

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	akid 0.1 documentation

Welcome to akid’s documentation!

	Get Started

	Introduction

	How To

	Tutorials

	Architecture

	Model Zoo

Fork me at https://github.com/shawnLeeZX/akid !

akid is a python package written for doing research in Neural Network. It
also aims to be production ready by taking care of concurrency and
communication in distributed computing. It is built on
Tensorflow [http://akid.readthedocs.io/en/latest/tensorflow.org]. If combining with
GlusterFS [https://www.gluster.org/], Docker [https://www.docker.com/] and
Kubernetes [http://akid.readthedocs.io/en/latest/kubernetes.io], it is able to provide dynamic and elastic
scheduling, auto fault recovery and scalability.

It aims to enable fast prototyping and production ready at the same time. More
specifically, it

	supports fast prototyping
	built-in data pipeline framework that standardizes data preparation and
data augmentation.

	arbitrary connectivity schemes (including multi-input and multi-output
training), and easy retrieval of parameters and data in the network

	meta-syntax to generate neural network structure before training

	support for visualization of computation graph, weight filters, feature
maps, and training dynamics statistics.

	be production ready
	built-in support for distributed computing

	compatibility to orchestrate with distributed file systems, docker
containers, and distributed operating systems such as Kubernetes. (This
feature mainly is a best-practice guide for K8s etc, which is under
experimenting and not available yet.)

The name comes from the Kid saved by Neo in Matrix, and the metaphor to build
a learning agent, which we call kid in human culture.

It distinguish itself from an unique design, which is described in the following.

[image: _images/akid_block.png]
Illustration of the arbitrary connectivity supported by akid. Forward
connection, branching and mergine, and feedback connection are supported.

akid builds another layer of abstraction on top of Tensor: Block.
Tensor can be taken as the media/formalism signal propagates in digital world,
while Block is the data processing entity that processes inputs and emits
outputs.

It coincides with a branch of “ideology” called dataism that takes everything
in this world is a data processing entity. An interesting one that may come
from A Brief History of Tomorrow by Yuval Noah Harari.

Best designs mimic nature. akid tries to reproduce how signals in nature
propagates. Information flow can be abstracted as data propagating through
inter-connected blocks, each of which processes inputs and emits outputs. For
example, a vision classification system is a block that takes image inputs and
gives classification results. Everything is a Block in akid.

A block could be as simple as a convonlutional neural network layer that merely
does convolution on the input data and outputs the results; it also be as
complex as an acyclic graph that inter-connects blocks to build a neural
network, or sequentially linked block system that does data augmentation.

Compared with pure symbol computation approach, like the one in tensorflow, a
block is able to contain states associated with this processing unit. Signals
are passed between blocks in form of tensors or list of tensors. Many heavy
lifting has been done in the block (Block and its sub-classes),
e.g. pre-condition setup, name scope maintenance, copy functionality for
validation and copy functionality for distributed replicas, setting up and
gathering visualization summaries, centralization of variable allocation,
attaching debugging ops now and then etc.

 Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	akid 0.1 documentation

Get Started

	Download and Setup

 Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	akid 0.1 documentation

 	Get Started

Download and Setup

Currently, akid only supports installing from the source.

Dependency

akid depends on some regular numerical libraries. If you are using pip, you
could install them as the following:

pip install numpy, scipy, matplotlib, gflags

Follow the official installation
guide [https://www.tensorflow.org/versions/r0.12/get_started/os_setup.html] to
install tensorflow.

Install from the source

Clone the repository

git clone https://github.com/shawnLeeZX/akid

Post installation setup

Environment Variables

If you want to use the dataset automatically download feature, an environment
variable needs to be set. Add the following line to .bashrc, or other
configuration files of your favorite shell.

AKID_DATA_PATH= # where you want to store data

Also, remember to make akid visible by adding the folder that contains akid
to PYTHONPATH.

 Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	akid 0.1 documentation

Introduction

Why akid

Why another package on neural network?

Neural network, which is broadly named as Deep Learning nowadays, seems to have
the potential to lead another technology revolution. It has incurred wide
enthusiasm in
industry [https://www.oreilly.com/ideas/the-current-state-of-machine-intelligence-3-0],
and serious consideration in public sector and impact
evaluation [https://www.whitehouse.gov/sites/default/files/whitehouse_files/microsites/ostp/NSTC/preparing_for_the_future_of_ai.pdf]
in government. However, though being a remarkable breakthrough in high
dimensional perception problems academically and intellectually stimulating and
promising, it is still rather an immature technique that is fast moving and in
shortage of understanding. Temporarily its true value lies in the capability to
solve data analytic problems in industry, e.g. self-driving cars, detection of
lung cancer etc. On the other hand, Neural Network is a technique that heavily
relies on a large volume of data. It is critical for businesses that use such a
technique to leverage on newly available data as soon as possible, which helps
form a positive feedback loop that improves the quality of service.

Accordingly, to benefits from the newest development and newly available data,
we want the gap between research and production as small as possible. In this
package, we explore technology stacks abstraction that enable fast research
prototyping and are production ready.

akid tries to provide a full stack of softwares that provides abstraction to
let researchers focus on research instead of implementation, while at the same
time the developed program can also be put into production seamlessly in a
distributed environment, and be production ready when orchestrating with
containers, a cluster manager, and a distributed network file system.

[image: alternate text]
At the top application stack, it provides out-of-box tools for neural network
applications. Lower down, akid provides programming paradigm that lets user
easily build customized model. The distributed computing stack handles the
concurrency and communication, thus letting models be trained or deployed to a
single GPU, multiple GPUs, or a distributed environment without affecting how a
model is specified in the programming paradigm stack. Lastly, the distributed
deployment stack handles how the distributed computing is deployed, thus
decoupling the research prototype environment with the actual production
environment, and is able to dynamically allocate computing resources, so
developments (Devs) and operations (Ops) could be separated.

akid stack

Now we discuss each stack provided by akid.

