

Amino.Run Documentation

Amino.Run is an open source, multilanguage development platform and distributed runtime environment designed to make distributed applications much easier to design, develop and operate.

Amino Overview

	What is Amino.Run?

	Why we created Amino.Run?

	Documentation

	References

Amino Run

	Amino.Run Overview
	Microservices

	OMS

	Kernel Server

	DM

	Kernel Object

	Remote Interfaces
	KernelServer

	RMI Registry

	gRPC vs RMI

	Kernel Server & OMS

	Stubs
	App_Stub

	ClientPolicy

	ServerPolicy_Stub

	KernelClient

	KernelServer

Multi DM

	Introduction
	KeepInCloud + LockingTransactions + ConsensusRSM

NAT Issue

	Enabling Client to reach the Server behind a NAT
	Problem description:

	Proposed solution

	Steps to implement the proposed solution

Getting Started

	Quick Start
	Download and install GraalVM Community Edition

	Install Android SDK and Android Studio (optional)

	Get and Build the Source Code

	Communicate

	Some additional Background Reading for the Curious
	Releasing

Adding Documentation

	Amino.Run Documentation

	Create a new document

	Contribute to existing documentation

What is Amino.Run?

Amino.Run is an open source, multilanguage development platform and
distributed runtime environment designed to make distributed
applications much easier to design, develop and operate. It is the
distributed process runtime component of the broader Amino distributed
operating system effort, which also includes subsystems for:

	distributed, reactive memory (Amino.Sync)

	distributed, transactional persistent store (Amino.Store)

	distributed privacy and security (Amino.Safe)

Amino.Run supports most commonly used programming languages
and is, by default, deployed and managed in container environments
using Kubernetes [https://www.k8s.io]. Common examples of
distributed applications include:

	mobile-cloud applications [https://www.techopedia.com/definition/26679/mobile-cloud-computing-mcc],

	mobile backend style applications [https://en.wikipedia.org/wiki/Mobile_backend_as_a_service],

	edge computing [https://en.wikipedia.org/wiki/Edge_computing] applications and

	other cloud-native [https://github.com/cncf/toc/blob/master/DEFINITION] applications

All of these classes of applications share a common set of difficult
design and development challenges including performance, distributed
concurrency, remote invocation, synchronization, fault tolerance,
scalability, sharding, code and data migration, leader election, load
balancing, observability, fault diagnosis and many more.

Amino.Run is based on, and extends, several years of research work done at
the University Of Washington Computer Systems
Lab [https://syslab.cs.washington.edu/research/] in
Seattle.1,2,3.

Parts of Amino.Run are based on the
Sapphire [http://github.com/UWSysLab/Sapphire] open source project related to the
above research, and which is used in compliance with
Sapphire’s MIT License [http://github.com/UWSysLab/Sapphire/LICENSE].

Amino.Run is alpha software, and not yet
suitable for production use. We have a well-funded development team
actively working on getting it production ready, and actively
support contributions from the open source community.

Why we created Amino.Run?

In a nutshell, we created Amino.Run to make design, development and operation of
reliable, fast, distributed applications quicker, easier and more fun.

In summary, our approach is to:

	provide a wide and expandable range of standard, re-usable,
pluggable and production-ready Deployment Managers
DMs
to solve many common distributed computing problems (including all
of those mentioned above) so that you can focus on application
logic, not solving hard distributed systems challenges.

	make it very easy to plug combinations of these into new or
existing application code, even if it was not designed to be
distributed - in many cases a few lines of code can change a simple
standalone application written to run on a single computer into a
robust, scalable distributed, cloud-native application. Create
sharded, consistent replicas of your objects, or replicated shards.
Either way it requires only a one-line code or configuration change
to your application.

	support a wide variety of programming languages - we recognise the
need for different languages and embrace that need. Java,
Javascript, Python, C++, Swift, Ruby, Rust and others4-
we’ve got you covered - and without the need for clunky and inefficient
REST or RPC library code to get them to talk to each other. We
encourage using multiple different langauages to develop
different parts of a single application.

	make it easy to deploy your application anywhere, and move it
around (piece by piece) as you wish:

	On your local machine

	On (public or private) cloud servers

	On mobile devices (Android, iOS)

	On edge devices

	Even have Amino.Run move parts of your application around automatically at runtime
to optimize performance, reliability or battery power consumption.

Over time Amino will include a runtime process manager (Amino.Run), a
reactive distributed memory manager (Amino.Sync), a consistent
transactional storage system (Amino.Sync) and a privacy and security framework
(Amino.Safe). Initial focus is on making Amino.Run production-ready.

Documentation

	Amino.Run Overview

	Multi DM

	Getting started

	Amino.Run Examples [https://github.com/amino-os/Amino.Run-Demos]

	Contributing:

	Setting up your developer environment

	Contributing to the documentation

	External documentation web site [http://amino-os.readthedocs.io]

References

1 Customizable and Extensible Deployment for Mobile/Cloud Applications
 [https://syslab.cs.washington.edu/papers/sapphire-osdi14.pdf]

2 Diamond: Automating Data Management and Storage for Wide-area, Reactive Applications [https://syslab.cs.washington.edu/papers/diamond-osdi16.pdf]

3 Building Consistent Transactions with Inconsistent Replication (Extended Version) [https://syslab.cs.washington.edu/papers/tapir-tr-v2.pdf]

4 Not all of these languages are currently officially supported, but they are all on our medium-term roadmap, support based on GraalVM [http://www.graalvm.org/docs/]

Amino.Run Overview

[image: ../_images/AminoRunOverview.png]

Microservices

Microservices are the base management unit in Amino. In the above diagram, each circle represents one Microservice. The dots inside the circle (i.e. the Microservice) represent normal programming language (e.g. Java) objects. One Microservice may contain a set of such objects. The solid arrow lines between dots are local method invocations between objects. The dashed arrow lines between circles are remote method invocations between Microservices. Methods on normal Java objects can only be invoked locally by objects residing on the same host. Microservices may however have remote methods which can be invoked by objects residing on different hosts.

Deployment Kernel has the capability to move a Microservice from one host to another. Behind the scenes, Deployment Kernel will serialize the whole Microservice, including all programming language objects belonging to the Microservice, on one end, ship the data to the destination host, and then do the deserialization there.

Microservices are created by applications using a static helper method Microservice.new_(). To invoke a method on a Microservice, applications have to first get a reference to the Microservice from OMS Server.

