

 Navigation

 	
 index

 	
 next |

 	notes 1.0 documentation

Amit’s Notes

The following pages contain my notes and code snippets accumulated over
the years. They are categorized into the following sections:

	Networking

	Forensics

	Debian

	Study

Networking

	Networking
	HTTP
	Query String

	Chunked Transfer Encoding

	Codes

	Methods

	Persistent Connections

	Document Caching

	Authentication

	HTTPS

	nginx engineX

	Others

	DNS
	Overview

	Typical Name Resolution

	Protocol

	DNS Database

	Reverse Lookups

	DNS Caches vs. DNS Servers vs. DNS Resolvers

	Authoritative vs Non-authoritative Responses

	Zone Tranfers

	Anycast DNS

	DNS Security

	Examples

	Firewall
	First Generation: Packet Filters

	Second Generation: Stateful Filters

	Third Generation: application layer

	IP
	Path MTU Discovery (PMUTD)

	tcpdump
	Flags

	Examples

	Cheatsheet
	Finding Duplicate IP Addresses on the Network

	Capturing cupsd Traffic

	Troubleshooting
	Identifying and Solving Performance Issues

	Common Server Problems

	Common AJAX Problems

	Common App Engine Problems

Forensics

	Forensics
	Cheatsheet
	Mounting E01 Images

	Mounting ISO9660

	Setting HPA

	Setting DCO

	Cloning Partition Table

	Inspecting Process Syscalls Using sysdig

	Check for problematic I/Os

	Tracing SUID Programs

Debian

	Debian
	Setup
	Install

	Basic Setup

	systemd

	Enlightenment

	Applications

	Commands
	Finding hardlink of file

	When DKMS Build Fails Due to Missing Source

	No configure script, only configure.ac

	Transferring files over netcat

Study

	Study
	Google I/O 2011: Life in App Engine Production

	Google I/O 2011: More 9s Please: Under The Covers of the High Replication Datastore

	The Art of Unix Programming
	Chapter 1: Philosophy

	Chapter 2: Origins and History of Unix

	Chapter 3: Contrasts

	Chapter 4: Modularity

	Chapter 5: Textuality

	Chapter 6: Transparency

	Chapter 7: Multiprogramming

	Python
	Common Questions

	Common Mistakes

	Project Management
	Agile

	Others

	Programming
	Character Encodings For Modern Programmers

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

Networking

	HTTP
	Query String

	Chunked Transfer Encoding

	Codes
	Examples

	Methods
	GET

	Difference Between POST and PUT

	Persistent Connections
	keepalive in Linux

	Document Caching

	Authentication
	Basic Auth

	Digest

	Cookie Based

	Certificate Based

	HTTPS
	Trusting a Web Site

	TLS/SSL

	Server Setup

	Other Uses

	nginx engineX
	Permissions

	Setting up Basic Auth

	Setting up Digest Auth

	Others
	HTTPie - Command Line HTTP Client

	DNS
	Overview

	Typical Name Resolution

	Protocol

	DNS Database
	Example named.hosts file for the Physics Department

	Reverse Lookups

	DNS Caches vs. DNS Servers vs. DNS Resolvers

	Authoritative vs Non-authoritative Responses

	Zone Tranfers

	Anycast DNS

	DNS Security

	Examples
	Query All Records using dig

	Firewall
	First Generation: Packet Filters

	Second Generation: Stateful Filters

	Third Generation: application layer

	IP
	Path MTU Discovery (PMUTD)

	tcpdump
	Flags

	Examples
	Capturing ARP Traffic

	Capturing Traffic on Localhost

	Capturing GMail Traffic

	Dropped Packets by the Kernel

	Capturing TCP SYN Packets

	Capture Outgoing SSH Traffic

	Get Time Delta Between Request/Response

	Capturing WiFi Packets

	Cheatsheet
	Finding Duplicate IP Addresses on the Network

	Capturing cupsd Traffic

	Troubleshooting
	Identifying and Solving Performance Issues

	Common Server Problems

	Common AJAX Problems

	Common App Engine Problems

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Networking

HTTP

Contents

	HTTP
	Query String

	Chunked Transfer Encoding

	Codes
	Examples

	Methods
	GET

	Difference Between POST and PUT

	Persistent Connections
	keepalive in Linux

	Document Caching

	Authentication
	Basic Auth

	Digest

	Cookie Based

	Certificate Based

	HTTPS
	Trusting a Web Site

	TLS/SSL

	Server Setup

	Other Uses

	nginx engineX
	Permissions

	Setting up Basic Auth

	Setting up Digest Auth

	Others
	HTTPie - Command Line HTTP Client

	Hypertext Transfer Protocol. Based on RFC 822/MIME format.

	For transferring binary it uses base64 since HTTP is a protocol used
to transfer text. To transfer binary it must be encoded as text and sent
out. This is what base64 is used for. It encodes 4 characters per 3
bytes of data plus padding at the end. Thus, each 6 bits of input is
encoded in a 64-character alphabet (efficiency is 4/3 = 1.333 times
original).

	HTTP 1.1 added persistent connections, byte ranges, content
negotiations, and cache support.

	Note that HTTP’s protocol overhead along with connection setup
overhead of using TCP can make HTTP a poor choice for certain
applications. In these cases, UDP is recommended (for example DNS
uses simple UDP requests/responses for most of the DNS queries). Can
mitigate some of the overhead by using persistent HTTP connections.

Basic format for requests/responses:

message = <start-line>
 (<message-header>)*
 CRLF
 [<message-body>]

<start-line> = Request-Line | Status-Line
<message-header> = Field-Name ':' Field-Value

Request format:

Request-Line = Method SP(Space) URI SP(Space) HTTP-Version CRLF
Method = "OPTIONS"
 | "HEAD"
 | "GET"
 | "POST"
 | "PUT"
 | "DELETE"
 | "TRACE"

GET /articles/http-basics HTTP/1.1
Host: www.articles.com
Connection: keep-alive
Cache-Control: no-cache
Pragma: no-cache
Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Response format:

Status-Line = HTTP-Version SP(Space) Status-Code SP(Space) Reason-Phrase CRLF

HTTP/1.1 200 OK
Server: nginx/1.6.1
Date: Tue, 02 Sep 2014 04:38:20 GMT
Content-Type: text/html
Last-Modified: Tue, 05 Aug 2014 11:18:35 GMT
Transfer-Encoding: chunked
Connection: keep-alive
Content-Encoding: gzip

Query String

Notes from: Wikipedia - Query string [http://en.wikipedia.org/wiki/Query_string] and’
RFC 3986 - Uniform Resource Identifier (URI) [http://tools.ietf.org/html/rfc3986].

	Part of the URL that does not really fit in a path hierarchy.
Example: http://example.com/over/there?name=ferret

	Server may pass the query string to a CGI (Common Gateway Interface) script.

	The ? separates the resource from the query string. Example for
Google search: https://www.google.com/?gws_rd=ssl#q=test. Thus,
the URL can be bookmarked and shared.

	Usually used to store content of web forms.

	The format is key,value pairs. Series of pairs usually separated by
&.

	The # is known as a fragment.

 foo://example.com:8042/over/there?name=ferret#nose
 _/ ______________/_________/ _________/ __/
 | | | | |
scheme authority path query fragment
 | _____________________|__
 / \ / \
 urn:example:animal:ferret:nose

Chunked Transfer Encoding

	New feature of HTTP/1.1.

	According to RFC 2616: The chunked encoding modifies the body of a
message in order to transfer it as a series of chunks, each with its
own size indicator.

	Used to transfer dynamically produced content more efficiently.

	Uses Transfer-Encoding header instead of Content-Length header.
Since there is no content length header, server can start sending
response as it gets content.

	Size of each chunk is sent right before chunk so receiver knows when
it has completed receiving chunks.

	Data transfer is terminated by chunk of length 0.

	Advantages, for example, is when response starts sending HTML page to
browser (start with <head>, which includes external scripts
location), so browser can start downloading this scripts in parallel.

	Sometimes you want to upload data but don’t know the length of data
yet. A good use of this feature would be performing a database dump,
piping the output to gzip, and then piping the gzip file directly to
Cloud Files without writing the data to disk to compute the file
size.

	Example is below. Note that the first chunk has size 0x45ea which
is 17898 bytes. Then last chunk is 0 length.

C: GET / HTTP/1.1
Host: www.google.com
Accept: */*
Accept-Encoding: gzip, deflate
User-Agent: HTTPie/0.8.0

S: HTTP/1.1 200 OK
Date: Thu, 16 Oct 2014 04:16:25 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
Set-Cookie:
PREF=ID=26f17b4e26a810fd:FF=0:TM=1413432985:LM=1413432985:S=ZtumMxEG9KJAGJDr;
expires=Sat, 15-Oct-2016 04:16:25 GMT; path=/; domain=.google.com
Set-Cookie: NID=67=PW5SAvG5XSS2ptSNeN6WfK11dy7qJxM3MM7sRvn_M3CPp6zdr_QihMyA66yTEt47n1PZyGHvIVv_9ecJW2-1LCwliBR1jzxj6F5fXDltgRWwbaTB9a7AFNHHw-qQ_V_g;
expires=Fri, 17-Apr-2015 04:16:25 GMT; path=/; domain=.google.com; HttpOnly
P3P: CP="This is not a P3P policy! See
http://www.google.com/support/accounts/bin/answer.py?hl=en&answer=151657
for more info."
Server: gws
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN
Alternate-Protocol: 80:quic,p=0.01
Transfer-Encoding: chunked

45ea
<!doctype html><html itemscope="" itemtype="http://schema.org/WebPage" ...

...
</script></div></body></html>
0

Codes

Summary:

	Code
	Classification

	1xx
	Informational

	100
	Continue

	2xx
	Success

	200
	OK

	3xx
	Redirection

	301
	Moved Permanently

	302
	Found

	4xx
	Client Error

	401
	Unauthorized

	403
	Forbidden

	404
	Not Found

	5xx
	Server Error

	500
	Internal Server Error

Examples

Code 301 Redirection

An example of this is when requesting a certain snapshot from the debian
archives. Let’s request for a date (January 02, 2012 22:05:11) 20120102T220511Z:

$ http --headers get http://snapshot.debian.org/archive/debian/20120102T220511Z/pool/main/b/bash/
HTTP/1.1 301 Moved Permanently
Accept-Ranges: bytes
Age: 0
Cache-Control: public, max-age=600
Connection: keep-alive
Content-Encoding: gzip
Content-Length: 224
Content-Type: text/html; charset=UTF-8
Date: Wed, 01 Oct 2014 18:36:27 GMT
Expires: Wed, 01 Oct 2014 18:46:26 GMT
Location: http://snapshot.debian.org/archive/debian/20120102T214803Z/pool/main/b/bash/
Server: Apache
Vary: Accept-Encoding
Via: 1.1 varnish
X-Varnish: 1485917301

Notice that we get back a 301 code that stands for redirection. We
then get redirected to http://snapshot.debian.org/archive/debian/20120102T214803Z/pool/main/b/bash/.

Code 302 Found

Indicates resource resides temporarily under a different URI (10.3.3 302 Found [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3]).

$ http get amits-notes.readthedocs.org
 HTTP/1.1 302 FOUND
 Connection: keep-alive
 Content-Language: en
 Content-Length: 0
 Content-Type: text/html; charset=utf-8
 Date: Tue, 14 Oct 2014 18:37:30 GMT
 Location: http://amits-notes.readthedocs.org/en/latest/
 Server: nginx/1.4.6 (Ubuntu)
 Vary: Accept-Language, Cookie
 X-Deity: chimera-lts
 X-Fallback: True

Methods

GET

Fetch a resource. Example in python:

def get():
Simple GET of index.html
headers = { 'User-Agent': 'http_client/0.1',
 'Accept': '*/*',
 'Accept-Encoding': 'gzip, deflate' }
http_conn = http.client.HTTPConnection("localhost")
http_conn.set_debuglevel(1)
http_conn.request("GET", "/", headers=headers)

Response
resp = http_conn.getresponse()
print()
print("Status:", resp.status, resp.reason)

Cleanup
http_conn.close()

Difference Between POST and PUT

	POST is used for creating, PUT is used for updating (and creating).
It’s also worthwhile to note that PUT should be idempotent whereas
POST is not.

	Idempotent means that same request over and over has same result.
Thus, if you are doing PUT and connection dies, you can safely do a
PUT again.

	Also, according to HTTP/1.1 spec:

The POST method is used to request that the origin server accept the
entity enclosed in the request as a new subordinate of the resource
identified by the Request-URI in the Request-Line

The PUT method requests that the enclosed entity be stored under the
supplied Request-URI. If the Request-URI refers to an already
existing resource, the enclosed entity SHOULD be considered as a
modified version of the one residing on the origin server. If the
Request-URI does not point to an existing resource, and that URI is
capable of being defined as a new resource by the requesting user
agent, the origin server can create the resource with that URI.”

	Thus, POST can be used to create. PUT can be used to create or
udpate.

	Difference is in terms of API calls. You usually do a POST to an
API endpoint (or a URL that already exists).

POST https://www.googleapis.com/dns/v1beta1/projects/project/managedZones

{
 parameters*
}

	With PUT you actually create a valid path under the URL:

PUT /questions/<new_question> HTTP/1.1
Host: wahteverblahblah.com

	Thus, you use PUT to create the resource and then use that URL for
POST.

	Note that with POST, server decides new URL path, with PUT user
decides.

Persistent Connections

	Uses Connection: keep-alive header request/response header.

	Idea is to use single TCP connection to send and receive multiple
HTTP Requests/Responses. Thus, avoiding expensive TCP handshake.

	This is default in HTTP/1.1.

	Disadvantages when single documents are repeatedly requested (e.g.
images). This kills performance due to keeping unnecessary
connections open for many seconds after document was retrieved.

	When you set up a TCP connection, you associate a set of timers.
Some of the timers are used for keepalive.

	A Keepalive probe is a packet with no data and ACK flag turned on.
	Note that in TCP/IP RFC, ACK segments with no data are not reliably
transmitted by TCP. Thus, no retries.

	Remote host doesn’t need to support keepalive. It will see an ACK
packet and send back an ACK reply.

	Since TCP/IP is a stream oriented protocol, a zero length data packet
is not dangerous for user program.

	If no reply packets are received for keepalive probe, can assume that
connection is broken.

	Also useful when NAT terminates connection since it only can keep
track of certain number of connections at a time.

	Useful to know if peers have died before notifying you (e.g. kernel
panic, reboot).

 _____ _____
A		B
_____		_____
^ ^		
--->--->--->-------------- SYN -------------->--->--->---		
---<---<---<------------ SYN/ACK ------------<---<---<---		
--->--->--->-------------- ACK -------------->--->--->---		
system crash ---> X		
system restart ---> ^		
--->--->--->-------------- PSH -------------->--->--->---		
---<---<---<-------------- RST --------------<---<---<---		

References:

	TCP Keepalive HOWTO [http://tldp.org/HOWTO/TCP-Keepalive-HOWTO/overview.html]

	Wikipedia - HTTP Persistent Connection [http://en.wikipedia.org/wiki/HTTP_persistent_connection]

	RFC 1122 Section 4.2.3.6 - TCP Keep-Alives [http://tools.ietf.org/html/rfc1122#page-101]

keepalive in Linux

Default is two hours before starting to send keepalive packets:

cat /proc/sys/net/ipv4/tcp_keepalive_time
7200

cat /proc/sys/net/ipv4/tcp_keepalive_intvl
75

cat /proc/sys/net/ipv4/tcp_keepalive_probes
9

To add support to your application use setsockopt() and configure the socket
connection for keepalive.

Can also use libkeepalive [http://libkeepalive.sourceforge.net/] with
LD_PRELOAD to add support to any C application.

Document Caching

From: Google Browser Security Handbook, Part 2 [https://code.google.com/p/browsersec/wiki/Part2#Document_caching]

	HTTP requests are expensive mainly because of overhead of setting up
TCP connections. Thus, important to have the browser or intermediate
system (proxy) maintain local copy of some of the data.

	The HTTP/1.0 spec did define some headers to handle caching but it
did not provide any specific guidance.

	Expires: This is a response header that allows server to declare
an expiration date. When this date is passed, browsers must
retrieve new document. There is a Date header as well which
defines the date and time which message was originated. Sometimes,
however, Date header is not part of response. Thus,
implementation is then browser specific.

The RFC also does not specify if the Expires is based on
browser’s local clock. Thus, current practice is to compute
Expires-Date delta and compare it to browser clock.

	Pragma request header when set to no-cache permits clients to
override intermediate systems to re-issue requests rather than
retrieve cached data. For Pragma response header, it instructs
browser not to cache this data.

	Last-Modified response header indicates when resource was last
updated according to server’s local clock. Reflects modification
date of file system. Used in conjunction with If-Modified-Since
request header to revalidate cache entries.

	If-Modified-Since request header, permitting client to indicate
what Last-Modified header it had seen on the version of the
document already present in browser or proxy cache. If server
calculates that no modification since If-Modified-Since date it
returns 304 Not Modified response instead of requested document.
Thus, client will redisplay cached content.

	All of above was useful when content was static. Thus, with complex
dynamic web apps, most developers turned off caching.

	HTTP/1.1 acknowledges the issue and establishes ground rules for what
and when should be cached.

	Only 200 (OK), 203 (Non-Authoritative), 206 (Partial
Content), 300 (Multple Choices), and 301 (Redirection)
responses are cacheable, and only if the method is not POST, PUT,
DELETE, or TRACE.

	Cache-Control header introduced that provides a fine-grained
control over caching strategies.
	no-cache disables cache all together. Can disable cache for
certain specific headers as well (e.g. no-cache: Set-Cookie).
	Firefox still stores responses because of back and forward
navigation between sessions. But it doesn’t do this on https
connections because of sensitive information such as banking,
etc.

	no-store: If in request don’t store any request response in
cache. If sent in response, client must not store anything from
request/response headers.

	public/private: Controls caching on intermediate systems.

	max-age: Time to live in seconds.

Authentication

Basic Auth

This is the simplest form of authentication since it doesn’t require
cookies, session identifier or login pages. It uses standard HTTP
Authorization header to send login credentials. Thus, no handshakes
need to be done.

Typically used over https since encoding is done in base64
(passwords sent as plain text). Passwords can be easily decoded.

On Server, status code 401 is sent back and the following header is used:

WWW-Authenticate: Basic realm="Restricted"

On Client, the Authorization header is used with the following
format:

Authorization: Basic base64("username:password")

Example in python:

def get_auth():
GET with authorization of index.html
authstring = base64.b64encode(("%s:%s" % ("amit","amit")).encode())
authheader = "Basic %s" % (authstring.decode())
print("Authorization: %s" % authheader)

headers = { 'User-Agent': 'http_client/0.1',
 'Accept': '*/*',
 'Authorization': authheader,
 'Accept-Encoding': 'gzip, deflate' }
http_conn = http.client.HTTPConnection("localhost")
http_conn.set_debuglevel(1)
http_conn.request("GET", "/", headers=headers)

Response
resp = http_conn.getresponse()
print()
print("Status:", resp.status, resp.reason)

Cleanup
http_conn.close()

Digest

Basically uses MD5 of password and nonce value to prevent replay
attacks. Now, pretty much replaced by HMAC (keyed-hash message
authentication code).

A basic digest authentication session goes as follows:

	HTTP client performs a request (GET, POST, PUT, etc)

	HTTP server responds with a 401 error not authorized. In the
response, a WWW-Authenticate header is sent that contains:

	Digest algorithm - Usually MD5.

	realm - The access realm. A string identifying the realm of the server.

	qop - Stands for quality of protection (e.g. auth)

	nonce - Server generated hash, issued only once per 401
response. Server should also have a timeout for the nonce values.

	Client then receives the 401 status error and parses the header so it
knows how to authenticate itself. It responds with the usual header
and adds an Authorization header containing:

	Digest username

	realm

	nonce - Sends the server generated value back.

	uri - Sends the path to the resource it is requesting.

	algorithm - The algorithm the client used to compute the hashes.

	qop

	nc - hexadecimal counter for number of requests.

	cnonce - client generated nonce, always is generated per request.

	response - Computed hash of md5(HA1:nonce:nc:cnonce:qop:HA2).
	HA1 = md5(username:realm:password)

	HA2 = md5(<request method.:uri)

Notice how the client does not send the password in plain text.

	Server computes hash and compares to client’s hash and if it matches
sends back OK with content. Note that rspauth sent back by server
is a mutual authentication proving to client it knows its secret.

	Note that each client needs to know the password and the password
needs to be shared securely before hand.

Example HTTP Capture:

C:
GET /files/ HTTP/1.1
Host: localhost
User-Agent: http_client/0.1
Accept-Encoding: gzip, deflate
Accept: */*

S:
HTTP/1.1 401 Unauthorized
Server: nginx/1.6.1
Date: Sat, 06 Sep 2014 02:09:24 GMT
Content-Type: text/html
Content-Length: 194
Connection: keep-alive
WWW-Authenticate: Digest algorithm="MD5", qop="auth", realm="Access Restricted", nonce="2a27b9b6540a6cd4"

C:
GET /files/ HTTP/1.1
Host: localhost
User-Agent: http_client/0.1
Accept-Encoding: gzip, deflate
Accept: */*
Authorization: Digest username="amit", realm="Access Restricted", nonce="2a27b9b6540a6cd4", uri="/files/",
response="421974c0c2805413b0d4187b9b143ecb", algorithm="MD5", qop="auth", nc=00000001, cnonce="e08190d5"

S:
HTTP/1.1 200 OK
Server: nginx/1.6.1
Date: Sat, 06 Sep 2014 02:09:24 GMT
Content-Type: text/html
Transfer-Encoding: chunked
Connection: keep-alive
Authentication-Info: qop="auth", rspauth="33fea6914ddcc2a25b03aaef5d6b478b", cnonce="e08190d5", nc=00000001..
Content-Encoding: gzip

Example Python Code:

def get_auth_digest():
 resp = get()

 # Get dictionary of headers
 headers = resp.getheader('WWW-Authenticate')
 h_list = [h.strip(' ') for h in headers.split(',')]
 #h_tuple = re.findall("(?P<name>.*?)=(?P<value>.*?)(?:,\s)", headers)
 h_tuple = [tuple(h.split('=')) for h in h_list]
 f = lambda x: x.strip('"')
 h = {k:f(v) for k,v in h_tuple}
 print(h)

 # HA1 = md5(username:realm:password)
 ha1_str = "%s:%s:%s" % ("amit",h['realm'],"amit")
 ha1 = hashlib.md5(ha1_str.encode()).hexdigest()
 print("ha1:",ha1)

 # HA2 = md5(GET:uri) i.e. md5(GET:/files/)
 ha2_str = "%s:%s" % ('GET',path)
 ha2 = hashlib.md5(ha2_str.encode()).hexdigest()
 print("ha2:",ha2)

 # Generate cnonce
 cnonce = hashlib.sha1(str(random.random()).encode()).hexdigest()[:8]
 print("cnonce:",cnonce)

 # Generate response = md5(HA1:nonce:00000001:cnonce:qop:HA2)
 resp_str = "%s:%s:%s:%s:%s:%s" % (ha1,h['nonce'],"00000001",cnonce,h['qop'],ha2)
 resp_hash = hashlib.md5(resp_str.encode()).hexdigest()
 print("resp_hash:",resp_hash)

 # Do another get
 authheader = 'Digest username="%s", realm="%s", nonce="%s", ' \
 'uri="%s", response="%s", algorithm="%s", qop="%s", nc=00000001, ' \
 'cnonce="%s"' \
 % ("amit", h['realm'], h['nonce'], path, resp_hash, h['Digest algorithm'], h['qop'], cnonce)
 print(authheader)
 headers = { 'User-Agent': 'http_client/0.1',
 'Accept': '*/*',
 'Accept-Encoding': 'gzip, deflate',
 'Authorization': authheader
 }
 get(headers)

Cookie Based

Cookies are designed to maintain state. Thus, cookie based
authentication inherits this stateful principle. Cookie authentication
are the most common method used by web servers to know if the user is
still logged in or not. The browser keeps sending back the same cookie
to the server in every request.

