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Getting Started


Installation

Alibi works with Python 3.5+ and can be installed from PyPI [https://pypi.org/project/alibi]:

pip install alibi








Features

Alibi is a Python package designed to help explain the predictions of machine learning models, gauge
the confidence of predictions and eventually support wider capabilities of inspecting the
performance of models with respect to concept drift and algorithmic bias. The focus of the library
is to support the widest range of models using black-box methods where possible.

To get a list of the latest available model explanation algorithms, you can type:

import alibi
alibi.explainers.__all__





['AnchorTabular',
 'AnchorText',
 'AnchorImage',
 'CEM',
 'CounterFactual',
 'CounterFactualProto']





For gauging model confidence:

alibi.confidence.__all__





['TrustScore']





For detailed information on the methods:


	Overview of available methods


	Anchor explanations


	Contrastive Explanation Method (CEM)


	Counterfactual Instances


	Counterfactuals Guided by Prototypes


	Trust Scores











Basic Usage

We will use the Anchor method on tabular data to illustrate
the usage of explainers in Alibi.

First, we import the explainer:

from alibi.explainers import AnchorTabular





Next, we initialize it by passing it a prediction function and any other necessary arguments:

explainer = AnchorTabular(predict_fn, feature_names)





Some methods require an additional .fit step which requires access to the training set the model
was trained on:

explainer.fit(X_train)





Finally, we can call the explainer on a test instance which will return a dictionary containing the
explanation and any additional metadata returned by the computation:

explainer.explain(x)





The exact details will vary slightly from method to method, so we encourage the reader to become
familiar with the types of algorithms supported in Alibi.
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Algorithm overview

This page provides a high-level overview of the algorithms and their features currently implemented
in Alibi.


Model Explanations

These algorithms provide instance-specific (sometimes also called “local”) explanations of ML model
predictions. Given a single instance and a model prediction they aim to answer the question “Why did
my model make this prediction?” The following table summarizes the capabilities of the current
algorithms:













	Explainer

	Classification

	Regression

	Categorical features

	Tabular

	Text

	Images

	Needs training set





	Anchors

	✔

	✘

	✔

	✔

	✔

	✔

	For Tabular



	CEM

	✔

	✘

	✘

	✔

	✘

	✔

	Optional



	Counterfactual Instances

	✔

	✘

	✘

	✔

	✘

	✔

	No



	Prototype Counterfactuals

	✔

	✘

	✘

	✔

	✘

	✔

	Optional






Anchor explanations: produce an “anchor” - a small subset of features and their ranges that will
almost always result in the same model prediction. Documentation,
tabular example,
text classification,
image classification.

Contrastive explanation method (CEM): produce a pertinent positive (PP) and a pertinent negative
(PN) instance. The PP instance finds the features that should me minimally and sufficiently present
to predict the same class as the original prediction (a PP acts as the “most compact” representation
of the instance to keep the same prediction). The PN instance identifies the features that should be
minimally and necessarily absent to maintain the original prediction (a PN acts as the closest
instance that would result in a different prediction). Documentation,
tabular example, image classification.

Counterfactual instances: generate counterfactual examples using a simple loss function. Documentation, image classification.

Prototype Counterfactuals: generate counterfactuals guided by nearest class prototypes other than the class predicted on the original instance. It can use both an encoder or k-d trees to define the prototypes. This method can speed up the search, especially for black box models, and create interpretable counterfactuals. Documentation, tabular example, image classification.




Model Confidence

These algorihtms provide instance-specific scores measuring the model confidence for making a
particular prediction.













	Algorithm

	Classification

	Regression

	Categorical features

	Tabular

	Text

	Images

	Needs training set





	Trust Scores

	✔

	✘

	✘

	✔

	✔1

	✔2

	Yes






Trust scores: produce a “trust score” of a classifier’s prediction. The trust score is the ratio
between the distance to the nearest class different from the predicted class and the distance to the
predicted class, higher scores correspond to more trustworthy predictions.
Documentation,
tabular example, image classification


	1

	Depending on model



	2

	May require dimensionality reduction
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Roadmap

Alibi aims to be the go-to library for ML model interpretability and monitoring. There are multiple
challenges for developing a high-quality, production-ready library that achieves this. In addition
to having high quality reference implementations of the most promising algorithms, we need extensive
documentation and case studies comparing the different interpretability methods and their respective
pros and cons. A clean and a usable API is also a priority. Additionally we want to move beyond
model explanation and provide tools to gauge ML model confidence, measure concept drift, detect
outliers and algorithmic bias among other things.


Additional explanation methods


	Influence functions [https://arxiv.org/abs/1703.04730] [WIP] [https://github.com/SeldonIO/alibi/pull/80]


	Feature attribution methods (e.g. SHAP [https://github.com/slundberg/shap])


	Global methods (e.g. ALE [https://christophm.github.io/interpretable-ml-book/ale.html#fn31])







Important enhancements to explanation methods


	Robust handling of categorical variables
(Github issue [https://github.com/SeldonIO/alibi/issues/33])


	Document pitfalls of popular methods like LIME and PDP
(Github issue [https://github.com/SeldonIO/alibi/issues/42])


	Unified API (Github issue [https://github.com/SeldonIO/alibi/issues/23])


	Standardized return types for explanations


	Explanations for regression models (Github issue [https://github.com/SeldonIO/alibi/issues/19])


	Explanations for sequential data


	Develop methods for highly correlated features







Beyond explanations


	Investigate alternatives to Trust Scores for gauging the confidence of black-box models


	Concept drift - provide methods for monitoring and alerting to changes in the incoming data
distribution and the conditional distribution of the predictions


	Bias detection methods


	Outlier detection methods (Github issue [https://github.com/SeldonIO/alibi/issues/13])
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This page was generated from doc/source/methods/Anchors.ipynb [https://github.com/SeldonIO/alibi/blob/5b941cad6e54fa670b39e19781580a5d85fb6142/doc/source/methods/Anchors.ipynb].



[source]


Anchors


Overview

The anchor algorithm is based on the Anchors: High-Precision Model-Agnostic Explanations [https://homes.cs.washington.edu/~marcotcr/aaai18.pdf] paper by Ribeiro et al. and builds on the open source code [https://github.com/marcotcr/anchor] from the paper’s first author.

The algorithm provides model-agnostic (black box) and human interpretable explanations suitable for classification models applied to images, text and tabular data. The idea behind anchors is to explain the behaviour of complex models with high-precision rules called anchors. These anchors are locally sufficient conditions to ensure a certain prediction with a high degree of confidence.

Anchors address a key shortcoming of local explanation methods like LIME [https://arxiv.org/abs/1602.04938] which proxy the local behaviour of the model in a linear way. It is however unclear to what extent the explanation holds up in the region around the instance to be explained, since both the model and data can exhibit non-linear behaviour in the neighborhood of the instance. This approach can easily lead to overconfidence in the explanation and misleading conclusions on unseen but
similar instances. The anchor algorithm tackles this issue by incorporating coverage, the region where the explanation applies, into the optimization problem. A simple example from sentiment classification illustrates this (Figure 1). Dependent on the sentence, the occurrence of the word not is interpreted as positive or negative for the sentiment by LIME. It is clear that the explanation using not is very local. Anchors however aim to maximize the coverage, and require not to occur
together with good or bad to ensure respectively negative or positive sentiment.

[image: LIMEsentiment]

Ribeiro et al., Anchors: High-Precision Model-Agnostic Explanations, 2018

As highlighted by the above example, an anchor explanation consists of if-then rules, called the anchors, which sufficiently guarantee the explanation locally and try to maximize the area for which the explanation holds. This means that as long as the anchor holds, the prediction should remain the same regardless of the values of the features not present in the anchor. Going back to the sentiment example: as long as not good is present, the sentiment is negative, regardless of the other
words in the movie review.


Text

For text classification, an interpretable anchor consists of the words that need to be present to ensure a prediction, regardless of the other words in the input. The words that are not present in a candidate anchor can be sampled in 2 ways:


	Replace word token by UNK token.


	Replace word token by sampled token from a corpus with the same POS tag and probability proportional to the similarity in the embedding space. By sampling similar words, we keep more context than simply using the UNK token.







Tabular Data

Anchors are also suitable for tabular data with both categorical and continuous features. The continuous features are discretized into quantiles (e.g. deciles), so they become more interpretable. The features in a candidate anchor are kept constant (same category or bin for discretized features) while we sample the other features from a training set. As a result, anchors for tabular data need access to training data. Let’s illustrate this with an example. Say we want to predict whether a person
makes less or more than £50,000 per year based on the person’s characteristics including age (continuous variable) and marital status (categorical variable). The following would then be a potential anchor: Hugo makes more than £50,000 because he is married and his age is between 35 and 45 years.




Images

Similar to LIME, images are first segmented into superpixels, maintaining local image structure. The interpretable representation then consists of the presence or absence of each superpixel in the anchor. It is crucial to generate meaningful superpixels in order to arrive at interpretable explanations. The algorithm supports a number of standard image segmentation algorithms (felzenszwalb, slic and
quickshift [https://scikit-image.org/docs/dev/auto_examples/segmentation/plot_segmentations.html#sphx-glr-auto-examples-segmentation-plot-segmentations-py]) and allows the user to provide a custom segmentation function.

The superpixels not present in a candidate anchor can be masked in 2 ways:


	Take the average value of that superpixel.


	Use the pixel values of a superimposed picture over the masked superpixels.




[image: anchorimage]

Ribeiro et al., Anchors: High-Precision Model-Agnostic Explanations, 2018




Efficiently Computing Anchors

The anchor needs to return the same prediction as the original instance with a minimal confidence of e.g. 95%. If multiple candidate anchors satisfy this constraint, we go with the anchor that has the largest coverage. Because the number of potential anchors is exponential in the feature space, we need a faster approximate solution.

The anchors are constructed bottom-up in combination with beam search [https://en.wikipedia.org/wiki/Beam_search]. We start with an empty rule or anchor, and incrementally add an if-then rule in each iteration until the minimal confidence constraint is satisfied. If multiple valid anchors are found, the one with the largest coverage is returned.

In order to select the best candidate anchors for the beam width efficiently during each iteration, we formulate the problem as a pure exploration multi-armed bandit [https://www.cse.iitb.ac.in/~shivaram/papers/kk_colt_2013.pdf] problem. This limits the number of model prediction calls which can be a computational bottleneck.

For more details, we refer the reader to the original paper [https://homes.cs.washington.edu/~marcotcr/aaai18.pdf].






Usage

While each data type has specific requirements to initialize the explainer and return explanations, the underlying algorithm to construct the anchors is the same.

In order to efficiently generate anchors, the following hyperparameters need to be set to sensible values when calling the explain method:


	threshold: the previously discussed minimal confidence level. threshold defines the minimum fraction of samples for a candidate anchor that need to lead to the same prediction as the original instance. A higher value gives more confidence in the anchor, but also leads to more computation time. The default value is 0.95.


	tau: determines when we assume convergence for the multi-armed bandit. A bigger value for tau means faster convergence but also looser anchor conditions. By default equal to 0.15.


	beam_size: the size of the beam width. A bigger beam width can lead to a better overall anchor at the expense of more computation time.


	batch_size: the batch size used for sampling. A bigger batch size gives more confidence in the anchor, again at the expense of computation time since it involves more model prediction calls. The default value is 100.


	coverage_samples: number of samples used to compute the coverage of the anchor. By default set to 10000.





Text


Initialization

Since the explainer works on black box models, only access to a predict function is needed. The model below is a simple logistic regression trained on movie reviews with negative or positive sentiment and pre-processed with a CountVectorizer:

predict_fn = lambda x: clf.predict(vectorizer.transform(x))





If we choose to sample similar words from a corpus, we first need to load a spaCy model:

import spacy
from alibi.utils.download import spacy_model

model = 'en_core_web_md'
spacy_model(model=model)
nlp = spacy.load(model)





We can now initialize our explainer:

explainer = AnchorText(nlp, predict_fn)








Explanation

Let’s define the instance we want to explain and verify that the sentiment prediction on the original instance is positive:

text = 'This is a good book .'
class_names = ['negative', 'positive']
pred = class_names[predict_fn([text])[0]]





Now we can explain the instance:

explanation = explainer.explain(text, threshold=0.95, use_proba=True, use_unk=False)





We set the confidence threshold at 95%. use_proba equals True means that we will sample from the corpus proportional to the word similarity, while use_unk False implies that we are not replacing words outside the anchor with UNK tokens. use_proba False and use_unk True would mean that we are simply replacing the words that are not in the candidate anchor with the UNK tokens.

The explain method returns a dictionary that contains key: value pairs for:


	names: the words in the anchor.


	precision: the fraction of times the sampled instances where the anchor holds yields the same prediction as the original instance. The precision will always be \(\geq\) threshold for a valid anchor.


	coverage: the coverage of the anchor over a sampled part of the training set.




Under the raw key, the dictionary also contains example instances where the anchor holds and the prediction is the same as on the original instance, as well as examples where the anchor holds but the prediction changed to give the user a sense of where the anchor fails. raw also stores information on the names, precision and coverage of partial anchors. This allows the user to track the improvement in for instance the precision as more features (words in the case of text) are added
to the anchor.






Tabular Data


Initialization and fit

To initialize the explainer, we provide a predict function, a list with the feature names to make the anchors easy to understand as well as an optional mapping from the encoded categorical features to a description of the category. An example for categorical_names would be category_map = {0: list(‘married’, ‘divorced’), 3: list(‘high school diploma’, ‘master’s degree’)}. Each key in category_map refers to the column index in the input for the relevant categorical variable, while the
values are lists with the options for each categorical variable.

predict_fn = lambda x: clf.predict(preprocessor.transform(x))
explainer = AnchorTabular(predict_fn, feature_names, categorical_names=category_map)





Tabular data requires a fit step to map the ordinal features into quantiles and therefore needs access to a representative set of the training data. disc_perc is a list with percentiles used for binning:

explainer.fit(X_train, disc_perc=[25, 50, 75])








Explanation

Let’s check the prediction of the model on the original instance and explain:

class_names = ['<=50K', '>50K']
pred = class_names[explainer.predict_fn(X)[0]]
explanation = explainer.explain(X, threshold=0.95)





The returned explanation dictionary contains the same key: value pairs as the text explainer, so you could explain a prediction as follows:

Prediction:  <=50K
Anchor: Marital Status = Never-Married AND Relationship = Own-child
Precision: 1.00
Coverage: 0.13










Images


Initialization

Besides the predict function, we also need to specify either a built in or custom superpixel segmentation function. The built in methods are felzenszwalb [https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.felzenszwalb], slic [https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.slic] and quickshift [https://scikit-image.org/docs/dev/api/skimage.segmentation.html#skimage.segmentation.quickshift]. It is important to
create sensible superpixels in order to speed up convergence and generate interpretable explanations. Tuning the hyperparameters of the segmentation method is recommended.

explainer = AnchorImage(predict_fn, image_shape, segmentation_fn='slic',
                        segmentation_kwargs={'n_segments': 15, 'compactness': 20, 'sigma': .5},
                        images_background=None)





Example of superpixels generated for the Persian cat picture using the slic method:

[image: persiancat] [image: persiancatsegm]

The following function would be an example of a custom segmentation function dividing the image into rectangles.

def superpixel(image, size=(4, 7)):
    segments = np.zeros([image.shape[0], image.shape[1]])
    row_idx, col_idx = np.where(segments == 0)
    for i, j in zip(row_idx, col_idx):
        segments[i, j] = int((image.shape[1]/size[1]) * (i//size[0]) + j//size[1])
    return segments





The images_background parameter allows the user to provide images used to superimpose on the masked superpixels, not present in the candidate anchor, instead of taking the average value of the masked superpixel. The superimposed images need to have the same shape as the explained instance.




Explanation

We can then explain the instance in the usual way:

explanation = explainer.explain(image, p_sample=.5)





p_sample determines the fraction of superpixels that are either changed to the average superpixel value or that are superimposed.

The explanation dictionary again contains information about the anchor’s precision, coverage and examples where the anchor does or does not hold. On top of that, it also contains a masked image with only the anchor superpixels visible under the anchor key (see image below) as well as the image’s superpixels under segments.

[image: persiancatanchor]








Examples


Image

Anchor explanations for ImageNet

Anchor explanations for fashion MNIST




Tabular Data

Anchor explanations on the Iris dataset

Anchor explanations for income prediction




Text

Anchor explanations for movie sentiment
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Contrastive Explanation Method


Overview

The Contrastive Explanation Method (CEM) is based on the paper Explanations based on the Missing: Towards Constrastive Explanations with Pertinent Negatives [https://arxiv.org/abs/1802.07623] and extends the code [https://github.com/IBM/Contrastive-Explanation-Method] open sourced by the authors. CEM generates instance based local black box explanations for classification models in terms of Pertinent Positives (PP) and Pertinent Negatives (PN). For a PP, the method finds the features
that should be minimally and sufficiently present (e.g. important pixels in an image) to predict the same class as on the original instance. PN’s on the other hand identify what features should be minimally and necessarily absent from the instance to be explained in order to maintain the original prediction class. The aim of PN’s is not to provide a full set of characteristics that should be absent in the explained instance, but to provide a minimal set that differentiates it from the closest
different class. Intuitively, the Pertinent Positives could be compared to Anchors while Pertinent Negatives are similar to Counterfactuals. As the authors of the paper state, CEM can generate clear explanations of the form: “An input x is classified in class y because features \(f_{i}\), …, \(f_{k}\) are present and because features \(f_{m}\), …, \(f_{p}\) are absent.” The current implementation is most suitable for images and tabular data without categorical features.

In order to create interpretable PP’s and PN’s, feature-wise perturbation needs to be done in a meaningful way. To keep the perturbations sparse and close to the original instance, the objective function contains an elastic net (\(\beta\)\(L_{1}\) + \(L_{2}\)) regularizer. Optionally, an auto-encoder can be trained to reconstruct instances of the training set. We can then introduce the \(L_{2}\) reconstruction error of the perturbed instance as an additional loss term in our
objective function. As a result, the perturbed instance lies close to the training data manifold.

The ability to add or remove features to arrive at respectively PN’s or PP’s implies that there are feature values that contain no information with regards to the model’s predictions. Consider for instance the MNIST image below where the pixels are scaled between 0 and 1. The pixels with values close to 1 define the number in the image while the background pixels have value 0. We assume that perturbations towards the background value 0 are equivalent to removing features, while perturbations
towards 1 imply adding features.

[image: mnist4]

It is intuitive to understand that adding features to get a PN means changing 0’s into 1’s until a different number is formed, in this case changing a 4 into a 9.

[image: mnist4pn]

To find the PP, we do the opposite and change 1’s from the original instance into 0’s, the background value, and only keep a vague outline of the original 4.

[image: mnist4pp]

It is however often not trivial to find these non-informative feature values and domain knowledge becomes very important.

For more details, we refer the reader to the original paper [https://arxiv.org/abs/1802.07623].




Usage


Initialization

Because the optimizer is defined in TensorFlow (TF), we need to run the CEM explainer within a TensorFlow session:

# initialize TensorFlow session before model definition
sess = tf.Session()
K.set_session(sess)  # using a Keras model in the same session
sess.run(tf.global_variables_initializer())





We can then load our MNIST classifier and the (optional) auto-encoder. The example below uses Keras or TF models. This allows optimization of the objective function to run entirely with automatic differentiation because the TF graph has access to the underlying model architecture. For models built in different frameworks (e.g. scikit-learn), the gradients of part of the loss function with respect to the input features need to be evaluated numerically. We’ll handle this case later.

# define models
cnn = load_model('mnist_cnn.h5')
ae = load_model('mnist_ae.h5')





We can now initialize the CEM explainer:

# initialize CEM explainer
shape = (1,) + x_train.shape[1:]
mode = 'PN'
cem = CEM(sess, cnn, mode, shape, kappa=0., beta=.1,
          feature_range=(x_train.min(), x_train.max()),
          gamma=100, ae_model=ae, max_iterations=1000,
          c_init=1., c_steps=10, learning_rate_init=1e-2,
          clip=(-1000.,1000.), no_info_val=-1.)





Besides passing the previously defined session as well as the predictive and auto-encoder models, we set a number of hyperparameters …

… general:


	mode: ‘PN’ or ‘PP’.


	shape: shape of the instance to be explained, starting with batch dimension. Currently only single explanations are supported, so the batch dimension should be equal to 1.


	feature_range: global or feature-wise min and max values for the perturbed instance.




… related to the optimizer:


	max_iterations: number of loss optimization steps for each value of c; the multiplier of the first loss term.


	learning_rate_init: initial learning rate, follows polynomial decay.


	clip: min and max gradient values.




… related to the non-informative value:


	no_info_val: as explained in the previous section, it is important to define which feature values are considered background and not crucial for the class predictions. For MNIST images scaled between 0 and 1 or -0.5 and 0.5 as in the notebooks, pixel perturbations in the direction of the (low) background pixel value can be seen as removing features, moving towards the non-informative value. As a result, the no_info_val parameter is set at a low value like -1. no_info_val can be
defined globally or feature-wise. For most applications, domain knowledge becomes very important here. If a representative sample of the training set is available, we can always (naively) infer a no_info_val by taking the feature-wise median or mean:




cem.fit(x_train, no_info_type='median')





… related to the objective function:


	c_init and c_steps: the multiplier \(c\) of the first loss term is updated for c_steps iterations, starting at c_init. The first loss term encourages the perturbed instance to be predicted as a different class for a PN and the same class for a PP. If we find a candidate PN or PP for the current value of \(c\), we reduce the value of \(c\) for the next optimization cycle to put more emphasis on the regularization terms and improve the solution. If we cannot find a
solution, \(c\) is increased to put more weight on the prediction class restrictions of the PN and PP before focusing on the regularization.


	kappa: the first term in the loss function is defined by a difference between the predicted probabilities for the perturbed instance of the original class and the max of the other classes. \(\kappa \geq 0\) defines a cap for this difference, limiting its impact on the overall loss to be optimized. Similar to the original paper, we set \(\kappa\) to 0. in the examples.


	beta: \(\beta\) is the \(L_{1}\) loss term multiplier. A higher value for \(\beta\) means more weight on the sparsity restrictions of the perturbations. Similar to the paper, we set \(\beta\) to 0.1 for the MNIST and Iris datasets.


	gamma: multiplier for the optional \(L_{2}\) reconstruction error. A higher value for \(\gamma\) means more emphasis on the reconstruction error penalty defined by the auto-encoder. Similar to the paper, we set \(\gamma\) to 100 when we have an auto-encoder available.




While the paper’s default values for the loss term coefficients worked well for the simple examples provided in the notebooks, it is recommended to test their robustness for your own applications.




Explanation

We can finally explain the instance and close the TensorFlow session when we are done:

explanation = cem.explain(X)
sess.close()
K.clear_session()





The explain method returns a dictionary with the following key: value pairs:


	X: original instance


	X_pred: predicted class of original instance


	PN or PP: Pertinent Negative or Pertinant Positive


	PN_pred or PP_pred: predicted class of PN or PP


	grads_graph: gradient values computed from the TF graph with respect to the input features at the PN or PP


	grads_num: numerical gradient values with respect to the input features at the PN or PP







Numerical Gradients

So far, the whole optimization problem could be defined within the TF graph, making autodiff possible. It is however possible that we do not have access to the model architecture and weights, and are only provided with a predict function returning probabilities for each class. The CEM can be initialized in the TF session as follows:

# define model
lr = load_model('iris_lr.h5')
predict_fn = lambda x: lr.predict(x)

# initialize CEM explainer
shape = (1,) + x_train.shape[1:]
mode = 'PP'
cem = CEM(sess, predict_fn, mode, shape, kappa=0., beta=.1,
          feature_range=(x_train.min(), x_train.max()),
          eps=(1e-2, 1e-2), update_num_grad=100)





In this case, we need to evaluate the gradients of the loss function with respect to the input features numerically:


\begin{equation*} \frac{\partial L}{\partial x} = \frac{\partial L}{\partial p} \frac{\partial p}{\partial x} \end{equation*}
where \(L\) is the loss function, \(p\) the predict function and \(x\) the input features to optimize. There are now 2 additional hyperparameters to consider:


	eps: a tuple to define the perturbation size used to compute the numerical gradients. eps[0] and eps[1] are used respectively for \(^{\delta L}/_{\delta p}\) and \(^{\delta p}/_{\delta x}\). eps[0] and eps[1] can be a combination of float values or numpy arrays. For eps[0], the array dimension should be (1 x nb of prediction categories) and for eps[1] it should be (1 x nb of features). For the Iris dataset, eps could look as follows:




eps0 = np.array([[1e-2, 1e-2, 1e-2]])  # 3 prediction categories, equivalent to 1e-2
eps1 = np.array([[1e-2, 1e-2, 1e-2, 1e-2]])  # 4 features, also equivalent to 1e-2
eps = (eps0, eps1)






	update_num_grad: for complex models with a high number of parameters and a high dimensional feature space (e.g. Inception on ImageNet), evaluating numerical gradients can be expensive as they involve prediction calls for each perturbed instance. The update_num_grad parameter allows you to set a batch size on which to evaluate the numerical gradients, reducing the number of prediction calls required.









Examples

Contrastive Explanations Method (CEM) applied to MNIST

Contrastive Explanations Method (CEM) applied to Iris dataset
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Counterfactual Instances


Overview

A counterfactual explanation of an outcome or a situation \(Y\) takes the form “If \(X\) had not occured, \(Y\) would not have occured” (Interpretable Machine Learning [https://christophm.github.io/interpretable-ml-book/counterfactual.html]). In the context of a machine learning classifier \(X\) would be an instance of interest and \(Y\) would be the label predicted by the model. The task of finding a counterfactual explanation is then to find some \(X^\prime\) that
is in some way related to the original instance \(X\) but leading to a different prediction \(Y^\prime\). Reasoning in counterfactual terms is very natural for humans, e.g. asking what should have been done differently to achieve a different result. As a consequence counterfactual instances for machine learning predictions is a promising method for human-interpretable explanations.

The counterfactual method described here is the most basic way of defining the problem of finding such \(X^\prime\). Our algorithm loosely follows Wachter et al. (2017): Counterfactual Explanations without Opening the Black Box: Automated Decisions and the GDPR [https://arxiv.org/abs/1711.00399]. For an extension to the basic method which provides ways of finding higher quality counterfactual instances \(X^\prime\) in a quicker time, please refer to Counterfactuals Guided by
Prototypes.

We can reason that the most basic requirements for a counterfactual \(X^\prime\) are as follows:


	The predicted class of \(X^\prime\) is different from the predicted class of \(X\)


	The difference between \(X\) and \(X^\prime\) should be human-interpretable.




While the first condition is straight-forward, the second condition does not immediately lend itself to a condition as we need to first define “interpretability” in a mathematical sense. For this method we restrict ourselves to a particular definition by asserting that \(X^\prime\) should be as close as possible to \(X\) without violating the first condition. There main issue with this definition of “interpretability” is that the difference between \(X^\prime\) and \(X\) required
to change the model prediciton might be so small as to be un-interpretable to the human eye in which case we need a more sophisticated approach.

That being said, we can now cast the search for \(X^\prime\) as a simple optimization problem with the following loss:


\[L = L_{\text{pred}} + \lambda L_{\text{dist}},\]

where the first lost term \(L_{\text{pred}}\) guides the search towards points \(X^\prime\) which would change the model prediction and the second term \(\lambda L_{\text{dist}}\) ensures that \(X^\prime\) is close to \(X\). This form of loss has a single hyperparameter \(\lambda\) weighing the contributions of the two competing terms.

