

 Navigation

 	
 index

 	Akka.NET stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/akkanet/checkouts/stable/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/akkanet/checkouts/stable/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	Akka.NET stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 _static/up.png

_static/comment-close.png

_static/file.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/minus.png

_static/up-pressed.png

_images/AkkaNetLogo.Normal.png
7
akka net

_static/comment-bright.png

CONTRIBUTING.html

 Navigation

 		
 index

 		Akka.NET stable documentation »

Contributing to Akka.NET

Akka.NET is a large project and contributions are more than welcome, so thank you for wanting to contribute to Akka.NET!

Checklist before creating a Pull Request

Submit only relevant commits. We don’t mind many commits in a pull request, but they must be relevant as explained below.

		Use a feature branch The pull request should be created from a feature branch, and not from dev. See below for why.

		No merge-commits
If you have commits that looks like this “Merge branch ‘my-branch’ into dev” or “Merge branch ‘dev’ of github .com/akkadotnet/akka.net into dev” you’re probaly using merge instead of rebase [https://help.github.com/articles/about-git-rebase] locally. See below on Handling updates from upstream.

		Squash commits Often we create temporary commits like “Started implementing feature x” and then “Did a bit more on feature x”. Squash these commits together using interactive rebase [https://help.github.com/articles/about-git-rebase]. Also see Squashing commits with rebase [http://gitready.com/advanced/2009/02/10/squashing-commits-with-rebase.html].

		Descriptive commit messages If a commit’s message isn’t descriptive, change it using interactive rebase [https://help.github.com/articles/about-git-rebase]. Refer to issues using #issue. Example of a bad message ~~”Small cleanup”~~. Example of good message: “Removed Security.Claims header from FSM, which broke Mono build per #62”. Don’t be afraid to write long messages, if needed. Try to explain why you’ve done the changes. The Erlang repo has some info on writing good commit messages [https://github.com/erlang/otp/wiki/Writing-good-commit-messages].

		No one-commit-to-rule-them-all Large commits that changes too many things at the same time are very hard to review. Split large commits into smaller. See this StackOverflow question [http://stackoverflow.com/questions/6217156/break-a-previous-commit-into-multiple-commits] for information on how to do this.

		Tests Add relevant tests and make sure all existing ones still passes. Tests can be run using the command

		No Warnings Make sure your code do not produce any build warnings.

After reviewing a Pull request, we might ask you to fix some commits. After you’ve done that you need to force push to update your branch in your local fork.

####Title and Description for the Pull Request####
Give the PR a descriptive title and in the description field describe what you have done in general terms and why. This will help the reviewers greatly, and provide a history for the future.

Especially if you modify something existing, be very clear! Have you changed any algorithms, or did you just intend to reorder the code? Justify why the changes are needed.

Getting started

Make sure you have a GitHub [https://github.com/] account.

		Fork, clone, add upstream to the Akka.NET repository. See Fork a repo [https://help.github.com/articles/fork-a-repo] for more detailed instructions or follow the instructions below.

		Fork by clicking Fork on https://github.com/akkadotnet/akka.net

		Clone your fork locally.

git clone https://github.com/YOUR-USERNAME/akka.net

		Add an upstream remote.

git remote add upstream https://github.com/akkadotnet/akka.net

You now have two remotes: upstream points to https://github.com/akkadotnet/akka.net, and origin points to your fork on GitHub.

		Make changes. See below.

Unsure where to start? Issues marked with up for grabs [https://github.com/akkadotnet/akka.net/labels/up%20for%20grabs] are things we want help with.

See also: Contributing to Open Source on GitHub [https://guides.github.com/activities/contributing-to-open-source/]

New to Git? See https://help.github.com/articles/what-are-other-good-resources-for-learning-git-and-github

Making changes

Never work directly on dev or master and you should never send a pull request from master - always from a feature branch created by you.

		Pick an issue [https://github.com/akkadotnet/akka.net/issues]. If no issue exists (search first) create one.

		Get any changes from upstream.

git checkout dev
git fetch upstream
git merge --ff-only upstream/dev
git push origin dev #(optional) this makes sure dev in your own fork on GitHub is up to date

See https://help.github.com/articles/fetching-a-remote for more info

		Create a new feature branch. It’s important that you do your work on your own branch and that it’s created off of dev. Tip: Give it a descriptive name and include the issue number, e.g. implement-testkits-eventfilter-323 or 295-implement-tailchopping-router, so that others can see what is being worked on.

git checkout -b my-new-branch-123

		Work on your feature. Commit.

		Rebase often, see below.

		Make sure you adhere to Checklist before creating a Pull Request described above.

		Push the branch to your fork on GitHub

git push origin my-new-branch-123

		Send a Pull Request, see https://help.github.com/articles/using-pull-requests to the dev branch.

See also: Understanding the GitHub Flow [https://guides.github.com/introduction/flow/] (we’re using dev as our master branch)

Handling updates from upstream

While you’re working away in your branch it’s quite possible that your upstream dev may be updated. If this happens you should:

		Stash [http://git-scm.com/book/en/Git-Tools-Stashing] any un-committed changes you need to

git stash

		Update your local dev by fetching from upstream

git checkout dev
git fetch upstream
git merge --ff-only upstream/dev

		Rebase your feature branch on dev. See Git Branching - Rebasing [http://git-scm.com/book/en/Git-Branching-Rebasing] for more info on rebasing

git checkout my-new-branch-123
git rebase dev
git push origin dev #(optional) this makes sure dev in your own fork on GitHub is up to date

This ensures that your history is “clean” i.e. you have one branch off from dev followed by your changes in a straight line. Failing to do this ends up with several “messy” merges in your history, which we don’t want. This is the reason why you should always work in a branch and you should never be working in, or sending pull requests from dev.

If you’re working on a long running feature then you may want to do this quite often, rather than run the risk of potential merge issues further down the line.

Making changes to a Pull request

If you realize you’ve missed something after submitting a Pull request, just commit to your local branch and push the branch just like you did the first time. This commit will automatically be included in the Pull request.
If we ask you to change already published commits using interactive rebase (like squashing or splitting commits or rewriting commit messages) you need to force push using -f:

git push -f origin my-new-branch-123

The build server isn’t picking up a Pull request that I’ve modified

The build server relies on git commit timestamps to keep track of new builds that it needs to perform. When updating a PR, sometimes the timestamp of the latest commit in the PR isn’t updated. This leads the build server to think that the PR has already been built and tested. In order to force the build server to rebuild and test the updated PR, please follow the instructions outlined in this post How can one change the timestamp of an old commit in Git? [http://stackoverflow.com/questions/454734/how-can-one-change-the-timestamp-of-an-old-commit-in-git/31540373#31540373].

All my commits are on dev. How do I get them to a new branch?

If all commits are on dev you need to move them to a new feature branch.

You can rebase your local dev on upstream/dev (to remove any merge commits), rename it, and recreate dev

git checkout dev
git rebase upstream/dev
git branch -m my-new-branch-123
git branch dev upstream/dev

Or you can create a new branch off of dev and then cherry pick the commits

git checkout -b my-new-branch-123 upstream/dev
git cherry-pick rev #rev is the revisions you want to pick
git cherry-pick rev #repeat until you have picked all commits
git branch -m dev old-dev #rename dev
git branch dev upstream/dev #create a new dev

What to do with feature branch after the pull request is merged and closed ?

After a pull request has been merged and closed you can delete the feature branch.

Get latest changes from the upstream

git checkout dev
git fetch upstream
git merge --ff-only upstream/dev
git push origin dev

Remove the branch locally

git branch -d my-new-branch-123

Remove the branch on remote

git push origin --delete my-new-branch-123

Code guidelines

See our Contributor Guidelines [http://getakka.net/docs/Contributor%20guidelines] for more information on following the project’s conventions.

Props to NancyFX [https://github.com/NancyFx/Nancy] from which we’ve “borrowed” some of this text.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/core/Akka.Persistence/README.html

 Navigation

 		
 index

 		Akka.NET stable documentation »

Akka.Persistence

Architecture

		PersistentActor: Is a persistent, stateful actor. It is able to persist events to a journal and can react to them in a thread-safe manner. It can be used to implement both command as well as event sourced actors. When a persistent actor is started or restarted, journaled messages are replayed to that actor, so that it can recover internal state from these messages.

		PersistentView: A view is a persistent, stateful actor that receives journaled messages that have been written by another persistent actor. A view itself does not journal new messages, instead, it updates internal state only from a persistent actor’s replicated message stream.

		AtLeastOnceDelivery: To send messages with at-least-once delivery semantics to destinations, also in case of sender and receiver virtual machine crashes.

		Journal: A journal stores the sequence of messages sent to a persistent actor. An application can control which messages are journaled and which are received by the persistent actor without being journaled. The storage backend of a journal is pluggable. The default journal storage plugin writes to the operating system’s memory, replicated journals are available as Community plugins.

		SnapshotStore: A snapshot store persists snapshots of a persistent actor’s or a view’s internal state. Snapshots are used for optimizing recovery times. The storage backend of a snapshot store is pluggable. The default snapshot storage plugin writes to the local filesystem.

Technical Overview

Eventsourced recovery cycle

Eventsourced recovery cycle starts in PreStart phase by actor sending a Recover message to itself. Eventsourced actor always starts in Recovery pending phase. During most of the recovery cycle it will only react on persistence system messages necessary to finish recovery cycle, stashing all other messages to be proceeded when actor state will recover.

		Recovery pending - when actor receives a Recover message, it sends LoadSnapshot request to the snapshot store (by default it tries to recover from the latests snapshot found) and changes to Recovery started state.

		Recovery started - actor waits for the LoadSnapshotResult response from snapshot store, as requested in previous state. If response contains a snapshot, it becomes wrapped in SnapshotOffer object and invoked by actor’s ReceiveRecover method. Actor’s last sequence number becomes updated from snapshot metadata. After that, a ReplayMessages request is sent to the journal and actor comes into ReplayStarted state.

		Replay started - in this state actor responds to the following controll messages:
		ReplayedMessage - depending on the journal state, none or multiple messages may be send back to the actor. Each one updates actor’s last sequence number. Message payload is passed to ReceiveRecover method of implementing actor. If any exception occur inside user-defined recovery logic, actor will move into Replay failed state and message will be pushed back on the beginning of the actor’s mailbox.

		ReplayMessagesSuccess - it’s returned by journal after all ReplayedMessages has been sent back to actor. At this point actor’s OnReplaySuccess method will be called and journal will be asked to return highest sequence number available. Actor will then move to the Initializing state.

		ReplayMessagesFailed - it may be returned when an error occurred during replay on the journal side. It contains an inner exception thrown by the journal. Actor’s OnReplayFailure method is invoked and then exception itself (wrapped into RecoveryFailure object) is sent back to actor’s ReceiveRecover method.

		Replay failed - depending on message type actor last sequence number is updated and actor itself goes into Prepare restart phase.

		Prepare restart - exception, which caused a failure and ultimatelly the restart is being rethrown. All previously stashed messages are being unstashed. All persisted messages are flushed to journal and Recovery messages is being resend to initialize recovery cycle again.

		Initializing state - in this state actor state should be recovered, but actor is still waiting for the highest sequence number from the journal. After receiving it a RecoveryCompleted message is being passed to actor’s ReceiveRecover method. If highest sequence number request was successfully responded by the journal, actor updates it’s sequence number, unstashes all messages received during recovery cycle and moves to final Processing commands state.

		Processing commands - at this state actor is ready to perform commands processing. All non-controll messages are pushed to actor’s ReceiveCommand method. If Persist, PersistAsync or Defer methods will be called, actor may switch to Persisting events state in order to perform persisting user events in journal.

		Persisting events - during this phase all incoming messages are stashed and actor waits for the write acknowledgment from the journal. When writes are confirmed, actor goes back to Processing commands and stashed messages becomes unstashed.

Persistent view recovery cycle

Since persistent views are read-only variant of the persistence mechanism, their recovery states are slightly different from the other eventsourced actors - i.e. no journal writing steps are being performed.

		Recovery pending - same as Eventsourced.

		Recovery started - same as Eventsourced.

		Replay started - same as Eventsourced, except that ReplayMessagesSuccess and ReplayMessagesFailure both leads to the Idle state.

		Replay failed - same as Eventsourced.

		Prepare restart - same as Eventsourced, except no journal batch flushing is being performed.

		Idle - final persistent state, in which all messages are passed to view’s Receive method. The only exception is the Update controll message, which orders view to replay latests events found inside journal. By default this message is sent periodicaly to the view (details can be changed through HOCON config).

 © Copyright 2016.
 Created using Sphinx 1.3.5.

README.html

 Navigation

 		
 index

 		Akka.NET stable documentation »

Akka.NET

[image: Akka.NET logo]

[image: Gitter] [https://gitter.im/akkadotnet/akka.net?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge]

[image: Issue Stats] [http://www.issuestats.com/github/akkadotnet/akka.net]
[image: Issue Stats] [http://www.issuestats.com/github/akkadotnet/akka.net]

Issues for Next Release (v1.1) [https://waffle.io/akkadotnet/akka.net?milestone=Akka.NET%20v1.1]

![Critical Issues](https://badge.waffle.io/akkadotnet/akka.net.svg?label=help%20wanted&title=Issues Needing Help Now!) [http://waffle.io/akkadotnet/akka.net]

![Stories Up For Grabs](https://badge.waffle.io/akkadotnet/akka.net.svg?label=up%20for%20grabs&title=General Issues Up For Grabs) [http://waffle.io/akkadotnet/akka.net]

Akka.NET is a community-driven port of the popular Java/Scala framework Akka [http://akka.io] to .NET.