Browser uses Set-Cookie header to ask client to store the cookie.
The client uses Cookie header to send back the cookie to the server
so the server knows which client it is talking to.

Cookies are incompatible with REST style/architecture since REST is
stateless. According to REST style, cookies maintain site-wide state
while REST styles maintains application state. In REST, cookie
functionality can be achieved using anonymous authentication and
client-side state. REST also defines an alternative to cookies when
implementing shopping carts. According to REST:

Likewise, the use of cookies to identify a user-specific “shopping
basket” within a server-side database could be more efficiently
implemented by defining the semantics of shopping items within the
hypermedia data formats, allowing the user agent to select and store
those items within their own client-side shopping basket, complete with
a URI to be used for check-out when the client is ready to purchase.

Cookies have certain rules and attributes:

	Name/value pair can’t contain spaces or ; =. Usually only ASCII
characters. The ; is used as a delimiter.

	The Secure attribute means this cookie is only used in encrypted
communications.

	The HttpOnly attribute means this cookie can only be used by
http/https requests and not by JavaScript, etc. This prevents cross
site scripting.

Other notes:

	Not good practice to store username/password in cookies, even if it
is hashed/salted, etc. Can be stolen and eventually cracked.

	Cookie based authentication basically involves using the cookie the
server sent to the client back to the server for every request.

Certificate Based

Idea is to separate those who verify password (the server will have a
copy or a hash of the password) and those who define the user identity.
Thus, certificate authority (CA) issues a private certificate to a user, and
guarantees that it can communicate using this key with the public key
issued to the other business party.

Note that the downside becomes apparent when large number of clients or
users need to authenticate to the server. Thus, CA needs to issue
certificate for each user. These certificates needs to be verified and
if one user is compromised the certificate of that user can be used to
authenticate to the server unless the certificate is revoked.

For the reasons stated above, client authentication is rarely used with
TLS. A common technique is to use TLS to authenticate the server to the
client and to establish a private channel, and for the client to
authenticate to the server using some other means - for example, a
username and password using HTTP basic or digest authentication.

[image: ../_images/02cert.png]
The above image depicts certificate-based authentication. The client
asks the user to enter a password which unlocks the database holding the
private key. The client then uses this private key to sign a random data
and sends a certificate to the server. Thus, the password is never sent.

The Red Hat Portal [https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/8.0/html/Deployment_Guide/Introduction_to_Public_Key_Cryptography-Certificates_and_Authentication.html] discusses this in great detail.

HTTPS

	It’s HTTP over TLS or HTTP over SSL (https:// instead of http://). Thus, uses an added
encryption layer (above Transport Layer, before Application Layer) of SSL/TLS to protect traffic.

	Main motivation is to prevent wiretapping/man in the middle attacks.

	HTTPS provides authentication of the website and associated web server that one is communicating with.

	Provides a bidirectional encryption of communications between a client and server.

	URL, query parameters, headers, are protected. However, it only protects HTTP layer. Thus, can infer
host addresses, IP address, and sometimes port number of the webserver (since TCP layer is not encrypted).
Can get data transferred and duration of TCP connection but not content.

Trusting a Web Site

	Web browsers know how to trust HTTPS websites based on certificate
authorities that come pre-installed in their software.

	Certificate authorities, such as Comodo and GlobalSign, are in this
way being trusted by web browser creators to provide valid
certificates.

	Must use a browser that correctly implements HTTPS with correct pre-installed certificates.

	User trusts CA to “vouch” for website they issued certificate to.

	The user trusts that the protocol’s encryption layer (TLS/SSL) is sufficiently secure against eavesdroppers.

TLS/SSL

	Uses assymetric cryptography:
	Basically known as public key cryptography.

	Requires two keys. A private/secret and a public key.

	Public key is used to encrypt plain text or verify a digital
signature. Private key is used to decrypt the plain text or create
a digital signature.

	The assymetric key is used for authentication and encrypting the
channel. Then, a symmetric session key is exchanged.

	The session key is used to encrypt data flowing between the parties.
Important property is forward secrecy. This means that the
short-term session key cannot be derived from long term assymetric
secret key.

	In OSI model equivalences, TLS/SSL is initialized at layer 5 (session
layer) and works at layer 6 (the presentation layer). The session
layer has a handshake using an asymmetric cipher in order to
establish cipher settings and a shared key for that session; then the
presentation layer encrypts the rest of the communication using a
symmetric cipher and that session key.

	TLS is the new name for SSL.

	SSL got to version 3.0 and TLS is “SSL 3.1”.

	Current version of TLS is 1.2.

	SSL (secure socket layer) often refers to the old protocol variant
which starts with the handshake right away and therefore requires
another port for the encrypted protocol such as 443 instead of 80.

	TLS (transport layer security) often refers to the new variant which
allows to start with an unencrypted traditional protocol and then
issuing a command (usually STARTTLS) to initialize the handshake.

	Differences between SSL and TLS in the protocol level:
	In the ClientHello message (first message sent by the client, to
initiate the handshake), the version is {3,0} for SSLv3, {3,1} for
TLSv1.0 and {3,2} for TLSv1.1.

	The ClientKeyExchange differs.

	The MAC/HMAC differs (TLS uses HMAC whereas SSL uses an earlier
version of HMAC).

	The key derivation differs.

	The client can send application data can be sent straight after
ending the SSL/TLS Finished message in SSLv3. In TLSv1, it must
wait for the server’s Finished message.

	The list of cipher suites differ (and some of them have been
renamed from SSL_* to TLS_*, keeping the same id number).

	There are also differences regarding the new re-negotiation
extension.

	Use port 443 by default.

	TLS, which uses long-term public and secret keys to exchange a short
term session key to encrypt the data
flow between client and server.

	X.509 certificates are used to guarantee one is talking to the
partner with whom one wants to talk.

	Need to ensure scripts are loaded over HTTPS as well and not HTTP.

	In case of compromised secret (private) key, certificate can be revoked.

	Use Perfect Forward Secrecy (PFS) so that short term session key
can’t be derived from long term assymetric secret key.

Handshake

Client Server

ClientHello -------->
 ServerHello
 Certificate*
 ServerKeyExchange*
 CertificateRequest*
 <-------- ServerHelloDone
Certificate*
ClientKeyExchange
CertificateVerify*
[ChangeCipherSpec]
Finished -------->
 [ChangeCipherSpec]
 <-------- Finished
Application Data <-------> Application Data

	Exchange hello messages to agree on algorithms, exchange random
values, check for resume.
	The ClientHello and ServerHello establish the following attributes:
Protocol Version, Session ID, Cipher Suite, and Compression Method.
Additionally, two random values are generated and exchanged: ClientHello.random
and ServerHello.random.

	Exchange necessary crypto parameters for client/server to agree on
premaster secret.

	Exchange certs and crypto information to allow client/server to
authenticate.

	Generate a master secret from the premaster secret and exchanged
random values.

	Provide security parameters to the record layer.

	Allow the client and server to verify that their peer has
calculated the same security parameters and that the handshake
occurred without tampering by an attacker.

Server Setup

	To prepare a web server to accept HTTPS connections, the administrator must create a public key
certificate for the web server.

	This certificate must be signed by a trusted certificate authority for the web browser to
accept it without warning.

	Web browsers are generally distributed with a list of signing certificates of major certificate
authorities so that they can verify certificates signed by them.

Other Uses

	The system can also be used for client authentication in order to limit access to a web server
to authorized users. To do this, the site administrator typically creates a certificate for each
user, a certificate that is loaded into his/her browser.

nginx engineX

Permissions

Make sure the permissions of the files in the directory are accessible
to the other group. Or change the permissions to the user that nginx
runs as (for debian it’s www-data).

Setting up Basic Auth

	Install apache2-utils to get htpasswd

	Create an .htpasswd file in the web root. Make sure the
permissions are 644. Note that the password generated by htpasswd
is an apache modified version of MD5.

sudo htpasswd -c /usr/share/nginx/html/.htpasswd amit

	Update /etc/nginx/sites-available/default in the location / and
reload nginx:

Basic auth
auth_basic "Restricted";
auth_basic_user_file /etc/nginx/.htpasswd;

Setting up Digest Auth

	apache2-utils includes htdigest (similar to htpasswd) to
generate digest key.

	Create an .htdigest file in the web root. Make sure the
permissions are 644. Note that the realm here is “Access
Restricted”.

sudo htdigest -c /usr/share/nginx/html/.htdigest "Access Restricted" amit

	Need to build with nginx-http-auth-digest module from
https://github.com/rains31/nginx-http-auth-digest. In order to do
this, download nginx debian sources, copy nginx-http-auth-digest
to debian/modules, and finally edit debian/rules to build
nginx-http-auth-digest (look at –add-module config option).

	Update /etc/nginx/sites-available/default in the location / and
reload nginx:

Digest auth
auth_digest "Access Restricted"; # Realm
auth_digest_user_file /usr/share/nginx/html/.htdigest;

Others

HTTPie - Command Line HTTP Client

Very useful and feature rich command line http client written in Python
(http://github.com/jakubroztocil/httpie).

Useful for debugging HTTP requests. For example:

$ http get http://localhost
HTTP/1.1 200 OK
Connection: keep-alive
Content-Encoding: gzip
Content-Type: text/html
Date: Mon, 01 Sep 2014 18:31:03 GMT
Last-Modified: Tue, 05 Aug 2014 11:18:35 GMT
Server: nginx/1.6.1
Transfer-Encoding: chunked

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
<style>
 body {
 width: 35em;
 margin: 0 auto;
 font-family: Tahoma, Verdana, Arial, sans-serif;
 }
</style>
</head>
<body>
<h1>Welcome to nginx!</h1>
<p>If you see this page, the nginx web server is successfully installed and
working. Further configuration is required.</p>

<p>For online documentation and support please refer to
nginx.org.

Commercial support is available at
nginx.com.</p>

<p>Thank you for using nginx.</p>
</body>
</html>

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Networking

DNS

Contents

	DNS
	Overview

	Typical Name Resolution

	Protocol

	DNS Database
	Example named.hosts file for the Physics Department

	Reverse Lookups

	DNS Caches vs. DNS Servers vs. DNS Resolvers

	Authoritative vs Non-authoritative Responses

	Zone Tranfers

	Anycast DNS

	DNS Security

	Examples
	Query All Records using dig

Overview

Notes taken from:

	A DNS Primer [http://danielmiessler.com/study/dns/]

	Linux Network Administrator’s Guide, 2nd Edition [http://oreilly.com/catalog/linag2/book/ch06.html]

	RFC 1035 - DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION [https://www.ietf.org/rfc/rfc1035.txt]

DNS is the Domain Name System used for obtaining IP Addresses from FQDN
(Fully Qualified Domain Names). An FQDN is an absolute name and provides
the exact location in the tree hierarchy of the domain name system. It
uniquely identifies the host worldwide.

Also note that DNS was designed to be decentralized, thus no central
authority manages all the hosts.

DNS organizes hostnames in a domain hierarchy. A domain is collection of
sites that are related in some sense (all machines in a campus,
organization, etc).

But it is more than that, given a name, it finds resources associated
with that name. This is accomplished through a distributed database
system where requests for names are handed off to various tiers of
servers which are delinieated by the dot (.). It resolves from right to
left:

	The root domain (dot) encompases all domains. Sometimes to indicate a
domain is fully qualified, rather than relative, it is written with a
trailing dot, which signifies the name’s last component is the root
domain.

	The top level domain (TLD) (List of top level domains: http://www.iana.org/domains/root/db)

	The second level domain

	The subdomain

	The host/resource name

[image: ../_images/dns_hierarchy_ex1.png]
Note that organizing the namespace in a hierarchy of domain names nicely
solves the problem of name uniqueness; with DNS, a hostname has to be
unique only within its domain to give it a name different from all other
hosts worldwide.

To this end, the namespace is split up into zones, each rooted at a
domain. Note the subtle difference between a zone and a domain: the
domain groucho.edu encompasses all hosts at Groucho Marx University,
while the zone groucho.edu includes only the hosts that are managed by
the Computing Center directly; those at the Mathematics department, for
example. The hosts at the Physics department belong to a different zone,
namely physics.groucho.edu. In the above figure, the start of a zone is
marked by a small circle to the right of the domain name.

When clients make requests, they make recursive queries (rather thand
iterative queries) which lets the DNS server to do the work of getting
the answer iteratively and thus returning only the final answer to the
client.

Typical Name Resolution

For each zone there are at least two, or at most a few, name servers
that hold all authoritative information on hosts in that zone. Name
servers that hold all information on hosts within a zone are called
authoritative for this zone, and sometimes are referred to as master
name servers. Any query for a host within this zone will end up at one
of these master name servers.

Also, cache is very important for DNS Servers. If there were no caches,
it would be very inefficient. The data in the cache does not stay
forever though, it is configured by the admin using TTL (time to live)
configuration for the DNS Server.

When a client makes a request, the following usually happens:

	The DNS server is configured with an initial cached (hints) of known
addresses of root name servers. This is updated periodically in an
authoritative way.

	Server receives requests from client and services it using its cache
first (usually an answer is cached from previous lookups). If not, it
performs the following steps for client.

	Query is made to one of root servers to find server that is
authoritative for top-level domain being requested.

	Answer is received that points to nameserver of the top-level domain
resource.

	Server walks the tree from right to left, sending requests from
nameserver to nameserver, until final step which returns IP of host
in question.

	IP Address of requested resource is given to client.

Protocol

Header

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ID |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
|QR| Opcode |AA|TC|RD|RA| Z|AD|CD| RCODE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QDCOUNT/ZOCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ANCOUNT/PRCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| NSCOUNT/UPCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| ARCOUNT |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Question Section

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| |
/ QNAME /
/ /
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QTYPE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| QCLASS |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

Resource Record Format

 1 1 1 1 1 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| |
/ /
/ NAME /
| |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| TYPE |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| CLASS |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| TTL |
| |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
| RDLENGTH |
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--|
/ RDATA /
/ /
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+

	DNS protocol uses port 53 for TCP and UDP.

	DNS protocol is quite light (12 bytes header) and uses UDP so it is fast and
much less overhead.

	Zone Transfer and other heavy operations use TCP.

	Fields in header:
	Identifier: 16-bit field containing ID so requests and responses
and can be matched.

	QR Flag: 1-bit field indicating packet is query or
response.

	OP: Specifies type of message. 0 - standard query, 1 - inverse
query (obsolete), 2 - server status, 3 - reserve and unused, 4 -
notification, 5 - update (Dynamic DNS).

	AA - Single bit indicating authoritative answer from server who
authoritative for that domain.

	TC: Single bit for truncation. If set, usually means sent via UDP
but was longer than 512 bytes.

	RD: Single bit indicating recursion desired.

	RA: Single bit reply by server indicating recursion is available.

	Z: Three bits reserved and set to 0.

	RCode: 4-bit field set to 0s for queries but set for responses.
	1 - Format error

	2 - Server failure

	3 - Name error

	4 - Not implemented

	5 - Refused

	6 - Name exists but shouldn’t

	7 - Resource records exists but shouldn’t

	8 - Resource record that should exist but doesn’t

	9 - Response is not authoritative

	10 - Name is response is not within zone specified.

	QCount: How many questions in question section

	ANCount: How many answers in answer section

	NSCount: How many resource records in authority section

	ARCount: How many resource records in additional section

DNS Database

	DNS database does not only deal with IP Addresses of hosts but
contains different types of entries.

	Single piece of info from the DNS database is called a RR (Resource
Record).

	Each record has a type associated with it describing the sort of data
it represents, and a class specifying the type of network it applies
to. The latter accommodates the needs of different addressing
schemes, like IP addresses (the IN class), Hesiod addresses (used by
MIT’s Kerberos system), and a few more. The prototypical resource
record type is the A record, which associates a fully qualified
domain name with an IP address.

	A host may be known by more than one name. For example you might have
a server that provides both FTP and World Wide Web servers, which you
give two names: ftp.machine.org and www.machine.org. However, one of
these names must be identified as the official or canonical hostname,
while the others are simply aliases referring to the official
hostname. The difference is that the canonical hostname is the one
with an associated A record, while the others only have a record of
type CNAME that points to the canonical hostname.

Example named.hosts file for the Physics Department

; Authoritative Information on physics.groucho.edu.
@ IN SOA niels.physics.groucho.edu. janet.niels.physics.groucho.edu. {
 1999090200 ; serial no
 360000 ; refresh
 3600 ; retry
 3600000 ; expire
 3600 ; default ttl
 }
;
; Name servers
 IN NS niels
 IN NS gauss.maths.groucho.edu.
gauss.maths.groucho.edu. IN A 149.76.4.23
;
; Theoretical Physics (subnet 12)
niels IN A 149.76.12.1
 IN A 149.76.1.12
name server IN CNAME niels
otto IN A 149.76.12.2
quark IN A 149.76.12.4
down IN A 149.76.12.5
strange IN A 149.76.12.6
...
; Collider Lab. (subnet 14)
boson IN A 149.76.14.1
muon IN A 149.76.14.7
bogon IN A 149.76.14.12
...

	The SOA record signals the Start of Authority, which holds general
information and configuration on the zone the server is authoritative
for.

	CNAME always points to another name. This name then has an
assiociated A record.

	Note that all names in the sample file that do not end with a dot
should be interpreted relative to the physics.groucho.edu (e.g.
boson, muon) domain. The special name (@) used in the SOA record
refers to the domain name by itself.

	The name servers for the groucho.edu domain somehow have to know
about the physics zone so that they can point queries to their name
servers. This is usually achieved by a pair of records: the NS record
that gives the server’s FQDN, and an A record that associates an
address with that name. Since these records are what holds the
namespace together, they are frequently called glue records.

Reverse Lookups

	Sometimes you need to look up the canonical name from an IP
address. This is called reverse mapping.

	A special domain in-addr.arpa has been created that contains the IP
addresses of all hosts in a reversed dotted quad notation. For
instance, an IP address of 149.76.12.4 corresponds to the name
4.12.76.149.in-addr.arpa. The resource-record type linking these
names to their canonical hostnames is PTR.

	Note that if the address is a subnet that ends in 0 the 0 is
ommitted in the reverse dotted quad notation. For example, subnet
149.76.12.0 corresponds to name 12.76.149.in-addr.arpa.

; the 12.76.149.in-addr.arpa domain.
@ IN SOA niels.physics.groucho.edu. janet.niels.physics.groucho.edu. {
 1999090200 360000 3600 3600000 3600
 }
2 IN PTR otto.physics.groucho.edu.
4 IN PTR quark.physics.groucho.edu.
5 IN PTR down.physics.groucho.edu.
6 IN PTR strange.physics.groucho.edu.

	in-addr.arpa system zones can only be created as supersets of IP
networks. An even more severe restriction is that these networks’
netmasks have to be on byte boundaries. All subnets at Groucho Marx
University have a netmask of 255.255.255.0, hence an in-addr.arpa
zone could be created for each subnet. However, if the netmask were
255.255.255.128 instead, creating zones for the subnet 149.76.12.128
would be impossible, because there’s no way to tell DNS that the
12.76.149.in-addr.arpa domain has been split into two zones of
authority, with hostnames ranging from 1 through 127, and 128 through
255, respectively.

DNS Caches vs. DNS Servers vs. DNS Resolvers

	DNS Cache is a list of names and IPs you resolved recently. The cache
can be located in the OS level (not for Linux). Cache can be at
browser level, router level, ISP level.

	A DNS server can act as a cache if it is not authoritative for any
domain. Thus, performs queries for clients and caches resolved names.

	A DNS server can be authoritative for that domain and holds
authoritave answers for certain resources.

	DNS Resolvers are just clients.
	When the client requests for recursive queries, it asks the server
to do all the work for it and just waits for the final answer.

	Iterative queries gets a response from server on where to look
next. For example, if the client asks for chat.google.com, it tells
the client to check with the .com servers and considers its work
done.

Authoritative vs Non-authoritative Responses

	Authoritative responses come directly from a nameserver that has
authority over the record in question.

	Non-authoritave come from a second-hand server or more likely a
cache.

Zone Tranfers

	Uses TCP instead of UDP and during the operation, the client sends a
query type of IXFR instead of AXFR.

	Slave DNS servers pull records from master DNS servers.

	Can use dig to perform Zone Transfer.

	If you have control of the zone, you can set it up to get transfers
that are protected with a TSIG key. This is a shared secret the the
client can send to the server to authorize the transfer.

Anycast DNS

	Allows for same IP to be served from multiple locations.

	Network decides based on distance, latency, and network conditions
which location to route to.

	Like a CDN for your DNS.

	When you deploy identical servers at multiple nodes, on multiple networks,
in widely diverse geographical locations, all using Anycast, you’re
effectively adding global load-balancing functionality to your DNS
service. Importantly, the load-balancing logic is completely invisible
to the DNS servers; it’s moved down the stack from the application to
the network layer. Because each node advertises the same IP address,
user traffic is shared between servers globally, handled transparently
by the network itself using standard BGP routing.

	An example of this would be to list your DNS servers as 1.2.3.4 and 1.2.3.5.
Your routers would announce a route for 1.2.3/24 out of multiple datacenters.
If you’re in Japan and have a datacenter there, chances are you’d end up there.
If you’re in the US, you’d be sent to your US datacenter. Again, it’s based on
BGP routing and not actual geographic routing, but that’s usually how things
break down.