OMS

OMS, Object Management Service, keeps track of the location of all Microservices. Unlike normal (e.g. Java) objects which can be created using the Java new keyword, microsservices must be created with a special Amino.Run helper method ‘Microservice.new_()’. Upon Microservice creation, the method MicroService.new_() will generate a globally unique ID for the Microservice, and register the object in OMS. OMS provides API to search Amino Run. Given a Microservice ID, OMS can tell the IP of the host on which the Microservice runs. Whenever a Microservice is moved or deleted, OMS will be updated accordingly.

Kernel Server

Kernel Server provides runtime environment for Amino Run. Each host runs a Kernel Server instance. Kernel Server exposes a set of remote API which can be invoked remotely. Amino.Run assumes that any Kernel Server can invoke the remote API on any other Kernel Server regardless where the Kernel Server lives.

DM

Every DM, Deployment Manager, has three components: a proxy, a instance manager, and a coordinator. When users create Microservice, he/she can optionally associate a DM to the Microservice. Not all Microservice has DMs. But if a DM is specified for a Microservice, then during the creation of the Microservice, helper method MicroService.new_() will inject code into the stub of the Microservice, in which case any method invocation on the Microservice will first be processed by the proxy, instance manager and the coordinator of the DM before reach the actual Microservice. Each DM provides one specific functionality. The Sapphire paper listed 26 DMs.

Kernel Object

Kernel object is a wrapper of the actual (e.g. Java) object - it contains a reference to the actual object and exposes a invoke method which allows any public methods defined on the actual object to be invoked with reflection.

Kernel objects are created with KernelServerImpl.newKernelObject method. Every kernel object has a unique oid and is registered in OMS server. KernelServer interface also exposes a few APIs to copy and move kernel objects.

Remote Interfaces

Amino.Run declares two Remote interfaces: KernelServer and OMSServer. Most methods in these two interfaces can be easily replaced with gRPC, except for KernelServer.copyKernelObject.

A note about code snippets: The code below is out-of-date. Many of the class and package names no longer apply, but the general principles do.

KernelServer

public interface KernelServer extends Remote {
	Object makeKernelRPC(KernelRPC rpc) throws RemoteException, KernelObjectNotFoundException, KernelObjectMigratingException, KernelRPCException;
	void copyKernelObject(KernelOID oid, sapphire.kernel.server.KernelObject object) throws RemoteException, KernelObjectNotFoundException;
	AppObjectStub startApp(String className) throws RemoteException;
}

###OMSServer

public interface OMSServer extends Remote {
 KernelOID registerKernelObject(InetSocketAddress host) throws RemoteException;
 void registerKernelObject(KernelOID oid, InetSocketAddress host) throws RemoteException, KernelObjectNotFoundException;
 InetSocketAddress lookupKernelObject(KernelOID oid) throws RemoteException, KernelObjectNotFoundException;

 ArrayList<InetSocketAddress> getServers() throws NumberFormatException, RemoteException, NotBoundException;
 ArrayList<String> getRegions() throws RemoteException;
 InetSocketAddress getServerInRegion(String region) throws RemoteException;

 void registerKernelServer(InetSocketAddress host) throws RemoteException, NotBoundException;

 MicroserviceID registerMicroservice(EventHandler dispatcher) throws RemoteException;
 ReplicaID registerReplica(MicroserviceID oid, EventHandler dispatcher) throws RemoteException, MicroserviceNotFoundException;
 EventHandler getMicroserviceDispatcher(MicroserviceID oid) throws RemoteException, MicroserviceNotFoundException;
 EventHandler getReplicaDispatcher(ReplicaID rid) throws RemoteException, MicroserviceNotFoundException;

 /* Called by the client */
 public AppObjectStub getAppEntryPoint() throws RemoteException;
}

As a remote procedure call framework, gPRC does not provide a mechanism to move objects from one host to another. Objects are different from gRPC messages because objects may have methods. But we can build this object moving capability on top of gRPC by taking the following three actions:

	Serialize the object into a byte stream on client side

	Pass the byte stream to server side by calling a gRPC function on the server

	Deserialize byte stream into object on server side

However there is one catch. In order to deserialize an object, the server on which the object will be deserialized needs the access to the class definition. ClassNotFoundException will be thrown if the server cannot find the class definition on the class path. Unlike RMI, gRPC is not able to dynamically download class definition from a remote location, therefore we need to build up a mechanism to allow servers to download jar files remotely.

In the first phase, to keep things simple, we can assume that there is one single jar file which contains all class definitions and this jar file is accessible to all servers.

RMI Registry

Amino.Run uses RMI registry to discover remote objects. The following snippet shows how to register remote object io.amino.run.oms.

// Register io.amino.run.oms
OMSServerImpl oms = new OMSServerImpl(args[2]);
sapphire.oms.OMSServer omsStub = (sapphire.oms.OMSServer) UnicastRemoteObject.exportObject(oms, 0);
Registry registry = LocateRegistry.createRegistry(port);
registry.rebind("io.amino.run.oms", omsStub);

Client side lookups remote object OMSServer by its name, i.e. io.amino.run.oms, and RMI registry returns a stub of OMSServer. Client then uses OMS server to look up Amino Run.

// Look up io.amino.run.oms
registry = LocateRegistry.getRegistry(args[0],Integer.parseInt(args[1]));
OMSServer server = (OMSServer) registry.lookup("io.amino.run.oms");

// Look up Microservice from OMS Server
TwitterManager tm = (TwitterManager) server.getAppEntryPoint();
System.out.println("Received Twitter Manager Stub: " + tm);

If we switch to gRPC, we can no longer use RMI registry. We need to come up with another mechanism to register and lookup gRPC servers. It should be straightforward to do.

gRPC vs RMI

Amino.Run uses RMI in its internal implementation. Applications running on top of Amino.Run do not have to use RMI. Replacing RMI with gRPC, if done properly, should have little impact on Amino.Run applications. But application developers must make one change: Amino.Run applications can no longer use RMI registry to find OMS server location; they have to switch to gRPC service discovery mechanism.

	
	Pros
	Cons

	gRPC
	* Support other languages
 * More efficient
	* No object moving

	RMI
	* Object moving
	* Only support Java
 * Less efficient

Kernel Server & OMS

KernelServer and OMSServer are two important objects in Amino.Run. Both expose remote interfaces. OMSServer contains a KernelObjectManager which keeps track of the mapping between kernel object ID to the IP address of the kernel server in which the object runs. Given an kernel object ID, a client can call OMSServer to get the IP of the host where the object runs.

KernelServer contains a ObjectManager which keeps track of the mapping between kernel object ID to the reference of the object.

[image: ../_images/KernelServerOMS.png]

The following sequence chart demonstrate the high level interactions between client, OMS Server, and Kernel Server.