Application stack

At the top of the stack, akid could be used as a part of application without
knowing the underlying mechanism of neural networks.

akid provides full machinery from preparing data, augmenting data, specifying
computation graph (neural network architecture), choosing optimization
algorithms, specifying parallel training scheme (data parallelism etc), logging
and visualization.

Neural network training — A holistic example

To create better tools to train neural network has been at the core of the
original motivation of akid. Consequently, in this section, we describe how
akid can be used to train neural networks. Currently, all the other feature
resolves around this.

The snippet below builds a simple neural network, and trains it using MNIST,
the digit recognition dataset.

from akid import AKID_DATA_PATH
from akid import FeedSensor
from akid import Kid
from akid import MomentumKongFu
from akid import MNISTFeedSource

from akid.models.brains import LeNet

brain = LeNet(name="Brain")
source = MNISTFeedSource(name="Source",
 url='http://yann.lecun.com/exdb/mnist/',
 work_dir=AKID_DATA_PATH + '/mnist',
 center=True,
 scale=True,
 num_train=50000,
 num_val=10000)

sensor = FeedSensor(name='Sensor', source_in=source)
s = Kid(sensor,
 brain,
 MomentumKongFu(name="Kongfu"),
 max_steps=100)
kid.setup()
kid.practice()

It builds a computation graph as the following

[image: alternate text]
The story happens underlying are described in the following, which also
debriefs the design motivation and vision behind.

akid is a kid who has the ability to keep practicing to improve itself. The
kid perceives a data Source with its Sensor and certain learning methods
(nicknamed KongFu) to improve itself (its Brain), to fulfill a certain
purpose. The world is timed by a clock. It represents how long the kid has been
practicing. Technically, the clock is the conventional training step.

To break things done, Sensor takes a Source which either provides data in
form of tensors from Tensorflow or numpy arrays. Optionally, it can make jokers
on the data using Joker, meaning doing data augmentation. The data processing
engine, which is a deep neural network, is abstracted as a Brain. Brain is
the name we give to the data processing system in living beings. A Brain
incarnates one of data processing system topology, or in the terminology of
neural network, network structure topology, such as a sequentially linked
together layers, to process data. Available topology is defined in module
systems. The network training methods, which are first order iterative
optimization methods, is abstracted as a class KongFu. A living being needs
to keep practicing Kong Fu to get better at tasks needed to survive.

A living being is abstracted as a Kid class, which assemblies all above
classes together to play the game. The metaphor means by sensing more examples,
with certain genre of Kong Fu(different training algorithms and policies), the
data processing engine of the Kid, the brain, should get better at doing
whatever task it is doing, letting it be image classification or something
else.

Visualization

As a library gearing upon research, it also has rich features to visualize
various components of a neural network. It has built-in training dynamics
visualization, more specifically, distribution visualization on
multi-dimensional tensors, e.g., weights, activation, biases, gradients, etc,
and line graph visualization on on scalars, e.g., training loss, validation
loss, learning rate decay, regularzation loss in each layer, sparsity of neuron
activation etc, and filter and feature map visualization for neural networks.

Distribution and scalar visualization are built in for typical parameters and
measures, and can be easily extended, and distributedly gathered. Typical
visualization are shown below.

[image: ../_images/hist_summary.png]
Visualization of how distribution of multi-dimensional tensors change over
time. Each line on the chart represents a percentile in the distribution
over the data: for example, the bottom line shows how the minimum value has
changed over time, and the line in the middle shows how the median has
changed. Reading from top to bottom, the lines have the following meaning:
[maximum, 93%, 84%, 69%, 50%, 31%, 16%, 7%, minimum] These percentiles can
also be viewed as standard deviation boundaries on a normal distribution:
[maximum, μ+1.5σ, μ+σ, μ+0.5σ, μ, μ-0.5σ, μ-σ, μ-1.5σ, minimum] so that the
colored regions, read from inside to outside, have widths [σ, 2σ, 3σ]
respectively.

[image: ../_images/scalar_summary.png]
Visualization of how important scalar measures change over time.

akid supports visualization of all feature maps and filters with control on
the layout through Observer class. When having finished creating a Kid,
pass it to Observer, and call visualization as the following.

from akid import Observer

o = Observer(kid)
Visualize filters as the following
o.visualize_filters()
Or visualize feature maps as the following
o.visualize_activation()

Various layouts are provided when drawing the filters. Additional features are
also available. The post-preprocessed results are shown below.

[image: ../_images/gradual_sparse_fmap.png]
Visualization of feature maps learned.

[image: ../_images/gsmax_conv1_filters.png]
Visualization of filters learned.

Programming Paradigm

We have seen how to use functionality of akid without much programming in the
previous section. In this section, we would like to introduce the programming
paradigm underlying the previous example, and how to use akid as a research
library with such paradigm.

[image: ../_images/akid_block1.png]
Illustration of the arbitrary connectivity supported by akid. Forward
connection, branching and mergine, and feedback connection are supported.

akid builds another layer of abstraction on top of Tensor: Block.
Tensor can be taken as the media/formalism signal propagates in digital world,
while Block is the data processing entity that processes inputs and emits
outputs.

It coincides with a branch of “ideology” called dataism that takes everything
in this world is a data processing entity. An interesting one that may come
from A Brief History of Tomorrow by Yuval Noah Harari.

