
aiomas Documentation
Release 2.0.1

Stefan Scherfke

May 29, 2019

Contents

1 Features 3

2 Contents: 5
2.1 Overview . 5
2.2 Installation . 7
2.3 Topical Guides . 8
2.4 Developer Docs . 39
2.5 API reference . 48

3 Indices and tables 67

Python Module Index 69

i

ii

aiomas Documentation, Release 2.0.1

PyPI | GitLab | Mailing list | IRC: #asyncio

aiomas is an easy-to-use library for request-reply channels, remote procedure calls (RPC) and multi-
agent systems (MAS). It’s written in pure Python on top of asyncio.

The package is released under the MIT license. It requires Python 3.4 and above and runs on Linux, OS
X, and Windows.

Below you’ll find a list of features. You can also take a look at the overview section to learn what aiomas
is and see some simple examples. If you like this package, go and install it!

Contents 1

https://pypi.python.org/pypi/aiomas
https://gitlab.com/sscherfke/aiomas
https://groups.google.com/forum/#!forum/python-tulip
https://docs.python.org/3/library/asyncio.html

aiomas Documentation, Release 2.0.1

2 Contents

CHAPTER 1

Features

• Three layers of abstraction around raw TCP / unix domain sockets:

1. Request-reply channels

2. Remote-procedure calls (RPC)

3. Agents and containers

• TLS support for authorization and encrypted communication.

• Interchangeable and extensible codecs: JSON and MsgPack (the latter optionally compressed with
Blosc) are built-in. You can add custom codecs or write (de)serializers for your own objects to
extend a codec.

• Deterministic, emulated sockets: A LocalQueue transport lets you send and receive message in
a deterministic and reproducible order within a single process. This helps testing and debugging
distributed algorithms.

3

https://json.org/
https://msgpack.org/

aiomas Documentation, Release 2.0.1

4 Chapter 1. Features

CHAPTER 2

Contents:

2.1 Overview

Aiomas’ main goal is making it easier to create distributed systems (like multi-agent systems (MAS))
with pure Python and asyncio.

Therefore, it adds three layers of abstraction around the transports (TCP or Unix domain sockets) that
asyncio provides:

1. The channel layer allows you to send and receive actual data like strings, lists of numbers instead
of single bytes.

The Channel class lets you make requests and asynchronously wait for the corresponding
replies.

Every channel has a Codec instance that is responsible for (de)serializing the data that is being
sent via the channel. By default, JSON is used for that. Alternatively, you can use MsgPack and

5

https://docs.python.org/3/library/asyncio.html
https://json.org/
https://msgpack.org/

aiomas Documentation, Release 2.0.1

optionally compress it using Blosc. You can also extend codecs with custom serializers for more
object types.

>>> import aiomas
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.reply('cya')
... await channel.close()
>>>
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait
→˓for a
... reply."""
... channel = await aiomas.channel.open_connection(('localhost',
→˓5555))
... rep = await channel.send('ohai')
... print(rep)
... await channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(('localhost',
→˓5555), handle_client))
>>> aiomas.run(client())
ohai
cya
>>> server.close()
>>> aiomas.run(server.wait_closed())

2. The remote procedure call (RPC) layer lets you call function on remote objects.

You can expose the methods of an object as well as normal functions within a dict. On the peer
side of the connection, proxy objects represent these exposed functions.

>>> import aiomas
>>>
>>>
>>> class MathServer:
... router = aiomas.rpc.Service()
...
... @router.expose
... def add(self, a, b):
... return a + b
...
>>>
>>> async def client():
... """Client coroutine: Call the server's "add()" method."""
... rpc_con = await aiomas.rpc.open_connection(('localhost',
→˓5555))
... rep = await rpc_con.remote.add(3, 4)
... print('What’s 3 + 4?', rep)
... await rpc_con.close()
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555),
→˓MathServer()))

6 Chapter 2. Contents:

http://blosc.org/

aiomas Documentation, Release 2.0.1

>>> aiomas.run(client())
What’s 3 + 4? 7
>>> server.close()
>>> aiomas.run(server.wait_closed())

3. The agent layer hides some of the RPC layer’s complexity and allows you to create thousands of
interconnected objects (agents) without opening thousands of unique connections between them.

Therefore, all agents live within a container. Containers take care of handling agent instances and
performing the communication between them.

The container provides a clock for the agents. This clock can either be synchronized with the real
(wall-clock) time or be set by an external process (e.g., external simulators).

>>> import aiomas
>>>
>>> class TestAgent(aiomas.Agent):
... def __init__(self, container):
... super().__init__(container)
... print('Ohai, I am %s' % self)
...
... async def run(self, addr):
... remote_agent = await self.container.connect(addr)
... ret = await remote_agent.service(42)
... print('%s got %s from %s' % (self, ret, remote_agent))
...
... @aiomas.expose
... def service(self, value):
... return value
>>>
>>> c = aiomas.Container.create(('localhost', 5555))
>>> agents = [TestAgent(c) for i in range(2)]
Ohai, I am TestAgent('tcp://localhost:5555/0')
Ohai, I am TestAgent('tcp://localhost:5555/1')
>>> aiomas.run(until=agents[0].run(agents[1].addr))
TestAgent('tcp://localhost:5555/0') got 42 from TestAgentProxy('tcp://
→˓localhost:5555/1')
>>> c.shutdown()

The following sections explain theses layers in more detail.