		Subscribe to the Akka.NET dev feed: https://twitter.com/AkkaDotNet (@AkkaDotNet)

		Support forum: https://groups.google.com/forum/#!forum/akkadotnet-user-list

		Mail: hi@getakka.net

		Stack Overflow: http://stackoverflow.com/questions/tagged/akka.net

Documentation and resources

Akka.NET Community Site [http://getakka.net]

Install Akka.NET via NuGet

If you want to include Akka.NET in your project, you can install it directly from NuGet [https://www.nuget.org/packages/Akka]

To install Akka.NET Distributed Actor Framework, run the following command in the Package Manager Console

PM> Install-Package Akka
PM> Install-Package Akka.Remote

And if you need F# support:

PM> Install-Package Akka.FSharp

Contributing

Where Can I Contribute?

Issues for the Next Release (v1.1) [https://waffle.io/akkadotnet/akka.net?milestone=Akka.NET%20v1.1]

![Critical Issues](https://badge.waffle.io/akkadotnet/akka.net.svg?label=help%20wanted&title=Issues Needing Help Now!) [http://waffle.io/akkadotnet/akka.net]

![Stories Up For Grabs](https://badge.waffle.io/akkadotnet/akka.net.svg?label=up%20for%20grabs&title=General Issues Up For Grabs) [http://waffle.io/akkadotnet/akka.net]

All contributions are welcome! Please consider the issues categorized in the Help! column [http://waffle.io/akkadotnet/akka.net] first, as they are areas we could really use your help :)

Contribution Guidelines

If you are interested in helping porting Akka to .NET please take a look at Contributing to Akka.NET [http://getakka.net/docs/Contributing%20to%20Akka].

Our docs [http://getakka.net/docs/] are always a work in progress—to contribute to docs, please see the docs contribution guidelines here [http://getakka.net/docs/Documentation%20guidelines].

Builds

Please see Building Akka.NET [http://getakka.net/docs/Building%20and%20Distributing%20Akka].

To access unstable nightly builds, please see the instructions here [http://getakka.net/docs/akka-developers/nightly-builds].

Support

[image: ReSharper]

[image: TeamCity]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/core/Akka.Tests.Shared.Internals/README.html

 Navigation

 		
 index

 		Akka.NET stable documentation »

 This assembly contains code used internally for writing tests.
This is not part of the public package.

The code comes mainly from Akka JVM /akka-testkit/src/test/scala/akka/testkit/ directory.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

RELEASE_NOTES.html

 Navigation

 		
 index

 		Akka.NET stable documentation »

1.0.9 April 26 2016

Placeholder for next release

1.0.8 April 26 2016

Maintenance release for Akka.NET v1.0.7

Fixes an issue with the 1.0.7 release where the default settings for Akka.Persistence changed and caused potential breaking changes for Akka.Persistence users. Those changes have been reverted back to the same values as previous versions.

General fixes:

		Recovered default journal & snapshot store to default config [https://github.com/akkadotnet/akka.net/pull/1864]

		EndpointRegistry fixes [https://github.com/akkadotnet/akka.net/pull/1862]

		eliminated allocations with StandardOutWriter [https://github.com/akkadotnet/akka.net/pull/1881]

		ClusterSingletonManager - settings update [https://github.com/akkadotnet/akka.net/pull/1878]

		Implement spec for standard mailbox combinations in Akka.NET [https://github.com/akkadotnet/akka.net/pull/1897]

Commit Stats for v1.0.8
COMMITS	LOC+	LOC-	AUTHOR
—	—	—	—
4	240	59	Aaron Stannard
3	268	1	Danthar
3	189	2810	Silv3rcircl3
2	204	4	Willem Meints
2	161	108	Bartosz Sypytkowski
2	101	24	Sean Gilliam
1	25	16	zbynek001

1.0.7 April 4 2016

Maintenance release for Akka.NET v1.0.6
The biggest changes in Akka.NET 1.0.7 have been made to Akka.Persistence, which is now designed to match the final stable release version in JVM Akka 2.4. Akka.Persistence is on-target to exit beta and become a fully mature module as of Akka.NET 1.5, due in May/June timeframe.

A quick note about 1.5 - JSON.NET will be replaced by Wire as the default serializer going forward, so if you want to be forward-compatible with 1.5 you will need to switch to using Wire today. Learn how to switch to using Wire as the default Akka.NET serializer [http://getakka.net/docs/Serialization#how-to-setup-wire-as-default-serializer].

If you install 1.0.7 you may see the following warning appear:

NewtonSoftJsonSerializer has been detected as a default serializer.
It will be obsoleted in Akka.NET starting from version 1.5 in the favor of Wire
for more info visit: http://getakka.net/docs/Serialization#how-to-setup-wire-as-default-serializer
If you want to suppress this message set HOCON {configPath} config flag to on.

This release also fixes some issues with the Cluster.Tools and Cluster.Sharding NuGet packages, which weren’t versioned correctly in previous releases.

Fixes & Changes - Akka.NET Core

		https://github.com/akkadotnet/akka.net/pull/1667

		Akka IO: ByteIterator and ByteStringbuilder bug fixes [https://github.com/akkadotnet/akka.net/pull/1682]

		Hocon Tripple quoted text - Fixes #1687 [https://github.com/akkadotnet/akka.net/pull/1689]

		Downgrade System.Collections.Immutable to 1.1.36 [https://github.com/akkadotnet/akka.net/issues/1698]

		Unify immutable collections [https://github.com/akkadotnet/akka.net/issues/1676] - Akka.NET core now depends on System.Collections.Immutable.

		#1694 Added safe check in InboxActor when receive timeout is already expired [https://github.com/akkadotnet/akka.net/pull/1702]

		Bugfix: DeadLetter filter with Type parameter should call IsInstanceOfType with the correct argument [https://github.com/akkadotnet/akka.net/pull/1707]

		Akka.IO bind failed must notify bindCommander of failure [https://github.com/akkadotnet/akka.net/pull/1729]

		ReceiveActor: Replaced Receive(Func<T, Task> handler) by ReceiveAsync(...) [https://github.com/akkadotnet/akka.net/pull/1747]

		External ActorSystem for Testkit event filters. [https://github.com/akkadotnet/akka.net/pull/1753]

		Fixed the ScatterGatherFirstCompleted router logic [https://github.com/akkadotnet/akka.net/pull/1769]

		Issue #1766 - Lazy evaluation of ChildrenContainer.Children and ChildrenContainer.Stats [https://github.com/akkadotnet/akka.net/pull/1772]

		[Dispatch] Support for ‘mailbox-requirement’ and ‘mailbox-type’ in dispatcher config [https://github.com/akkadotnet/akka.net/pull/1773]

		Fixed within timeout for routers in default configuration [https://github.com/akkadotnet/akka.net/pull/1787]

		Default MailboxType optimization [https://github.com/akkadotnet/akka.net/pull/1789]

		Warning about JSON.NET obsolete in v1.5 [https://github.com/akkadotnet/akka.net/pull/1811]

		Issue #1828 Implemented NobodySurrogate [https://github.com/akkadotnet/akka.net/pull/1829]

Fixes & Changes - Akka.Remote, Akka.Cluster, Et al

		Add the default cluster singleton config as a top-level fallback. [https://github.com/akkadotnet/akka.net/pull/1665]

		Change ShardState to a class [https://github.com/akkadotnet/akka.net/pull/1677]

		Cluster.Sharding: Take snapshots when configured [https://github.com/akkadotnet/akka.net/pull/1678]

		added remote metrics [https://github.com/akkadotnet/akka.net/pull/1722]

		Added a new argument to the MultiNodeTestRunner to filter specs [https://github.com/akkadotnet/akka.net/pull/1737]

		close #1758 made Akka.Cluster.Tools and Akka.Cluster.Sharding use correct assembly version info and nuget dependencies [https://github.com/akkadotnet/akka.net/pull/1767]

		Akka.Remote EndpointWriter backoff bugfix [https://github.com/akkadotnet/akka.net/pull/1777]

		Akka.Cluster.TestKit (internal use only) [https://github.com/akkadotnet/akka.net/pull/1782]

		Cluster.Tools.Singleton: Member.UpNumber fix [https://github.com/akkadotnet/akka.net/pull/1799]

Fixes & Changes - Akka.Persistence

		Made JournalEntry.Payload an object and AtLeastOnceDeliverySemantic public [https://github.com/akkadotnet/akka.net/pull/1684]

		Akka.Persistence - update code base to akka JVM v2.4 [https://github.com/akkadotnet/akka.net/pull/1717]

		Ensure internal stash is unstashed on writes after recovery [https://github.com/akkadotnet/akka.net/pull/1756]

		Wrap user stash to avoid confusion between PersistentActor.UnstashAll and PersistentActor.Stash.UnstashAll [https://github.com/akkadotnet/akka.net/pull/1757]

		Fixes initialization of LocalSnapshotStore directory [https://github.com/akkadotnet/akka.net/pull/1761]

		Fixed global ActorContext in SqlJournal [https://github.com/akkadotnet/akka.net/pull/1760]

Commit Stats for v1.0.7

COMMITS	LOC+	LOC-	AUTHOR
—	—	—	—
12	1718	2213	Aaron Stannard
11	2187	2167	Silv3rcircl3
7	433	75	JeffCyr
6	2	1127	Danthar
6	10383	3054	Chris Constantin
3	510	25	maxim.salamatko
3	5	3	Christopher Martin
2	53	65	rogeralsing
2	50	1	mukulsinghsaini
2	2738	2035	Sean Gilliam
2	25	4	Bartosz Sypytkowski
2	2	2	utcnow
2	14	13	zbynek001
2	130	126	annymsMthd
1	58	0	Denis Kostikov
1	48	43	voltcode
1	213	66	Alex Koshelev
1	2	2	Tamas Vajk
1	2	2	Marc Piechura
1	2	1	Juergen Hoetzel
1	19	8	tstojecki
1	13	13	Willie Ferguson
1	1	1	ravengerUA

1.0.6 January 18 2016

Maintenance release for Akka.NET v1.0.5
This patch consists of many bug fixes, performance improvements, as well as the addition of two brand new alpha modules for Akka.Cluster users.

Akka.Cluster.Tools and Akka.Cluster.Sharding
The biggest part of this release is the addition of Akka.Cluster.Tools [http://getakka.net/docs/clustering/cluster-tools] and Akka.Cluster.Sharding [http://getakka.net/docs/clustering/cluster-sharding], both of which are available now as pre-release packages on NuGet.

PM> Install-Package Akka.Cluster.Tools -pre

and

PM> Install-Package Akka.Cluster.Sharding -pre

Respectively, these two packages extend Akka.Cluster to do the following:

		Distributed pub/sub (Akka.Cluster.Tools)

		ClusterClient - subscribe to changes in cluster availability without actually being part of the cluster itself. (Akka.Cluster.Tools)

		ClusterSingleton - guarantee a single instance of a specific actor throughout the cluster. (Akka.Cluster.Tools)

		Sharding - partition data into durable stores (built on top of Akka.Persistence) in a manner that is fault-tolerant and recoverable across thecluster. (Akka.Cluster.Sharding)

Check out the documentation for more details!

		http://getakka.net/docs/clustering/cluster-tools

		http://getakka.net/docs/clustering/cluster-sharding

Fixes & Changes - Akka.NET Core

		Fix incorrect serialization of Unicode characters in NewtonSoftJsonSerializer [https://github.com/akkadotnet/akka.net/pull/1508]

		Fixed: Supervisorstrategy does not preserve stacktrace [https://github.com/akkadotnet/akka.net/issues/1499]

		added initial performance specs using NBench [https://github.com/akkadotnet/akka.net/pull/1520]

		Add wire back as contrib package + Serialization TestKit [https://github.com/akkadotnet/akka.net/pull/1503]

		Implemented the RegisterOnTermination feature. [https://github.com/akkadotnet/akka.net/pull/1523]

		Increased performance of DedicatedThreadPool [https://github.com/akkadotnet/akka.net/pull/1569]

		#1605 updated Google.ProtocolBuffers to 2.4.1.555 [https://github.com/akkadotnet/akka.net/pull/1634]

		Clear current message - fixes #1609 [https://github.com/akkadotnet/akka.net/pull/1613]

		Rewrite of the AtomicReference [https://github.com/akkadotnet/akka.net/pull/1615]

		Implemented WhenTerminated and Terminate [https://github.com/akkadotnet/akka.net/pull/1614]

		Implemented StartTime and Uptime [https://github.com/akkadotnet/akka.net/pull/1617]

		API Diff with fixed Approval file [https://github.com/akkadotnet/akka.net/pull/1639]

		Fixed: NullReferenceException in Akka.Util.Internal.Collections.ImmutableAvlTreeBase`2.RotateLeft [https://github.com/akkadotnet/akka.net/issues/1202]

Fixes & Changes - Akka.Remote & Akka.Cluster
It should be noted that we’ve improved the throughput from Akka.NET v1.0.5 to 1.0.6 by a factor of 8

		Akka.Cluster.Tools & Akka.Cluster.Sharding with tests and examples [https://github.com/akkadotnet/akka.net/pull/1530]

		Added UntrustedSpec [https://github.com/akkadotnet/akka.net/pull/1535]

		Akka.Remote Performance - String.Format logging perf fix [https://github.com/akkadotnet/akka.net/pull/1540]

		Remoting system upgrade [https://github.com/akkadotnet/akka.net/pull/1596]

		PublicHostname defaults to IPAddress.Any when hostname is blank [https://github.com/akkadotnet/akka.net/pull/1621]

		Removes code that overrides OFF log level with WARNING. [https://github.com/akkadotnet/akka.net/pull/1644]

		fixes issue with Helios message ordering [https://github.com/akkadotnet/akka.net/pull/1638]

		Fixed: Actor does not receive “Terminated” message if remoting is used and it is not monitored actor’s parent [https://github.com/akkadotnet/akka.net/issues/1646]

Fixes & Changes - Akka.Persistence

		Fixed racing conditions on sql-based snapshot stores [https://github.com/akkadotnet/akka.net/pull/1507]

		Fix for race conditions in presistence plugins [https://github.com/akkadotnet/akka.net/pull/1543]

		Fix #1522 Ensure extensions and persistence plugins are only registered/created once [https://github.com/akkadotnet/akka.net/pull/1648]

A special thanks to all of our contributors for making this happen!
18 contributors since release v1.0.5

COMMITS	LOC+	LOC-	AUTHOR
—	—	—	—
22	3564	28087	Aaron Stannard
15	1710	1303	rogeralsing
6	569	95	Silv3rcircl3
6	53594	4417	Bartosz Sypytkowski
5	1786	345	Sean Gilliam
3	786	159	maxim.salamatko
2	765	277	JeffCyr
2	44	53	Chris Constantin
2	14	2	Simon Anderson
1	84	4	Bart de Boer
1	6051	27	danielmarbach
1	6	2	tstojecki
1	3	5	Ralf1108
1	27	0	Andrew Skotzko
1	2	2	easuter
1	2	1	Danthar
1	182	0	derwasp
1	179	0	Onat Yiğit Mercan

1.0.5 December 3 2015

Maintenance release for Akka.NET v1.0.4
This release is a collection of bug fixes, performance enhancements, and general improvements contributed by 29 individual contributors.

