
alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛
Release 0.1

Carniel Giorgio

Jun 07, 2018





Contents

1 Description 3

2 Features 5

3 Supported Exchanges 7

4 Requirements 9

5 Installation 11

6 Code example 13

7 Basic concepts 15

8 Reporting bugs 17

i



ii



alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

Contents 1

https://github.com/Dodo33/alchemist-lib


alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

2 Contents



CHAPTER 1

Description

Alchemist_lib is an automatic trading library for cryptocurrencies that allow to personalize the portfolio based on a
specific strategy.

3



alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

4 Chapter 1. Description



CHAPTER 2

Features

• Easy to use: The interface is similar to zipline, a popular backtesting software for stocks.

• Portfolio personalization: You can choose the weight of every element on the portfolio.

• Most common technical analysis indicators already integrated.

• Execute orders on the most famous exchanges.

• Possibility to visualize the asset allocation and the portfolio value charts for every strategy thanks to alchemist-
view.

• Fully documented and hosted on readthedocs.

5

http://www.zipline.io/
https://github.com/Dodo33/alchemist-view
https://github.com/Dodo33/alchemist-view
http://alchemist-lib.readthedocs.io/en/latest/index.html


alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

6 Chapter 2. Features



CHAPTER 3

Supported Exchanges

The following exchanges are available to trade on:

• Poloniex

• Bittrex

7

https://poloniex.com/
https://bittrex.com/


alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

8 Chapter 3. Supported Exchanges



CHAPTER 4

Requirements

• Python3

• Mysql

9



alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

10 Chapter 4. Requirements



CHAPTER 5

Installation

See the installing documentation.

11

http://alchemist-lib.readthedocs.io/en/latest/install.html


alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

12 Chapter 5. Installation



CHAPTER 6

Code example

Strategy description: Hold a portfolio equally composed by Ethereum and BitcoinCash.

from alchemist_lib.portfolio import LongsOnlyPortfolio
from alchemist_lib.broker import PoloniexBroker
from alchemist_lib.tradingsystem import TradingSystem
import alchemist_lib.exchange as exch
import pandas as pd

def set_weights(df):
df["weight"] = 0.5 #Because there are just two assets.
return df

def select_universe(session):
poloniex_assets = exch.get_assets(session = session, exchange_name = "poloniex")

my_universe = []
for asset in poloniex_assets:

if asset.ticker == "ETH" or asset.ticker == "BCH":
my_universe.append(asset)

return my_universe

def handle_data(session, universe):
#The value of alpha is useless in this case.
df = pd.DataFrame(data = {"asset" : universe, "alpha" : 0}, columns = ["asset",

→˓"alpha"]).set_index("asset")
return df

algo = TradingSystem(name = "BuyAndHold",
portfolio = LongsOnlyPortfolio(capital = 0.02),
set_weights = set_weights,
select_universe = select_universe,
handle_data = handle_data,

(continues on next page)

13



alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

(continued from previous page)

broker = PoloniexBroker(api_key = "APIKEY",
secret_key = "SECRETKEY"),

paper_trading = True)
algo.run(delay = "15M", frequency = 1)

6.1 Screenshot

14 Chapter 6. Code example

https://github.com/Dodo33/alchemist-lib


CHAPTER 7

Basic concepts

Alchemist_lib works with three methods:

• set_weights

• select_universe

• handle_data

set_weights is used to set the weight that an asset has respect the others within the portfolio. The sum of every weight
must be close to 1. Must returns a pandas dataframe with two columns: “asset” and “alpha”, where “asset” is the
index.

select_universe filters the assets saved on the database and returns just the ones the strategy will take into consideration.

handle_data is the most importat one because it manages the trading logic. Must returns a pandas dataframe with two
columns: “asset” and “alpha”, where “asset” is the index.

You can find other examples in the examples directory.

15



alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

16 Chapter 7. Basic concepts



CHAPTER 8

Reporting bugs

A bug tracker is provided by Github.

8.1 Contents

8.1.1 Install

Installing requirements

Lets install python3 and mysql.

GNU/Linux

First of all to make sure that everything is up to date, let’s update and upgrade the system with apt-get.