2.2 Installation

aiomas requires Python >= 3.6 (or PyPy >= 5.10.0) and runs on Linux, OS X and Windows. The default
installation uses the JSON codec and only has pure Python dependencies.

If you have an active virtualenv, you can just run pip to install it:

$ pip install aiomas

If you don’t use a virtualenv (you should) and are not sure, which Python interpreter pip will use, you
can manually select one:

$ python3.5 -m pip install aiomas

2.2. Installation 7

https://virtualenv.pypa.io/en/latest/
https://pip.pypa.io/en/stable/

aiomas Documentation, Release 2.0.1

2.2.1 Updating aiomas

To upgrade your installation, use the -U flag for the install command:

$ pip install -U aiomas

2.2.2 Using MsgPack and Blosc

The MsgPack codec and its Blosc compressed version are optional features, that you need to explicitly
install if you need them. Both packages require a C compiler for the installation:

$ pip install aiomas[mp] # Enables the MsgPack codec
$ pip install aiomas[mpb] # Enables the MsgPack and MsgPackBlosc codecs

Windows users can download pre-compiled binary packages from Christoph Gohlke’s website (msgpack
| blosc) and install them with pip:

C:\> pip install aiomas
C:\> pip install Downloads\msgpack_python-0.4.7-cp35-none-win_amd64.whl
C:\> pip install Downloads\blosc-1.2.8-cp35-none-win_amd64.whl

2.3 Topical Guides

2.3.1 The agent layer

This section describes the agent layer and gives you enough information to implement your own dis-
tributed system without going too much into detail. For that, you should also read the section about the
RPC layer.

Overview

You can think of agents as small, independent programs running in parallel. Each agent waits for input
(e.g., incoming network messages), processes the input and creates, based on its internal state and the
input, some output (like outgoing network messages).

You can also imagine them as being like normal objects that call other object’s methods. But instead of
calling these methods directly, they do remote procedure calls (RPC) via a network connection.

In theory, that means that every agent has a little server with an event loop that waits for incoming
messages and dispatches them to the corresponding method calls.

Using this model, you would quickly run out of resources with hundreds or thousands of interconnected
agents. For this reason, agents are clustered in containers. A container provides the network server and
event loop which all agents within the container share.

Agents are uniquely identified by the container’s address and an ID (which is unique within a container),
for example: tcp://localhost:5555/42.

The following image illustrates this: If Agent C wants to send a message to Agent A, its container
connects to A’s container. Agent C can now send a message to Agent A. If Agent C now wanted to send
a message to Agent B, it would simply reuse the same connection:

8 Chapter 2. Contents:

https://pypi.python.org/pypi/msgpack-python/
https://pypi.python.org/pypi/blosc/
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://www.lfd.uci.edu/~gohlke/pythonlibs/#msgpack
https://www.lfd.uci.edu/~gohlke/pythonlibs/#blosc

aiomas Documentation, Release 2.0.1

As you can see in the figure above, containers also have a clock, but you can ignore that for the moment.
We’ll come back to it later.

Components of a distributed system in aiomas

1. Agent: You implement your business logic in subclasses of aiomas.Agent. Agents can be
reactive or proactive.

Reactive agents only react to incoming messages. That means, they simply expose some methods
that other agents can call.

Proactive agents actively perform one ore more tasks, i.e., calling other agent’s methods.

An agent can be both, proactive and reactive (that just means that your agent class exposes some
methods and has one or more tasks running).

2. Container: All agents live in a container. The agent container implements everything networking
related (e.g., a shared RPC server) so that the agent base class can be as light-weight as possible.
It also defines the codec used for message (de)serialization and provides a clock for agents.

3. Codec: Codecs define how messages to other agents get serialized to byte strings that can be
sent over the network. The base codecs can only serialize the most common object types (like
numbers, strings, lists or dicts) but you can extend them with serializers for custom object types.

The Codecs section explain all this in detail.

4. Clock: Every container provides a clock for agents. Clocks are important for operations with a
timeout (like sleep()). The default clock is a real-time clock synchronized to your system’s
time.

However, if you want to integrate your MAS with a simulation, you may want to let the time
pass faster then real-time (in order to decrease the duration of your simulation). For that use case,
aiomas provides a clock that can be synchronized with external sources.

All clocks provide functions to get the current time, sleep for some time or execute a task after
a given timeout. If you use these function instead of the once asyncio provides, you can easily
switch between different kinds of clocks. The Clocks section provides more details and examples.

Don’t worry if you feel a bit confused now. I’ll explore all of this with small, intuitive examples.

2.3. Topical Guides 9

aiomas Documentation, Release 2.0.1

Hello World: A single, proactive agent

In our first example, we’ll create a very simple agent which repeatedly prints “Hello, World!”:

>>> import aiomas
>>>
>>> class HelloWorld(aiomas.Agent):
... def __init__(self, container, name):
... # We must pass a ref. to the container to "aiomas.Agent":
... super().__init__(container)
... self.name = name # Our agent's name
...
... async def run(self):
... # This method defines the task that our agent will perform.
... # It's usually called "run()" but you can name it as wou want.
... print(self.name, 'says:')
... clock = self.container.clock
... for i in range(3):
... await clock.sleep(0.1)
... print('Hello, World!')

Agents should be a subclass of Agent. This base class needs a reference to the container the agents live
in, so you must forward a container argument to it if you override __init__().

Our agent also defines a task run() which prints “Hello, World!” three times. The task also uses the
container’s clock to sleep for a small amout of time between each print.