Best designs mimic nature. akid tries to reproduce how signals in nature
propagates. Information flow can be abstracted as data propagating through
inter-connected blocks, each of which processes inputs and emits outputs. For
example, a vision classification system is a block that takes image inputs and
gives classification results. Everything is a Block in akid.

A block could be as simple as a convonlutional neural network layer that merely
does convolution on the input data and outputs the results; it also be as
complex as an acyclic graph that inter-connects blocks to build a neural
network, or sequentially linked block system that does data augmentation.

Compared with pure symbol computation approach, like the one in tensorflow, a
block is able to contain states associated with this processing unit. Signals
are passed between blocks in form of tensors or list of tensors. Many heavy
lifting has been done in the block (Block and its sub-classes),
e.g. pre-condition setup, name scope maintenance, copy functionality for
validation and copy functionality for distributed replicas, setting up and
gathering visualization summaries, centralization of variable allocation,
attaching debugging ops now and then etc.

akid offers various kinds of blocks that are able to connect to other blocks
in an arbitrary way, as illustrated above. It is also easy to build one’s own
blocks. The Kid class is essentially an assembler that assemblies blocks
provided by akid to mainly fulfill the task to train neural networks. Here we
show how to build an arbitrary acyclic graph of blocks, to illustrate how to
use blocks in akid.

A brain is the data processing engine to process data supplied by Sensor to
fulfill certain tasks. More specifically,

	it builds up blocks to form an arbitrary network

	offers sub-graphs for inference, loss, evaluation, summaries

	provides access to all data and parameters within

To use a brain, feed in data as a list, as how it is done in any other
blocks. Some pre-specified brains are available under akid.models.brains. An
example that sets up a brain using existing brains is:

... first get a feed sensor
sensor.setup()
brain = OneLayerBrain(name="brain")
input = [sensor.data(), sensor.labels()]
brain.setup(input)

Note in this case, data() and labels() of sensor returns tensors. It is
not always the case. If it does not, saying return a list of tensors, you need
do things like:

input = [sensor.data()]
input.extend(sensor.labels())

Act accordingly.

Similarly, all blocks work this way.

A brain provides easy ways to connect blocks. For example, a one layer brain
can be built through the following:

class OneLayerBrain(Brain):
 def __init__(self, **kwargs):
 super(OneLayerBrain, self).__init__(**kwargs)
 self.attach(
 ConvolutionLayer(ksize=[5, 5],
 strides=[1, 1, 1, 1],
 padding="SAME",
 out_channel_num=32,
 name="conv1")
)
 self.attach(ReLULayer(name="relu1"))
 self.attach(
 PoolingLayer(ksize=[1, 5, 5, 1],
 strides=[1, 5, 5, 1],
 padding="SAME",
 name="pool1")
)

 self.attach(InnerProductLayer(out_channel_num=10, name="ip1"))
 self.attach(SoftmaxWithLossLayer(
 class_num=10,
 inputs=[
 {"name": "ip1", "idxs": [0]},
 {"name": "system_in", "idxs": [1]}],
 name="loss"))

It assembles a convolution layer, a ReLU Layer, a pooling layer, an inner
product layer and a loss layer. To attach a block (layer) that directly takes
the outputs of the previous attached layer as inputs, just directly attach the
block. If inputs exists, the brain will fetch corresponding tensors by name
of the block attached and indices of the outputs of that layer. See the loss
layer above for an example. Note that even though there are multiple inputs for
the brain, the first attached layer of the brain will take the first of these
input by default, given the convention that the first tensor is the data, and
the remaining tensors are normally labels, which is not used till very late.

As an example to build more complex connectivity scheme, residual units can be
built using Brain as shown below.

[image: alternate text]
One residual units. On the left is the branch that builds up patterns
complexity, and on the right is the stem branch that shorts any layers to
any layer. They merge at the at the start and at the end of the branching
points.

Parameter tuning

akid offers automatic parameter tuning through defining template using tune
function.

	
akid.train.tuner.tune(template, opt_paras_list=[{}], net_paras_list=[{}], repeat_times=1, gpu_num_per_instance=1, debug=False)[source]

	A function tune that takes a Brain jinja2 template class and a parameters
to fill the template in runtime. Parameters provided should complete the
remaining network parameters in the template. The tuner is not aware of the
content of the list items. It is up to the user to define template right,
so parameters will be filled in the right place.

The jinja2 template must be a function named setup, and return a set up
Kid. All necessary module imports should be put in the function instead
of module level import usually.

The tune function would use all available GPUs to train networks with all
given different set of parameters. If available GPUs are not enough, the
ones that cannot be trained will wait till some others finish, and get its
turn.

Parameter Tuning Usage

Tunable parameters are divided into two set, network hyper parameters,
net_paras_list, and optimization hyper parameters, opt_paras_list. Each
set is specified by a list whose item is a dictionary that holds the actual
value of whatever hyper parameters defined as jinja2 templates. Each item
in the list corresponds to a tentative training instance. network paras and
optimization paras combine with each other exponentially(or in Cartesian
Product way if we could use Math terminology), which is to say if you have
two items in network parameter list, and two in optimization parameters,
the total number of training instances will be four.

Final training precisions will be returned as a list. Since the final
precision normally will not be the optimal one, which normally occurs
during training, the returned values are used for testing purpose only now

Run repeated experiment

To run repeated experiment, just leave opt_paras_list and
net_paras_list to their default value.

GPU Resources Allocation

If the gpu_num_per_instance is None, a gpu would be allocated to each
thread, otherwise, the length of the list should be the same with that of
the training instance (aka the #opt_paras_list * #net_paras_list *
repeat_times), or an int.