Fixes & Changes - Akka.NET Core

		Bugfix: Make the Put on the SimpleDnsCache idempotent [https://github.com/akkadotnet/akka.net/commit/2ed1d574f76491707deac236db3fd7c1e5af5757]

		Add CircuitBreaker Initial based on akka 2.0.5 [https://github.com/akkadotnet/akka.net/commit/7e16834ef0ff8551cdd3530eacb1016d40cb1cb8]

		Fix for receive timeout in async await actor [https://github.com/akkadotnet/akka.net/commit/6474bd7dc3d27756e255d12ef21f331108d9922d]

		akka-io: fixed High CPU load using the Akka.IO TCP server [https://github.com/akkadotnet/akka.net/commit/4af2cfbcaafa33ea04a1a8b1aa6486e78bd6f821]

		akka-io: Stop select loop on idle [https://github.com/akkadotnet/akka.net/commit/e545780d36cfb805b2014746a2e97006894c2e00]

		Serialization fixes [https://github.com/akkadotnet/akka.net/commit/6385cc20a3d310efc0bb2f9e29710c5b7bceaa87]

		Fix issue #1301 - inprecise resizing of resizable routers [https://github.com/akkadotnet/akka.net/commit/cf714333b25190249f01d79bad606d4ce5863e47]

		Stashing now checks message equality by reference [https://github.com/akkadotnet/akka.net/commit/884330dfb5d69b523f25a59b98450322fe3b34f4]

		rewrote ActorPath.TryParseAddrss to now test Uris by try / catch and use Uri.TryCreate instead [https://github.com/akkadotnet/akka.net/commit/8eaf32147a08f213db818bf19d74ed9d1aadaed2]

		Port EventBusUnsubscribers [https://github.com/akkadotnet/akka.net/commit/bd91bcd50d918e5e8ee4b085e53d603cfd46c89a]

		Add optional PipeTo completion handlers [https://github.com/akkadotnet/akka.net/commit/dfb7f61026d5d0b2d23efe1dd73af820f70a1d1c]

		Akka context props output to Serilog [https://github.com/akkadotnet/akka.net/commit/409cd7f4ed0b285827b681685af59ec19c5a4b73]

Fixes & Changes - Akka.Remote, Akka.Cluster

		MultiNode tests can now be skipped by specifying a SkipReason [https://github.com/akkadotnet/akka.net/commit/75f966cb7d2f2c0d859e0e3a90a38d251a10c5e5]

		Akka.Remote: Discard msg if payload size > max allowed. [https://github.com/akkadotnet/akka.net/commit/05f57b9b1ff256145bc085f94d49a591e51e1304]

		Throw TypeLoadException when an actor type or dependency cannot be found in a remote actor deploy scenario [https://github.com/akkadotnet/akka.net/commit/ffed3eb088bc00f90a5e4b7367d4598fda007401]

		MultiNode Test Visualizer [https://github.com/akkadotnet/akka.net/commit/7706bb242719b7f7197058e89f8579af5b82dfc3]

		Fix for Akka.Cluster.Routing.ClusterRouterGroupSettings Mono Linux issue [https://github.com/akkadotnet/akka.net/commit/dbbd2ac9b16772af8f8e35d3d1c8bf5dcf354f42]

		Added RemoteDeploymentWatcher [https://github.com/akkadotnet/akka.net/commit/44c29ccefaeca0abdc4fd1f81daf1dc27a285f66]

		Akka IO Transport: framing support [https://github.com/akkadotnet/akka.net/commit/60b5d2a318b485652e0888190aaa930fe43b1bbc]

		#1443 fix for cluster shutdown [https://github.com/akkadotnet/akka.net/commit/941688aead57266b454b76530a7fb5446f68e15d]

Fixes & Changes - Akka.Persistence

		Fixes the NullReferenceException in #1235 and appears to adhere to the practice of including an addres with the serialized binary. [https://github.com/akkadotnet/akka.net/commit/3df119ff614c3298299f863e18efd6e0fa848858]

		Port Finite State Machine DSL to Akka.Persistence [https://github.com/akkadotnet/akka.net/commit/dce684d907df86f5039eb2ca20727ab48d4b218a]

		Become and BecomeStacked for ReceivePersistentActor [https://github.com/akkadotnet/akka.net/commit/b11dafc86eb9284c2d515fd9da3599fe463a5681]

		Persistent actor stops on recovery failures [https://github.com/akkadotnet/akka.net/commit/03105719a8866e8eadac268bc8f813e738f989b9]

		Fixed: data races inside sql journal engine [https://github.com/akkadotnet/akka.net/commit/f088f0c681fdc7ba1b4eaf7f823c2a9535d3045d]

		fix sqlite.conf and readme [https://github.com/akkadotnet/akka.net/commit/c7e925ba624eee7e386855251169aecbafd6ae7d]

		#1416 created ReceiveActor implementation of AtLeastOnceDeliveryActor base class [https://github.com/akkadotnet/akka.net/commit/4d1d79b568bdae6565423c3ed914f8a9606dc0e8]

A special thanks to all of our contributors, organized below by the number of changes made:

23369 5258 18111 Aaron Stannard
18827 16329 2498 Bartosz Sypytkowski
11994 9496 2498 Steffen Forkmann
6031 4637 1394 maxim.salamatko
1987 1667 320 Graeme Bradbury
1556 1149 407 Sean Gilliam
1118 1118 0 moliver
706 370 336 rogeralsing
616 576 40 Marek Kadek
501 5 496 Alex Koshelev
377 269 108 Jeff Cyr
280 208 72 willieferguson
150 98 52 Christian Palmstierna
85 63 22 Willie Ferguson
77 71 6 Emil Ingerslev
66 61 5 Grover Jackson
60 39 21 Alexander Pantyukhin
56 33 23 Uladzimir Makarau
55 54 1 rdavisau
51 18 33 alex-kondrashov
42 26 16 Silv3rcircl3
36 30 6 evertmulder
33 19 14 Filip Malachowicz
13 11 2 Suhas Chatekar
7 6 1 tintoy
4 2 2 Jonathan
2 1 1 neekgreen
2 1 1 Christopher Martin
2 1 1 Artem Borzilov

1.0.4 August 07 2015

Maintenance release for Akka.NET v1.0.3

Akka.IO
This release introduces some major new features to Akka.NET, including Akka.IO - a new set of capabilities built directly into the Akka NuGet package that allow you to communicate with your actors directly via TCP and UDP sockets [http://getakka.net/docs/IO] from external (non-actor) systems.

If you want to see a really cool example of Akka.IO in action, look at this sample that shows off how to use the Telnet commandline to interact directly with Akka.NET actors [https://github.com/akkadotnet/akka.net/blob/dev/src/examples/TcpEchoService.Server].

Akka.Persistence.MongoDb and Akka.Persistence.Sqlite
Two new flavors of Akka.Persistence support are now available. You can install them via the commandline!

PM> Install-Package Akka.Persistence.MongoDb -pre

and

PM> Install-Package Akka.Persistence.Sqlite -pre

Fixes & Changes - Akka.NET Core

		F# API - problem with discriminated union serialization [https://github.com/akkadotnet/akka.net/issues/999]

		Fix Null Sender issue [https://github.com/akkadotnet/akka.net/issues/1212]

		Outdated FsPickler version in Akka.FSharp can lead to runtime errors when other FsPickler-dependent packages are installed [https://github.com/akkadotnet/akka.net/issues/1206]

		Add default Ask timeout to HOCON configuration [https://github.com/akkadotnet/akka.net/issues/1163]

		Remote watching is repeated [https://github.com/akkadotnet/akka.net/issues/1090]

		RemoteDaemon bug, not removing children [https://github.com/akkadotnet/akka.net/pull/1068]

		HOCON include support [https://github.com/akkadotnet/akka.net/pull/1169]

		Replace SystemNanoTime with MonotonicClock [https://github.com/akkadotnet/akka.net/pull/1174]

Akka.DI.StructureMap
We now have support for the StructureMap dependency injection framework [http://docs.structuremap.net/] out of the box. You can install it here!

PM> Install-Package Akka.DI.StructureMap

1.0.3 June 12 2015

Bugfix release for Akka.NET v1.0.2.

This release addresses an issue with Akka.Persistence.SqlServer and Akka.Persistence.PostgreSql where both packages were missing a reference to Akka.Persistence.Sql.Common.

In Akka.NET v1.0.3 we’ve packaged Akka.Persistence.Sql.Common into its own NuGet package and referenced it in the affected packages.

1.0.2 June 2 2015

Bugfix release for Akka.NET v1.0.1.

Fixes & Changes - Akka.NET Core

		Routers seem ignore supervision strategy [https://github.com/akkadotnet/akka.net/issues/996]

		Replaced DateTime.Now with DateTime.UtcNow/MonotonicClock [https://github.com/akkadotnet/akka.net/pull/1009]

		DedicatedThreadScheduler [https://github.com/akkadotnet/akka.net/pull/1002]

		Add ability to specify scheduler implementation in configuration [https://github.com/akkadotnet/akka.net/pull/994]

		Added generic extensions to EventStream subscribe/unsubscribe. [https://github.com/akkadotnet/akka.net/pull/990]

		Convert null to NoSender. [https://github.com/akkadotnet/akka.net/pull/993]

		Supervisor strategy bad timeouts [https://github.com/akkadotnet/akka.net/pull/986]

		Updated Pigeon.conf throughput values [https://github.com/akkadotnet/akka.net/pull/980]

		Add PipeTo for non-generic Tasks for exception handling [https://github.com/akkadotnet/akka.net/pull/978]

Fixes & Changes - Akka.NET Dependency Injection

		Added Extensions methods to ActorSystem and ActorContext to make DI more accessible [https://github.com/akkadotnet/akka.net/pull/966]

		DIActorProducer fixes [https://github.com/akkadotnet/akka.net/pull/961]

		closes akkadotnet/akka.net#1020 structuremap dependency injection [https://github.com/akkadotnet/akka.net/pull/1021]

Fixes & Changes - Akka.Remote and Akka.Cluster

		Fixing up cluster rejoin behavior [https://github.com/akkadotnet/akka.net/pull/962]

		Added dispatcher fixes for remote and cluster [https://github.com/akkadotnet/akka.net/pull/983]

		Fixes to ClusterRouterGroup [https://github.com/akkadotnet/akka.net/pull/953]

		Two actors are created by remote deploy using Props.WithDeploy [https://github.com/akkadotnet/akka.net/issues/1025]

Fixes & Changes - Akka.Persistence

		Renamed GuaranteedDelivery classes to AtLeastOnceDelivery [https://github.com/akkadotnet/akka.net/pull/984]

		Changes in Akka.Persistence SQL backend [https://github.com/akkadotnet/akka.net/pull/963]

		PostgreSQL persistence plugin for both event journal and snapshot store [https://github.com/akkadotnet/akka.net/pull/971]

		Cassandra persistence plugin [https://github.com/akkadotnet/akka.net/pull/995]

New Features:

Akka.TestKit.XUnit2
Akka.NET now has support for XUnit 2.0 [http://xunit.github.io/]! You can install Akka.TestKit.XUnit2 via the NuGet commandline:

PM> Install-Package Akka.TestKit.XUnit2

Akka.Persistence.PostgreSql and Akka.Persistence.Cassandra
Akka.Persistence now has two additional concrete implementations for PostgreSQL and Cassandra! You can install either of the packages using the following commandline:

Akka.Persistence.PostgreSql Configuration Docs [https://github.com/akkadotnet/akka.net/tree/dev/src/contrib/persistence/Akka.Persistence.PostgreSql]

PM> Install-Package Akka.Persistence.PostgreSql

Akka.Persistence.Cassandra Configuration Docs [https://github.com/akkadotnet/akka.net/tree/dev/src/contrib/persistence/Akka.Persistence.Cassandra]

PM> Install-Package Akka.Persistence.Cassandra

Akka.DI.StructureMap
Akka.NET’s dependency injection system now supports StructureMap [http://structuremap.github.io/]! You can install Akka.DI.StructureMap via the NuGet commandline:

PM> Install-Package Akka.DI.StructureMap

1.0.1 Apr 28 2015

Bugfix release for Akka.NET v1.0.