The specific loss in our implementation is as follows:


\[L(X^\prime\vert X) = (f_t(X^\prime) - p_t)^2 + \lambda L_1(X^\prime, X).\]

Here \(t\) is the desired target class for \(X^\prime\) which can either be specified in advance or left up to the optimization algorithm to find, \(p_t\) is the target probability of this class (typically \(p_t=1\)), \(f_t\) is the model prediction on class \(t\) and \(L_1\) is the distance between the proposed counterfactual instance \(X^\prime\) and the instance to be explained \(X\). The use of the \(L_1\) distance should ensure that the
\(X^\prime\) is a sparse counterfactual - minimizing the number of features to be changed in order to change the prediction.

The optimal value of the hyperparameter \(\lambda\) will vary from dataset to dataset and even within a dataset for each instance to be explained and the desired target class. As such it is difficult to set and we learn it as part of the optimization algorithm, i.e. we want to optimize


\[\min_{X^{\prime}}\max_{\lambda}L(X^\prime\vert X)\]

subject to


\[\vert f_t(X^\prime)-p_t\vert\leq\epsilon \text{ (counterfactual constraint)},\]

where \(\epsilon\) is a tolerance parameter. In practice this is done in two steps, on the first pass we sweep a broad range of \(\lambda\), e.g. \(\lambda\in(10^{-1},\dots,10^{-10}\)) to find lower and upper bounds \(\lambda_{\text{lb}}, \lambda_{\text{ub}}\) where counterfactuals exist. Then we use bisection to find the maximum \(\lambda\in[\lambda_{\text{lb}}, \lambda_{\text{ub}}]\) such that the counterfactual constraint still holds. The result is a set of counterfactual
instances \(X^\prime\) with varying distance from the test instance \(X\).




Usage


Initialization

The counterfactual (CF) explainer method works on fully black-box models, meaning they can work with arbitrary functions that take arrays and return arrays. However, if the user has access to a full TensorFlow (TF) or Keras model, this can be passed in as well to take advantage of the automatic differentiation in TF to speed up the search. This section describes the initialization for a TF/Keras model, for fully black-box models refer to numerical gradients.

Similar to other methods, we use TensorFlow (TF) internally to solve the optimization problem defined above, thus we need to run the counterfactual explainer within a TF session, for a Keras model once it has been loaded we can just get it:

model = load_model('my_model.h5')
sess = K.get_session()





Then we can initialize the counterfactual object:

shape = (1,) + x_train.shape[1:]
cf = CounterFactual(sess, model, shape, distance_fn='l1', target_proba=1.0,
                    target_class='other', max_iter=1000, early_stop=50, lam_init=1e-1,
                    max_lam_steps=10, tol=0.05, learning_rate_init=0.1,
                    feature_range=(-1e10, 1e10), eps=0.01, init='identity',
                    decay=True, write_dir=None, debug=False)





Besides passing the session and the model, we set a number of hyperparameters …

… general:


	shape: shape of the instance to be explained, starting with batch dimension. Currently only single explanations are supported, so the batch dimension should be equal to 1.


	feature_range: global or feature-wise min and max values for the perturbed instance.


	write_dir: write directory for Tensorboard logging of the loss terms. It can be helpful when tuning the hyperparameters for your use case. It makes it easy to verify that e.g. not 1 loss term dominates the optimization, that the number of iterations is OK etc. You can access Tensorboard by running tensorboard --logdir {write_dir} in the terminal.


	debug: flag to enable/disable writing to Tensorboard.




… related to the optimizer:


	max_iterations: number of loss optimization steps for each value of \(\lambda\); the multiplier of the distance loss term.


	learning_rate_init: initial learning rate, follows linear decay.


	decay: flag to disable learning rate decay if desired


	early_stop: early stopping criterion for the search. If no counterfactuals are found for this many steps or if this many counterfactuals are found in a row we change \(\lambda\) accordingly and continue the search.


	init: how to initialize the search, currently only "identity" is supported meaning the search starts from the original instance.




… related to the objective function:


	distance_fn: distance function between the test instance \(X\) and the proposed counterfactual \(X^\prime\), currently only "l1" is supported.


	target_proba: desired target probability for the returned counterfactual instance. Defaults to 1.0, but it could be useful to reduce it to allow a looser definition of a counterfactual instance.


	tol: the tolerance within the target_proba, this works in tandem with target_proba to specify a range of acceptable predicted probability values for the counterfactual.


	target_class: desired target class for the returned counterfactual instance. Can be either an integer denoting the specific class membership or the string other which will find a counterfactual instance whose predicted class is anything other than the class of the test instance.


	lam_init: initial value of the hyperparameter \(\lambda\). This is set to a high value \(\lambda=1e^{-1}\) and annealed during the search to find good bounds for \(\lambda\) and for most applications should be fine to leave as default.


	max_lam_steps: the number of steps (outer loops) to search for with a different value of \(\lambda\).




While the default values for the loss term coefficients worked well for the simple examples provided in the notebooks, it is recommended to test their robustness for your own applications.




Fit

The method is purely unsupervised so no fit method is necessary.




Explanation

We can now explain the instance \(X\) and close the TensorFlow session when we are done:

explanation = cf.explain(X)
sess.close()
K.clear_session()





The explain method returns a dictionary with the following key: value pairs:


	cf: dictionary containing the counterfactual instance found with the smallest distance to the test instance, it has the following keys:


	X: the counterfactual instance


	distance: distance to the original instance


	lambda: value of \(\lambda\) corresponding to the counterfactual


	index: the step in the search procedure when the counterfactual was found


	class: predicted class of the counterfactual


	proba: predicted class probabilities of the counterfactual


	loss: counterfactual loss






	orig_class: predicted class of original instance


	orig_proba: predicted class probabilites of the original instance


	all: dictionary of all instances encountered during the search that satisfy the counterfactual constraint but have higher distance to the original instance than the returned counterfactual. This is organized by levels of \(\lambda\), i.e. explanation['all'][0] will be a list of dictionaries corresponding to instances satisfying the counterfactual condition found in the first iteration over \(\lambda\) during bisection.







Numerical Gradients

So far, the whole optimization problem could be defined within the TF graph, making automatic differentiation possible. It is however possible that we do not have access to the model architecture and weights, and are only provided with a predict function returning probabilities for each class. The counterfactual can then be initialized in the TF session as follows:

# define model
model = load_model('mnist_cnn.h5')
predict_fn = lambda x: cnn.predict(x)

# initialize explainer
shape = (1,) + x_train.shape[1:]
cf = CounterFactual(sess, predict_fn, shape, distance_fn='l1', target_proba=1.0,
                    target_class='other', max_iter=1000, early_stop=50, lam_init=1e-1,
                    max_lam_steps=10, tol=0.05, learning_rate_init=0.1,
                    feature_range=(-1e10, 1e10), eps=0.01, init





In this case, we need to evaluate the gradients of the loss function with respect to the input features \(X\) numerically:


\begin{equation*} \frac{\partial L_{\text{pred}}}{\partial X} = \frac{\partial L_\text{pred}}{\partial p} \frac{\partial p}{\partial X} \end{equation*}
where \(L_\text{pred}\) is the predict function loss term, \(p\) the predict function and \(x\) the input features to optimize. There is now an additional hyperparameter to consider:


	eps: a float or an array of floats to define the perturbation size used to compute the numerical gradients of \(^{\delta p}/_{\delta X}\). If a single float, the same perturbation size is used for all features, if the array dimension is (1 x nb of features), then a separate perturbation value can be used for each feature. For the Iris dataset, eps could look as follows:




eps = np.array([[1e-2, 1e-2, 1e-2, 1e-2]])  # 4 features, also equivalent to eps=1e-2










Examples

Counterfactual instances on MNIST
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Counterfactuals Guided by Prototypes


Overview

According to Molnar’s Interpretable Machine Learning [https://christophm.github.io/interpretable-ml-book/counterfactual.html] book, a counterfactual explanation of a prediction describes the smallest change to the feature values that changes the prediction. One use case for counterfactuals would be loan approvals. Ann might be interested why her application for a loan was rejected, and what would need to change so the application is approved.

Counterfactuals are generated from the original instance by applying perturbations. The counterfactual then needs to satisfy certain constraints related to the model prediction or sparsity of the perturbed instance.

Some issues arise during the perturbation process:


	the training data manifold needs to be respected


	finding a satisfactory counterfactual can take time, especially for high dimensional data


	there is often a trade off between sparsity and interpretability of the counterfactual




We can address these issues by incorporating additional loss terms in the objective function that is optimized using gradient descent. A basic loss function for a counterfactual can look like this:

\(Loss\) = \(cL_{pred}\) + \(\beta\)\(L_{1}\) + \(L_{2}\)

The first loss term, \(cL_{pred}\), encourages the perturbed instance to predict another class than the original instance. The \(\beta\)\(L_{1}\) + \(L_{2}\) acts as a regularizer and introduces sparsity by penalizing the size of the difference between the counterfactual and the perturbed instance. While we can obtain sparse counterfactuals using this objective function, these are often not very interpretable because the training data manifold is not taken into account, and the
perturbations are not necessarily meaningful.

The Contrastive Explanation Method (CEM) uses an auto-encoder [https://en.wikipedia.org/wiki/Autoencoder] which is trained to reconstruct instances of the training set. We can then add the \(L_{2}\) reconstruction error of the perturbed instance as loss term to keep the counterfactual close to the training data manifold. The loss function becomes:

\(Loss\) = \(cL_{pred}\) + \(\beta\)\(L_{1}\) + \(L_{2}\) + \(\gamma\)\(L_{AE}\)

The \(L_{AE}\) does however not necessarily lead to interpretable solutions or speed up the counterfactual search. That’s where the prototype loss term \(L_{proto}\) comes in. To define the prototype for each prediction class, we can use the encoder part of the previously mentioned auto-encoder. We also need the training data or at least a representative sample. We use the model to make predictions on this data set. For each predicted class, we encode the instances belonging to that
class. The class prototype is simply the average encoding for that class. When we want to generate a counterfactual, we first find the nearest prototype other than the one for the predicted class on the original instance. The \(L_{proto}\) loss term tries to minimize the \(L_{2}\) distance between the counterfactual and the nearest prototype. As a result, the perturbations are guided to the closest prototype, speeding up the counterfactual search and making the perturbations more
meaningful as they move towards a typical in-distribution instance. If we do not have a trained encoder available, we can build class representations using k-d trees [https://en.wikipedia.org/wiki/K-d_tree] for each class. The prototype is then the nearest instance from a k-d tree other than the tree which represents the predicted class on the original instance. The loss function now looks as follows:

\(Loss\) = \(cL_{pred}\) + \(\beta\)\(L_{1}\) + \(L_{2}\) + \(\gamma\)\(L_{AE}\) + \(\theta\)\(L_{proto}\)

The method allows us to select specific prototype classes to guide the counterfactual. For example, in MNIST the closest prototype to 9 is 4. However, we can specify that we want to move towards the 7 prototype and avoid 4.

In order to help interpretability, we can also add a trust score constraint on the proposed counterfactual. The trust score is defined as the ratio of the distance between the encoded counterfactual and the prototype of the class predicted on the original instance, and the distance between the encoded counterfactual and the prototype of the class predicted for the counterfactual instance. Intuitively, a high trust score implies that the counterfactual is far from the originally predicted class
compared to the counterfactual class. For more info on trust scores, please check out the documentation.

Because of the \(L_{proto}\) term, we can actually remove the prediction loss term and still obtain an interpretable counterfactual. This is especially relevant for fully black box models. When we provide the counterfactual search method with a Keras or TensorFlow model, it is incorporated in the TensorFlow graph and evaluated using automatic differentiation. However, if we only have access to the model’s predict function, the gradient updates are numerical and typically require a large
number of prediction calls because of \(L_{pred}\). These prediction calls can slow the search down significantly and become a bottleneck. We can represent the gradient of the loss term as follows:


\begin{equation*} \frac{\partial L_{pred}}{\partial x} = \frac{\partial L_{pred}}{\partial p} \frac{\partial p}{\partial x} \end{equation*}
where \(p\) is the predict function and \(x\) the input features to optimize. For a 28 by 28 MNIST image, the \(^{\delta p}/_{\delta x}\) term alone would require a prediction call with batch size 28x28x2 = 1568. By using the prototypes to guide the search however, we can remove the prediction loss term and only make a single prediction at the end of each gradient update to check whether the predicted class on the proposed counterfactual is different from the original class.

The different use cases are highlighted in the example notebooks linked at the bottom of the page.

More details will be revealed in a forthcoming paper.




Usage


Initialization

The counterfactuals guided by prototypes method works on fully black-box models, meaning they can work with arbitrary functions that take arrays and return arrays. However, if the user has access to a full TensorFlow (TF) or Keras model, this can be passed in as well to take advantage of the automatic differentiation in TF to speed up the search. This section describes the initialization for a TF/Keras model. Please see the numerical gradients section for black box
models.

We first load our MNIST classifier and the (optional) auto-encoder and encoder:

cnn = load_model('mnist_cnn.h5')
ae = load_model('mnist_ae.h5')
enc = load_model('mnist_enc.h5')





Because the optimizer is defined in TensorFlow, we need to run the explainer within a TensorFlow session. The example below uses the session set by the loaded Keras models:

sess = K.get_session()





We can now initialize the counterfactual:

shape = (1,) + x_train.shape[1:]
cf = CounterFactualProto(sess, cnn, shape, kappa=0., beta=.1, gamma=100., theta=100.,
                         ae_model=ae, enc_model=enc, max_iterations=500,
                         feature_range=(-.5, .5), c_init=1., c_steps=5,
                         learning_rate_init=1e-2, clip=(-1000., 1000.), write_dir='./cf')





Besides passing the previously defined session as well as the predictive, and (optional) auto-encoder and models, we set a number of hyperparameters …

… general:


	shape: shape of the instance to be explained, starting with batch dimension. Currently only single explanations are supported, so the batch dimension should be equal to 1.


	feature_range: global or feature-wise min and max values for the perturbed instance.


	write_dir: write directory for Tensorboard logging of the loss terms. It can be helpful when tuning the hyperparameters for your use case. It makes it easy to verify that e.g. not 1 loss term dominates the optimization, that the number of iterations is OK etc. You can access Tensorboard by running tensorboard --logdir {write_dir} in the terminal. The figure below for example shows the loss to be optimized over different \(c\) iterations. It is clear that within each iteration, the
number of max_iterations steps is too high and we can speed up the search.




[image: cfplossopt]

… related to the optimizer:


	max_iterations: number of loss optimization steps for each value of c; the multiplier of the first loss term.


	learning_rate_init: initial learning rate, follows polynomial decay.


	clip: min and max gradient values.




… related to the objective function:


	c_init and c_steps: the multiplier \(c\) of the first loss term is updated for c_steps iterations, starting at c_init. The first loss term encourages the perturbed instance to be predicted as a different class than the original instance. If we find a candidate counterfactual for the current value of \(c\), we reduce the value of \(c\) for the next optimization cycle to put more emphasis on the other loss terms and improve the solution. If we cannot find a solution,
\(c\) is increased to put more weight on the prediction class restrictions of the counterfactual.


	kappa: the first term in the loss function is defined by a difference between the predicted probabilities for the perturbed instance of the original class and the max of the other classes. \(\kappa \geq 0\) defines a cap for this difference, limiting its impact on the overall loss to be optimized. Similar to CEM, we set \(\kappa\) to 0 in the examples.


	beta: \(\beta\) is the \(L_{1}\) loss term multiplier. A higher value for \(\beta\) means more weight on the sparsity restrictions of the perturbations. \(\beta\) equal to 0.1 works well for the example datasets.


	gamma: multiplier for the optional \(L_{2}\) reconstruction error. A higher value for \(\gamma\) means more emphasis on the reconstruction error penalty defined by the auto-encoder. A value of 100 is reasonable for the examples.


	theta: multiplier for the \(L_{proto}\) loss term. A higher \(\theta\) means more emphasis on the gradients guiding the counterfactual towards the nearest class prototype. A value of 100 worked well for the examples.




While the default values for the loss term coefficients worked well for the simple examples provided in the notebooks, it is recommended to test their robustness for your own applications.




Fit

If we use an encoder to find the class prototypes, we need an additional fit step on the training data:

cf.fit(x_train)








Explanation

We can now explain the instance and close the TensorFlow session when we are done:

explanation = cf.explain(X, Y=None, target_class=None, threshold=0.,
                         verbose=True, print_every=100, log_every=100)
sess.close()
K.clear_session()






	X: original instance


	Y: one-hot-encoding of class label for X, inferred from the prediction on X if None.


	target_class: classes considered for the nearest class prototype. Either a list with class indices or None.


	threshold: threshold level for the ratio between the distance of the counterfactual to the prototype of the predicted class for the original instance over the distance to the prototype of the predicted class for the counterfactual. If the trust score is below the threshold, the proposed counterfactual does not meet the requirements and is rejected.


	verbose: if True, print progress of counterfactual search every print_every steps.


	log_every: if write_dir for Tensorboard is specified, then log losses every log_every steps.




The explain method returns a dictionary with the following key: value pairs:


	cf: a dictionary with the overall best counterfactual found. explanation[‘cf’] has the following key: value pairs:


	X: the counterfactual instance


	class: predicted class for the counterfactual


	proba: predicted class probabilities for the counterfactual


	grads_graph: gradient values computed from the TF graph with respect to the input features at the counterfactual


	grads_num: numerical gradient values with respect to the input features at the counterfactual






	orig_class: predicted class for original instance


	orig_proba: predicted class probabilities for original instance


	all: a dictionary with the iterations as keys and for each iteration a list with counterfactuals found in that iteration as values. So for instance, during the first iteration, explanation[‘all’][0], initially we typically find fairly noisy counterfactuals that improve over the course of the iteration. The counterfactuals for the subsequent iterations then need to be better (sparser) than the previous best counterfactual. So over the next few iterations, we probably find less but
better solutions.







Numerical Gradients

So far, the whole optimization problem could be defined within the TF graph, making automatic differentiation possible. It is however possible that we do not have access to the model architecture and weights, and are only provided with a predict function returning probabilities for each class. The counterfactual can then be initialized in the TF session as follows:

# define model
cnn = load_model('mnist_cnn.h5')
predict_fn = lambda x: cnn.predict(x)
ae = load_model('mnist_ae.h5')
enc = load_model('mnist_enc.h5')

sess = K.get_session()

# initialize explainer
shape = (1,) + x_train.shape[1:]
cf = CounterFactualProto(sess, predict_fn, shape, gamma=100., theta=100.,
                         ae_model=ae, enc_model=enc, max_iterations=500,
                         feature_range=(-.5, .5), c_init=1., c_steps=4,
                         eps=(1e-2, 1e-2), update_num_grad=100)





In this case, we need to evaluate the gradients of the loss function with respect to the input features numerically:


\begin{equation*} \frac{\partial L_{pred}}{\partial x} = \frac{\partial L_{pred}}{\partial p} \frac{\partial p}{\partial x} \end{equation*}
where \(L_{pred}\) is the predict function loss term, \(p\) the predict function and \(x\) the input features to optimize. There are now 2 additional hyperparameters to consider:


	eps: a tuple to define the perturbation size used to compute the numerical gradients. eps[0] and eps[1] are used respectively for \(^{\delta L_{pred}}/_{\delta p}\) and \(^{\delta p}/_{\delta x}\). eps[0] and eps[1] can be a combination of float values or numpy arrays. For eps[0], the array dimension should be (1 x nb of prediction categories) and for eps[1] it should be (1 x nb of features). For the Iris dataset, eps could look as follows:




eps0 = np.array([[1e-2, 1e-2, 1e-2]])  # 3 prediction categories, equivalent to 1e-2
eps1 = np.array([[1e-2, 1e-2, 1e-2, 1e-2]])  # 4 features, also equivalent to 1e-2
eps = (eps0, eps1)






	update_num_grad: for complex models with a high number of parameters and a high dimensional feature space (e.g. Inception on ImageNet), evaluating numerical gradients can be expensive as they involve prediction calls for each perturbed instance. The update_num_grad parameter allows you to set a batch size on which to evaluate the numerical gradients, reducing the number of prediction calls required.




We can also remove the prediction loss term by setting c_init to 0 and only run 1 c_steps, and still obtain an interpretable counterfactual. This dramatically speeds up the counterfactual search (e.g. by 100x in the MNIST example notebook):

cf = CounterFactualProto(sess, predict_fn, shape, gamma=100., theta=100.,
                         ae_model=ae, enc_model=enc, max_iterations=500,
                         feature_range=(-.5, .5), c_init=0., c_steps=1)








k-d trees

So far, we assumed that we have a trained encoder available to find the nearest class prototype. This is however not a hard requirement. As mentioned in the Overview section, we can use k-d trees to build class representations, find prototypes by querying the trees for each class and return the closest class instance as the nearest prototype. We can run the counterfactual as follows:

cf = CounterFactualProto(sess, cnn, shape, use_kdtree=True, theta=10., feature_range=(-.5, .5))
cf.fit(x_train, trustscore_kwargs=None)
explanation = cf.explain(X)






	trustscore_kwargs: keyword arguments for the trust score object used to define the k-d trees for each class. Please check the trust scores documentation for more info.









Examples

Counterfactuals guided by prototypes on MNIST

Counterfactuals guided by prototypes on Boston housing dataset
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Trust Scores


Overview

It is important to know when a machine learning classifier’s predictions can be trusted. Relying on the classifier’s (uncalibrated) prediction probabilities is not optimal and can be improved upon. Enter trust scores. Trust scores measure the agreement between the classifier and a modified nearest neighbor classifier on the predicted instances. The trust score is the ratio between the distance of the instance to the nearest class different from the predicted class and the distance to the
predicted class. A score of 1 would mean that the distance to the predicted class is the same as to the nearest other class. Higher scores correspond to more trustworthy predictions. The original paper on which the algorithm is based is called To Trust Or Not To Trust A Classifier [https://arxiv.org/abs/1805.11783]. Our implementation borrows heavily from and extends the authors’ open source code [https://github.com/google/TrustScore].

The method requires labeled training data to build k-d trees [https://en.wikipedia.org/wiki/K-d_tree] for each prediction class. When the classifier makes predictions on a test instance, we measure the distance of the instance to each of the trees. The trust score is then calculated by taking the ratio of the smallest distance to any other class than the predicted class and the distance to the predicted class. The distance is measured to the \(k\)th nearest neighbor in each tree or by
using the average distance from the first to the \(k\)th neighbor.

In order to filter out the impact of outliers in the training data, they can optionally be removed using 2 filtering techniques. The first technique builds a k-d tree for each class and removes a fraction \(\alpha\) of the training instances with the largest k nearest neighbor (kNN) distance to the other instances in the class. The second fits a kNN-classifier to the training set, and removes a fraction \(\alpha\) of the training instances with the highest prediction class disagreement.
Be aware that the first method operates on the prediction class level while the second method runs on the whole training set. It is also important to keep in mind that kNN methods might not be suitable when there are significant scale differences between the input features.

Trust scores can for instance be used as a warning flag for machine learning predictions. If the score drops below a certain value and there is disagreement between the model probabilities and the trust score, the prediction can be explained using techniques like anchors or contrastive explanations.

Trust scores work best for low to medium dimensional feature spaces. When working with high dimensional observations like images, dimensionality reduction methods (e.g. auto-encoders or PCA) could be applied as a pre-processing step before computing the scores. This is demonstrated by the following example notebook.




Usage


Initialization and fit

At initialization, the optional filtering method used to remove outliers during the fit stage needs to be specified as well:

from alibi.confidence import TrustScore

ts = TrustScore(alpha=.05,
                filter_type='distance_knn',
                k_filter=10,
                leaf_size=40,
                metric='euclidean',
                dist_filter_type='point')





All the hyperparameters are optional:


	alpha: target fraction of instances to filter out.


	filter_type: filter method; one of None (no filtering), distance_knn (first technique discussed in Overview) or probability_knn (second technique).


	k_filter: number of neighbors used for the distance or probability based filtering method.


	leaf_size: affects the speed and memory usage to build the k-d trees. The memory scales with the ratio between the number of samples and the leaf size.


	metric: distance metric used for the k-d trees. Euclidean by default.


	dist_filter_type: point uses the distance to the \(k\)-nearest point while mean uses the average distance from the 1st to the \(k\)th nearest point during filtering.




In this example, we use the distance_knn method to filter out 5% of the instances of each class with the largest distance to its 10th nearest neighbor in that class:

ts.fit(X_train, y_train, classes=3)






	classes: equals the number of prediction classes.




X_train is the training set and y_train represents the training labels, either using one-hot encoding (OHE) or simple class labels.




Scores

The trust scores are simply calculated through the score method. score also returns the class labels of the closest not predicted class as a numpy array:

score, closest_class = ts.score(X_test,
                                y_pred,
                                k=2,
                                dist_type='point')





y_pred can again be represented using both OHE or via class labels.


	k: \(k\)th nearest neighbor used to compute distance to for each class.


	dist_type: similar to the filtering step, we can compute the distance to each class either to the \(k\)-th nearest point (point) or by using the average distance from the 1st to the \(k\)th nearest point (mean).









Examples

Trust Scores applied to Iris

Trust Scores applied to MNIST
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Anchor explanations for income prediction

In this example, we will explain predictions of a Random Forest classifier whether a person will make more or less than $50k based on characteristics like age, marital status, gender or occupation. The features are a mixture of ordinal and categorical data and will be pre-processed accordingly.


[1]:






import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.impute import SimpleImputer
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from alibi.explainers import AnchorTabular
from alibi.datasets import adult








Load adult dataset


[2]:






data, labels, feature_names, category_map = adult()













/home/avl/git/fork-alibi/alibi/datasets.py:126: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.
  raw_data = pd.read_csv(dataset_url, names=raw_features, delimiter=', ').fillna('?')






Define shuffled training and test set


[3]:






np.random.seed(0)
data_perm = np.random.permutation(np.c_[data, labels])
data = data_perm[:,:-1]
labels = data_perm[:,-1]








[4]:






idx = 30000
X_train,Y_train = data[:idx,:], labels[:idx]
X_test, Y_test = data[idx+1:,:], labels[idx+1:]










Create feature transformation pipeline

Create feature pre-processor. Needs to have ‘fit’ and ‘transform’ methods. Different types of pre-processing can be applied to all or part of the features. In the example below we will standardize ordinal features and apply one-hot-encoding to categorical features.

Ordinal features:


[5]:






ordinal_features = [x for x in range(len(feature_names)) if x not in list(category_map.keys())]
ordinal_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),
                                      ('scaler', StandardScaler())])







Categorical features:


[6]:






categorical_features = list(category_map.keys())
categorical_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='median')),
                                          ('onehot', OneHotEncoder(handle_unknown='ignore'))])







Combine and fit:


[7]:






preprocessor = ColumnTransformer(transformers=[('num', ordinal_transformer, ordinal_features),
                                               ('cat', categorical_transformer, categorical_features)])
preprocessor.fit(data)








[7]:






ColumnTransformer(n_jobs=None, remainder='drop', sparse_threshold=0.3,
         transformer_weights=None,
         transformers=[('num', Pipeline(memory=None,
     steps=[('imputer', SimpleImputer(copy=True, fill_value=None, missing_values=nan,
       strategy='median', verbose=0)), ('scaler', StandardScaler(copy=True, with_mean=True, with_std=True))]), [0, 8, 9, 10]), ('cat', Pipeline(memory=None,
     steps=[(...oat64'>, handle_unknown='ignore',
       n_values=None, sparse=True))]), [1, 2, 3, 4, 5, 6, 7, 11])])










Train Random Forest model

Fit on pre-processed (imputing, OHE, standardizing) data.