The task run() can either be started automatically in the agent’s __init__() or manually after the
agent has been instantiated. In our example, we will do the latter.

The clock (see clocks) exposes various time related functions similar to those that asyncio offers, but
you can easily exchange the default real-time clock of a container with another one (e.g., one where time
passes faster than real-time, which is very useful in simulations).

Now lets see how we can instantiate and run our agent:

>>> # Containers need to be started via a factory function:
>>> container = aiomas.Container.create(('localhost', 5555))
>>>
>>> # Now we can instantiate an agent an start its task:
>>> agent = HelloWorld(container, 'Monty')
>>> aiomas.run(until=agent.run())
Monty says:
Hello, World!
Hello, World!
Hello, World!
>>> container.shutdown() # Close all connections and shutdown the server

In order to run the agent, you need to start a Container first. The container will create an RPC server
and bind it to the specified address.

The function run() is just a wrapper for loop = asyncio.get_event_loop(); loop.
run_until_complete(task).

These are the very basics auf aiomas’ agent module. In the next example you’ll learn how an agent can
call another agent’s methods.

10 Chapter 2. Contents:

aiomas Documentation, Release 2.0.1

Calling other agent’s methods

The purpose of multi-agent systems is having multiple agents calling each other’s methods. Let’s see
how we do this. For the sake of clearness, we’ll create two different agent types in this example where
Caller calls a method of Callee:

>>> import asyncio
>>> import aiomas
>>>
>>> class Callee(aiomas.Agent):
... # This agent does not need to override "__init__()".
...
... # "expose"d methods can be called by other agents:
... @aiomas.expose
... def spam(self, times):
... """Return a lot of spam."""
... return 'spam' * times
>>>
>>>
>>> class Caller(aiomas.Agent):
...
... async def run(self, callee_addr):
... print(self, 'connecting to', callee_addr)
... # Ask the container to make a connection to the other agent:
... callee = await self.container.connect(callee_addr)
... print(self, 'connected to', callee)
... # "callee" is a proxy to the other agent. It allows us to call
... # the exposed methods:
... result = await callee.spam(3)
... print(self, 'got', result)
>>>
>>>
>>> container = aiomas.Container.create(('localhost', 5555))
>>> callee = Callee(container)
>>> caller = Caller(container)
>>> aiomas.run(until=caller.run(callee.addr))
Caller('tcp://localhost:5555/1') connecting to tcp://localhost:5555/0
Caller('tcp://localhost:5555/1') connected to CalleeProxy('tcp://
→˓localhost:5555/0')
Caller('tcp://localhost:5555/1') got spamspamspam
>>> container.shutdown()

The agent Callee exposes its method spam() via the @aiomas.expose decorator and thus allows
other agents to call this method. The arguments and return values of exposed methods need to be
serializable. Exposed methods can be normal functions or coroutines.

The Caller agent does not expose any methods, but defines a task run() which receives the address
of the remote agent. It can connect to that agent via the container’s connect() method. This is a
coroutine, so you need to await its result. It’s return value is a proxy object to the remote agent.

Proxies represent a remote object and provide access to exposed attributes (like functions) of that object.
In the example above, we use the proxy to call the spam() function. Since this involves sending
messages to the remote agent, you always need to use await with remote method calls.

2.3. Topical Guides 11

aiomas Documentation, Release 2.0.1

Distributing agents over multiple containers

One container can house a (theoretically) unlimited number of agents. As long as your agents spent
most of the time waiting for network IO, there’s no need to use more than one container.

If you notice, that the Python process with your program fully utilizes its CPU core (remember, pure
Python only uses one core), its time to spawn sub-processes with its own container to actually parallelize
your application. The aiomas.subproc module provides some helpers for this use case.

Running multiple agent containers in a single process might only be helpful for demonstration or debug-
ging purposes. In the latter case, you should also take a look at the aiomas.local_queue transport.
You can replace normal TCP sockets with it and gain a deterministic order of outgoing and incoming
messages between multiple containers within a single process.

2.3.2 The RPC layer

Remote procedure calls let you, as the name suggest, call functions or methods of remote objects via a
network connection (nearly) like you would call local functions. This often leads to more readable code
compared to using the lower level channels.

Basics

The basic idea behind RPC is as follows: You have a remote object with some methods. On the local
side of the connection you have a proxy object which has the same signature, but when you call one of
the proxy’s methods, it actually sends a message (method_name, args, kwargs) to the peer. The peer
has a router that maps method_name to an actual method. It calls the method and sends its return value
back to the proxy. The proxy method returns this value as if it was calculated locally. This works very
similarly to how web-frameworks like Django resolve URLs and map them to views.

The following list briefly explains the most important components of aiomas RPC:

Service side:

• An RPC server: It starts a server socket and as a root object whose methods can be called by
clients.

• An RPC service (or a hierarchy of services): RPC services are classes with methods that clients
can call. Instead of classes with methods you can also use dicts with normal functions. Services
can be nested to created hierarchies.

• RPC routers: Routers map function names (or paths) to actual methods. An class with an RPC
service automatically creates a new router for each of its instances.

• Exposed methods: Methods/functions need to be explicitly exposed via a simple decorator. This
is a security and safety measure which makes sure that clients can only call functions they are
intended to.

Client side:

• An RPC client: It represents a network connection to an RPC server and provides a proxy object
to its service.

• RPC proxies: Proxy objects represent the remote services. They resemble the signature of the
services they represent and delegate method calls to them.