Fixes:

		v1.0 F# scheduling API not sending any scheduled messages [https://github.com/akkadotnet/akka.net/issues/831]

		PinnedDispatcher - uses single thread for all actors instead of creating persanal thread for every actor [https://github.com/akkadotnet/akka.net/issues/850]

		Hotfix async await when awaiting IO completion port based tasks [https://github.com/akkadotnet/akka.net/pull/843]

		Fix for async await suspend-resume mechanics [https://github.com/akkadotnet/akka.net/pull/836]

		Nested Ask async await causes null-pointer exception in ActorTaskScheduler [https://github.com/akkadotnet/akka.net/issues/855]

		Akka.Remote: can’t reply back remotely to child of Pool router [https://github.com/akkadotnet/akka.net/issues/884]

		Context.DI().ActorOf shouldn’t require a parameterless constructor [https://github.com/akkadotnet/akka.net/issues/832]

		DIActorContextAdapter uses typeof().Name instead of AssemblyQualifiedName [https://github.com/akkadotnet/akka.net/issues/833]

		IndexOutOfRangeException with RoundRobinRoutingLogic & SmallestMailboxRoutingLogic [https://github.com/akkadotnet/akka.net/issues/908]

New Features:

Akka.TestKit.NUnit
Akka.NET now has support for NUnit [http://nunit.org/] inside its TestKit. You can install Akka.TestKit.NUnit via the NuGet commandline:

PM> Install-Package Akka.TestKit.NUnit

Akka.Persistence.SqlServer
The first full implementation of Akka.Persistence is now available for SQL Server.

Read the full instructions for working with Akka.Persistence.SQLServer here [https://github.com/akkadotnet/akka.net/tree/dev/src/contrib/persistence/Akka.Persistence.SqlServer].

1.0.0 Apr 09 2015

Akka.NET is officially no longer in beta status. The APIs introduced in Akka.NET v1.0 will enjoy long-term support from the Akka.NET development team and all of its professional support partners.

Many breaking changes were introduced between v0.8 and v1.0 in order to provide better future extensibility and flexibility for Akka.NET, and we will outline the major changes in detail in these release notes.

However, if you want full API documentation we recommend going to the following:

		Latest Stable Akka.NET API Docs [http://api.getakka.net/docs/stable/index.html]

		Akka.NET Wiki [http://getakka.net/wiki/]

Updated Packages with 1.0 Stable Release

All of the following NuGet packages have been upgraded to 1.0 for stable release:

		Akka.NET Core

		Akka.FSharp

		Akka.Remote

		Akka.TestKit

		Akka.DI (dependency injection)

		Akka.Loggers (logging)

The following packages (and modules dependent on them) are still in pre-release status:

		Akka.Cluster

		Akka.Persistence

Introducing Full Mono Support for Akka.NET

One of the biggest changes in Akka.NET v1.0 is the introduction of full Mono support across all modules; we even have Raspberry PI machines talking to laptops over Akka.Remote [https://twitter.com/AkkaDotNET/status/584109606714093568]!

We’ve tested everything using Mono v3.12.1 across OS X and Ubuntu.

Please let us know how well Akka.NET + Mono runs on your environment [https://github.com/akkadotnet/akka.net/issues/694]!

API Changes in v1.0

All methods returning an ActorRef now return IActorRef
This is the most significant breaking change introduced in AKka.NET v1.0. Rather than returning the ActorRef abstract base class from all of the ActorOf, Sender and other methods we now return an instance of the IActorRef interface instead.

This was done in order to guarantee greater future extensibility without additional breaking changes, so we decided to pay off that technical debt now that we’re supporting these APIs long-term.

Here’s the set of breaking changes you need to be aware of:

		Renamed:
		ActorRef –> IActorRef

		ActorRef.Nobody –> ActorRefs.Nobody

		ActorRef.NoSender –> ActorRefs.NoSender

		ActorRef‘s operators == and != has been removed. This means all expressions like actorRef1 == actorRef2 must be replaced with Equals(actorRef1, actorRef2)

		Tell(object message), i.e. the implicit sender overload, has been moved
to an extension method, and requires using Akka.Actor; to be accessible.

		Implicit cast from ActorRef to Routee has been replaced with Routee.FromActorRef(actorRef)

async / await Support

ReceiveActors now support Async/Await out of the box.

public class MyActor : ReceiveActor
{
 public MyActor()
 {
 Receive<SomeMessage>(async some => {
 //we can now safely use await inside this receive handler
 await SomeAsyncIO(some.Data);
 Sender.Tell(new EverythingIsAllOK());
 });
 }
}

It is also possible to specify the behavior for the async handler, using AsyncBehavior.Suspend and AsyncBehavior.Reentrant as the first argument.
When using Suspend the normal actor semantics will be preserved, the actor will not be able to process any new messages until the current async operation is completed.
While using Reentrant will allow the actor to multiplex messages during the await period.
This does not mean that messages are processed in parallel, we still stay true to “one message at a time”, but each await continuation will be piped back to the actor as a message and continue under the actors concurrency constraint.

However, PipeTo pattern is still the preferred way to perform async operations inside an actor, as it is more explicit and clearly states what is going on.

Switchable Behaviors
In order to make the switchable behavior APIs more understandable for both UntypedActor and ReceiveActor we’ve updated the methods to the following:

Become(newHandler); // become newHandler, without adding previous behavior to the stack (default)
BecomeStacked(newHandler); // become newHandler, without adding previous behavior to the stack (default)
UnbecomeStacked(); //revert to the previous behavior in the stack

The underlying behavior-switching implementation hasn’t changed at all - only the names of the methods.

Scheduler APIs
The Context.System.Scheduler API has been overhauled to be both more extensible and understandable going forward. All of the previous capabilities for the Scheduler are still available, only in different packaging than they were before.

Here are the new APIs:

Context.System.Scheduler
 .ScheduleTellOnce(TimeSpan delay, ICanTell receiver, object message, ActorRef sender);
 .ScheduleTellOnce(TimeSpan delay, ICanTell receiver, object message, ActorRef sender, ICancelable cancelable);
 .ScheduleTellRepeatedly(TimeSpan initialDelay, TimeSpan interval, ICanTell receiver, object message, ActorRef sender);
 .ScheduleTellRepeatedly(TimeSpan initialDelay, TimeSpan interval, ICanTell receiver, object message, ActorRef sender, ICancelable cancelable);

Context.System.Scheduler.Advanced
 .ScheduleOnce(TimeSpan delay, Action action);
 .ScheduleOnce(TimeSpan delay, Action action, ICancelable cancelable);
 .ScheduleRepeatedly(TimeSpan initialDelay, TimeSpan interval, Action action);
 .ScheduleRepeatedly(TimeSpan initialDelay, TimeSpan interval, Action action, ICancelable cancelable);

There’s also a set of extension methods for specifying delays and intervals in milliseconds as well as methods for all four variants (ScheduleTellOnceCancelable, ScheduleTellRepeatedlyCancelable, ScheduleOnceCancelable, ScheduleRepeatedlyCancelable) that creates a cancelable, schedules, and returns the cancelable.

Akka.NET Config now loaded automatically from App.config and Web.config
In previous versions Akka.NET users had to do the following to load Akka.NET HOCON configuration sections from App.config or Web.config:

var section = (AkkaConfigurationSection)ConfigurationManager.GetSection("akka");
var config = section.AkkaConfig;
var actorSystem = ActorSystem.Create("MySystem", config);

As of Akka.NET v1.0 this is now done for you automatically:

var actorSystem = ActorSystem.Create("MySystem"); //automatically loads App/Web.config, if any

Dispatchers
Akka.NET v1.0 introduces the ForkJoinDispatcher as well as general purpose dispatcher re-use.

Using ForkJoinDispatcher
ForkJoinDispatcher is special - it uses Helios.Concurrency.DedicatedThreadPool [https://github.com/helios-io/DedicatedThreadPool] to create a dedicated set of threads for the exclusive use of the actors configured to use a particular ForkJoinDispatcher instance. All of the remoting actors depend on the default-remote-dispatcher for instance.

Here’s how you can create your own ForkJoinDispatcher instances via Config:

myapp{
 my-forkjoin-dispatcher{
 type = ForkJoinDispatcher
 throughput = 100
 dedicated-thread-pool{ #settings for Helios.DedicatedThreadPool
 thread-count = 3 #number of threads
 #deadlock-timeout = 3s #optional timeout for deadlock detection
 threadtype = background #values can be "background" or "foreground"
 }
 }
}
}

You can then use this specific ForkJoinDispatcher instance by configuring specific actors to use it, whether it’s via config or the fluent interface on Props:

Config

akka.actor.deploy{
 /myActor1{
 dispatcher = myapp.my-forkjoin-dispatcher
 }
}

Props

var actor = Sys.ActorOf(Props.Create<Foo>().WithDispatcher("myapp.my-forkjoin-dispatcher"));

FluentConfiguration [REMOVED]
FluentConfig has been removed as we’ve decided to standardize on HOCON configuration, but if you still want to use the old FluentConfig bits you can find them here: https://github.com/rogeralsing/Akka.FluentConfig

F# API
The F# API has changed to reflect the other C# interface changes, as well as unique additions specific to F#.

In addition to updating the F# API, we’ve also fixed a long-standing bug with being able to serialize discriminated unions over the wire. This has been resolved.

Interface Renames
In order to comply with .NET naming conventions and standards, all of the following interfaces have been renamed with the I{InterfaceName} prefix.

The following interfaces have all been renamed to include the I prefix:

		[X] Akka.Actor.ActorRefProvider, Akka (Public)

		[X] Akka.Actor.ActorRefScope, Akka (Public)

		[X] Akka.Actor.AutoReceivedMessage, Akka (Public)

		[X] Akka.Actor.Cell, Akka (Public)

		[X] Akka.Actor.Inboxable, Akka (Public)

		[X] Akka.Actor.IndirectActorProducer, Akka (Public)

		[X] Akka.Actor.Internal.ChildrenContainer, Akka (Public)

		[X] Akka.Actor.Internal.ChildStats, Akka (Public)

		[X] Akka.Actor.Internal.InternalSupportsTestFSMRef2, Akka` (Public)

		[X] Akka.Actor.Internal.SuspendReason+WaitingForChildren, Akka

		[X] Akka.Actor.Internals.InitializableActor, Akka (Public)

		[X] Akka.Actor.LocalRef, Akka

		[X] Akka.Actor.LoggingFSM, Akka (Public)

		[X] Akka.Actor.NoSerializationVerificationNeeded, Akka (Public)

		[X] Akka.Actor.PossiblyHarmful, Akka (Public)

		[X] Akka.Actor.RepointableRef, Akka (Public)

		[X] Akka.Actor.WithBoundedStash, Akka (Public)

		[X] Akka.Actor.WithUnboundedStash, Akka (Public)

		[X] Akka.Dispatch.BlockingMessageQueueSemantics, Akka (Public)

		[X] Akka.Dispatch.BoundedDequeBasedMessageQueueSemantics, Akka (Public)

		[X] Akka.Dispatch.BoundedMessageQueueSemantics, Akka (Public)

		[X] Akka.Dispatch.DequeBasedMailbox, Akka (Public)

		[X] Akka.Dispatch.DequeBasedMessageQueueSemantics, Akka (Public)

		[X] Akka.Dispatch.MessageQueues.MessageQueue, Akka (Public)

		[X] Akka.Dispatch.MultipleConsumerSemantics, Akka (Public)

		[X] Akka.Dispatch.RequiresMessageQueue1, Akka` (Public)

		[X] Akka.Dispatch.Semantics, Akka (Public)

		[X] Akka.Dispatch.SysMsg.SystemMessage, Akka (Public)

		[X] Akka.Dispatch.UnboundedDequeBasedMessageQueueSemantics, Akka (Public)

		[X] Akka.Dispatch.UnboundedMessageQueueSemantics, Akka (Public)

		[X] Akka.Event.LoggingAdapter, Akka (Public)

		[X] Akka.FluentConfigInternals, Akka (Public)

		[X] Akka.Remote.InboundMessageDispatcher, Akka.Remote

		[X] Akka.Remote.RemoteRef, Akka.Remote

		[X] Akka.Routing.ConsistentHashable, Akka (Public)

ConsistentHashRouter and IConsistentHashable
Akka.NET v1.0 introduces the idea of virtual nodes to the ConsistentHashRouter, which are designed to provide more even distributions of hash ranges across a relatively small number of routees. You can take advantage of virtual nodes via configuration:

akka.actor.deployment {
 /router1 {
 router = consistent-hashing-pool
 nr-of-instances = 3
 virtual-nodes-factor = 17
 }
}

Or via code:

var router4 = Sys.ActorOf(Props.Empty.WithRouter(
 new ConsistentHashingGroup(new[]{c},hashMapping: hashMapping)
 .WithVirtualNodesFactor(5)),
 "router4");

ConsistentHashMapping Delegate
There are three ways to instruct a router to hash a message:

		Wrap the message in a ConsistentHashableEnvelope;

		Implement the IConsistentHashable interface on your message types; or

		Or, write a ConsistentHashMapper delegate and pass it to a ConsistentHashingGroup or a ConsistentHashingPool programmatically at create time.