DNS Security

	Main security issue is typing correct URL and pointed to IP of
malicious server.

	Easy to spoof because query and responses are UDP based.

	DNSSEC is security oriented extensions for DNS. Main purpose is to
ensure response comes from authorized origin.

	Works by signing responses using public-key cryptography and uses new
resource records.
	RRSIG: DNSSEC signature for a record set. The DNS clients verify
the signature with a public key stored in DNSKEY record.

	DNSKEY: Contains the public key.

	DS: Holds name of delegated zone.

	NSEC: Contains link to next record name in zone. Used for
validation.

	NSEC3: Similar to NSEC but hashed.

	NSEC3PARAM: Authoritative servers uses this which NSEC3 records
to use in responses.

Examples

Query All Records using dig

$ dig +nocmd com.google any +multiline +noall +answer

Or

$ dig com.google any

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Networking

Firewall

Contents

	Firewall
	First Generation: Packet Filters

	Second Generation: Stateful Filters

	Third Generation: application layer

Notes from: Wikipedia - Firewall [http://en.wikipedia.org/wiki/Firewall_(computing)]

	Firewall controls incoming and outgoing network based on applied rules.

	Basically establishes a barrier between internal network and outside
network.

	Proxies can be firewalls by blocking certain connections from certain
hosts or addresses.

	Network Address Translation (NAT) has become an important part of
firewalls. It hides addresses of hosts behind the firewall.

First Generation: Packet Filters

	First paper on firewall technology published was in 1988 by DEC.
Talked about a packet filter firewall.

	Act by inspecting packets. If it matches set of filtering rules, it
silently drops packet or reject it with error message back to source.

	The mechanism does not look at whether the packet is part of a
connection stream, etc. Thus, it doesn’t really maintain a state. It
rejects based on looking at combination of source, destination
address, protocol, port number, etc.

	Pretty much works on the first three layers of OSI Model. It does
peek into transport layer sometimes for source/destination port
numbers.

	Term originated in context of BSD operating systems.

	Examples are iptables for Linux and PF for BSD.

Second Generation: Stateful Filters

	1989-1990 from AT&T Bell Labs developed second gen firewall calling
it circuit level gateway.

	Operates up to Layer 4 (Transport Layer). Achieved by retaining
enough packets in the buffer until enough information is availabe to
make a judgement about its state.

	Thus, it records all connections passing through it and determines if
a packet is a part of current connection or new connection. Known as
stateful packet inspection.

	Can DoS by flooding firewall with thousands of fake connection
packets.

Third Generation: application layer

	Key benefit is that it can understand certain Application Layer
protocols (FTP, HTTP, DNS).

	Useful to detect if unwanted protocol is trying to use standard port
from known applications (e.g. HTTP) to bypass firewall.

	Can inspect if packet contains virus signatures.

	Hooks into socket calls automatically.

	Disadvantages are that it is quite slow and that rules can get
complicated. It also can’t possibly support of applications at
application layer.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Networking

IP

Contents

	IP
	Path MTU Discovery (PMUTD)

Path MTU Discovery (PMUTD)

	Determines the MTU (Maximum Transmission Unit) size on the network
path between two IP hosts. (RFC 1191 - Path MTU Discovery [https://tools.ietf.org/html/rfc1191]).

	The goal is to avoid IP fragmentation.

	In IPv6, this function has been explicitly delegated to the end
points of a communications session. (RFC 1981 - Path MTU Discovery
for IP version 6 [http://tools.ietf.org/html/rfc1981]).

	For IPv4 packets, Path MTU Discovery works by setting the Don’t
Fragment (DF) option bit in the IP headers of outgoing packets. Then,
any device along the path whose MTU is smaller than the packet will
drop it, and send back an Internet Control Message Protocol (ICMP)
Fragmentation Needed (Type 3, Code 4) message containing its MTU,
allowing the source host to reduce its Path MTU appropriately. The
process is repeated until the MTU is small enough to traverse the
entire path without fragmentation.

	IPv6 routers do not support fragmentation or the Don’t Fragment
option. For IPv6, Path MTU Discovery works by initially assuming the
path MTU is the same as the MTU on the link layer interface through
which the traffic is being sent.
	Then, similar to IPv4, any device along the path whose MTU is
smaller than the packet will drop the packet and send back an
ICMPv6 Packet Too Big (Type 2) message containing its MTU, allowing
the source host to reduce its Path MTU appropriately. The process
is repeated until the MTU is small enough to traverse the entire
path without fragmentation.

	Many network security devices block all ICMP messages for perceived
security benefits,[6] including the errors that are necessary for the
proper operation of PMTUD. This can result in connections that
complete the TCP three-way handshake correctly, but then hang when
data is transferred. This state is referred to as a black hole
connection.

	A robust method for PMTUD that relies on TCP or another protocol to
probe the path with progressively larger packets has been
standardized in RFC 4821 [http://tools.ietf.org/html/rfc4821].

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Networking

tcpdump

Contents

	tcpdump
	Flags

	Examples
	Capturing ARP Traffic

	Capturing Traffic on Localhost

	Capturing GMail Traffic

	Dropped Packets by the Kernel

	Capturing TCP SYN Packets

	Capture Outgoing SSH Traffic

	Get Time Delta Between Request/Response

	Capturing WiFi Packets

Network packet capture tool in the CLI. tcpdump is extremely useful
for quick debugging of network issues. Use the pcap-filter manpage for
the filter syntax reference.

Flags

tcpdump Flags:

	TCP Flag
	tcpdump Flag
	Meaning

	SYN
	S
	Syn packet, a session establishment request.

	ACK
	A
	Ack packet, acknowledge sender’s data.

	FIN
	F
	Finish flag, indication of termination.

	RESET
	R
	Reset, indication of immediate abort of conn.

	PUSH
	P
	Push, immediate push of data from sender.

	URGENT
	U
	Urgent, takes precedence over other data.

	NONE
	A dot .
	Placeholder, usually used for ACK.

Examples

Capturing ARP Traffic

When using tcpdump to capture ARP, make sure to dump the hex output (-X)
and also decode ethernet header using (-e). Note: Use *-XX* to also
show ethernet header dump.

$ sudo tcpdump -nnvvv -e -X arp
 tcpdump: listening on wlan0, link-type EN10MB (Ethernet), capture size 262144 bytes
 20:01:28.452956 48:5a:b6:51:57:dd > ff:ff:ff:ff:ff:ff, ethertype ARP (0x0806), length 60: Ethernet (len 6), IPv4 (len 4), Request who-has 192.168.1.1 tell 192.168.1.23, length 46
 0x0000: 0001 0800 0604 0001 485a b651 57dd c0a8 HZ.QW...
 0x0010: 0117 0000 0000 0000 c0a8 0101 0000 0000
 0x0020: 0000 0000 0000 0000 0000 0000 0000
 20:01:28.454472 bc:ee:7b:58:17:b8 > 48:5a:b6:51:57:dd, ethertype ARP (0x0806), length 42: Ethernet (len 6), IPv4 (len 4), Reply 192.168.1.1 is-at bc:ee:7b:58:17:b8, length 28
 0x0000: 0001 0800 0604 0002 bcee 7b58 17b8 c0a8 {X....
 0x0010: 0101 485a b651 57dd c0a8 0117 ..HZ.QW.....

Capturing Traffic on Localhost

During development, there is usually a local webserver setup in
http://localhost. Custom apps/scripts are tested against this local
webserver to make them functionally correct. Thus, it is important to be
able to analyze traffic to and from the local webserver. Using the local
webserver for traffic analysis helps as there are no external traffic
that will confuse the analysis.

To capture localhost traffic:

sudo tcpdump -A -v --number -i lo tcp port http

	-A is used to decode protocol in ASCII.

	-v is used for verbose mode. This allows us to see tcp communication details (flags, sequence numbers, etc).

	–number denomitate the packets

	-i lo use local loopback interface

	tcp port http the filter specifying protocol and port to use for capture.

Use -l for line buffering to see data while capturing it to a file.

sudo tcpdump -l -A -v --number -i lo tcp port http | tee /tmp/capture

Capturing GMail Traffic

GMail goes over IMAP but not the standard IMAP port (143), it uses 993:

sudo tcpdump -vvv -X --number -i wlan0 host 192.168.1.24 and tcp port 993

Use -vvv (three is max) to decode max level of the packets. Then use
-X to decode in Hex and ASCII.

Dropped Packets by the Kernel

tcpdump uses a little buffer in the kernel to store captured packets. If
too many new packets arrive before the user process tcpdump can decode
them, the kernel drops them to make room for freshly arriving packets.

Use -B to increase the buffer. This is in units of KiB (1024 bytes).

Capturing TCP SYN Packets

To capture SYN packets only:

$ sudo tcpdump -nnvvv host 192.168.1.116 and "tcp[tcpflags] & tcp-syn != 0"

To capture TCP keepalive packets 1-byte or 0-byte ACKs. Note that a
keepalive probe is a packet with no data and ACK flag turned on:

$ sudo tcpdump -vv "tcp[tcpflags] == tcp-ack and less 1"

Capture Outgoing SSH Traffic

$ sudo tcpdump -nn src 192.168.1.116 and tcp port 22

Get Time Delta Between Request/Response

Pass the -ttt flag to get the time delta between current line and
previous line.

$ sudo tcpdump -nS -ttt port http and host snapshot.debian.org

tcpdump: verbose output suppressed, use -v or -vv for full protocol decode
listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes

00:00:00.000000 IP 192.168.1.170.34233 > 193.62.202.30.80: Flags [S], seq 1140376233, win 29200, options [mss 1460,sackOK,TS val 22265623 ecr 0,nop,wscale 7], length 0
00:00:00.228373 IP 193.62.202.30.80 > 192.168.1.170.34233: Flags [S.], seq 1460190713, ack 1140376234, win 5792, options [mss 1350,sackOK,TS val 74072844 ecr 22265623,nop,wscale 7], length 0
00:00:00.000040 IP 192.168.1.170.34233 > 193.62.202.30.80: Flags [.], ack 1460190714, win 229, options [nop,nop,TS val 22265680 ecr 74072844], length 0
00:00:00.000119 IP 192.168.1.170.34233 > 193.62.202.30.80: Flags [P.], seq 1140376234:1140376399, ack 1460190714, win 229, options [nop,nop,TS val 22265680 ecr 74072844], length 165
00:00:00.222658 IP 193.62.202.30.80 > 192.168.1.170.34233: Flags [.], ack 1140376399, win 54, options [nop,nop,TS val 74072902 ecr 22265680], length 0
00:00:00.001001 IP 193.62.202.30.80 > 192.168.1.170.34233: Flags [P.], seq 1460190714:1460191405, ack 1140376399, win 54, options [nop,nop,TS val 74072902 ecr 22265680], length 691
00:00:00.000032 IP 192.168.1.170.34233 > 193.62.202.30.80: Flags [.], ack 1460191405, win 239, options [nop,nop,TS val 22265736 ecr 74072902], length 0
00:00:00.008210 IP 192.168.1.170.34233 > 193.62.202.30.80: Flags [F.], seq 1140376399, ack 1460191405, win 239, options [nop,nop,TS val 22265738 ecr 74072902], length 0
00:00:00.183523 IP 193.62.202.30.80 > 192.168.1.170.34233: Flags [F.], seq 1460191405, ack 1140376400, win 54, options [nop,nop,TS val 74072960 ecr 22265738], length 0
00:00:00.000060 IP 192.168.1.170.34233 > 193.62.202.30.80: Flags [.], ack 1460191406, win 239, options [nop,nop,TS val 22265784 ecr 74072960], length 0

Capturing WiFi Packets

First, the wlan0 interface needs to be set to monitor mode:

$ sudo ifconfig wlan0 down
$ sudo iwconfig wlan0 mode Monitor
$ sudo ifconfig wlan0 up

Then, run tcpdump with the following flags:

$ sudo tcpdump -I -i wlan0 -w thermostat.pcap -e -s 0 ether host 00:d0:2d:xx:xx:xx

This captures all packets originating from the Honeywell thermostat for example.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Networking

Cheatsheet

Contents

	Cheatsheet
	Finding Duplicate IP Addresses on the Network

	Capturing cupsd Traffic

Finding Duplicate IP Addresses on the Network

	Install arp-scan.

	Run the following command:

$ sudo arp-scan -I eth0 -l | grep 192.168.1.42
$ OR
$ sudo arp-scan -I eth0 -l | grep DUP
192.168.1.92 00:c0:b7:55:f6:1f AMERICAN POWER CONVERSION CORP (DUP: 2)
192.168.1.152 00:1b:00:0f:55:0e Neopost Technologies (DUP: 2)
192.168.1.158 00:14:38:48:75:b7 Hewlett Packard (DUP: 2)

Capturing cupsd Traffic

First to get the list of open ports used by cupsd, use netstat:

$ sudo netstat -lntup | grep cupsd

tcp 0 0 0.0.0.0:631 0.0.0.0:* LISTEN 512/cupsd
tcp6 0 0 :::631 :::* LISTEN 512/cupsd
udp 0 0 0.0.0.0:631 0.0.0.0:* 512/cupsd

tcpdump can’t be used so need to use strace here:

$ sudo strace -p 512 -f -e trace=network -s 10000 -o capture.out &
$ sudo lpinfo -v

This will capture the HTTP messages (IPP) received by cupsd.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Networking

Troubleshooting

Contents

	Troubleshooting
	Identifying and Solving Performance Issues

	Common Server Problems

	Common AJAX Problems

	Common App Engine Problems

Identifying and Solving Performance Issues

Steps should be followed in order:

	Understand the problem
	Half the problem is solved when problem is understood clearly.

	Monitor and collect data
	Monitor the system and collect as much data as possible.

	Eliminate and narrow down issues
	Come up with a list of potential issues and possibly narrow them
down eliminating any non issues.

	Make one change at a time
	Make one change and re-test. Don’t make multiple changes at one
time.

Common Server Problems

	“Transfer-Encoding: chunked” isn’t needed for progressive rendering.
However, it is needed when the total content length is unknown before the first
bytes are sent. Usually, it is used automatically by Web Server when you start
sending data without knowing the length.

	A server is used as a proxy in order to perform cross domain
requests. If the server returns 502 error it means: The server,
while acting as a gateway or proxy, received an invalid response from
the upstream server it accessed in attempting to fulfill the request.

	Sometimes a server is not accessible why is that? Answer in terms of
DNS.

The DNS resolver’s cache is controlled by the time-to-live (TTL)
value that you set for your records and is specified in seconds. For
example, if you set a TTL value of 86400 (the number of seconds in 24
hours), the DNS resolvers are instructed to cache the records for 24
hours. Some DNS resolvers ignore the TTL value or use their own
values that can delay the full propagation of records.

If you are planning for a change to services that requires a narrow
window, you might want to change the TTL in advance of your change to
a shorter TTL value. This change can help reduce the caching window
and ensure a quicker change to your new record settings. After the
change, you can change the value back to its previous TTL value to
reduce load on the DNS resolvers.

Common AJAX Problems

	Although, almost all browsers support JavaScript today, there could
be some users accessing it with JavaScript disabled.
	Should design to degrade gracefully when it detects JavaScript is
disabled.

	Also build the website to work without JavaScript. Then, JavaScript
should be used as an enhancement. Most users will see the page with
JavaScript anyways.

	Sometimes user doesn’t know a request has completed. Thus, display a
message or status indicating request has been completed.

	AJAX requests can’t access third-party web services.
	The XMLHttpRequest object, which is at the root of all Ajax
requests, is restricted to making requests on the same domain as
the page making the request.

	Solution is to use your server as the proxy to access API of third
party web service.

	Can also use jQuery to perform cross-domain requests ($.ajax()
API).

	Can use <script> tags that load JavaScript files from other
domains. JSONP (JSON Padding) uses this technique to dynamically
create <script> tag with necessary URL.

	Using back button on sites with AJAX can sometimes revert the page
back to its initial state.
	Solution to this is to use internal page anchors. Basically, save
the current URL and use that.

Common App Engine Problems

	If you have timeouts in your application, you maybe updating a single
entity group in your datastore too rapidly (about 5 times/sec).
Datastore will be in contention. Design issue of BigTable.
	Can be a problem if you have a entity that is a counter that you
want to update faster than 5 times/sec.

	Way to reduce problem is taking advantage of extremely cheap and
fast reads from datastore. Thus, use sharding to split counters
into N counters.
	When you want to increment the counter, pick a shard at random
and increment it.

	When you want to read the total count, read all shards and sum up
all counters.

	The more shards, the higher throughput on increments to counters.

	Another way is to make updates to memcache and periodically
flushing to datastore.

	Timeouts can happen if your data is in a tablet that is currently
being moved around between servers for load balancing when you are
trying to access it.

	Timeouts can happen if you are writing large data and thus tablets
are being split while you are writing. Use exponential backoff
strategy before retrying since it takes sometimes couple hunder
millisecs to a sec or two for tablets to be available.

	To handle errors in datastore gracefully, make transactions
idempotent. Thus, if you repeat the transaction, the end result
will be the same.

	If daily budget is exceeded in app engine, application could serve
errors.

	When upgrading to a new application, don’t move all your users right
away. Use traffic splitting to gradually move new requests to new
version of your application. Cached objects may no longer be cached
thus an increase in read latency.
	IP Address splitting works by hashing IP Address to value of 0-999
and splitting based on that.

	Cookies give finer split control and more detailed statistics.
Uses GOOGAPPUID cookie and range of 0-999.

	Some issues with traffic splitting is cached documents. Use
Cache-Control and Expires header to tell proxies that resource
is dynamic.

	To avoid thundering herd problem (where retries get compounded
because first retry fails and all requests keep trying), use backoff
on retry.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

Forensics

	Cheatsheet
	Mounting E01 Images

	Mounting ISO9660

	Setting HPA

	Setting DCO

	Cloning Partition Table

	Inspecting Process Syscalls Using sysdig

	Check for problematic I/Os

	Tracing SUID Programs

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Forensics

Cheatsheet

Contents

	Cheatsheet
	Mounting E01 Images

	Mounting ISO9660

	Setting HPA

	Setting DCO

	Cloning Partition Table

	Inspecting Process Syscalls Using sysdig

	Check for problematic I/Os

	Tracing SUID Programs

Mounting E01 Images

	Install ewf-tools which contains ewfmount.

	Mount the E01 image. This mounts it as a raw file.

ewfmount /srv/public/E01Capture/E01Capture.E01 /mnt/ewf
or for multiple E01 files
ewfmount /srv/public/E01Capture/E01Capture.E* /mnt/ewf

	Then use mmls from the sleuthkit package to analyze the raw
image and find out where the partition offsets are. Note, in this
case partition offset is (512*2048=1048756).

mmls /mnt/ewf/ewf1
DOS Partition Table
Offset Sector: 0
Units are in 512-byte sectors

 Slot Start End Length Description
00: Meta 0000000000 0000000000 0000000001 Primary Table (#0)
01: ----- 0000000000 0000002047 0000002048 Unallocated
02: 00:00 0000002048 0007890943 0007888896 NTFS (0x07)
03: ----- 0007890944 0007892991 0000002048 Unallocated

	Mount the filesystem using regular mount:

mount -t ext4 -o ro,loop,offset=1048576 /mnt/ewf/ewf1 /mnt/usb
or for ntfs
mount -t ntfs-3g -o ro,nodev,noexec,show_sys_files,loop,offset=1048576 /mnt/ewf/ewf1 /mnt/usb

Mounting ISO9660

	Install fuseiso9660. Somehow, the following does not work:

mount -t iso9660 -o loop test.iso /mnt/loop

	Mount the disk image:

fuseiso9660 ~/Downloads/BarracudaLP-ALL-CC35.iso /mnt/loop

Setting HPA

Use hdparm with the -N option to find out the maximum number of
visible sectors:

hdparm -N /dev/sde

/dev/sde:
 max sectors = 64000/976773168, HPA is enabled

Then, to disable the HPA set it to the max visisble sectors:

hdparm --yes-i-know-what-i-am-doing -N p976773168 /dev/sde

/dev/sde:
 setting max visible sectors to 976773168 (permanent)
 max sectors = 976773168/976773168, HPA is disabled

Setting DCO

To identify DCO on disk:

hdparm --dco-identify /dev/sdb

To erase DCO on disk:

hdparm --yes-i-know-what-i-am-doing --dco-restore /dev/sdb

Cloning Partition Table

Use sfdisk, this is part of the util-linux package. In debian, it is
found in /usr/sbin/sfdisk.

For GPT based disks, use gdisk [http://unix.stackexchange.com/a/60393].

	Copy the partition table from the source disk:

sfdisk -d /dev/sda > mbr

	Restore the partition table on destination disk:

sfdisk /dev/sdb < mbr

Inspecting Process Syscalls Using sysdig

Use sysdig to get detailed information about process system calls.
To install sysdig on a debian based system if the package is not
available in the repos:

$ curl -s https://s3.amazonaws.com/download.draios.com/stable/install-sysdig | sudo bash

For example, to see what calls are being made by iceweasel do the
following:

$ sudo sysdig proc.name=iceweasel
10903 11:19:00.961549300 0 iceweasel (17398) > poll fds=5:e1 4:u1 8:p3 10:u1 22:p1 24:u1 3:f0 timeout=4294967295
10908 11:19:00.961558641 0 iceweasel (17398) > switch next=0 pgft_maj=611 pgft_min=148114721 vm_size=2665740 vm_rss=1377504 vm_swap=0

For a specific process id:

$ sudo sysdig thread.tid=922
2543694 12:16:34.481253335 0 ongserver (922) > write fd=0(<u>) size=2069216
2543695 12:16:34.481409710 0 ongserver (922) > switch next=910(pic-host) pgft_maj=0 pgft_min=22625 vm_size=335844 vm_rss=73700 vm_swap=0

The format of the output is quite similar to tcpdump. The output is as
follows:

<evt.num> <evt.time> <evt.cpu> <proc.name> <thread.tid> <evt.dir> <evt.type> <evt.args>

where:

· evt.num is the incremental event number
· evt.time is the event timestamp
· evt.cpu is the CPU number where the event was captured
· proc.name is the name of the process that generated the event
· thread.tid id the TID that generated the event, which corresponds to the PID for single thread processes
· evt.dir is the event direction, > for enter events and < for exit events
· evt.type is the name of the event, e.g. 'open' or 'read'
· evt.args is the list of event arguments.

You can also pass the -w <capture> to capture the trace to a file and
read it back using filters or chisels with -r <capture>.

Can also list available chilses with -cl and use i <chisel> to get
info on chisel. Then use -c chisel with -r <trace> to filter out
capture.

