

algorithm.py

Model an algorithm as a list of functions.

Installation

algorithm is available on GitHub [https://github.com/gittip/algorithm.py] and on PyPI [https://pypi.python.org/pypi/algorithm]:

$ pip install algorithm

We test [https://travis-ci.org/gittip/algorithm.py] against
Python 2.6, 2.7, 3.2, and 3.3.

algorithm is MIT-licensed.

Tutorial

This module provides an abstraction for implementing arbitrary algorithms as a
list of functions that operate on a shared state dictionary. Algorithms defined
this way are easy to arbitrarily modify at run time, and they provide cascading
exception handling.

To get started, define some functions:

>>> def foo():
... return {'baz': 1}
...
>>> def bar():
... return {'buz': 2}
...
>>> def bloo(baz, buz):
... return {'sum': baz + buz}
...

Each function returns a dict, which is used to update the state of
the current run of the algorithm. Names from the state dictionary are made
available to downstream functions via dependency_injection [http://dependency-injection-py.readthedocs.io/en/latest/index.html#module-dependency_injection]. Now
make an Algorithm object:

>>> from algorithm import Algorithm
>>> blah = Algorithm(foo, bar, bloo)

The functions you passed to the constructor are loaded into a list:

>>> blah.functions
[<function foo ...>, <function bar ...>, <function bloo ...>]

Now you can use run to run the algorithm. You’ll get back
a dictionary representing the algorithm’s final state:

>>> state = blah.run()
>>> state['sum']
3

Okay!

Modifying an Algorithm

Let’s add two functions to the algorithm. First let’s define the functions:

>>> def uh_oh(baz):
... if baz == 2:
... raise heck
...
>>> def deal_with_it(exception):
... print("I am dealing with it!")
... return {'exception': None}
...

Now let’s interpolate them into our algorithm. Let’s put the uh_oh function between
bar and bloo:

>>> blah.insert_before('bloo', uh_oh)
>>> blah.functions
[<function foo ...>, <function bar ...>, <function uh_oh ...>, <function bloo ...>]

Then let’s add our exception handler at the end:

>>> blah.insert_after('bloo', deal_with_it)
>>> blah.functions
[<function foo ...>, <function bar ...>, <function uh_oh ...>, <function bloo ...>, <function deal_with_it ...>]

Just for kicks, let’s remove the foo function while we’re at it:

>>> blah.remove('foo')
>>> blah.functions
[<function bar ...>, <function uh_oh ...>, <function bloo ...>, <function deal_with_it ...>]

If you’re making extension changes to an algorithm, you should feel free to
directly manipulate the list of functions, rather than using the more
cumbersome insert_before,
insert_after, and
remove methods. We could have achieved the same
result like so:

>>> blah.functions = [blah['bar']
... , uh_oh
... , blah['bloo']
... , deal_with_it
...]
>>> blah.functions
[<function bar ...>, <function uh_oh ...>, <function bloo ...>, <function deal_with_it ...>]

Either way, what happens when we run it? Since we no longer have the foo
function providing a value for bar, we’ll need to supply that using a
keyword argument to run:

>>> state = blah.run(baz=2)
I am dealing with it!

Exception Handling

Whenever a function raises an exception, like uh_oh did in the example
above, run captures the exception and populates an
exception key in the current algorithm run state dictionary. While
exception is not None, any normal function is skipped, and only
functions that ask for exception get called. It’s like a fast-forward. So
in our example deal_with_it got called, but bloo didn’t, which is why
there is no sum:

>>> 'sum' in state
False

If we run without tripping the exception in uh_oh then we have sum at
the end:

>>> blah.run(baz=5)['sum']
7

API Reference

	
class algorithm.Algorithm(*functions, **kw)

	Model an algorithm as a list of functions.

	Parameters:	
	functions – a sequence of functions in the order they are to be run

	raise_immediately (bool) – Whether to re-raise exceptions immediately.
False by default, this can only be set as a keyword argument

Each function in your algorithm must return a mapping or None.
If it returns a mapping, the mapping will be used to update a state
dictionary for the current run of the algorithm. Functions in the algorithm
can use any name from the current state dictionary as a parameter, and the
value will then be supplied dynamically via dependency_injection [http://dependency-injection-py.readthedocs.io/en/latest/index.html#module-dependency_injection].
See the run method for details on exception handling.

	
__getitem__(name)

	Return the function in the functions list named name, or raise
FunctionNotFound.

>>> def foo(): pass
>>> algo = Algorithm(foo)
>>> algo['foo'] is foo
True
>>> algo['bar']
Traceback (most recent call last):
 ...
FunctionNotFound: The function 'bar' isn't in this algorithm.

	
debug(function)

	Given a function, return a copy of the function with a breakpoint
immediately inside it.

	Parameters:	function (function) – a function object

This method wraps the module-level function algorithm.debug,
adding three conveniences.

First, calling this method not only returns a copy of the function with
a breakpoint installed, it actually replaces the old function in the
algorithm with the copy. So you can do:

>>> def foo():
... pass
...
>>> algo = Algorithm(foo)
>>> algo.debug(foo)
<function foo at ...>
>>> algo.run()
(Pdb)

Second, it provides a method on itself to install via function name
instead of function object:

>>> algo = Algorithm(foo)
>>> algo.debug.by_name('foo')
<function foo at ...>
>>> algo.run()
(Pdb)

Third, it aliases the by_name method as
__getitem__ so you can use mapping access as well:

>>> algo = Algorithm(foo)
>>> algo.debug['foo']
<function foo at ...>
>>> algo.run()
(Pdb)

Why would you want to do that? Well, let’s say you’ve written a library
that includes an algorithm:

>>> def foo(): pass
...
>>> def bar(): pass
...
>>> def baz(): pass
...
>>> blah = Algorithm(foo, bar, baz)

And now some user of your library ends up rebuilding the functions list
using some of the original functions and some of their own:

>>> def mine(): pass
...
>>> def precious(): pass
...
>>> blah.functions = [blah['foo']
... , mine
... , blah['bar']
... , precious
... , blah['baz']
...]