Here is a simple example that demonstrate how these components work together:

12 Chapter 2. Contents:

aiomas Documentation, Release 2.0.1

>>> import aiomas
>>>
>>>
>>> class MathServer:
... # The "Service" creates a router for each instance of "MathServer":
... router = aiomas.rpc.Service()
...
... # Exposed methods can be called by clients:
... @aiomas.expose
... def add(self, a, b):
... return a + b
...
>>>
>>> async def client():
... """Client coroutine: Call the server's "add()" method."""
... # Connect to the RPC server and get an "RpcClient":
... rpc_con = await aiomas.rpc.open_connection(('localhost', 5555))
... # "remote" is a Proxy to the remote service.
... # We cann call its "add()" method:
... rep = await rpc_con.remote.add(3, 4)
... print('What’s 3 + 4?', rep)
... await rpc_con.close()
>>>
>>> # Start the RPC server with an instance of the "MathServer" service:
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555),
→˓MathServer()))
>>>
>>> aiomas.run(client())
What’s 3 + 4? 7
>>> server.close()
>>> aiomas.run(server.wait_closed())

Let’s discuss the details of what we just did:

The class MathServer is going to be the root node of our RPC server. Therefore, it needs to be marked
as RPC service by giving it a router attribute with an aiomas.rpc.Service instance. Service is a
descriptor; when you access the router attribute through the MathServer class, you get the Service
instance, but when you access it via a MathServer instance, you get an aiomas.rpc.Router in-
stance instead. The Service descriptor makes sure that every instance of MathServer automatically
gets its own Router instance.

The add() method is decorated with expose() which makes it available for RPC calls. The ar-
guments and return values of exposed functions must be serializable by the Codec used. Numbers,
booleans, strings, lists and dicts should always work.

When we start our RPC server (via aiomas.rpc.start_server()) we need to pass an instance
of our MathServer class to it.

In the client, we create an RPC connection via aiomas.rpc.open_connection(). It returns an
aiomas.rpc.RpcClient instance. We can get the proxy to the RPC root node via its remote
attribute. In contrast to normal method calls, we need to use the await (or yield from) statement
for remote method calls.

2.3. Topical Guides 13

https://docs.python.org/3/reference/expressions.html#await

aiomas Documentation, Release 2.0.1

Using dictionaries with functions as RPC services

Sometimes, you don’t want or don’t need classes but plain Python functions. With aiomas you can put
them in a dict and expose them as an RPC service, too. Here’s a rewrite of out math server example that
we discussed in the last section:

>>> @aiomas.expose
... def add(a, b):
... return a + b
...
>>> math_service = aiomas.rpc.ServiceDict({
... 'add': add,
... })
>>>
>>> # Start the RPC server with the math service:
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555), math_
→˓service))
>>>
>>> # The client stays the same as in our last example:
>>> aiomas.run(client())
What’s 3 + 4? 7
>>> server.close()
>>> aiomas.run(server.wait_closed())

You just need a dict mapping names to the respective functions and wrap it with aiomas.rpc.
ServiceDict. You can then uses this to start an RPC server.

How to build hierarchies of RPC services

When you want to expose a lot of functions, you may wish to group and categorize them. You can do
this by building hierarchies of RPC services (just think of the RPC services as folders and the exposed
methods as files, for example). On the client side, you use the . operator to access a sub-service (e.g.,
root_service.sub_service.method()).

When you build service hierarchies, you can freely mix class-based and dictionary-based services.

If the parent service is a dictionary, you can add sub services as a new name: service_instance
pair:

>>> @aiomas.expose
... def add(a, b):
... return a + b
...
>>> # A Sub-service for addition
>>> adding_service = aiomas.rpc.ServiceDict({
... 'add': add,
... })
>>>
>>> # A Sub-service for subtraction
>>> class SubService:
... router = aiomas.rpc.Service()
...
... @aiomas.expose
... def sub(self, a, b):
... return a - b
...

14 Chapter 2. Contents:

aiomas Documentation, Release 2.0.1

>>> # Service dict with two sub-services:
>>> root_service = aiomas.rpc.ServiceDict({
... 'addition': adding_service, # Service dict
... 'subtraction': SubService(), # Instance(!) of service class
... })
>>>
>>> async def client():
... rpc_con = await aiomas.rpc.open_connection(('localhost', 5555))
... # Call the addition service:
... rep = await rpc_con.remote.addition.add(3, 4)
... print('What’s 3 + 4?', rep)
... # Call the subtraction service:
... rep = await rpc_con.remote.subtraction.sub(4, 3)
... print('What’s 4 - 3?', rep)
... await rpc_con.close()
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555), root_
→˓service))
>>>
>>> aiomas.run(client())
What’s 3 + 4? 7
What’s 4 - 3? 1
>>> server.close()
>>> aiomas.run(server.wait_closed())

As you can see, this is very straight forward. Like a folder that can contain sub-folders and files, a
ServiceDict can contain sub-services and exposed functions.