References

	Sysdig + Logs: Advanced Log Analysis Made Easy [http://draios.com/sysdig-plus-logs/]

	Sysdig for ps, lsof, netstat + time travel [http://draios.com/ps-lsof-netstat-time-travel/]

	Hiding Linux Processes For Fun And Profit [http://draios.com/hiding-linux-processes-for-fun-and-profit/]

Check for problematic I/Os

Use iostat to see current read/write rates:

$ sudo iostat -d 1
Linux 3.16-2-amd64 (amit-debian) 10/02/2014 _x86_64_ (8 CPU)

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sda 5.31 48.49 95.74 8472327 16726100

Device: tps kB_read/s kB_wrtn/s kB_read kB_wrtn
sda 0.00 0.00 0.00 0 0

-d is to show disk stats and 1 is to query every second.

To see I/Os and its respective processes with CPU usage, use iotop.

$ sudo iotop
Total DISK READ : 0.00 B/s | Total DISK WRITE : 7.64 K/s
Actual DISK READ: 0.00 B/s | Actual DISK WRITE: 42.03 K/s
 TID PRIO USER DISK READ DISK WRITE SWAPIN IO> COMMAND
 168 be/3 root 0.00 B/s 7.64 K/s 0.00 % 2.80 % [jbd2/sda5-8]
 28565 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.27 % [kworker/1:5]
 26449 be/4 root 0.00 B/s 0.00 B/s 0.00 % 0.21 % [kworker/1:2]
 ...

-o shows only processes that are active and -a shows accumulated
data read/written.

Tracing SUID Programs

You can use strace to trace SUID programs. Note that by default SUID
programs can’t be debugged or traced by ordinary users because this
would allow tracing user to excute code as a different user (with
privileges as user executing SUID program).

Thus, SUID programs can be executed without SUID bit and then traced.
However, this is not ideal because you don’t really want to change the
program behavior by removing SUID bit.

You can also run strace as root. This will then run the program you are
tracing as root which might be dangerous. Another way is to temporary set
SUID root for strace. This also runs program as root.

Note that strace calls ptrace internally and affects program
performance. Can use ltrace to just trace library calls.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

Debian

	Setup
	Install

	Basic Setup

	systemd

	Enlightenment

	Applications

	Commands
	Finding hardlink of file

	When DKMS Build Fails Due to Missing Source

	No configure script, only configure.ac

	Transferring files over netcat

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Debian

Setup

Install

The latest jessie install as of Sept 02, 2014 is
debian-jessie-DI-b1-amd64-netinst.iso. This already comes by default
with systemd as the init.

During the install, select all defaults and just select SSH Server and
Standard System Utilities in tasksel.

Basic Setup

	Enable force_color_prompt in .bashrc.

	Update apt lists and upgrade all packages.

	Login using su and install sudo.

	Add the following lines using visudo:

User privilege specification
logicube ALL=(ALL:ALL) ALL

	Install avahi-daemon so we don’t have to remember IP address. We
don’t have to use no recommends here since the list of packages it
recommends is only one.

$ sudo aptitude install avahi-daemon

	Add UseDNS no to /etc/ssh/sshd_config and restart ssh service.

systemd

	Create /var/log/journal where systemd can store persistent journals.

	The directory should be owned by systemd-journal.

$ sudo chgrp systemd-journal /var/log/journal

	Fix the permissions for this group so that any user that is a member
of systemd-journal should be able to access it.

$ sudo chmod g+rwx /var/log/journal

	Add the user to the systemd-journal group:

$ sudo usermod -a -G systemd-journal logicube

	Reboot the system using systemctl reboot.

Enlightenment

	Install basic X, use -R to not install recommended packages:

$ sudo aptitude install -R xserver-xorg xserver-xorg-core xinit xinput xserver-xorg-video-intel xserver-xorg-input-evdev x11-utils

	Install e17:

$ sudo aptitude install -R e17 fonts-droid librsvg2-common

	Install a small display manager CDM
https://wiki.archlinux.org/index.php/CDM.
	Install dialog package as a dependency.

	Install git (–without-recommends) to get the latest CDM from https://github.com/ghost1227/cdm.

	Clone cdm to /tmp.

	Run sudo ./install.sh.

	sudo cp /usr/share/doc/cdm/profile.sh /etc/profile.d/zzz-cdm.sh

	chmod +x /etc/profile.d/zzz-cdm.sh

	This procedure doesn’t work, CDM gets stuck.

	Install nodm. Edit /etc/default/nodm and set NODM_ENABLED to
true. Finally, change NODM_USER to logicube. Reboot the system.

Applications

	Install chromium with recommended packages.

	Install rxvt-unicode-256color.

	Create .Xdefaults with the following settings:

URxvt.font: xft:Droid Sans Mono:style=Regular:pixelsize=15
!URxvt*letterSpace : -1

! make a scrollbar that's nearly black
URxvt*scrollBar: false
URxvt*scrollBar_floating: true
URxvt*scrollBar_right: false
URxvt*scrollColor: #202020
URxvt*urllauncher: chromium

! matcher.button # 3 is a right-click
URxvt*matcher.button: 3
URxvt*saveLines: 8192
URxvt.perl-ext-common: default,matcher

! Theme
URxvt*background: #000000
URxvt*foreground: #ffffff

	Install vim and vim-gtk with recommended packages.

	Install lxde-icon-theme, lxappearance, gnome-themes with recommended packages.

	Install cifs-utils for mount.cifs without recommended packages.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Debian

Commands

Contents

	Commands
	Finding hardlink of file

	When DKMS Build Fails Due to Missing Source

	No configure script, only configure.ac

	Transferring files over netcat

Finding hardlink of file

For example zipinfo:

$ ls -l /usr/bin/zipinfo
-rwxr-xr-x 2 root root 158360 Apr 24 14:41 /usr/bin/zipinfo

You can see the number 2 indicating number of links (including this
one).

	Use ls -i to find inode number of file:

$ ls -i /usr/bin/zipinfo
1187726 /usr/bin/zipinfo

	Use find to search for that specific inode:

$ find /usr/bin/ -inum 1187726
/usr/bin/unzip
/usr/bin/zipinfo

When DKMS Build Fails Due to Missing Source

The kernel headers are enought to build a module. However, if building
the DKMS fails and kernel headers package are installed, it usually
means there is no build symlink under /lib/modules/`uname -r`.

Do the following to create the symlink:

$ sudo ln -s /usr/src/linux-headers-$(uname -r)/ /lib/modules/$(uname -r)/build

No configure script, only configure.ac

Need to run the following set of commands to build a working configure script from a configure.ac:

$ libtoolize --force
$ aclocal
$ autoheader
$ automake --force-missing --add-missing
$ autoconf
$./configure --prefix=/usr

Transferring files over netcat

Sometimes this is useful when you need to transfer some files from a
unit that has busybox or booted up to an initramfs shell.

First, on PC that you would like the file to be transferred to:

$ nc -l -p 6666 > dmesg.out

You can check if port 6666 is open by running:

$ lsof -i :6666
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
nc 953 amit 3u IPv4 54834351 0t0 TCP *:6666 (LISTEN)

Then on busybox shell:

(initramfs) ip link set dev eth0 up
(initramfs) ip addr add 192.168.1.123/24 dev eth0
(initramfs) dmesg > /tmp/dmesg
(initramfs) nc 192.168.1.175:6666 < /tmp/dmesg

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

Study

	Google I/O 2011: Life in App Engine Production

	Google I/O 2011: More 9s Please: Under The Covers of the High Replication Datastore

	The Art of Unix Programming
	Chapter 1: Philosophy

	Chapter 2: Origins and History of Unix

	Chapter 3: Contrasts
	Operating System Comparisons

	What Goes Around Comes Around

	Chapter 4: Modularity
	Compactness

	Orthogonality

	The SPOT Rule

	Software Is a Many-Layered Thing

	Chapter 5: Textuality
	The Pros and Cons of File Compression

	Application Protocol Design

	Chapter 6: Transparency

	Chapter 7: Multiprogramming
	Taxonomy of Unix IPC Methods

	Problems and Methods to Avoid

	Process Partitioning at the Design Level

	Python
	Common Questions
	Difference between class A(object): and class A:

	How are arguments passed - by reference or by value?

	Sum/multiply all the elements in a list

	Difference between tuples and list

	What are decorators and what is their usage?

	Common Mistakes
	Misusing expressions as defaults for function arguments

	Project Management
	Agile
	Predictive vs Adaptive

	Putting People First

	The Self-Adaptive Process

	Flavors of Agile Development

	Should you go agile?

	Others
	User Stories

	Burndown Charts

	Agile Fluency

	Managing Deadlines

	Programming
	Character Encodings For Modern Programmers
	UNIX, Terminals, and C1

	DOS/Windows

	Programming With 8-Bit Encodings

	Multibyte Encodings

	Pre-Unicode Summary

	Unicode

	Basic Programming With Unicode

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Study

Google I/O 2011: Life in App Engine Production

Notes taken from Google I/O 2011: Life in App Engine Production [https://www.youtube.com/watch?v=rgQm1KEIIuc]

	Standalone computers/nodes usually have no problems. Problems are
compounded when they are interconnected. Whethere in a data center or
data centers connected to other data centers all over the world.

	Traffic with peak and valleys coming from users. Systems needs to be
designed to work in these cases.

	Leslie Lamport is a computer scientist working with distributed
systems. Creator of paxos distributed consensus algorithm used widely
at Google.

	App Engine is a cloud computing environment built inside Google’s
cloud computing environment.
	It does not run in its own data center. It runs across nodes.

	Cloud computing environment depends on a lot of services (storage,
lock, computer, networking, etc.). Each of these are managed by
other SREs.

	Handshake between different layers of cloud computing with
gurantees on certain reliability parameters. Then, each layer lives
within the bounds of the parameters set in the layer below it.

	Services is as reliable as the weakest (least reliable) service it
depends on.

	Google products and environment are designed for in-place updates. No
disruption to users.
	However, other upgrades such as network, power (generator), other
hardware upgrades are intrusive. In this case, data is probably
going to be re-routed to other data centers in the meantime.

	Asynchronous replication happening from one datacenter to another.

	Typical Google server serving storage has a storage process talking
to a power management process that monitors power and battery (UPS)
local to server.
	Advantage of this communication is that when power’s out, server
does not accept anymore writes from network service.

	UPS backup basically designed to allow cached writes to be
committed to disk.

	When error happens in server (in the case of power outage and no
writes happening), design allows error to ripple back to user
allowing user to retry request again. Thus, no lost state in user’s
end.

	Monitoring processes lie to you sometimes. Idea is to trust, but
verify.
	Strong checksums at many layers of the stack are best.

	It’s like infinite monkey, eventually the monkey will write out
shakespeare. When there are so many hardware, somehow something
will end up deleting your data.

	With asynchronous replication, data needs time to catch up to the
slave data center. What if the link goes down? In this case, slave
datacenter can’t start serving data since it will be serving stale
data.
	Google has high replication datastore (synchronous writes).

	Uses paxos algorithm do handle the synchronous writes.

	If local data store is too slow, service will ignore its own local
data store and write over network to remote data store.

	How to design reliable services?
	Your application/data should live in multiple data centers.
	Data centers can’t be in same location, power, network,
continent, etc.

	Be capable of handling multiple data center failures
simultaneously.

	Use synchronous writes to most of your datacenters.

	Let your system/infrastructure decide what datacenters to read and
write from. Don’t wait for humans to react and make decisions.

	Instantaneous traffic rerouting on demand.

	Advantages of advance monitoring.
	Idea is you should know you are having problems before customers
start calling you.

	For example, if data center is facing slightly longer latency for
requests, the monitoring tools will alert you before your customers
do. Your customers are not your monitoring tools.

	Example:
	CPU usage rockets up.

	Explore requests, not that many to the home page but a few extra
requests to /news.

	Then, look at memcache and datastore rates. Memcache rates are
about the same, but datastore rates are way up.

	Thus, requests to /news requires a lot of work and data is not
cached properly (not using memcached). Results are not cached.

	Monitoring API running on app engine itself! High reliability
platform.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Study

Google I/O 2011: More 9s Please: Under The Covers of the High Replication Datastore

Notes taken from Google I/O 2011: More 9s Please: Under The Covers of the High Replication Datastore [https://www.youtube.com/watch?v=xO015C3R6dw]

	Two types of datastore in App Engine:
	Master/Slave
	This is the old style. There is one master that handles all the
reads/writes and asynchronous writes happen to the slave.

	High Replication
	This is the new default style. There is no master in this one as
writes happen to all nodes synchronously. All act as a collective
master.

	Datastore Stack:
	The actual datastore is the highest level. This is schema-less
storage and has advance query engine.

	This sits atop megastore which is defined by a strict schema and
queried using standard SQL.

	Megastore is powered by Bigtable which is a distributed key-value
store.
	Big Table is super fast and highly scalable. However, this design
has some tradeoffs. Mainly data can be unavailable for short
periods of time

	Finally, the file system that powers all this is GFSv2, a
distributed filesystem.

	Writes to Datastore
	In a Master/Slave, write happens to Datacenter A and gets
asynchronously written to Datacenter B at a later time.

	In High Replication, write happens to a majority of the replicas
synchronously. The other replica(s) that don’t get the write
synchronously gets an asynchronous write scheduled. Or can be
on-demand replication when Read comes in to that datastore and it
realizes that it doesn’t have that data.

	Writes to Master/Slave is faster (20ms) compared to High
Replication Datastore (45ms).

	Read latency is about the same but read error rate in High
Replication is way less (0.001% vs 1%). Thus, resulting in 5m vs 9h
downtime.

	Planned Maintenance
	Master/Slave
	Datacenter A becomes readonly, thus app running on app engine
will be readonly. In the meantime, the catchup happens to
datacenter B.

	Once that is done, then the switchover will happen.

	Requires engineer to initiate switchover.

	High Replication
	Seamless migration. Switching is almost transparent.

	Memcache flush + 1 min no-caching.

	This is primarily hosted in a single datacenter. Reason is
memcache is quite fast, and doing replication across datacenters
is too slow.

	Unplanned Maintenance
	Master/Slave experiences immediate switchover. Thus, some data is
lost and app is serving stale data. Up to devs to manually flush
partial data that was written to Datacenter A to Datacenter B.

	For High Replication, this is the same as a planned maintenance.
Designed to withstand multiple datacenter failures.

	Some Issues with Bigtable
	Since multiple apps share the same Bigtable instance, a short
period that the Bigtable is unavailable for that Datacenter can
cause apps hosted by that datacenter to be unavailable. Note that
this is only for Master/slave setup.

	High replication does not get affected, since it will try a request
on another bigtable in another datacenter.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Study

The Art of Unix Programming

Notes taken from The Art of Unix Programming [http://www.faqs.org/docs/artu/index.html]

	Chapter 1: Philosophy

	Chapter 2: Origins and History of Unix

	Chapter 3: Contrasts
	Operating System Comparisons
	VMS

	MacOS

	OS/2

	Windows NT (New Technology)

	BeOS

	MVS

	VM/CMS

	Linux

	What Goes Around Comes Around

	Chapter 4: Modularity
	Compactness

	Orthogonality

	The SPOT Rule

	Software Is a Many-Layered Thing
	Glue

	Libraries

	Unix and Object-Oriented Languages

	Coding for Modularity

	Chapter 5: Textuality
	The Pros and Cons of File Compression

	Application Protocol Design

	Chapter 6: Transparency

	Chapter 7: Multiprogramming
	Taxonomy of Unix IPC Methods
	system and popen

	Pipes, Redirection, and Filters

	Slave Processes

	Peer-to-Peer Inter-Process Communication

	Problems and Methods to Avoid
	Obsolete Unix IPC Methods

	Threads — Threat or Menace?

	Process Partitioning at the Design Level

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Study

 	The Art of Unix Programming

Chapter 1: Philosophy

Contents

	Chapter 1: Philosophy

	The Unix API is the closest thing to a hardware-independent standard
for writing truly portable software that exists. It is no accident
that what the IEEE originally called the Portable Operating System
Standard quickly got a suffix added to its acronym and became POSIX.
A Unix-equivalent API was the only credible model for such a
standard.

	Doug McIlroy (invertor of Pipes): This is the Unix philosophy: Write
programs that do one thing and do it well. Write programs to work
together. Write programs to handle text streams, because that is a
universal interface.

	Rob Pike (Master of C): Data dominates. If you’ve chosen the right
data structures and organized things well, the algorithms will almost
always be self-evident. Data structures, not algorithms, are central
to programming.

	Rule of Repair: When you must fail, fail noisily and as soon as
possible.

	Rule of Modularity: Write simple parts connected by clean interfaces.
The only way to write complex software that won’t fall on its face is
to hold its global complexity down — to build it out of simple parts
connected by well-defined interfaces, so that most problems are local
and you can have some hope of upgrading a part without breaking the
whole.

	Rule of Separation: Separate policy from mechanism; separate
interfaces from engines. Another way is to separate your application
into cooperating front-end and back-end processes communicating
through a specialized application protocol over sockets; we discuss
this kind of design in Chapter 5 and Chapter 7. The front end
implements policy; the back end, mechanism. The global complexity of
the pair will often be far lower than that of a single-process
monolith implementing the same functions, reducing your vulnerability
to bugs and lowering life-cycle costs.

	Rule of Representation: Fold knowledge into data, so program logic
can be stupid and robust. Data is more tractable than program logic.
It follows that where you see a choice between complexity in data
structures and complexity in code, choose the former. More: in
evolving a design, you should actively seek ways to shift complexity
from code to data.

	Rule of Silence: When a program has nothing surprising to say, it
should say nothing. One of Unix’s oldest and most persistent design
rules is that when a program has nothing interesting or surprising to
say, it should shut up. Well-behaved Unix programs do their jobs
unobtrusively, with a minimum of fuss and bother. Silence is golden.

	Rule of Optimization: Prototype before polishing. Get it working
before you optimize it.

	Rule of Extensibility: Design for the future, because it will be
here sooner than you think. If it is unwise to trust other people’s
claims for “one true way”, it’s even more foolish to believe them
about your own designs. Never assume you have the final answer.
Therefore, leave room for your data formats and code to grow;
otherwise, you will often find that you are locked into unwise early
choices because you cannot change them while maintaining backward
compatibility.

	To do the Unix philosophy right, you have to be loyal to
excellence.
You have to believe that software design is a craft worth all the
intelligence, creativity, and passion you can muster. Otherwise you
won’t look past the easy, stereotyped ways of approaching design and
implementation; you’ll rush into coding when you should be thinking.
You’ll carelessly complicate when you should be relentlessly
simplifying — and then you’ll wonder why your code bloats and
debugging is so hard.

	Software design and implementation should be a joyous art, a kind of
high-level play.

If this attitude seems preposterous or vaguely embarrassing to you,
stop and think; ask yourself what you’ve forgotten. Why do you design
software instead of doing something else to make money or pass the
time? You must have thought software was worthy of your passion
once....

To do the Unix philosophy right, you need to have (or recover) that
attitude. You need to care. You need to play. You need to be willing
to explore.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Study

 	The Art of Unix Programming

Chapter 2: Origins and History of Unix

Contents

	Chapter 2: Origins and History of Unix

	Multics designed for time-sharing mainframe systems. Was too
complicated and thus Unix was born from the ashes of Multics. The
design was to not repeat same mistakes and thus much simpler design.

	Invented by Ken Thompson from Bell Laboratories. Partnered with
Dennis Ritchie (labeled co-inventor) and creator of C programming
language. This was around 1969-1970.

	Developed on PDP-7.

	Unix was originally called “UNICS” (UNiplexed Information and
Computing Service).

	Multics had thousand of pages of specs while Unix was designed and
programmed originally by three people (third person was Doug
McIlroy).

	Unix was originally written in assembler and an interpreted language
called B. But B was not powerful enough to do systems
programming, thus Ritchie added data types and structure. Thus, C
was born in 1971.

	In 1973, Unix was re-written completely in C to achieve better
performance.

	Ritchie and Thompson wrote: “constraint has encouraged not only
economy, but also a certain elegance of design”.

	Unix was given to corporations, academia, etc. The improvements were
shared back to Bell Labs and Version 7 of Unix was released by Bell
Labs in late 70s included all these improvements.

	Ken Thompson ended up teaching at Berkley during 75-76 sabbatical and
further influenced an already strong influence of Unix research at Berkley.
First BSD release was in 77 and a lot of great software came out of
Berkley labs (including vi editor). Bill Joy was a grad student
heading the labs at Berkley that released the BSDs.

	DARPA chose Berkley Unix as a platform to implement its brand new
TCP/IP protocol stack (which was running on VAX at the time). First
released in 83 with Berkley 4.2 Unix.

	1981 Microsoft partnered with IBM and marketed MS-DOS (re-packaged
QDOS “Quick and Dirty OS”.

	1982 Bill Joy founded Sun Microsystems with two others. Found the
workstation industry by building together hardware designed from
Stanford and OS from BSD.

	DEC cancelled successor to PDP-10 and VAXs running Unix were powering
Internet backbone (until being displaced by Sun Microsystems). When
DEC cancelled PDP-10’s successor, MIT AI Lab’s PDP-10 hacker named
Richard Stallman became motivated to build a completely free
clone of Unix called GNU.

	Productization of Unix happened and there were many commercial
versions. AT&T marketed System V licenses around 1983 when
anti-trust department broke them up again. This destroyed free
exchange of source code.

	Unix became heavily fragmented, which each commercialized version
marketing their differences. Also, Unix players ignored Microsoft’s
rise in the commercial personal computer market.

	Rivalry between System V and BSD - sockets vs streams. Corporations
sided with AT&T System V while programmers and hackers backed BSD.

	Around the early 80s, a programmer/linguist named Larry Wall quietly
invented the patch utility. Huge impact on Unix development. Now,
programmers could send diffs instead of whole files.

	When Intel shipped the first 386 chip in 1985, it could address 4GB
of memory and was powerful enough to run Unixes. This started the end
of workstation companies such as Sun Microsystems.

	1985 was also the year Stallman published GNU Manifesto and X window
was released with full source code under the X permissive license.
Which resulted in X becoming de-facto graphics engine in all
Unixes.

	Unix standardization started in 1983 with System V and BSD started
reconciling their APIs. This became officially the POSIX standard in
1985. Used superior Berkley job control and signal handling with
System V terminal handling. Only major Unix API to come after was
Berkley sockets.

	Larry Wall created Perl in 1986, first and most widely used
open-source scripting language. 1987 first version of GCC is
released. Thus, GNU now had compiler, editor, debugger, and other
basic tools to arm next gen developers in the 90s (along with almost
all workstations running X).

	While Unix wars were going on, Microsoft released Windows 3.0 in 1990
and sealed its dominance in the personal computer market.