Now the user of your library wants to debug blah['bar'], but since
they’re using your code as a library it’s inconvenient for them to drop
a breakpoint in your source code. With this feature, they can just
insert .debug in their own source code like so:

>>> blah.functions = [blah['foo']
... , mine
... , blah.debug['bar']
... , precious
... , blah['baz']
...]

Now when they run the algorithm they’ll hit a pdb breakpoint just
inside your bar function:

>>> blah.run()
(Pdb)

	
classmethod from_dotted_name(dotted_name, **kw)

	Construct a new instance from an algorithm definition module.

	Parameters:	
	dotted_name – the dotted name of a Python module containing an
algorithm definition

	kw – keyword arguments are passed through to the default constructor

This is a convenience constructor that lets you take an algorithm
definition from a regular Python file. For example, create a file named
blah_algorithm.py on your PYTHONPATH:

def foo():
 return {'baz': 1}

def bar():
 return {'buz': 2}

def bloo(baz, buz):
 return {'sum': baz + buz}

Then pass the dotted name of the file to this constructor:

>>> blah = Algorithm.from_dotted_name('blah_algorithm')

All functions defined in the file whose name doesn’t begin with _
are loaded into a list in the order they’re defined in the file, and
this list is passed to the default class constructor.

>>> blah.functions
[<function foo ...>, <function bar ...>, <function bloo ...>]

	
get_names()

	Returns a list of the names of the functions in the functions list.

	
insert_after(name, newfunc)

	Insert newfunc in the functions list after the function named
name, or raise FunctionNotFound.

	
insert_before(name, newfunc)

	Insert newfunc in the functions list before the function named
name, or raise FunctionNotFound.

	
remove(name)

	Remove the function named name from the functions list, or raise
FunctionNotFound.

	
run(_raise_immediately=None, _return_after=None, **state)

	Run through the functions in the functions list.

	Parameters:	
	_raise_immediately (bool) – if not None, will override any
default for raise_immediately that was set in the constructor

	_return_after (str) – if not None, return after calling the function
with this name

	state (dict) – remaining keyword arguments are used for the initial
state dictionary for this run of the algorithm

	Raises:	FunctionNotFound, if there is no function named
_return_after

	Returns:	a dictionary representing the final algorithm state

The state dictionary is initialized with three items (their default
values can be overriden using keyword arguments to run):

	algorithm - a reference to the parent Algorithm instance

	state - a circular reference to the state dictionary

	exception - None

For each function in the functions list, we look at the
function signature and compare it to the current value of exception
in the state dictionary. If exception is None then we skip any
function that asks for exception, and if exception is not
None then we only call functions that do ask for it. The upshot
is that any function that raises an exception will cause us to
fast-forward to the next exception-handling function in the list.

Here are some further notes on exception handling:

	If a function provides a default value for exception, then that
function will be called whether or not there is an exception being
handled.

	You should return {'exception': None} to reset exception
handling. Under Python 2 we will call sys.exc_clear for you
(under Python 3 exceptions are cleared automatically at the end of
except blocks).

	If exception is not None after all functions have been run,
then we re-raise it.

	If raise_immediately evaluates to True (looking first at any
per-call _raise_immediately and then at the instance default),
then we re-raise any exception immediately instead of
fast-forwarding to the next exception handler.

	
exception algorithm.FunctionNotFound

	Used when a function is not found in an algorithm function list (subclasses
KeyError).

	
algorithm.debug(function)

	Given a function, return a copy of the function with a breakpoint
immediately inside it.

	Parameters:	function (function) – a function object

Okay! This is fun. :-)

This is a decorator, because it takes a function and returns a function.
But it would be useless in situations where you could actually decorate a
function using the normal decorator syntax, because then you have the
source code in front of you and you could just insert the breakpoint
yourself. It’s also pretty useless when you have a function object that
you’re about to call, because you can simply add a set_trace before the
function call and then step into the function. No: this helper is only
useful when you’ve got a function object that you want to debug, and you
have neither the definition nor the call conveniently at hand. See the
method Algorithm.debug for an explanation of how this situation
arises with the algorithm module.

For our purposes here, it’s enough to know that you can wrap any function:

>>> def foo(bar, baz):
... return bar + baz
...
>>> func = debug(foo)

And then calling the function will drop you into pdb:

>>> func(1, 2)
(Pdb)

The fun part is how this is implemented: we dynamically modify the
function’s bytecode to insert the statements import pdb;
pdb.set_trace(). Neat, huh? :-)

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 algorithm	

Index

 _
 | A
 | D
 | F
 | G
 | I
 | R

_

 	
 	__getitem__() (algorithm.Algorithm method)

A

 	
 	Algorithm (class in algorithm)

 	
 	algorithm (module)

D

 	
 	debug() (algorithm.Algorithm method)

 	(in module algorithm)

F

 	
 	from_dotted_name() (algorithm.Algorithm class method)

 	
 	FunctionNotFound

G

 	
 	get_names() (algorithm.Algorithm method)

I

 	
 	insert_after() (algorithm.Algorithm method)

 	
 	insert_before() (algorithm.Algorithm method)

R

 	
 	remove() (algorithm.Algorithm method)

 	
 	run() (algorithm.Algorithm method)

 nav.xhtml

 Table of Contents

 		algorithm.py

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