Given the available GPU numbers, a semaphore is created to control access
to GPUs. A lock is created to control access to the mask to indicator which
GPU is available. After a process has modified the gpu mask, it releases
the lock immediately, so other process could access it. But the semaphore
is still not release, since it is used to control access to the actual
GPU. A training instance will be launched in a subshell using the GPU
acquired. The semaphore is only released after the training has finished.

Example

For example, to tune the activation function and learning rates of a
network, first we set up network parameters in net_paras_list,
optimization parameters in opt_paras_list, build a network in the setup
function, then pass all of it to tune:

net_paras_list = []
net_paras_list.append({
 "activation": [
 {"type": "relu"},
 {"type": "relu"},
 {"type": "relu"},
 {"type": "relu"}],
 "bn": True})
net_paras_list.append({
 "activation": [
 {"type": "maxout", "group_size": 2},
 {"type": "maxout", "group_size": 2},
 {"type": "maxout", "group_size": 2},
 {"type": "maxout", "group_size": 5}],
 "bn": True})

opt_paras_list = []
opt_paras_list.append({"lr": 0.025})
opt_paras_list.append({"lr": 0.05})

def setup(graph):

 brain.attach(cnn_block(
 ksize=[8, 8],
 init_para={
 "name": "uniform",
 "range": 0.005},
 wd={"type": "l2", "scale": 0.0005},
 out_channel_num=384,
 pool_size=[4, 4],
 pool_stride=[2, 2],
 activation={{ net_paras["activation"][1] }},
 keep_prob=0.5,
 bn={{ net_paras["bn"] }}))

tune(setup, opt_paras_list, net_paras_list)

Distributed Computation

The distributed computing stack is responsible to handle concurrency and
communication between different computing nodes, so the end user only needs to
deal with how to build a power network. All complexity has been hidden in the
class Engine. The usage of Engine is just to pick and use.

More specifically, akid offers built-in data parallel scheme in form of class
Engine. Currently, the engine mainly works with neural network training,
which is be used with Kid by specifying the engine at the construction of the
kid.

As an example, we could do data parallelism on multiple computing towers using:

kid = kids.Kid(
 sensor,
 brain,
 MomentumKongFu(lr_scheme={"name": LearningRateScheme.placeholder}),
 engine={"name": "data_parallel", "num_gpu": 2},
 log_dir="log",
 max_epoch=200)

The end computational graph constructed is illustrated below

[image: data parallelism]
Illustration of computational graph constructed by a data parallel engine.
It partitions a mini-batch of data into subsets, as indicated by the
data_split blue blocks, and passes the subsets to replicates of neural
network models at different coputing tower, as indicated by the gray blocks
one level above blue blocks, then after the inference results have been
computed, the results and the labels (from the splitted data block) will be
passed to the optimizers in the same tower, as indicated by red and orange
blocks named opt, to compute the gradients. Lastly, the gradients will be
passed to an tower that computes the average of the gradients, and pass them
back to neural networks of each computing towers to update their parameters.

Distributed Deployment

The distributed deployment stack handles the actual production environment,
thus decouples the development/prototyping environment and production
environment. Mostly, this stack is about how to orchestrate with existing
distributed ecosystem. Tutorials will be provided when a production ready setup
has been thoroughly investigated. Tentatively, glusterfs and Kubernetes are
powerful candidates.

Comparison with existing packages

akid differs from existing packages from the perspective that it aims to
integrate technology stacks to solve both research prototyping and industrial
production. Existing packages mostly aim to solve problems in one of the
stack. akid reduces the friction between different stacks with its unique
features. We compare akid with existing packages in the following briefly.

Theano [http://deeplearning.net/software/theano/], Torch [http://torch.ch/],
Caffe [http://caffe.berkeleyvision.org/], MXNet [http://akid.readthedocs.io/en/latest/intros/mxnet.dmlc.ml] are packages that aim to provide a
friendly front end to complex computation back-end that are written in
C++. Theano is a python front end to a computational graph compiler, which has
been largely superseded by Tensorflow in the compilation speed, flexibility,
portability etc, while akid is built on of Tensorflow. MXNet is a competitive
competitor to Tensorflow. Torch is similar with theano, but with the front-end
language to be Lua, the choice of which is mostly motivated from the fact that
it is much easier to interface with C using Lua than Python. It has been widely
used before deep learning has reached wide popularity, but is mostly a quick
solution to do research in neural networks when the integration with community
and general purpose production programming are not pressing. Caffe is written
in C++, whose friendly front-end, aka the text network configuration file,
loses its affinity when the model goes more than dozens of
layer.

DeepLearning4J [https://deeplearning4j.org/] is an industrial solution
to neural networks written in Java and Scala, and is too heavy weight for
research prototyping.

Perhaps the most similar package existing with akid is
Keras [http://akid.readthedocs.io/en/latest/intros/keras.io], which both aim to provide a more intuitive interface to
relatively low-level library, i.e. Tensorflow. akid is different from Keras
at least two fundamental aspects. First, akid mimics how signals propagates
in nature by abstracting everything as a semantic block, which holds many
states, thus is able to provide a wide range of functionality in a easily
customizable way, while Keras uses a functional API that directly manipulates
tensors, which is a lower level of abstraction, e.g. it have to do class
attributes traverse to retrieve layer weights with a fixed variable name while
in akid variable are retrieved by names. Second, Keras mostly only provides
an abstraction to build neural network topology, which is roughly the
programming paradigm stack of akid, while akid provides unified abstraction
that includes application stack, programming stack, and distributed computing
stack. A noticeable improvement is Keras needs the user to handle communication
and concurrency, while the distributed computing stack of akid hides them.

 Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	akid 0.1 documentation

HOW TO

In this HOW-TO page, available blocks are described.