Adding sub-services to a service class looks a little bit more complicated, but basically works the same:

>>> @aiomas.expose
... def add(a, b):
... return a + b
...
>>> # A Sub-service for addition
>>> adding_service = aiomas.rpc.ServiceDict({
... 'add': add,
... })
>>>
>>> # A Sub-service for subtraction
>>> class SubService:
... router = aiomas.rpc.Service()
...
... @aiomas.expose
... def sub(self, a, b):
... return a - b
...
>>> class RootService:
... # You first have to declare that instances of this class will have
... # the following sub-services:
... router = aiomas.rpc.Service(['addition', 'subtraction'])
...
... def __init__(self):
... # For each(!) instance, you have to add instances of the
... # declared sub-services:
... self.addition = adding_service
... self.subtraction = SubService()

2.3. Topical Guides 15

aiomas Documentation, Release 2.0.1

>>>
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555),
→˓RootService()))
>>>
>>> # The client remains the same
>>> aiomas.run(client())
What’s 3 + 4? 7
What’s 4 - 3? 1
>>> server.close()
>>> aiomas.run(server.wait_closed())

What makes adding sub-services to classes a bit more complicated is the fact that classes define the
service hierarchy but you use instances for the actual RPC servers. That’s why you first need to declare
at class level which attributes will hold sub-services and then actually add these sub-services in the class’
__init__().

You can also manually compose hierarchies with the router’s add() and set_sub_router() meth-
ods. These methods give you a bit more flexibility to create service hierarchies on-the-fly:

>>> @aiomas.expose
... def add(a, b):
... return a + b
...
>>> # A Sub-service for addition
>>> adding_service = aiomas.rpc.ServiceDict({
... 'add': add,
... })
>>>
>>> # A Sub-service for subtraction
>>> class SubService:
... router = aiomas.rpc.Service()
...
... @aiomas.expose
... def sub(self, a, b):
... return a - b
...
>>> class RootService:
... # In contrast to the last example, we don't declare any sub-
→˓services:
... router = aiomas.rpc.Service()
...
... def __init__(self):
... # Add a sub-services via the router's "add()" method:
... self.addition = adding_service
... self.router.add('addition')
...
... # Add a sub-service via the router's "set_sub_router()" method:
... self.subtraction = SubService()
... self.router.set_sub_router(self.subtraction.router,
→˓'subtraction')
>>>
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555),
→˓RootService()))
>>>
>>> # The client remains the same

16 Chapter 2. Contents:

aiomas Documentation, Release 2.0.1

>>> aiomas.run(client())
What’s 3 + 4? 7
What’s 4 - 3? 1
>>> server.close()
>>> aiomas.run(server.wait_closed())

The method add() looks the associated object has an attribute with the specified name that holds the
sub services. That service is then exposed via the same name.

Using the method set_sub_router(), you can set any router as a sub-router and expose it via the
specified name. This provides the most flexibility for building service hierarchies.

Bi-directional RPC: How to allow callbacks from server to client

Aiomas supports bi-directional RPC. That means that not only can a client call server methods, but a
server can also call client methods.

For uni-directional RPC, the server specifies an RPC services and a client gets a proxy to it when it
makes a connection to the server. For bi-directional RPC, you also need to define a service for your
client. The client can pass its service instance as argument of an RPC to the server. The server will then
receive a proxy to that service, that it can use to make calls back to the client.

That works because objects with a router attribute that is an RPC router can be serialized and be sent
to the peer where they get deserialized to an RPC proxy object.

Let’s look at an example to see how it works. The first example uses class-based services:

>>> import aiomas
>>>
>>>
>>> class Client:
... # The client needs to be marked as RPC service:
... router = aiomas.rpc.Service()
...
... def __init__(self, name):
... self.name = name
...
... async def run(self):
... # When we open a connection, we need to pass the service
→˓instance
... # ("self" in this case) so that a background task for it can be
... # started:
... rpc_con = await aiomas.rpc.open_connection(('localhost', 5555),
... rpc_service=self)
...
... # We can now pass the service to the server when we call one
→˓of its
... # methods:
... rep = await rpc_con.remote.server_method(self)
... print('Server reply:', rep)
...
... await rpc_con.close()
...
... # This method is exposed to the server:
... @aiomas.expose
... def get_client_name(self):

2.3. Topical Guides 17

aiomas Documentation, Release 2.0.1

... return self.name
>>>
>>>
>>> class Server:
... router = aiomas.rpc.Service()
...
... @aiomas.expose
... async def server_method(self, client_proxy):
... # When a client passes a reference to its service, we'll
→˓receive it as
... # a proxy object which we can use to call a client method:
... client_name = await client_proxy.get_client_name()
... return 'Client name is "%s"' % client_name
>>>
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555),
→˓Server()))
>>>
>>> aiomas.run(Client('Monty').run())
Server reply: Client name is "Monty"
>>>
>>> server.close()
>>> aiomas.run(server.wait_closed())

Bi-directional RPC works with class-based as well as dict-based services. Furthermore, if your server
or client provide a hierarchy of services, you can not only pass the root service but also any of its
sub-services as function arguments.

How to handle remote exceptions

If an RPC raises an error, aiomas wraps it with a RemoteException and forwards it to the caller. It
also provides you the source (peer name) of the exception and its original traceback:

>>> @aiomas.expose
... def fail_badly():
... raise ValueError('"spam" is not a number')
>>>
>>> service = aiomas.rpc.ServiceDict({'fail_badly': fail_badly})
>>>
>>> async def client():
... rpc_con = await aiomas.rpc.open_connection(('127.0.0.1', 5555))
... try:
... await rpc_con.remote.fail_badly()
... except aiomas.RemoteException as exc:
... print('Origin:', exc.origin)
... print('Traceback:', exc.remote_traceback)
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('127.0.0.1', 5555),
→˓service))
>>>
>>> aiomas.run(client())
Origin: ('127.0.0.1', 5555)
Traceback: Traceback (most recent call last):

...
ValueError: "spam" is not a number

18 Chapter 2. Contents:

aiomas Documentation, Release 2.0.1

>>> server.close()
>>> aiomas.run(server.wait_closed())

It is currently not possible to forward the original exception instance, because the caller might not have
the required code available (However, I won’t rule out the possibility that I might eventually implement
this).