[image: ../_images/Amino.Run_RemoteMethodInvocationSequence.png]

Stubs

Amino.Run generates many stub classes. The following chart shows the relationship between these stub classes. We then uses the source code to explain how these stubs work together to process a remote method invocation.
[image: ../_images/Amino.Run_StubStructure.png]

App_Stub

App_Stub contains $__client which is a reference to ClientPolicy. Every method call on App object will be translated to an onRPC call on embedded $__client.

public final class UserManager_Stub extends sapphire.appexamples.minnietwitter.app.UserManager implements sapphire.common.AppObjectStub {

	// holds a reference to client policy
	amino.run.policy.Policy.Client $__client = null;

 // Implementation of addUser(String, String)
 public sapphire.appexamples.minnietwitter.app.User addUser(java.lang.String $param_String_1, java.lang.String $param_String_2)
 throws sapphire.app.AppObjectNotCreatedException {
 java.lang.Object $__result = null;
 try {
 if ($__directInvocation)
 $__result = super.addUser($param_String_1, $param_String_2);
 else {
 java.util.ArrayList<Object> $__params = new java.util.ArrayList<Object>();
 String $__method = "public sapphire.appexamples.minnietwitter.app.User sapphire.appexamples.minnietwitter.app.UserManager.addUser(java.lang.String,java.lang.String) throws sapphire.app.AppObjectNotCreatedException";
 $__params.add($param_String_1);
 $__params.add($param_String_2);
 $__result = $__client.onRPC($__method, $__params);
 }
 } catch (Exception e) {
 e.printStackTrace();
 }
 return ((sapphire.appexamples.minnietwitter.app.User) $__result);
 }

ClientPolicy

The onRPC call on ClientPolicy will be translated to an onRPC call on ServerPolicy_Stub.

public abstract class DefaultPolicyUpcallImpl extends amino.run.policy.PolicyLibrary {

	public abstract static class DefaultClientUpcallImpl extends amino.run.policy.PolicyLibrary.ClientLibrary {
		public Object onRPC(String method, ArrayList<Object> params) throws Exception {
			// The default client behavior is to just perform the RPC
			// to the Policy Server
			Object ret = null;
			try {
				ret = getServer().onRPC(method, params);
			} catch (RemoteException e) {
				setServer(getGroup().onRefRequest());
			}
			return ret;
		}
	}
	
	public abstract static class DefaultServerPolicyUpcallImpl extends ServerPolicyLibrary {
		public Object onRPC(String method, ArrayList<Object> params) throws Exception {
			// The default server behavior is to just invoke
			// the method on the Microservice this Server
			// Policy Object manages
			return appObject.invoke(method, params);
		}
	}
}

ServerPolicy_Stub

ServerPolicy_Stub uses the embedded KernelClient to do a makeKernelRPC call. It tries to use makeKernelRPC call to invoke DefaultServerPolicyUpcallImpl.onRPC method on the remote kernel server.

public final class CacheLeasePolicy$CacheLeaseServerPolicy_Stub extends amino.run.policy.cache.CacheLeasePolicy.CacheLeaseServerPolicy implements sapphire.kernel.common.KernelObjectStub {
 // Implementation of onRPC(String, ArrayList)
 public java.lang.Object onRPC(java.lang.String $param_String_1, java.util.ArrayList $param_ArrayList_2)
 throws java.lang.Exception {
 java.util.ArrayList<Object> $__params = new java.util.ArrayList<Object>();
 String $__method = "public java.lang.Object amino.run.policy.DefaultPolicyUpcallImpl$DefaultServerPolicyUpcallImpl.onRPC(java.lang.String,java.util.ArrayList<java.lang.Object>) throws java.lang.Exception";
 $__params.add($param_String_1);
 $__params.add($param_ArrayList_2);
 java.lang.Object $__result = null;
 try {
 $__result = $__makeKernelRPC($__method, $__params);
 } catch (Exception e) {
 e.printStackTrace();
 }
 return $__result;
 }

	public Object $__makeKernelRPC(java.lang.String method, java.util.ArrayList<Object> params) throws java.rmi.RemoteException, java.lang.Exception {
 sapphire.kernel.common.KernelRPC rpc = new sapphire.kernel.common.KernelRPC($__oid, method, params);
 try {
 return sapphire.kernel.common.GlobalKernelReferences.nodeServer.getKernelClient().makeKernelRPC(this, rpc);
 } catch (sapphire.kernel.common.KernelObjectNotFoundException e) {
 throw new java.rmi.RemoteException();
 }
 }
}

KernelClient

KernelClient makes a RMI call on a remote KernelServer with server.makeKernelRPC(rpc).

public class KernelClient {
	public Object makeKernelRPC(KernelObjectStub stub, KernelRPC rpc) throws KernelObjectNotFoundException, Exception {
		InetSocketAddress host = stub.$__getHostname();
		logger.info("Making RPC to " + host.toString() + " RPC: " + rpc.toString());

		// Check whether this object is local.
		KernelServer server;
		if (host.equals(GlobalKernelReferences.nodeServer.getLocalHost())) {
			server = GlobalKernelReferences.nodeServer;
		} else {
			server = getServer(host);
		}
		
		// Call the server
		try {
			return tryMakeKernelRPC(server, rpc);
		} catch (KernelObjectNotFoundException e) {
			return lookupAndTryMakeKernelRPC(stub, rpc);
		}
	}
	
	private Object tryMakeKernelRPC(KernelServer server, KernelRPC rpc) throws KernelObjectNotFoundException, Exception {
		Object ret = null;
		try {
			ret = server.makeKernelRPC(rpc);
		} catch (KernelRPCException e) {
			throw e.getException();
		} catch (KernelObjectMigratingException e) {
			Thread.sleep(100);
			throw new KernelObjectNotFoundException("Kernel object was migrating. Try again later.");
		}
		return ret;
	}
}

KernelServer

The remote KernelServer receives the makeKernelRPC call. It locates the object in objectManager and then calls the method on the object.