[8]:






np.random.seed(0)
clf = RandomForestClassifier(n_estimators=50)
clf.fit(preprocessor.transform(X_train), Y_train)








[8]:






RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
            max_depth=None, max_features='auto', max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, n_estimators=50, n_jobs=None,
            oob_score=False, random_state=None, verbose=0,
            warm_start=False)







Define predict function


[9]:






predict_fn = lambda x: clf.predict(preprocessor.transform(x))
print('Train accuracy: ', accuracy_score(Y_train, predict_fn(X_train)))
print('Test accuracy: ', accuracy_score(Y_test, predict_fn(X_test)))













Train accuracy:  0.9655333333333334
Test accuracy:  0.85390625









Initialize and fit anchor explainer for tabular data


[10]:






explainer = AnchorTabular(predict_fn, feature_names, categorical_names=category_map)







Discretize the ordinal features into quartiles


[11]:






explainer.fit(X_train, disc_perc=[25, 50, 75])










Getting an anchor

Below, we get an anchor for the prediction of the first observation in the test set. An anchor is a sufficient condition - that is, when the anchor holds, the prediction should be the same as the prediction for this instance.


[12]:






idx = 0
class_names = ['<=50K', '>50K']
print('Prediction: ', class_names[explainer.predict_fn(X_test[idx].reshape(1, -1))[0]])













Prediction:  <=50K






We set the precision threshold to 0.95. This means that predictions on observations where the anchor holds will be the same as the prediction on the explained instance at least 95% of the time.


[13]:






explanation = explainer.explain(X_test[idx], threshold=0.95)
print('Anchor: %s' % (' AND '.join(explanation['names'])))
print('Precision: %.2f' % explanation['precision'])
print('Coverage: %.2f' % explanation['coverage'])













Anchor: Marital Status = Separated AND Sex = Female
Precision: 0.96
Coverage: 0.11
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Anchor explanations on the Iris dataset


[1]:






import numpy as np
from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
from alibi.explainers import AnchorTabular








Load iris dataset


[2]:






dataset = load_iris()
feature_names = dataset.feature_names
class_names = list(dataset.target_names)







Define training and test set


[3]:






idx = 145
X_train,Y_train = dataset.data[:idx,:], dataset.target[:idx]
X_test, Y_test = dataset.data[idx+1:,:], dataset.target[idx+1:]










Train Random Forest model


[4]:






np.random.seed(0)
clf = RandomForestClassifier(n_estimators=50)
clf.fit(X_train, Y_train)








[4]:






RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gini',
            max_depth=None, max_features='auto', max_leaf_nodes=None,
            min_impurity_decrease=0.0, min_impurity_split=None,
            min_samples_leaf=1, min_samples_split=2,
            min_weight_fraction_leaf=0.0, n_estimators=50, n_jobs=None,
            oob_score=False, random_state=None, verbose=0,
            warm_start=False)







Define predict function


[5]:






predict_fn = lambda x: clf.predict_proba(x)










Initialize and fit anchor explainer for tabular data


[6]:






explainer = AnchorTabular(predict_fn, feature_names)







Discretize the ordinal features into quartiles


[7]:






explainer.fit(X_train, disc_perc=[25, 50, 75])










Getting an anchor

Below, we get an anchor for the prediction of the first observation in the test set. An anchor is a sufficient condition - that is, when the anchor holds, the prediction should be the same as the prediction for this instance.


[8]:






idx = 0
print('Prediction: ', class_names[explainer.predict_fn(X_test[idx].reshape(1, -1))[0]])













Prediction:  virginica






We set the precision threshold to 0.95. This means that predictions on observations where the anchor holds will be the same as the prediction on the explained instance at least 95% of the time.


[9]:






explanation = explainer.explain(X_test[idx], threshold=0.95)
print('Anchor: %s' % (' AND '.join(explanation['names'])))
print('Precision: %.2f' % explanation['precision'])
print('Coverage: %.2f' % explanation['coverage'])













Anchor: petal width (cm) > 1.80 AND sepal width (cm) <= 2.80
Precision: 0.99
Coverage: 0.07
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Anchor explanations for movie sentiment

In this example, we will explain why a certain sentence is classified by a logistic regression as having negative or positive sentiment. The logistic regression is trained on negative and positive movie reviews.


[1]:






import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.model_selection import train_test_split
import spacy
from alibi.explainers import AnchorText
from alibi.datasets import movie_sentiment
from alibi.utils.download import spacy_model








Load movie review dataset


[2]:






data, labels = movie_sentiment()







Define shuffled training, validation and test set


[3]:






train, test, train_labels, test_labels = train_test_split(data, labels, test_size=.2, random_state=42)
train, val, train_labels, val_labels = train_test_split(train, train_labels, test_size=.1, random_state=42)
train_labels = np.array(train_labels)
test_labels = np.array(test_labels)
val_labels = np.array(val_labels)










Apply CountVectorizer to training set


[4]:






vectorizer = CountVectorizer(min_df=1)
vectorizer.fit(train)








[4]:






CountVectorizer(analyzer='word', binary=False, decode_error='strict',
        dtype=<class 'numpy.int64'>, encoding='utf-8', input='content',
        lowercase=True, max_df=1.0, max_features=None, min_df=1,
        ngram_range=(1, 1), preprocessor=None, stop_words=None,
        strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',
        tokenizer=None, vocabulary=None)










Fit model


[5]:






np.random.seed(0)
clf = LogisticRegression(solver='liblinear')
clf.fit(vectorizer.transform(train), train_labels)








[5]:






LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
          intercept_scaling=1, max_iter=100, multi_class='warn',
          n_jobs=None, penalty='l2', random_state=None, solver='liblinear',
          tol=0.0001, verbose=0, warm_start=False)










Define prediction function


[6]:






predict_fn = lambda x: clf.predict(vectorizer.transform(x))










Make predictions on train and test sets


[7]:






preds_train = predict_fn(train)
preds_val = predict_fn(val)
preds_test = predict_fn(test)
print('Train accuracy', accuracy_score(train_labels, preds_train))
print('Validation accuracy', accuracy_score(val_labels, preds_val))
print('Test accuracy', accuracy_score(test_labels, preds_test))













Train accuracy 0.9801624284382905
Validation accuracy 0.7544910179640718
Test accuracy 0.7589841878294202









Load spaCy model

English multi-task CNN trained on OntoNotes, with GloVe vectors trained on Common Crawl. Assigns word vectors, context-specific token vectors, POS tags, dependency parse and named entities.


[8]:






model = 'en_core_web_md'
spacy_model(model=model)
nlp = spacy.load(model)










Initialize anchor text explainer


[9]:






explainer = AnchorText(nlp, predict_fn)










Explain a prediction


[10]:






class_names = ['negative', 'positive']







Prediction:


[11]:






text = 'This is a good book .'
pred = class_names[predict_fn([text])[0]]
alternative =  class_names[1 - predict_fn([text])[0]]
print('Prediction: %s' % pred)













Prediction: positive






Explanation:


[12]:






np.random.seed(0)
explanation = explainer.explain(text, threshold=0.95, use_proba=False, use_unk=True)







use_unk=True means we will perturb examples by replacing words with UNKs. Let us now take a look at the anchor. The word ‘good’ basically guarantees a positive prediction. This is because the UNKs do not take instances like ‘not good’ into account.


[13]:






print('Anchor: %s' % (' AND '.join(explanation['names'])))
print('Precision: %.2f' % explanation['precision'])
print('\nExamples where anchor applies and model predicts %s:' % pred)
print('\n'.join([x[0] for x in explanation['raw']['examples'][-1]['covered_true']]))
print('\nExamples where anchor applies and model predicts %s:' % alternative)
print('\n'.join([x[0] for x in explanation['raw']['examples'][-1]['covered_false']]))













Anchor: good
Precision: 1.00

Examples where anchor applies and model predicts positive:
UNK UNK UNK good book UNK
UNK is a good book .
UNK is a good book UNK
UNK is UNK good book .
UNK UNK UNK good book .
UNK is a good book .
UNK is UNK good UNK UNK
UNK UNK UNK good UNK .
This UNK a good UNK UNK
This is a good UNK .

Examples where anchor applies and model predicts negative:










Changing the perturbation distribution

Let’s try this with another perturbation distribution, namely one that replaces words by similar words instead of UNKs.

Explanation:


[14]:






np.random.seed(0)
explanation = explainer.explain(text, threshold=0.95, use_proba=True, use_unk=False)







The anchor now shows that we need more to guarantee the positive prediction:


[15]:






print('Anchor: %s' % (' AND '.join(explanation['names'])))
print('Precision: %.2f' % explanation['precision'])
print('\nExamples where anchor applies and model predicts %s:' % pred)
print('\n'.join([x[0] for x in explanation['raw']['examples'][-1]['covered_true']]))
print('\nExamples where anchor applies and model predicts %s:' % alternative)
print('\n'.join([x[0] for x in explanation['raw']['examples'][-1]['covered_false']]))













Anchor: good AND book
Precision: 0.95

Examples where anchor applies and model predicts positive:
Another includes both good book .
Any explains that good book .
SOME refers another good book .
This makes an good book .
SOME encapsulates every good book .
That consists this good book .
THE carries this good book .
Both is another good book .
Every sits another good book .
BOTH leads the good book .

Examples where anchor applies and model predicts negative:
SOME falls another good book .
THE feels another good book .
This starts some good book .
THis starts another good book .
All requires a good book .
Some goes a good book .
This happens some good book .
Some starts a good book .
Both feels some good book .
Both feels another good book .
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Anchor explanations for ImageNet


[1]:






import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import keras
from keras.applications.inception_v3 import InceptionV3, preprocess_input, decode_predictions
from alibi.datasets import imagenet
from alibi.explainers import AnchorImage













Using TensorFlow backend.







Load InceptionV3 model pre-trained on ImageNet


[2]:






model = InceptionV3(weights='imagenet')










Download and preprocess some images from ImageNet

The imagenet function takes as arguments one of the following ImageNet categories: ‘Persian cat’, ‘volcano’, ‘strawberry’, ‘jellyfish’ or ‘centipede’ as well as the number of images to return and the target size of the image.


[3]:






category = 'Persian cat'
image_shape = (299, 299, 3)
data, labels = imagenet(category, nb_images=10, target_size=image_shape[:2], seed=2)
print('Images shape: {}'.format(data.shape))













Images shape: (10, 299, 299, 3)






Apply image preprocessing, make predictions and map predictions back to categories. The output label is a tuple which consists of the class name, description and the prediction probability.


[4]:






images = preprocess_input(data)
preds = model.predict(images)
label = decode_predictions(preds, top=3)
print(label[0])













[('n02123394', 'Persian_cat', 0.9637921), ('n07615774', 'ice_lolly', 0.0015529424), ('n03207941', 'dishwasher', 0.0012963532)]









Define prediction function


[5]:






predict_fn = lambda x: model.predict(x)










Initialize anchor image explainer

The segmentation function will be used to generate superpixels. It is important to have meaningful superpixels in order to generate a useful explanation. Please check scikit-image’s segmentation methods [http://scikit-image.org/docs/dev/api/skimage.segmentation.html] (felzenszwalb, slic and quickshift built in the explainer) for more information.

In the example, the pixels not in the proposed anchor will take the average value of their superpixel. Another option is to superimpose the pixel values from other images which can be passed as a numpy array to the images_background argument.


[6]:






segmentation_fn = 'slic'
kwargs = {'n_segments': 15, 'compactness': 20, 'sigma': .5}
explainer = AnchorImage(predict_fn, image_shape, segmentation_fn=segmentation_fn,
                        segmentation_kwargs=kwargs, images_background=None)










Explain a prediction

The explanation of the below image returns a mask with the superpixels that constitute the anchor.


[7]:






i = 0
plt.imshow(data[i])








[7]:






<matplotlib.image.AxesImage at 0x7f77214b0dd8>












[image: ../_images/examples_anchor_image_imagenet_14_1.png]




The threshold, p_sample and tau parameters are also key to generate a sensible explanation and ensure fast enough convergence. The threshold defines the minimum fraction of samples for a candidate anchor that need to lead to the same prediction as the original instance. While a higher threshold gives more confidence in the anchor, it also leads to longer computation time. p_sample determines the fraction of superpixels that are changed to either the average value of the superpixel or
the pixel value for the superimposed image. The pixels in the proposed anchors are of course unchanged. The parameter tau determines when we assume convergence. A bigger value for tau means faster convergence but also looser anchor restrictions.


[8]:






image = images[i]
np.random.seed(0)
explanation = explainer.explain(image, threshold=.95, p_sample=.5, tau=0.25)







Superpixels in the anchor:


[9]:






plt.imshow(explanation['anchor'])








[9]:






<matplotlib.image.AxesImage at 0x7f7720ae6f98>












[image: ../_images/examples_anchor_image_imagenet_18_1.png]




A visualization of all the superpixels:


[10]:






plt.imshow(explanation['segments'])








[10]:






<matplotlib.image.AxesImage at 0x7f7720b98ba8>












[image: ../_images/examples_anchor_image_imagenet_20_1.png]
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Anchor explanations for fashion MNIST


[1]:






import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import keras
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input
from keras.models import Model
from keras.utils import to_categorical
from alibi.explainers import AnchorImage













Using TensorFlow backend.







Load and prepare fashion MNIST data


[2]:






(x_train, y_train), (x_test, y_test) = keras.datasets.fashion_mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)













x_train shape: (60000, 28, 28) y_train shape: (60000,)







[3]:






idx = 0
plt.imshow(x_train[idx])








[3]:






<matplotlib.image.AxesImage at 0x7fc93802a320>












[image: ../_images/examples_anchor_image_fashion_mnist_4_1.png]




Scale, reshape and categorize data


[4]:






x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)













x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)









Define CNN model


[5]:






def model():
    x_in = Input(shape=(28, 28, 1))
    x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x_in)
    x = MaxPooling2D(pool_size=2)(x)
    x = Dropout(0.3)(x)

    x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
    x = MaxPooling2D(pool_size=2)(x)
    x = Dropout(0.3)(x)

    x = Flatten()(x)
    x = Dense(256, activation='relu')(x)
    x = Dropout(0.5)(x)
    x_out = Dense(10, activation='softmax')(x)

    cnn = Model(inputs=x_in, outputs=x_out)
    cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

    return cnn








[6]:






cnn = model()
cnn.summary()













_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 28, 28, 1)         0
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 28, 28, 64)        320
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 64)        0
_________________________________________________________________
dropout_1 (Dropout)          (None, 14, 14, 64)        0
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 14, 14, 32)        8224
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 7, 7, 32)          0
_________________________________________________________________
dropout_2 (Dropout)          (None, 7, 7, 32)          0
_________________________________________________________________
flatten_1 (Flatten)          (None, 1568)              0
_________________________________________________________________
dense_1 (Dense)              (None, 256)               401664
_________________________________________________________________
dropout_3 (Dropout)          (None, 256)               0
_________________________________________________________________
dense_2 (Dense)              (None, 10)                2570
=================================================================
Total params: 412,778
Trainable params: 412,778
Non-trainable params: 0
_________________________________________________________________









Train model


[7]:






cnn.fit(x_train, y_train, batch_size=64, epochs=3)













Epoch 1/3
60000/60000 [==============================] - 40s 672us/step - loss: 0.5861 - acc: 0.7857
Epoch 2/3
60000/60000 [==============================] - 40s 659us/step - loss: 0.4079 - acc: 0.8522
Epoch 3/3
60000/60000 [==============================] - 42s 703us/step - loss: 0.3647 - acc: 0.8667







[7]:






<keras.callbacks.History at 0x7fc9383eb7b8>








[8]:






# Evaluate the model on test set
score = cnn.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])













Test accuracy:  0.8835









Define superpixels

Function to generate rectangular superpixels for a given image. Alternatively, use one of the built in methods. It is important to have meaningful superpixels in order to generate a useful explanation. Please check scikit-image’s segmentation methods [http://scikit-image.org/docs/dev/api/skimage.segmentation.html] (felzenszwalb, slic and quickshift built in the explainer) for more information on the built in methods.


[9]:






def superpixel(image, size=(4, 7)):
    segments = np.zeros([image.shape[0], image.shape[1]])
    row_idx, col_idx = np.where(segments == 0)
    for i, j in zip(row_idx, col_idx):
        segments[i, j] = int((image.shape[1]/size[1]) * (i//size[0]) + j//size[1])
    return segments








[10]:






segments = superpixel(x_train[idx])
plt.imshow(segments)








[10]:






<matplotlib.image.AxesImage at 0x7fc9247d5ac8>












[image: ../_images/examples_anchor_image_fashion_mnist_15_1.png]







Define prediction function


[11]:






predict_fn = lambda x: cnn.predict(x)










Initialize anchor image explainer


[12]:






image_shape = x_train[idx].shape
explainer = AnchorImage(predict_fn, image_shape, segmentation_fn=superpixel)













Specified both a segmentation function to create superpixels and keyword arguments for built segmentation functions. By default the specified segmentation function will be used.









Explain a prediction

The explanation returns a mask with the superpixels that constitute the anchor.

Image to be explained:


[13]:






i = 0
image = x_test[i]
plt.imshow(image[:,:,0])








[13]:






<matplotlib.image.AxesImage at 0x7fc92c087048>
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Generate explanation:


[14]:






explanation = explainer.explain(image, threshold=.95, p_sample=.8)







Show anchor:


[15]:






plt.imshow(explanation['anchor'][:,:,0])








[15]:






<matplotlib.image.AxesImage at 0x7fc92c0c0ef0>
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From the example, it looks like the heel alone is sufficient to predict a shoe.
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Contrastive Explanations Method (CEM) applied to MNIST

The Contrastive Explanation Method (CEM) can generate black box model explanations in terms of pertinent positives (PP) and pertinent negatives (PN). For PP, it finds what should be minimally and sufficiently present (e.g. important pixels in an image) to justify its classification. PN on the other hand identify what should be minimally and necessarily absent from the explained instance in order to maintain the original prediction.

The original paper where the algorithm is based on can be found on arXiv [https://arxiv.org/pdf/1802.07623.pdf].


[1]:






import keras
from keras import backend as K
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input, UpSampling2D
from keras.models import Model, load_model
from keras.utils import to_categorical
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
from alibi.explainers import CEM













Using TensorFlow backend.







Load and prepare MNIST data


[2]:






(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
plt.gray()
plt.imshow(x_test[4])













x_train shape: (60000, 28, 28) y_train shape: (60000,)







[2]:






<matplotlib.image.AxesImage at 0x7f36b0f394e0>
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Prepare data: scale, reshape and categorize


[3]:






x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)













x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)







[4]:






xmin, xmax = -.5, .5
x_train = ((x_train - x_train.min()) / (x_train.max() - x_train.min())) * (xmax - xmin) + xmin
x_test = ((x_test - x_test.min()) / (x_test.max() - x_test.min())) * (xmax - xmin) + xmin










Define and train CNN model


[5]:






def cnn_model():
    x_in = Input(shape=(28, 28, 1))
    x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x_in)
    x = MaxPooling2D(pool_size=2)(x)
    x = Dropout(0.3)(x)

    x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
    x = MaxPooling2D(pool_size=2)(x)
    x = Dropout(0.3)(x)

    x = Flatten()(x)
    x = Dense(256, activation='relu')(x)
    x = Dropout(0.5)(x)
    x_out = Dense(10, activation='softmax')(x)

    cnn = Model(inputs=x_in, outputs=x_out)
    cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

    return cnn








[6]:






cnn = cnn_model()
cnn.summary()
cnn.fit(x_train, y_train, batch_size=64, epochs=5, verbose=0)
cnn.save('mnist_cnn.h5')













_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 28, 28, 1)         0
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 28, 28, 64)        320
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 64)        0
_________________________________________________________________
dropout_1 (Dropout)          (None, 14, 14, 64)        0
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 14, 14, 32)        8224
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 7, 7, 32)          0
_________________________________________________________________
dropout_2 (Dropout)          (None, 7, 7, 32)          0
_________________________________________________________________
flatten_1 (Flatten)          (None, 1568)              0
_________________________________________________________________
dense_1 (Dense)              (None, 256)               401664
_________________________________________________________________
dropout_3 (Dropout)          (None, 256)               0
_________________________________________________________________
dense_2 (Dense)              (None, 10)                2570
=================================================================
Total params: 412,778
Trainable params: 412,778
Non-trainable params: 0
_________________________________________________________________






Evaluate the model on test set


[7]:






score = cnn.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])













Test accuracy:  0.9892









Define and train auto-encoder


[8]:






def ae_model():
    x_in = Input(shape=(28, 28, 1))
    x = Conv2D(16, (3, 3), activation='relu', padding='same')(x_in)
    x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
    x = MaxPooling2D((2, 2), padding='same')(x)
    encoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)

    x = Conv2D(16, (3, 3), activation='relu', padding='same')(encoded)
    x = UpSampling2D((2, 2))(x)
    x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
    decoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)

    autoencoder = Model(x_in, decoded)
    autoencoder.compile(optimizer='adam', loss='mse')

    return autoencoder








[9]:






ae = ae_model()
ae.summary()
ae.fit(x_train, x_train, batch_size=128, epochs=10, validation_data=(x_test, x_test), verbose=0)
ae.save('mnist_ae.h5')













_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_2 (InputLayer)         (None, 28, 28, 1)         0
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 28, 28, 16)        160
_________________________________________________________________
conv2d_4 (Conv2D)            (None, 28, 28, 16)        2320
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 14, 14, 16)        0
_________________________________________________________________
conv2d_5 (Conv2D)            (None, 14, 14, 1)         145
_________________________________________________________________
conv2d_6 (Conv2D)            (None, 14, 14, 16)        160
_________________________________________________________________
up_sampling2d_1 (UpSampling2 (None, 28, 28, 16)        0
_________________________________________________________________
conv2d_7 (Conv2D)            (None, 28, 28, 16)        2320
_________________________________________________________________
conv2d_8 (Conv2D)            (None, 28, 28, 1)         145
=================================================================
Total params: 5,250
Trainable params: 5,250
Non-trainable params: 0
_________________________________________________________________






Compare original with decoded images


[10]:






decoded_imgs = ae.predict(x_test)
n = 5
plt.figure(figsize=(20, 4))
for i in range(1, n+1):
    # display original
    ax = plt.subplot(2, n, i)
    plt.imshow(x_test[i].reshape(28, 28))
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    # display reconstruction
    ax = plt.subplot(2, n, i + n)
    plt.imshow(decoded_imgs[i].reshape(28, 28))
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()
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Generate contrastive explanation with pertinent negative

Explained instance:


[11]:






idx = 4
X = x_test[idx].reshape((1,) + x_test[idx].shape)







CEM parameters:


[12]:






mode = 'PN'  # 'PN' (pertinent negative) or 'PP' (pertinent positive)
shape = (1,) + x_train.shape[1:]  # instance shape
kappa = 0.  # minimum difference needed between the prediction probability for the perturbed instance on the
            # class predicted by the original instance and the max probability on the other classes
            # in order for the first loss term to be minimized
beta = .1  # weight of the L1 loss term
gamma = 100  # weight of the optional auto-encoder loss term
c_init = 1.  # initial weight c of the loss term encouraging to predict a different class (PN) or
              # the same class (PP) for the perturbed instance compared to the original instance to be explained
c_steps = 10  # nb of updates for c
max_iterations = 1000  # nb of iterations per value of c
feature_range = (x_train.min(),x_train.max())  # feature range for the perturbed instance
clip = (-1000.,1000.)  # gradient clipping
lr = 1e-2  # initial learning rate
no_info_val = -1. # a value, float or feature-wise, which can be seen as containing no info to make a prediction
                  # perturbations towards this value means removing features, and away means adding features
                  # for our MNIST images, the background (-0.5) is the least informative,
                  # so positive/negative perturbations imply adding/removing features







Generate pertinent negative:


[13]:






# initialize TensorFlow session before model definition
sess = tf.Session()
K.set_session(sess)
sess.run(tf.global_variables_initializer())

# define models
cnn = load_model('mnist_cnn.h5')
ae = load_model('mnist_ae.h5')

# initialize CEM explainer and explain instance
cem = CEM(sess, cnn, mode, shape, kappa=kappa, beta=beta, feature_range=feature_range,
          gamma=gamma, ae_model=ae, max_iterations=max_iterations,
          c_init=c_init, c_steps=c_steps, learning_rate_init=lr, clip=clip, no_info_val=no_info_val)
explanation = cem.explain(X, verbose=False)

sess.close()
K.clear_session()







Original instance and prediction:


[14]:






print('Original instance prediction: {}'.format(explanation['X_pred']))
plt.imshow(explanation['X'].reshape(28, 28))













Original instance prediction: 4







[14]:






<matplotlib.image.AxesImage at 0x7f36453d0828>
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Pertinent negative:


[15]:






print('Pertinent negative prediction: {}'.format(explanation[mode + '_pred']))
plt.imshow(explanation[mode].reshape(28, 28))













Pertinent negative prediction: 9







[15]:






<matplotlib.image.AxesImage at 0x7f36453b5400>
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Generate pertinent positive


[16]:






mode = 'PP'








[17]:






# initialize TensorFlow session before model definition
sess = tf.Session()
K.set_session(sess)
sess.run(tf.global_variables_initializer())

# define models
cnn = load_model('mnist_cnn.h5')
ae = load_model('mnist_ae.h5')

# initialize CEM explainer and explain instance
cem = CEM(sess, cnn, mode, shape, kappa=kappa, beta=beta, feature_range=feature_range,
          gamma=gamma, ae_model=ae, max_iterations=max_iterations,
          c_init=c_init, c_steps=c_steps, learning_rate_init=lr, clip=clip, no_info_val=no_info_val)
explanation = cem.explain(X, verbose=False)

sess.close()
K.clear_session()







Pertinent positive:


[18]:






print('Pertinent positive prediction: {}'.format(explanation[mode + '_pred']))
plt.imshow(explanation[mode].reshape(28, 28))













Pertinent positive prediction: 4







[18]:






<matplotlib.image.AxesImage at 0x7f363fa95588>
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Clean up:


[19]:






os.remove('mnist_cnn.h5')
os.remove('mnist_ae.h5')
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Contrastive Explanations Method (CEM) applied to Iris dataset

The Contrastive Explanation Method (CEM) can generate black box model explanations in terms of pertinent positives (PP) and pertinent negatives (PN). For PP, it finds what should be minimally and sufficiently present (e.g. important pixels in an image) to justify its classification. PN on the other hand identify what should be minimally and necessarily absent from the explained instance in order to maintain the original prediction.

The original paper where the algorithm is based on can be found on arXiv [https://arxiv.org/pdf/1802.07623.pdf].


[1]:






import keras
from keras import backend as K
from keras.layers import Dense, Input
from keras.models import Model, load_model
from keras.utils import to_categorical
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import os
import pandas as pd
import seaborn as sns
from sklearn.datasets import load_iris
import tensorflow as tf
from alibi.explainers import CEM













Using TensorFlow backend.