$ sudo apt-get update
$ sudo apt-get -y upgrade

Probably python3 is already installed so let’s check.

$ python3 -V

If the command above returns something like Python 3.5.2 it’s all ok. Otherwise install python with the following
command.

$ sudo apt-get install python3

To manage software packages for Python, let’s install pip.

$ sudo apt-get install python3-pip

17

https://github.com/Dodo33/alchemist-lib/issues


alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

A more detailed guide can be found on Digital Ocean.

Installing MySQL can be done by runnung the following command.

$ sudo apt-get install mysql-server

The MySQL/Python connector can be installed with:

$ sudo apt-get install python3-mysql.connector

Installing alchemist_lib

Installing with pip:

If python3-pip is already installed:

$ sudo pip3 install alchemist_lib
$ sudo pip3 install git+https://github.com/femtotrader/pandas_talib.git
$ sudo pip3 install https://github.com/s4w3d0ff/python-poloniex/archive/v0.4.7.zip

If you don’t have pip installed, you can easily install it by downloading and running get-pip.py.

Cloning the repository with git:

If git is already installed:

$ git clone https://github.com/Dodo33/alchemist-lib
$ cd alchemist-lib
$ python3 setup.py install

$ sudo pip3 install git+https://github.com/femtotrader/pandas_talib.git
$ sudo pip3 install https://github.com/s4w3d0ff/python-poloniex/archive/v0.4.7.zip

Important

After the installation it’s important to specify mysql credentials:

$ sudo alchemist populate -l "hostname" -u "username" -p "password" -d "database_name"

8.1.2 Beginner Tutorial

Basics

Alchemist_lib works with three methods:

• set_weights

• select_universe

• handle_data

18 Chapter 8. Reporting bugs

https://www.digitalocean.com/community/tutorials/how-to-install-python-3-and-set-up-a-local-programming-environment-on-ubuntu-16-04
https://en.wikipedia.org/wiki/Pip_(package_manager)
https://bootstrap.pypa.io/get-pip.py
https://en.wikipedia.org/wiki/Git


alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

set_weights is used to set the weight that an asset has respect the others within the portfolio. The sum of every weight
must be close to 1. The df parameter is the dataframe returned by handle_data. Must returns a pandas dataframe
with two columns: “asset” and “weight”, where “asset” is the index.

select_universe have to returns a list of assets the strategy will take into consideration. If you want all the assets traded
on a specific exchange just call the get_assets function of alchemist_lib.exchange.

handle_data is the most importat one because it manages the trading logic. The universe parameter is the list
returned by select_universe. Must returns a pandas dataframe with two columns: “asset” and “alpha”, where
“asset” is the index.

To start the strategy you just need to instantiate the TradingSystem class and call the run method.

Note: Remember to test the strategy with real-time data before going live, it can be done setting paper_trading
= True.

First strategy

Lets take a look at a very simple strategy from the examples directory, buyandhold.py.

Strategy description: Hold a portfolio equally composed by Ethereum and BitcoinCash.

First of all we must import all the things we need.

from alchemist_lib.portfolio import LongsOnlyPortfolio
from alchemist_lib.broker import PoloniexBroker
from alchemist_lib.tradingsystem import TradingSystem
import alchemist_lib.exchange as exch
import pandas as pd

Then we select which assets we want to buy and hold. Just ETH and BCH in this example:

def select_universe(session):
poloniex_assets = exch.get_assets(session = session, exchange_name = "poloniex")

my_universe = []
for asset in poloniex_assets:

if asset.ticker == "ETH" or asset.ticker == "BCH":
my_universe.append(asset)

return my_universe

In this case the handle_data method is useless so lets set a random value for the “alpha” column of the dataframe.

def handle_data(session, universe):
df = pd.DataFrame(data = {"asset" : universe, "alpha" : 0}, columns = ["asset",

→˓"alpha"]).set_index("asset")
return df

We want to hold two assets (ETH and BCH) so every one must be 50% of the portfolio value.

def set_weights(df):
df["weight"] = 0.5
return df

Make it starts in paper trading mode, every 4 hours.

algo = TradingSystem(name = "BuyAndHold",
portfolio = LongsOnlyPortfolio(capital = 0.01),

(continues on next page)

8.1. Contents 19



alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

(continued from previous page)

set_weights = set_weights,
select_universe = select_universe,
handle_data = handle_data,
broker = PoloniexBroker(api_key = "APIKEY",

secret_key = "SECRETKEY"),
paper_trading = True)

algo.run(delay = "4H", frequency = 1)

Execution

Just type:

$ python3 buyandhold.py

A log file called buyandhold.log will be created.