	@Override
	public Object makeKernelRPC(KernelRPC rpc) throws RemoteException, KernelObjectNotFoundException, KernelObjectMigratingException, KernelRPCException {
		sapphire.kernel.server.KernelObject object = null;
		object = objectManager.lookupObject(rpc.getOID());
		
		logger.info("Invoking RPC on Kernel Object with OID: " + rpc.getOID() + "with rpc:" + rpc.getMethod() + " params: " + rpc.getParams().toString());
		Object ret = null;
		try {
			ret = object.invoke(rpc.getMethod(), rpc.getParams());
		} catch (Exception e) {
			throw new KernelRPCException(e);
		}
		return ret;
	}
```	

# AppEntry Creation

Every application written using Amino.Run has one `AppEntryPoint` which is the starting point of the application. The following sequence chart shows how a client (e.g. `TwitterWorldGenerator`) gets the `AppEntryPoint` (e.g. `MinnieTwitterStart`) from OMS, and how OMS creates `AppEntryPoint` on Kernel Server behind the scene.

![](../images/DCAP_AppEntryCreationSequence.png)












          

      

      

    

  

    
      
          
            
  
Introduction

Multiple DM’s may be associated with each MicroService.  This
document describes some combinations of DM’s, and
how these combinations behave and might be useful.

In general, DM’s in the same category are mutually exclusive, and it
does not usually make sense to combine them.  For example, KeepInCloud
and KeepOnDevice do not make sense together - choose one or the other.
Similarly, choose between LockingTransactions and
OptimisticTransactions, and not both.

Conversely, by combining DM’s in different categories, new and often
very useful deployment behaviors can be achieved without having to
write any code.  For example, by combining ConsensusRSM, KeepInCloud,
and LockingTransactions, it is possible to get the union of their
behaviors, namely:


	A RAFT-based replicated state machine (ConsensusRSM).


	All replicas remain in a given cloud zone (KeepInCloud).


	Multi-operation read-write transactions using server-side locking
(LockingTransactions)





KeepInCloud + LockingTransactions + ConsensusRSM


Desired behavior


	Client creates a new instance or obtains a reference to an existing MicroService.


	Client starts a locking transaction, by calling startTransaction()


	Client invokes multiple read and write operations against the
MicroService.


	Client either commits or rolls back the transaction.


	Client expects the MicroService to be highly available,
resilient to server machine failures (provided that concurrent
failures are limited to a minority quorum).


	Client expects the MicroService to be high performance (all
quorum communication is on the local zone network).


	Client does not expect the MicroService to be resilient to zone failure.







How it works under the hood


	Client creates an instance of a MicroService (_new()).


	Kernel invokes group.onCreate() on all DM’s (some handwaving
here, but I think we can make it work).


	KeepInCloud.group.onCreate() ensures that all replicas are in
the required cloud zone.


	LockingTransactions.group.onCreate() does nothing unusual.


	ConsensusRSM.group.onCreate() creates 2f+1 replicas (by invoking
sapphire_replicate, which in turn invokes addServer on all DM’s).






	Client starts a locking transaction, by calling startTransaction()
on the MicroService


	The above is intercepted by KeepInCloud.client.onRPC(), that does nothing
other than server.onRPC().


	The above is intercepted by LockingTransactions.client.onRPC()
that identifies startTransaction() and acquires a server-side lock by
invoking LockingTransactions.server.acquireLock().


	The above is intercepted by ConsensusRSM.client.onRPC(), that
invokes the RAFT consensus algorithm across all replicas to
ensure that the RPC call (acquireLock() in this case)  is
committed against the quorum.  (note that in the current
implementation, LockingTransactions.server issues the lease
identifier (a random UUID).  Given that there will be 2f+1
servers in this case, 2f+1 different lease id’s would be
issued. So to make this work, there should be an option to have
the lease ID generated on the client -
LockingTransactions.client - to ensure that the lock identifier
is consistent across all replicas.  This change should be
straightforward.












          

      

      

    

  

    
      
          
            
  
Enabling Client to reach the Server behind a NAT


Problem description:

When the server, S1, lives behind a NAT, the client, C1, cannot reach it, because


	C1 cannot use the External IP address: when S1 intends to reach the world outside the NAT, the NAT dynamically translates S1’s internal IP address to an external IP address. The external IP address is dynamic, i.e., only valid for the duration of the session, hence not reachable by C1 in the future


	Internal IP address not reachable by C1: the internal IP address is behind the NAT and hence packets destined to this IP address get blocked by the NAT




[image: design-docs/ProblemDescription.PNG]image




Proposed solution

We make use of a proxy server, with a static external IP address, in the middle. Here is how it works:


	The server, S1, establishes a VPN connection, as a VPN client, to the VPN server running on the proxy server


	The VPN server in the proxy server allocates an IP address to S1 and maintains the mapping between S1 and this IP address (VPN-assigned IP address)


	An nginx proxy running on the proxy server that allocates a port on the proxy server node to S1 (nginx-assigned port). The nginx proxy maintains the mapping between (Proxy_Server_IP:Nginx_Assigned_port, S1_VPN_Assigned_IP:S1_Port). It forwards any incoming request from C1 to S1 based on this mapping




[image: design-docs/ProposedSolution.PNG]image




Steps to implement the proposed solution


	Set up Proxy Server


	Any node with a public IP address can be used


	E.g., we created an Ubuntu 16.04 VM on AWS with the public IPv4 address 34.208.50.35


	Note that UDP port 1194 should be open from firewall.






	Install OpenVPN Server on Proxy Server


	Run the following script. Make sure you input the public IP address during the setup

$ wget https://git.io/vpn -O openvpn-install.sh && bash openvpn-install.sh







	Note that the IP address of this server will be “10.8.0.1” by default. Therefore, connection from other client should be to “10.8.0.1”, not the public IP address


	When creating a client profile, name it different from the default value “client”. For example, “client1” should work. It will generate “client1.ovpn” which will be later used in client set up






	Install Nginx Proxy on Proxy Server


	On Proxy Server run:

$ sudo apt-get install nginx
$ sudo systemctl start nginx











	Install OpenVPN Client on S1


	For Ubuntu run:

$ sudo apt-get install openvpn







	For Android install Android OpenVPN Connect on Google Play Store






	Connect S1 to OpenVPN Server


	For Ubuntu: use the configuration created in Step 2 to connect to the OpenVPN Server

$ sudo openvpn --config client1.ovpn







	Log message should display the assigned IP address (e.g., “Connected: SUCCESS, 10.8.0.3,18.219.220.105,1194” 10.8.0.3 is assigned client IP address)






	Update nginx proxy to add forwarding rules


	Edit nginx config under /etc/nginx/sites-enabled/default to add forwarding rules for S1. Remove the existing setting inside location bracket (e.g., “try_files…”) and replace with the below ‘proxy_pass’ example (IP address should match to the new client).

server {
    listen 22345 default_server;
    listen [::]:22345 default_server;
    ...
location / {
        proxy_pass http://10.8.0.3:22345;
}







	Restart nginx

$ sudo systemctl restart nginx



















          

      

      

    

  

    
      
          
            
  
Quick Start


Download and install GraalVM Community Edition