How to get a list of connected clients

An RPC service on the server side does not know if or when a new client connects. However, you
can pass a client connected callback to aiomas.rpc.start_server() that cats called once for
each new connection. Its only argument is the RpcClient for that connection. You can uses this, for
example, to close the connection with the client or call the client’s exposed methods (if there are some).

>>> service = aiomas.rpc.ServiceDict({})
>>>
>>> async def client():
... rpc_con = await aiomas.rpc.open_connection(('127.0.0.1', 5555))
... await rpc_con.close()
>>>
>>> def client_connected_cb(rpc_client):
... print('Client connected:', rpc_client)
>>>
>>> server = aiomas.run(aiomas.rpc.start_server(('127.0.0.1', 5555),
→˓service,
... client_connected_cb))
>>>
>>> aiomas.run(client())
Client connected: <aiomas.rpc.RpcClient object at 0x...>
>>> server.close()
>>> aiomas.run(server.wait_closed())

How to handle connection losses

For many reasons, the connection between two endpoints can be lost at any time.

If you are in a coroutine and actively doing RPC, you will get a ConnectionResetError thrown
into your coroutine if the connection drops:

>>> import aiomas
>>>
>>>
>>> async def client():
... rpc_con = await aiomas.rpc.open_connection(('localhost', 5555))
... # The server will close the connection when we make the following
→˓call:
... try:
... await rpc_con.remote.close_connection()
... except ConnectionResetError:
... print('Connection lost :(')
>>>
>>>
>>> class Server:

2.3. Topical Guides 19

https://docs.python.org/3/library/exceptions.html#ConnectionResetError

aiomas Documentation, Release 2.0.1

... router = aiomas.rpc.Service()

...

... def __init__(self):

... self.clients = []

...

... def client_connected(self, client):

... """*Client connected cb.* that adds new clients to ``self.
→˓clients``"""
... self.clients.append(client)
...
... @aiomas.expose
... async def close_connection(self):
... """Close all open connections and remove them from ``self.
→˓clients``."""
... while self.clients:
... client = self.clients.pop()
... await client.close()
>>>
>>> server_service = Server()
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555),
... server_service,
... server_service.client_
→˓connected))
>>>
>>> aiomas.run(client())
Connection lost :(
>>>
>>> server.close()
>>> aiomas.run(server.wait_closed())

If you only serve an RPC service, it gets a little bit more complicated, because RPC services are not
connection-aware. However, aiomas.rpc.RpcClient.on_connection_reset() lets you
register a callback that gets called when the connection is lost. (You get an instance of RpcClient as
return value from open_connection() or via start_server()’s client connected callback.)

In the following example, the server again has a list of connected clients. But this time, the client
disconnects and the server removes the closed connection from its list of clients:

>>> import aiomas
>>>
>>>
>>> async def client():
... rpc_con = await aiomas.rpc.open_connection(('localhost', 5555))
... await rpc_con.close()
>>>
>>>
>>> class Server:
... router = aiomas.rpc.Service()
...
... def __init__(self):
... self.clients = []
...
... def client_connected(self, client):
... # Register a callback that removes the client from our list
... # when it disconnects:
... def remove_client(exc):
... print('Client disconnected :(')

20 Chapter 2. Contents:

aiomas Documentation, Release 2.0.1

... self.clients.remove(client)

...

... client.on_connection_reset(remove_client)

... print('Client connected :)')

... self.clients.append(client)
>>>
>>> server_service = Server()
>>> server = aiomas.run(aiomas.rpc.start_server(('localhost', 5555),
... server_service,
... server_service.client_
→˓connected))
>>>
>>> aiomas.run(client())
Client connected :)
Client disconnected :(
>>>
>>> server.close()
>>> aiomas.run(server.wait_closed())

2.3.3 The channel layer

The channel layer is aiomas’ lowest layer of abstraction. It lets you send and receive complete messages.
In contrast to asyncio’s built-in stream protocol which just sends byte strings, messages are JSON-
encoded*0 data (which is a lot more convenient).

Here is a minimal example that shows how the Channel can be used:

>>> import aiomas
>>>
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... channel = await aiomas.channel.open_connection(('localhost', 5555))
... rep = await channel.send('ohai')
... print(rep)
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.reply('cya')
... await channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(('localhost', 5555),
→˓handle_client))
>>> aiomas.run(client())
ohai
cya

0 Actually, whether JSON is used for encoding, depends on the codec that the channel uses. JSON is the default, but you
can also use MsgPack or something else. At the bottom of this document, there’s a section explaining aiomas’ message format
in detail.

2.3. Topical Guides 21

https://docs.python.org/3/library/asyncio-stream.html

aiomas Documentation, Release 2.0.1

>>> server.close()
>>> aiomas.run(server.wait_closed())

A communication channel has two sides: The client side is created and returned by
open_connection(). For each client connection, the server creates a Channel instance and starts
a new background task of the client connected callback (client_connected_cb) to which it passes that
channel instance.

