
Akeneo.NET Documentation
Release

Akeneo.NET contribs

Jun 07, 2017

Contents:

1 Getting Started 3
1.1 Install Akeneo PIM . 3
1.2 Install Akeneo.NET client . 3
1.3 Using the API . 4

2 Attributes 7
2.1 Derived attribute types . 7
2.2 Attribute features . 8
2.3 Retrieving attributes . 8

3 Products 9
3.1 Creating product values . 9
3.2 Product values from attribute . 9

4 Filter and Search 11
4.1 Search Criterias . 11
4.2 Filter products . 12

5 Updating Resources 13
5.1 Add or change values . 13
5.2 Delete values . 13
5.3 Technical information . 14

6 Media Files 15
6.1 Upload file . 15
6.2 Download file . 16

i

ii

Akeneo.NET Documentation, Release

Akeneo.NET is a .NET client for Akeneo PIM‘s RESTful API. It can be run on .NET Core as well as .NET Framework.
The source code to the project can be found on Github.

Contents: 1

https://www.akeneo.com/
https://api.akeneo.com/
https://github.com/pardahlman/akeneo-csharp

Akeneo.NET Documentation, Release

2 Contents:

CHAPTER 1

Getting Started

Install Akeneo PIM

It is assumed that Akeneo PIM is installed. To install Akeneo PIM, follow the official installation instructions or use
this docker-compose.yml file to get started on Docker with one simple command.

Creating OAuth credentials

The calls to the API is authenticated via oauth. To create credentials follow the official instructions. Note, that if the
pardahlman/akene docker image is used, a client is created during startup. Look through the containers logs and
locate an entry similar to this

A new client has been added.
client_id: 1_27xlkd53wou8ogggwwwksk48s0sgsoogwkowws8wko88gcs0os
secret: 65rfqpc5a3okws0w4k0kgcwswwg0ggwg48wc40gcckso88sk44

- Done.

Install Akeneo.NET client

The .NET client is published on NuGet. To install it, search for Akeneo.NET in the NuGet user interface, or open
the Package Manager Console and enter

PM> Install-Package Akeneo.NET

Create client

The client is created with an AkeneoOptions options object. All fields are required in order to successfully connect
to the PIM:

3

https://docs.akeneo.com/latest/developer_guide/installation/index.html
https://github.com/pardahlman/docker-akeneo/blob/master/docker-compose.yml
https://www.docker.com/
https://api.akeneo.com/documentation/security.html#authentication
https://www.nuget.org/packages/Akeneo.NET/

Akeneo.NET Documentation, Release

• ApiEndpoint is the URL to Akeneo PIM without any trailing slash

• ClientId is the OAuth client id (generated)

• ClientSecret is the OAuth client secret (generated)

• UserName is the name of a user in the PIM

• Password is the corresponding password the the user in the PIM

Below is an example of a complete options object.

var options = new AkeneoOptions
{

ApiEndpoint = new Uri("http://localhost:8080"),
ClientId = "1_27xlkd53wou8ogggwwwksk48s0sgsoogwkowws8wko88gcs0os",
ClientSecret = "65rfqpc5a3okws0w4k0kgcwswwg0ggwg48wc40gcckso88sk44",
UserName = "admin",
Password = "admin"

}

That’s it! Create an instance of the client with the options object

var client = new AkeneoClient(options);

Using the API

Asynchronious calls

All calls to the API is made from the AkeneoClient. The client implements asynchronious methods, that should
be called using the async/await pattern. Each method has an Cancellation Token as an optional argument. It can
be provided to cancel an ongoing operation.