Here’s an example, taken from the ConsistentHashSpecs:

ConsistentHashMapping hashMapping = msg =>
{
 if (msg is Msg2)
 {
 var m2 = msg as Msg2;
 return m2.Key;
 }

 return null;
};
var router2 =
 Sys.ActorOf(new ConsistentHashingPool(1, null, null, null, hashMapping: hashMapping)
 .Props(Props.Create<Echo>()), "router2");

Alternatively, you don’t have to pass the ConsistentHashMapping into the constructor - you can use the WithHashMapping fluent interface built on top of both ConsistentHashingGroup and ConsistentHashingPool:

var router2 =
 Sys.ActorOf(new ConsistentHashingPool(1).WithHashMapping(hashMapping)
 .Props(Props.Create<Echo>()), "router2");

ConsistentHashable renamed to IConsistentHashable
Any objects you may have decorated with the ConsistentHashable interface to work with ConsistentHashRouter instances will need to implement IConsistentHashable going forward, as all interfaces have been renamed with the I- prefix per .NET naming conventions.

Akka.DI.Unity NuGet Package
Akka.NET now ships with dependency injection support for Unity [http://unity.codeplex.com/].

You can install our Unity package via the following command in the NuGet package manager console:

PM> Install-Package Akka.DI.Unity

0.8.0 Feb 11 2015

Dependency Injection support for Ninject, Castle Windsor, and AutoFac. Thanks to some amazing effort from individual contributor (@jcwrequests [https://github.com/jcwrequests]), Akka.NET now has direct dependency injection support for Ninject [http://www.ninject.org/], Castle Windsor [http://docs.castleproject.org/Default.aspx?Page=MainPage&NS=Windsor&AspxAutoDetectCookieSupport=1], and AutoFac [https://github.com/autofac/Autofac].

Here’s an example using Ninject, for instance:

// Create and build your container
var container = new Ninject.StandardKernel();
container.Bind().To(typeof(TypedWorker));
container.Bind().To(typeof(WorkerService));

// Create the ActorSystem and Dependency Resolver
var system = ActorSystem.Create("MySystem");
var propsResolver = new NinjectDependencyResolver(container,system);

//Create some actors who need Ninject
var worker1 = system.ActorOf(propsResolver.Create<TypedWorker>(), "Worker1");
var worker2 = system.ActorOf(propsResolver.Create<TypedWorker>(), "Worker2");

//send them messages
worker1.Tell("hi!");

You can install these DI plugins for Akka.NET via NuGet - here’s how:

		Ninject - install-package Akka.DI.Ninject

		Castle Windsor - install-package Akka.DI.CastleWindsor

		AutoFac - install-package Akka.DI.AutoFac

Read the full Dependency Injection with Akka.NET documentation [http://getakka.net/wiki/Dependency%20injection] here.

Persistent Actors with Akka.Persistence (Alpha). Core contributor @Horusiath [https://github.com/Horusiath] ported the majority of Akka’s Akka.Persistence and Akka.Persistence.TestKit modules.

Even in the core Akka project these modules are considered to be “experimental,” but the goal is to provide actors with a way of automatically saving and recovering their internal state to a configurable durable store - such as a database or filesystem.

Akka.Persistence also introduces the notion of reliable delivery of messages, achieved through the GuaranteedDeliveryActor.

Akka.Persistence also ships with an FSharp API out of the box, so while this package is in beta you can start playing with it either F# or C# from day one.

If you want to play with Akka.Persistence, please install any one of the following packages:

		Akka.Persistence - install-package Akka.Persistence -pre

		Akka.Persistence.FSharp - install-package Akka.Persistence.FSharp -pre

		Akka.Persistence.TestKit - install-package Akka.Persistence.TestKit -pre

Read the full Persistent Actors with Akka.NET documentation [http://getakka.net/wiki/Persistence] here.

Remote Deployment of Routers and Routees. You can now remotely deploy routers and routees via configuration, like so:

Deploying routees remotely via Config:

actor.deployment {
 /blub {
 router = round-robin-pool
 nr-of-instances = 2
 target.nodes = [""akka.tcp://${sysName}@localhost:${port}""]
 }
}

var router = masterActorSystem.ActorOf(new RoundRobinPool(2).Props(Props.Create<Echo>()), "blub");

When deploying a router via configuration, just specify the target.nodes property with a list of Address instances for each node you want to deploy your routees.

NOTE: Remote deployment of routees only works for Pool routers.

Deploying routers remotely via Config:

actor.deployment {
 /blub {
 router = round-robin-pool
 nr-of-instances = 2
 remote = ""akka.tcp://${sysName}@localhost:${port}""
 }
}

var router = masterActorSystem.ActorOf(Props.Create<Echo>().WithRouter(FromConfig.Instance), "blub");

Works just like remote deployment of actors.

If you want to deploy a router remotely via explicit configuration, you can do it in code like this via the RemoteScope and RemoteRouterConfig:

Deploying routees remotely via explicit configuration:

var intendedRemoteAddress = Address.Parse("akka.tcp://${sysName}@localhost:${port}"
.Replace("${sysName}", sysName)
.Replace("${port}", port.ToString()));

 var router = myActorSystem.ActorOf(new RoundRobinPool(2).Props(Props.Create<Echo>())
.WithDeploy(new Deploy(
 new RemoteScope(intendedRemoteAddress.Copy()))), "myRemoteRouter");

Deploying routers remotely via explicit configuration:

var intendedRemoteAddress = Address.Parse("akka.tcp://${sysName}@localhost:${port}"
.Replace("${sysName}", sysName)
.Replace("${port}", port.ToString()));

 var router = myActorSystem.ActorOf(
 new RemoteRouterConfig(
 new RoundRobinPool(2), new[] { new Address("akka.tcp", sysName, "localhost", port) })
 .Props(Props.Create<Echo>()), "blub2");

Improved Serialization and Remote Deployment Support. All internals related to serialization and remote deployment have undergone vast improvements in order to support the other work that went into this release.

Pluggable Actor Creation Pipeline. We reworked the plumbing that’s used to provide automatic Stash support and exposed it as a pluggable actor creation pipeline for local actors.

This release adds the ActorProducerPipeline, which is accessible from ExtendedActorSystem (to be able to configure by plugins) and allows you to inject custom hooks satisfying following interface:

interface IActorProducerPlugin {
 bool CanBeAppliedTo(ActorBase actor);
 void AfterActorCreated(ActorBase actor, IActorContext context);
 void BeforeActorTerminated(ActorBase actor, IActorContext context);
}

		CanBeAppliedTo determines if plugin can be applied to specific actor instance.

		AfterActorCreated is applied to actor after it has been instantiated by an ActorCell and before InitializableActor.Init method will (optionally) be invoked.

		BeforeActorTerminated is applied before actor terminates and before IDisposable.Dispose method will be invoked (for disposable actors) - auto handling disposable actors is second feature of this commit.

For common use it’s better to create custom classes inheriting from ActorProducerPluginBase and ActorProducerPluginBase<TActor> classes.

Pipeline itself provides following interface:

class ActorProducerPipeline : IEnumerable<IActorProducerPlugin> {
 int Count { get; } // current plugins count - 1 by default (ActorStashPlugin)
 bool Register(IActorProducerPlugin plugin)
 bool Unregister(IActorProducerPlugin plugin)
 bool IsRegistered(IActorProducerPlugin plugin)
 bool Insert(int index, IActorProducerPlugin plugin)
}

		Register - registers a plugin if no other plugin of the same type has been registered already (plugins with generic types are counted separately). Returns true if plugin has been registered.

		Insert - same as register, but plugin will be placed in specific place inside the pipeline - useful if any plugins precedence is required.

		Unregister - unregisters specified plugin if it has been found. Returns true if plugin was found and unregistered.

		IsRegistered - checks if plugin has been already registered.

By default pipeline is filled with one already used plugin - ActorStashPlugin, which replaces stash initialization/unstashing mechanism used up to this moment.

MultiNodeTestRunner and Akka.Remote.TestKit. The MultiNodeTestRunner and the Multi Node TestKit (Akka.Remote.TestKit) underwent some drastic changes in this update. They’re still not quite ready for public use yet, but if you want to see what the experience is like you can clone the Akka.NET Github repository [https://github.com/akkadotnet/akka.net] and run the following command:

C:\akkadotnet> .\build.cmd MultiNodeTests

This will automatically launch all MultiNodeSpec instances found inside Akka.Cluster.Tests. We’ll need to make this more flexible to be able to run other assemblies that require multinode tests in the future.

These tests are not enabled by default in normal build runs, but they will at some point in the future.

Here’s a sample of the output from the console, to give you a sense of what the reporting looks like:

[image: image]

The MultiNodeTestRunner uses XUnit internally and will dynamically deploy as many processes are needed to satisfy any individual test. Has been tested with up to 6 processes.

0.7.1 Dec 13 2014

Brand New F# API. The entire F# API has been updated to give it a more native F# feel while still holding true to the Erlang / Scala conventions used in actor systems. Read more about the F# API changes [https://github.com/akkadotnet/akka.net/pull/526].

Multi-Node TestKit (Alpha). Not available yet as a NuGet package, but the first pass at the Akka.Remote.TestKit is now available from source, which allow you to test your actor systems running on multiple machines or processes.

A multi-node test looks like this

public class InitialHeartbeatMultiNode1 : InitialHeartbeatSpec
{
}

public class InitialHeartbeatMultiNode2 : InitialHeartbeatSpec
{
}

public class InitialHeartbeatMultiNode3 : InitialHeartbeatSpec
{
}

public abstract class InitialHeartbeatSpec : MultiNodeClusterSpec

The MultiNodeTestRunner looks at this, works out that it needs to create 3 processes to run 3 nodes for the test.
It executes NodeTestRunner in each process to do this passing parameters on the command line. Read more about the multi-node testkit here [https://github.com/akkadotnet/akka.net/pull/497].

Breaking Change to the internal api: The Next property on IAtomicCounter<T> has been changed into the function Next() This was done as it had side effects, i.e. the value was increased when the getter was called. This makes it very hard to debug as the debugger kept calling the property and causing the value to be increased.

Akka.Serilog SerilogLogMessageFormatter has been moved to the namespace Akka.Logger.Serilog (it used to be in Akka.Serilog.Event.Serilog).
Update your using statements from using Akka.Serilog.Event.Serilog; to using Akka.Logger.Serilog;.

Breaking Change to the internal api: Changed signatures in the abstract class SupervisorStrategy. The following methods has new signatures: HandleFailure, ProcessFailure. If you’ve inherited from SupervisorStrategy, OneForOneStrategy or AllForOneStrategy and overridden the aforementioned methods you need to update their signatures.

TestProbe can be implicitly casted to ActorRef. New feature. Tests requiring the ActorRef of a TestProbe can now be simplified:

var probe = CreateTestProbe();
var sut = ActorOf<GreeterActor>();
sut.Tell("Akka", probe); // previously probe.Ref was required
probe.ExpectMsg("Hi Akka!");

Bugfix for ConsistentHashableEvenlope. When using ConsistentHashableEvenlope in conjunction with ConsistentHashRouters, ConsistentHashableEvenlope now correctly extracts its inner message instead of sending the entire ConsistentHashableEvenlope directly to the intended routee.

Akka.Cluster group routers now work as expected. New update of Akka.Cluster - group routers now work as expected on cluster deployments. Still working on pool routers. Read more about Akka.Cluster routers here [https://github.com/akkadotnet/akka.net/pull/489].

0.7.0 Oct 16 2014

Major new changes and additions in this release, including some breaking changes...

Akka.Cluster Support (pre-release) - Akka.Cluster is now available on NuGet as a pre-release package (has a -pre suffix) and is available for testing. After installing the the Akka.Cluster module you can add take advantage of clustering via configuration, like so:

akka {
 actor {
 provider = "Akka.Cluster.ClusterActorRefProvider, Akka.Cluster"
 }

 remote {
 log-remote-lifecycle-events = DEBUG
 helios.tcp {
 hostname = "127.0.0.1"
 port = 0
 }
 }

 cluster {
 seed-nodes = [
 "akka.tcp://ClusterSystem@127.0.0.1:2551",
 "akka.tcp://ClusterSystem@127.0.0.1:2552"]

 auto-down-unreachable-after = 10s
 }
 }

And then use cluster-enabled routing on individual, named routers:

/myAppRouter {
 router = consistent-hashing-pool
 nr-of-instances = 100
 cluster {
 enabled = on
 max-nr-of-instances-per-node = 3
 allow-local-routees = off
 use-role = backend
 }
}

For more information on how clustering works, please see https://github.com/akkadotnet/akka.net/pull/400

Breaking Changes: Improved Stashing - The old WithUnboundedStash and WithBoundedStash interfaces have been slightly changed and the CurrentStash property has been renamed to Stash. Any old stashing code can be replaced with the following in order to continue working:

public IStash CurrentStash { get { return Stash; } set { Stash=value; } }

The Stash field is now automatically populated with an appropriate stash during the actor creation process and there is no need to set this field at all yourself.

Breaking Changes: Renamed Logger Namespaces - The namespaces, DLL names, and NuGet packages for all logger add-ons have been changed to Akka.Loggers.Xyz. Please install the latest NuGet package (and uninstall the old ones) and update your Akka HOCON configurations accordingly.