Example

Another example, a little bit more complex is emacrossover.py.

Strategy description: Hold a portfolio composed by top 5 assets by volume whose EMA 10 is above the EMA 21.
Rebalance it every hour.

Code:

from alchemist_lib.portfolio import LongsOnlyPortfolio
from alchemist_lib.broker import BittrexBroker
from alchemist_lib.tradingsystem import TradingSystem
from alchemist_lib.factor import Factor
import pandas as pd
import alchemist_lib.exchange as exch

def set_weights(df):
alphas_sum = df["alpha"].sum()
for asset, alpha in zip(df.index.values, df["alpha"]):

df.loc[asset, "weight"] = alpha / alphas_sum

return df

def select_universe(session):
return exch.get_assets(session = session, exchange_name = "bittrex")

def handle_data(session, universe):
fct = Factor(session = session)
prices = fct.history(universe = universe, field = "close", timeframe = "1H",

→˓window_length = 21)

ema10 = fct.ExponentialMovingAverage(values = prices, window_length = 10, field =
→˓"close").rename(columns = {"ExponentialMovingAverage" : "ema10"})

ema21 = fct.ExponentialMovingAverage(values = prices, window_length = 21, field =
→˓"close").rename(columns = {"ExponentialMovingAverage" : "ema21"})

concated = pd.concat([ema10, ema21], axis = 1)
concated = concated.loc[concated["ma10"] > concated["ma21"], :]

(continues on next page)

20 Chapter 8. Reporting bugs



alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

(continued from previous page)

vol = fct.history(universe = concated.index.values, field = "volume", timeframe =
→˓"1H", window_length = 1)

df = pd.concat([concated, vol], axis = 1)
df = df[["volume"]].rename(columns = {"volume" : "alpha"})

if len(df) > 5:
df = df.sort_values(by = "volume", ascending = False)
df = df.head(5)

return df

algo = TradingSystem(name = "MovingAverageCrossover",
portfolio = LongsOnlyPortfolio(capital = 0.1),
set_weights = set_weights,
select_universe = select_universe,
handle_data = handle_data,
broker = BittrexBroker(api_key = "APIKEY",

secret_key = "SECRETKEY"),
paper_trading = True)

algo.run(delay = "1H", frequency = 1)

To execute it:

$ python3 emacrossover.py

Conclusion

These were some basic examples of how alchemist_lib works. Take a look at the example folder for more examples.

8.1. Contents 21



alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

8.1.3 Database

UML Diagram

22 Chapter 8. Reporting bugs

https://i.imgur.com/nzEU0GT.png


alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

Tables

Asset

Instrument

Broker

Exchange

PriceDataSource

TradingSystem

Timeframe

Timetable

AumHistory

PtfAllocation

Ohlcv

ExecutedOrder

8.1.4 API Reference

Trading system

Factor

Factor autoclass

8.1. Contents 23



alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

24 Chapter 8. Reporting bugs



alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

Datafeed

__init__

ohlcv

poloniexdatafeed

bittrexdatafeed

Broker

broker

poloniexbroker

bittrexbroker

Portfolio

portfolio

longsonly

Exchange

exchange

__init__

poloniexexchange

bittrexexchange

Populate

saver

populate

__init__

poloniexpopulate

bittrexpopulate

8.1.5 License

MIT License

8.1. Contents 25



alchemist𝑙𝑖𝑏𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛,𝑅𝑒𝑙𝑒𝑎𝑠𝑒0.1

Copyright (c) 2018 Carniel Giorgio

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

26 Chapter 8. Reporting bugs


	Description
	Features
	Supported Exchanges
	Requirements
	Installation
	Code example
	Basic concepts
	Reporting bugs