Generic arguments

The API is uniform over most of it resources. This allows the client to use the same methods to query different
resources. The desired resource type is provided as a generic argument to the calls. Below are some example calls
using the same method but querying different resources.

var argument = await Client.GetAsync<NumberAttribute>("shoe_sie");
var family = await Client.GetAsync<Family>("sports_shoe");
var category = await Client.GetAsync<Category>("women");
var product = await Client.GetAsync<NumberAttribute>("nike_air");

Important! Despite the fact that the API is uniform, it is not complete. As of the most current version (1.7.4) the only
resource that can be deleted is Product. Trying to delete other resources will end up with a 405 Method Not
Allowed.

Error handling

The client passes on any error messages from the API. Many of the methods returns either an AkeneoResponse,
AkeneoBatchResponse or PaginationResult, each having a message property as well as property for the
HTTP status code.

4 Chapter 1. Getting Started

https://msdn.microsoft.com/en-us/library/system.threading.cancellationtoken(v=vs.110).aspx

Akeneo.NET Documentation, Release

var response = await Client.DeleteAsync<Product>("nike_air");
if (response.Code == HttpStatusCode.NoContent)
{

Console.WriteLine("Successfully deleted product.");
}
else
{

Console.WriteLine($"Unsuccessfully deleted product. Message: {response.Message}");
}

1.3. Using the API 5

Akeneo.NET Documentation, Release

6 Chapter 1. Getting Started

CHAPTER 2

Attributes

This section contains information on how to work with the different types of attributes available.

Derived attribute types

There are multiple types of attributes in Akeneo PIM, each with a slightly different set of properties. in the
Akeneo.NET client, each attribute type is represented by a specialized class, deriving from the abstract class
AttribteBase. This simplifies things, as all valid properties and their corresponding types are present for each
attribute type.

Attribute types

A complete list of valid attributes can be found at Akeneo’s documentation. All the attribute classes are located in the
namespace Akeneo.Model.Attributes. In the same namespace is also AttributeType contains a list that
hold the list of attribute types.

Example

For example, the NumberAttribute has NumberMin, NumberMax, DecimalsAllowed and
NegativeAllowed properties that is specific to it.

var shoeSize = new NumberAttribute
{

Code = "shoe_size",
DecimalsAllowed = true,
NegativeAllowed = false,
NumberMin = 6,
NumberMax = 15,
AvailableLocales = new List<string> { Locales.EnglishUs }

}

7

https://docs.akeneo.com/1.7/cookbook/rule/general_information_on_rule_format.html#attribute-types
https://github.com/pardahlman/akeneo-csharp/blob/master/Akeneo/Model/Attributes/AttributeType.cs
https://github.com/pardahlman/akeneo-csharp/blob/master/Akeneo/Model/Attributes/AttributeType.cs

Akeneo.NET Documentation, Release

Attribute features

Metric Attribute

The metric attribute expects a Metric Family and Metric Unit to be supplied. In order to make this easier, classes for
MetricFamily and corresponding units can be used

var weigth = new MetricAttribute
{

Code = "weigth",
MetricFamily = MetricFamilies.Weight,
DefaultMetricUnit = WeightUnits.Gram

};

For each metric family, there is a family specific units class. In the example above, the Weight family has a
WeightUnits units class. In the same way, the Temperature family has a TemperatureUnits class etc.

Retrieving attributes

Get one attribute

Attributes are queried for the API by it’s unique identifier. In order to retrieve a NumberAttribute with the
identifier shoe_size, the following request can be made

var shoeSize = await Client.GetAsync<NumberAttribute>("shoe_size");

The generic argument tells the client what kind of attribute it is, and the client uses that class when trying to deseri-
alize it. If the type of the attribute is unknown, the GenericAttribute can be used. It holds all know attribute
properties, and thus will serialize all properties from the API.