TODO: finished this section

Block

akid builds another layer of abstraction on top of Tensor: Block.
Tensor can be taken as the media/formalism signal propagates in digital world,
while Block is the data processing entity that processes inputs and emits
outputs.

It coincides with a branch of “ideology” called dataism that takes everything
in this world is a data processing entity. An interesting one that may come
from A Brief History of Tomorrow by Yuval Noah Harari.

Best designs mimic nature. akid tries to reproduce how signals in nature
propagates. Information flow can be abstracted as data propagating through
inter-connected blocks, each of which processes inputs and emits outputs. For
example, a vision classification system is a block that takes image inputs and
gives classification results. Everything is a Block in akid.

A block could be as simple as a convonlutional neural network layer that merely
does convolution on the input data and outputs the results; it also be as
complex as an acyclic graph that inter-connects blocks to build a neural
network, or sequentially linked block system that does data augmentation.

Compared with pure symbol computation approach, like the one in tensorflow, a
block is able to contain states associated with this processing unit. Signals
are passed between blocks in form of tensors or list of tensors. Many heavy
lifting has been done in the block (Block and its sub-classes),
e.g. pre-condition setup, name scope maintenance, copy functionality for
validation and copy functionality for distributed replicas, setting up and
gathering visualization summaries, centralization of variable allocation,
attaching debugging ops now and then etc.

Source

Signals propagated in nature are all abstracted as a source. For instance, an
light source (which could be an image source or video source), an audio source,
etc.

As an example, saying in supervised setting, a source is a block that takes no
inputs (since it is a source), and outputs data. A concrete example could be
the source for the MNIST dataset:

source = MNISTFeedSource(name="MNIST",
 url='http://yann.lecun.com/exdb/mnist/',
 work_dir=AKID_DATA_PATH + '/mnist',
 center=True,
 scale=True,
 num_train=50000,
 num_val=10000)

The above code creates a source for MNIST. It is supposed to provide data for
placeholders of tensorflow through method get_batch. Say:

source.get_batch(100, get_val=False)

would return a tuple of numpy array of (images, labels).

It could be used standalone, or passed to a Sensor.

Developer Note

A top level abstract class Source implements basic semantics of a natural
source. Other abstract classes keep implementing more concrete
sources. Abstract Source s need to be inherited and abstract methods
implemented before it could be used. To create a concrete Source, you could
use multiple inheritance to compose the Source you needs. Available sources
are kept under module sources.

Sensor

The interface between nature and an (artificial) signal processing system,
saying a brain, is a Sensor. It does data augmentation (if needed), and
batches datum from Source.

Strictly speaking, the functional role of a sensor is to convert the signal in
the natural form to a form the data processing engine, which is the brain in
this case, could process. It is a Analog/Digital converter. However, the input
from Source is already in digital form, so this function is not there
anymore. But the data batching, augmentation and so on could still be put in
preprocessing. Thus we still use the name sensor for concept reuse.

Mathematically, it is a system made up with a series of linked blocks that do
data augmentation.

As an example, again saying in supervised setting, a sensor is a block that
takes a data source and output sensed (batched and augmented) data. A sensor
needs to be used along with a source. A concrete example could be the sensor
for the MNIST dataset. Taking a Source, we could make a sensor:

sensor = FeedSensor(name='data', source_in=source)

The type of a sensor must match that of a source.

For IntegratedSensor, it is supported to add Joker to augment data. The way
to augment data is similar with building blocks using Brain, but simpler,
since data augmentation is added sequentially, shown in the following:

sensor = IntegratedSensor(source_in=cifar_source,
 batch_size=128,
 name='data')
sensor.attach(FlipJoker(flip_left_right=True, name="left_right_flip"))
sensor.attach(PaddingLayer(padding=[4, 4]))
sensor.attach(CropJoker(height=32, width=32, name="crop"))

The end computational graph is shown as following.

[image: alternate text]

Brain

A brain is the data processing engine to process data supplied by Sensor to
fulfill certain tasks. More specifically,

	it builds up blocks to form an arbitrary network

	offers sub-graphs for inference, loss, evaluation, summaries

	provides access to all data and parameters within

To use a brain, feed in data as a list, as how it is done in any other
blocks. Some pre-specified brains are available under akid.models.brains. An
example that sets up a brain using existing brains is:

... first get a feed sensor
sensor.setup()
brain = OneLayerBrain(name="brain")
input = [sensor.data(), sensor.labels()]
brain.setup(input)

Note in this case, data() and labels() of sensor returns tensors. It is
not always the case. If it does not, saying return a list of tensors, you need
do things like:

input = [sensor.data()]
input.extend(sensor.labels())

Act accordingly.

Similarly, all blocks work this way.

A brain provides easy ways to connect blocks. For example, a one layer brain
can be built through the following:

class OneLayerBrain(Brain):
 def __init__(self, **kwargs):
 super(OneLayerBrain, self).__init__(**kwargs)
 self.attach(
 ConvolutionLayer(ksize=[5, 5],
 strides=[1, 1, 1, 1],
 padding="SAME",
 out_channel_num=32,
 name="conv1")
)
 self.attach(ReLULayer(name="relu1"))
 self.attach(
 PoolingLayer(ksize=[1, 5, 5, 1],
 strides=[1, 5, 5, 1],
 padding="SAME",
 name="pool1")
)

 self.attach(InnerProductLayer(out_channel_num=10, name="ip1"))
 self.attach(SoftmaxWithLossLayer(
 class_num=10,
 inputs=[
 {"name": "ip1", "idxs": [0]},
 {"name": "system_in", "idxs": [1]}],
 name="loss"))

It assembles a convolution layer, a ReLU Layer, a pooling layer, an inner
product layer and a loss layer. To attach a block (layer) that directly takes
the outputs of the previous attached layer as inputs, just directly attach the
block. If inputs exists, the brain will fetch corresponding tensors by name
of the block attached and indices of the outputs of that layer. See the loss
layer above for an example. Note that even though there are multiple inputs for
the brain, the first attached layer of the brain will take the first of these
input by default, given the convention that the first tensor is the data, and
the remaining tensors are normally labels, which is not used till very late.

