s more important it is flexible enough
to sustain new RFEs and bugs. Those are however bugs that I expect to appear sometime soon:

• enable or disable mpath_friendly_names in kickstart. Disabling friendly names just means the mpath devices
are called by their wwid, e.g. /dev/mapper/360334332345343234, not ‘/dev/mapper/mpathc’. This is straight-
forward to implement.

• extend support for mpath devices in kickstart in general. Currently mpath devices should be accepted in most
commands but I am sure there will be corner cases. Difficulty medium.

• [rawhide] stop extending the udev info dictionary with ‘ID_FS_TYPE’ and ‘ID_MPATH_NAME’. Doing it this
way is asking for the trouble if a dictionary of particular mpath device is reloaded from udev without running
it through the MultipathTopology object as it will miss those entries (and DeviceTree depends on them a lot).
Difficulty hard, but includes a lot of pleasant refactoring.

• Improve support for multipathing iSCSI devices. Someone might ask for it one day (in fact, with the NIC
bounding they already did), and it will make mpath debugging possible on any virt machine with multiple virt
NICs.

9.5. Future of multipath in Anaconda 37

Anaconda Documentation, Release 26.1

38 Chapter 9. Multipath and Anaconda

CHAPTER 10

The list-harddrives script

Authors Martin Kolman <mkolman@redhat.com>

Introduction

The list-harddrives script is primarily meant for use in the kickstart %post scriptlets for listing all individual harddrives
on the system.

Output format

The list-harddrives script outputs two values per line separated by a single whitespace: - the device node name (eq.
sda for /dev/sda) - the size in MB as a floating point number It does this for each individual harddrive on the system.

Example output:

sda 61057.3359375 sdb 476940.023438 sdc 30524.0

What devices are not listed

The list harddrives script will not list: - CD/DVD drives (/dev/sr*) - zram block devices - software RAID (/dev/md*)
- all device mapper devices - anything that is not a block device

39

mailto:mkolman@redhat.com

Anaconda Documentation, Release 26.1

40 Chapter 10. The list-harddrives script

CHAPTER 11

Specification of the user interaction configuration file

Version 1.0

Authors Martin Kolman <mkolman@redhat.com>

This specification aims to establish a configuration file format that can be used to communicate information about
which installation screens have been seen by the user during the installation. Optionally the configuration file might
also contain information about which configuration options have been changed by the user and if the user has explicitly
requested post installation setup tools to be disabled.

While this configuration file is primarily meant to be read (and potentially changed) by post installation tools (such as
for example Initial Setup and Gnome Initial setup), Anaconda will take an existing configuration file into account at
startup. This is meant to accommodate tools that are run before Anaconda is started, such as a system-wide language
selection tool that runs before Anaconda is started and which sets language for both Anaconda and a Live installation
environment.

Configuration file location

The user interaction configuration file is stored in: /etc/sysconfig/anaconda

General configuration file syntax

The configuration file is based on the INI file de-facto standard, eq.: key=value assignments and square bracket framed
section headers.

Comments start with a hash (#) sign and need to be on a separate line. Inline comments (eq. behind section or
key/value definitions) are not supported.

For Python programs this file format can be parsed and written by the ConfigParser[0] module available from the
Python standard library. For programs written in C the GKeyFile[1] parser might be a good choice. Comparable INI
file parsing and writing modules are available for most other programming languages.

Example:

41

mailto:mkolman@redhat.com

Anaconda Documentation, Release 26.1

comment example - before the section headers

[section_1]
comment example - inside section 1
key_a_in_section1=some_value
key_b_in_section1=some_value

[section_2]
comment example - inside section 2
key_a_in_section2=some_value

Boolean values are marked with 1 for true and 0 for false.

Example:

true_key=1
false_key=0

Toplevel namespace

The toplevel configuration file namespace can only contain section headers.

There are two section types:

• One special section called General that can contain top-level settings not directly corresponding to any screen.