Load and prepare Iris dataset


[2]:






dataset = load_iris()
feature_names = dataset.feature_names
class_names = list(dataset.target_names)







Scale data


[3]:






dataset.data = (dataset.data - dataset.data.mean(axis=0)) / dataset.data.std(axis=0)







Define training and test set


[4]:






idx = 145
x_train,y_train = dataset.data[:idx,:], dataset.target[:idx]
x_test, y_test = dataset.data[idx+1:,:], dataset.target[idx+1:]
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)










Define and train logistic regression model


[5]:






def lr_model():
    x_in = Input(shape=(4,))
    x_out = Dense(3, activation='softmax')(x_in)
    lr = Model(inputs=x_in, outputs=x_out)
    lr.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
    return lr








[6]:






lr = lr_model()
lr.summary()
lr.fit(x_train, y_train, batch_size=128, epochs=500, verbose=0)
lr.save('iris_lr.h5')













_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 4)                 0
_________________________________________________________________
dense_1 (Dense)              (None, 3)                 15
=================================================================
Total params: 15
Trainable params: 15
Non-trainable params: 0
_________________________________________________________________









Generate contrastive explanation with pertinent negative

Explained instance:


[7]:






idx = 0
X = x_test[idx].reshape((1,) + x_test[idx].shape)
print('Prediction on instance to be explained: {}'.format(class_names[np.argmax(lr.predict(X))]))
print('Prediction probabilities for each class on the instance: {}'.format(lr.predict(X)))













Prediction on instance to be explained: versicolor
Prediction probabilities for each class on the instance: [[0.00758386 0.53759295 0.4548232 ]]






CEM parameters:


[8]:






mode = 'PN'  # 'PN' (pertinent negative) or 'PP' (pertinent positive)
shape = (1,) + x_train.shape[1:]  # instance shape
kappa = .2  # minimum difference needed between the prediction probability for the perturbed instance on the
            # class predicted by the original instance and the max probability on the other classes
            # in order for the first loss term to be minimized
beta = .1  # weight of the L1 loss term
c_init = 10.  # initial weight c of the loss term encouraging to predict a different class (PN) or
              # the same class (PP) for the perturbed instance compared to the original instance to be explained
c_steps = 10  # nb of updates for c
max_iterations = 1000  # nb of iterations per value of c
feature_range = (x_train.min(axis=0).reshape(shape)-.1,  # feature range for the perturbed instance
                 x_train.max(axis=0).reshape(shape)+.1)  # can be either a float or array of shape (1xfeatures)
clip = (-1000.,1000.)  # gradient clipping
lr_init = 1e-2  # initial learning rate







Generate pertinent negative:


[9]:






# init session before model definition
sess = tf.Session()
K.set_session(sess)
sess.run(tf.global_variables_initializer())

# define model
lr = load_model('iris_lr.h5')

# initialize CEM explainer and explain instance
cem = CEM(sess, lr, mode, shape, kappa=kappa, beta=beta, feature_range=feature_range,
          max_iterations=max_iterations, c_init=c_init, c_steps=c_steps,
          learning_rate_init=lr_init, clip=clip)
cem.fit(x_train, no_info_type='median')  # we need to define what feature values contain the least
                                         # info wrt predictions
                                         # here we will naively assume that the feature-wise median
                                         # contains no info; domain knowledge helps!
explanation = cem.explain(X, verbose=False)
sess.close()
K.clear_session()








[10]:






print('Original instance: {}'.format(explanation['X']))
print('Predicted class: {}'.format(class_names[explanation['X_pred']]))













Original instance: [[ 0.55333328 -1.28296331  0.70592084  0.92230284]]
Predicted class: versicolor







[11]:






print('Pertinent negative: {}'.format(explanation[mode]))
print('Predicted class: {}'.format(class_names[explanation[mode + '_pred']]))













Pertinent negative: [[ 0.5533333 -1.2829633  1.0322616  1.0454441]]
Predicted class: virginica






Store explanation to plot later on:


[12]:






expl = {}
expl['PN'] = explanation[mode]
expl['PN_pred'] = explanation[mode + '_pred']










Generate pertinent positive


[13]:






mode = 'PP'







Generate pertinent positive:


[14]:






# init session before model definition
sess = tf.Session()
K.set_session(sess)
sess.run(tf.global_variables_initializer())

# define model
lr = load_model('iris_lr.h5')

# initialize CEM explainer and explain instance
cem = CEM(sess, lr, mode, shape, kappa=kappa, beta=beta, feature_range=feature_range,
          max_iterations=max_iterations, c_init=c_init, c_steps=c_steps,
          learning_rate_init=lr_init, clip=clip)
cem.fit(x_train, no_info_type='median')
explanation = cem.explain(X, verbose=False)
sess.close()
K.clear_session()








[15]:






print('Pertinent positive: {}'.format(explanation[mode]))
print('Predicted class: {}'.format(class_names[explanation[mode + '_pred']]))













Pertinent positive: [[-7.44469730e-09 -3.47054341e-08  2.67991149e-08 -4.21282409e-09]]
Predicted class: versicolor







[16]:






expl['PP'] = explanation[mode]
expl['PP_pred'] = explanation[mode + '_pred']










Visualize PN and PP

Let’s visualize the generated explanations to check if the perturbed instances make sense.

Create dataframe from standardized data:


[17]:






df = pd.DataFrame(dataset.data, columns=dataset.feature_names)
df['species'] = np.array([dataset.target_names[i] for i in dataset.target])







Highlight explained instance and add pertinent negative and positive to the dataset:


[18]:






pn = pd.DataFrame(expl['PN'], columns=dataset.feature_names)
pn['species'] = 'PN_' + class_names[expl['PN_pred']]
pp = pd.DataFrame(expl['PP'], columns=dataset.feature_names)
pp['species'] = 'PP_' + class_names[expl['PP_pred']]
orig_inst = pd.DataFrame(explanation['X'], columns=dataset.feature_names)
orig_inst['species'] = 'orig_' + class_names[explanation['X_pred']]
df = df.append([pn, pp, orig_inst], ignore_index=True)







Pair plots between the features show that the pertinent negative is pushed from the original instance (versicolor) into the virginica distribution while the pertinent positive moved away from the virginica distribution.


[19]:






fig = sns.pairplot(df, hue='species', diag_kind='hist');
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Use numerical gradients in CEM

If we do not have access to the Keras or TensorFlow model weights, we can use numerical gradients for the first term in the loss function that needs to be minimized (eq. 1 and 4 in the paper [https://arxiv.org/pdf/1802.07623.pdf]).

CEM parameters:


[20]:






mode = 'PN'







If numerical gradients are used to compute:


\begin{equation*} \frac{\partial L}{\partial x} = \frac{\partial L}{\partial p} \ast \frac{\partial p}{\partial x} \end{equation*}
with L = loss function; p = predict function and x the parameter to optimize, then the tuple eps can be used to define the perturbation used to compute the derivatives. eps[0] is used to calculate the first partial derivative term and eps[1] is used for the second term. eps[0] and eps[1] can be a combination of float values or numpy arrays. For eps[0], the array dimension should be (1 x nb of prediction categories) and for eps[1] it should be (1 x nb of features).


[21]:






eps0 = np.array([[1e-2, 1e-2, 1e-2]])  # 3 prediction categories, equivalent to 1e-2
eps1 = np.array([[1e-2, 1e-2, 1e-2, 1e-2]])  # 4 features, also equivalent to 1e-2
eps = (eps0, eps1)







For complex models with a high number of parameters and a high dimensional feature space (e.g. Inception on ImageNet), evaluating numerical gradients can be expensive as they involve multiple prediction calls for each perturbed instance. The update_num_grad parameter allows you to set a batch size on which to evaluate the numerical gradients, drastically reducing the number of prediction calls required.


[22]:






update_num_grad = 1







Generate pertinent negative:


[23]:






# init session before model definition
sess = tf.Session()
K.set_session(sess)
sess.run(tf.global_variables_initializer())

# define model
lr = load_model('iris_lr.h5')
predict_fn = lambda x: lr.predict(x)  # only pass the predict fn which takes numpy arrays to CEM
                                      # explainer can no longer minimize wrt model weights

# initialize CEM explainer and explain instance
cem = CEM(sess, predict_fn, mode, shape, kappa=kappa, beta=beta,
          feature_range=feature_range, max_iterations=max_iterations,
          eps=eps, c_init=c_init, c_steps=c_steps, learning_rate_init=lr_init,
          clip=clip, update_num_grad=update_num_grad)
cem.fit(x_train, no_info_type='median')
explanation = cem.explain(X, verbose=False)
sess.close()
K.clear_session()








[24]:






print('Original instance: {}'.format(explanation['X']))
print('Predicted class: {}'.format(class_names[explanation['X_pred']]))













Original instance: [[ 0.55333328 -1.28296331  0.70592084  0.92230284]]
Predicted class: versicolor







[25]:






print('Pertinent negative: {}'.format(explanation[mode]))
print('Predicted class: {}'.format(class_names[explanation[mode + '_pred']]))













Pertinent negative: [[ 0.5533333 -1.2829633  1.0467366  1.0182681]]
Predicted class: virginica






Clean up:


[26]:






os.remove('iris_lr.h5')
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Counterfactual instances on MNIST

Given a test instance \(X\), this method can generate counterfactual instances \(X^\prime\) given a desired counterfactual class \(t\) which can either be a class specified upfront or any other class that is different from the predicted class of \(X\).

The loss function for finding counterfactuals is the following:


\[L(X^\prime\vert X) = (f_t(X^\prime) - p_t)^2 + \lambda L_1(X^\prime, X).\]

The first loss term, guides the search towards instances \(X^\prime\) for which the predicted class probability \(f_t(X^\prime)\) is close to a pre-specified target class probability \(p_t\) (typically \(p_t=1\)). The second loss term ensures that the counterfactuals are close in the feature space to the original test instance.

In this notebook we illustrate the usage of the basic counterfactual algorithm on the MNIST dataset.


[1]:






import keras
from keras import backend as K
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input
from keras.models import Model, load_model
from keras.utils import to_categorical
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
from time import time
from alibi.explainers import CounterFactual













Using TensorFlow backend.







Load and prepare MNIST data


[2]:






(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
plt.gray()
plt.imshow(x_test[1]);













x_train shape: (60000, 28, 28) y_train shape: (60000,)











[image: ../_images/examples_cf_mnist_4_1.png]




Prepare data: scale, reshape and categorize


[3]:






x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)













x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)







[4]:






xmin, xmax = -.5, .5
x_train = ((x_train - x_train.min()) / (x_train.max() - x_train.min())) * (xmax - xmin) + xmin
x_test = ((x_test - x_test.min()) / (x_test.max() - x_test.min())) * (xmax - xmin) + xmin










Define and train CNN model


[5]:






def cnn_model():
    x_in = Input(shape=(28, 28, 1))
    x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x_in)
    x = MaxPooling2D(pool_size=2)(x)
    x = Dropout(0.3)(x)

    x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
    x = MaxPooling2D(pool_size=2)(x)
    x = Dropout(0.3)(x)

    x = Flatten()(x)
    x = Dense(256, activation='relu')(x)
    x = Dropout(0.5)(x)
    x_out = Dense(10, activation='softmax')(x)

    cnn = Model(inputs=x_in, outputs=x_out)
    cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

    return cnn








[6]:






cnn = cnn_model()
cnn.summary()
cnn.fit(x_train, y_train, batch_size=64, epochs=3, verbose=1)
cnn.save('mnist_cnn.h5')













WARNING:tensorflow:From /home/janis/.conda/envs/py36dev/lib/python3.6/site-packages/tensorflow/python/framework/op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From /home/janis/.conda/envs/py36dev/lib/python3.6/site-packages/keras/backend/tensorflow_backend.py:3445: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.
Instructions for updating:
Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.
_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 28, 28, 1)         0
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 28, 28, 64)        320
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 64)        0
_________________________________________________________________
dropout_1 (Dropout)          (None, 14, 14, 64)        0
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 14, 14, 32)        8224
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 7, 7, 32)          0
_________________________________________________________________
dropout_2 (Dropout)          (None, 7, 7, 32)          0
_________________________________________________________________
flatten_1 (Flatten)          (None, 1568)              0
_________________________________________________________________
dense_1 (Dense)              (None, 256)               401664
_________________________________________________________________
dropout_3 (Dropout)          (None, 256)               0
_________________________________________________________________
dense_2 (Dense)              (None, 10)                2570
=================================================================
Total params: 412,778
Trainable params: 412,778
Non-trainable params: 0
_________________________________________________________________
WARNING:tensorflow:From /home/janis/.conda/envs/py36dev/lib/python3.6/site-packages/tensorflow/python/ops/math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
Epoch 1/3
60000/60000 [==============================] - 53s 875us/step - loss: 0.3319 - acc: 0.8940
Epoch 2/3
60000/60000 [==============================] - 43s 712us/step - loss: 0.1187 - acc: 0.9629
Epoch 3/3
60000/60000 [==============================] - 44s 733us/step - loss: 0.0930 - acc: 0.9719






Evaluate the model on test set


[7]:






score = cnn.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])













Test accuracy:  0.987









Generate counterfactuals

Original instance:


[8]:






X = x_test[0].reshape((1,) + x_test[0].shape)
plt.imshow(X.reshape(28, 28));












[image: ../_images/examples_cf_mnist_15_0.png]




Counterfactual parameters:


[9]:






shape = (1,) + x_train.shape[1:]
target_proba = 1.0
tol = 0.01 # want counterfactuals with p(class)>0.99
target_class = 'other' # any class other than 7 will do
max_iter = 1000
lam_init = 1e-1
max_lam_steps = 10
learning_rate_init = 0.1
feature_range = (x_train.min(),x_train.max())







Run counterfactual:


[10]:






# set random seed
np.random.seed(1)
tf.set_random_seed(1)

sess = K.get_session()

# initialize explainer
cf = CounterFactual(sess, cnn, shape=shape, target_proba=target_proba, tol=tol,
                    target_class=target_class, max_iter=max_iter, lam_init=lam_init,
                    max_lam_steps=max_lam_steps, learning_rate_init=learning_rate_init,
                    feature_range=feature_range)

start_time = time()
explanation = cf.explain(X)
print('Explanation took {:.3f} sec'.format(time() - start_time))













WARNING:tensorflow:From /home/janis/.conda/envs/py36dev/lib/python3.6/site-packages/tensorflow/python/training/learning_rate_decay_v2.py:321: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Deprecated in favor of operator or tf.math.divide.
Explanation took 6.444 sec






Results:


[11]:






pred_class = explanation['cf']['class']
proba = explanation['cf']['proba'][0][pred_class]

print(f'Counterfactual prediction: {pred_class} with probability {proba}')
plt.imshow(explanation['cf']['X'].reshape(28, 28));













Counterfactual prediction: 9 with probability 0.9900996088981628











[image: ../_images/examples_cf_mnist_21_1.png]




The counterfactual starting from a 7 moves towards the closest class as determined by the model and the data: a 9. The evolution of the counterfactual during the iterations over \(\lambda\) can be seen below (note that all of the following examples satisfy the counterfactual condition):


[12]:






n_cfs = np.array([len(explanation['all'][iter_cf]) for iter_cf in range(max_lam_steps)])
examples = {}
for ix, n in enumerate(n_cfs):
    if n>0:
        examples[ix] = {'ix': ix, 'lambda': explanation['all'][ix][0]['lambda'],
                       'X': explanation['all'][ix][0]['X']}
columns = len(examples) + 1
rows = 1

fig = plt.figure(figsize=(16,6))

for i, key in enumerate(examples.keys()):
    ax = plt.subplot(rows, columns, i+1)
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    plt.imshow(examples[key]['X'].reshape(28,28))
    plt.title(f'Iteration: {key}')












[image: ../_images/examples_cf_mnist_23_0.png]




Typically, the first few iterations find counterfactuals that are out of distribution, while the later iterations make the counterfactual more sparse and interpretable.

Let’s now try to steer the counterfactual to a specific class:


[13]:






target_class = 1

cf = CounterFactual(sess, cnn, shape=shape, target_proba=target_proba, tol=tol,
                    target_class=target_class, max_iter=max_iter, lam_init=lam_init,
                    max_lam_steps=max_lam_steps, learning_rate_init=learning_rate_init,
                    feature_range=feature_range)

explanation = start_time = time()
explanation = cf.explain(X)
print('Explanation took {:.3f} sec'.format(time() - start_time))













Explanation took 4.563 sec






Results:


[14]:






pred_class = explanation['cf']['class']
proba = explanation['cf']['proba'][0][pred_class]

print(f'Counterfactual prediction: {pred_class} with probability {proba}')
plt.imshow(explanation['cf']['X'].reshape(28, 28));













Counterfactual prediction: 1 with probability 0.9983848333358765











[image: ../_images/examples_cf_mnist_28_1.png]




As you can see, by specifying a class, the search process can’t go towards the closest class to the test instance (in this case a 9 as we saw previously), so the resulting counterfactual might be less interpretable. We can gain more insight by looking at the difference between the counterfactual and the original instance:


[15]:






plt.imshow((explanation['cf']['X'] - X).reshape(28, 28));












[image: ../_images/examples_cf_mnist_30_0.png]




This shows that the counterfactual is stripping out the top part of the 7 to make to result in a prediction of 1 - not very surprising as the dataset has a lot of examples of diagonally slanted 1’s.

Clean up:


[16]:






os.remove('mnist_cnn.h5')
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Counterfactuals guided by prototypes on MNIST

This method can generate counterfactual instances guided by class prototypes. It means that for a certain instance X, the method builds a prototype for each prediction class using either an auto-encoder [https://en.wikipedia.org/wiki/Autoencoder] or k-d trees [https://en.wikipedia.org/wiki/K-d_tree]. The nearest prototype class other than the originally predicted class is then used to guide the counterfactual search. For example, in MNIST the closest class to a 7 would be a 9. As a
result, the prototype loss term will try to minimize the distance between the proposed counterfactual and the prototype of a 9. This speeds up the search towards a satisfactory counterfactual by steering it towards an interpretable solution from the start of the optimization. It also helps to avoid out-of-distribution counterfactuals with the perturbations driven to a prototype of another class.

The loss function to be optimized is the following:

\(Loss\) = c\(L_{pred}\) + \(\beta\)\(L_{1}\) + \(L_{2}\) + \(\gamma\)\(L_{AE}\) + \(\theta\)\(L_{proto}\)

The first loss term relates to the model’s prediction function, the following 2 terms define the elastic net regularization while the last 2 terms are optional. The aim of \(\gamma\)\(L_{AE}\) is to penalize out-of-distribution counterfactuals while \(\theta\)\(L_{proto}\) guides the counterfactual to a prototype. When we only have acces to the model’s predict function and cannot fully enjoy the benefits of automatic differentiation, the prototypes allow us to drop the
predict function loss term and still generate reasonable counterfactuals. This drastically reduces the number of predict calls made during the numerical gradient update step and again speeds up the search.

Other options include generating counterfactuals for specific classes or including trust score constraints to ensure that the counterfactual is close enough to the newly predicted class compared to the original class.

The different use cases highlighted above are illustrated throughout this notebook.


[1]:






import keras
from keras import backend as K
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input, UpSampling2D
from keras.models import Model, load_model
from keras.utils import to_categorical
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
from time import time
from alibi.explainers import CounterFactualProto













Using TensorFlow backend.







Load and prepare MNIST data


[2]:






(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
plt.gray()
plt.imshow(x_test[1])













x_train shape: (60000, 28, 28) y_train shape: (60000,)







[2]:






<matplotlib.image.AxesImage at 0x7fd0ba0f40b8>












[image: ../_images/examples_cfproto_mnist_4_2.png]




Prepare data: scale, reshape and categorize


[3]:






x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)













x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)







[4]:






xmin, xmax = -.5, .5
x_train = ((x_train - x_train.min()) / (x_train.max() - x_train.min())) * (xmax - xmin) + xmin
x_test = ((x_test - x_test.min()) / (x_test.max() - x_test.min())) * (xmax - xmin) + xmin










Define and train CNN model


[5]:






def cnn_model():
    x_in = Input(shape=(28, 28, 1))
    x = Conv2D(filters=64, kernel_size=2, padding='same', activation='relu')(x_in)
    x = MaxPooling2D(pool_size=2)(x)
    x = Dropout(0.3)(x)

    x = Conv2D(filters=32, kernel_size=2, padding='same', activation='relu')(x)
    x = MaxPooling2D(pool_size=2)(x)
    x = Dropout(0.3)(x)

    x = Flatten()(x)
    x = Dense(256, activation='relu')(x)
    x = Dropout(0.5)(x)
    x_out = Dense(10, activation='softmax')(x)

    cnn = Model(inputs=x_in, outputs=x_out)
    cnn.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])

    return cnn








[6]:






cnn = cnn_model()
cnn.summary()
cnn.fit(x_train, y_train, batch_size=64, epochs=3, verbose=1)
cnn.save('mnist_cnn.h5')













_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 28, 28, 1)         0
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 28, 28, 64)        320
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 14, 14, 64)        0
_________________________________________________________________
dropout_1 (Dropout)          (None, 14, 14, 64)        0
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 14, 14, 32)        8224
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 7, 7, 32)          0
_________________________________________________________________
dropout_2 (Dropout)          (None, 7, 7, 32)          0
_________________________________________________________________
flatten_1 (Flatten)          (None, 1568)              0
_________________________________________________________________
dense_1 (Dense)              (None, 256)               401664
_________________________________________________________________
dropout_3 (Dropout)          (None, 256)               0
_________________________________________________________________
dense_2 (Dense)              (None, 10)                2570
=================================================================
Total params: 412,778
Trainable params: 412,778
Non-trainable params: 0
_________________________________________________________________






Evaluate the model on test set


[7]:






score = cnn.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])













Test accuracy:  0.9862









Define and train auto-encoder


[8]:






def ae_model():
    # encoder
    x_in = Input(shape=(28, 28, 1))
    x = Conv2D(16, (3, 3), activation='relu', padding='same')(x_in)
    x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
    x = MaxPooling2D((2, 2), padding='same')(x)
    encoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)
    encoder = Model(x_in, encoded)

    # decoder
    dec_in = Input(shape=(14, 14, 1))
    x = Conv2D(16, (3, 3), activation='relu', padding='same')(dec_in)
    x = UpSampling2D((2, 2))(x)
    x = Conv2D(16, (3, 3), activation='relu', padding='same')(x)
    decoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)
    decoder = Model(dec_in, decoded)

    # autoencoder = encoder + decoder
    x_out = decoder(encoder(x_in))
    autoencoder = Model(x_in, x_out)
    autoencoder.compile(optimizer='adam', loss='mse')

    return autoencoder, encoder, decoder








[9]:






ae, enc, dec = ae_model()
ae.summary()
ae.fit(x_train, x_train, batch_size=128, epochs=4, validation_data=(x_test, x_test), verbose=1)
ae.save('mnist_ae.h5')
enc.save('mnist_enc.h5')













_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 28, 28, 1)         0
_________________________________________________________________
model_1 (Model)              (None, 14, 14, 1)         2625
_________________________________________________________________
model_2 (Model)              (None, 28, 28, 1)         2625
=================================================================
Total params: 5,250
Trainable params: 5,250
Non-trainable params: 0
_________________________________________________________________












/home/avl/anaconda3/envs/alibi/lib/python3.6/site-packages/keras/engine/saving.py:292: UserWarning: No training configuration found in save file: the model was *not* compiled. Compile it manually.
  warnings.warn('No training configuration found in save file: '






Compare original with decoded images


[10]:






decoded_imgs = ae.predict(x_test)
n = 5
plt.figure(figsize=(20, 4))
for i in range(1, n+1):
    # display original
    ax = plt.subplot(2, n, i)
    plt.imshow(x_test[i].reshape(28, 28))
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
    # display reconstruction
    ax = plt.subplot(2, n, i + n)
    plt.imshow(decoded_imgs[i].reshape(28, 28))
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()












[image: ../_images/examples_cfproto_mnist_17_0.png]







Generate counterfactual guided by the nearest class prototype

Original instance:


[11]:






X = x_test[0].reshape((1,) + x_test[0].shape)
plt.imshow(X.reshape(28, 28))








[11]:






<matplotlib.image.AxesImage at 0x7fd04d57c6d8>
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Counterfactual parameters:


[12]:






shape = (1,) + x_train.shape[1:]
gamma = 100.
theta = 100.
c_init = 1.
c_steps = 2
max_iterations = 500
feature_range = (x_train.min(),x_train.max())







Run counterfactual:


[13]:






# set random seed
np.random.seed(1)
tf.set_random_seed(1)

# define models
cnn = load_model('mnist_cnn.h5')
ae = load_model('mnist_ae.h5')
enc = load_model('mnist_enc.h5')

sess = K.get_session()

# initialize explainer, fit and generate counterfactual
cf = CounterFactualProto(sess, cnn, shape, gamma=gamma, theta=theta,
                         ae_model=ae, enc_model=enc, max_iterations=max_iterations,
                         feature_range=feature_range, c_init=c_init, c_steps=c_steps)
start_time = time()
cf.fit(x_train)  # find class prototypes
print('Time to find prototypes each class: {:.3f} sec'.format(time() - start_time))
start_time = time()
explanation = cf.explain(X)
print('Explanation took {:.3f} sec'.format(time() - start_time))

sess.close()
K.clear_session()













Time to find prototypes each class: 16.354 sec
Explanation took 4.252 sec






Results:


[14]:






print('Counterfactual prediction: {}'.format(explanation['cf']['class']))
print('Closest prototype class: {}'.format(cf.id_proto))
plt.imshow(explanation['cf']['X'].reshape(28, 28))













Counterfactual prediction: 9
Closest prototype class: 9







[14]:






<matplotlib.image.AxesImage at 0x7fd04bfb67b8>












[image: ../_images/examples_cfproto_mnist_26_2.png]




The counterfactual starting from a 7 moves towards its closest prototype class: a 9. The evolution of the counterfactual during the first iteration can be seen below:


[15]:






iter_cf = 0
print('iteration c {}'.format(iter_cf))
n = len(explanation['all'][iter_cf])
plt.figure(figsize=(20, 4))
for i in range(n):
    ax = plt.subplot(1, n+1, i+1)
    plt.imshow(explanation['all'][iter_cf][i].reshape(28, 28))
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()













iteration c 0











[image: ../_images/examples_cfproto_mnist_28_1.png]




Typically, the first few iterations already steer the 7 towards a 9, while the later iterations make the counterfactual more sparse.




Remove the auto-encoder loss term

In the previous example, we used both an auto-encoder loss term to penalize a counterfactual which falls outside of the training data distribution as well as an encoder loss term to guide the counterfactual to the nearest prototype class. In the next example we get rid of the auto-encoder loss term to speed up the counterfactual search and still get decent results:


[16]:






theta = 500.








[17]:






# set random seed
np.random.seed(1)
tf.set_random_seed(1)

# define models
cnn = load_model('mnist_cnn.h5')
enc = load_model('mnist_enc.h5')

sess = K.get_session()

# initialize explainer, fit and generate counterfactual
cf = CounterFactualProto(sess, cnn, shape, theta=theta,
                         enc_model=enc, max_iterations=max_iterations,
                         feature_range=feature_range, c_init=c_init, c_steps=c_steps)
cf.fit(x_train)
start_time = time()
explanation = cf.explain(X)
print('Explanation took {:.3f} sec'.format(time() - start_time))

sess.close()
K.clear_session()













Explanation took 2.877 sec






Results:


[18]:






print('Counterfactual prediction: {}'.format(explanation['cf']['class']))
print('Closest prototype class: {}'.format(cf.id_proto))
plt.imshow(explanation['cf']['X'].reshape(28, 28))













Counterfactual prediction: 9
Closest prototype class: 9







[18]:






<matplotlib.image.AxesImage at 0x7fd04a3d3fd0>
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Add trust scores

Explainability through counterfactuals can involve a trade off between sparsity and interpretability. The first counterfactual below is sparse and flips the original 7 into a 3. It is obtained by setting the auto-encoder and prototype loss terms to 0, moving the objective function towards an elastic net regularizer which generates sparse solutions. It is clear however that this is not a very interpretable 3 which lies very far from its class prototype or the training data distribution:

[image: b01g0t0nb7.png]

Class 3 prototype:

[image: proto3.png]

By adding in the nearest prototype and auto-encoder loss terms, the counterfactual becomes more interpretable but less sparse. The example below illustrates this by flipping the same 7 into a 9:

[image: mnist7g100t100.png]

Class 9 prototype:

[image: proto9.png]

In order to help interpretability, we can add a trust score constraint on the proposed counterfactual. The trust score is defined as the ratio of the distance between the encoded counterfactual and the prototype of the class predicted on the original instance, and the distance between the encoded counterfactual and the prototype of the class predicted for the counterfactual instance. Intuitively, a high trust score implies that the counterfactual is far from the originally predicted class
compared to the counterfactual class. For more info on trust scores, please check out the documentation. The example below shows the impact of such a trust score constraint:


[19]:






theta = 100.
c_init = 1.
c_steps = 5








[24]:






# set random seed
np.random.seed(1)
tf.set_random_seed(1)

# define models
cnn = load_model('mnist_cnn.h5')
enc = load_model('mnist_enc.h5')

sess = K.get_session()

# initialize explainer, fit and generate counterfactual
cf = CounterFactualProto(sess, cnn, shape, theta=theta,
                         enc_model=enc, max_iterations=max_iterations,
                         feature_range=feature_range, c_init=c_init, c_steps=c_steps)
cf.fit(x_train)  # find class prototypes
explanation1 = cf.explain(X, threshold=0.)
explanation2 = cf.explain(X, threshold=.8)

sess.close()
K.clear_session()







Original instance:


[25]:






plt.imshow(X.reshape(28, 28))








[25]:






<matplotlib.image.AxesImage at 0x7fd0431fca90>
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The counterfactual below without the trust score threshold predicts a 3 which actually starts to look like a 9 since that is the nearest prototype class. This counterfactual is slightly sparser than the second counterfactual below which has the trust score threshold at 0.8. The sparser counterfactual does not meet this trust score constraint and is therefore rejected in the second example.