	Unix hackers preferred Motorola’s elegant RISC based 68000 processor
compared to Intel’s ugly 8086 arch. But Motorola lost out to Intel’s
inexpensive chips. Also, GNU failed to release a free Unix clone by
this time.

	Finally in 1991 Linus Torvalds a grad student from Finland announced
Linux. He wanted a free and cheap clone of Unix running on 386
hardware. There was 386BSD that started in 90s but was not shipped
until 92.

	1993-1994 Internet exploded and so did development on Linux and BSD.
BSD suffered because AT&T started lawsuits alleging copied source
code. Thus, motivated some BSD developers to jump and develop for
Linux.

	XFree86 used Internel development and was more effective than X
consortium and provided BSD and Linux with graphics engine in 1992.

	Internet Engineering Task Force (IETF) originated the tradition
of standardization through Requests For Comment (RFCs). This started
from same group of hackers who managed ARPANET at MIT AI Lab.

	Interesting was that these geeks were not Unix programmers. Early
Unix programmers were from academia and corporations that were
directly involved in Unix. However, these geeks were young and
bright and sharing through the Internet was their religion.

	Eventually, ARPANET hackers learned Unix and C and Unix hackers
learned TCP/IP.

	RMS created Free Software term that labeled the goal of a lot of
hackers. However, not all hackers believed in it. BSD license
remained popular as well.

	Most hackers did not want to get into the GPL/anti-GPL debate and
just wrote code. Linus Torvalds used this effectively and licensed
his kernel with GPL to protect it and used the mature GNU user land
tools. He avoided the religious aspects of the GPL and did not like
the strong ideology behind it. He sometimes even used proprietary
programs when there was no better Free Software alternative. This
made hackers follow his ideology more.

	Around 1993-1997, Linux already had a strong technical foundation and
also had distributions, support services, and strong development
community.

	When Linux 0.1 was released in 1995, it could beat proprietary Unixes
in performance and uptime. At this time Apache webserver was
released for Linux and immediately was the most popular web server
due to its stability and free nature. This cemented Linux as a server
platform.

	According to Eric S. Raymond (author of TAOUP) “Given a
sufficiently large number of eyeballs, all bugs are shallow”. Thus,
the argument changed from Free software because all software should
be free to Free software because it works better.

	The paper’s contrast between cathedral (centralized, closed,
controlled, secretive) and bazaar (decentralized, open,
peer-review-intensive) modes of development became a central metaphor
in the new thinking.

	Early 1998, Netscape inspired by the new thinking released Mozilla
browser as open source. This brought Linux to Wall Street with the
tech boom.

	In March of 1998 an unprecedented summit meeting of community
influence leaders representing almost all of the major tribes
convened to consider common goals and tactics. That meeting adopted a
new label for the common development method of all the factions: open
source.

	Most Unix hackers and tribes adopted this new open source banner.
However, the major standout was RMS. He specifically did not want
Free Software = Open Source. He claimed an ideological
difference.

	The other main intention behind open source was to present the
hacker community’s method to the rest of the world. And this was a
success.

	The largest-scale pattern in the history of Unix is this: when and
where Unix has adhered most closely to open-source practices, it has
prospered. Attempts to proprietarize it have invariably resulted in
stagnation and decline.

	The lesson for the future is that over-committing to any one
technology or business model would be a mistake — and maintaining the
adaptive flexibility of our software and the design tradition that
goes with it is correspondingly imperative.

	Never bet against cheap-plastic and commodity solutions in Economy.
They always win. This is how Linux has thrived.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Study

 	The Art of Unix Programming

Chapter 3: Contrasts

Contents

	Chapter 3: Contrasts
	Operating System Comparisons
	VMS

	MacOS

	OS/2

	Windows NT (New Technology)

	BeOS

	MVS

	VM/CMS

	Linux

	What Goes Around Comes Around

	Different operating systems were designed by the influences of
culture, limitations (usually economic), and ideas of their
designers.

	The designer’s idea is usually is baked into the operating system and
thus unifies its design. For Unix, this idea was everything is a
file and pipes metaphor that builds on top of this.

	To design the perfect anti-Unix, have no unifying idea at all, just
an incoherent pile of ad-hoc features.

	One way in which OSes differ is in the way they handle multiple
processes or Multitasking. DOS and CP/M were basically
sequential loaders with to multitasking abilities.

	Cooperative Multitasking is the ability to share multiple processes.
However, there was no memory management unit or locking. Thus,
a bug in a program could freeze the entire system.

	Unix has preemptive multitasking, in which timeslices are
allocated by a scheduler which routinely interrupts or pre-empts the
running process in order to hand control to the next one. Almost all
modern operating systems support preemption.

	Note that multitasking does not mean multiuser. Many OSes are
multitasking but can only support one user at a time logged in to the
machine. True multi user requires multiple user privilege domains
(multi console).

	In the Unix experience, inexpensive process-spawning and easy
inter-process communication (IPC) makes a whole ecology of small
tools, pipes, and filters possible.

	A subtle but important property of pipes and the other classic Unix
IPC methods is that they require communication between programs to be
held down to a level of simplicity that encourages separation of
function. Conversely, the result of having no equivalent of the pipe
is that programs can only be designed to cooperate by building in
full knowledge of each others’ internals.

	In operating systems without flexible IPC and a strong tradition of
using it, programs communicate by sharing elaborate data structures.

	Doug McIlroy: Word and Excel and PowerPoint and other Microsoft
programs have intimate — one might say promiscuous — knowledge of
each others’ internals. In Unix, one tries to design programs to
operate not specifically with each other, but with programs as yet
unthought of.

	Unix encourages interal boundaries by encouraging creating different
users with different privileges. System programs often have their own
pseudo-user accounts to confer access to special system files without
requiring unlimited (or superuser) access.

	Unix has at least three levels of internal boundaries:
	Unix uses its hardware’s memory management unit (MMU) to ensure
that separate processes are prevented from intruding on the others’
memory-address spaces.

	A second is the presence of true privilege groups for multiple
users — an ordinary (nonroot) user’s processes cannot alter or read
another user’s files without permission.

	A third is the confinement of security-critical functions to the
smallest possible pieces of trusted code. Under Unix, even the
shell (the system command interpreter) is not a privileged program.

	OSes need strong internal boundaries for stability and security.

	Unix files have neither record structure nor attributes. Other OSes
know about the file and the type of the file. For example, other
OSes associate file extension with application to open that file. In
Unix, applications recognize the files by their magic number or
other data type within the file itself.

	OS-level record structures are generally an optimization hack, and do
little more than complicate APIs and programmers’ lives. They
encourage the use of opaque record-oriented file formats that generic
tools like text editors cannot read properly.

	Critical data in Unix is stored in text files. Thus, it can easily
read by programs (not a security risk since critical data such as
passwords are salted and stored as hashes). Binary data is evil.

	In Unix, belief is that OS should have strong CLI facilities because
of the following reasons:
	Easy remote administration.

	Programs will not be designed to cooperate with each other in a
nice way.

	Servers, daemons, and other background programs will be difficult
to program.

	Unix is designed for programmers by programmers. Thus, it makes no
assumptions on what the user needs or wants. Other OSes designed for
end users often make these assumptions and sometimes get them wrong.

	In Unix, there is no major barrier for a user to become a developer.
The culture promotes it and the development tools are freely
available for everyone. Unix pioneered casual programming.

Operating System Comparisons

VMS

	VMS was released by DEC in 1978 and still kind of survives (maybe
receives support). It is also a CLI based OS.

	VMS has full preemptive multitasking, but makes process-spawning very
expensive. The VMS file system has an elaborate notion of record
types (though not attributes).

	Had elaborate COBOL system commands and extensive help system. But
commands where quite long to type and help system had no good search
functionality.

	VMS had MMU and true multiuser capabilities. Security cracks on VMS
were quite rare.

	VMS dev tools and docs were expensive. Docs were only available in
paper form and thus was tiresome to go through and search through.

MacOS

	Debut in 1984 with the Macintosh and has heavy GUI influenced
designed obtained from Xerox’s Palo Alto Research Center.

	MacOS’s very strong unifying idea was its GUI guidelines. Specified
in great detail how the application should look like and behave.

	One key idea of these guidelines was that all the documents,
directories, and other persistent objects had its place in the
desktop and desktop context was preserved across reboots.

	All programs have GUIs. MacOS’s captive-interface GUI metaphor
(organized around a single main event loop) leads to a weak scheduler
without preemption. The weak scheduler, and the fact that all
MultiFinder applications run in a single large address space, implies
that it is not practical to use separated processes or even threads
rather than polling.

	MacOS applications are not, however, invariably monster monoliths.
The system’s GUI support code, which is partly implemented in a ROM
shipped with the hardware and partly implemented in shared libraries,
communicates with MacOS programs through an event interface that has
been quite stable since its beginnings. Thus, the design of the
operating system encourages a relatively clean separation between
application engine and GUI interface.

	MacOS files have both a ‘data fork’ (a Unix-style bag of bytes that
contains a document or program code) and a ‘resource fork’ (a set of
user-definable file attributes). Mac applications tend to be designed
so that (for example) the images and sound used in them are stored in
the resource fork and can be modified separately from the application
code.

	The MacOS system of internal boundaries is very weak. There is a
wired-in assumption that there is but a single user, so there are no
per-user privilege groups. Multitasking is cooperative, not
pre-emptive.

	Security cracks against MacOS machines are very easy to write; the OS
has been spared an epidemic mainly because very few people are
motivated to crack it.

	Mac OS X merged the above ideas with the strong internals of BSD
Unix. At the same time, leading-edge Unixes such as Linux are
beginning to borrow ideas like file attributes (a generalization of
the resource fork) from MacOS.

OS/2

	Currently (2003) still used in some automated teller machines. Never
really was competition to MacOS or Windows. Was initially designed as
an advanced DOS.

	OS/2 was designed with preemptive multitasking and thus would not run
on systems without an MMU. However, it was not designed to be
multiuser. Also, it allowed for relatively inexpensive process
spawning but had a difficult IPC.

	Had networking support for LAN protocols but TCP/IP was later added.

	Had both CLI/GUI. The OS/2 WPS (Workplace Shell) was its desktop. It
was licensed from AmigaOS and had strong and clean object-oriented
design and good extensibility. This would become the model from GNOME
desktop.

	OS/2 had the internal boundaries one would expect in a single-user
OS. Running processes were protected from each other, and kernel
space was protected from user space, but there were no per-user
privilege groups. This meant the file system had no protection
against malicious code. Another consequence was that there was no
analog of a home directory; application data tended to be scattered
all over the system.

	Since there were no per-user privilege group, trusted programs would
be jammed into kernel or WPS thus resulting in bloat.

	Used both text and binary formats.

	Eventually IBM released tools for free and hobby groups evolved but
was pushed towards Java because of Microsoft’s dominance on the
desktop. Finally, a lot of devs moved towards Linux.

	Lesson learned, can’t really go too far with multitasking OS with no
multi-user capabilities.

Windows NT (New Technology)

	Designed for high-end personal and server use. All Microsoft’s OSes
from Windows 2000 onwards are NT based.

	NT genetically descended from VMS. NT grew by accretion (continuous
growth by adding layers) and doesn’t really have a unifying design
idea like MacOS or Unix.

	Technology becomes obsolete every few years and devs have to re-learn
APIs, concepts.

	Pre-emptive multitasking is supported but process spawning is several
times more expensive (0.1s) than Unix.

	Makes extensive use and distinction between binary formats and text
files.

	Programs communicate via complex and fragile RPCs.

	System configuration is stored in registries.
	The registry makes the system completely non-orthogonal.
Single-point failures in applications can corrupt the registry,
frequently making the entire operating system unusable and
requiring a reinstall.

	The registry creep phenomenon: as the registry grows, rising access
costs slow down all programs.

	NT has weak internal boundaries. Although it has access control
lists, they are ignored by older programs.

	To achieve speed, recent versions of the NT wire the webserver into
the kernel to achieve the same speed as Unix.

	These holes in the boundaries have the synergistic effect of making
actual security on NT systems effectively impossible.

	Because Windows does not handle library versioning properly, it
suffers from a chronic configuration problem called “DLL hell”, in
which installing new programs can randomly upgrade (or even
downgrade!) the libraries on which existing programs depend.

	Microsoft started to publish all APIs and kept tools inexpensive.
However, around Windows 95 time frame, they started to hide APIs and
did not publish internal APIs to the general public. Only devs who
signed NDAs could use them.

BeOS

	Started out as a hardware vendor building machines around PowerPC
arch in 1989.

	BeOS was Be’s attempt to add value to the hardware by inventing a
new, network-ready operating system model incorporating the lessons
of both Unix and the MacOS family, without being either. The result
was a tasteful, clean, and exciting design with excellent performance
in its chosen role as a multimedia platform.

	BeOS’s unifying ideas were ‘pervasive threading’, multimedia flows,
and the file system as database. Designed also to minimize latency in
the kernel. BeOS ‘threads’ were actually lightweight processes in
Unix terminology, since they supported thread-local storage and
therefore did not necessarily share all address spaces. IPC via
shared memory was fast and efficient.

	Followed Unix by having no file structure above byte level but halso
had file attributes ala MacOS. The filesystem database could be
indexed by any attribute.

	One of the things BeOS took from Unix was intelligent design of
internal boundaries. It made full use of an MMU, and sealed running
processes off from each other effectively. While it presented as a
single-user operating system (no login), it supported Unix-like
privilege groups in the file system and elsewhere in the OS
internals. Easy to add multi-user capability. There was a guest user
(default) and a root user.

	BeOS tended to use binary file formats and the native database built
into the file system, rather than Unix-like textual formats.

	Had clean GUI but also good CLI (port of bash). Had a POSIX
compatibility layer as well.

	Was designed as a multimedia workstation. Followed Apple in only
allowing BeOS to run in its own hardware. Eventually there were
lawsuits by Microsoft and Linux started gaining some multimedia
capabilities. Finally, it tried releasing an x86 port but it was too
late and by 2001 it was pretty much obscure.

MVS

	Multiple Virtual Storage was IBM’s flagship OS for mainframes.

	Older than Unix so there really isn’t much Unix design principles in
it. Unifying idea is that all work is a batch. The system is
designed to make the most efficient possible use of the machine for
batch processing of huge amounts of data, with minimal concessions to
interaction with human users.

	Process spawning is a slow operation. The I/O system deliberately
trades high setup cost (and associated latency) for better
throughput. These choices are a good match for batch operation, but
deadly to interactive response.

	MVS uses the machine MMU; processes have separate address spaces.
Interprocess communication is supported only through shared memory.
There are facilities for threading (which MVS calls “subtasking”),
but they are lightly used, mainly because the facility is only easily
accessible from programs written in assembler.

	Many system configuration files are in text format, but application
files are usually in binary formats specific to the application.

	File system security was an afterthought in the original design.
However, when security was found to be necessary, IBM added it in an
inspired fashion: They defined a generic security API, then made all
file access requests pass by that interface before being processed.
As a result, there are at least three competing security packages
with differing design philosophies — and all of them are quite good,
with no known cracks against them between 1980 and mid-2003.

	There is no concept of one interface for both network connections and
local files; their programming interfaces are separate and quite
different.

	Casual programming for MVS is almost nonexistent except within the
community of large enterprises that run MVS.

	The intended role of MVS has always been in the back office.

VM/CMS

	VM/CMS is IBM’s other mainframe operating system. Historically
speaking, it is Unix’s uncle: the common ancestor is the CTSS system,
developed at MIT around 1963 and running on the IBM 7094 mainframe.
The group that wrote CTSS went on to write Multics.

	The unifying idea of the system, provided by the VM component, is
virtual machines, each of which looks exactly like the underlying
physical machine.

	A scripting language called Rexx supports programming in a style not
unlike shell, awk, Perl or Python. Consequently, casual programming
(especially by system administrators) is very important on VM/CMS.

	VM/CMS even went through the same cycle of de facto open source to
closed source back to open source, though not as thoroughly as Unix
did.

	What VM/CMS lacks, however, is any real analog to C. Both VM and CMS
were written in assembler and have remained so implemented.

	Since the year 2000, IBM has been promoting VM/CMS on mainframes to
an unprecedented degree — as ways to host thousands of virtual Linux
machines at once.

Linux

	Linux does not include any code from the original Unix source tree,
but it was designed from Unix standards to behave like a Unix.

	The desire to reach end users has also made Linux developers much
more concerned with smoothness of installation and software
distribution issues than is typically the case under proprietary Unix
systems. One consequence is that Linux features binary-package
systems far more sophisticated than any analogs in proprietary
Unixes, with interfaces designed (as of 2003, with only mixed
success) to be palatable to nontechnical end users.

	Linux 2.5’s incorporation of extended file attributes
(using getfattr(1) and setfattr(1)), which among other
things can be used to emulate the semantics of the Macintosh
resource fork, is a recent major one at time of writing. This mainly
to support other filesystems from other OSes natively on Linux.

	Indeed, a substantial fraction of the Linux user community is
understood to be wringing usefulness out of hardware as technically
obsolete today as Ken Thompson’s PDP-7 was in 1969. As a consequence,
Linux applications are under pressure to stay lean and mean that
their counterparts under proprietary Unix do not experience.

What Goes Around Comes Around

	Many of the major OSes today have adopted Unix principles. For
example, MacOS merged Unix to its core. Windows is the only
major alternative.

	In a world of pervasive networking, even an operating system designed
for single-user use needs multiuser capability (multiple privilege
groups) — because without that, any network transaction that can
trick a user into running malicious code will subvert the entire
system (Windows macro viruses are only the tip of this iceberg).

	Windows gets away with having severe deficiencies in these areas only
by virtue of having developed a monopoly position before networking
became really important, and by having a user population that has
been conditioned to accept a shocking frequency of crashes and
security breaches as normal. This is not a stable situation, and it
is one that partisans of Linux have successfully (in 2003) exploited
to make major inroads in the server-operating-system market.

	The trend toward client operating systems was so intense that server
operating systems were at times dismissed as steam-powered relics of
a bygone age.

	But as the designers of BeOS noticed, the requirements of pervasive
networking cannot be met without implementing something very close to
general-purpose timesharing. Single-user client operating systems
cannot thrive in an Internetted world.

	Retrofitting server-operating-system features like multiple privilege
classes and full multitasking onto a client operating system is very
difficult, quite likely to break compatibility with older versions of
the client, and generally produces a fragile and unsatisfactory
result rife with stability and security problems.

	Retrofitting a GUI onto a server operating system, on the other hand,
raises problems that can largely be finessed by a combination of
cleverness and throwing ever-more-inexpensive hardware resources at
the problem. As with buildings, it’s easier to repair superstructure
on top of a solid foundation than it is to replace the foundations
without trashing the superstructure.

	The Unix design proved more capable of reinventing itself as a client
than any of its client-operating-system competitors were of
reinventing themselves as servers.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Study

 	The Art of Unix Programming

Chapter 4: Modularity

Contents

	Chapter 4: Modularity
	Compactness

	Orthogonality

	The SPOT Rule

	Software Is a Many-Layered Thing

	In the beginning, everything was one big lump of machine code. The
earliest procedural languages brought in the notion of partition by
subroutine. Then we invented service libraries to share common
utility functions among multiple programs. Next, we invented
separated address spaces and communicating processes. Today we
routinely distribute program systems across multiple hosts separated
by thousands of miles of network cable.

	Modularity of hardware has of course been one of the foundations of
engineering since the adoption of standard screw threads in the late
1800s.

	The only way to write complex software that won’t fall on its face is
to build it out of simple modules connected by well-defined
interfaces, so that most problems are local and you can have some
hope of fixing or optimizing a part without breaking the whole.

	Dennis Ritchie encouraged modularity by telling all and sundry that
function calls were really, really cheap in C. However, this wasn’t
really the case at first but Dennis tricked everyone! However,
by then everyone was hooked.

	The first and most important quality of modular code is
encapsulation. Well-encapsulated modules don’t expose their internals
to each other. They don’t call into the middle of each others’
implementations, and they don’t promiscuously share global data. They
communicate using application programming interfaces (APIs) — narrow,
well-defined sets of procedure calls and data structures. This is
what the Rule of Modularity is about.

	The APIs enforce a strong isolation and also it defines what the
architecture of the program is.

	One good test for whether an API is well designed is this one: if you
try to write a description of it in purely human language (with no
source-code extracts allowed), does it make sense?

	Some of the most able developers start by defining their interfaces,
writing brief comments to describe them, and then writing the code —
since the process of writing the comment clarifies what the code must
do. Such descriptions help you organize your thoughts, they make
useful module comments, and eventually you might want to turn them
into a roadmap document for future readers of the code.

	There has to be a trade-off. Can’t really have super small modules or
very large modules. There has to be a balance.

	Brooks’s Law predicts that adding programmers to a late project
makes it later. More generally, it predicts that costs and error
rates rise as the square of the number of programmers on a project.

	In nonmathematical terms, Hatton’s empirical results imply a sweet
spot between 200 and 400 logical lines of code that minimizes
probable defect density, all other factors (such as programmer skill)
being equal.

Compactness

	Compactness is the property that a design can fit inside a human
being’s head. A good practical test for compactness is this: Does an
experienced user normally need a manual? If not, then the design (or
at least the subset of it that covers normal use) is compact. Idea is
compact tools make you productive.

	Apparently Lisp language is compact but has difficult concepts. But
once the user masters these concepts, the concepts become simple.

	The Unix system call API is semi-compact, but the standard C library
is not compact in any sense.

	The Magical Number Seven, Plus or Minus Two: Some Limits on Our
Capacity for Processing Information [Miller] is one of the foundation
papers in cognitive psychology (and, incidentally, the specific
reason that U.S. local telephone numbers have seven digits). It
showed that the number of discrete items of information human beings
can hold in short-term memory is seven, plus or minus two. This gives
us a good rule of thumb for evaluating the compactness of APIs: Does
a programmer have to remember more than seven entry points? Anything
larger than this is unlikely to be strictly compact.

	Among general-purpose programming languages, C and Python are
semi-compact; Perl, Java, Emacs Lisp, and shell are not (especially
since serious shell programming requires you to know half-a-dozen
other tools like sed(1) and awk(1)). C++ is anti-compact — the
language’s designer has admitted that he doesn’t expect any one
programmer to ever understand it all.

	Sometimes, can’t really make programs compact but this has to be last
choice. An example is BSD sockets API. Can’t really make this compact
because of the complexity of the problem it is trying to solve.

Orthogonality

	Orthogonality is one of the most important properties that can help
make even complex designs compact. In a purely orthogonal design,
operations do not have side effects; each action (whether it’s an API
call, a macro invocation, or a language operation) changes just one
thing without affecting others. There is one and only one way to
change each property of whatever system you are controlling.