Serilog Support - Akka.NET now has an official Serilog [http://serilog.net/] logger that you can install via the Akka.Logger.Serilog package. You can register the serilog logger via your HOCON configuration like this:

 akka.loggers=["Akka.Logger.Serilog.SerilogLogger, Akka.Logger.Serilog"]

New Feature: Priority Mailbox - The PriorityMailbox allows you to define the priority of messages handled by your actors, and this is done by creating your own subclass of either the UnboundedPriorityMailbox or BoundedPriorityMailbox class and implementing the PriorityGenerator method like so:

public class ReplayMailbox : UnboundedPriorityMailbox
{
 protected override int PriorityGenerator(object message)
 {
 if (message is HttpResponseMessage) return 1;
 if (!(message is LoggedHttpRequest)) return 2;
 return 3;
 }
}

The smaller the return value from the PriorityGenerator, the higher the priority of the message. You can then configure your actors to use this mailbox via configuration, using a fully-qualified name:

replay-mailbox {
 mailbox-type: "TrafficSimulator.PlaybackApp.Actors.ReplayMailbox,TrafficSimulator.PlaybackApp"
}

And from this point onward, any actor can be configured to use this mailbox via Props:

Context.ActorOf(Props.Create<ReplayActor>()
 .WithRouter(new RoundRobinPool(3))
 .WithMailbox("replay-mailbox"));

New Feature: Test Your Akka.NET Apps Using Akka.TestKit - We’ve refactored the testing framework used for testing Akka.NET’s internals into a test-framework-agnostic NuGet package you can use for unit and integration testing your own Akka.NET apps. Right now we’re scarce on documentation so you’ll want to take a look at the tests inside the Akka.NET source for reference.

Right now we have Akka.TestKit adapters for both MSTest and XUnit, which you can install to your own project via the following:

MSTest:

install-package Akka.TestKit.VsTest

XUnit:

install-package Akka.TestKit.Xunit

New Feature: Logging to Standard Out is now done in color - This new feature can be disabled by setting StandardOutLogger.UseColors = false;.
Colors can be customized: StandardOutLogger.DebugColor = ConsoleColor.Green;.
If you need to print to stdout directly use Akka.Util.StandardOutWriter.Write() instead of Console.WriteLine, otherwise your messages might get printed in the wrong color.

0.6.4 Sep 9 2014

		Introduced TailChoppingRouter

		All ActorSystem extensions now take an ExtendedActorSystem as a dependency - all third party actor system extensions will need to update accordingly.

		Fixed numerous bugs with remote deployment of actors.

		Fixed a live-lock issue for high-traffic connections on Akka.Remote and introduced softer heartbeat failure deadlines.

		Changed the configuration chaining process.

		Removed obsolete attributes from PatternMatch and UntypedActor.

		Laying groundwork for initial Mono support.

0.6.3 Aug 13 2014

		Made it so HOCON config sections chain properly

		Optimized actor memory footprint

		Fixed a Helios bug that caused Akka.NET to drop messages larger than 32kb

0.6.2 Aug 05 2014

		Upgraded Helios dependency

		Bug fixes

		Improved F# API

		Resizeable Router support

		Inbox support - an actor-like object that can be subscribed to by external objects

		Web.config and App.config support for Akka HOCON configuration

0.6.1 Jul 09 2014

		Upgraded Helios dependency

		Added ConsistentHash router support

		Numerous bug fixes

		Added ReceiveBuilder support

0.2.1-beta Mars 22 2014

		Nuget package

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/contrib/persistence/Akka.Persistence.Sqlite/README.html

 Navigation

 		
 index

 		Akka.NET stable documentation »

Akka.Persistence.Sqlite

Akka Persistence journal and snapshot store backed by SQLite database.

WARNING: Akka.Persistence.Sqlite plugin is still in beta and it’s mechanics described bellow may be still subject to change.

Setup

To activate the journal plugin, add the following lines to actor system configuration file:

akka.persistence.journal.plugin = "akka.persistence.journal.sqlite"
akka.persistence.journal.sqlite.connection-string = "<database connection string>"

Similar configuration may be used to setup a SQLite snapshot store:

akka.persistence.snapshot-store.plugin = "akka.persistence.snapshot-store.sqlite"
akka.persistence.snapshot-store.sqlite.connection-string = "<database connection string>"

Remember that connection string must be provided separately to Journal and Snapshot Store. To finish setup simply initialize plugin using: SqlitePersistence.Get(actorSystem);

Configuration

Both journal and snapshot store share the same configuration keys (however they resides in separate scopes, so they are definied distinctly for either journal or snapshot store):

		class (string with fully qualified type name) - determines class to be used as a persistent journal. Default: Akka.Persistence.Sqlite.Journal.SqliteJournal, Akka.Persistence.Sqlite (for journal) and Akka.Persistence.Sqlite.Snapshot.SqliteSnapshotStore, Akka.Persistence.Sqlite (for snapshot store).

		plugin-dispatcher (string with configuration path) - describes a message dispatcher for persistent journal. Default: akka.actor.default-dispatcher

		connection-string - connection string used to access SQLite database. Default: none.

		connection-timeout - timespan determining default connection timeouts on database-related operations. Default: 30s

		table-name - name of the table used by either journal or snapshot store. Default: event_journal (for journal) or snapshot_store (for snapshot store)

		auto-initialize - flag determining if journal or snapshot store related tables should by automatically created when they have not been found in connected database. Default: false

In addition, journal configuration specifies additional field:

		timestamp-provider - fully qualified type name (with assembly) of the class responsible for generating timestamp values based on persisted message type. By default this points to Akka.Persistence.Sql.Common.Journal.DefaultTimestampProvider, Akka.Persistence.Sql.Common, which returns current UTC DateTime value.

In-memory databases

Akka.Persistence.Sqlite plugin allows to use in-memory databases, however requires to use them in shared mode in order to work correctly. Example connection strings for such configurations are described below:

		FullUri=file::memory:?cache=shared; for anonymous in-memory database instances.

		FullUri=file:<database-name>.db?mode=memory&cache=shared; for named in-memory database instances. This way you can provide many separate databases residing in memory.

Custom SQL data queries

SQLite persistence plugin defines a default table schema used for both journal and snapshot store.

EventJournal table:

+----------------+-------------+------------+----------------+------------+---------+
| persistence_id | sequence_nr | is_deleted | manifest | timestamp | payload |
+----------------+-------------+------------+----------------+------------+---------+
| varchar(255) | integer(8) | integer(1) | varchar(255) | integer(8) | blob |
+----------------+-------------+------------+----------------+------------+---------+

SnapshotStore table:

+----------------+-------------+------------+----------------+----------+
| persistence_id | sequence_nr | created_at | manifest | snapshot |
+----------------+-------------+------------+----------------+----------+
| varchar(255) | integer(8) | integer(8) | varchar(255) | blob |
+----------------+-------------+------------+----------------+----------+

created_at column maps to System.DateTime value represented by it’s ticks, to achieve 1 to 1 precision of dates between SQLite and .NET environment.

Underneath Akka.Persistence.Sqlite uses a raw ADO.NET commands. You may choose not to use a dedicated built in ones, but to create your own being better fit for your use case. To do so, you have to create your own versions of IJournalQueryBuilder and IJournalQueryMapper (for custom journals) or ISnapshotQueryBuilder and ISnapshotQueryMapper (for custom snapshot store).

Tests

The SQLite tests are packaged and run as part of the default “All” build task. They use dedicated shared in memory instances of SQLite database and can be executed in parallel.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		Akka.NET stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/contrib/dependencyInjection/Akka.DI.Core/Readme.html

 Navigation

 		
 index

 		Akka.NET stable documentation »

 #Akka.DI.Core

Actor Producer Extension library used to create Dependency Injection Container for the Akka.NET [https://github.com/akkadotnet/akka.net] framework.

To learn more about using Dependency Injection in .NET, see here [http://www.amazon.com/Dependency-Injection-NET-Mark-Seemann/dp/1935182501/ref=sr_1_1?ie=UTF8&qid=1425861096&sr=8-1&keywords=mark+seemann].

#What is it?

Akka.DI.Core is an ActorSystem extension library for the Akka.NET framework that provides a simple way to create an Actor Dependency Resolver that can be used as an alternative to the basic capabilities of Props [http://getakka.net/docs/Props] when you have actors with multiple dependencies.

#How do you create an Extension?

		Create a new class library

		Reference your favorite IoC Container, the Akka.DI.Core and of course Akka

		Create a class that implements IDependencyResolver

Let’s walk through the process of creating one for the CastleWindsor container. You need to create a new project named Akka.DI.CastleWindsor with all the necessary references including Akka.DI.Core, Akka and CastleWindsor. Name the initial class WindsorDependencyResolver.

public class WindsorDependencyResolver : IDependencyResolver
{
 // we'll implement IDependencyResolver in the following steps
}

Add a constructor and private fields.

private IWindsorContainer _container;
private ConcurrentDictionary<string, Type> _typeCache;
private ActorSystem _system;

public WindsorDependencyResolver(IWindsorContainer container, ActorSystem system)
{
 if (system == null) throw new ArgumentNullException("system");
 if (container == null) throw new ArgumentNullException("container");
 _container = container;
 _typeCache = new ConcurrentDictionary<string, Type>(StringComparer.InvariantCultureIgnoreCase);
 _system = system;
 _system.AddDependencyResolver(this);
}

You have defined three private fields

		IWindsorContainer _container is a reference to the CastleWindsor container.

		ConcurrentDictionary<string, Type> _typeCache is a thread safe map that contains actor name/type associations.

		ActorSystem _system is a reference to the ActorSystem.

First you need to implement GetType. This is a basic implementation and is just for demonstration purposes. Essentially this is used by the extension to get the type of the actor from it’s type name.

public Type GetType(string actorName)
{
 _typeCache.
 TryAdd(actorName,
 actorName.GetTypeValue() ??
 _container.Kernel
 .GetAssignableHandlers(typeof(object))
 .Where(handler => handler.ComponentModel.Name.Equals(actorName, StringComparison.InvariantCultureIgnoreCase))
 .Select(handler => handler.ComponentModel.Implementation)
 .FirstOrDefault());

 return _typeCache[actorName];
}

Secondly you need to implement the CreateActorFactory method which will be used by the extension to create the actor. This implementation will depend upon the API of the container.

public Func<ActorBase> CreateActorFactory(Type actorType)
{
 return () => (ActorBase)container.Resolve(actorType);
}

Thirdly, you implement the Create<TActor> which is used register the Props configuration for the referenced actor type with the ActorSystem. This method will always be the same implementation.

public Props Create<TActor>() where TActor : ActorBase
{
 return system.GetExtension<DIExt>().Props(typeof(TActor).Name);
}

Lastly, you implement the Release method which in this instance is very simple. This method is used to remove the actor from the underlying container.

public void Release(ActorBase actor)
{
 this.container.Release(actor);
}

Note: For further details on the importance of the release method please read the following blog post [http://blog.ploeh.dk/2014/05/19/di-friendly-framework/].

The resulting class should look similar to the following:

public class WindsorDependencyResolver : IDependencyResolver
{
 private IWindsorContainer container;
 private ConcurrentDictionary<string, Type> typeCache;
 private ActorSystem system;

 public WindsorDependencyResolver(IWindsorContainer container, ActorSystem system)
 {
 if (system == null) throw new ArgumentNullException("system");
 if (container == null) throw new ArgumentNullException("container");
 this.container = container;
 typeCache = new ConcurrentDictionary<string, Type>(StringComparer.InvariantCultureIgnoreCase);
 this.system = system;
 this.system.AddDependencyResolver(this);
 }

 public Type GetType(string actorName)
 {
 typeCache.TryAdd(actorName, actorName.GetTypeValue() ??
 container.Kernel
 .GetAssignableHandlers(typeof(object))
 .Where(handler => handler.ComponentModel.Name.Equals(actorName, StringComparison.InvariantCultureIgnoreCase))
 .Select(handler => handler.ComponentModel.Implementation)
 .FirstOrDefault());

 return typeCache[actorName];
 }

 public Func<ActorBase> CreateActorFactory(Type actorType)
 {
 return () => (ActorBase)container.Resolve(actorType);
 }

 public Props Create<TActor>() where TActor : ActorBase
 {
 return system.GetExtension<DIExt>().Props(typeof(TActor));
 }

 public void Release(ActorBase actor)
 {
 this.container.Release(actor);
 }
}

Now, with the preceding class, you can do something like the following example:

// Setup CastleWindsor
IWindsorContainer container = new WindsorContainer();
container.Register(Component.For<IWorkerService>().ImplementedBy<WorkerService>());
container.Register(Component.For<TypedWorker>().Named("TypedWorker").LifestyleTransient());

// Create the ActorSystem
using (var system = ActorSystem.Create("MySystem"))
{
 // Create the dependency resolver
 IDependencyResolver resolver = new WindsorDependencyResolver(container, system);

 // Register the actors with the system
 system.ActorOf(system.DI().Props<TypedWorker>(), "Worker1");
 system.ActorOf(system.DI().Props<TypedWorker>(), "Worker2");

 // Create the router
 IActorRef router = system.ActorOf(Props.Empty.WithRouter(new ConsistentHashingGroup(config)));

 // Create the message to send
 TypedActorMessage message = new TypedActorMessage
 {
 Id = 1,
 Name = Guid.NewGuid().ToString()
 };

 // Send the message to the router
 router.Tell(message);
}

Creating Child Actors using DI

When you want to create child actors from within your existing actors using Dependency Injection you can use the Actor Content extension just like in the following example.