[26]:






print('Counterfactual prediction: {}'.format(explanation1['cf']['class']))
print('Closest prototype class: {}'.format(cf.id_proto))
plt.imshow(explanation1['cf']['X'].reshape(28, 28))













Counterfactual prediction: 3
Closest prototype class: 9







[26]:






<matplotlib.image.AxesImage at 0x7fd04315a710>
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[27]:






print('Counterfactual prediction: {}'.format(explanation2['cf']['class']))
print('Closest prototype class: {}'.format(cf.id_proto))
plt.imshow(explanation2['cf']['X'].reshape(28, 28))













Counterfactual prediction: 9
Closest prototype class: 9







[27]:






<matplotlib.image.AxesImage at 0x7fd043130dd8>












[image: ../_images/examples_cfproto_mnist_44_2.png]







Specify prototype classes

For multi-class predictions, we might be interested to generate counterfactuals for certain classes while avoiding others. The following example illustrates how to do this. It does not guarantee that the avoided classes are excluded from the counterfactuals, but does not include those classes when looking for the nearest prototype class. So as a result, it will not drive the counterfactual to the prototype of the classes that should be avoided.


[28]:






X = x_test[12].reshape((1,) + x_test[1].shape)
plt.imshow(X.reshape(28, 28))








[28]:






<matplotlib.image.AxesImage at 0x7fd04308e240>












[image: ../_images/examples_cfproto_mnist_47_1.png]





[29]:






theta = 100.
gamma = 100.
c_init = 1.
c_steps = 3
max_iterations = 1000








[30]:






# set random seed
np.random.seed(1)
tf.set_random_seed(1)

# define models
cnn = load_model('mnist_cnn.h5')
ae = load_model('mnist_ae.h5')
enc = load_model('mnist_enc.h5')

sess = K.get_session()

# initialize explainer, fit and generate counterfactual
cf = CounterFactualProto(sess, cnn, shape, gamma=gamma, theta=theta,
                         ae_model=ae, enc_model=enc, max_iterations=max_iterations,
                         feature_range=feature_range, c_init=c_init, c_steps=c_steps)
cf.fit(x_train)  # find class prototypes
explanation1 = cf.explain(X)
proto_class1 = cf.id_proto
explanation2 = cf.explain(X, target_class=[7])
proto_class2 = cf.id_proto

sess.close()
K.clear_session()







The closest class to a 9 is 4. This is evident by looking at the first counterfactual below. For the second counterfactual, we specified that the prototype class used in the search should be a 7. As a result, the 9 is not pushed towards a 4.


[31]:






print('Counterfactual prediction: {}'.format(explanation1['cf']['class']))
print('Closest prototype class: {}'.format(proto_class1))
plt.imshow(explanation1['cf']['X'].reshape(28, 28))













Counterfactual prediction: 4
Closest prototype class: 4







[31]:






<matplotlib.image.AxesImage at 0x7fd048f87ef0>












[image: ../_images/examples_cfproto_mnist_51_2.png]




While the counterfactual still looks like a 9 at first sight, it is clear by looking at the difference plot between the counterfactual and the original instance that the pixels generating the circle of the 9 are being removed, moving towards a 7.


[32]:






print('Counterfactual prediction: {}'.format(explanation2['cf']['class']))
print('Closest prototype class: {}'.format(proto_class2))
plt.imshow(explanation2['cf']['X'].reshape(28, 28))













Counterfactual prediction: 7
Closest prototype class: 7







[32]:






<matplotlib.image.AxesImage at 0x7fd0485354e0>
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[33]:






plt.imshow((explanation2['cf']['X'] - X).reshape(28, 28))








[33]:






<matplotlib.image.AxesImage at 0x7fd0493b3c88>
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Speed up the counterfactual search by removing the predict function loss term

We can also remove the prediction loss term and still obtain an interpretable counterfactual. This is especially relevant for fully black box models. When we provide the counterfactual search method with a Keras or TensorFlow model, it is incorporated in the TensorFlow graph and evaluated using automatic differentiation. However, if we only have access to the model’s predict function, the gradient updates are numerical and typically require a large number of prediction calls because of the
predict loss term. These prediction calls can slow the search down significantly and become a bottleneck. We can represent the gradient of the loss term as follows:


\begin{equation*} \frac{\partial L_{pred}}{\partial x} = \frac{\partial L_{pred}}{\partial p} \frac{\partial p}{\partial x} \end{equation*}
where \(L_{pred}\) is the prediction loss term, \(p\) the predict function and \(x\) the input features to optimize. For a 28 by 28 MNIST image, the \(^{\delta p}/_{\delta x}\) term alone would require a prediction call with batch size 28x28x2 = 1568. By using the prototypes to guide the search however, we can remove the prediction loss term and only make a single prediction at the end of each gradient update to check whether the predicted class on the proposed counterfactual is
different from the original class. We do not necessarily need a Keras or TensorFlow auto-encoder either and can use k-d trees to find the nearest class prototypes. Please check out this notebook for a practical example.

We’ll first illustrate this method by using a Keras model and then try a black box model.


[34]:






X = x_test[0].reshape((1,) + x_test[0].shape)
plt.imshow(X.reshape(28, 28))








[34]:






<matplotlib.image.AxesImage at 0x7fd04d26f128>
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[35]:






c_init = 0.  # set weight predict loss term to 0
c_steps = 1  # do not update c further
max_iterations = 2000
theta = 100.
gamma = 100.








[36]:






# set random seed
np.random.seed(1)
tf.set_random_seed(1)

# define models
cnn = load_model('mnist_cnn.h5')
ae = load_model('mnist_ae.h5')
enc = load_model('mnist_enc.h5')

sess = K.get_session()

# initialize explainer, fit and generate counterfactual
cf = CounterFactualProto(sess, cnn, shape, gamma=gamma, theta=theta,
                         ae_model=ae, enc_model=enc, max_iterations=max_iterations,
                         feature_range=feature_range, c_init=c_init, c_steps=c_steps)
cf.fit(x_train)  # find class prototypes
explanation = cf.explain(X)

sess.close()
K.clear_session()







Still get a reasonable 9:


[37]:






print('Counterfactual prediction: {}'.format(explanation['cf']['class']))
print('Closest prototype class: {}'.format(cf.id_proto))
plt.imshow(explanation['cf']['X'].reshape(28, 28))













Counterfactual prediction: 9
Closest prototype class: 9







[37]:






<matplotlib.image.AxesImage at 0x7fd04d689438>
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Let us now use the black box model:


[38]:






# set random seed
np.random.seed(1)
tf.set_random_seed(1)

# define models
cnn = load_model('mnist_cnn.h5')
predict_fn = lambda x: cnn.predict(x)
ae = load_model('mnist_ae.h5')
enc = load_model('mnist_enc.h5')

sess = K.get_session()

# initialize explainer, fit and generate counterfactual
cf = CounterFactualProto(sess, predict_fn, shape, gamma=gamma, theta=theta,
                         ae_model=ae, enc_model=enc, max_iterations=max_iterations,
                         feature_range=feature_range, c_init=c_init, c_steps=c_steps)
cf.fit(x_train)  # find class prototypes
start_time = time()
explanation = cf.explain(X)
print('Explanation took {:.3f} sec'.format(time() - start_time))

sess.close()
K.clear_session()













Explanation took 8.979 sec






Which again gives a 9 as counterfactual:


[39]:






print('Counterfactual prediction: {}'.format(explanation['cf']['class']))
print('Closest prototype class: {}'.format(cf.id_proto))
plt.imshow(explanation['cf']['X'].reshape(28, 28))













Counterfactual prediction: 9
Closest prototype class: 9







[39]:






<matplotlib.image.AxesImage at 0x7fd04213bd30>
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We can include the prediction loss term again and compare the explanation time for the same amount of iteration steps:


[40]:






c_init = 1.  # set weight predict loss term to 0
c_steps = 4  # do not update c further
max_iterations = 500  # 4x500 = 2000








[41]:






# set random seed
np.random.seed(1)
tf.set_random_seed(1)

# define models
cnn = load_model('mnist_cnn.h5')
predict_fn = lambda x: cnn.predict(x)
ae = load_model('mnist_ae.h5')
enc = load_model('mnist_enc.h5')

sess = K.get_session()

# initialize explainer, fit and generate counterfactual
cf = CounterFactualProto(sess, predict_fn, shape, gamma=gamma, theta=theta,
                         ae_model=ae, enc_model=enc, max_iterations=max_iterations,
                         feature_range=feature_range, c_init=c_init, c_steps=c_steps)
cf.fit(x_train)  # find class prototypes
start_time = time()
explanation = cf.explain(X)
print('Explanation took {:.3f} sec'.format(time() - start_time))

sess.close()
K.clear_session()













Explanation took 893.747 sec







[42]:






print('Counterfactual prediction: {}'.format(explanation['cf']['class']))
print('Closest prototype class: {}'.format(cf.id_proto))
plt.imshow(explanation['cf']['X'].reshape(28, 28))













Counterfactual prediction: 9
Closest prototype class: 9







[42]:






<matplotlib.image.AxesImage at 0x7fd04b731400>












[image: ../_images/examples_cfproto_mnist_69_2.png]




By removing the predict loss term and having the nearest class prototype guide the counterfactual, we can speed up the search by about 100x for a simple CNN. Please note that these examples are not optimized for speed but just highlight the difference in performance.

Clean up:


[43]:






os.remove('mnist_cnn.h5')
os.remove('mnist_ae.h5')
os.remove('mnist_enc.h5')
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Counterfactuals guided by prototypes on Boston housing dataset

This notebook goes through an example of prototypical counterfactuals using k-d trees [https://en.wikipedia.org/wiki/K-d_tree] to build the prototypes. Please check out this notebook for a more in-depth application of the method on MNIST using (auto-)encoders and trust scores.

In this example, we will train a simple neural net to predict whether house prices in the Boston area are above the median value or not. We can then find a counterfactual to see which variables need to be changed to increase or decrease a house price above or below the median value.


[1]:






import keras
from keras import backend as K
from keras.layers import Dense, Input
from keras.models import Model, load_model
from keras.utils import to_categorical
import matplotlib
%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import os
from sklearn.datasets import load_boston
import tensorflow as tf
from alibi.explainers import CounterFactualProto













Using TensorFlow backend.







Load and prepare Boston housing dataset


[2]:






boston = load_boston()
data = boston['data']
target = boston['target']
feature_names = boston['feature_names']







Transform into classification task: target becomes whether house price is above the overall median or not


[3]:






y = np.zeros((target.shape[0],))
y[np.where(target > np.median(target))[0]] = 1







Remove categorical feature


[4]:






data = np.delete(data, 3, 1)
feature_names = np.delete(feature_names, 3)







Explanation of remaining features:


	CRIM: per capita crime rate by town


	ZN: proportion of residential land zoned for lots over 25,000 sq.ft.


	INDUS: proportion of non-retail business acres per town


	RM: average number of rooms per dwelling


	AGE: proportion of owner-occupied units built prior to 1940


	DIS: weighted distances to five Boston employment centres


	RAD: index of accessibility to radial highways


	TAX: full-value property-tax rate per USD10,000


	PTRATIO: pupil-teacher ratio by town


	B: 1000(Bk - 0.63)^2 where Bk is the proportion of blacks by town


	LSTAT: % lower status of the population




Standardize data


[5]:






mu = data.mean(axis=0)
sigma = data.std(axis=0)
data = (data - mu) / sigma







Define train and test set


[6]:






idx = 475
x_train,y_train = data[:idx,:], y[:idx]
x_test, y_test = data[idx:,:], y[idx:]
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)










Train model


[7]:






np.random.seed(0)
tf.set_random_seed(0)








[8]:






def nn_model():
    x_in = Input(shape=(12,))
    x = Dense(40, activation='relu')(x_in)
    x = Dense(40, activation='relu')(x)
    x_out = Dense(2, activation='softmax')(x)
    nn = Model(inputs=x_in, outputs=x_out)
    nn.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
    return nn








[9]:






nn = nn_model()
nn.summary()
nn.fit(x_train, y_train, batch_size=128, epochs=500, verbose=0)
nn.save('nn_boston.h5')













_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 12)                0
_________________________________________________________________
dense_1 (Dense)              (None, 40)                520
_________________________________________________________________
dense_2 (Dense)              (None, 40)                1640
_________________________________________________________________
dense_3 (Dense)              (None, 2)                 82
=================================================================
Total params: 2,242
Trainable params: 2,242
Non-trainable params: 0
_________________________________________________________________







[10]:






score = nn.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])













Test accuracy:  0.8064516186714172









Generate counterfactual guided by the nearest class prototype

Original instance:


[11]:






X = x_test[1].reshape((1,) + x_test[1].shape)
shape = X.shape







Run counterfactual:


[12]:






# set random seed
np.random.seed(1)
tf.set_random_seed(1)

# define model
nn = load_model('nn_boston.h5')

# get Keras session
sess = K.get_session()

# initialize explainer, fit and generate counterfactual
cf = CounterFactualProto(sess, nn, shape, use_kdtree=True, theta=10., max_iterations=1000,
                         feature_range=(x_train.min(axis=0), x_train.max(axis=0)),
                         c_init=1., c_steps=10)
cf.fit(x_train)
explanation = cf.explain(X)

sess.close()
K.clear_session()













No encoder specified. Using k-d trees to represent class prototypes.






The prediction flipped from 0 (value below the median) to 1 (above the median):


[13]:






print('Original prediction: {}'.format(explanation['orig_class']))
print('Counterfactual prediction: {}'.format(explanation['cf']['class']))













Original prediction: 0
Counterfactual prediction: 1






Let’s take a look at the counterfactual. To make the results more interpretable, we will first undo the pre-processing step and then check where the counterfactual differs from the original instance:


[14]:






orig = X * sigma + mu
counterfactual = explanation['cf']['X'] * sigma + mu
delta = counterfactual - orig
for i, f in enumerate(feature_names):
    if np.abs(delta[0][i]) > 1e-4:
        print('{}: {}'.format(f, delta[0][i]))













AGE: -21.56911332760376
LSTAT: -4.1864947634051575






So in order to increase the house price, the proportion of owner-occupied units built prior to 1940 should decrease by almost 22%. This is not surprising since the proportion for the observation is very high at 93.6%. Furthermore, the % of the population with “lower status” should decrease by 4%.


[15]:






print('% owner-occupied units built prior to 1940: {}'.format(orig[0][5]))
print('% lower status of the population: {}'.format(orig[0][11]))













% owner-occupied units built prior to 1940: 93.6
% lower status of the population: 18.68






Clean up:


[16]:






os.remove('boston_nn.h5')
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Trust Scores applied to Iris

It is important to know when a machine learning classifier’s predictions can be trusted. Relying on the classifier’s (uncalibrated) prediction probabilities is not optimal and can be improved upon. Trust scores measure the agreement between the classifier and a modified nearest neighbor classifier on the test set. The trust score is the ratio between the distance of the test instance to the nearest class different from the predicted class and the distance to the predicted class. Higher scores
correspond to more trustworthy predictions. A score of 1 would mean that the distance to the predicted class is the same as to another class.

The original paper on which the algorithm is based is called To Trust Or Not To Trust A Classifier [https://arxiv.org/abs/1805.11783]. Our implementation borrows heavily from https://github.com/google/TrustScore, as does the example notebook.


[1]:






import matplotlib
%matplotlib inline
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.datasets import load_iris
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import StratifiedShuffleSplit
from alibi.confidence import TrustScore








Load and prepare Iris dataset


[2]:






dataset = load_iris()







Scale data


[3]:






dataset.data = (dataset.data - dataset.data.mean(axis=0)) / dataset.data.std(axis=0)







Define training and test set


[4]:






idx = 140
X_train,y_train = dataset.data[:idx,:], dataset.target[:idx]
X_test, y_test = dataset.data[idx+1:,:], dataset.target[idx+1:]










Fit model and make predictions


[5]:






np.random.seed(0)
clf = LogisticRegression(solver='liblinear', multi_class='auto')
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
print('Predicted class: {}'.format(y_pred))













Predicted class: [2 2 2 2 2 2 2 2 2]









Basic Trust Score Usage


Initialise Trust Scores and fit on training data

The trust score algorithm builds k-d trees [https://en.wikipedia.org/wiki/K-d_tree] for each class. The distance of the test instance to the \(k\)th nearest neighbor of each tree (or the average distance to the \(k\)th neighbor) can then be used to calculate the trust score. We can optionally filter out outliers in the training data before building the trees. The example below uses the distance_knn (filter_type) method to filter out the 5% (alpha) instances of each
class with the highest distance to its 10th nearest neighbor (k_filter) in that class.


[6]:






ts = TrustScore(k_filter=10,  # nb of neighbors used for kNN distance or probability to filter out outliers
                alpha=.05,  # target fraction of instances to filter out
                filter_type='distance_knn',  # filter method: None, 'distance_knn' or 'probability_knn'
                leaf_size=40,  # affects speed and memory to build KDTrees, memory scales with n_samples / leaf_size
                metric='euclidean',  # distance metric used for the KDTrees
                dist_filter_type='point')  # 'point' uses distance to k-nearest point
                                           # 'mean' uses average distance from the 1st to the kth nearest point








[7]:






ts.fit(X_train, y_train, classes=3)  # classes = nb of prediction classes










Calculate Trust Scores on test data

Since the trust score is the ratio between the distance of the test instance to the nearest class different from the predicted class and the distance to the predicted class, higher scores correspond to more trustworthy predictions. A score of 1 would mean that the distance to the predicted class is the same as to another class. The score method returns arrays with both the trust scores and the class labels of the closest not predicted class.


[8]:






score, closest_class = ts.score(X_test,
                                y_pred, k=2,  # kth nearest neighbor used
                                              # to compute distances for each class
                                dist_type='point')  # 'point' or 'mean' distance option
print('Trust scores: {}'.format(score))
print('\nClosest not predicted class: {}'.format(closest_class))













Trust scores: [2.574271277538439 2.1630334957870114 3.1629405367742223
 2.7258494544157927 2.541748027539072 1.402878283257114 1.941073062524019
 2.0601725424359296 2.1781121494573514]

Closest not predicted class: [1 1 1 1 1 1 1 1 1]











Comparison of Trust Scores with model prediction probabilities

Let’s compare the prediction probabilities from the classifier with the trust scores for each prediction. The first use case checks whether trust scores are better than the model’s prediction probabilities at identifying correctly classified examples, while the second use case does the same for incorrectly classified instances.

First we need to set up a couple of helper functions.


	Define a function that handles model training and predictions for a simple logistic regression:





[9]:






def run_lr(X_train, y_train, X_test):
    clf = LogisticRegression(solver='liblinear', multi_class='auto')
    clf.fit(X_train, y_train)
    y_pred = clf.predict(X_test)
    y_pred_proba = clf.predict_proba(X_test)
    probas = y_pred_proba[range(len(y_pred)), y_pred]  # probabilities of predicted class
    return y_pred, probas








	Define the function that generates the precision plots:





[10]:






def plot_precision_curve(plot_title,
                         percentiles,
                         labels,
                         final_tp,
                         final_stderr,
                         final_misclassification,
                         colors = ['blue', 'darkorange', 'brown', 'red', 'purple']):

    plt.title(plot_title, fontsize=18)
    colors = colors + list(cm.rainbow(np.linspace(0, 1, len(final_tp))))
    plt.xlabel("Percentile", fontsize=14)
    plt.ylabel("Precision", fontsize=14)

    for i, label in enumerate(labels):
        ls = "--" if ("Model" in label) else "-"
        plt.plot(percentiles, final_tp[i], ls, c=colors[i], label=label)
        plt.fill_between(percentiles,
                         final_tp[i] - final_stderr[i],
                         final_tp[i] + final_stderr[i],
                         color=colors[i],
                         alpha=.1)

    if 0. in percentiles:
        plt.legend(loc="lower right", fontsize=14)
    else:
        plt.legend(loc="upper left", fontsize=14)
    model_acc = 100 * (1 - final_misclassification)
    plt.axvline(x=model_acc, linestyle="dotted", color="black")
    plt.show()








	The function below trains the model on a number of folds, makes predictions, calculates the trust scores, and generates the precision curves to compare the trust scores with the model prediction probabilities:





[11]:






def run_precision_plt(X, y, nfolds, percentiles, run_model, test_size=.5,
                      plt_title="", plt_names=[], predict_correct=True, classes=3):

    def stderr(L):
        return np.std(L) / np.sqrt(len(L))

    all_tp = [[[] for p in percentiles] for _ in plt_names]
    misclassifications = []
    mult = 1 if predict_correct else -1

    folds = StratifiedShuffleSplit(n_splits=nfolds, test_size=test_size, random_state=0)
    for train_idx, test_idx in folds.split(X, y):
        # create train and test folds, train model and make predictions
        X_train, y_train = X[train_idx, :], y[train_idx]
        X_test, y_test = X[test_idx, :], y[test_idx]
        y_pred, probas = run_lr(X_train, y_train, X_test)
        # target points are the correctly classified points
        target_points = np.where(y_pred == y_test)[0] if predict_correct else np.where(y_pred != y_test)[0]
        final_curves = [probas]
        # calculate trust scores
        ts = TrustScore()
        ts.fit(X_train, y_train, classes=classes)
        scores, _ = ts.score(X_test, y_pred)
        final_curves.append(scores)  # contains prediction probabilities and trust scores
        # check where prediction probabilities and trust scores are above a certain percentage level
        for p, perc in enumerate(percentiles):
            high_proba = [np.where(mult * curve >= np.percentile(mult * curve, perc))[0] for curve in final_curves]
            if 0 in map(len, high_proba):
                continue
            # calculate fraction of values above percentage level that are correctly (or incorrectly) classified
            tp = [len(np.intersect1d(hp, target_points)) / (1. * len(hp)) for hp in high_proba]
            for i in range(len(plt_names)):
                all_tp[i][p].append(tp[i])  # for each percentile, store fraction of values above cutoff value
        misclassifications.append(len(target_points) / (1. * len(X_test)))

    # average over folds for each percentile
    final_tp = [[] for _ in plt_names]
    final_stderr = [[] for _ in plt_names]
    for p, perc in enumerate(percentiles):
        for i in range(len(plt_names)):
            final_tp[i].append(np.mean(all_tp[i][p]))
            final_stderr[i].append(stderr(all_tp[i][p]))

    for i in range(len(all_tp)):
        final_tp[i] = np.array(final_tp[i])
        final_stderr[i] = np.array(final_stderr[i])

    final_misclassification = np.mean(misclassifications)

    # create plot
    plot_precision_curve(plt_title, percentiles, plt_names, final_tp, final_stderr, final_misclassification)








Detect correctly classified examples

The x-axis on the plot below shows the percentiles for the model prediction probabilities of the predicted class for each instance and for the trust scores. The y-axis represents the precision for each percentile. For each percentile level, we take the test examples whose trust score is above that percentile level and plot the percentage of those points that were correctly classified by the classifier. We do the same with the classifier’s own model confidence (i.e. softmax probabilities). For
example, at percentile level 80, we take the top 20% scoring test examples based on the trust score and plot the percentage of those points that were correctly classified. We also plot the top 20% scoring test examples based on model probabilities and plot the percentage of those that were correctly classified. The vertical dotted line is the error of the logistic regression classifier. The plots are an average over 10 folds of the dataset with 50% of the data kept for the test set.

The Trust Score and Model Confidence curves then show that the model precision is typically higher when using the trust scores to rank the predictions compared to the model prediction probabilities.


[12]:






X = dataset.data
y = dataset.target
percentiles = [0 + 0.5 * i for i in range(200)]
nfolds = 10
plt_names = ['Model Confidence', 'Trust Score']
plt_title = 'Iris -- Logistic Regression -- Predict Correct'








[13]:






run_precision_plt(X, y, nfolds, percentiles, run_lr, plt_title=plt_title,
                  plt_names=plt_names, predict_correct=True)












[image: ../_images/examples_trustscore_iris_30_0.png]







Detect incorrectly classified examples

By taking the negative of the prediction probabilities and trust scores, we can also see on the plot below how the trust scores compare to the model predictions for incorrectly classified instances. The vertical dotted line is the accuracy of the logistic regression classifier. The plot shows the precision of identifying incorrectly classified instances. Higher is obviously better.


[14]:






percentiles = [50 + 0.5 * i for i in range(100)]
plt_title = 'Iris -- Logistic Regression -- Predict Incorrect'
run_precision_plt(X, y, nfolds, percentiles, run_lr, plt_title=plt_title,
                  plt_names=plt_names, predict_correct=False)












[image: ../_images/examples_trustscore_iris_33_0.png]
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This page was generated from examples/trustscore_mnist.ipynb [https://github.com/SeldonIO/alibi/blob/5b941cad6e54fa670b39e19781580a5d85fb6142/examples/trustscore_mnist.ipynb].




Trust Scores applied to MNIST

It is important to know when a machine learning classifier’s predictions can be trusted. Relying on the classifier’s (uncalibrated) prediction probabilities is not optimal and can be improved upon. Trust scores measure the agreement between the classifier and a modified nearest neighbor classifier on the test set. The trust score is the ratio between the distance of the test instance to the nearest class different from the predicted class and the distance to the predicted class. Higher scores
correspond to more trustworthy predictions. A score of 1 would mean that the distance to the predicted class is the same as to another class.

The original paper on which the algorithm is based is called To Trust Or Not To Trust A Classifier [https://arxiv.org/abs/1805.11783]. Our implementation borrows heavily from https://github.com/google/TrustScore, as does the example notebook.

Trust scores work best for low to medium dimensional feature spaces. This notebook illustrates how you can apply trust scores to high dimensional data like images by adding an additional pre-processing step in the form of an auto-encoder [https://en.wikipedia.org/wiki/Autoencoder] to reduce the dimensionality. Other dimension reduction techniques like PCA can be used as well.


[1]:






import keras
from keras import backend as K
from keras.layers import Conv2D, Dense, Dropout, Flatten, MaxPooling2D, Input, UpSampling2D
from keras.models import Model
from keras.utils import to_categorical
import matplotlib
%matplotlib inline
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import StratifiedShuffleSplit
from alibi.confidence import TrustScore













Using TensorFlow backend.