Both, the client and server side, can send and receive messages. In the example above, the client starts to
send a request and the server side waits for incoming requests. A request has a content attribute which
holds the actual message. To send a reply, you can either use Request.reply() or Request.
fail(). Channel.send() and Request.reply() take any data that the channel’s codec can
serialize (e.g., strings, numbers, lists, dicts, . . .). Request.fail() takes an exception instance which
is raised at the requesting side as RemoteException, as the following example demonstrates:

>>> import aiomas
>>>
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... channel = await aiomas.channel.open_connection(('localhost', 5555))
... try:
... rep = await channel.send('ohai')
... print(rep)
... except aiomas.RemoteException as e:
... print('Got an error:', str(e))
... finally:
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.fail(ValueError(42))
... await channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(('127.0.0.1', 5555),
→˓handle_client))
>>> aiomas.run(client())
ohai
Got an error: Origin: ('127.0.0.1', 5555)
ValueError: 42

>>> server.close()
>>> aiomas.run(server.wait_closed())

These are the basics of the channel layer. The following sections answer some detail questions.

How can I use and another codec?

In order to use another codec as the default JSON one, just pass the corresponding codec class (e.g.,
MsgPack to open_connection() and start_server():

22 Chapter 2. Contents:

aiomas Documentation, Release 2.0.1

>>> import aiomas
>>>
>>> CODEC = aiomas.codecs.MsgPack
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... channel = await aiomas.channel.open_connection(('localhost', 5555),
... codec=CODEC)
... rep = await channel.send('ohai')
... print(rep)
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.reply('cya')
... await channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(('localhost', 5555),
→˓handle_client,
... codec=CODEC))
>>> aiomas.run(client())
ohai
cya
>>> server.close()
>>> aiomas.run(server.wait_closed())

Note, that the codecs aiomas.codecs.MsgPack and aiomas.codecs.MsgPackBlosc are not
available by default but have to be explicitly enabled.

How can I serialize custom data types?

Both, open_connection() and start_server() take a list of extra_serializers. Such a serial-
izer is basically a function returning a three-tuple (type, serialize, deserialize). You can find more details
in the codecs guide. Here is just a simple example:

>>> import aiomas
>>>
>>>
>>> class MyType:
... """Our serializable type."""
... def __init__(self, value):
... self.value = value
...
... def __repr__(self):
... return '%s(%r)' % (self.__class__.__name__, self.value)
>>>
>>>
>>> def serialize_mytype(obj):
... """Return a JSON serializable version "MyType" instances."""
... return obj.value

2.3. Topical Guides 23

aiomas Documentation, Release 2.0.1

>>>
>>>
>>> def deserialize_mytype(value):
... """Make a "MyType" instance from *value*."""
... return MyType(value)
>>>
>>>
>>> def mytype_serializer():
... return (MyType, serialize_mytype, deserialize_mytype)
>>>
>>>
>>> EXTRA_SERIALIZERS = [mytype_serializer]
>>>
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... channel = await aiomas.channel.open_connection(
... ('localhost', 5555), extra_serializers=EXTRA_SERIALIZERS)
... rep = await channel.send(['ohai', MyType(42)])
... print(rep)
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.reply(MyType('cya'))
... await channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(('localhost', 5555),
→˓handle_client,
... extra_
→˓serializers=EXTRA_SERIALIZERS))
>>> aiomas.run(client())
['ohai', MyType(42)]
MyType('cya')
>>> server.close()
>>> aiomas.run(server.wait_closed())

A shorter version for common cases is using the aiomas.codecs.serializable() decorator:

>>> import aiomas
>>>
>>>
>>> @aiomas.codecs.serializable
... class MyType:
... """Our serializable type."""
... def __init__(self, value):
... self.value = value
>>>
>>>
>>> EXTRA_SERIALIZERS = [MyType.__serializer__]
>>>
>>>

24 Chapter 2. Contents:

aiomas Documentation, Release 2.0.1

>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... channel = await aiomas.channel.open_connection(
... ('localhost', 5555), extra_serializers=EXTRA_SERIALIZERS)
... rep = await channel.send(['ohai', MyType(42)])
... print(rep)
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.reply(MyType('cya'))
... await channel.close()
>>>
>>>
>>> server = aiomas.run(aiomas.channel.start_server(('localhost', 5555),
→˓handle_client,
... extra_
→˓serializers=EXTRA_SERIALIZERS))
>>> aiomas.run(client())
['ohai', MyType(value=42)]
MyType(value='cya')
>>> server.close()
>>> aiomas.run(server.wait_closed())

How can I bind a server socket to a random port?

You cannot ask your OS for an available port but have to try a randomly chosen port until you succeed:

>>> import errno
>>> import random
>>>
>>> max_tries = 100
>>> port_range = (49152, 65536)
>>>
>>> async def random_server(host, port_range, max_tries):
... for i in range(max_tries):
... try:
... port = random.randrange(*port_range)
... server = await aiomas.channel.start_server(
... (host, port), handle_client)
... except OSError as oe:
... if oe.errno != errno.EADDRINUSE:
... # Re-raise if not errno 48 ("address already in use")
... raise
... else:
... return server, port
... raise RuntimeError('Could not bind server to a random port.')
>>>
>>> server, port = aiomas.run(random_server('localhost', port_range, max_
→˓tries))
>>> server.close()
>>> aiomas.run(server.wait_closed())

2.3. Topical Guides 25

aiomas Documentation, Release 2.0.1

Connection timeouts / Starting clients before the server

Sometimes, you need to start a client before the server is started. Therefore, the function
open_connection() lets you specify a timeout. It repeatedly retries to connect until timeout sec-
onds have passed. By default, timeout is 0 which means there is only one try.