	One common class of design mistake, for example, occurs in code that
reads and parses data from one (source) format to another (target)
format. A designer who thinks of the source format as always being
stored in a disk file may write the conversion function to open and
read from a named file. Usually the input could just as well have
been any file handle. If the conversion routine were designed
orthogonally, e.g., without the side effect of opening a file, it
could save work later when the conversion has to be done on a data
stream supplied from standard input, a network socket, or any other
source.

	There is an excellent discussion of orthogonality and how to achieve
it in The Pragmatic Programmer [Hunt-Thomas]. As they point out,
orthogonality reduces test and development time, because it’s easier
to verify code that neither causes side effects nor depends on side
effects from other code.

	The concept of refactoring, which first emerged as an explicit idea
from the ‘Extreme Programming’ school, is closely related to
orthogonality. To refactor code is to change its structure and
organization without changing its observable behavior.

	The basic Unix APIs were designed for orthogonality with imperfect but
considerable success. We take for granted being able to open a file
for write access without exclusive-locking it for write, for example.

	There are large non-orthogonal patches like the BSD sockets API and
very large ones like the X windowing system’s drawing libraries.

The SPOT Rule

	Coined by Brian Kernighan: Single Point of Truth

	Constants, tables, and metadata should be declared and initialized
once and imported elsewhere. Any time you see duplicate code, that’s
a danger sign. Complexity is a cost; don’t pay it twice.

	Use tools such as code generators to generate common data that is
being represented in multiple places. Have the data in one place and
use the tool to generate the representations in different places.

	If documentation duplicates what you say in the code, use a document
generator that generates the docs from your code comments.

	Try and generate header files and interface declarations
automatically.

	No junk, No confusion. Data structures should be designed to fit
one representation of data well. Don’t make it so generic. Try to
also make data structure represent the real thing you are trying to
model.

	This is an often-overlooked strength of the Unix tradition. Many of
its most effective tools are thin wrappers around a direct
translation of some single powerful algorithm.

	Doug McIlroy: By virtue of a mathematical model and a solid
algorithm, Unix diff contrasts markedly with its imitators. First,
the central engine is solid, small, and has never needed one line of
maintenance. Second, the results are clear and consistent, unmarred
by surprises where heuristics fail.

	Other examples, are grep which is a thin wrapper around a formal
algebra of regexs. yacc is based on LR-1 grammars at its core.

	The opposite of a formal approach is using heuristics—rules of thumb
leading toward a solution that is probabilistically, but not
certainly, correct.

	Sometimes, can’t avoid designing using heuristics. Mail spam
filtering uses heuristics since there really isn’t a mathematical
model describing spam.

	Virtual memory management is also built on heuristics.

	”...constraint has encouraged not only economy, but also a certain
elegance of design”. That simplicity came from trying to think not
about how much a language or operating system could do, but of how
little it could do — not by carrying assumptions but by starting from
zero (what in Zen is called “beginner’s mind” or “empty mind”).

Software Is a Many-Layered Thing

	Can approach from bottom up or top-down. Bottom up is like
seeking to physical block, writing to physical block, turn
on/off LED. Top-down is more like write to logical block, or
toggle activity indicator. Top-down is more generic and can apply
to different hardware.

	A very concrete way to think about this difference is to ask whether
the design is organized around its main event loop (which tends to
have the high-level application logic close to it) or around a
service library of all the operations that the main loop can invoke.

	In the example of web browser, top-down approach focuses on what user
will input in the URL (e.g. file, http, ftp, etc.). Bottom up
will focus on establishing network connections or handling GUI.

	Which end of the stack you start with matters a lot, because the
layer at the other end is quite likely to be constrained by your
initial choices.

	From top-down you might feel constrained about some domains your
application logic initially did not plan for. For bottom-up, you
might be designing unnecessary functions that you might never use.

	Usually programmers are encouraged top-down approach. But the problem
sometimes designing that way will involve some redesign since it
doesn’t pass real-world checks.

	In self-defense against this, programmers try to do both things —
express the abstract specification as top-down application logic, and
capture a lot of low-level domain primitives in functions or
libraries, so they can be reused when the high-level design changes.

	Unix programmers, are more focused on systems programming. Thus, they
write low-level wrappers for hardware operations and build from that.
Thus, they are more bottom-up.

	Bottom-up can give you time to redefine what the application is going
to be. So you can start with the building blocks first without really
knowing what the actual design on the application will be.

	Real code, therefore tends to be programmed both top-down and
bottom-up. Often, top-down and bottom-up code will be part of the
same project. That’s where ‘glue’ enters the picture.

Glue

	One of the lessons Unix programmers have learned over decades is that
glue is nasty stuff and that it is vitally important to keep glue
layers as thin as possible. Glue should stick things together, but
should not be used to hide cracks and unevenness in the layers.

	The thin-glue principle can be viewed as a refinement of the Rule of
Separation. Policy (the application logic) should be cleanly
separated from mechanism (the domain primitives), but if there is a
lot of code that is neither policy nor mechanism, chances are that it
is accomplishing very little besides adding global complexity to the
system.

	C is an example of a very good thin glue. Designed for the classic
architecture. Basically, a typical computer architecture: unary
representation, flat address space, a distinction between memory and
working store (registers), general-purpose registers, address
resolution to fixed-length bytes, two-address instructions,
big-endianness, and data types a consistent set with sizes a
multiple of 4 bits.

	C was designed to run on architectures similar to PDP-11 (which it
was developed on). PDP-11 arch became a good model for future
microprocessor architectures. Thus, C was a natural fit in future
microprocessors.

	This history is worth recalling and understanding because C shows us
how powerful a clean, minimalist design can be. If Thompson and
Ritchie had been less wise, they would have designed a language that
did much more, relied on stronger assumptions, never ported
satisfactorily off its original hardware platform, and withered away
as the world changed out from under it.

	Antoine de Saint-Exupéry once put it, writing about the design of
airplanes: La perfection est atteinte non quand il ne reste rien à
ajouter, mais quand il ne reste rien à enlever. (“Perfection is
attained not when there is nothing more to add, but when there is
nothing more to remove”.)

Libraries

	If you are careful and clever about design, it is often possible to
partition a program so that it consists of a user-interface-handling
main section (policy) and a collection of service routines
(mechanism) with effectively no glue at all. Effectively, these are
libraries.

	An important form of library layering is the plugin, a library with a
set of known entry points that is dynamically loaded after startup
time to perform a specialized task. For plugins to work, the calling
program has to be organized largely as a documented service library
that the plugin can call back into.

Unix and Object-Oriented Languages

	In object-oriented programming, the functions that act on a
particular data structure are encapsulated with the data in an object
that can be treated as a unit. By contrast, modules in non-OO
languages make the association between data and the functions that
act on it rather accidental, and modules frequently leak data or bits
of their internals into each other.

	The OO design concept initially proved valuable in the design of
graphics systems, graphical user interfaces, and certain kinds of
simulation. To the surprise and gradual disillusionment of many, it
has proven difficult to demonstrate significant benefits of OO
outside those areas. It’s worth trying to understand why.

	Unix programmers don’t really like OO since it encourages
abstractions and thick glue layers. Since it is easy to create
abstractions, it is everywhere. Unix programmers like the thin glue
layer C provides.

Coding for Modularity

	A good test for API complexity is: Try to describe it to another
programmer over the phone. If you fail, it is very probably too
complex, and poorly designed.

	Do any of your APIs have more than seven entry points? Do any of your
classes have more than seven methods each? Do your data structures
have more than seven members?

	Globals also mean your code cannot be reentrant; that is, multiple
instances in the same process are likely to step on each other.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Study

 	The Art of Unix Programming

Chapter 5: Textuality

Contents

	Chapter 5: Textuality
	The Pros and Cons of File Compression

	Application Protocol Design

It’s a well-known fact that computing devices such as the abacus were
invented thousands of years ago. But it’s not well known that the first
use of a common computer protocol occurred in the Old Testament. This,
of course, was when Moses aborted the Egyptians’ process with a
control-sea.

– Tom Galloway rec.arts.comics, February 1992

	Good Protocols Make Good Practice

	Two different designs in Unix are closely related. Both involve
serialization of in-memory data structures.
	Design of file formats for storing application data.

	And design of application protocols for passing data between
programs and network.

	For transmission and storage, the traversable, quasi-spatial layout
of data structures like linked lists needs to be flattened or
serialized into a byte-stream representation from which the structure
can later be recovered.

	Interoperability, transparency, extensibility, and storage or
transaction economy: these are the important themes in designing file
formats and application protocols. Note that these are in order of
most important to least important.
	For interoperability and transparency it is important to have clear
and clean data representations rather than thinking of what is best
for performance.

	Extensibility is suitable for text formats since they can be
extended very easily.

	Storage or transtion economy often pushes the opposite direction
but it is not wise to put this of importance first.

	Pipes and sockets will pass binary data as well as text. However, it
is always better to use textual data because they are easy for humans
to read and write.

	Some programmers are concerned about performance and size. Thus, they
design binary formats. But implementing compression below or above
the application protocol will probably result in a better, faster
design since text compresses very well.

	Textual protocol future proofs your system. IPv4 allowed only for
32-bits to an address, changing to 128-bits took a long time and a
lot of effort.

	Sometimes binary protocol should be used. For example, to get the
most bit-density out of your data (e.g. multimedia) or very concerned
about speed (e.g. network protocols with hard latency requirements).

	SMTP and HTTP are text protocols but are very bandwidth intensive.
The smallest X-server request is 4 bytes, while the smallest HTTP
request is 100 bytes. Thus, X requests can be executed in about 100
instructions while Apache can take around 7000 instructions to
process an HTTP request.
	Problem eventually showed up in X, where it was very difficult to
extend it.

	For the Unix passwd file, there isn’t really much saving you can do
with a binary file format. Colon ‘:’ separators are quite small,
binary equivalent would not be much smaller.
	Also need to understand the application of the passwd file. Its not
read often and not really modified that often either (relatively
speaking in terms of other admin operations).

	In the case of PNG format, it is a losless graphics format and using
text to store data would cause significant problems in transaction
economy (long download times for large files). However, transparency
was sacrificed.
	Very thoughtful design with interoperability in mind.

	PNG specifies byte orders, integer word lengths, endianness, and
(lack of) padding between fields.

	A PNG file consists of a sequence of chunks, each in a
self-describing format beginning with the chunk type name and the
chunk length. Because of this organization, PNG does not need a
release number. New chunk types can be added at any time; the case
of the first letter in the chunk type name informs PNG-using
software whether or not each chunk can be safely ignored.

	Also designed to easily detect file corruption.

	In Unix, there are already established textual format designs that
should be used since libraries are already written to parse them.
Also, users probably recognize them already. Examples are DSV
(Delimiter Separated Values). On the other hand, CSV (Comma
Separated Values) are not really used in Unix.
	CSV has a lot more complicated parser since if comma is found in a
record, the whole record needs to be escaped with quotes. And if the
record has quotes already, need to escape with more quotes.

	In DSV, only need to escape ‘:’ with a backslash. And backslashes
are escaped by another backslash.

	RFC 822 is a textual format for Internet electronic messages. It
allows for attachments using MIME (Multipurpose Internet Media
Extension).
	Record attributes are stored one per line. Thus, new records are
easily added (we can see this with mail headers).

	Used by HTTP 1.1 (and later).

	One weakness is when putting more than one RFC 822 message in a
file (e.g. Mailbox). Hard to distinguish where one starts and the
other message ends.

	XML syntax resembles HTML. It is basically a low-level syntax. Needs
document type definition (DTDs) such as XHTML to give it semantics.
	Suited for complex data formats but overkill for small ones.

	Useful for complex nested/recursive structure for which RFC 822 is
not useful at all.

	Down side is it can get bulky. Hard to see real data in between all
the syntax. Traditional Unix tools don’t play well with it so you
need external and complex parsers.

	Windows INI format is useful for two-level data organization. A
section header and related records under that. If all you need is a
simple key-value pair, it is better to use DSV.

	When designing a format, include version or include the data in
self-describing independent chunks.

	Conversion of floating-point numbers from binary to text format and
back can lose precision, depending on the quality of the conversion
library you are using. Sometimes you have to dump the floating point
field as raw binary.

The Pros and Cons of File Compression

	Many modern Unix projects (OpenOffice, AbiWord) use XML compressed
with zip or gzip as the data file format.
	When compressing whole file, the compression tool can look at whole
file for repetitive data to compress. Thus, in some cases, results
in smaller file than binary data format (e.g. Microsoft Word’s
native format).

	Can also change compression method in future, since it is not tied
to XML.

	Compression can limit data transparency. Some Unix tools such as file
can’t see past the compression header (as of 2003). And other tools
might require you to uncompress data before you can, for example,
grep through it (can use zgrep today I guess).
	Can probably use straight up gzip compressed XML data without
self-identifying structure or header provided by zip.

	Idea is to think of tradeoffs from the beginning of the design on the
program.

Application Protocol Design

	All the good reasons for being textual apply to application-specific
protocols as well.

	When your application protocol is textual and easily parsed by
eyeball, many good things become easier. Transaction dumps become
much easier to interpret. Test loads become easier to write.

	In the case of SMTP, command requests are simple <command>
<arguments> format. While responses are <status code> <message>.
It is easy to debug. SMTP is a push protocol where requests are
initiated by the client.

	POP3 is a pull protocol with transactions initiated by the mail
receiver. POP3 is also textual and line oriented. Similar to SMTP in
request/response formats. POP3, however, uses status tokens instead
of status codes like SMTP.

	IMAP is similar as well. However, instead of ending payload with a
dot, it sends back the length in bytes first. It makes it easier on
client so client knows how much buffer to allocate.

	IMAP also adds a sequence number to each request. Thus, requests
can be sent to server in bulk at once.

	Most applications nowadays layer their special purpose protocols on
top of HTTP. HTTP has become a universal application protocol.

	Can use existing HTTP methods GET (fetch resource), PUT (modify/create
resource), and POST (ship data to a form or backend process).

	Has a RFC 822/MIME message format. Thus, can contain arbitrary
messages in them.

	Also has support for authentication and extensible headers.

	Application can tunnel through native HTTP port 80 instead of a
custom TCP/IP port which may need to be opened up in the firewall.
	However, it is not good practice to use same port, especially if
the application is serving data quite different from normal HTTP.

	Thus, with a separate port, you can also easily distinguish the
traffic and maybe filter it out if necessary.

	Also note that if different port is used, a new URL scheme needs
to be registered (e.g. git://).

	However, there is definitely a risk. When the webserver and plugins
become more complicated, cracks in the code can have large security
implications.

	RFC 3205 Use of of HTTP as a Substrate [http://tools.ietf.org/html/rfc3205] has good advice for
using HTTP as under layer of an application protocol.
	Be careful when re-using HTTP status codes. For example, a 200
error your application returns means success in HTTP. Thus, a
proxy caching responses will send that response back to other
requests. Similarly with 500 error, the proxy might respond and
add a helpful message but the 500 error means something else to
your application.

	If the different codes needs to be returned, they should not be
returned in the standard HTTP headers but in the body of the
message.

	A layered application which cannot operate in the presence of
intermediaries or proxies that cache and/or alter error
responses, should not use HTTP as a substrate.

	IPP (Internet Printing Protocol) is used to control
network-accessible printers.

	Uses HTTP 1.1 as a transport layer. All IPP requests are passed via
an HTTP POST method call. Responses are ordinary HTTP responses.

	HTTP 1.1 allows persistent connections that make a multi-message
protocol more efficient. Thus you can chunk the files without
having to pre-scan the files to determine length of request. Note
that in this case, Transfer-Encoding header is used instead of
Content-Lenght. Thus, keep sending requests as the process scans the files.

	Also, using HTTP redirection (301 Code), the server can tell client
to redirect the submission of the job to another printer server
sine this is not available.

	Can run over TLS/SSL to encrypt messages.

	Most network aware printers already embed a web server do display
status to users. Thus, natural to use HTTP to also control printer.

	The only drawback in that the protocol is completely driven by
client requests. No way to really ship asynchronous alerts from
printers back to client (can use AJAX nowadays to do polling).

	Note that IPP uses HTTP as underlying protocol but uses different
port (631) for security reasons.

	XML-RPC, SOAP, and Jabber all use XML with MIME to structure requests
and payloads.

	XML-RPC is simple and extensible. However, currently being
replaced by JSON.

	SOAP is more heavy weight and includes arrays and C-like structs.
Considered bloated by many.

	Jabber is a peer-to-peer protocol that support instant messaging
and presence. Passes around XML forms and live documents.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Study

 	The Art of Unix Programming

Chapter 6: Transparency

Contents

	Chapter 6: Transparency

	Elegant code is not only correct but visibly, transparently correct.
It does not merely communicate an algorithm to a computer, but also
conveys insight and assurance to the mind of a human that reads it.

	Emacs Lisp libraries are discoverable but not transparent. Which
means it is easy to modify a certain part but difficult to comprehend
whole system. Linux kernel on the otherhand is very transparent but
not easily discoverable since it is easy to understand its
organization but hard to modify a certain piece of the code.

	“Discoverability is about reducing barriers to entry; transparency
is about reducing the cost of living in the code”.

	fetchmail -v outputs detailed protocol exhanges (IMAP, SMTP, or
POP3). And thus makes this discoverable.

	GCC is transparent.
	GCC is organized as a sequence of processing stages knit together
by a driver program. The stages are: preprocessor, parser, code
generator, assembler, and linker.

	The first three stages are all textual and thus easy to debug.

	Transparency in UI code is when the UI does not hide too much from
the user. For example, kmail shows the SMTP transactions in its
status bar. Thus, can easily be debugged if there are problems or
failures. It is not loud thus does not bother simple users.

	Terminfo uses the file system itself as a simple hierarchical
database. This is a superb bit of constructive laziness, obeying the
Rule of Economy and the Rule of Transparency. It means that all the
ordinary tools for navigating, examining and modifying the file
system can be used to navigate, examine, and modify the terminfo
database;

	If you want transparent code, the most effective route is simply not
to layer too much abstraction over what you are manipulating with the
code.

	Static depth of a procedural-call hierarchy should really not be more
than four i.e. to accomplish a certain procedure if the function you
call is more than four deep, might need to re-think the design.

	If there is a single global structure that reflects system state,
make sure it is easily explorable.

	For the reasons stated above, client authentication is rarely used
with TLS. A common technique is to use TLS to authenticate the
server to the client and to establish a private channel, and for the
client to authenticate to the server using some other means - for
example, a username and password using HTTP basic or digest
authentication.

	Some programs such as sng take a non-transparent format png and
convert it back and forth to a transparent one. This is very
important in debugging.
	With sng, for example, you can convert png to text, run some
scripts through it to add annotations and then convert it back.

	If the binary object is dynamically generated or very large, then it
may not be practical or possible to capture all the state with a
textualizer. In that case, the equivalent task is to write a browser.
This is used for visualizing databases.

	Unix programmers learn a tendency to scrap and rebuild rather than
patching grubby code.

	One very important practice is an application of the Rule of Clarity:
choosing simple algorithms. In Chapter 1 we quoted Ken Thompson:
When in doubt, use brute force.

	It is also important to include hacker guides. Helpful docs on
helping discoverablity of the code.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Study

 	The Art of Unix Programming

Chapter 7: Multiprogramming

Contents

	Chapter 7: Multiprogramming
	Taxonomy of Unix IPC Methods

	Problems and Methods to Avoid

	Process Partitioning at the Design Level

	The most characteristic program-modularization technique of Unix is
splitting large programs into multiple cooperating processes. This
has usually been called multiprocessing in the Unix world, but in
this book we revive the older term multiprogramming to avoid
confusion with multiprocessor hardware implementations.

	The Unix operating system encourages us to break our programs into
simpler subprocesses, and to concentrate on the interfaces between
these subprocesses. It does this in at least three fundamental ways:
	by making process-spawning cheap;

	by providing methods (shellouts, I/O redirection, pipes,
message-passing, and sockets) that make it relatively easy for
processes to communicate;

	by encouraging the use of simple, transparent, textual data
formats that can be passed through pipes and sockets.

	While the benefit of breaking programs up into cooperating processes
is a reduction in global complexity, the cost is that we have to pay
more attention to the design of the protocols which are used to pass
information and commands between processes. (In software systems of
all kinds, bugs collect at interfaces.)

	It is also important to have a state-machine design that is
effectively deadlock free.

	A closely related red herring is threads (that is, multiple
concurrent processes sharing the same memory-address space).
Threading is a performance hack.
	The advice of this book is to not use threads until absolutely
necessary.

	Since processes are very cheap to spawn, use those.

	Another important reason for breaking up programs into cooperating
processes is for better security. Under Unix, programs that must be
run by ordinary users, but must have write access to
security-critical system resources, get that access through a feature
called the setuid bit.
	A setuid program runs not with the privileges of the user calling
it, but with the privileges of the owner of the executable. This
feature can be used to give restricted, program-controlled access
to things like the password file that nonadministrators should not
be allowed to modify directly.

Taxonomy of Unix IPC Methods

system and popen

	Simplest form is to spawn another program using the system(3)
command. This inherits user’s keyboard and display and runs to
completion.
	In this case, calling program does not communicate with the called
program.

	The classic example is shelling out an editor from within a mail or
news program.

	For more complicated cases where the called programs needs to
accept input and share output is to use popen.

	mutt uses the EDITOR environment variable when
composing/replying to messages. It creates a temporary file in the
filesystem and spawns the editor to use this file. It then reads
this file when it sends out the mail. Thus, it uses the filesystem
to communicate with its called program.

	Can use EDITOR=emacsclient, this is a proxy application that
creates a new buffer in an already open emacs session.

Pipes, Redirection, and Filters

	Doug McIlroy invented the pipe and the construct was very
important through the design of Unix and its philosophy of do one
thing and do it well.
	This also inspired later forms of IPC (especially, socket
abstraction used for networking).

	Pipes depend on the convention that every program has initially
available to it (at least) two I/O data streams: standard input and
standard output (numeric file descriptors 0 and 1 respectively). Many
programs can be written as filters, which read sequentially from
standard input and write only to standard output.

	Normally these streams are connected to the user’s keyboard and
display, respectively. But Unix shells universally support
redirection operations (<, >) which connect these standard input and output
streams to files.

	It’s important to note that all the stages in a pipeline run
concurrently. Each stage waits for input on the output of the
previous one, but no stage has to exit before the next can run. This
property will be important later on when we look at interactive uses
of pipelines, like sending the lengthy output of a command to more(1).
	Or when running bc | espeak.

	The major weakness of pipes is that they are unidirectional. It’s not
possible for a pipeline component to pass control information back up
the pipe other than by terminating (in which case the previous stage
will get a SIGPIPE signal on the next write). Accordingly, the
protocol for passing data is simply the receiver’s input format.