[2]:






(x_train, y_train), (x_test, y_test) = keras.datasets.mnist.load_data()
print('x_train shape:', x_train.shape, 'y_train shape:', y_train.shape)
plt.gray()
plt.imshow(x_test[0])













x_train shape: (60000, 28, 28) y_train shape: (60000,)







[2]:






<matplotlib.image.AxesImage at 0x7f7fd1e40128>












[image: ../_images/examples_trustscore_mnist_3_2.png]




Prepare data: scale, reshape and categorize


[3]:






x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
x_train = np.reshape(x_train, x_train.shape + (1,))
x_test = np.reshape(x_test, x_test.shape + (1,))
print('x_train shape:', x_train.shape, 'x_test shape:', x_test.shape)
y_train = to_categorical(y_train)
y_test = to_categorical(y_test)
print('y_train shape:', y_train.shape, 'y_test shape:', y_test.shape)













x_train shape: (60000, 28, 28, 1) x_test shape: (10000, 28, 28, 1)
y_train shape: (60000, 10) y_test shape: (10000, 10)







[4]:






xmin, xmax = -.5, .5
x_train = ((x_train - x_train.min()) / (x_train.max() - x_train.min())) * (xmax - xmin) + xmin
x_test = ((x_test - x_test.min()) / (x_test.max() - x_test.min())) * (xmax - xmin) + xmin








Define and train model

For this example we are not interested in optimizing model performance so a simple softmax classifier will do:


[5]:






def sc_model():
    x_in = Input(shape=(28, 28, 1))
    x = Flatten()(x_in)
    x_out = Dense(10, activation='softmax')(x)
    sc = Model(inputs=x_in, outputs=x_out)
    sc.compile(loss='categorical_crossentropy', optimizer='sgd', metrics=['accuracy'])
    return sc








[6]:






sc = sc_model()
sc.summary()
sc.fit(x_train, y_train, batch_size=128, epochs=5, verbose=0)













_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_1 (InputLayer)         (None, 28, 28, 1)         0
_________________________________________________________________
flatten_1 (Flatten)          (None, 784)               0
_________________________________________________________________
dense_1 (Dense)              (None, 10)                7850
=================================================================
Total params: 7,850
Trainable params: 7,850
Non-trainable params: 0
_________________________________________________________________







[6]:






<keras.callbacks.History at 0x7f7fd1e13630>







Evaluate the model on the test set:


[7]:






score = sc.evaluate(x_test, y_test, verbose=0)
print('Test accuracy: ', score[1])













Test accuracy:  0.8862









Define and train auto-encoder


[8]:






def ae_model():
    # encoder
    x_in = Input(shape=(28, 28, 1))
    x = Conv2D(16, (3, 3), activation='relu', padding='same')(x_in)
    x = MaxPooling2D((2, 2), padding='same')(x)
    x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
    x = MaxPooling2D((2, 2), padding='same')(x)
    x = Conv2D(4, (3, 3), activation=None, padding='same')(x)
    encoded = MaxPooling2D((2, 2), padding='same')(x)
    encoder = Model(x_in, encoded)

    # decoder
    dec_in = Input(shape=(4, 4, 4))
    x = Conv2D(4, (3, 3), activation='relu', padding='same')(dec_in)
    x = UpSampling2D((2, 2))(x)
    x = Conv2D(8, (3, 3), activation='relu', padding='same')(x)
    x = UpSampling2D((2, 2))(x)
    x = Conv2D(16, (3, 3), activation='relu')(x)
    x = UpSampling2D((2, 2))(x)
    decoded = Conv2D(1, (3, 3), activation=None, padding='same')(x)
    decoder = Model(dec_in, decoded)

    # autoencoder = encoder + decoder
    x_out = decoder(encoder(x_in))
    autoencoder = Model(x_in, x_out)
    autoencoder.compile(optimizer='adam', loss='mse')

    return autoencoder, encoder, decoder








[9]:






ae, enc, dec = ae_model()
ae.summary()
ae.fit(x_train, x_train, batch_size=128, epochs=8, validation_data=(x_test, x_test), verbose=0)













_________________________________________________________________
Layer (type)                 Output Shape              Param #
=================================================================
input_2 (InputLayer)         (None, 28, 28, 1)         0
_________________________________________________________________
model_2 (Model)              (None, 4, 4, 4)           1612
_________________________________________________________________
model_3 (Model)              (None, 28, 28, 1)         1757
=================================================================
Total params: 3,369
Trainable params: 3,369
Non-trainable params: 0
_________________________________________________________________







[9]:






<keras.callbacks.History at 0x7f7fd24cd5c0>










Calculate Trust Scores

Initialize trust scores:


[10]:






ts = TrustScore()







The key is to fit and calculate the trust scores on the encoded instances. The encoded data still needs to be reshaped from (60000, 4, 4, 4) to (60000, 64) to comply with the k-d tree format. This is handled internally:


[11]:






x_train_enc = enc.predict(x_train)
ts.fit(x_train_enc, y_train, classes=10)  # 10 classes present in MNIST













Reshaping data from (60000, 4, 4, 4) to (60000, 64) so k-d trees can be built.






We can now calculate the trust scores and closest not predicted classes of the predictions on the test set, using the distance to the 5th nearest neighbor in each class:


[12]:






x_test_enc = enc.predict(x_test)
y_pred = sc.predict(x_test)
score, closest_class = ts.score(x_test_enc, y_pred, k=5)













Reshaping data from (10000, 4, 4, 4) to (10000, 64) so k-d trees can be queried.






Let’s inspect which predictions have low and high trust scores:


[13]:






n = 5
idx_min, idx_max = np.argsort(score)[:n], np.argsort(score)[-n:]
score_min, score_max = score[idx_min], score[idx_max]
closest_min, closest_max = closest_class[idx_min], closest_class[idx_max]
pred_min, pred_max = np.argmax(y_pred[idx_min], axis=1), np.argmax(y_pred[idx_max], axis=1)
imgs_min, imgs_max = x_test[idx_min], x_test[idx_max]
label_min, label_max = np.argmax(y_test[idx_min], axis=1), np.argmax(y_test[idx_max], axis=1)








Low Trust Scores

The image below makes clear that the low trust scores correspond to misclassified images. Because the trust scores are significantly below 1, they correctly identified that the images belong to another class than the predicted class, and identified that class.


[14]:






plt.figure(figsize=(20, 4))
for i in range(n):
    ax = plt.subplot(1, n, i+1)
    plt.imshow(imgs_min[i].reshape(28, 28))
    plt.title('Model prediction: {} \n Label: {} \n Trust score: {:.3f}' \
              '\n Closest other class: {}'.format(pred_min[i], label_min[i], score_min[i], closest_min[i]))
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()












[image: ../_images/examples_trustscore_mnist_27_0.png]







High Trust Scores

The high trust scores on the other hand all are very clear 1’s:


[15]:






plt.figure(figsize=(20, 4))
for i in range(n):
    ax = plt.subplot(1, n, i+1)
    plt.imshow(imgs_max[i].reshape(28, 28))
    plt.title('Model prediction: {} \n Label: {} \n Trust score: {:.3f}'.format(pred_max[i], label_max[i], score_max[i]))
    ax.get_xaxis().set_visible(False)
    ax.get_yaxis().set_visible(False)
plt.show()












[image: ../_images/examples_trustscore_mnist_30_0.png]









Comparison of Trust Scores with model prediction probabilities

Let’s compare the prediction probabilities from the classifier with the trust scores for each prediction by checking whether trust scores are better than the model’s prediction probabilities at identifying correctly classified examples.

First we need to set up a couple of helper functions.


	Define a function that handles model training and predictions:





[16]:






def run_sc(X_train, y_train, X_test):
    clf = sc_model()
    clf.fit(X_train, y_train, batch_size=128, epochs=5, verbose=0)
    y_pred_proba = clf.predict(X_test)
    y_pred = np.argmax(y_pred_proba, axis=1)
    probas = y_pred_proba[range(len(y_pred)), y_pred]  # probabilities of predicted class
    return y_pred, probas








	Define the function that generates the precision plots:





[17]:






def plot_precision_curve(plot_title,
                         percentiles,
                         labels,
                         final_tp,
                         final_stderr,
                         final_misclassification,
                         colors = ['blue', 'darkorange', 'brown', 'red', 'purple']):

    plt.title(plot_title, fontsize=18)
    colors = colors + list(cm.rainbow(np.linspace(0, 1, len(final_tp))))
    plt.xlabel("Percentile", fontsize=14)
    plt.ylabel("Precision", fontsize=14)

    for i, label in enumerate(labels):
        ls = "--" if ("Model" in label) else "-"
        plt.plot(percentiles, final_tp[i], ls, c=colors[i], label=label)
        plt.fill_between(percentiles,
                         final_tp[i] - final_stderr[i],
                         final_tp[i] + final_stderr[i],
                         color=colors[i],
                         alpha=.1)

    if 0. in percentiles:
        plt.legend(loc="lower right", fontsize=14)
    else:
        plt.legend(loc="upper left", fontsize=14)
    model_acc = 100 * (1 - final_misclassification)
    plt.axvline(x=model_acc, linestyle="dotted", color="black")
    plt.show()








	The function below trains the model on a number of folds, makes predictions, calculates the trust scores, and generates the precision curves to compare the trust scores with the model prediction probabilities:





[18]:






def run_precision_plt(X, y, nfolds, percentiles, run_model, test_size=.2,
                      plt_title="", plt_names=[], predict_correct=True, classes=10):

    def stderr(L):
        return np.std(L) / np.sqrt(len(L))

    all_tp = [[[] for p in percentiles] for _ in plt_names]
    misclassifications = []
    mult = 1 if predict_correct else -1

    folds = StratifiedShuffleSplit(n_splits=nfolds, test_size=test_size, random_state=0)
    for train_idx, test_idx in folds.split(X, y):
        # create train and test folds, train model and make predictions
        X_train, y_train = X[train_idx, :], y[train_idx, :]
        X_test, y_test = X[test_idx, :], y[test_idx, :]
        y_pred, probas = run_sc(X_train, y_train, X_test)
        # target points are the correctly classified points
        y_test_class = np.argmax(y_test, axis=1)
        target_points = (np.where(y_pred == y_test_class)[0] if predict_correct else
                         np.where(y_pred != y_test_class)[0])
        final_curves = [probas]
        # calculate trust scores
        ts = TrustScore()
        ts.fit(enc.predict(X_train), y_train, classes=classes)
        scores, _ = ts.score(enc.predict(X_test), y_pred, k=5)
        final_curves.append(scores)  # contains prediction probabilities and trust scores
        # check where prediction probabilities and trust scores are above a certain percentage level
        for p, perc in enumerate(percentiles):
            high_proba = [np.where(mult * curve >= np.percentile(mult * curve, perc))[0] for curve in final_curves]
            if 0 in map(len, high_proba):
                continue
            # calculate fraction of values above percentage level that are correctly (or incorrectly) classified
            tp = [len(np.intersect1d(hp, target_points)) / (1. * len(hp)) for hp in high_proba]
            for i in range(len(plt_names)):
                all_tp[i][p].append(tp[i])  # for each percentile, store fraction of values above cutoff value
        misclassifications.append(len(target_points) / (1. * len(X_test)))

    # average over folds for each percentile
    final_tp = [[] for _ in plt_names]
    final_stderr = [[] for _ in plt_names]
    for p, perc in enumerate(percentiles):
        for i in range(len(plt_names)):
            final_tp[i].append(np.mean(all_tp[i][p]))
            final_stderr[i].append(stderr(all_tp[i][p]))

    for i in range(len(all_tp)):
        final_tp[i] = np.array(final_tp[i])
        final_stderr[i] = np.array(final_stderr[i])

    final_misclassification = np.mean(misclassifications)

    # create plot
    plot_precision_curve(plt_title, percentiles, plt_names, final_tp, final_stderr, final_misclassification)










Detect correctly classified examples

The x-axis on the plot below shows the percentiles for the model prediction probabilities of the predicted class for each instance and for the trust scores. The y-axis represents the precision for each percentile. For each percentile level, we take the test examples whose trust score is above that percentile level and plot the percentage of those points that were correctly classified by the classifier. We do the same with the classifier’s own model confidence (i.e. softmax probabilities). For
example, at percentile level 80, we take the top 20% scoring test examples based on the trust score and plot the percentage of those points that were correctly classified. We also plot the top 20% scoring test examples based on model probabilities and plot the percentage of those that were correctly classified. The vertical dotted line is the error of the classifier. The plots are an average over 2 folds of the dataset with 20% of the data kept for the test set.

The Trust Score and Model Confidence curves then show that the model precision is typically higher when using the trust scores to rank the predictions compared to the model prediction probabilities.


[19]:






X = x_train
y = y_train
percentiles = [0 + 0.5 * i for i in range(200)]
nfolds = 2
plt_names = ['Model Confidence', 'Trust Score']
plt_title = 'MNIST -- Softmax Classifier -- Predict Correct'








[20]:






run_precision_plt(X, y, nfolds, percentiles, run_sc, plt_title=plt_title,
                  plt_names=plt_names, predict_correct=True)













Reshaping data from (48000, 4, 4, 4) to (48000, 64) so k-d trees can be built.
Reshaping data from (12000, 4, 4, 4) to (12000, 64) so k-d trees can be queried.
Reshaping data from (48000, 4, 4, 4) to (48000, 64) so k-d trees can be built.
Reshaping data from (12000, 4, 4, 4) to (12000, 64) so k-d trees can be queried.
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    alibi
    

    

    
 
  

    
      
          
            
  


alibi



	alibi package
	Subpackages
	alibi.confidence package
	Submodules
	alibi.confidence.trustscore module









	alibi.explainers package
	Submodules
	alibi.explainers.anchor_base module

	alibi.explainers.anchor_explanation module

	alibi.explainers.anchor_image module

	alibi.explainers.anchor_tabular module

	alibi.explainers.anchor_text module

	alibi.explainers.cem module

	alibi.explainers.cfproto module

	alibi.explainers.counterfactual module









	alibi.outlier package

	alibi.utils package
	Submodules
	alibi.utils.discretizer module

	alibi.utils.distance module

	alibi.utils.download module

	alibi.utils.gradients module













	Submodules
	alibi.datasets module

	alibi.version module

















          

      

      

    

  

  
    
    alibi package
    

    

    
 
  

    
      
          
            
  


alibi package


Subpackages



	alibi.confidence package
	Submodules
	alibi.confidence.trustscore module









	alibi.explainers package
	Submodules
	alibi.explainers.anchor_base module

	alibi.explainers.anchor_explanation module

	alibi.explainers.anchor_image module

	alibi.explainers.anchor_tabular module

	alibi.explainers.anchor_text module

	alibi.explainers.cem module

	alibi.explainers.cfproto module

	alibi.explainers.counterfactual module









	alibi.outlier package

	alibi.utils package
	Submodules
	alibi.utils.discretizer module

	alibi.utils.distance module

	alibi.utils.download module

	alibi.utils.gradients module
















Submodules



	alibi.datasets module

	alibi.version module











          

      

      

    

  

  
    
    alibi.confidence package
    

    

    
 
  

    
      
          
            
  


alibi.confidence package

The ‘alibi.confidence’ module includes trust scores.


	
class alibi.confidence.TrustScore(k_filter=10, alpha=0.0, filter_type=None, leaf_size=40, metric='euclidean', dist_filter_type='point')

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(k_filter=10, alpha=0.0, filter_type=None, leaf_size=40, metric='euclidean', dist_filter_type='point')

	Initialize trust scores.


	Parameters

	
	k_filter (int [https://docs.python.org/3/library/functions.html#int]) – Number of neighbors used during either kNN distance or probability filtering.


	alpha (float [https://docs.python.org/3/library/functions.html#float]) – Fraction of instances to filter out to reduce impact of outliers.


	filter_type (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Filter method; either ‘distance_knn’ or ‘probability_knn’


	leaf_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of points at which to switch to brute-force. Affects speed and memory required to build trees.
Memory to store the tree scales with n_samples / leaf_size.


	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Distance metric used for the tree. See sklearn’s DistanceMetric class for a list of available metrics.


	dist_filter_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Use either the distance to the k-nearest point (dist_filter_type = ‘point’) or
the average distance from the first to the k-nearest point in the data (dist_filter_type = ‘mean’).






	Return type

	None










	
filter_by_distance_knn(X)

	Filter out instances with low kNN density. Calculate distance to k-nearest point in the data for each
instance and remove instances above a cutoff distance.


	Parameters

	X (ndarray) – Data



	Return type

	ndarray



	Returns

	Filtered data.










	
filter_by_probability_knn(X, Y)

	Filter out instances with high label disagreement amongst its k nearest neighbors.


	Parameters

	
	X (ndarray) – Data


	Y (ndarray) – Predicted class labels






	Return type

	Tuple[ndarray, ndarray]



	Returns

	Filtered data and labels.










	
fit(X, Y, classes=None)

	Build KDTrees for each prediction class.


	Parameters

	
	X (ndarray) – Data


	Y (ndarray) – Target labels, either one-hot encoded or the actual class label.


	classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of prediction classes, needs to be provided if Y equals the predicted class.






	Return type

	None










	
score(X, Y, k=2, dist_type='point')

	Calculate trust scores = ratio of distance to closest class other than the
predicted class to distance to predicted class.


	Parameters

	
	X (ndarray) – Instances to calculate trust score for.


	Y (ndarray) – Either prediction probabilities for each class or the predicted class.


	k (int [https://docs.python.org/3/library/functions.html#int]) – Number of nearest neighbors used for distance calculation.


	dist_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Use either the distance to the k-nearest point (dist_type = ‘point’) or
the average distance from the first to the k-nearest point in the data (dist_type = ‘mean’).






	Return type

	Tuple[ndarray, ndarray]



	Returns

	Batch with trust scores and the closest not predicted class.














Submodules



	alibi.confidence.trustscore module
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alibi.confidence.trustscore module


	
class alibi.confidence.trustscore.TrustScore(k_filter=10, alpha=0.0, filter_type=None, leaf_size=40, metric='euclidean', dist_filter_type='point')

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(k_filter=10, alpha=0.0, filter_type=None, leaf_size=40, metric='euclidean', dist_filter_type='point')

	Initialize trust scores.


	Parameters

	
	k_filter (int [https://docs.python.org/3/library/functions.html#int]) – Number of neighbors used during either kNN distance or probability filtering.


	alpha (float [https://docs.python.org/3/library/functions.html#float]) – Fraction of instances to filter out to reduce impact of outliers.


	filter_type (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Filter method; either ‘distance_knn’ or ‘probability_knn’


	leaf_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of points at which to switch to brute-force. Affects speed and memory required to build trees.
Memory to store the tree scales with n_samples / leaf_size.


	metric (str [https://docs.python.org/3/library/stdtypes.html#str]) – Distance metric used for the tree. See sklearn’s DistanceMetric class for a list of available metrics.


	dist_filter_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Use either the distance to the k-nearest point (dist_filter_type = ‘point’) or
the average distance from the first to the k-nearest point in the data (dist_filter_type = ‘mean’).






	Return type

	None










	
filter_by_distance_knn(X)

	Filter out instances with low kNN density. Calculate distance to k-nearest point in the data for each
instance and remove instances above a cutoff distance.


	Parameters

	X (ndarray) – Data



	Return type

	ndarray



	Returns

	Filtered data.










	
filter_by_probability_knn(X, Y)

	Filter out instances with high label disagreement amongst its k nearest neighbors.


	Parameters

	
	X (ndarray) – Data


	Y (ndarray) – Predicted class labels






	Return type

	Tuple[ndarray, ndarray]



	Returns

	Filtered data and labels.










	
fit(X, Y, classes=None)

	Build KDTrees for each prediction class.


	Parameters

	
	X (ndarray) – Data


	Y (ndarray) – Target labels, either one-hot encoded or the actual class label.


	classes (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Number of prediction classes, needs to be provided if Y equals the predicted class.






	Return type

	None










	
score(X, Y, k=2, dist_type='point')

	Calculate trust scores = ratio of distance to closest class other than the
predicted class to distance to predicted class.


	Parameters

	
	X (ndarray) – Instances to calculate trust score for.


	Y (ndarray) – Either prediction probabilities for each class or the predicted class.


	k (int [https://docs.python.org/3/library/functions.html#int]) – Number of nearest neighbors used for distance calculation.


	dist_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Use either the distance to the k-nearest point (dist_type = ‘point’) or
the average distance from the first to the k-nearest point in the data (dist_type = ‘mean’).






	Return type

	Tuple[ndarray, ndarray]



	Returns

	Batch with trust scores and the closest not predicted class.
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alibi.explainers package

The ‘alibi.explainers’ module includes feature importance, counterfactual and anchor-based explainers.


	
class alibi.explainers.AnchorTabular(predict_fn, feature_names, categorical_names={})

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(predict_fn, feature_names, categorical_names={})

	Initialize the anchor tabular explainer.


	Parameters

	
	predict_fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Model prediction function


	feature_names (list [https://docs.python.org/3/library/stdtypes.html#list]) – List with feature names


	categorical_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary where keys are feature columns and values are the categories for the feature






	Return type

	None










	
add_names_to_exp(hoeffding_exp, mapping)

	Add feature names to explanation dictionary.


	Parameters

	
	hoeffding_exp (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dict with anchors and additional metadata


	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – 
	Dict: key = feature column or bin for ordinal features in categorized data; value = tuple containing

	(feature column, flag for categorical/ordinal feature, feature value or bin value)












	Return type

	None










	
explain(X, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, max_anchor_size=None, desired_label=None, **kwargs)

	Explain instance and return anchor with metadata.


	Parameters

	
	X (ndarray) – Instance to be explained


	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Minimum precision threshold


	delta (float [https://docs.python.org/3/library/functions.html#float]) – Used to compute beta


	tau (float [https://docs.python.org/3/library/functions.html#float]) – Margin between lower confidence bound and minimum precision or upper bound


	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Batch size used for sampling


	max_anchor_size (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Maximum number of features in anchor


	desired_label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Label to use as true label for the instance to be explained






	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	explanation – Dictionary containing the anchor explaining the instance with additional metadata










	
fit(train_data, disc_perc=[25, 50, 75])

	Fit discretizer to train data to bin ordinal features and compute statistics for ordinal features.


	Parameters

	
	train_data (ndarray) – Representative sample from the training data


	disc_perc (list [https://docs.python.org/3/library/stdtypes.html#list]) – List with percentiles (int) used for discretization






	Return type

	None










	
get_sample_fn(X, desired_label=None)

	Create sampling function and mapping dictionary between categorized data and the feature types and values.


	Parameters

	
	X (ndarray) – Instance to be explained


	desired_label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Label to use as true label for the instance to be explained






	Return type

	Tuple[Callable [https://docs.python.org/3/library/typing.html#typing.Callable], dict [https://docs.python.org/3/library/stdtypes.html#dict]]



	Returns

	
	sample_fn – Function returning raw and categorized sampled data, and labels


	mapping –


	Dict: key = feature column or bin for ordinal features in categorized data; value = tuple containing

	(feature column, flag for categorical/ordinal feature, feature value or bin value)




















	
sample_from_train(conditions_eq, conditions_neq, conditions_geq, conditions_leq, num_samples)

	Sample data from training set but keep features which are present in the proposed anchor the same
as the feature value or bin (for ordinal features) as the instance to be explained.


	Parameters

	
	conditions_eq (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dict: key = feature column; value = categorical feature value


	conditions_neq (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Not used at the moment


	conditions_geq (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dict: key = feature column; value = bin value of ordinal feature where bin value < feature value


	conditions_leq (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dict: key = feature column; value = bin value of ordinal feature where bin value >= feature value


	num_samples (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples used when sampling from training set






	Return type

	ndarray



	Returns

	sample – Sampled data from training set














	
class alibi.explainers.AnchorText(nlp, predict_fn)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(nlp, predict_fn)

	Initialize anchor text explainer.


	Parameters

	
	nlp (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – spaCy object


	predict_fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Model prediction function






	Return type

	None










	
explain(text, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, desired_label=None, use_proba=False, use_unk=True, **kwargs)

	Explain instance and return anchor with metadata.


	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text instance to be explained


	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Minimum precision threshold


	delta (float [https://docs.python.org/3/library/functions.html#float]) – Used to compute beta


	tau (float [https://docs.python.org/3/library/functions.html#float]) – Margin between lower confidence bound and minimum precision or upper bound


	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Batch size used for sampling


	desired_label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Label to use as true label for the instance to be explained


	use_proba (bool [https://docs.python.org/3/library/functions.html#bool]) – Bool whether to sample according to a similarity score with the corpus embeddings.
use_unk needs to be False in order for use_proba equals True to work.


	use_unk (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, perturbation distribution will replace words randomly with UNKs.
If False, words will be replaced by similar words using word embeddings.






	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	explanation – Dictionary containing the anchor explaining the instance with additional metadata










	
get_sample_fn(text, desired_label=None, use_proba=False, use_unk=True)

	Create sampling function as well as lists with the words and word positions in the text.


	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text instance to be explained


	desired_label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Label to use as true label for the instance to be explained


	use_proba (bool [https://docs.python.org/3/library/functions.html#bool]) – Bool whether to sample according to a similarity score with the corpus embeddings


	use_unk (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, perturbation distribution will replace words randomly with UNKs.
If False, words will be replaced by similar words using word embeddings.






	Return type

	Tuple[list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]



	Returns

	
	words – List with words in the text


	positions – List with positions of the words in the text


	sample_fn – Function returning perturbed text instances, matrix with flags for perturbed words and labels















	
perturb_sentence(text, present, n, proba_change=0.5, top_n=50, forbidden={}, forbidden_tags={'PRP$'}, forbidden_words={'be'}, pos={'ADJ', 'ADP', 'ADV', 'DET', 'NOUN', 'VERB'}, use_proba=True, temperature=0.4)

	Perturb the text instance to be explained.


	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text instance to be explained


	present (list [https://docs.python.org/3/library/stdtypes.html#list]) – List with the word index in the text for the words in the proposed anchor


	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples used when sampling from the corpus


	proba_change (float [https://docs.python.org/3/library/functions.html#float]) – Probability of a word being changed


	top_n (int [https://docs.python.org/3/library/functions.html#int]) – Keep only top_n instances from similar words in the corpus


	forbidden (set [https://docs.python.org/3/library/stdtypes.html#set]) – Forbidden lemmas


	forbidden_tags (set [https://docs.python.org/3/library/stdtypes.html#set]) – Forbidden POS tags


	forbidden_words (set [https://docs.python.org/3/library/stdtypes.html#set]) – Forbidden words


	pos (set [https://docs.python.org/3/library/stdtypes.html#set]) – POS that can be changed during perturbation


	use_proba (bool [https://docs.python.org/3/library/functions.html#bool]) – Bool whether to sample according to a similarity score with the corpus embeddings


	temperature (float [https://docs.python.org/3/library/functions.html#float]) – Sample weight hyperparameter if use_proba equals True






	Return type

	Tuple[list [https://docs.python.org/3/library/stdtypes.html#list], ndarray]



	Returns

	
	raw_data – List with num_samples of perturbed text instance


	data – Matrix with 1s and 0s indicating whether a word in the text has not been perturbed for each sample



















	
class alibi.explainers.AnchorImage(predict_fn, image_shape, segmentation_fn='slic', segmentation_kwargs={'compactness': 10, 'n_segments': 10, 'sigma': 0.5}, images_background=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(predict_fn, image_shape, segmentation_fn='slic', segmentation_kwargs={'compactness': 10, 'n_segments': 10, 'sigma': 0.5}, images_background=None)

	Initialize anchor image explainer.


	Parameters

	
	predict_fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Model prediction function.


	image_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Shape of the image to be explained.


	segmentation_fn (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Any of the built in segmentation function strings: ‘felzenszwalb’, ‘slic’ or ‘quickshift’ or a custom
segmentation function (callable) which returns an image mask with labels for each superpixel.
See http://scikit-image.org/docs/dev/api/skimage.segmentation.html for more info.


	segmentation_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for the built in segmentation functions.


	images_background (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ndarray]) – Images to overlay superpixels on.






	Return type

	None










	
explain(image, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, p_sample=0.5, **kwargs)

	Explain instance and return anchor with metadata.


	Parameters

	
	image (ndarray) – Image to be explained


	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Minimum precision threshold


	delta (float [https://docs.python.org/3/library/functions.html#float]) – Used to compute beta


	tau (float [https://docs.python.org/3/library/functions.html#float]) – Margin between lower confidence bound and minimum precision of upper bound


	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Batch size used for sampling


	p_sample (float [https://docs.python.org/3/library/functions.html#float]) – Probability for a pixel to be represented by the average value of its superpixel






	Returns

	explanation – Dictionary containing the anchor explaining the instance with additional metadata










	
get_sample_fn(image, p_sample=0.5)

	Create sampling function and superpixel mask.