Get multiple attributes

Often, the PIM has multiple attributes of different typs. In those scenarios, it is not feasable to query after multiple
attributes using only one target type. By using the attribute base class AttributeBase the client will look at the
retrieved attribute’s type property and serialize it to corresponding type.

var paginatedResult = await Client.GetManyAsync<AttributeBase>();
var attributes = paginatedResult.Embedded.Items;
var numberAttributes = attributes.OfType<NumberAttribute>();
var shoeSize = numberAttributes.FirstOrDefault(a => a.Code == "shoe_size");

8 Chapter 2. Attributes

CHAPTER 3

Products

The entity Product has some properties that references other resources. This documentation does not go into detail
on the constraints of these properties. For more information, see the API documentation.Below are some client specific
information that can be useful when creating a product.

Creating product values

Product values are created in a dictionary keyed with attribute code (string).

var values = new Dictionary<string, object>
{

{"shoe_size", new List<ProductValue>{ new ProductValue
{

Locale = Locales.EnglishUs,
Scope = AkeneoDefaults.Channel,
Data = 9

}}}
};

Different attribute expects different data. For example, Scope and Locale should not be provided if the attribute
does not have unique values for locales or channels. Depending on the attribute type, the Data payload is expected to
be of certain types.

Product values from attribute

It can be hairy to provide the correct product values. In order to make it easier, Akeneo.NET has a set of extension
methods that can be used to create a product value based on an attribute. The extension methods are specific for each
type, which can be helpful if unsure what kind of data to expect.

Below is an example where the product values are created from a set of attributes.

9

https://api.akeneo.com/api-reference.html#post_products

Akeneo.NET Documentation, Release

// load known attributes
var price = await Client.GetAsync<PriceAttribute>("list_price");
var campaignPrice = await Client.GetAsync<PriceAttribute>("campaign_price");
var startOfSales = await Client.GetAsync<DateAttribute>("campaign_start_date");

// use extension method to create product values
var product = new Product
{

Identifier = "nike_air",
Family = "sports_shoe",
Enabled = true,
Categories = {"shoe", "sport", "women"},
Values = DictionaryFactory.Create(

price.CreateValue(99, Currency.USD),
campaignPrice.CreateValue(79, Currency.USD),
startOfSales.CreateValue(DateTime.Today.AddDays(7))

)
};

The DictionaryFactory is a convenience class that creates a dictionary from the KeyValuePairs returned
from the CreateValue calls.

10 Chapter 3. Products

CHAPTER 4

Filter and Search

Akeneo PIM provides endpoints to filter and search through products and locales. In the official documentation, it is
refered to simply as Filter, but the Akeneo.NET client differentiates between the search query (with its own syntax)
and the general filtering.

Search Criterias

A search is performed by supplying one or more Criteria. There are different types of criterias, and they are
all represented by a derived class. For example, search criterias for a category is created by the Category criteria
(found in Akeneo.Search namespace). Each criteria has an operator (string) and a value (object). The class
Operators contains a list of all known operators and can be used to supply values there.

var categoryCriteria = new Category
{

Operator = Operators.NotIn,
Value = new[] { "summer_sale" }

};

Depending on what kind of criteria that is used, different operations are valid. Each criteria has static members that
represent valid operations, and expected value types.

var response = await Client.SearchAsync<Product>(new List<Criteria>
{

Category.NotIn("summer_sale"),
Family.In("sports_shoe"),
Status.Disabled(),
Created.Between(DateTime.Today.AddDays(-7), DateTime.Today)

});

The response is a PaginationResult.

11

https://api.akeneo.com/documentation/filter.html
https://api.akeneo.com/documentation/filter.html#filter-on-product-properties

Akeneo.NET Documentation, Release

Multiple criterias of same type

It is possible to use the same type of criteria multiple multiple times to search for products. For example: to find shoes
that are not on summer sale, the following search criterias can be used

var response = await Client.SearchAsync<Product>(new List<Criteria>
{

Category.NotIn("summer_sale"),
Category.In("shoes")

});

This results in the following search query

?search={"categories":[{"operator":"NOT IN","value":["summer_sale"]},{"operator":"IN",
→˓"value":["shoes"]}]}

Filter products

The client also provides a no-magic method for filtering products. FilterAsync is invoked with a query string
argument (string) that is appended on the resource endpoint (derived from the provided generic type). To filter
products via description attribute (similar to this example) simply perform the call.

var response = await Client.FilterAsync<Product>("?attributes=description");

In fact, SearchAsync internally calls this end point to perform the searchd with a query parameter created from the
provided criterias.