	You will need to download and install the correct version (usually the latest stable version)
based on the dependency configured in
core/build.gradle.
As of April 2019, that’s
GraalVM Community Edition 1.0 RC8 [https://github.com/oracle/graal/releases/tag/vm-1.0.0-rc8].
Note that the open source Community Edition works fine, so don’t bother with the Enterprise Edition unless
you have a specific need for it.
Follow instructions at  https://www.graalvm.org/docs/getting-started/ for downloading and installing.
In particular, set your JAVA_HOME and PATH variables appropriately.  For example, something along the lines of the following at the end of your ~/.bash_profile in your home directory works well on Linux and Mac OS X:




export GRAALVM_HOME=~/Downloads/graalvm-ce-1.0.0-rc8/Contents/Home
export JAVA_HOME=$GRAALVM_HOME
export PATH=$GRAALVM_HOME/bin:$PATH





After then, you need to install ruby support for GraalVM:

gu install ruby








Install Android SDK and Android Studio (optional)


	Android SDK and Android Studio are not required by Amino. But many Amino demo applications are android applications. We recommend installing Android SDK and Android Studio.


	Follow instructions [https://developer.android.com/studio/] to install Android SDK and Android Studio. More details can be found at here [https://wiki.appcelerator.org/display/guides2/Installing+the+Android+SDK#InstallingtheAndroidSDK-InstallingAndroidSDKToolsonmacOS].




// on Mac
$ brew cask install android-sdk
$ brew cask install android-ndk






Accept Android SDK License

// on Mac
$ /usr/local/share/android-sdk/tools/bin/sdkmanager --licenses








Add Android Properties

> cd Amino.Run/
> cat >> local.properties  << EOF
ndk.dir=<your ndk dir>
sdk.dir=<your sdk dir>
EOF










Get and Build the Source Code


Check out from Github

# checkout Amino.Run
$ git clone https://github.com/amino-os/Amino.Run
> cd Amino.Run/core








Build and Test the Core

> ../gradlew build








Build and Run Basic Example Applications

> ./gradlew :examples:run








Other Gradle Tasks and Tips


List Projects

> ./gradlew projects








List All Gradle Tasks

> ./gradlew tasks --all








Clean All Build Artifacts

> ./gradlew clean








Format Source Code

> ./gradlew goJF

# verify source code style
> ./gradlew verGJF








Generate Policy Stub

> cd Amino.Run/core
> ../gradlew genStubs










Other Gradle Tips

> ./gradlew properties
> ./gradlew jar












Communicate


	To join our Slack [http://amino-os.slack.com] channels, send your public GitHub account, Slack account name and email address to Sungwook Moon (sungwook.moon@huawei.com)







Some additional Background Reading for the Curious


	Read Papers [https://sapphire.cs.washington.edu/research/]


	Read Sapphire source code [https://sapphire.cs.washington.edu/code.html]


	Read Code Study Notes


	Review the Principles of Distributed Systems. If you have not done a university course on distributed systems you will need to read the following to get a basic understanding of the principles and common terminology. Feel free to add more resource links below.


	UMass Course 677 [http://lass.cs.umass.edu/~shenoy/courses/677/]


	Distributed System Principles by Andrew Tanenbaum [https://www.amazon.com/Distributed-Systems-Principles-Andrew-Tanenbaum/dp/153028175X]









Releasing


Publish Core to Bintray

export BINTRAY_USER="<bintray_user>"
export BINTRAY_API_KEY="<bintray_api_key>"

> ./gradlew --info :core:bintrayUpload

# publish apache harmony to bintray
> ./gradlew --info :dependencies:apache.harmony:bintrayUpload













          

      

      

    

  

    
      
          
            
  
Amino.Run Documentation

Documentation is hosted on Read the Docs [https://readthedocs.org/]
We welcome community contributions to expand and improve it.




Create a new document

Please follow the steps below to add new documents


	All the documents are written in GitHub’s markdown style [https://guides.github.com/features/mastering-markdown/]


	You will need to create a markdown file and place the file in the /docs path of the repository


	If you have any images then please place them in the /docs/images path of the repository


	Next identify where you want to provide the link to your document on the Amino Documentation [https://amino-os.readthedocs.io] web-page


	To add the link you will have to edit the index.rst file. Please be very cautious while editing this files as this file defines the layout and navigation for Amino.Run Documentation [https://amino-os.readthedocs.io] web-page. How it works? [https://docs.readthedocs.io/en/stable/intro/getting-started-with-sphinx.html]


	Once you are satisfied with the changes you want to make please commit you changes and raise a Pull Request [https://help.github.com/en/articles/creating-a-pull-request]


	Once your PR is merged post review you will see the changes on the Amino.Run Documentation [https://amino-os.readthedocs.io] web-page







Contribute to existing documentation

If you want to help in improving any of the document then please follow the below guide lines


	All the documents are written in GitHub’s markdown style [https://guides.github.com/features/mastering-markdown/]


	Every document web-page  has an “Edit On GitHub” link at the top right hand side corner of the screen


	Click this link and you will be redirected to the GitHub page where this document resides




[image: _images/howToContribute.png]


	Once you are on the GitHub page you can click on the Edit icon and start modifying the document




[image: _images/editExistingDoc.png]


	If you have any images then please place them in the /docs/images path of the repository


	Once you are satisfied with the changes you want to make please commit you changes and raise a Pull Request [https://help.github.com/en/articles/creating-a-pull-request]


	Once your PR is merged post review you will see the changes on the Amino Documentation [https://amino-os.readthedocs.io] web-page








          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
Developer Environment Setup


Development Workflow


	Amino follows the Kubernetes development workflow. Please read Kubernetes Development Workflow Guide [https://github.com/kubernetes/community/blob/master/contributors/guide/github-workflow].
Replace ‘kubernetes/kubernetes’ with ‘amino-distributed-os/Amino.Run’ and ‘k8s.io’ with ‘amino-os.io’ and you’re pretty much good to go.







Install Android Studio (optional)


	Download Gradle update if necessary (Android Studio will inform you).


	Install JDK (latest version) if you don’t have one.


	Install Android Studio. Latest version or 3.0


	Install Google Java Format plugin [https://plugins.jetbrains.com/plugin/8527-google-java-format] in Android Studio


	Download Google Java Format plugin [https://plugins.jetbrains.com/plugin/8527-google-java-format]


	Follow instructions [https://stackoverflow.com/questions/30617408/how-to-install-plugin-in-android-studio] to install plugin


	Change code style to Android Open Source Project style in plugin (File > OtherSettings > DefaultSettings > OtherSettings > google-java-format settings).











Check Out Code


	Fork your own repository from the Amino.Run repository [https://github.com/amino-distributed-os/Amino.Run]


	git clone from your own repository


	Make sure to sync with the latest source before creating a pull request to amino-distributed-os/Amino.Run.


	Make sure to rebase your code instead of simple git pull (read carefully about git pull part from above link).







Open Project in Android Studio (optional).


	Open the Amino.Run project from the local repo you just cloned. (i.e open Amino.Run/)


	Android Studio will ask you about missing files - click OK.


	Sync Gradle. If it fails, just restart and try it again.


	Android Studio may show the bar for Gradle sync. If not: Tools > Android > Sync with Gradle files.