	Parameters

	
	image (ndarray) – Image to be explained


	p_sample (float [https://docs.python.org/3/library/functions.html#float]) – Probability for a pixel to be represented by the average value of its superpixel or
the pixel value of a superimposed image






	Return type

	Tuple[ndarray, Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]



	Returns

	
	segments – Superpixels generated from image


	sample_fn – Function returning the sampled images with label















	
static overlay_mask(image, segments, mask_features, scale=(0, 255))

	Overlay image with mask described by the mask features.


	Parameters

	
	image (ndarray) – Image to be explained


	segments (ndarray) – Superpixels


	mask_features (list [https://docs.python.org/3/library/stdtypes.html#list]) – List with superpixels present in mask


	scale (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Pixel scale for masked image






	Return type

	ndarray



	Returns

	Image overlaid with mask.














	
class alibi.explainers.CEM(sess, predict, mode, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0), gamma=0.0, ae_model=None, learning_rate_init=0.01, max_iterations=1000, c_init=10.0, c_steps=10, eps=(0.001, 0.001), clip=(-100.0, 100.0), update_num_grad=1, no_info_val=None, write_dir=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(sess, predict, mode, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0), gamma=0.0, ae_model=None, learning_rate_init=0.01, max_iterations=1000, c_init=10.0, c_steps=10, eps=(0.001, 0.001), clip=(-100.0, 100.0), update_num_grad=1, no_info_val=None, write_dir=None)

	Initialize contrastive explanation method.
Paper: https://arxiv.org/abs/1802.07623


	Parameters

	
	sess (Session) – TensorFlow session


	predict (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Keras or TensorFlow model or any other model’s prediction function returning class probabilities


	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Find pertinant negatives (‘PN’) or pertinant positives (‘PP’)


	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Shape of input data starting with batch size


	kappa (float [https://docs.python.org/3/library/functions.html#float]) – Confidence parameter for the attack loss term


	beta (float [https://docs.python.org/3/library/functions.html#float]) – Regularization constant for L1 loss term


	feature_range (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple with min and max ranges to allow for perturbed instances. Min and max ranges can be floats or
numpy arrays with dimension (1x nb of features) for feature-wise ranges


	gamma (float [https://docs.python.org/3/library/functions.html#float]) – Regularization constant for optional auto-encoder loss term


	ae_model (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – Optional auto-encoder model used for loss regularization


	learning_rate_init (float [https://docs.python.org/3/library/functions.html#float]) – Initial learning rate of optimizer


	max_iterations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations for finding a PN or PP


	c_init (float [https://docs.python.org/3/library/functions.html#float]) – Initial value to scale the attack loss term


	c_steps (int [https://docs.python.org/3/library/functions.html#int]) – Number of iterations to adjust the constant scaling the attack loss term


	eps (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – If numerical gradients are used to compute dL/dx = (dL/dp) * (dp/dx), then eps[0] is used to
calculate dL/dp and eps[1] is used for dp/dx. eps[0] and eps[1] can be a combination of float values and
numpy arrays. For eps[0], the array dimension should be (1x nb of prediction categories) and for
eps[1] it should be (1x nb of features)


	clip (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple with min and max clip ranges for both the numerical gradients and the gradients
obtained from the TensorFlow graph


	update_num_grad (int [https://docs.python.org/3/library/functions.html#int]) – If numerical gradients are used, they will be updated every update_num_grad iterations


	no_info_val (Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray, None]) – Global or feature-wise value considered as containing no information


	write_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Directory to write tensorboard files to






	Return type

	None










	
attack(X, Y, verbose=False)

	Find pertinant negative or pertinant positive for instance X using a fast iterative
shrinkage-thresholding algorithm (FISTA).


	Parameters

	
	X (ndarray) – Instance to attack


	Y (ndarray) – Labels for X


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Print intermediate results of optimization if True






	Return type

	Tuple[ndarray, Tuple[ndarray, ndarray]]



	Returns

	Overall best attack and gradients for that attack.










	
explain(X, Y=None, verbose=False)

	Explain instance and return PP or PN with metadata.


	Parameters

	
	X (ndarray) – Instances to attack


	Y (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ndarray]) – Labels for X


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Print intermediate results of optimization if True






	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	explanation – Dictionary containing the PP or PN with additional metadata










	
fit(train_data, no_info_type='median')

	Get ‘no information’ values from the training data.


	Parameters

	
	train_data (ndarray) – Representative sample from the training data


	no_info_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Median or mean value by feature supported






	Return type

	None










	
get_gradients(X, Y)

	Compute numerical gradients of the attack loss term:
dL/dx = (dL/dP)*(dP/dx) with L = loss_attack_s; P = predict; x = adv_s


	Parameters

	
	X (ndarray) – Instance around which gradient is evaluated


	Y (ndarray) – One-hot representation of instance labels






	Return type

	ndarray



	Returns

	Array with gradients.










	
loss_fn(pred_proba, Y)

	Compute the attack loss.


	Parameters

	
	pred_proba (ndarray) – Prediction probabilities of an instance


	Y (ndarray) – One-hot representation of instance labels






	Return type

	ndarray



	Returns

	Loss of the attack.










	
perturb(X, eps, proba=False)

	Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.


	Parameters

	
	X (ndarray) – Array to be perturbed


	eps (Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray]) – Size of perturbation


	proba (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the net effect of the perturbation needs to be 0 to keep the sum of the probabilities equal to 1






	Return type

	Tuple[ndarray, ndarray]



	Returns

	Instances where a positive and negative perturbation is applied.














	
class alibi.explainers.CounterFactual(sess, predict_fn, shape, distance_fn='l1', target_proba=1.0, target_class='other', max_iter=1000, early_stop=50, lam_init=0.1, max_lam_steps=10, tol=0.05, learning_rate_init=0.1, feature_range=(-10000000000.0, 10000000000.0), eps=0.01, init='identity', decay=True, write_dir=None, debug=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(sess, predict_fn, shape, distance_fn='l1', target_proba=1.0, target_class='other', max_iter=1000, early_stop=50, lam_init=0.1, max_lam_steps=10, tol=0.05, learning_rate_init=0.1, feature_range=(-10000000000.0, 10000000000.0), eps=0.01, init='identity', decay=True, write_dir=None, debug=False)

	Initialize counterfactual explanation method based on Wachter et al. (2017)


	Parameters

	
	sess (Session) – TensorFlow session


	predict_fn (Union [https://docs.python.org/3/library/typing.html#typing.Union][Callable [https://docs.python.org/3/library/typing.html#typing.Callable], Model, <sphinx.ext.autodoc.importer._MockObject object at 0x7f7db5f086a0>]) – Keras or TensorFlow model or any other model’s prediction function returning class probabilities


	shape (Tuple[int [https://docs.python.org/3/library/functions.html#int], …]) – Shape of input data starting with batch size


	distance_fn (str [https://docs.python.org/3/library/stdtypes.html#str]) – Distance function to use in the loss term


	target_proba (float [https://docs.python.org/3/library/functions.html#float]) – Target probability for the counterfactual to reach


	target_class (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) – Target class for the counterfactual to reach, one of ‘other’, ‘same’ or an integer denoting
desired class membership for the counterfactual instance


	max_iter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of interations to run the gradient descent for (inner loop)


	early_stop (int [https://docs.python.org/3/library/functions.html#int]) – Number of steps after which to terminate gradient descent if all or none of found instances are solutions


	lam_init (float [https://docs.python.org/3/library/functions.html#float]) – Initial regularization constant for the prediction part of the Wachter loss


	max_lam_steps (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of times to adjust the regularization constant (outer loop) before terminating the search


	tol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for the counterfactual target probability


	learning_rate_init – Initial learning rate for each outer loop of lambda


	feature_range (Union [https://docs.python.org/3/library/typing.html#typing.Union][Tuple, str [https://docs.python.org/3/library/stdtypes.html#str]]) – Tuple with min and max ranges to allow for perturbed instances. Min and max ranges can be floats or
numpy arrays with dimension (1 x nb of features) for feature-wise ranges


	eps (Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray]) – Gradient step sizes used in calculating numerical gradients, defaults to a single value for all
features, but can be passed an array for feature-wise step sizes


	init (str [https://docs.python.org/3/library/stdtypes.html#str]) – Initialization method for the search of counterfactuals, currently must be ‘identity’


	decay (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to decay learning rate to zero for each outer loop over lambda


	write_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Directory to write Tensorboard files to


	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to write Tensorboard summaries for debugging






	Return type

	None










	
explain(X)

	Explain an instance and return the counterfactual with metadata.


	Parameters

	X (ndarray) – Instance to be explained



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	*explanation - a dictionary containing the counterfactual with additional metadata.*










	
fit(X, y)

	Fit method - currently unused as the counterfactual search is fully unsupervised.


	Return type

	None














	
class alibi.explainers.CounterFactualProto(sess, predict, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0), gamma=0.0, ae_model=None, enc_model=None, theta=0.0, use_kdtree=False, learning_rate_init=0.01, max_iterations=1000, c_init=10.0, c_steps=10, eps=(0.001, 0.001), clip=(-1000.0, 1000.0), update_num_grad=1, write_dir=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(sess, predict, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0), gamma=0.0, ae_model=None, enc_model=None, theta=0.0, use_kdtree=False, learning_rate_init=0.01, max_iterations=1000, c_init=10.0, c_steps=10, eps=(0.001, 0.001), clip=(-1000.0, 1000.0), update_num_grad=1, write_dir=None)

	Initialize prototypical counterfactual method.


	Parameters

	
	sess (Session) – TensorFlow session


	predict (Union [https://docs.python.org/3/library/typing.html#typing.Union][Callable [https://docs.python.org/3/library/typing.html#typing.Callable], Model, <sphinx.ext.autodoc.importer._MockObject object at 0x7f7db5ef5e80>]) – Keras or TensorFlow model or any other model’s prediction function returning class probabilities


	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Shape of input data starting with batch size


	kappa (float [https://docs.python.org/3/library/functions.html#float]) – Confidence parameter for the attack loss term


	beta (float [https://docs.python.org/3/library/functions.html#float]) – Regularization constant for L1 loss term


	feature_range (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple with min and max ranges to allow for perturbed instances. Min and max ranges can be floats or
numpy arrays with dimension (1x nb of features) for feature-wise ranges


	gamma (float [https://docs.python.org/3/library/functions.html#float]) – Regularization constant for optional auto-encoder loss term


	ae_model (Union [https://docs.python.org/3/library/typing.html#typing.Union][Model, <sphinx.ext.autodoc.importer._MockObject object at 0x7f7db5ef5ef0>, None]) – Optional auto-encoder model used for loss regularization


	enc_model (Union [https://docs.python.org/3/library/typing.html#typing.Union][Model, <sphinx.ext.autodoc.importer._MockObject object at 0x7f7db5ef5fd0>, None]) – Optional encoder model used to guide instance perturbations towards a class prototype


	theta (float [https://docs.python.org/3/library/functions.html#float]) – Constant for the prototype search loss term


	use_kdtree (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use k-d trees for the prototype loss term if no encoder is available


	learning_rate_init (float [https://docs.python.org/3/library/functions.html#float]) – Initial learning rate of optimizer


	max_iterations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations for finding a counterfactual


	c_init (float [https://docs.python.org/3/library/functions.html#float]) – Initial value to scale the attack loss term


	c_steps (int [https://docs.python.org/3/library/functions.html#int]) – Number of iterations to adjust the constant scaling the attack loss term


	eps (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – If numerical gradients are used to compute dL/dx = (dL/dp) * (dp/dx), then eps[0] is used to
calculate dL/dp and eps[1] is used for dp/dx. eps[0] and eps[1] can be a combination of float values and
numpy arrays. For eps[0], the array dimension should be (1x nb of prediction categories) and for
eps[1] it should be (1x nb of features)


	clip (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple with min and max clip ranges for both the numerical gradients and the gradients
obtained from the TensorFlow graph


	update_num_grad (int [https://docs.python.org/3/library/functions.html#int]) – If numerical gradients are used, they will be updated every update_num_grad iterations


	write_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Directory to write tensorboard files to






	Return type

	None










	
attack(X, Y, target_class=None, threshold=0.0, verbose=False, print_every=100, log_every=100)

	Find a counterfactual (CF) for instance X using a fast iterative shrinkage-thresholding algorithm (FISTA).


	Parameters

	
	X (ndarray) – Instance to attack


	Y (ndarray) – Labels for X as one-hot-encoding


	target_class (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]]) – List with target classes used to find closest prototype. If None, the nearest prototype
except for the predict class on the instance is used.


	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold level for the ratio between the distance of the counterfactual to the prototype of the
predicted class for the original instance over the distance to the prototype of the predicted class
for the counterfactual. If the trust score is below the threshold, the proposed counterfactual does
not meet the requirements.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Print intermediate results of optimization if True


	print_every (int [https://docs.python.org/3/library/functions.html#int]) – Print frequency if verbose is True


	log_every (int [https://docs.python.org/3/library/functions.html#int]) – Tensorboard log frequency if write directory is specified






	Return type

	Tuple[ndarray, Tuple[ndarray, ndarray]]



	Returns

	Overall best attack and gradients for that attack.










	
explain(X, Y=None, target_class=None, threshold=0.0, verbose=False, print_every=100, log_every=100)

	Explain instance and return counterfactual with metadata.


	Parameters

	
	X (ndarray) – Instances to attack


	Y (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ndarray]) – Labels for X as one-hot-encoding


	target_class (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]]) – List with target classes used to find closest prototype. If None, the nearest prototype
except for the predict class on the instance is used.


	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold level for the ratio between the distance of the counterfactual to the prototype of the
predicted class for the original instance over the distance to the prototype of the predicted class
for the counterfactual. If the trust score is below the threshold, the proposed counterfactual does
not meet the requirements.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Print intermediate results of optimization if True


	print_every (int [https://docs.python.org/3/library/functions.html#int]) – Print frequency if verbose is True


	log_every (int [https://docs.python.org/3/library/functions.html#int]) – Tensorboard log frequency if write directory is specified






	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	explanation – Dictionary containing the counterfactual with additional metadata










	
fit(train_data, trustscore_kwargs=None)

	Get prototypes for each class using the encoder or k-d trees.
The prototypes are used for the encoder loss term or to calculate the optional trust scores.


	Parameters

	
	train_data (ndarray) – Representative sample from the training data


	trustscore_kwargs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Optional arguments to initialize the trust scores method






	Return type

	None










	
get_gradients(X, Y)

	Compute numerical gradients of the attack loss term:
dL/dx = (dL/dP)*(dP/dx) with L = loss_attack_s; P = predict; x = adv_s


	Parameters

	
	X (ndarray) – Instance around which gradient is evaluated


	Y (ndarray) – One-hot representation of instance labels






	Return type

	ndarray



	Returns

	Array with gradients.










	
loss_fn(pred_proba, Y)

	Compute the attack loss.


	Parameters

	
	pred_proba (ndarray) – Prediction probabilities of an instance


	Y (ndarray) – One-hot representation of instance labels






	Return type

	ndarray



	Returns

	Loss of the attack.










	
perturb(X, eps, proba=False)

	Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.


	Parameters

	
	X (ndarray) – Array to be perturbed


	eps (Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray]) – Size of perturbation


	proba (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the net effect of the perturbation needs to be 0 to keep the sum of the probabilities equal to 1






	Return type

	Tuple[ndarray, ndarray]



	Returns

	Instances where a positive and negative perturbation is applied.










	
score(X, adv_class, orig_class, eps=1e-10)

	
	Parameters

	
	X (ndarray) – Instance to encode and calculate distance metrics for


	adv_class (int [https://docs.python.org/3/library/functions.html#int]) – Predicted class on the perturbed instance


	orig_class (int [https://docs.python.org/3/library/functions.html#int]) – Predicted class on the original instance


	eps (float [https://docs.python.org/3/library/functions.html#float]) – Small number to avoid dividing by 0






	Return type

	float [https://docs.python.org/3/library/functions.html#float]



	Returns

	
	Ratio between the distance to the prototype of the predicted class for the original instance and


	the prototype of the predicted class for the perturbed instance.



















Submodules



	alibi.explainers.anchor_base module

	alibi.explainers.anchor_explanation module

	alibi.explainers.anchor_image module

	alibi.explainers.anchor_tabular module

	alibi.explainers.anchor_text module

	alibi.explainers.cem module

	alibi.explainers.cfproto module

	alibi.explainers.counterfactual module
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alibi.explainers.anchor_base module


	
class alibi.explainers.anchor_base.AnchorBaseBeam

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__()

	Initialize the anchor beam search class.


	Return type

	None










	
static anchor_beam(sample_fn, delta=0.05, epsilon=0.1, batch_size=10, desired_confidence=1, beam_size=1, verbose=False, epsilon_stop=0.05, min_samples_start=0, max_anchor_size=None, verbose_every=1, stop_on_first=False, coverage_samples=10000, data_type=None)

	
	Parameters

	
	sample_fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Function used to sample from training set which returns (raw) data and labels


	delta (float [https://docs.python.org/3/library/functions.html#float]) – Used to compute beta


	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Precision bound tolerance for convergence


	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples


	desired_confidence (float [https://docs.python.org/3/library/functions.html#float]) – Desired level of precision, tau in paper


	beam_size (int [https://docs.python.org/3/library/functions.html#int]) – Beam width


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to print intermediate output


	epsilon_stop (float [https://docs.python.org/3/library/functions.html#float]) – Confidence bound margin around desired precision


	min_samples_start (int [https://docs.python.org/3/library/functions.html#int]) – Min number of initial samples


	max_anchor_size (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Max number of features in anchor


	verbose_every (int [https://docs.python.org/3/library/functions.html#int]) – Whether to print intermediate output every verbose_every steps


	stop_on_first (bool [https://docs.python.org/3/library/functions.html#bool]) – Stop on first valid anchor found


	coverage_samples (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples used to compute coverage


	data_type (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Data type for raw data






	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	Explanation dictionary containing anchors with metadata like coverage and precision.










	
static compute_beta(n_features, t, delta)

	
	Parameters

	
	n_features (int [https://docs.python.org/3/library/functions.html#int]) – Number of candidate anchors


	t (int [https://docs.python.org/3/library/functions.html#int]) – Iteration number


	delta (float [https://docs.python.org/3/library/functions.html#float]) – 






	Return type

	float [https://docs.python.org/3/library/functions.html#float]



	Returns

	Level used to update upper and lower precision bounds.










	
static dlow_bernoulli(p, level, n_iter=17)

	Update lower precision bound for a candidate anchor dependent on the KL-divergence.


	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Precision of candidate anchor


	level (float [https://docs.python.org/3/library/functions.html#float]) – beta / nb of samples


	n_iter (int [https://docs.python.org/3/library/functions.html#int]) – Number of iterations during lower bound update






	Return type

	float [https://docs.python.org/3/library/functions.html#float]



	Returns

	Updated lower precision bound










	
static dup_bernoulli(p, level, n_iter=17)

	Update upper precision bound for a candidate anchor dependent on the KL-divergence.


	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Precision of candidate anchor


	level (float [https://docs.python.org/3/library/functions.html#float]) – beta / nb of samples


	n_iter (int [https://docs.python.org/3/library/functions.html#int]) – Number of iterations during lower bound update






	Return type

	float [https://docs.python.org/3/library/functions.html#float]



	Returns

	Updated upper precision bound










	
static get_anchor_from_tuple(t, state)

	
	Parameters

	
	t (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Anchor


	state (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with the relevant metrics like coverage and samples for candidate anchors






	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	Anchor dictionary with anchor features and additional metadata.










	
static get_initial_statistics(tuples, state)

	
	Parameters

	
	tuples (list [https://docs.python.org/3/library/stdtypes.html#list]) – Candidate anchors


	state (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with the relevant metrics like coverage and samples for candidate anchors






	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	Dictionary with lists containing nb of samples used and where sample predictions equal the desired label.










	
static get_sample_fns(sample_fn, tuples, state, data_type=None)

	
	Parameters

	
	sample_fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Sample function, returns both raw and categorized data as well as labels


	tuples (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of anchor candidates


	state (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with the relevant metrics like coverage and samples for candidate anchors


	data_type (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Data type for raw data






	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]



	Returns

	List with sample functions for each candidate anchor.










	
static kl_bernoulli(p, q)

	Compute KL-divergence between 2 probabilities p and q.


	Parameters

	
	p (float [https://docs.python.org/3/library/functions.html#float]) – Probability


	q (float [https://docs.python.org/3/library/functions.html#float]) – Probability






	Return type

	float [https://docs.python.org/3/library/functions.html#float]



	Returns

	KL-divergence










	
static lucb(sample_fns, initial_stats, epsilon, delta, batch_size, top_n, verbose=False, verbose_every=1)

	
	Parameters

	
	sample_fns (list [https://docs.python.org/3/library/stdtypes.html#list]) – List with sample functions for each candidate anchor


	initial_stats (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with lists containing nb of samples used and where sample predictions equal the desired label


	epsilon (float [https://docs.python.org/3/library/functions.html#float]) – Precision bound tolerance for convergence


	delta (float [https://docs.python.org/3/library/functions.html#float]) – Used to compute beta


	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples


	top_n (int [https://docs.python.org/3/library/functions.html#int]) – Min of beam width size or number of candidate anchors


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to print intermediate output


	verbose_every (int [https://docs.python.org/3/library/functions.html#int]) – Whether to print intermediate output every verbose_every steps






	Return type

	Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][+T_co]



	Returns

	Indices of best anchor options. Number of indices equals min of beam width or nb of candidate anchors.










	
static make_tuples(previous_best, state)

	
	Parameters

	
	previous_best (list [https://docs.python.org/3/library/stdtypes.html#list]) – List with tuples of anchor candidates


	state (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with the relevant metrics like coverage and samples for candidate anchors






	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]



	Returns

	List with tuples of candidate anchors with additional metadata.














	
alibi.explainers.anchor_base.matrix_subset(matrix, n_samples)

	
	Parameters

	
	matrix (ndarray) – Matrix to sample from


	n_samples (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples returned






	Return type

	ndarray



	Returns

	Sample of the input matrix.
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alibi.explainers.anchor_explanation module


	
class alibi.explainers.anchor_explanation.AnchorExplanation(exp_type, exp_map)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(exp_type, exp_map)

	Class used to unpack the anchors and metadata from the explainer dictionary.


	Parameters

	
	exp_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Type of explainer: tabular, text or image


	exp_map (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary with the anchors and explainer metadata for an observation






	Return type

	None










	
coverage(partial_index=None)

	
	Parameters

	partial_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Get the anchor coverage until a certain index.
For example, if the anchor has precisions [0.1, 0.5, 0.95] and partial_index=1, this will return 0.5.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]



	Returns

	coverage – Anchor coverage










	
examples(only_different_prediction=False, only_same_prediction=False, partial_index=None)

	
	Parameters

	
	only_different_prediction (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, will only return examples where the anchor makes a different prediction than the original model


	only_same_prediction (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, will only return examples where the anchor makes the same prediction than the original model


	partial_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Get the examples from the partial anchor until a certain index






	Return type

	ndarray



	Returns

	Examples covered by anchor










	
features(partial_index=None)

	
	Parameters

	partial_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Get the anchor until a certain index.
For example, if the anchor uses features (1, 2, 3) and partial_index=1, this will return [1, 2].



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]



	Returns

	features – Features used in the anchor conditions.










	
names(partial_index=None)

	
	Parameters

	partial_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Get the anchor until a certain index.
For example, if the anchor is (A=1,B=2,C=2) and partial_index=1, this will return [“A=1”, “B=2”].



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]



	Returns

	names – Names with the anchor conditions










	
precision(partial_index=None)

	
	Parameters

	partial_index (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Get the anchor precision until a certain index.
For example, if the anchor has precisions [0.1, 0.5, 0.95] and partial_index=1, this will return 0.5.



	Return type

	float [https://docs.python.org/3/library/functions.html#float]



	Returns

	precision – Anchor precision
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alibi.explainers.anchor_image module


	
class alibi.explainers.anchor_image.AnchorImage(predict_fn, image_shape, segmentation_fn='slic', segmentation_kwargs={'compactness': 10, 'n_segments': 10, 'sigma': 0.5}, images_background=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(predict_fn, image_shape, segmentation_fn='slic', segmentation_kwargs={'compactness': 10, 'n_segments': 10, 'sigma': 0.5}, images_background=None)

	Initialize anchor image explainer.


	Parameters

	
	predict_fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Model prediction function.


	image_shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Shape of the image to be explained.


	segmentation_fn (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – Any of the built in segmentation function strings: ‘felzenszwalb’, ‘slic’ or ‘quickshift’ or a custom
segmentation function (callable) which returns an image mask with labels for each superpixel.
See http://scikit-image.org/docs/dev/api/skimage.segmentation.html for more info.


	segmentation_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments for the built in segmentation functions.


	images_background (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ndarray]) – Images to overlay superpixels on.






	Return type

	None










	
explain(image, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, p_sample=0.5, **kwargs)

	Explain instance and return anchor with metadata.


	Parameters

	
	image (ndarray) – Image to be explained


	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Minimum precision threshold


	delta (float [https://docs.python.org/3/library/functions.html#float]) – Used to compute beta


	tau (float [https://docs.python.org/3/library/functions.html#float]) – Margin between lower confidence bound and minimum precision of upper bound


	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Batch size used for sampling


	p_sample (float [https://docs.python.org/3/library/functions.html#float]) – Probability for a pixel to be represented by the average value of its superpixel






	Returns

	explanation – Dictionary containing the anchor explaining the instance with additional metadata










	
get_sample_fn(image, p_sample=0.5)

	Create sampling function and superpixel mask.


	Parameters

	
	image (ndarray) – Image to be explained


	p_sample (float [https://docs.python.org/3/library/functions.html#float]) – Probability for a pixel to be represented by the average value of its superpixel or
the pixel value of a superimposed image






	Return type

	Tuple[ndarray, Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]



	Returns

	
	segments – Superpixels generated from image


	sample_fn – Function returning the sampled images with label















	
static overlay_mask(image, segments, mask_features, scale=(0, 255))

	Overlay image with mask described by the mask features.


	Parameters

	
	image (ndarray) – Image to be explained


	segments (ndarray) – Superpixels


	mask_features (list [https://docs.python.org/3/library/stdtypes.html#list]) – List with superpixels present in mask


	scale (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Pixel scale for masked image






	Return type

	ndarray



	Returns

	Image overlaid with mask.
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alibi.explainers.anchor_tabular module


	
class alibi.explainers.anchor_tabular.AnchorTabular(predict_fn, feature_names, categorical_names={})

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(predict_fn, feature_names, categorical_names={})

	Initialize the anchor tabular explainer.


	Parameters

	
	predict_fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Model prediction function


	feature_names (list [https://docs.python.org/3/library/stdtypes.html#list]) – List with feature names


	categorical_names (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dictionary where keys are feature columns and values are the categories for the feature






	Return type

	None










	
add_names_to_exp(hoeffding_exp, mapping)

	Add feature names to explanation dictionary.


	Parameters

	
	hoeffding_exp (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dict with anchors and additional metadata


	mapping (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – 
	Dict: key = feature column or bin for ordinal features in categorized data; value = tuple containing

	(feature column, flag for categorical/ordinal feature, feature value or bin value)












	Return type

	None










	
explain(X, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, max_anchor_size=None, desired_label=None, **kwargs)

	Explain instance and return anchor with metadata.