• Other sections that correspond to Anaconda spoke screens.

– Hubs are not represented as sections as there is nothing that can be directly set on a hub in Anaconda.

– All currently visible spokes in Anaconda will be enumerated as a section headers by Anaconda in the
configuration file. Note that this can include spokes provided by addons[2], if any Anaconda addons that
provide additional spokes are present during the installation run.

The General section

The General section is optional and is not required to be present in the config file. At the moment it can contain only
the post_install_tools_disabled key.

The post_install_tools_disabled key corresponds to using the firstboot --disable command in
the installation kickstart file. This requests that the post-installation setup tools be skipped. If this key is present and
set to 1, any post-installation tools that parse the user interaction file should first make sure the tool won’t be started
again on next boot, and then terminate immediately.

Naming of sections corresponding to Anaconda screens

All section headers not named General are named according to the Anaconda spoke class name. For example
DatetimeSpoke or KeyboardSpoke.

To get a list of all such spokes run the list_spokes script from the scripts directory in the Anaconda source
code tree:

42 Chapter 11. Specification of the user interaction configuration file

Anaconda Documentation, Release 26.1

git clone https://github.com/rhinstaller/anaconda
cd anaconda/scripts
./list_screens

Note that this script only lists Anaconda spokes, not spokes provided by addons[2] or Initial Setup.

It is also possible to check for the Entered spoke: entries in the /tmp/anaconda.log file during an installation to
correlate spokes on the screen to spoke class names.

Screen section namespace

Each section corresponding to a screen must contain the visited key with a value of either 1 if the user has visited
the corresponding screen or 0 if not.

Optionally each section can contain one or more keys with the changed_ prefix which track if the user has changed
an option on the screen. If the option is changed by the user, the corresponding key is set to 1. If the given option has
not been changed by the user then the corresponding key can either be omitted or set to 0.

Example:

[DatetimeSpoke]
visited=1
changed_timezone=1
changed_ntp=0
changed_timedate=1

In this example the user has visited the date & time spoke and has changed the timezone & time/date, but not the NTP
settings. Note that the changed_ntp key could also be omitted as the user has not changed the NTP options.

Another example:

[KeyboardSpoke]
visited=0

Here the user has not visited the keyboard spoke and thus could not have changed any options, so all changed_*
keys (if any) have been omitted.

Note that if a spoke section is missing, it should be assumed that the corresponding screen has not been visited. On
the other hand, if a screen has been visited, the section must be present, with the visited key being equal to 1.

Full configuration file example

this is the user interaction config file

[General]
post_install_tools_disabled=0

[DatetimeSpoke]
the date and time spoke has been visited
visited=1
changed_timezone=1
changed_ntp=0
changed_timedate=1

11.6. Screen section namespace 43

Anaconda Documentation, Release 26.1

[KeyboardSpoke]
the keyboard spoke has not been visited
visited=0

The first section is the special section for top-level settings called General. It contains only one option,
post_install_tools_disabled, which is in this case equal to 0 This means that post installation setup tools
should proceed as usual. In this case (being equal to 0) the post_install_tools_disabled key and the whole
General section might also be omitted.

Next there are two sections corresponding to two screens - DatetimeSpoke and KeyboardSpoke.

The user has visited the date & time screen and has changed various options, but not the NTP settings. On the other
hand the keyboard screen has not been visited at all.

Parsing and writing the of the configuration file by Anaconda

If the user interaction file exists during Anaconda startup, it will be parsed and taken into account when deciding
which screens to show during the installation. This make it possible for secondary installation setup tools to run before
Anaconda and query the user for information.

This can be for example a tool querying the user for language settings. Then once Anaconda starts it can skip the
language selection screen as language has already been set by the tool.

Once the installation process is done, Anaconda will write out information about what screens the user has and has
not visited and optionally which settings have been changed by the user.

If Anaconda successfully parsed an existing user interaction configuration file, any valid settings present in the file
will propagate to the configuration file when it is written-out by Anaconda.