KongFu

System

This module provides systems of different topology to compose `Block`s to
create more complex blocks. A system does not concern which type of block it
holds, but only concerns the mathematical topology how they connect.

 Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	akid 0.1 documentation

Tutorials of akid

	Distributed Akid

 Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	akid 0.1 documentation

 	Tutorials of akid

Distributed akid

In this tutorial, we will write a program that does computation distributedly.
The full code, dist_akid can be found under example folder.

OK, now it is just some pointers.

We use a Source, a Sensor, a Brain in this case. Read
How To [http://akid.readthedocs.io/en/latest/how_tos/index.html] to know what they do. Also read the
tensorflow tutorial [https://www.tensorflow.org/versions/r0.11/how_tos/distributed/index.html#distributed-tensorflow]
for distributed computation. This tutorial ports the distributed example
provided by tensorflow. The usage of the program is the same as in the
tensorflow tutorial.

After successfully running the program, you are supposed to see outputs like:

2.45249
2.40535
2.29056
2.2965
2.25567
2.27914
2.26652
2.27446
2.2911
2.26182
2.17706
2.18829
2.23567
2.21965
2.20997
2.14844
2.10352
2.066
2.12029
2.10526
2.10102
2.03739
2.04613
2.05246
2.04463
2.03297

which is the training loss.

 Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	akid 0.1 documentation

Architecture and Design Principles

TODO: finish this section

Architecture

Kick start clock

A centralized clock is available in akid to model the elapsing time in the
physical world. It is roughly the training step, or iteration step when
training a neural network.

If any training is supposed to done with the machinery provided akid, the
clock needs to be manually started using the following snippets. However, if
you are using Kid class, it will be called automatically.

from akid.common import init
init()

Model Abstraction

All core classes a sub class of Block.

The philosophy is to bring neural network to its biological origin, the brain,
a data processing engine that is tailored to process hierarchical data of the
universe. The universe is built block by block, from micro world, modules
consisting of atoms, to macro world, buildings made up by bricks and windows,
and cosmic world, billions of stars creating galaxies.

Tentatively, there are two kinds of blocks — simple blocks and complex
blocks. Simple blocks are traditional processing units such as convolutional
layers. While complex blocks holds sub-blocks with certain topology. Complex
blocks are System. A module systems offers different Systems to model the
mathematical topological structures how data propagates. These two types of
blocks build up the recursive scheme to build arbitrarily complex blocks.

Model and Computation

Blocks are responsible for easing building computational graph. Given two-phase
procedure that first builds computational graph, then executes that graph, each
object (including but not limiting to blocks) who actually needs to do
computation has its own computational components, a graph and a session. If no
higher level one is given, the block will create a suite of its own; otherwise,
it will use what it is given.

Graph

A model’s construction is separated from its execution environment.

To use most classes, its setup method should be called before anything
else. This is tied with Tensorflow’s two-stage execution mechanism: first build
the computational graph in python, then run the graph in the back end. The
setup of most classes build and do necessary initialization for the first
stage of the computation. The caller is responsible for passing in the right
data for setup.

setup should be called under a tf.Graph() umbrella, which is in the
simplest case is a context manager that open a default graph:

TODO: build the umbrella within.

with self.graph.as_default():
 # Graph building codes here

That is to say if you are going to use certain class standalone, a graph
context manager is needed.

Each System takes a graph argument on construction. If no one is given, it
will create one internally. So no explicit graph umbrella is needed.

Session

TODO: abstract this within

A graph hold all created blocks. To actually run the computational graph, all
computational methods has an sess argument to take an opened tf.Session()
to run within, thus any upper level execution environment could be passed
down. The upper level code is responsible to set up a session. In such a way,
computational graph construction does not need to take care of
execution. However, for certain class, such as a Survivor, if an upper level
session does not exist, a default one will be created for the execution for
convenience.

This allows a model to be deployed on various execution environment.

Design Principles

Compactness

The design principle is to make the number of concepts exist at the same time
as small as possible.

LEGO Blocks

The coding process is to assembly various smaller blocks to form necessary
functional larger blocks.

The top level concept is a survivor. It models how an agent explore the world
by learning in order to survive, though the world has not been modeled yet. Up
to now, it could be certain virtual reality world that simulate the physical
world to provide environment to the survivor.

A Survivor assemblies together a Sensor, a Brain and a KongFu. A
Sensor assemblies together Jokers and data Sources. A Brain assemblies
together a number of ProcessingLayer to form a neural networking.

Distributed Composition

Every sub-block of a large block should be self-contained. A large block only
needs minimum amount of information from a sub block. They communicate through
I/O interfaces. So the hierarchical composition scale up in a distributed way
and could goes arbitrary deep with manageable complexity.

 Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	akid 0.1 documentation

Model Zoo

Model building source files can be found under
example folder [https://github.com/shawnLeeZX/akid/tree/master/akid/examples],
where AlexNet, Maxout Network, VGG style network, Residual Network, are reproduced.

NOTE: since some of the examples are not included in tests, it is possible the
examples have some syntax errors, which should be easy to fix. File an issue
any time, or make a pull request anytime.

NOTE: Considering the package is not ready for public announcement yet, the
more feedback or issues I get, the more motivated I am to keep improving the
usibility of the package. Thanks for taking the time!

 Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	akid 0.1 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 akid	

 	
 	
 akid.core.blocks	

 	
 	
 akid.core.brains	

 	
 	
 akid.core.engines	

 	
 	
 akid.core.sensors	

 	
 	
 akid.core.sources	

 	
 	
 akid.core.systems	

 Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	akid 0.1 documentation

Index

 A
 | T

A

 	

 	akid.core.blocks (module), [1], [2]

 	akid.core.brains (module), [1]

 	akid.core.engines (module)

 	

 	akid.core.sensors (module)

 	akid.core.sources (module)

 	akid.core.systems (module)

T

 	

 	tune() (in module akid.train.tuner)

 Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

 _images/akid_block.png
Signal/Data/Tensor

_images/hist_summary.png
mnist-tf-tutorial-net/conv1/BiasAdd/activations mnist-tf-tutorial-net/conv1/biases

150 000

0500 0200
0500 | 0400 |
150 0500
250 | I 0800 |
o 0000 2000 4000 600.0 800.0 o 0000 2000 4000 600.0 800.0
mnist-f-tutorialnet/conv1 /biases/gradients mnist-f-tutorialnet/conv1 /weights
300 000
200 | 0400 |
100 0200
000 | 000 |
00 | 0200 |
200 0400 I

o 0.000 2000 400.0 600.0 800.0 o 0.000 2000 400.0 600.0 800.0

_static/plus.png

_images/application_illustration.png

_images/gsmax_conv1_filters.png
0.08
0.04
0.00

-0.04

-0.08

_static/comment-close.png

_images/data_augmentation.jpg
training_joker

CIFART0.

_static/comment.png

_images/gradual_sparse_fmap.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/down.png

search.html

 Navigation

 		
 index

 		
 modules |

 		akid 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		akid 0.1 documentation »

 All modules for which code is available

		akid.train.tuner

 © Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

_modules/akid/train/tuner.html

 Navigation

 		
 index

 		
 modules |

 		akid 0.1 documentation »

 		Module code »

 Source code for akid.train.tuner

"""
A module to provide a mechanism to ease network tuning.
"""
from __future__ import print_function

import sys
import inspect
import multiprocessing
from .semaphore import Semaphore
import subprocess
import os

from jinja2 import Template
from tqdm import tqdm
import pycuda.autoinit
import pycuda.driver as cuda
import gflags as flags

FLAGS = flags.FLAGS
flags.DEFINE_boolean("use_sub_shell", True, "Deprecated. Not used."
 " Use sub shell to run training"
 " instances or not. This is to get around the issue"
 " tensorflow will not release memory after a process"
 " finishes its work. So to force tensorflow release "
 " resources, just run the process in a sub shell.")
flags.DEFINE_integer("gpu_start_No", 0, "The start No of GPU to use. This flag"
 " is to make sure the correct GPU mask is passed when"
 " running training instances using subshell. For example,"
 " if you are going to use GPU 1-9, you need to pass"
 " --gpu_start_no=1.")

NETWORK_LOG_HEADER = "Network Setup: \\n"

def spawn_using_sub_shell(setup_func, work_dir, idxs):
 gpu_No_str = ""
 # Make comma separated gpu No list.
 for idx in idxs:
 gpu_No_str += "{},".format(idx + FLAGS.gpu_start_No)

 # Add training code to the end.
 training_call = """

kid = setup()
import inspect
from akid.utils import glog as log
log.info("{}" + inspect.getsource(setup))
kid.practice()
 """.format(NETWORK_LOG_HEADER)

 training_code = setup_func + training_call
 # Save code to file.
 file_name = "net_{}.py".format(gpu_No_str)
 with open(os.path.join(work_dir, file_name), 'w') as f:
 f.write(training_code)
 # Run.
 subprocess.call(
 "cd {}; CUDA_VISIBLE_DEVICES={} python {}".format(
 work_dir,
 gpu_No_str,
 file_name),
 shell=True)

def spawn(s, l, gpu_mask, gpu_num, return_values, setup_func, repeat):
 s.acquire(gpu_num)

 # Look up GPU(s) and mark it used.
 # A lock is unnecessary for manager list, but in order to let the
 # printed information print right, a lock is used to control access to
 # stdout.
 with l:
 acquired_gpu = 0
 idxs = []
 for idx, avail in enumerate(gpu_mask):
 if avail == 1:
 gpu_mask[idx] = 0
 idxs.append(idx)
 acquired_gpu += 1
 if acquired_gpu == gpu_num:
 break

 print("GPU mask {}.".format(gpu_mask))
 print("Using GPU {}.".format(idxs))

 repeat_folder = str(repeat)
 # Create folder to hold one training repeat.
 if not os.path.exists(repeat_folder):
 os.mkdir(repeat_folder)
 work_dir = repeat_folder

 spawn_using_sub_shell(setup_func, work_dir, idxs)

 # Release the GPU.
 with l:
 for idx in idxs:
 print("Released GPU {}.".format(idx))
 gpu_mask[idx] = 1

 s.release(gpu_num)

[docs]def tune(template,
 opt_paras_list=[{}],
 net_paras_list=[{}],
 repeat_times=1,
 gpu_num_per_instance=1,
 debug=False):
 """
 A function `tune` that takes a Brain jinja2 template class and a parameters
 to fill the template in runtime. Parameters provided should complete the
 remaining network parameters in the template. The tuner is not aware of the
 content of the list items. It is up to the user to define template right,
 so parameters will be filled in the right place.

 The jinja2 template must be a function named `setup`, and return a set up
 `Kid`. All necessary module imports should be put in the function instead
 of module level import usually.