12 Chapter 4. Filter and Search

https://api.akeneo.com/documentation/filter.html#via-attributes

CHAPTER 5

Updating Resources

Updating existing resources is a complex topic with a whole section in the API docs describing update behaviour based
on the entity types etc. It is recommended to read up on how this works before using the endpoint.

Add or change values

One straight forward strategy to update an resource is to retrieve it from the API, modify it and the update it in the
API. This is how it can be done:

var product = await Client.GetAsync<Product>("nike_air");
product.Enabled = false;
await Client.UpdateAsync(product);

This approach has two drawbacks:

1. It requires one extra round-trip to the API to retrieve the product before updating it

2. It can not be used to remove certain property values (like string properties on the product).

Delete values

In order to be able to remove the value of a string property, it needs to be passed to the API with a null value.

var response = await Client.UpdateAsync<Product>("nike_air", new UpdateModel
{

{"variant_group", null}
});

This approach requires no extra round-trip, but gives the caller greater greater responsibility.

13

https://api.akeneo.com/documentation/update.html

Akeneo.NET Documentation, Release

Technical information

It is how the API interprets null that adds complexity to the update query. A string property value is removed by
passing in null as a value for that property. However, null is the default value for reference types and it is difficult
to differ an “explicit null” from a “implicit null” without introducing some sort of complexity to the solution.

14 Chapter 5. Updating Resources

CHAPTER 6

Media Files

Media files are files associated with a specific attribute on a specific product. They can be uploaded and downloaded
through Akeneo.NET

Upload file

In order to upload a file, use the FileUpload class. In order for a successful upload, all properties must be set:

• Product Identifier: the identifier of the product

• Product Attribute: the attribute code for which the file should be associated with. The attribute should be a
FileAttribute attribute

• File Path: The path to the image.

Below is an example of of a correctly created FileUpload

var fileUpload = new MediaUpload
{

Product =
{

Identifier = "nike_air",
Attribute = "product_image_large"

},
FilePath = "C:\\images\\nike_air.png"

};

Upload the image by calling UploadAsync

var response = await Client.UploadAsync(fileUpload);

The call returns an AkeneoResponse that hold information about the outcome of the operation.

15

Akeneo.NET Documentation, Release

Download file

A file is downloaded through by supplying it’s mediaCode. If the media file is recently uploaded, the media code
can be retrieved from the links collection in the AkeneoResponse.

var response = await Client.UploadAsync(fileUpload);
var mediaCode = response.Links[PaginationLinks.Location].Href;

Otherwise, it can be retrieved from the product values.

var product = await Client.GetAsync<Product>("tyfon-tv-6m-0m-company");
var logoValue = product.Values["product_image_large"];
var mediaCode = logoValue.FirstOrDefault()?.Data as string;

Once the code is retrieved, it can be used as argument when calling DownloadAsync. The resource contains the
original file name, as well as a Stream containing the image. There are extension methods for writing the file to disk.

var file = await Client.DownloadAsync(mediaCode);
file.WriteToFile("C:\\downloads", file.FileName);
file.Dispose();

If a file name is not provided, the original file name will be used.

16 Chapter 6. Media Files

	Getting Started
	Install Akeneo PIM
	Install Akeneo.NET client
	Using the API

	Attributes
	Derived attribute types
	Attribute features
	Retrieving attributes

	Products
	Creating product values
	Product values from attribute

	Filter and Search
	Search Criterias
	Filter products

	Updating Resources
	Add or change values
	Delete values
	Technical information

	Media Files
	Upload file
	Download file