	Build project in Android Studio.







Build with Android Studio or IntelliJ IDE (optional)


	Go to File -> Settings


	Inside Settings go to Build, Execution, Deployment -> Build Tools -> Gradle -> Runner


	Check the box Delegate IDE build/run actions to gradle (if it is unchecked) and select Platform Test Runner in drop-down menu of Run tests using:


	Run the build gradle task from Gradle tool Window at AminoRun -> AminoRun(root) -> Tasks -> build -> build







Build with Gradle


	cd Amino.Run/ && ./gradlew build









Run Example Applications


	./gradlew examples:run








          

      

      

    

  

    
      
          
            
  
Limitations


	All transaction participants (recursively) must be Sapphire objects with TwoPCCoordinatorPolicy DM


	If the transaction modifies the state of non-Sapphrie objects, then the semantics of the transaction is not guaranteed. In other words, we cannot handle side effects out side of transaction participants.


	






Use Case


Ideal User Experience

The transferMoney method in the following class is annotated with @Trasaction which means that operations within the method
should be executed as one transaction, either all succeed or all fail. Operations in transferMoney method, e.g. account1.debit or
account2.credit or ledger.log are remote service calls.

public class Finance {   
    Ledger book;
    ...
    @Transaction
    public boolean transferMoney(BankAccountFoo account1, AccountBar account2, unsigned int amount) {
       account1.debit(amount);
       account2.credit(amount);
       this.book.log(String.Format("transferred from %s to %s amount %d", account1.name(), account2.name(), amount)); 
       return true;
    }
}





Transactional code is written as below:

Finance finance;
BankAccountFoo account1;
BankAccountBar account2;
...
try{
  ...
  boolean success = finance.transferMoney(account1, account2, 100);
  ...
} catch (TransactionException te) {
  ...
}






Options


	We may constraint (transaction-annotated) Transactional method declared as static to express the scope of resources involved in the transaction for the first phase, for the sake of simpilicty.


	We may consider other forms of failure notification than the exception.









Phase 1 - Collaborative 2PC Distributed Transaction


	P1: Default distributed transaction (SO/DM not comoplicated)


	P1: External database (type: TO-BE-DECIDED)


	P2: support participant of SO that has consensus DM


	P2: participant crash-recovery repair support





Assumptions of Phase 1


All participants of the transaction have to have 2PC-compiliant transaction DM.

Sapphire objects MUST not be involved in multiple threading executions inside of transaction (thiis one limitation of phase 1. We may allow SO to work multi-threading when threads are started under the control of DM in the future.)
Concurrent control policy is lock-based perssimitive.




User Experience

Code to define transaction

class FinanceTxn implements Sapphire<DCAPTranaction> {
    Ledger book;
    ...
    public boolean transferMoney(BankAccountFoo account1, AccountBar account2, unsigned int amount) {
       account1.debit(amount);
       account2.credit(amount);
       this.book.log(String.Format("transferred from %s to %s amount %d", account1.name(), account2.name(), amount)); 
       return true;
    }
}





Code to invoke transaction

FinanceTxn finance = (FinanceTxn)Sapphire.new_(FinanceTxn.class);
try {
  finance.transferMoney(account1, account2, 100);
  ...
} catch(TransactionException te) {
  ... // nothing on failure
}





[image: ../_images/tx-participants.png]


Alternative options


	Explict specification of participants of the tranaction.

 explicitly specifying the scope of Sapphire objects involved in the transaction helps to reduce the overhead of transaction and make transaction less likely fail due to false negative conflicting. The con is the decision task shifted to application developer, which is error prone when referals to other Sapphire objects exist.









DM Design


DCAPTransaction


	client policy: not much


	server policy

acting as distributed transaction coordinator, enforcing 2PC protocol (1st phase)

 [image: ../_images/tx-state-chart.png]


	group policy: not much


	TranactionException spec

name: “DCAP_transaction_failure”

inner exception: present if available from runtime







2PC-Compliant Participanting DM


	client policy

 register the target to transaction scope


	server policy

 tx_join

 tx_vote

 tx_commit

 tx_abort







Participant state transition in 2PC transaction


[image: ../_images/tx-participant-svrdm.png]participant transaction state diagram








External Databases

External databases, if the adequate interface of 2PC participants is present, should be able to take part in the distributed transaction while the ACID property being well maintained. The wrapper of Sapphire object encapsulating the database access should expose the desired callback methods for the transaction coordinator to manage the transaction as a whole.

interface I2PCParticipant {
  void onJoin(UUID txnId);
  VoteStatus onVoteRequested(UUID txnId);
  void onCommit(UUID txnId);
  void onAbort(UUID txnId);
}






Design Alternatives

The heavey lifting of ensuring transactional external entities can also be done at DM (e.g. server policy). This seems to make the business code (Sapphire Object, SO in short) detached from external dependencies. However, DM requires very concrete details of the external database info for SO in order to conduct proper 2PC mandatory actions, which is already kept and handled by business code. But, if the database type and number is very limited, this option makes sense.






SO having Consensus DM

XAPConsensusPolicy will be specilized for the SO that has consensus DM.
In order for this DM to preserve ACID and consensus propertis, it may require special treatments when server proxy receives certian messages:




	message
	DM action
	leader DM action





	join_tx
	forward to leader
	prepare tx context (like creating snapshot etc if applicable)



	vote_req
	forward to leader
	check integrarity and respond



	commit
	forward to leader
	duplicate data and propogate to other nodes



	abort
	forward to leader
	drop intermediate change





Design alternatives

sandbox of full consensus nodes is created and whatever operations will be processed against the sandbox. This design duplicates the complex plumbings of consensus protocol, and incurrs quite complixity. For phase 1, we choose the simpler way to work on leader node only.






Participant crash-recovery support

Particiapnt may crash after it voted YES and before it got commit/abort final decision. The failed participant needs go through a proper repair process to bring the missing part up to date.
It is to be decided yet how such a process be taken place.




State of finished transactions

In general, transaction’s decision of commit/abort should be kept (until all participants had all got such decision and conducted accordingly) and accible to the participants in case of repair.
Transaction coordinator DM, is a natural choice for the place keepinsuch information. However, it assumes that all participnts always able to locate the right coordinator object.
Another option is placing such information to a central housekeeping SO-object. It works with multiple transaction coordinators, at the cost of one more component system has to maintain.






TODOs


participant crash-recovery

phase 1 did not implement this functionality.
Typically it requires external storage of logs to help the reconstruction as the original SO object had gone, and querying for the status of the uncertain tranaction.




transaction correctness when the called SO object is localhost