Context.ActorOf(Context.DI().Props<TypedActor>()).Tell(message);

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/core/Akka.MultiNodeTestRunner/README.html

 Navigation

 		
 index

 		Akka.NET stable documentation »

Using Akka.NET MultiNode TestRunner

One of the most important sets of tests for Akka.Remote and Akka.Cluster are the MultiNodeSpecs - these are specs that test how distributed Akka.NET clusters behave across a variety of network scenarios.

But more importantly, you can use the Akka.Remote.TestKit (which contains the framework for writing a MultiNodeSpec) and the Akka.MultiNodeTestRunner for your own distributed tests!

This README explains how to run the Akka.MultiNodeTestRunner to execute any MultiNodeSpec instances found in a given .NET assembly.

Running the MultiNodeTestRunner

Right now the only options for running the MultiNodeTestRunner is to build from the Akka.NET source and manually copy the binaries out of src\core\Akka.MultiNodeTestRunner\bin\[Debug|Release]:

[image: MultiNodeTestRunner binaries]

The Akka.MultiNodeTestRunner process requires only one argument - the full path or name of the assembly containing MultiNodeSpec tests.

C:> Akka.MultiNodeTestRunner.exe [assembly name]

Built-in Tests for Akka.Cluster

Akka.Cluster.Tests is already linked as a dependency by the Akka.MultiNodeTestRunner, so to run all of the MultiNodeSpec tests for Akka.Cluster you only need to do the following:

C:> Akka.MultiNodeTestRunner.exe "Akka.Cluster.Tests.dll"

Notes

If your test assembly has any dependent DLLs, make sure all of those assemblies can be found in the current working directory of the test runner. Otherwise you might get Could not load file or assembly exceptions at run time.

Sample Output

Working on cleaning this up now

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/core/Akka.FSharp/README.html

 Navigation

 		
 index

 		Akka.NET stable documentation »

Akka.NET F# API

Actor system and configuration

Unlike default (C#) actor system, F#-aware systems should be created using Akka.FSharp.System.create function. This function differs from it’s C# equivalent by providing additional F#-specific features - i.e. serializers allowing to serialize F# quotations for remote deployment process.

Example:

open Akka.FSharp
use system = System.create "my-system" (Configuration.load())

F# also gives you it’s own actor system Configuration module with support of following functions:

		defaultConfig() : Config - returns default F# Akka configuration.

		parse(hoconString : string) : Config - parses a provided Akka configuration string.

		load() : Config - loads an Akka configuration found inside current project’s .config file.

Creating actors with actor computation expression

Unlike C# actors, which represent object oriented nature of the language, F# is able to define an actor’s logic in more functional way. It is done by using actor computation expression. In most of the cases, an expression inside actor is expected to be represented as self-invoking recursive function - also invoking an other functions while maintaining recursive cycle is allowed, i.e. to change actor’s behavior or even to create more advanced constructs like Finite State Machines.

It’s important to remember, that each actor returning point should point to the next recursive function call - any other value returned will result in stopping current actor (see: Actor Lifecycle [http://getakka.net/docs/Actor%20lifecycle]).

Example:

let aref =
 spawn system "my-actor"
 (fun mailbox ->
 let rec loop() = actor {
 let! message = mailbox.Receive()
 // handle an incoming message
 return! loop()
 }
 loop())

Since construct used in an example above is quite popular, you may also use following shorthand functions to define message handler’s behavior:

		actorOf (fn : 'Message -> unit) (mailbox : Actor<'Message>) : Cont<'Message, 'Returned> - uses a function, which takes a message as the only parameter. Mailbox parameter is injected by spawning functions.

		actorOf2 (fn : Actor<'Message> -> 'Message -> unit) (mailbox : Actor<'Message>) : Cont<'Message, 'Returned> - uses a function, which takes both the message and an Actor instance as the parameters. Mailbox parameter is injected by spawning functions.

Example:

let handleMessage (mailbox: Actor<'a>) msg =
 match msg with
 | Some x -> printf "%A" x
 | None -> ()

let aref = spawn system "my-actor" (actorOf2 handleMessage)
let blackHole = spawn system "black-hole" (actorOf (fun msg -> ()))

Spawning actors

Paragraph above already has shown, how actors may be created with help of the spawning function. There are several spawning function, which may be used to instantiate actors:

		spawn (actorFactory : ActorRefFactory) (name : string) (f : Actor<'Message> -> Cont<'Message, 'Returned>) : ActorRef - spawns an actor using specified actor computation expression. The actor can only be used locally.

		spawnOpt (actorFactory : ActorRefFactory) (name : string) (f : Actor<'Message> -> Cont<'Message, 'Returned>) (options : SpawnOption list) : ActorRef - spawns an actor using specified actor computation expression, with custom spawn option settings. The actor can only be used locally.

		spawne (actorFactory : ActorRefFactory) (name : string) (expr : Expr<Actor<'Message> -> Cont<'Message, 'Returned>>) (options : SpawnOption list) : ActorRef - spawns an actor using specified actor computation expression, using an Expression AST. The actor code can be deployed remotely.

		spawnObj (actorFactory : ActorRefFactory) (name : string) (f : Quotations.Expr<(unit -> #ActorBase)>) : ActorRef - spawns an actor using specified actor quotation. The actor can only be used locally.

		spawnObjOpt (actorFactory : ActorRefFactory) (name : string) (f : Quotations.Expr<(unit -> #ActorBase)>) (options : SpawnOption list) : ActorRef - spawns an actor using specified actor quotation, with custom spawn option settings. The actor can only be used locally.

All of these functions may be used with either actor system or actor itself. In the first case spawned actor will be placed under /user root guardian of the current actor system hierarchy. In second option spawned actor will become child of the actor used as [actorFactory] parameter of the spawning function.

Dealing with disposable resources

When executing application logic inside receive function, be aware of a constant threat of stopping a current actor at any time for various reasons. This is an especially problematic situation when you’re using a resource allocation - when actor will be stopped suddenly, you may be left with potentially heavy resources still waiting for being released.

Use mailbox.Defer (deferredFunc) in situations when you must ensure operation to be executed at the end of the actor lifecycle.

Example:

let disposableActor (mailbox:Actor<_>) =
 let resource = new DisposableResource()
 mailbox.Defer ((resource :> IDisposable).Dispose)
 let rec loop () =
 actor {
 let! msg = mailbox.Receive()
 return! loop ()
 }
 loop()

Actor spawning options

To be able to specify more precise actor creation behavior, you may use spawnOpt and spawne methods, both taking a list of SpawnOption values. Each specific option should be present only once in the collection. When a conflict occurs (more than one option of specified type has been found), the latest value found inside the list will be chosen.

		SpawnOption.Deploy(Akka.Actor.Deploy) - defines deployment strategy for created actors (see: Deploy). This option may be used along with spawne function to enable remote actors deployment.

		SpawnOption.Router(Akka.Routing.RouterConfig) - defines an actor to be a router as well as it’s routing specifics (see: Routing [http://getakka.net/docs/working-with-actors/Routers]).

		SpawnOption.SupervisiorStrategy(Akka.Actor.SupervisiorStrategy) - defines a supervisor strategy of the current actor. It will affect it’s children (see: Supervision [http://getakka.net/docs/concepts/supervision]).

		SpawnOption.Dispatcher(string) - defines a type of the dispatcher used for resources management for the created actors. (See: Dispatchers [http://getakka.net/docs/working-with-actors/Dispatchers])

		SpawnOption.Mailbox(string) - defines a type of the mailbox used for the created actors. (See: Mailboxes [http://getakka.net/docs/working-with-actors/Mailbox])

Example (deploy actor remotely):

open Akka.Actor
let remoteRef =
 spawne system "my-actor" <@ actorOf myFunc @>
 [SpawnOption.Deploy (Deploy(RemoteScope(Address.Parse "akka.tcp://remote-system@127.0.0.1:9000/")))]

Ask and tell operators

While you may use traditional ActorRef.Tell and ActorRef.Ask methods, it’s more convenient to use dedicated <! and <? operators to perform related operations.

Example:

aref <! message
async { let! response = aref <? request }

Actor selection

Actors may be referenced not only by ActorRefs, but also through actor path selection (see: Addressing [http://getakka.net/docs/concepts/addressing]). With F# API you may select an actor with known path using select function:

		select (path : string) (selector : ActorRefFactory) : ActorSelection - where path is a valid URI string used to recognize actor path, and the selector is either actor system or actor itself.

Example:

let aref = spawn system "my-actor" (actorOf2 (fun mailbox m -> printfn "%A said %s" (mailbox.Self.Path) m))
aref <! "one"
let aref2 = select "akka://my-system/user/my-actor" system
aref2 <! "two"

Inboxes

Inboxes are actor-like objects used to be listened by other actors. They are a good choice to watch over other actors lifecycle. Some of the inbox-related functions may block current thread and therefore should not be used inside actors.

		inbox (system : ActorSystem) : Inbox - creates a new inbox in provided actor system scope.

		receive (timeout : TimeSpan) (i : Inbox) : 'Message option - receives a next message sent to the inbox. This is a blocking operation. Returns None if timeout occurred or message is incompatible with expected response type.

		filterReceive (timeout : TimeSpan) (predicate : 'Message -> bool) (i : Inbox) : 'Message option - receives a next message sent to the inbox, which satisfies provided predicate. This is a blocking operation. Returns None if timeout occurred or message is incompatible with expected response type.

		asyncReceive (i : Inbox) : Async<'Message option> - Awaits in async block for a next message sent to the inbox. Returns None if message is incompatible with expected response type.

Inboxes may be configured to accept a limited number of incoming messages (default is 1000):

akka {
 actor {
 inbox {
 inbox-size = 30
 }
 }
}

Monitoring

Actors and Inboxes may be used to monitor lifetime of other actors. This is done by monitor/demonitor functions:

		monitor (subject: ActorRef) (watcher: ICanWatch) : ActorRef - starts monitoring a referred actor.

		demonitor (subject: ActorRef) (watcher: ICanWatch) : ActorRef - stops monitoring of the previously monitored actor.

Monitored actors will automatically send a Terminated message to their watchers when they die.

Actor supervisor strategies

Actors have a place in their system’s hierarchy trees. To manage failures done by the child actors, their parents/supervisors may decide to use specific supervisor strategies (see: Supervision [http://getakka.net/docs/concepts/supervision]) in order to react to the specific types of errors. In F# this may be configured using functions of the Strategy module:

		Strategy.OneForOne (decider : exn -> Directive) : SupervisorStrategy - returns a supervisor strategy applicable only to child actor which faulted during execution.

		Strategy.OneForOne (decider : exn -> Directive, ?retries : int, ?timeout : TimeSpan) : SupervisorStrategy - returns a supervisor strategy applicable only to child actor which faulted during execution. [retries] param defines a number of times, an actor could be restarted. If it’s a negative value, there is not limit. [timeout] param defines a time window for number of retries to occur.

		OneForOne (decider : Expr<(exn -> Directive)>, ?retries : int, ?timeout : TimeSpan) : SupervisorStrategy - returns a supervisor strategy applicable only to child actor which faulted during execution. [retries] param defines a number of times, an actor could be restarted. If it’s a negative value, there is not limit. [timeout] param defines a time window for number of retries to occur. Strategies created this way may be serialized and deserialized on remote nodes .

		Strategy.AllForOne (decider : exn -> Directive) : SupervisorStrategy - returns a supervisor strategy applicable to each supervised actor when any of them had faulted during execution.

		Strategy.AllForOne (decider : exn -> Directive, ?retries : int, ?timeout : TimeSpan) : SupervisorStrategy - returns a supervisor strategy applicable to each supervised actor when any of them had faulted during execution. [retries] param defines a number of times, an actor could be restarted. If it’s a negative value, there is not limit. [timeout] param defines a time window for number of retries to occur.

		AllForOne (decider : Expr<(exn -> Directive)>, ?retries : int, ?timeout : TimeSpan) : SupervisorStrategy - returns a supervisor strategy applicable to each supervised actor when any of them had faulted during execution. [retries] param defines a number of times, an actor could be restarted. If it’s a negative value, there is not limit. [timeout] param defines a time window for number of retries to occur. Strategies created this way may be serialized and deserialized on remote nodes .

Example:

let aref =
 spawnOpt system "my-actor" (actorOf myFunc)
 [SpawnOption.SupervisorStrategy (Strategy.OneForOne (fun error ->
 match error with
 | :? ArithmeticException -> Directive.Escalate
 | _ -> SupervisorStrategy.DefaultDecider error))]

let remoteRef =
 spawne system "remote-actor" <@ actorOf myFunc @>
 [SpawnOption.SupervisorStrategy (Strategy.OneForOne <@ fun error ->
 match error with
 | :? ArithmeticException -> Directive.Escalate
 | _ -> SupervisorStrategy.DefaultDecider error) @>
 SpawnOption.Deploy (Deploy (RemoteScope remoteNodeAddr))]

Publish/Subscribe support

While you may use built-in set of the event stream methods (see: Event Streams), there is an option of using dedicated F# API functions:

		subscribe (channel: System.Type) (ref: ActorRef) (eventStream: Akka.Event.EventStream) : bool - subscribes an actor reference to target channel of the provided event stream. Channels are associated with specific types of a message emitted by the publishers.

		unsubscribe (channel: System.Type) (ref: ActorRef) (eventStream: Akka.Event.EventStream) : bool - unsubscribes an actor reference from target channel of the provided event stream.

		publish (event: 'Event) (eventStream: Akka.Event.EventStream) : unit - publishes an event on the provided event stream. Event channel is resolved from event’s type.