 The `tune` function would use all available GPUs to train networks with all
 given different set of parameters. If available GPUs are not enough, the
 ones that cannot be trained will wait till some others finish, and get its
 turn.

 ## Parameter Tuning Usage

 Tunable parameters are divided into two set, network hyper parameters,
 `net_paras_list`, and optimization hyper parameters, `opt_paras_list`. Each
 set is specified by a list whose item is a dictionary that holds the actual
 value of whatever hyper parameters defined as jinja2 templates. Each item
 in the list corresponds to a tentative training instance. network paras and
 optimization paras combine with each other exponentially(or in Cartesian
 Product way if we could use Math terminology), which is to say if you have
 two items in network parameter list, and two in optimization parameters,
 the total number of training instances will be four.

 Final training precisions will be returned as a list. Since the final
 precision normally will not be the optimal one, which normally occurs
 during training, the returned values are used for testing purpose only now

 ## Run repeated experiment

 To run repeated experiment, just leave `opt_paras_list` and
 `net_paras_list` to their default value.

 ## GPU Resources Allocation

 If the `gpu_num_per_instance` is None, a gpu would be allocated to each
 thread, otherwise, the length of the list should be the same with that of
 the training instance (aka the #opt_paras_list * #net_paras_list *
 repeat_times), or an int.

 Given the available GPU numbers, a semaphore is created to control access
 to GPUs. A lock is created to control access to the mask to indicator which
 GPU is available. After a process has modified the gpu mask, it releases
 the lock immediately, so other process could access it. But the semaphore
 is still not release, since it is used to control access to the actual
 GPU. A training instance will be launched in a subshell using the GPU
 acquired. The semaphore is only released after the training has finished.

 ## Example

 For example, to tune the activation function and learning rates of a
 network, first we set up network parameters in `net_paras_list`,
 optimization parameters in `opt_paras_list`, build a network in the `setup`
 function, then pass all of it to tune::

 net_paras_list = []
 net_paras_list.append({
 "activation": [
 {"type": "relu"},
 {"type": "relu"},
 {"type": "relu"},
 {"type": "relu"}],
 "bn": True})
 net_paras_list.append({
 "activation": [
 {"type": "maxout", "group_size": 2},
 {"type": "maxout", "group_size": 2},
 {"type": "maxout", "group_size": 2},
 {"type": "maxout", "group_size": 5}],
 "bn": True})

 opt_paras_list = []
 opt_paras_list.append({"lr": 0.025})
 opt_paras_list.append({"lr": 0.05})

 def setup(graph):

 brain.attach(cnn_block(
 ksize=[8, 8],
 init_para={
 "name": "uniform",
 "range": 0.005},
 wd={"type": "l2", "scale": 0.0005},
 out_channel_num=384,
 pool_size=[4, 4],
 pool_stride=[2, 2],
 activation={{ net_paras["activation"][1] }},
 keep_prob=0.5,
 bn={{ net_paras["bn"] }}))

 tune(setup, opt_paras_list, net_paras_list)
 """
 # Parse command line flags
 FLAGS(sys.argv)
 # Set up data structures.
 # ###
 manager = multiprocessing.Manager()
 gpu_num = cuda.Device.count()
 gpu_mask = manager.list([1] * gpu_num)
 return_values = manager.list()

 net_num = len(net_paras_list)
 opt_num = len(opt_paras_list)

 if type(gpu_num_per_instance) is not int:
 if len(net_paras_list) * len(opt_paras_list) * repeat_times \
 != len(gpu_num_per_instance):
 raise Exception("""
 The number of gpu used per training instance should match
 `#net_paras_list({}) * #opt_paras_list({}) * repeat_times({}): {}`,
 or a single int.
 """.format(net_num,
 opt_num,
 repeat_times,
 net_num * opt_num * repeat_times)
)

 # Logistics
 # ###
 s = Semaphore(len(gpu_mask))
 l = multiprocessing.Lock()
 process_pool = []
 template_str = Template(inspect.getsource(template))

 # Start tuning.
 # ###
 for repeat in xrange(0, repeat_times):
 for i, opt_paras in enumerate(opt_paras_list):
 for j, net_paras in enumerate(net_paras_list):
 setup_func = template_str.render(opt_paras=opt_paras,
 net_paras=net_paras)
 _gpu_num = gpu_num_per_instance[
 repeat*(net_num * opt_num) + i*net_num + j] \
 if type(gpu_num_per_instance) is list \
 else gpu_num_per_instance
 p = multiprocessing.Process(target=spawn,
 args=(s,
 l,
 gpu_mask,
 _gpu_num,
 return_values,
 setup_func,
 repeat))
 process_pool.append(p)
 p.start()

 # Wait for all processes to finish.
 for p in tqdm(process_pool):
 p.join()

 # TODO(Shuai): Think what should be the return value for subprocess call.
 return return_values

 © Copyright 2016, Shuai Li.
 Created using Sphinx 1.3.5.

_images/data_parallelism.jpg

_images/akid_block1.png
Signal/Data/Tensor

_images/akid_stack.png
Application

Programming Paradigm

Distributed Computing

Distributed Deployment

_images/residual_block.png

_images/scalar_summary.png
Training Loss
130
1.0
200
7.00
5.00
3.00

©3 0000 2000 400.0 6000 8000 1.000k

Validation Loss

mnist-tf-tutorial-net

mnist-tf-tutorial-net/conv1/BiasAdd/sparsity
0800
0400

P A 0
0400
0800

o 0.000 2000 400.0 600.0 800.0

mnistf-tutorial-net/conv1/weights/I2_loss

360003

320003

280003

240003

200003

1.600e-3

0.000

3000

6000

9000