	There can be named pipes, where a file is opened between the two
programs (one for reading and the other for writing). Largely
displaced by sockets.

	Code bloat can be avoided, for example, since utilities can use a
more or less pagers instead of implementing their own pagers.

Slave Processes

	Master uses popen to spawn and communicate with slave process.

	Example is scp(1) calls ssh(1) as a slave process. intercepting
enough information from ssh’s output to format report as ASCII
progress bar.

Peer-to-Peer Inter-Process Communication

The previous sections depicted a hierarchy of communication where one
program controls the other.

Tempfiles

	Useful for simple one-off programs and simple shellscript or
wrappers. Shellout to an editor is best example.

	Drawback is it leaves garbage behind that needs to be cleaned up if
process is interrupted before tempfile can be deleted.

	Other problem is non unique filenames. Most shell scripts use $$
which expands to PID of process in the filename (Linux kernel wraps
around and re-uses old PIDs if it reaches max of 32768
/proc/sys/kernel/pid_max).

	There is also security risk if the tempfile name is easily predicted
or known/visible attacker can modify file while process is running
and thus inject own input back into program.

Signals

	Simplest and crudest way for two processes to communicate with each
other.
	Signal handler is executed asynchronously when the signal is
received.

	Not really designed as an IPC but more of a way for OS to notify
programs of certail errors and events.
	The SIGHUP signal, for example, is sent to every program started
from a given terminal session when that session is terminated. This
is why nohup is used to spawn a program (ignores SIGHUP) and
keeps running in background.

	The SIGINT signal is sent to whatever process is currently attached
to the keyboard when the user enters the currently-defined
interrupt character (often control-C).

	SIGUSR1 and SIGUSR2 are part of POSIX standard used for some
IPC situation. A way for operator or another program to tell a
daemon that it needs to either reinitialize itself, wake up to do
work, or write internal-state/debugging information to a known
location.

	Technique used with signals is pidfile. Programs that will need to
be signaled will write their PID to a file in a known location
(/var/run for example).
	Other programs can read that file to discover that PID. The pidfile
may also function as an implicit lock file in cases where no more
than one instance of the daemon should be running simultaneously.

	SIGTERM (‘terminate’) is often accepted as a graceful-shutdown signal
(this is as distinct from SIGKILL, which does an immediate process
kill and cannot be blocked or handled). SIGTERM actions often involve
cleaning up tempfiles, flushing final updates out to databases, and
the like.

Sockets

	Developed in BSD as a way to encapsulate access to data networks.

	Two programs communicating over a socket see a bi-directional byte
stream.

	Byte streams are sequenced (single bytes will be received in the same
order they were sent).

	Byte streams are reliable (socket users are guaranteed that the
underlying network will do error detection and retry to ensure
delivery).

	Socket descriptors once obtained, behave essentially like file
descriptors.

	Ken Arnold: Sockets differ from read/write in one important case.
If the bytes you send arrive, but the receiving machine fails to ACK,
the sending machine’s TCP/IP stack will time out. So getting an error
does not necessarily mean that the bytes didn’t arrive; the receiver
may be using them. This problem has profound consequences for the
design of reliable protocols, because you have to be able to work
properly when you don’t know what was received in the past. Local I/O
is ‘yes/no’. Socket I/O is ‘yes/no/maybe’. And nothing can ensure
delivery — the remote machine might have been destroyed by a comet.

	At the time a socket is created, you specify a protocol family which
tells the network layer how the name of the socket is interpreted.
	AF_INET family in which addresses are interpreted as host-address
and service-number pairs.

	AF_UNIX (aka AF_LOCAL) protocol family supports the same socket
abstraction for communication between two processes on the same
machine (names are interpreted as the locations of special files
analogous to bidirectional named pipes). As an example, client
programs and servers using the X windowing system typically use
AF_LOCAL sockets to communicate.

	To use sockets gracefully, in the Unix tradition, start by designing
an application protocol for use between them — a set of requests and
responses which expresses the semantics of what your programs will be
communicating about in a succinct way.

	For example in PostgresSQL: Because the front end and back end are
separate, the server doesn’t need to know anything except how to
interpret SQL requests from a client and send SQL reports back to it.
The clients, on the other hand, don’t need to know anything about how
the database is stored. Clients can be specialized for different
needs and have different user interfaces.

	Sockets inherently separates the address space of processes and
implicitly defines a client/server or peer-to-peer model of
communication.

Shared Memory

	If your communicating processes can get access to the same physical
memory, shared memory will be the fastest way to pass information
between them.

	Typically use mmap to map files into memory that can be shared
between processes. Or can use POSIX shm_open API to create a file
that can be shared. Basically, tells OS not to flush the pseudofile
data to disk.

	Because access to shared memory is not automatically serialized by a
discipline resembling read and write calls, programs doing the
sharing must handle contention and deadlock issues themselves,
typically by using semaphore variables located in the shared segment.

	X uses shared memory for performance gains to pass large images
between client and server.

Problems and Methods to Avoid

Obsolete Unix IPC Methods

	System V had IPC facilities in the form of message passing
(msgctl(2)). This is still available in Linux.

	Despite occasional exceptions such as NFS (Network File System) and
the GNOME project, attempts to import CORBA, ASN.1, and other forms
of remote-procedure-call interface have largely failed — these
technologies have not been naturalized into the Unix culture.
	Hard to query the interfaces for their capabilities.

	Difficult to monitor them in action without building special tools.

	Examples of bad designs outside Unix is COM/DCOM on Windows.

	Unix tradition, on the other hand, strongly favors transparent and
discoverable interfaces.

	Today, RPC and the Unix attachment to text streams are converging in
an interesting way, through protocols like XML-RPC and SOAP.

Threads — Threat or Menace?

	Though Unix developers have long been comfortable with computation by
multiple cooperating processes, they do not have a native tradition
of using threads (processes that share their entire address spaces).

	From a complexity-control point of view, threads are a bad substitute
for lightweight processes with their own address spaces; the idea of
threads is native to operating systems with expensive
process-spawning and weak IPC facilities.

	Threads are a fertile source of bugs because they can too easily know
too much about each others’ internal states.

	There is no automatic encapsulation, as there would be between
processes with separate address spaces that must do explicit IPC to
communicate.

	While threading can get rid of some of the overhead of rapidly
switching process contexts, locking shared data structures so threads
won’t step on each other can be just as expensive.

	Jim Gettys (Author of X): The X server, able to execute literally
millions of ops/second, is not threaded; it uses a poll/select loop.
Various efforts to make a multithreaded implementation have come to
no good result. The costs of locking and unlocking get too high for
something as performance-sensitive as graphics servers.

	The upshot is that you cannot count on threaded programs to be portable.
	Each OS has different implementations.

Process Partitioning at the Design Level

	The first thing to notice is that tempfiles, the more interactive
sort of master/slave process relationship, sockets, RPC, and all
other methods of bidirectional IPC are at some level equivalent —
they’re all just ways for programs to exchange data during their
lifetimes.

	We’ve seen from the PostgreSQL study that one effective way to hold
down complexity is to break an application into a client/server pair.
The PostgreSQL client and server communicate through an application
protocol over sockets, but very little about the design pattern would
change if they used any other bidirectional IPC method.

	If you can use limited shared memory and semaphores, asynchronous
I/O using SIGIO, or poll(2)/select(2) rather than threading, do it
that way. Keep it simple; use techniques earlier on this list and
lower on the complexity scale in preference to later ones.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Study

Python

Contents

	Python
	Common Questions
	Difference between class A(object): and class A:

	How are arguments passed - by reference or by value?

	Sum/multiply all the elements in a list

	Difference between tuples and list

	What are decorators and what is their usage?

	Common Mistakes
	Misusing expressions as defaults for function arguments

Common Questions

Difference between class A(object): and class A:

Subclassing object yields a new-style class (in Python 3, class A:
defaults to new style). Some differences:

	Method Resolution Order (MRO) defined by __mro__ attribute of
class, defines how inheritance hierarchies are walked. Before, it was
depth first. Now, it is more sane and is based on __mro__.

	The __new__ constructor is added. This allows class to act as
factory method, rather than return new instance of class. Useful for
returning particular subclasses, or reusing immutable objects rather
than creating new ones without having to change the creation
interface.

	Descriptors. These are the feature behind such things as properties,
classmethods, staticmethods etc. Essentially, they provide a way to
control what happens when you access or set a particular attribute on
a (new style) class.

class D(object):
 pass

class E:
 pass

dir(D)
['__class__', '__delattr__', '__dict__', '__doc__', '__format__', '__getattribute__', '__hash__', '__init__', '__module__' , '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', '__wea kref__']

dir(E)
['__doc__', '__module__']

How are arguments passed - by reference or by value?

It is actually call by object, call by sharing, or call by object
reference, so the answer is neither.

In Python, everything is an object and all variables hold references to
objects. So what’s being passed are objects (references) and can only be
changed if they are mutable (lists and dicts). Note that numbers,
strings, and tuples are immutable.

Sum/multiply all the elements in a list

basic
s = 0
for x in range(10):
 s += x

the right way
s = sum(range(10))

basic
s = 1
for x in range(1, 10):
 s *= x

the other way
from operator import mul
s = reduce(mul, range(1,10))

This brings up the discussion of functional programming concepts in
python. These functions can be used in conjunction with lambda instead
of longer for loops.

map(function, seq)

Takes a function and applies it to each item in the sequence. The
resulting object is an iterable object. Thus, apply list() to the map
object to get a list output. Or loop through it.

a = map(lambda x: x*2, range(0,10))
for i in a:
 print(i)

filter(function, seq)

Filter extracts elements in the sequence that return True. Note that
function can be None, and thus it will return items that are True.

a = filter(lambda x: x > 1, range(0,10))
list(a)

reduce(function, seq)

Reduce applies a function of two arguments, cumulatively to the items
of a sequence. It returns one value back (the cumulative value).

from functools import reduce
a = reduce(lambda x, y: x * y, [1,2,3,4])
a == 24 # True

Note that that function takes two arguments. The sequence of operations
goes as follows (((1*2) * 3) * 4).

Difference between tuples and list

Lists are mutable while tuples are not. More importantly, tuples can be
hashed (used as keys for dictionaries). Tuples are used if order of
elements in a sequence matters (e.g. coordinates, points of a path,
etc).

t = ((1,'a'), (2,'b'))
dict(t)
OUT: {1: 'a', 2: 'b'}

dict((y,x) for x,y in t)
OUT: {'b': 2, 'a': 1}

{y:x for x,y in t}
OUT: {'b': 2, 'a': 1}

What are decorators and what is their usage?

Decorators allow you to inject or modify code in functions or clases.
Basically, a wrapper to an existing function. Thus, allows you to
execute a code before or after the original code. For example, logging a
function.

from __future__ import print_function

def log(fn):
 def wrapper(*args, **kw):
 res = fn(*args, **kw)
 print("%s(%r) -> %s" % (fn.__name__, args, res))
 return res
 return wrapper

@log
def ispal(word):
 if len(word) < 2:
 return True
 return (word[0] == word[-1]) & ispal(word[1:-1])

ispal("test")
ispal("kayak")

Common Mistakes

Misusing expressions as defaults for function arguments

def foo(bar=[]):
 bar.append("paz")
 return bar

	Expect to return paz everytime foo() is called. But this is not
the case.

	After calling foo() three times, you will get [“baz”, “baz”, “baz”]

	This is because, the the default value for a function argument is
only evaluated once, at the time that the function is defined.

	To get around it:

def foo(bar=None):
 if bar == None:
 bar = []
 bar.append("paz")
 return bar

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	notes 1.0 documentation

 	Study

Project Management

Contents

	Project Management
	Agile
	Predictive vs Adaptive
	The Unpredictability of Requirements

	Controlling an Unpredictable Process - Iterations

	The Adaptive Customer

	Putting People First
	Plug-Compatible Programming Units

	Programmers are Responsible Professionals

	Managing a People Oriented Process

	The Difficulty of Measurement

	The Role of Business Leadership

	The Self-Adaptive Process

	Flavors of Agile Development
	Agile Manifesto

	XP (Extreme Programming)

	Scrum

	Crystal

	Should you go agile?

	Others
	User Stories

	Burndown Charts

	Agile Fluency

	Managing Deadlines
	Dealing with missed deadlines

	Estimates/Deadlines

	Adding People

Agile

Notes from: http://martinfowler.com/articles/newMethodology.html

	Agile is a compromise between no process and too much process,
providing just enough process to gain a reasonable payoff.

	Agile methods are adaptive rather than predictive. Engineering
methods tend to try to plan out a large part of the software process
in great detail for a long span of time, this works well until things
change. So their nature is to resist change. The agile methods,
however, welcome change. They try to be processes that adapt and
thrive on change, even to the point of changing themselves.

	Agile methods are people-oriented rather than process-oriented. The
goal of engineering methods is to define a process that will work
well whoever happens to be using it. Agile methods assert that no
process will ever make up the skill of the development team, so the
role of a process is to support the development team in their work.

Predictive vs Adaptive

	The usual inspiration for methodologies comes from engineering disciplines
such as civil or mechanical engineering. Such disciplines put a lot
of emphasis on planning before you build.

	So what we see here are two fundamentally different activities.
Design which is difficult to predict and requires expensive and
creative people, and construction which is easier to predict. Once we
have the design, we can plan the construction.

	So the approach for software engineering methodologies looks like
this: we want a predictable schedule that can use people with lower
skills. To do this we must separate design from construction.

	This is where design notations such as UML come into play. If we can
make all the significant decisions using the UML, we can build a
construction plan and then hand these designs off to coders as a
construction activity.

	For Engineering designs, mathematical analysis can show if a design
will work. However, for UML it is only through peer-review that
design can be checked.

	For a bridge, cost of design is only about 10% of job, rest is
construction. For code it is the opposite, apparently only 15% of
project is code and unit tests.

	Thus, source code is the design document and construction is the
compiler/linker. Thus, the construction phase is cheap and and should
be automated.

	Conclusions:
	In software: construction is so cheap as to be free

	In software all the effort is design, and thus requires creative
and talented people (source code)

	Creative processes are not easily planned, and so predictability
may well be an impossible target.

	We should be very wary of the traditional engineering metaphor for
building software. It’s a different kind of activity and requires a
different process.

The Unpredictability of Requirements

	Developers shouldn’t be surprised that the requirements are always
changing. This is the norm in software.

	One problem with this is that just trying to understand the options
for requirements is tough.

	Estimation is hard for many reasons. Part of it is that software
development is a design activity, and thus hard to plan and cost.
Part of it is that the basic materials keep changing rapidly. Part of
it is that so much depends on which individual people are involved,
and individuals are hard to predict and quantify.

	It’s very difficult to see what value a software feature has until
you use it for real. Only when you use an early version of some
software do you really begin to understand what features are valuable
and what parts are not.

	In today’s economy the fundamental business forces are changing the
value of software features too rapidly.

	Predictability is not impossible. NASA’s space shuttle software group
are prime example of predictability. But they have huge resources,
lots of time, and very stable requirements. But most software
projects are not similar to this.

	However letting go of predictability doesn’t mean you have to revert
to uncontrollable chaos. Instead you need a process that can give you
control over an unpredictability. That’s what adaptivity is all
about.

Controlling an Unpredictable Process - Iterations

	To get some form of predictability, we need an accurate way of
knowing where we are at this point. This is where feedback mechanisms
and feedback loops come into play. We need to learn about ourselves
(the software, team, etc).

	This is what iterative development is all about.

	The key to iterative development is to frequently produce working
versions of the final system that have a subset of the required
features. These working systems are short on functionality, but
should otherwise be faithful to the demands of the final system. They
should be fully integrated and as carefully tested as a final
delivery.

	The point of this is that there is nothing like a tested, integrated
system for bringing a forceful dose of reality into any project.
Documents can hide all sorts of flaws. Untested code can hide plenty
of flaws. But when people actually sit in front of a system and work
with it, then flaws become truly apparent: both in terms of bugs and
in terms of misunderstood requirements.

	Iterative development makes sense in predictable processes as well.
But it is essential in adaptive processes because an adaptive process
needs to be able to deal with changes in required features.

	This leads to a style of planning where long term plans are very
fluid, and the only stable plans are short term plans that are made
for a single iteration. Iterative development gives you a firm
foundation in each iteration that you can base your later plans
around.

	A key question for this is how long an iteration should be. Different
people give different answers. XP suggests iterations of one or two
weeks. SCRUM suggests a length of a month. Crystal may stretch
further. The tendency, however, is to make each iteration as short as
you can get away with. This provides more frequent feedback, so you
know where you are more often.

The Adaptive Customer

	This kind of adaptive process requires a different kind of
relationship with a customer than the ones that are often considered.

	A fixed price contract requires stable requirements and hence a
predictive process. Adaptive processes and unstable requirements
imply you cannot work with the usual notion of fixed-price.

	After all the customer wouldn’t be wanting some software unless their
business needed it. If they don’t get it their business suffers. So
even if they pay the development company nothing, they still lose.
Indeed they lose more than they would pay for the software (why would
they pay for the software if the business value of that software were
less?)

	This doesn’t mean that you can’t fix a budget for software up-front.
What it does mean is that you cannot fix time, price and scope. The
usual agile approach is to fix time and price, and to allow the scope
to vary in a controlled manner.

	In an adaptive process the customer has much finer-grained control
over the software development process. At every iteration they get
both to check progress and to alter the direction of the software
development. This leads to much closer relationship with the software
developers, a true business partnership.

	All this yields a number of advantages for the customer. For a start
they get much more responsive software development. A usable,
although minimal, system can go into production early on. The
customer can then change its capabilities according to changes in the
business, and also from learning from how the system is used in
reality.

	Every bit as important as this is greater visibility into the true
state of the project.

	If bad news is lurking it tends to come earlier, when there is still
time to do something about it. Indeed this risk control is a key
advantage of iterative development.

	Mary Poppendieck summed up this difference in viewpoint best for me
with her phrase “A late change in requirements is a competitive
advantage”. Often the most valuable features aren’t at all obvious
until customer have had a chance to play with the software. Agile
methods seek to take advantage of this, encouraging business people
to learn about their needs as the system gets built, and to build the
system in such a way that changes can be incorporated quickly.

	All this has an important bearing what constitutes a successful
project. A predictive project is often measured by how well it met
its plan. A project that’s on-time and on-cost is considered to be a
success.

	This measurement is nonsense to an agile environment. For agilists
the question is business value - did the customer get software that’s
more valuable to them than the cost put into it.

	A good predictive project will go according to plan, a good agile
project will build something different and better than the original
plan foresaw.

Putting People First

	Executing an adaptive process is not easy. In particular it requires
a very effective team of developers. The team needs to be effective
both in the quality of the individuals, and in the way the team
blends together.

Plug-Compatible Programming Units

	One of the aims of traditional methodologies is to develop a process
where the people involved are replaceable parts. With such a process
you can treat people as resources who are available in various types.
You have an analyst, some coders, some testers, a manager. The
individuals aren’t so important, only the roles are important.

	But this raises a key question: are the people involved in software
development replaceable parts? One of the key features of agile
methods is that they reject this assumption.

	Furthermore his (Alastair Cockburn) studies of software projects have
led him to conclude the people are the most important factor in
software development.

	“People” are highly variable and non-linear, with unique success
and failure modes. Those factors are first-order, not negligible
factors.

	This creates a strong positive feedback effect. If you expect all
your developers to be plug-compatible programming units, you don’t
try to treat them as individuals. This lowers morale (and
productivity).

	The notion of people as resources is deeply ingrained in business
thinking, its roots going back to the impact of Frederick Taylor’s
Scientific Management approach. In running a factory, this Taylorist
approach may make sense. But for the highly creative and professional
work, which I believe software development to be, this does not hold.

Programmers are Responsible Professionals

	A key part of the Taylorist notion is that the people doing the work
are not the people who can best figure out how best to do that work.

	Recent history increasingly shows us how untrue this is for software
development. Increasingly bright and capable people are attracted to
software development, attracted by both its glitz and by potentially
large rewards.

	When you want to hire and retain good people, you have to recognize
that they are competent professionals. As such they are the best
people to decide how to conduct their technical work.

Managing a People Oriented Process

	It is about accepting the process not being forced to follow the
process by management. Thus, requires active involvement of team.

	Another point is that the developers must be able to make all
technical decisions. XP gets to the heart of this where in its
planning process it states that only developers may make estimates on
how much time it will take to do some work.

	Such an approach requires a sharing of responsibility where
developers and management have an equal place in the leadership of
the project. Notice that I say equal. Management still plays a role,
but recognizes the expertise of developers.

	An important reason for this is the rate of change of technology in
our industry. After a few years technical knowledge becomes obsolete.
This half life of technical skills is without parallel in any other
industry. Even technical people have to recognize that entering
management means their technical skills will wither rapidly.
Ex-developers need to recognize that their technical skills will
rapidly disappear and they need to trust and rely on current
developers.

The Difficulty of Measurement

	Despite our best efforts we are unable to measure the most simple
things about software, such as productivity. Without good measures
for these things, any kind of external control is doomed.

	The point of all this is that traditional methods have operated under
the assumption that measurement-based management is the most
efficient way of managing. The agile community recognizes that the
characteristics of software development are such that measurement
based management leads to very high levels of measurement
dysfunction. It’s actually more efficient to use a delegatory style
of management, which is the kind of approach that is at the center of
the agilist viewpoint.

The Role of Business Leadership

	This leads to another important aspect of adaptive processes: they
(developers) need very close contact with business expertise.

	This goes beyond most projects involvement of the business role.
Agile teams cannot exist with occasional communication . They need
continuous access to business expertise. Furthermore this access is
not something that is handled at a management level, it is something
that is present for every developer.

	A large part of this, of course, is due to the nature of adaptive
development. Since the whole premise of adaptive development is that
things change quickly, you need constant contact to advise everybody
of the changes.

The Self-Adaptive Process

	However there’s another angle to adaptivity: that of the process
changing over time. A project that begins using an adaptive process
won’t have the same process a year later. Over time, the team will
find what works for them, and alter the process to fit.

	The first part of self-adaptivity is regular reviews of the process.
Usually you do these with every iteration. At the end of each
iteration, have a short meeting and ask yourself the following
questions (culled from Norm Kerth)

	What did we do well?

	What have we learned?

	What can we do better?

	What puzzles us?

	While both published processes and the experience of other projects
can act as an inspiration and a baseline, the developers professional
responsibility is to adapt the process to the task at hand.

Flavors of Agile Development

Agile Manifesto

	Started in 2001 where bunch of people met and came up with
Manifestor for Agile Development.

	There were other groups coming with similar approaches to iterative
development. No common name for all these approaches but
lightweight was being used a lot.