Example:

type Message =
 | Subscribe
 | Unsubscribe
 | Msg of ActorRef * string

let subscriber =
 spawn system "subscriber"
 (actorOf2 (fun mailbox msg ->
 let eventStream = mailbox.Context.System.EventStream
 match msg with
 | Msg (sender, content) -> printfn "%A says %s" (sender.Path) content
 | Subscribe -> subscribe typeof<Message> mailbox.Self eventStream |> ignore
 | Unsubscribe -> unsubscribe typeof<Message> mailbox.Self eventStream |> ignore))

let publisher =
 spawn system "publisher"
 (actorOf2 (fun mailbox msg ->
 publish msg mailbox.Context.System.EventStream))

subscriber <! Subscribe
publisher <! Msg (publisher, "hello")
subscriber <! Unsubscribe
publisher <! Msg (publisher, "hello again")

Logging

F# API supports two groups of logging functions - one that operates directly on strings and second (which may be recognized by f suffix in function names) which operates using F# string formating features. Major difference is performance - first one is less powerful, but it’s also faster than the second one.

Both groups support logging on various levels (DEBUG,

<

default>

 INFO, WARNING and ERROR). Actor system’s logging level may be managed through configuration, i.e.:

akka {
 actor {
 # collection of loggers used inside actor system, specified by fully-qualified type name
 loggers = ["Akka.Event.DefaultLogger, Akka"]

 # Options: OFF, ERROR, WARNING, INFO, DEBUG
 logLevel = "DEBUG"
 }
}

F# API provides following logging methods:

		log (level : LogLevel) (mailbox : Actor<'Message>) (msg : string) : unit, logf (level : LogLevel) (mailbox : Actor<'Message>) (format:StringFormat<'T, 'Result>) : 'T - both functions takes an Akka.Event.LogLevel enum parameter to specify log level explicitly.

		logDebug, logDebugf - message will be logged at Debug level.

		logInfo, logInfof - message will be logged at Info level.

		logWarning, logWarningf - message will be logged at Warning level.

		logError, logError - message will be logged at Error level.

		logException (mailbox: Actor<'a>) (e : exn) : unit - this function logs a message from provided System.Exception object at the Error level.

Interop with Task Parallel Library

Since both TPL an Akka frameworks can be used for parallel processing, sometimes they need to work both inside the same application.

To operate directly between Async results and actors, use pipeTo function (and it’s abbreviations in form of <!| and |!> operators) to inform actor about tasks ending their processing pipelines. Piping functions used on tasks will move async result directly to the mailbox of a target actor.

Example:

open System.IO
let handler (mailbox: Actor<obj>) msg =
 match box msg with
 | :? FileInfo as fi ->
 let reader = new StreamReader(fi.OpenRead())
 reader.AsyncReadToEnd() |!> mailbox.Self
 | :? string as content ->
 printfn "File content: %s" content
 | _ -> mailbox.Unhandled()

let aref = spawn system "my-actor" (actorOf2 handler)
aref <! new FileInfo "Akka.xml"

 © Copyright 2016.
 Created using Sphinx 1.3.5.

src/core/Akka/Util/MatchHandler/README.html

 Navigation

 		
 index

 		Akka.NET stable documentation »

Using Receive

Inherit from ReceiveActor

In order to use the Receive() method inside an actor the actor must inherit from ReceiveActor.

private class MyActor : ReceiveActor
{
}

Inside the constructor, add a call to Receive<T>(Action<T> handler) for every type of message you want to handle:

private class MyActor : ReceiveActor
{
 public MyActor()
 {
 Receive<string>(s => Console.WriteLine("Received string: " + s)); //1
 Receive<int>(i => Console.WriteLine("Received integer: " + i)); //2
 }
}

Whenever a message of typ string is sent to MyActor the first handler is invoked and for messages of type int the second handler is used.

Handler priority

If more than one handler matches, the one that appears first is used, and the others are not called.

Receive<string>(s => Console.WriteLine("Received string: " +)s); //1
Receive<string>(s => Console.WriteLine("Also received string: " + s)); //2
Receive<object>(o => Console.WriteLine("Received object: " + o)); //3

Example: The actor receives a message of type string. Only the first handler is invoked, even though all three handlers can handle that message.

Using predicates

By specifying a predicate, you can choose which messages to handle.

Receive<string>(s => s.Length>5, s => Console.WriteLine("Received string: " + s);

The handler above will only be invoked if the length of the string is greater than 20.

If the predicate do not match, the next matching handler will be used.

Receive<string>(s => s.Length>5, s => Console.WriteLine("1: " + s)); //1
Receive<string>(s => s.Length>2, s => Console.WriteLine("2: " + s)); //2
Receive<string>(s => Console.WriteLine("3: " + s)); //3

Example: The actor receives the message “123456”. Since the length of is 6, the predicate specified for the first handler will return true, and the first handler will be invoked resulting in “1: 123456” being written to the console.

Note that even though the predicate for the second handler matches, and that the third handler matches all messages of type string only the first handler is invoked.

Example: If the actor receives the message “1234”, then “2: 1234” will be written to the console.
Example: If the actor receives the message “12”, then “3: 12” will be written on the console.

Predicates position

Predicates can be specified before the action handler or after. These two declarations are equivalent:

Receive<string>(s => s.Length>5, s => Console.WriteLine("Received string: " + s));
Receive<string>(s => Console.WriteLine("Received string: " + s, s => s.Length>5));

Receive using Funcs

More complex handlers can be specified using the Receive<T>(Func<T,bool> handler) overload. These are invoked if the message is of the specified type. If the func returns true, the message is considered handled, and no more handlers will be invoked.

Receive<string>(s =>
 {
 if(s.Length>5)
 {
 Console.WriteLine("1: " + s);
 return true;
 }
 return false;
 });
Receive<string>(s => Console.WriteLine("2: " + s);

Example: The actor receives the message “123”. Since it’s a string, the first handler is invoked. The length is only 3 so the if clause will be false and false is returned. Since false was returned the next matching handler will be invoked, and “2: 123” will be written to the console.
Example: The actor receives the message “123456”. Since it’s a string, the first handler is invoked. The length is greater than 5 so the if body will be called, and “1: 123456” will be written to the console. The handler returns true and therefore no more handlers will be invoked.

Unmatched messages

If the actor receives a message for which no handler matches, the unhandled message is published to the EventStream wrapped in an UnhandledMessage. To change this behavior override Unhandled(object message)

protected override void Unhandled(object message)
{
 //Do something with the message.
}

Another option is to add a handler last that matches all messages, using ReceiveAny().

ReceiveAny

To catch messages of any type the ReceiveAny(Action<object> handler) overload can be specified.

Receive<string>(s => Console.WriteLine("Received string: " + s);
ReceiveAny(o => Console.WriteLine("Received object: " + o);

Since it handles everything, it must be specified last. Specifying handlers it after will cause an exception.

ReceiveAny(o => Console.WriteLine("Received object: " + o);
Receive<string>(s => Console.WriteLine("Received string: " + s); //This will cause an exception

Note that Receive<object>(Action<object> handler) behaves the same as ReceiveAny() as it catches all messages. These two are equivalent:

ReceiveAny(o => Console.WriteLine("Received object: " + o);
Receive<object>(0 => Console.WriteLine("Received object: " + o);

###Non generic overloads
Receive has non generic overloads:

Receive(typeof(string), obj => Console.WriteLine(obj.ToString()));

Predicates can go before or after the handler:

Receive(typeof(string), obj=> ((string) obj).Length>5, obj => Console.WriteLine(obj.ToString()));
Receive(typeof(string), obj => Console.WriteLine(obj.ToString()), obj=> ((string) obj).Length>5);

And the non generic Func

Receive(typeof(string), obj =>
 {
 var s = (string) obj;
 if(s.Length>5)
 {
 Console.WriteLine("1: " + s);
 return true;
 }
 return false;
 });

###Become
You can switch the handler at runtime using Become() which replaces the current handler with a new one.

public class MoodActor : ReceiveActor
{
 public MoodActor()
 {
 Receive<string>(s => s == "Mood?", _ => Sender.Tell("I'm neutral"));
 Receive<string>(s => s == "Happy", _ => Become(Happy));
 Receive<string>(s => s == "Angry", _ => Become(Angry));
 }

 private void Happy()
 {
 Receive<string>(s => s == "Mood?", _ => Sender.Tell("I'm happy"));
 Receive<string>(s => s == "Happy", _ => Sender.Tell("I'm already happy!", Self));
 Receive<string>(s => s == "Angry", _ => Become(Angry));
 }

 private void Angry()
 {
 Receive<string>(s => s == "Mood?", _ => Sender.Tell("I'm angry"));
 Receive<string>(s => s == "Angry", _ => Sender.Tell("I'm already angry!", Self));
 Receive<string>(s => s == "Happy", _ => Become(Happy));
 }
}

Using MoodActor:

var moodActor = system.ActorOf<MoodActor>();
moodActor.Tell("Mood?", Self); // Result: "I'm neutral"
moodActor.Tell("Happy", Self); // Result: becomes Happy
moodActor.Tell("Mood?", Self); // Result: "I'm happy"
moodActor.Tell("Happy", Self); // Result: "I'm already happy!"
moodActor.Tell("Angry", Self); // Result: becomes Angry
moodActor.Tell("Mood?", Self); // Result: "I'm Angry"

You may use lambdas if you don’t want separate methods:

Receive<string>(s => s == "Grumpy", _ => Become(() =>
{
 Receive<string>(s => Sender.Tell("Leave me alone. I'm Grumpy!"));
}));

Become/Unbecome

In the examples above the receive handlers are replaced when Become() is called. The other way of using Become pushes the current handler on a stack making it possible to switch back to it using Unbecome:

Receive<string>(s => s == "Grumpy", _ => Become(Grumpy, discardOld: false));
...
private void Grumpy()
{
 Receive<string>(s => s == "Snap out of it!", _ => Unbecome());
 Receive<string>(s => s == "Mood?", _ => Sender.Tell("I'm grumpy!"));
 Receive<string>(_ => Sender.Tell("Leave me alone. I'm Grumpy!"));
}

Using MoodActor:

var moodActor = system.ActorOf<MoodActor>();
moodActor.Tell("Mood?", Self); // Result: "I'm neutral"
moodActor.Tell("Grumpy", Self); // Result: becomes Grumpy
moodActor.Tell("Mood?", Self); // Result: "I'm Grumpy"
moodActor.Tell("Happy", Self); // Result: "Leave me alone. I'm Grumpy!"
moodActor.Tell("Snap out of it!", Self); // Result: reverts back to neutral using Unbecome
moodActor.Tell("Mood?", Self); // Result: "I'm neutral"

Note: In this case care must be taken to ensure that the number of Unbecome() matches the number of Become(..., discardOld: false) ones in the long run, otherwise this amounts to a memory leak (which is why this behavior is not the default).

Tip!

You can reuse Receive-specifications:

public class MoodActor : ReceiveActor
{
 public MoodActor()
 {
 Receive<string>(s => s == "Mood?", _ => Sender.Tell("I'm neutral"));
 ReceiveMoodSwitchers();
 }

 private void Happy()
 {
 Receive<string>(s => s == "Mood?", _ => Sender.Tell("I'm happy"));
 Receive<string>(s => s == "Happy", _ => Sender.Tell("I'm already happy!", Self));
 ReceiveMoodSwitchers();
 }

 private void Angry()
 {
 Receive<string>(s => s == "Mood?", _ => Sender.Tell("I'm angry"));
 Receive<string>(s => s == "Angry", _ => Sender.Tell("I'm already angry!", Self));
 ReceiveMoodSwitchers();
 }

 private void Grumpy()
 {
 Receive<string>(s => s == "Snap out of it!", s => Unbecome());
 Receive<string>(s => Sender.Tell("Leave me alone. I'm Grumpy!"));
 }

 private void ReceiveMoodSwitchers()
 {
 Receive<string>(s => s == "Happy", _ => Become(Happy));
 Receive<string>(s => s == "Angry", _ => Become(Angry));
 Receive<string>(s => s == "Grumpy", _ => Become(Grumpy, discardOld: false));
 }
}

Warning!

Do not add other statements than Receive in Become-declarations. The result of doing so is undefined.

Receive<string>(s => s == "Grumpy", _ => Become(Grumpy, discardOld: false));
...
private void Grumpy()
{
 _state = State.Grumpy; //DO NOT do this
 Sender.Tell("I just became grumpy", Self); //DO NOT do this
 Receive<string>(s => s == "Snap out of it!", s => Unbecome());
 Receive<string>(s => Sender.Tell("Leave me alone. I'm Grumpy!"));
}

Any state changes or message sends should be in the handler:

Receive<string>(s => s == "Grumpy", _ =>
 {
 _state = State.Grumpy;
 Sender.Tell("I just became grumpy", Self);
 Become(Grumpy, discardOld: false));
 });
...
private void Grumpy()
{
 Receive<string>(s => s == "Snap out of it!", s => Unbecome());
 Receive<string>(s => Sender.Tell("Leave me alone. I'm Grumpy!"));
}

###ActorBase vs UntypedActor vs ReceiveActor
TODO

 © Copyright 2016.
 Created using Sphinx 1.3.5.