Note that comments present in the configuration file at the time Anaconda parses it might not be present in the output
file, therefore tools should not depend on comments being present or on information contained in comments.

Parsing and writing of the configuration file by tools other than Ana-
conda

Non-Anaconda system configuration tools should also parse the user interaction file at startup and write it out once
done. All valid data already present in the configuration file should be kept and updated accordingly (the user has
visited a not-yet-visited screen, changed another option, etc.).

Non-Anaconda tools should try to keep comments present in the input file, but this is not strictly required.

Also note that a variable number of tools might be working with the configuration file in sequence, so no single tool
should expect that it is the first or last tool working with the configuration file.

Links

[0] https://docs.python.org/3/library/configparser.html [1] https://developer.gnome.org/glib/stable/
glib-Key-value-file-parser.html [2] https://rhinstaller.github.io/anaconda-addon-development-guide/

44 Chapter 11. Specification of the user interaction configuration file

https://docs.python.org/3/library/configparser.html
https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html
https://developer.gnome.org/glib/stable/glib-Key-value-file-parser.html
https://rhinstaller.github.io/anaconda-addon-development-guide/

CHAPTER 12

Testing Anaconda

Before testing Anaconda you need to install all required dependencies, prepare the environment and build the sources:

make -f Makefile.am install-test-requires
./autogen.sh
./configure
make

Executing the tests can be done with:

make check

To run a single test do:

make TESTS=install/run_install_test.sh check

See tests/Makefile.am for possible values. Alternatively you can try:

make ci

This has the advantage of producing Python test coverage for all tests. In case the ci target fails there is also a coverage-
report target which can be used to combine the multiple .coverage files into one and produce a human readable report.

Note: When using the ‘ci’ target you need to use a regular user account which is a member of the ‘mock’ group. You
can update your account by running the command:

usermod -a -G mock <username>

Your regular user account also needs to execute ‘sudo’ because some tests require root privileges!

45

Anaconda Documentation, Release 26.1

Test Suite Architecture

Anaconda has a complex test suite structure where each top-level directory represents a different class of tests. They
are

• cppcheck/ - static C/C++ code analysis using the cppcheck tool;

• dd_tests/ - Python unit tests for driver disk utilities (utils/dd);

• dracut_tests/ - Python unit tests for the dracut hooks used to configure the installation environment and load
Anaconda;

• gettext/ - sanity tests of files used for translation; Written in Python and Bash;

• glade/ - sanity tests for .glade files. Written in Python;

• gui/ - specialized test suite for the graphical interface of anaconda. This is written in Python and uses the dogtail
accessibility module. All tests are executed using ./anaconda.py from the local directory;

• install/ - basic RPM sanity test. Checks if anaconda.rpm can be installed in a temporary directory without failing
dependencies or other RPM issues;

• lib/ - helper modules used during testing;

• pyanaconda_tests/ - unit tests for the pyanaconda module;

• pylint/ - checks the validity of Python source code using the pocketlint tool;

• regex_tests/ - Python unit tests for regular expressions defined in pyanaconda.regexes;

• storage/ - test cases used to verify partitioning scenarios for success or expected failures. The scenarios are
described using kickstart snippets. Written in Python with a custom test case framework based on blivet;

Note: All Python unit tests inherit from the standard unittest.TestCase class unless specified otherwise!

Some tests require root privileges and will be skipped if running as regular user!

46 Chapter 12. Testing Anaconda

https://fedorahosted.org/dogtail/
https://github.com/rhinstaller/blivet

	Introduction to Anaconda
	Anaconda Boot Options
	Anaconda Kickstart Documentation
	Contribution guidelines
	Rules for commit messages
	Building a Release
	Brief description of DriverDisc version 3
	iSCSI and Anaconda
	Multipath and Anaconda
	The list-harddrives script
	Specification of the user interaction configuration file
	Testing Anaconda