	Decision was to use agile as the umbrella name.

	No formal organization but there is an Agile Alliance. This group
is a non-profit group intended to promote and research agile methods.
Amongst other things it sponsors an annual conference in the US.

XP (Extreme Programming)

	Got the lion’s share of attention early in the agile movement.

	The roots of XP lie in the Smalltalk community, and in particular the
close collaboration of Kent Beck and Ward Cunningham in the late
1980’s. Both of them refined their practices on numerous projects
during the early 90’s, extending their ideas of a software
development approach that was both adaptive and people-oriented.

	XP begins with five values (Communication, Feedback, Simplicity,
Courage, and Respect). It then elaborates these into fourteen
principles and again into twenty-four practices. The idea is that
practices are concrete things that a team can do day-to-day, while
values are the fundamental knowledge and understanding that underpins
the approach.

	XP has strong emphasis on testing. XP puts testing at the foundation
of development, with every programmer writing tests as they write
their production code. The tests are integrated into a continuous
integration and build process which yields a highly stable platform
for future development. XP’s approach here, often described under the
heading of Test Driven Development (TDD) has been influential even in
places that haven’t adopted much else of XP.

Scrum

Scrum (n): A framework within which people can address complex adaptive
problems, while productively and creatively delivering products of the
highest possible value.

	Scrum also developed in the 80’s and 90’s primarily with OO
development circles as a highly iterative development methodology.
It’s most well known developers were Ken Schwaber, Jeff Sutherland,
and Mike Beedle.

	Scrum concentrates on the management aspects of software development,
dividing development into thirty day iterations (called ‘sprints’)
and applying closer monitoring and control with daily scrum meetings.
It places much less emphasis on engineering practices and many people
combine its project management approach with extreme programming’s
engineering practices. (XP’s management practices aren’t really very
different.)

	Asserts that knowledge comes from experience and making decisions
based on what is known. Scrum employs an iterative, incremental
approach to optimize predictability and control risk.

	Scrum Events:

	All events are timeboxed for duration.

	A formal opportunity to inspect and adapt something.

	Sprint is heart of scrum. Timeboxed one month or less (if sprint
goal is accomplished early).

	Sprint Planning

	Timeboxed to a max of eight hours. Answers what can be
delivered at the end of sprint? And how this work will be
achieved.

	Dev team discusses forecasts of functionality that will be
implemented. Product Owner discusses objective of sprint.

	Performance of past sprints is also reviewed. Number of
items selected from backlog is solely up to dev team.

	Sprint Goal is decided here. It is basically an objective
to work towards for that sprint. e.g. “Has a basic UI for
users to work with”, “Can pass packets and has networking
functionality”

	Sprint Backlog is subset of Product Backlog. This includes
more detailed planning.

	By the end of the Sprint Planning, the Development Team
should be able to explain to the Product Owner and Scrum
Master how it intends to work as a self-organizing team to
accomplish the Sprint Goal and create the anticipated
Increment.

	Daily Scrum

	15-minute timeboxed event to plan the next 24 hours that
only dev team can participate in.

	Members explain: What did I do to help Dev team meet Sprint
Goal? What will I do today to help Dev team meet the Sprint
Goal? Do I see any obstacles that prevents me from
a
accomplishing that goal?

	Sprint Review

	Timeboxed to 4 hours and held at end of Sprint to inspect
Increment and adapt Product Backlog if needed.

	Includes Scrum Master, Product Owner, Dev Team and other
key stake holders.

	Demonstration of work happens and discussion of obstacles,
product backlog, etc.

	Review of market, how it has changed, most business value
on what to do next.

	Review timeline and budget as well.

	Backlog can be re-prioritized.

	Sprint Retrospective

	Opportunity for entire Scrum Team to inspect itself and
create a plan for improvements during next sprint.

	Occurs after sprint review and before next sprint planning.
Time boxed to three hours.

	Sprint maybe cancelled only by Product Owner but are very uncommong
and not recommended.

	The Scrum Team consists of a Product Owner, the Development Team, and
a Scrum Master.

	Scrum Teams deliver products iteratively and incrementally,
maximizing opportunities for feedback.

	Product Owner is sole person managing Product backlog.

	Development Teams are structured and empowered by the organization
to organize and manage their own work. The resulting synergy
optimizes the Development Team’s overall efficiency and
effectiveness. Every member is known as a Developer.
Accountability is to whole team. Usually between 3-9 members.

	The Scrum Master is responsible for ensuring Scrum is understood and
enacted. Scrum Masters do this by ensuring that the Scrum Team
adheres to Scrum theory, practices, and rules.

	Finding techniques for effective Product Backlog management
(helping Product Owner).

	Acts as a coack to development team. Removes impediments to the
progress of Dev Team.

	Helping employees and stakeholders understand and enact Scrum and
empirical product development.

	A Product Backlog is never complete. The earliest development of it
only lays out the initially known and best-understood requirements.
The Product Backlog evolves as the product and the environment in
which it will be used evolves. The Product Backlog is dynamic; it
constantly changes to identify what the product needs to be
appropriate, competitive, and useful. As long as a product exists,
its Product Backlog also exists.

	Product Backlog can span multiple Scrum Teams and thus can apply
grouping techniques to the backlog.

	The Sprint Backlog is a highly visible, real-time picture of the work
that the Development Team plans to accomplish during the Sprint, and
it belongs solely to the Development Team.

Crystal

	Different variations for different sized teams.

	Despite their variations all crystal approaches share common
features. All crystal methods have three priorities: safety (in
project outcome), efficiency, habitability (developers can live with
crystal). They also share common properties, of which the most
important three are: Frequent Delivery, Reflective Improvement, and
Close Communication.

Should you go agile?

	In today’s environment, the most common methodology is code and fix.
Applying more discipline than chaos will almost certainly help, and
the agile approach has the advantage that it is much less of a step
than using a heavyweight method.

	Simpler processes are more likely to be followed when you are used to
no process at all.

	The first step is to find suitable projects to try agile methods out
with. Since agile methods are so fundamentally people-oriented, it’s
essential that you start with a team that wants to try and work in an
agile way.

	So where should you not use an agile method? I think it primarily
comes down to the people.

Others

User Stories

Notes taken from: http://www.mountaingoatsoftware.com/agile/user-stories

	User stories are short, simple description of a feature told from the
perspective of the person who desires the new capability. This is
usually a user or customer of the system. Template:

As a <type of user>, I want <some goal> so that <some reason>.

	Often written on index cards, sticky notes and placed in a shoe box,
arranged on walls, tables, to facilitate planning and discussion.

	Focus shifts from writing about features to discussing them.

	User stories can be written at varying levels of detail. Thus, user
stories can be written to cover large amounts of functionality. These
are generally known as epics. An example:

As a user, I can backup my entire drive

	Epics are generally too large to complete in one agile iteration. It
is split into smaller user stories. The above epic can be split into
dozens (or hundreds) of user stories:

As a power user, I can specify files or folders to backup based on file size, date created and date modified.

As a user, I can indicate folders not to backup so that my backup drive isn’t filled up with things I don’t need saved.

	Note that details can be added to user stories. These can be
accomplished by splitting user stories into smaller user stories. Or
by adding conditions of satisfaction.

	Conditions of satisfaction are like high-level acceptance tests.
For the example above:

	Make sure data is verified during copy.

	Make sure there is a report generated of the backup.

	Note that user stories are usually written by product owner. However,
during breakdowns of user stories, each team member can write it as
well.

	The important fact is that it doesn’t matter who writes the user
stories. It is more important to have everyone involved in the
discussion of it.

	User Stories are usually the main composition of a product backlog.
Re-prioritization happens often and user stories can be added/removed
throughout the agile development process.

	Note that Fibonnaci sequence is used to estimate story points. The
idea is, the larger the story is, the more uncertainty there is
around it and the estimate is less accurate. Thus, total number of
points give a number on complexity of project.

	0, 1 means user story doesn’t take anytime at all

	Bigger than 13 means very complex and probably needs to be broken
up.

Burndown Charts

	A burn down chart is a graphical representation of work left to do
versus time.

	The outstanding work (or backlog) is often on the vertical axis, with
time along the horizontal.

	It is useful for predicting when all of the work will be completed.

[image: ../_images/burndown-chart.png]

Agile Fluency

Reference: http://martinfowler.com/articles/agileFluency.html

This diagram explains stages agile teams go through as they gain more
experience. This shows successful team progression. Note that fluency
here means how a team develops software when it’s under pressure.

[image: ../_images/agile-fluency-path.png]
Most teams are at one-star level. Number of teams with more stars are
fewer as there are factors such as organizational culture, technical
debt of code, etc.

Fluency is more about habit than skills and thus requires a lot of
practice.

It’s best to choose the level of fluency you want to achieve and to
practice everything needed for that level from the beginning.

In other words, if your goal is to have a three-star team, use a
three-star approach from the start. Although your team will still
progress one level at a time, practicing all the techniques together
will allow them to advance more quickly.

Important for organization to support team star goals and for team
members to stick together.

	Scrum is frequently used by one-star teams as their core goal/metric
is business value of customer/stakeholders. The focus is on creating
value. The idea is organization can realize its investment quickly
(2-6 months) and have greater insight into team progress.

	Two-star teams deliver on market cadence (shipping as often as market
will accept it). Usually use XP combined with Scrum project
management. Includes continuous integration, test drive development,
test driven development, pair programming, and collective ownership.

	Consistently and predictably deliver value.

	Includes metrics used by one-star team to report business value.
But core metric is to deliver low-defect product and ability to
ship on market cadence.

	Takes significant investment in time as team needs a lot of skill
and practice to consistently deliver these kinds of products.

	Three-star teams deliver the most value possible for your investment.
They understand what the market wants, what your business needs, and
how to meet those needs.

	However, Lean Startup is an example of a method that operates at
the three-star level. It’s most applicable to new product
development. The ideas from Lean Software Development (no relation
to Lean Startup) are also useful. Agile chartering, embedded
product management teams, customer discovery, and adaptive planning
are all examples of techniques used by three-star teams.

	More formal business value reports are presented. There is a mutual
trust between team and organization. Need to incorporate business
experts full time in the team.

	Takes several years to develop because it takes time to develop
this level of trust between organization and team.

	Four-star teams contribute to enterprise-wide success. Team members
understand organizational priorities and business direction.
Four-star teams will sacrifice their own needs to support the needs
of a product more critical to business success. They work with other
teams and with managers to optimize the overall value stream.

	The teams we know that are striving for, and in some cases reaching,
four-star fluency are at the “bleeding edge” of Agile practice.
They adapt ideas from advanced management theories and innovative
product development methods. Techniques include Agile portfolio
management, systems thinking, value stream analysis, whole system
planning, intact teams, open book management, and radical
self-organization.

	The core metric for four-star teams is whether the team shows
understanding of the overall system and reports how its actions
affect the enterprise.

	To date, we’ve most often seen four-star fluency in single-team
startups, where it’s not much different from three-star fluency. It
seems to be easiest to approach four-star fluency in organizations
where trust is high, communication overhead is low, and business
information is widely shared.

Managing Deadlines

Dealing with missed deadlines

	As a project manager, this is where you earn your value. You have the
opportunity to turn the project around.

	Can perform Monte Carlo simulation to see the impact of business
value if project is killed or if it is continued but delayed.

	Identify the problems at this point and possibly Reboot project.

	Also, it should never get to this point. Idea with agile is to
constantly adjust scope if budget and deadline is fixed. Of course,
this is with customer input.

Estimates/Deadlines

	Estimates come from team and Deadlines come from stakeholders.

	Sometimes deadlines can’t be pushed, other factors are involved
(media promotions, legal regulations, etc.).

	A great PM is great not because they achieve project objectives all
the time but because they communicate bad news early and often so
that project owners can make decisions before they are surprised.

Adding People

	Adding the right people can speed the project up, especially if they
have specific domain expertise that is missing or weak in the
original team,and they are being brought in to support the team
rather than taking over and destroying morale.

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	notes 1.0 documentation

 	Study

Programming

Contents

	Programming
	Character Encodings For Modern Programmers
	UNIX, Terminals, and C1

	DOS/Windows

	Programming With 8-Bit Encodings

	Multibyte Encodings

	Pre-Unicode Summary

	Unicode

	Basic Programming With Unicode

Character Encodings For Modern Programmers

Reference [http://blog.gatunka.com/2014/04/25/character-encodings-for-modern-programmers/]

	The story of Unicode really starts with ASCII.

	ASCII is important because it basically defined the subset of
punctuation marks and symbols that would be used in every programming
language and operating system that followed.

	ASCII is a 7-bit encoding

	There were national variants of ASCII where certain symbols where
replaced with their national variants. For example, # was replaced
with £. This causes a lot of problems with programming and was
eventually abandoned. Note to enter unicode characters using
urxvt hold *Ctrl+Shift* and type the hex code. Finally, release
Ctrl+Shift. For example, for *£* type *Ctrl+Shift+a3*

	ASCII 8-bit encodings add extra 128 code points and thus adds support
for national variants.

UNIX, Terminals, and C1

	UNIX is a terminal-based system (which means that it is usually
operated by entering commands on a terminal).

	UNIX used to be controlled by a dumb terminal. It is a physical
equipment with a 80x25 screen and a keyboard that connects to the
UNIX server by a serial line.

	If you send text to the serial port of the terminal, it is the
terminal that decides which actual character to print on the screen.
Similarly, when you press a key on the keyboard, it is the terminal
that decides which code to send to the UNIX server.

	On top of this, this same communication channel needs to be used for
sending control sequences, such as for moving the cursor, clearing
the screen, and these sequences are all sent in-line intermixed with
the character codes. This means that we can’t assign characters to
every code point. We need control codes, and these control codes
cannot overlap the characters in the character encoding.

	Note that printable ASCII range is from 32 to 126. Codes 128 and
above, however, are a free-for-all. Terminals can use them as control
codes, printable characters, or basically anything and it doesn’t
matter to the UNIX server.

	Block of control codes 0 to 31 (known as the C0 block) as well as
code 127 in ASCII are already allocated to control codes.

	For reasons of consistency and interoperability, a recommendation was
developed that codes 128 to 159 should be reserved for a second
control block (called the C1 block), and only codes 160 to 255 be
used for printable characters, and this formed the basis for most
pre-Unicode UNIX encodings.

	However, it is not a hard and fast rule, and UNIX itself does not
treat the C1 block any differently from the rest of the upper 128
codes.

	This makes UNIX basically language agnostic. Let’s say we have a UNIX
system and we have two files with names consisting of the character
codes 68 196 and 68 228. When we connect a Greek language terminal to
the system and list the files, we will see “DΔ” and “Dδ”. When we
connect a French terminal to the system, we will see “DÄ” and “Dä”,
and when we connect a Thai terminal we will see “Dฤ” and “Dไ”. The
fact that the three different terminals show 3 different things
doesn’t matter. A Thai user can still open one of the files by typing
“vi Dฤ” on their keyboard, the same as the Greek can by typing “vi
DΔ”. As far as the OS is concerned, as long as the underlying codes
are the same, everything works fine. We might note here that “δ” is
the lower case letter for “Δ” in Greek, whereas “ฤ” and “ไ” are
completely different unrelated letters in Thai. This doesn’t matter
to UNIX because the OS doesn’t try to do anything fancy like
case-insensitive file names. The same applies to file content. If you
print a file to the screen, the codes gets passed directly to the
terminal, and it is the terminal that does the rendering. The OS
doesn’t need to get involved.

	Thus UNIX itself does not need an “encoding” setting. It simply
doesn’t care.

	However, any command or system service that is going to output
human-readable error messages needs to know which language to output.
Similarly, any add-on programs, particularly those that might perform
some kind of collation or text processing, want to know what language
they should use. But again, this does not need to be a system-wide
setting, and only need apply to a particular user’s session. The
system thus uses an environment variable (LOCALE) which specifies
both the language and character encoding.

DOS/Windows

	DOS and Windows does not use terminals and thus screen is addressed
directly through the video adapter.

	This means that it does not need any control codes. So DOS/Windows
assigns printable characters to all of the ASCII control codes (0 to
31 and 127) and all codes above 128.

	DOS/Windows is still considered ASCII based since maintains all of
ASCII printable characters (32 to 126).

	This obviously is a major problem as line feeds get messed up in text
files. And there is a problem with printing to ASCII serial printers
which uses ASCII control block for printer sequences.

	Another problem with Windows is that it uses case-insensitive file
names and thus the OS needs to know the encoding (whether Greek,
Thai, etc). Thus, Windows requires a system wide encoding.

	It should come as no surprise then that Microsoft was one of the big
backers of Unicode and produced one of the first Unicode-based OSes.

Programming With 8-Bit Encodings

	In most cases you don’t need to write encoding-aware software. For
example, the C compiler does not need encoding-awareness.

	In regular expression, all characters are byte-based and thus user
needs to only input correct expressions for their language (e.g. a
Norwegian person wanting to match all upper case letters is going to
have to use the regexp /[A-ZÅÆ]/ instead of /[A-Z]/, but the actual
regular expression parser does not need to be changed).

	The basic assumption is that we have the same encoding end-to-end, so
tools don’t have to do any conversion, they just spit out whatever
input they get in.

	If you want language-dependent operations, then use <locale.h> and
<ctype.h>. You will need to perform setlocale and then do
isupper, islower, etc.

Multibyte Encodings

	Multibyte encodings are needed for East Asian languages of China,
Japan, and Korea (CJK). ASCII is not enough to hold all possible
combinations.

	Other encodings based on ASCII, use multi-bytes to represent a single
character.

	The basic idea is that all non-ASCII letters are encoded as
multi-byte sequences with all bytes in the 128 and higher code range.
This means that we can suddenly start naming files in Japanese and
Chinese without making any changes to the underlying OS.

	However, the following will not work char mychar = '字'; since
this will appear to the compiler as two characters. Also, regexes to
do not work as expected. Finally, outputting to fixed-width terminal
or printer will not work as expected since these characters now take
up two bytes (thus two spaces) to display one character. The
exception here is Shift JIS. Single byte characters in Shift JIS
take up single character cell while double-byte characters always
take two character cells.

	However, with Shift JIS, they use the code 92 (backslash) as part
of second byte. Thus, printf("十"); actually looks like
printf("X\"); to the compiler. There are 42 characters that use
backslash in Shift JIS.

	Prior to Unicode, the C and C++ standard libraries do not have any
functions for handling CJK encodings. Note that you can use
``mblen()`` to see how many bytes a character takes.

Pre-Unicode Summary

	Firstly, just about every application runs off the idea of a single
encoding end-to-end. On UNIX, in particular, many protocols are
encoding agnostic.

	FTP is a great example. It has no concept of encoding or any way of
specifying encodings. Whatever raw character data it receives it
sends on through untouched. It’s up to the sys admin to make sure
everyone using it sticks to the same encoding.

Unicode

	The very first thing we need to understand is that UTF-8 did not
exist and was not envisioned when Unicode first came into use, and
Unicode referred basically to what we now call UTF-16.

	Windows NT was the first major OS based on Unicode, and was coupled
with NTFS, the first major filesystem to support Unicode.

	However, NT still had the concept of a default non-Unicode encoding,
the same as DOS and Windows 95.

	This non-Unicode encoding is called the ANSI code page on Windows.
The Win32 API thus comes with two complete sets of API, the ANSI API
which accept string arguments of type char* encoded in the default
non-Unicode encoding, and the Unicode (or wide char) API which accept
string arguments of type wchar_t*.

	On UNIX, things were slightly different, and this is reflected in the
C/C++ standard libraries. On UNIX, the expectation was that people
would continue to use non-Unicode encodings in conjunction with the
LOCALE environment variable, but programmers would be given the
option of an automatic conversion to Unicode mode of file operation,
that would allow them to code using Unicode while the underlying OS
and file content would continue to use non-Unicode encodings.

	When we open a file in C (using fopen()), the file does not have an
orientation. If we call a non-Unicode file function such as fgets(),
the file gets set to non-Unicode orientation, and we simply get
passed the data from the file.

	However, if we call a Unicode file function such as fgetws(), the
file is put into Unicode orientation. This does not mean that the
file on the disk is treated as containing Unicode. Instead, the C
standard library assumes that the file is encoded in the non-Unicode
encoding as specified by LOCALE and performs implicit automatic
conversion of the file content from that non-Unicode encoding into
Unicode in the form of wchar_t*.

	On Windows NT, however, we have a problem. The C standard library
still assumes that files are saved in a non-Unicode filesystem. There
is no support for Unicode filenames. There is no variant of the
fopen() function which accepts a wchar_t* for the filename.

	UNIX chose 32-bit Unicode standard (ISO based) while Windows went
with 16-bit universal encoding (Unicode organization). Thus,
eventually we ended up with a 32-bit Unicode standard with UTF-16 as
a variable-length 16-bit encoding.

	Around the sametime UTF-8 was being developed, which was another
variable length encoding.

	Once UTF-8 was released, UNIX had a clear path towards total Unicode
compatibility. Simply adopt UTF-8 as your standard encoding and all
your problems go away.

	UTF-8 is the basic standard encoding used in Linux and it’s
derivatives. Since UTF-8 can be encoded in a char*, it even works
fine with the broken C standard libraries. UTF-8 plugs into the C
standard library on what was meant to be the non-Unicode side since
it is stored in char* and specified as an encoding using LOCALE.
However, Linux/Windows interoperation is worse than ever.

Basic Programming With Unicode

	

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	notes 1.0 documentation

Index

 Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		notes 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Amit Uttamchandani.
 Created using Sphinx 1.3.5.

_images/burndown-chart.png
360

270

swjod Aioxs

Sprints

_images/02cert.png
© User enters private-key password.

|

SSL connection Web Server (5)
© Ctient senas Sateh
certifcate @1 oo
d evid

e Scross network, @) Serveruses the authenticated
Client retrieves certificateand identity.
private key evidence to
and uses it to authenticate
create evidence the user's dentity.

(digital signature).

_images/dns_hierarchy_ex1.png
auss

erdos

Sopius

[

[

Tiels w | [down] [stance]

_images/agile-fluency-path.png
A Tean

Path Through Agile Fluency

Team
Culture Shift
Focus on Value

See progress from business perspective
Redirect teams when needed

Team
Skills Shift -
Deliver Value

Ship on market cadence
Capture value frequently
Reveal obstructions early

Organizational
Optimize Value Structure Shift
*kk

Make excellent product decisions
Eliminate handoffs
Speed decision making

Organizational
Culture Shift

ize for Systems

Kok kok

ollinate perspectives
Stimulate innovation
Optimize value stream

Cross-

©2012 ames Shore and Diana Larsen.
You sy reprocice s digram nany form o log 3 this copyrigh notc s preserved

_static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/comment.png

_static/down.png