	Parameters

	
	X (ndarray) – Instance to be explained


	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Minimum precision threshold


	delta (float [https://docs.python.org/3/library/functions.html#float]) – Used to compute beta


	tau (float [https://docs.python.org/3/library/functions.html#float]) – Margin between lower confidence bound and minimum precision or upper bound


	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Batch size used for sampling


	max_anchor_size (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Maximum number of features in anchor


	desired_label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Label to use as true label for the instance to be explained






	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	explanation – Dictionary containing the anchor explaining the instance with additional metadata










	
fit(train_data, disc_perc=[25, 50, 75])

	Fit discretizer to train data to bin ordinal features and compute statistics for ordinal features.


	Parameters

	
	train_data (ndarray) – Representative sample from the training data


	disc_perc (list [https://docs.python.org/3/library/stdtypes.html#list]) – List with percentiles (int) used for discretization






	Return type

	None










	
get_sample_fn(X, desired_label=None)

	Create sampling function and mapping dictionary between categorized data and the feature types and values.


	Parameters

	
	X (ndarray) – Instance to be explained


	desired_label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Label to use as true label for the instance to be explained






	Return type

	Tuple[Callable [https://docs.python.org/3/library/typing.html#typing.Callable], dict [https://docs.python.org/3/library/stdtypes.html#dict]]



	Returns

	
	sample_fn – Function returning raw and categorized sampled data, and labels


	mapping –


	Dict: key = feature column or bin for ordinal features in categorized data; value = tuple containing

	(feature column, flag for categorical/ordinal feature, feature value or bin value)




















	
sample_from_train(conditions_eq, conditions_neq, conditions_geq, conditions_leq, num_samples)

	Sample data from training set but keep features which are present in the proposed anchor the same
as the feature value or bin (for ordinal features) as the instance to be explained.


	Parameters

	
	conditions_eq (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dict: key = feature column; value = categorical feature value


	conditions_neq (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Not used at the moment


	conditions_geq (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dict: key = feature column; value = bin value of ordinal feature where bin value < feature value


	conditions_leq (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Dict: key = feature column; value = bin value of ordinal feature where bin value >= feature value


	num_samples (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples used when sampling from training set






	Return type

	ndarray



	Returns

	sample – Sampled data from training set
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alibi.explainers.anchor_text module


	
class alibi.explainers.anchor_text.AnchorText(nlp, predict_fn)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(nlp, predict_fn)

	Initialize anchor text explainer.


	Parameters

	
	nlp (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – spaCy object


	predict_fn (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Model prediction function






	Return type

	None










	
explain(text, threshold=0.95, delta=0.1, tau=0.15, batch_size=100, desired_label=None, use_proba=False, use_unk=True, **kwargs)

	Explain instance and return anchor with metadata.


	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text instance to be explained


	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Minimum precision threshold


	delta (float [https://docs.python.org/3/library/functions.html#float]) – Used to compute beta


	tau (float [https://docs.python.org/3/library/functions.html#float]) – Margin between lower confidence bound and minimum precision or upper bound


	batch_size (int [https://docs.python.org/3/library/functions.html#int]) – Batch size used for sampling


	desired_label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Label to use as true label for the instance to be explained


	use_proba (bool [https://docs.python.org/3/library/functions.html#bool]) – Bool whether to sample according to a similarity score with the corpus embeddings.
use_unk needs to be False in order for use_proba equals True to work.


	use_unk (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, perturbation distribution will replace words randomly with UNKs.
If False, words will be replaced by similar words using word embeddings.






	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	explanation – Dictionary containing the anchor explaining the instance with additional metadata










	
get_sample_fn(text, desired_label=None, use_proba=False, use_unk=True)

	Create sampling function as well as lists with the words and word positions in the text.


	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text instance to be explained


	desired_label (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – Label to use as true label for the instance to be explained


	use_proba (bool [https://docs.python.org/3/library/functions.html#bool]) – Bool whether to sample according to a similarity score with the corpus embeddings


	use_unk (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, perturbation distribution will replace words randomly with UNKs.
If False, words will be replaced by similar words using word embeddings.






	Return type

	Tuple[list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list], Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]



	Returns

	
	words – List with words in the text


	positions – List with positions of the words in the text


	sample_fn – Function returning perturbed text instances, matrix with flags for perturbed words and labels















	
perturb_sentence(text, present, n, proba_change=0.5, top_n=50, forbidden={}, forbidden_tags={'PRP$'}, forbidden_words={'be'}, pos={'ADJ', 'ADP', 'ADV', 'DET', 'NOUN', 'VERB'}, use_proba=True, temperature=0.4)

	Perturb the text instance to be explained.


	Parameters

	
	text (str [https://docs.python.org/3/library/stdtypes.html#str]) – Text instance to be explained


	present (list [https://docs.python.org/3/library/stdtypes.html#list]) – List with the word index in the text for the words in the proposed anchor


	n (int [https://docs.python.org/3/library/functions.html#int]) – Number of samples used when sampling from the corpus


	proba_change (float [https://docs.python.org/3/library/functions.html#float]) – Probability of a word being changed


	top_n (int [https://docs.python.org/3/library/functions.html#int]) – Keep only top_n instances from similar words in the corpus


	forbidden (set [https://docs.python.org/3/library/stdtypes.html#set]) – Forbidden lemmas


	forbidden_tags (set [https://docs.python.org/3/library/stdtypes.html#set]) – Forbidden POS tags


	forbidden_words (set [https://docs.python.org/3/library/stdtypes.html#set]) – Forbidden words


	pos (set [https://docs.python.org/3/library/stdtypes.html#set]) – POS that can be changed during perturbation


	use_proba (bool [https://docs.python.org/3/library/functions.html#bool]) – Bool whether to sample according to a similarity score with the corpus embeddings


	temperature (float [https://docs.python.org/3/library/functions.html#float]) – Sample weight hyperparameter if use_proba equals True






	Return type

	Tuple[list [https://docs.python.org/3/library/stdtypes.html#list], ndarray]



	Returns

	
	raw_data – List with num_samples of perturbed text instance


	data – Matrix with 1s and 0s indicating whether a word in the text has not been perturbed for each sample



















	
class alibi.explainers.anchor_text.Neighbors(nlp_obj, n_similar=500, w_prob=-15.0)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(nlp_obj, n_similar=500, w_prob=-15.0)

	Initialize class identifying neighbouring words from the embedding for a given word.


	Parameters

	
	nlp_obj (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – spaCy model


	n_similar (int [https://docs.python.org/3/library/functions.html#int]) – Number of similar words to return


	w_prob (float [https://docs.python.org/3/library/functions.html#float]) – Smoothed log probability estimate of token’s type






	Return type

	None










	
neighbors(word)

	Find similar words for a certain word in the vocabulary.


	Parameters

	word (str [https://docs.python.org/3/library/stdtypes.html#str]) – Word for which we need to find similar words



	Return type

	list [https://docs.python.org/3/library/stdtypes.html#list]



	Returns

	A list containing tuples with the similar words and similarity scores.
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alibi.explainers.cem module


	
class alibi.explainers.cem.CEM(sess, predict, mode, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0), gamma=0.0, ae_model=None, learning_rate_init=0.01, max_iterations=1000, c_init=10.0, c_steps=10, eps=(0.001, 0.001), clip=(-100.0, 100.0), update_num_grad=1, no_info_val=None, write_dir=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(sess, predict, mode, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0), gamma=0.0, ae_model=None, learning_rate_init=0.01, max_iterations=1000, c_init=10.0, c_steps=10, eps=(0.001, 0.001), clip=(-100.0, 100.0), update_num_grad=1, no_info_val=None, write_dir=None)

	Initialize contrastive explanation method.
Paper: https://arxiv.org/abs/1802.07623


	Parameters

	
	sess (Session) – TensorFlow session


	predict (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Keras or TensorFlow model or any other model’s prediction function returning class probabilities


	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – Find pertinant negatives (‘PN’) or pertinant positives (‘PP’)


	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Shape of input data starting with batch size


	kappa (float [https://docs.python.org/3/library/functions.html#float]) – Confidence parameter for the attack loss term


	beta (float [https://docs.python.org/3/library/functions.html#float]) – Regularization constant for L1 loss term


	feature_range (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple with min and max ranges to allow for perturbed instances. Min and max ranges can be floats or
numpy arrays with dimension (1x nb of features) for feature-wise ranges


	gamma (float [https://docs.python.org/3/library/functions.html#float]) – Regularization constant for optional auto-encoder loss term


	ae_model (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable]]) – Optional auto-encoder model used for loss regularization


	learning_rate_init (float [https://docs.python.org/3/library/functions.html#float]) – Initial learning rate of optimizer


	max_iterations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations for finding a PN or PP


	c_init (float [https://docs.python.org/3/library/functions.html#float]) – Initial value to scale the attack loss term


	c_steps (int [https://docs.python.org/3/library/functions.html#int]) – Number of iterations to adjust the constant scaling the attack loss term


	eps (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – If numerical gradients are used to compute dL/dx = (dL/dp) * (dp/dx), then eps[0] is used to
calculate dL/dp and eps[1] is used for dp/dx. eps[0] and eps[1] can be a combination of float values and
numpy arrays. For eps[0], the array dimension should be (1x nb of prediction categories) and for
eps[1] it should be (1x nb of features)


	clip (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple with min and max clip ranges for both the numerical gradients and the gradients
obtained from the TensorFlow graph


	update_num_grad (int [https://docs.python.org/3/library/functions.html#int]) – If numerical gradients are used, they will be updated every update_num_grad iterations


	no_info_val (Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray, None]) – Global or feature-wise value considered as containing no information


	write_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Directory to write tensorboard files to






	Return type

	None










	
attack(X, Y, verbose=False)

	Find pertinant negative or pertinant positive for instance X using a fast iterative
shrinkage-thresholding algorithm (FISTA).


	Parameters

	
	X (ndarray) – Instance to attack


	Y (ndarray) – Labels for X


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Print intermediate results of optimization if True






	Return type

	Tuple[ndarray, Tuple[ndarray, ndarray]]



	Returns

	Overall best attack and gradients for that attack.










	
explain(X, Y=None, verbose=False)

	Explain instance and return PP or PN with metadata.


	Parameters

	
	X (ndarray) – Instances to attack


	Y (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ndarray]) – Labels for X


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Print intermediate results of optimization if True






	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	explanation – Dictionary containing the PP or PN with additional metadata










	
fit(train_data, no_info_type='median')

	Get ‘no information’ values from the training data.


	Parameters

	
	train_data (ndarray) – Representative sample from the training data


	no_info_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – Median or mean value by feature supported






	Return type

	None










	
get_gradients(X, Y)

	Compute numerical gradients of the attack loss term:
dL/dx = (dL/dP)*(dP/dx) with L = loss_attack_s; P = predict; x = adv_s


	Parameters

	
	X (ndarray) – Instance around which gradient is evaluated


	Y (ndarray) – One-hot representation of instance labels






	Return type

	ndarray



	Returns

	Array with gradients.










	
loss_fn(pred_proba, Y)

	Compute the attack loss.


	Parameters

	
	pred_proba (ndarray) – Prediction probabilities of an instance


	Y (ndarray) – One-hot representation of instance labels






	Return type

	ndarray



	Returns

	Loss of the attack.










	
perturb(X, eps, proba=False)

	Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.


	Parameters

	
	X (ndarray) – Array to be perturbed


	eps (Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray]) – Size of perturbation


	proba (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the net effect of the perturbation needs to be 0 to keep the sum of the probabilities equal to 1






	Return type

	Tuple[ndarray, ndarray]



	Returns

	Instances where a positive and negative perturbation is applied.
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alibi.explainers.cfproto module


	
class alibi.explainers.cfproto.CounterFactualProto(sess, predict, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0), gamma=0.0, ae_model=None, enc_model=None, theta=0.0, use_kdtree=False, learning_rate_init=0.01, max_iterations=1000, c_init=10.0, c_steps=10, eps=(0.001, 0.001), clip=(-1000.0, 1000.0), update_num_grad=1, write_dir=None)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(sess, predict, shape, kappa=0.0, beta=0.1, feature_range=(-10000000000.0, 10000000000.0), gamma=0.0, ae_model=None, enc_model=None, theta=0.0, use_kdtree=False, learning_rate_init=0.01, max_iterations=1000, c_init=10.0, c_steps=10, eps=(0.001, 0.001), clip=(-1000.0, 1000.0), update_num_grad=1, write_dir=None)

	Initialize prototypical counterfactual method.


	Parameters

	
	sess (Session) – TensorFlow session


	predict (Union [https://docs.python.org/3/library/typing.html#typing.Union][Callable [https://docs.python.org/3/library/typing.html#typing.Callable], Model, <sphinx.ext.autodoc.importer._MockObject object at 0x7f7db5ef5e80>]) – Keras or TensorFlow model or any other model’s prediction function returning class probabilities


	shape (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Shape of input data starting with batch size


	kappa (float [https://docs.python.org/3/library/functions.html#float]) – Confidence parameter for the attack loss term


	beta (float [https://docs.python.org/3/library/functions.html#float]) – Regularization constant for L1 loss term


	feature_range (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple with min and max ranges to allow for perturbed instances. Min and max ranges can be floats or
numpy arrays with dimension (1x nb of features) for feature-wise ranges


	gamma (float [https://docs.python.org/3/library/functions.html#float]) – Regularization constant for optional auto-encoder loss term


	ae_model (Union [https://docs.python.org/3/library/typing.html#typing.Union][Model, <sphinx.ext.autodoc.importer._MockObject object at 0x7f7db5ef5ef0>, None]) – Optional auto-encoder model used for loss regularization


	enc_model (Union [https://docs.python.org/3/library/typing.html#typing.Union][Model, <sphinx.ext.autodoc.importer._MockObject object at 0x7f7db5ef5fd0>, None]) – Optional encoder model used to guide instance perturbations towards a class prototype


	theta (float [https://docs.python.org/3/library/functions.html#float]) – Constant for the prototype search loss term


	use_kdtree (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use k-d trees for the prototype loss term if no encoder is available


	learning_rate_init (float [https://docs.python.org/3/library/functions.html#float]) – Initial learning rate of optimizer


	max_iterations (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of iterations for finding a counterfactual


	c_init (float [https://docs.python.org/3/library/functions.html#float]) – Initial value to scale the attack loss term


	c_steps (int [https://docs.python.org/3/library/functions.html#int]) – Number of iterations to adjust the constant scaling the attack loss term


	eps (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – If numerical gradients are used to compute dL/dx = (dL/dp) * (dp/dx), then eps[0] is used to
calculate dL/dp and eps[1] is used for dp/dx. eps[0] and eps[1] can be a combination of float values and
numpy arrays. For eps[0], the array dimension should be (1x nb of prediction categories) and for
eps[1] it should be (1x nb of features)


	clip (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Tuple with min and max clip ranges for both the numerical gradients and the gradients
obtained from the TensorFlow graph


	update_num_grad (int [https://docs.python.org/3/library/functions.html#int]) – If numerical gradients are used, they will be updated every update_num_grad iterations


	write_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Directory to write tensorboard files to






	Return type

	None










	
attack(X, Y, target_class=None, threshold=0.0, verbose=False, print_every=100, log_every=100)

	Find a counterfactual (CF) for instance X using a fast iterative shrinkage-thresholding algorithm (FISTA).


	Parameters

	
	X (ndarray) – Instance to attack


	Y (ndarray) – Labels for X as one-hot-encoding


	target_class (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]]) – List with target classes used to find closest prototype. If None, the nearest prototype
except for the predict class on the instance is used.


	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold level for the ratio between the distance of the counterfactual to the prototype of the
predicted class for the original instance over the distance to the prototype of the predicted class
for the counterfactual. If the trust score is below the threshold, the proposed counterfactual does
not meet the requirements.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Print intermediate results of optimization if True


	print_every (int [https://docs.python.org/3/library/functions.html#int]) – Print frequency if verbose is True


	log_every (int [https://docs.python.org/3/library/functions.html#int]) – Tensorboard log frequency if write directory is specified






	Return type

	Tuple[ndarray, Tuple[ndarray, ndarray]]



	Returns

	Overall best attack and gradients for that attack.










	
explain(X, Y=None, target_class=None, threshold=0.0, verbose=False, print_every=100, log_every=100)

	Explain instance and return counterfactual with metadata.


	Parameters

	
	X (ndarray) – Instances to attack


	Y (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][ndarray]) – Labels for X as one-hot-encoding


	target_class (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][list [https://docs.python.org/3/library/stdtypes.html#list]]) – List with target classes used to find closest prototype. If None, the nearest prototype
except for the predict class on the instance is used.


	threshold (float [https://docs.python.org/3/library/functions.html#float]) – Threshold level for the ratio between the distance of the counterfactual to the prototype of the
predicted class for the original instance over the distance to the prototype of the predicted class
for the counterfactual. If the trust score is below the threshold, the proposed counterfactual does
not meet the requirements.


	verbose (bool [https://docs.python.org/3/library/functions.html#bool]) – Print intermediate results of optimization if True


	print_every (int [https://docs.python.org/3/library/functions.html#int]) – Print frequency if verbose is True


	log_every (int [https://docs.python.org/3/library/functions.html#int]) – Tensorboard log frequency if write directory is specified






	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	explanation – Dictionary containing the counterfactual with additional metadata










	
fit(train_data, trustscore_kwargs=None)

	Get prototypes for each class using the encoder or k-d trees.
The prototypes are used for the encoder loss term or to calculate the optional trust scores.


	Parameters

	
	train_data (ndarray) – Representative sample from the training data


	trustscore_kwargs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][dict [https://docs.python.org/3/library/stdtypes.html#dict]]) – Optional arguments to initialize the trust scores method






	Return type

	None










	
get_gradients(X, Y)

	Compute numerical gradients of the attack loss term:
dL/dx = (dL/dP)*(dP/dx) with L = loss_attack_s; P = predict; x = adv_s


	Parameters

	
	X (ndarray) – Instance around which gradient is evaluated


	Y (ndarray) – One-hot representation of instance labels






	Return type

	ndarray



	Returns

	Array with gradients.










	
loss_fn(pred_proba, Y)

	Compute the attack loss.


	Parameters

	
	pred_proba (ndarray) – Prediction probabilities of an instance


	Y (ndarray) – One-hot representation of instance labels






	Return type

	ndarray



	Returns

	Loss of the attack.










	
perturb(X, eps, proba=False)

	Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.


	Parameters

	
	X (ndarray) – Array to be perturbed


	eps (Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray]) – Size of perturbation


	proba (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the net effect of the perturbation needs to be 0 to keep the sum of the probabilities equal to 1






	Return type

	Tuple[ndarray, ndarray]



	Returns

	Instances where a positive and negative perturbation is applied.










	
score(X, adv_class, orig_class, eps=1e-10)

	
	Parameters

	
	X (ndarray) – Instance to encode and calculate distance metrics for


	adv_class (int [https://docs.python.org/3/library/functions.html#int]) – Predicted class on the perturbed instance


	orig_class (int [https://docs.python.org/3/library/functions.html#int]) – Predicted class on the original instance


	eps (float [https://docs.python.org/3/library/functions.html#float]) – Small number to avoid dividing by 0






	Return type

	float [https://docs.python.org/3/library/functions.html#float]



	Returns

	
	Ratio between the distance to the prototype of the predicted class for the original instance and


	the prototype of the predicted class for the perturbed instance.
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alibi.explainers.counterfactual module


	
class alibi.explainers.counterfactual.CounterFactual(sess, predict_fn, shape, distance_fn='l1', target_proba=1.0, target_class='other', max_iter=1000, early_stop=50, lam_init=0.1, max_lam_steps=10, tol=0.05, learning_rate_init=0.1, feature_range=(-10000000000.0, 10000000000.0), eps=0.01, init='identity', decay=True, write_dir=None, debug=False)

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(sess, predict_fn, shape, distance_fn='l1', target_proba=1.0, target_class='other', max_iter=1000, early_stop=50, lam_init=0.1, max_lam_steps=10, tol=0.05, learning_rate_init=0.1, feature_range=(-10000000000.0, 10000000000.0), eps=0.01, init='identity', decay=True, write_dir=None, debug=False)

	Initialize counterfactual explanation method based on Wachter et al. (2017)


	Parameters

	
	sess (Session) – TensorFlow session


	predict_fn (Union [https://docs.python.org/3/library/typing.html#typing.Union][Callable [https://docs.python.org/3/library/typing.html#typing.Callable], Model, <sphinx.ext.autodoc.importer._MockObject object at 0x7f7db5f086a0>]) – Keras or TensorFlow model or any other model’s prediction function returning class probabilities


	shape (Tuple[int [https://docs.python.org/3/library/functions.html#int], …]) – Shape of input data starting with batch size


	distance_fn (str [https://docs.python.org/3/library/stdtypes.html#str]) – Distance function to use in the loss term


	target_proba (float [https://docs.python.org/3/library/functions.html#float]) – Target probability for the counterfactual to reach


	target_class (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]]) – Target class for the counterfactual to reach, one of ‘other’, ‘same’ or an integer denoting
desired class membership for the counterfactual instance


	max_iter (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of interations to run the gradient descent for (inner loop)


	early_stop (int [https://docs.python.org/3/library/functions.html#int]) – Number of steps after which to terminate gradient descent if all or none of found instances are solutions


	lam_init (float [https://docs.python.org/3/library/functions.html#float]) – Initial regularization constant for the prediction part of the Wachter loss


	max_lam_steps (int [https://docs.python.org/3/library/functions.html#int]) – Maximum number of times to adjust the regularization constant (outer loop) before terminating the search


	tol (float [https://docs.python.org/3/library/functions.html#float]) – Tolerance for the counterfactual target probability


	learning_rate_init – Initial learning rate for each outer loop of lambda


	feature_range (Union [https://docs.python.org/3/library/typing.html#typing.Union][Tuple, str [https://docs.python.org/3/library/stdtypes.html#str]]) – Tuple with min and max ranges to allow for perturbed instances. Min and max ranges can be floats or
numpy arrays with dimension (1 x nb of features) for feature-wise ranges


	eps (Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray]) – Gradient step sizes used in calculating numerical gradients, defaults to a single value for all
features, but can be passed an array for feature-wise step sizes


	init (str [https://docs.python.org/3/library/stdtypes.html#str]) – Initialization method for the search of counterfactuals, currently must be ‘identity’


	decay (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to decay learning rate to zero for each outer loop over lambda


	write_dir (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – Directory to write Tensorboard files to


	debug (bool [https://docs.python.org/3/library/functions.html#bool]) – Flag to write Tensorboard summaries for debugging






	Return type

	None










	
explain(X)

	Explain an instance and return the counterfactual with metadata.


	Parameters

	X (ndarray) – Instance to be explained



	Return type

	dict [https://docs.python.org/3/library/stdtypes.html#dict]



	Returns

	*explanation - a dictionary containing the counterfactual with additional metadata.*










	
fit(X, y)

	Fit method - currently unused as the counterfactual search is fully unsupervised.


	Return type

	None
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alibi.utils package


Submodules



	alibi.utils.discretizer module

	alibi.utils.distance module

	alibi.utils.download module

	alibi.utils.gradients module
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alibi.utils.discretizer module


	
class alibi.utils.discretizer.Discretizer(data, categorical_features, feature_names, percentiles=[25, 50, 75])

	Bases: object [https://docs.python.org/3/library/functions.html#object]


	
__init__(data, categorical_features, feature_names, percentiles=[25, 50, 75])

	Initialize the discretizer.


	Parameters

	
	data (ndarray) – Data to discretize


	categorical_features (List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]) – List of indices corresponding to the categorical columns. These features will not be discretized.
The other features will be considered continuous and therefore discretized.


	feature_names (List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]) – List with feature names


	percentiles (List [https://docs.python.org/3/library/typing.html#typing.List][int [https://docs.python.org/3/library/functions.html#int]]) – Percentiles used for discretization






	Return type

	None










	
bins(data)

	
	Parameters

	data (ndarray) – Data to discretize



	Return type

	List [https://docs.python.org/3/library/typing.html#typing.List][ndarray]



	Returns

	List with bin values for each feature that is discretized.










	
discretize(data)

	
	Parameters

	data (ndarray) – Data to discretize



	Return type

	ndarray



	Returns

	Discretized version of data with the same dimension.
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alibi.utils.distance module


	
alibi.utils.distance.cityblock_batch(X, y)

	Calculate the L1 distances between a batch of arrays X and an array of the same shape y.


	Parameters

	
	X (ndarray) – Batch of arrays to calculate the distances from


	y (ndarray) – Array to calculate the distance to






	Return type

	ndarray



	Returns

	Array of distances from each array in X to y
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alibi.utils.download module


	
alibi.utils.download.spacy_model(model='en_core_web_md')

	Download spaCy model.


	Parameters

	model (str [https://docs.python.org/3/library/stdtypes.html#str]) – Model to be downloaded



	Return type

	None
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alibi.utils.gradients module


	
alibi.utils.gradients.num_grad_batch(func, X, args=(), eps=1e-08)

	Calculate the numerical gradients of a vector-valued function (typically a prediction function in classification)
with respect to a batch of arrays X.


	Parameters

	
	func (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – Function to be differentiated


	X (ndarray) – A batch of vectors at which to evaluate the gradient of the function


	args (Tuple) – Any additional arguments to pass to the function


	eps (Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray]) – Gradient step to use in the numerical calculation, can be a single float or one for each feature






	Return type

	ndarray



	Returns

	An array of gradients at each point in the batch X










	
alibi.utils.gradients.perturb(X, eps=1e-08, proba=False)

	Apply perturbation to instance or prediction probabilities. Used for numerical calculation of gradients.


	Parameters

	
	X (ndarray) – Array to be perturbed


	eps (Union [https://docs.python.org/3/library/typing.html#typing.Union][float [https://docs.python.org/3/library/functions.html#float], ndarray]) – Size of perturbation


	proba (bool [https://docs.python.org/3/library/functions.html#bool]) – If True, the net effect of the perturbation needs to be 0 to keep the sum of the probabilities equal to 1






	Return type

	Tuple[ndarray, ndarray]



	Returns

	Instances where a positive and negative perturbation is applied.
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alibi.datasets module


	
alibi.datasets.adult(features_drop=['fnlwgt', 'Education-Num'])

	Downloads and pre-processes ‘adult’ dataset.
More info: http://mlr.cs.umass.edu/ml/machine-learning-databases/adult/


	Parameters

	features_drop (list [https://docs.python.org/3/library/stdtypes.html#list]) – List of features to be dropped from dataset



	Return type

	Tuple[ndarray, ndarray, list [https://docs.python.org/3/library/stdtypes.html#list], dict [https://docs.python.org/3/library/stdtypes.html#dict]]



	Returns

	
	Dataset, labels, a list of features and a dictionary containing a list with the potential categories


	for each categorical feature where the key refers to the feature column.















	
alibi.datasets.imagenet(category='Persian cat', nb_images=10, target_size=(299, 299), min_std=10.0, seed=42)

	Retrieve imagenet images from specified category which needs to be in the mapping dictionary.


	Parameters

	
	category (str [https://docs.python.org/3/library/stdtypes.html#str]) – Imagenet category in mapping keys


	nb_images (int [https://docs.python.org/3/library/functions.html#int]) – Number of images to be retrieved


	target_size (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – Size of the returned images


	min_std (float [https://docs.python.org/3/library/functions.html#float]) – Min standard deviation of image pixels. Images that are no longer available can be returned
without content which is undesirable. Having a min std cutoff resolves this.


	seed (int [https://docs.python.org/3/library/functions.html#int]) – Random seed






	Return type

	Tuple[list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list]]



	Returns

	List with images and the labels from imagenet.










	
alibi.datasets.movie_sentiment()

	The movie review dataset, equally split between negative and positive reviews.


	Return type

	Tuple[list [https://docs.python.org/3/library/stdtypes.html#list], list [https://docs.python.org/3/library/stdtypes.html#list]]



	Returns

	Movie reviews and sentiment labels (0 means ‘negative’ and 1 means ‘positive’).
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