as issue 134 indicates, the current Sapphire generated application stub silently swallows all exceptions. When calling the SO object that is on the localhost, the server policy is bypassed, and exception thrown by appllication code is swallowed, hence the caller would mistake the transaction as been fine.
Before the issue is addressed and fixed, as a workaround, we could tweak the generated application stub code (no swallowing exception) to let the caller object to cope with the transaction failure status.







          

      

      

    

  

    
      
          
            
  
Objective

LockingTransactions DM uses lock to enforce, on a single Sapphire object, the serial execution of transactions each of which consists of one or many RPC calls.

Transactions should satisfy ACID properties. Note that these are not standard database ACID definitions. I modified them to suit our DCAP use cases.


	Atomicity: Either all RPCs in the entire transaction are executed or nothing is executed


	Consistency: If the Sapphire object has replicas, the transaction should be executed on all replicas


	Isolation: RPCs in a transaction should not be interfered by other RPCs (either in a different transaction or outside any transaction)


	Durability: Once a transaction is commited, the state of the Sapphire object will persist even if the system crashes. When a Sapphire object is resurrected, it should be restored to the last commited state, even if it is resurrected on a different host.







Failure Cases


Incomplete Transaction

User forgets to commit or rollback a transaction.




Client Dies

Client dies after starting a transaction.




Network Failure

Network breaks during a transaction.




Server Dies

Server dies during a transaction. The current transaction should be rolled back. Sapphire object should be restored to the last committed state after being resurrected.







          

      

      

    

  

    
      
          
            
  This document describes two master slave DM designs, one with synchronous replication and one with asynchronous replication.


Table of Content


	Master/Slave with Synchronous Replication


	Master/Slave with Asynchronous Replication







Master Slave with Sync Replication

[image: ../_images/MasterSlaveSynchronousDiagram.png]MasterSlaveSyncDM


Normal Process


	Client sends request to master server. Client figures out which replica is master by querying group.


	Master server replicates the request to slave synchronously.
2.1 If replication fails due to network issues or timeout, master will ignore the error and returns result to client. In this case, the state of master and slave starts to diverge.
2.2 If replication fails because slave is not up-to-date, master server will sync its current state to slave, and then retry request replication.


	Slave receives request and invoke request on Sapphire object synchronously.


	Slave returns result to Master


	Master returns result to client




When master replicates requests to slave, it will send the ID of the last succeeded request together with the new request. The slave will check if it has successfully received the last succeeded request. If not, it will throw slave-not-up-to-date exception to notify master that their states are out of sync.




Failure Cases

[image: ../_images/MasterSlaveFailureCases.png]MasterSlaveFailureCases

Above diagram illustrated five primary failure cases.


	Master is unable to reach Group temporarily.


	Slave is unable to reach Group temporarily.


	Master cannot reach slave. Replication will fail. Master will keep serving clients. The state between master and slave starts to diverge. Once the network issue is recoverred,


	Master is down. In this case, slave will be promoted to be the master.


	Slave is down.





1. Master unable to reach Group


	Since master is unable to reach group, it cannot renew its lock timely, and therefore it will step down as a slave and refuse client requests.


	After the lock expires, slave will be able to grab the lock, and therefore become the new master.


	Client’s requests to the old master are rejected. The client will query the group to get the new master and start to send requests to the new master.







2. Slave unable to reach Group


	Nothing to do







3. Master cannot reach slave


	Master and slave both alive but the network between them breaks temporarily


	In this case, master will get timeout or network errors when it tries to replicate requests to slave


	Master keeps serving the client. But requests are not replicated to slave. So master and slave will be out of sync during this period.


	When network communication recovers, the master will no longer get timeout or network error when it tries to replicate requests to slave. Instead, the master will get slave not up to date error.


	Upon receiving slave not up to date error, master will sync its current state to slave, and retry the replication.


	If succeeds, then master and slave are in sync again.


	If fails, then master will move on and return result to client. In this case, master and slave are still out of sync.







4. Master down temporarily


	If master is down, the slave will be promoted to be the new master.


	If the state of the slave is up to date before being promoted to master, then there will be no data loss.


	Client will get errors when it sends requests to old master. Client will query group for the new master, and then starts to send requests to the new master.







5. Slave down temporarily


	This case is similar to the privous network break case


	If slave is down, master will get timeout or network errors when it tries to replicate requests to slave


	Master keeps serving client. But the state of master and slave starts to diverge


	When slave comes back online, the master will get slave not up to date error when it tries to replicate requests to slave.


	Upon receiving slave not up to date error, master will sync its current state to slave, and retry the replication.


	If succeeds, then master and slave are in sync again.











Master Slave with Async Replication


Disclamation

The design of master slave with asynchronous replication by design cannot guarantee no data loss.




Components

Like most DMs, LoadBalancedMasterSlaveDM has three components:


	ClientPolicy: A Sapphire object with LoadBalancedMasterSlaveDM has two replicas: master and slave. Client policy queries group policy to figure out master and slave. It sents muttable operations to master, and immutable operations to one of the replicas in round robin manner.


	ServerPolicy: Each replica has its own server policy. Server policies compete for a lock in group policy. The server who owns the lock is the master; the other server is the slave. A server operates either in master mode or in slave mode. In master mode, the server is in charge of appending request to log file, replicating request to slave, and applying request on Sapphire object. In slave mode, the server is in charge of receving replicated requests from master, appending requests to log, and apply requests to Sapphire object.


	GroupPolicy: Group policy provides a lock service. It keeps track of the status of master and slave.







Normal Process

[image: ../_images/MasterSlaveDiagram.png]MasterSlaveDM

Above diagram shows the normal process sequence:


	Client sends request to server. Client figures out which replica is master by querying group.


	Server append the request in log file.


	Server replicate the request to slave asynchorously. Upon receiving the replicated request, slave appends the request to its log, and apply the request to Sapphire object asynchronously.


	Server applies request to Sapphire object.


	Server sends the response back to client.




A few things worth mentioning:


	Log file maintains two pointers: LargestReplicatedIndex and LargestCommittedIndex. Because master applies every request to its Sapphire object, on master, the LargestCommittedIndex is also the LargestReceivedIndex on the log file. Because master replicates requests to slave asnychronously, LargestReplicatedIndex may sometimes fall bahind LargestCommittedIndex on master. Because every request received by slave is also a successfully replicated request, on slave, the LargestReplicatedIndex on slave is also the LargestReceivedIndex. Because slave applies requests on Sapphire asynchronously, LargestCommittedIndex may sometimes fall behind LargestReplicatedIndex on slave.


	Server periodically snapshot its log file for failure recovery purpose. Snapshots are stored in a snapshot log file.


	According to the definition of LoadBalancedMasterSlave DM, the replication from master to slave is asynchronous. Due to asynchronous replication, users may experience data loss during fail over. We should probably change it to synchronous replication.







Implementations

Below are some key classes used in implementation:


	StateManager: Keeps track of replica state changes, e.g. between master to slave or vice versa.


	FileLogger: Keeps track of log entries and takes snapshot periodically.


	AsyncReplicator: Replicates requests from master to slave asynchronously. Only runs in master mode.


	CommitExecutor: Apply requests on Sapphire object.










          

      

      

    

  _static/up-pressed.png





_static/up.png





_images/editExistingDoc.png
Branch: master v / docs / design-docs / amino-run.md Find file  Copy path

Fetching contributors...

322 lines (240 sloc) 19.3 KB Raw  Blame History [J o @
-

Amino Run Overview

Amino Run





_images/howToContribute.png
# Amino.Run Documentation
Docs » Amino.Run Documentation Click this link ) Edit on GitHub

) Next ©
o,
L/

Amino.Run Documentation

-
-
-

Amino.Run is an open source, multilanguage development platform and distributed runtime environment designed to make distributed applications much easier
to design, develop and operate.

Amino Overview

« What is Amino.Run?





_images/MasterSlaveFailureCases.png





_images/MasterSlaveSynchronousDiagram.png
1. Send|

Request

2. Send Roquest to
Siave Syrphonously

eturn Re

8. Retun|

[Response

5 Send Responss.

ke Roquest
I Oboct






_images/tx-state-chart.png
DCAP transaction state chart

tiebody:started

succeeded]

(failed]

lany NO] (timeg oudl] [all YES]

besucceeded

committed

tefailed

50-aborted-tx





_static/ajax-loader.gif





_images/tx-participant-svrdm.png
[ixtageed] / RPC cal

‘tesandbox created

/callthe RPC body

{via server policy stub) / add SO in tx,tag SO w/ tx
code body runing.
fexception thrown]
werror & oK

[timeout] [recvvote req] / vote YES

I[recy vote real] / vote NO-

eor
txaborted v i

waiting o fina arbitary.

(commim

txcommitted

/durablize the master

/6r0p the sandbox

txesandbox destroyed





_images/tx-participants.png
aClent

2DCAPT Serverpolicy]

1]

afinance

[20M serverpolig

[20M serverpoic

[20M serverpoia

¥ 14 1.2
aBandccount anoBankccount] aledger

[aDM_serverpoicy|

A

Al

aninternalFinancen]

[eninternalFinances]






_static/amino-os-logo.png
Q)

\\)





_images/AminoRunOverview.png
MicroService
B

MicroService
C

Host

Host

OMS

Host






_images/KernelServerOMS.png
OMSarver
od__| kemelserver
od__| kemelserver

Remote

Interface od__| kemelserver

M
os

KemelObject

Remesarvar
(hieciManager
id objrel
>l o
od objreT
Remote
Interface oid objrel

M

os






_images/Amino.Run_RemoteMethodInvocationSequence.png
(o]

Lookup "OMSSapprire”
Retum OMSSeer St

Remote Method Invocation on Microservice

Retum Stun of

i Object Ot

[oa]

oot

[Er=—y = [ET= ey

Processing on Locai Host (here Cllert uns)

retum resut

oo,

=

otum rosut

o DM server

[t | oo |

sovr i Prcessing an ot ot |-———

otum rosut

canom

Prcesing -

atum it

rotum resut

[ecoan  [cusome | [scmrsnt sun | s [ousmmscauo|

==y

DM Server
W websequencediagrams.com





_images/Amino.Run_StubStructure.png
— — —5 Remote Call-—

. Microservic
[ Jw'"rﬁ'ﬁﬂf o P e_stub
(for 01)
Client Object 3
DM.InstanceM
DM.Proxy  —3-9» anager_Stub
I
4
Kernel Server
Local Call
Instance
Remote Call Created
— — = by DCAP

Microservice
01

A

7. Invoke M1 on O1

DM.InstanceM
anager

A
6

Kernel Server






_images/MasterSlaveDiagram.png
1. Send Request

4. Updgle Obect

Replcate Log

LargesiRet

wxsz

e ]

LargestCommitedindex

Upfate Object

ApperfiLog

wva

T

LargestCommitedindex






_static/comment-bright.png





nav.xhtml

    
      Table of Contents


      
        		
          Amino.Run Documentation
        


        		
          What is Amino.Run?
        


        		
          Why we created Amino.Run?
        


        		
          Documentation
        


        		
          References
        


        		
          Amino.Run Overview
          
            		
              Microservices
            


            		
              OMS
            


            		
              Kernel Server
            


            		
              DM
            


            		
              Kernel Object
            


          


        


        		
          Remote Interfaces
          
            		
              KernelServer
            


          


        


        		
          RMI Registry
        


        		
          gRPC vs RMI
        


        		
          Kernel Server & OMS
        


        		
          Stubs
          
            		
              App_Stub
            


            		
              ClientPolicy
            


            		
              ServerPolicy_Stub
            


            		
              KernelClient
            


            		
              KernelServer
            


          


        


        		
          Introduction
          
            		
              KeepInCloud + LockingTransactions + ConsensusRSM
              
                		
                  Desired behavior
                


                		
                  How it works under the hood
                


              


            


          


        


        		
          Enabling Client to reach the Server behind a NAT
          
            		
              Problem description:
            


            		
              Proposed solution
            


            		
              Steps to implement the proposed solution
            


          


        


        		
          Quick Start
          
            		
              Download and install GraalVM Community Edition
            


            		
              Install Android SDK and Android Studio (optional)
              
                		
                  Accept Android SDK License
                


                		
                  Add Android Properties
                


              


            


            		
              Get and Build the Source Code
              
                		
                  Check out from Github
                


                		
                  Build and Test the Core
                


                		
                  Build and Run Basic Example Applications
                


                		
                  Other Gradle Tasks and Tips
                


                		
                  Other Gradle Tips
                


              


            


          


        


        		
          Communicate
        


        		
          Some additional Background Reading for the Curious
          
            		
              Releasing
              
                		
                  Publish Core to Bintray
                


              


            


          


        


        		
          Amino.Run Documentation
        


        		
          Create a new document
        


        		
          Contribute to existing documentation
        


      


    
  

_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/plus.png





_static/file.png