>>> import asyncio
>>> import aiomas
>>>
>>>
>>> async def client():
... """Client coroutine: Send a greeting to the server and wait for a
... reply."""
... # Try to connect for 1s:
... channel = await aiomas.channel.open_connection(('localhost', 5555),
... timeout=1)
... rep = await channel.send('ohai')
... print(rep)
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle a client connection."""
... req = await channel.recv()
... print(req.content)
... await req.reply('cya')
... await channel.close()
>>>
>>>
>>> # Start the client in background, ...
>>> t_client = asyncio.async(client())
>>> # wait 0.5 seconds, ...
>>> aiomas.run(asyncio.sleep(0.5))
>>> # and finally start the server:
>>> server = aiomas.run(aiomas.channel.start_server(('localhost', 5555),
→˓handle_client))
>>> aiomas.run(t_client)
ohai
cya
>>> server.close()
>>> aiomas.run(server.wait_closed())

How exactly do messages look like?

This section explains how aiomas messages look and how they are constructed. You can easily imple-
ment this protocol in other languages, too, and write programs that can communicate with aiomas.

Network messages consists of a four bytes long header and a payload of arbitrary length. The header
is an unsigned integer (uint32) in network byte order (big-endian) and stores the number of bytes in the
payload. The payload itself is an encoded†0 list containing the message type, a message ID and the

0 Depending on the codec you use, the payload may be a UTF-8 encoded JSON string (json.dumps().
encode('utf-8')) (this is the default), a MsgPack list (msgpack.packb()), or whatever else the codec produces.

26 Chapter 2. Contents:

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/stdint.h.html#tag_13_47_03_01
https://json.org/
https://msgpack.org/

aiomas Documentation, Release 2.0.1

actual content:

Messages send between two peers must follow the request-reply pattern. That means, every request that
one peer makes must be responded to by the other peer. Request use the message type 0, replies use 1
for success or 2 to indicate a failure. The message ID is an integer that is unique for every request that
a network socket makes. Replies (no matter if successful or failed) need to use the message ID of the
corresponding request.

On the channel layer, the content of a request can be anything. On the RPC level, it a three-tuple
(function_path, args, kwargs), e.g.:

[function, [arg0, arg1, ...], {kwarg0: val0, kwarg1: val1}]

Thereby, function is always a string containing the name of an exposed functions; if you use nested
services, sub-services and the function names are separated by slashes (/) as in URLs. The type of the
arguments and keyword arguments may vary depending on the function.

The content types of replies are the same for both, the channel layer and the RPC layer. Normal (suc-
cessful) replies can be anything. The content of failure replies are strings with the error message and/or
a stack trace.

Note: If the JSON codec is used, aiomas messages are compatible with simpy.io (and therewith with
the co-simulation framework mosaik, too).

2.3.4 Codecs for message serialization

Codecs are used to convert the objects that you are going to send over the network to bytes and the bytes
that you received back to the original objects. This is called serialization and deserialization.

A codec specifies, how the text representation of a certain object looks like. It can also recreate the
object based on its text representation.

For example, the JSON encoded representation of the list ['spam', 3.14] would be b'["spam",
3.14]'.

Many different codecs exists. Some of the most widely used ones are JSON, XML or MsgPack. They
mainly differ in their:

• verbosity or compactness: How many bytes are needed to encode an object?

• performance: How fast can they encode and decode objects?

• readability: Can the result easily be read by humans?

• availability on different platforms: For which programming languages do libraries or bindings
exist?

• security: Is it possible to decode bytes to arbitrary objects?

2.3. Topical Guides 27

https://en.wikipedia.org/wiki/Request-response
https://docs.python.org/3/glossary.html#term-argument
https://bitbucket.org/simpy/simpy.io
https://mosaik.offis.de
https://json.org/
https://www.w3.org/XML/
https://msgpack.org/

aiomas Documentation, Release 2.0.1

Which codec is the best very much depends on your specific requirements. An evaluation of different
codecs and serialization formats is beyond the scope of this document, though.

Which codecs does aiomas support?

Aiomas implements the following codecs:

• aiomas.codecs.JSON

• aiomas.codecs.MsgPack

• aiomas.codecs.MsgPackBlosc

JSON

We chose JSON as default, because it is available through the standard library (no additional dependen-
cies) and because it is relatively efficient (both, in terms of performance and serialization results). It is
also widely used and supported as well as human readable.

MsgPack

The MsgPack codec can be more efficient but requires you to compile a C extension. For this reason, it
is not enabled by default but available as an extra feature. To install it run:

$ pip install -U aiomas[mp] # Install aiomas with MsgPack
$ # or
$ pip install -U aiomas msgpack-python

MsgPackBlosc

If you want to send long messages, e.g., containing large NumPy arrays, further compressing the results
of MsgPack with Blosc can give you additional performance. To enable it, install:

$ pip install -U aiomas[mpb] # Install aiomas with MsgPack-Blosc
$ # or
$ pip install -U aiomas msgpack-python blosc

Which codec should I use?

You should always start with the default JSON codec. It should usually be “good enough”.

If your messages contain large chunks of binary data (e.g., serialized NumPy arrays), you should evaluate
MsgPack, because it natively serializes objects to bytes.

MsgPackBlosc may yield better performance then MsgPack if your messages become very large and/or
you really send a lot of messages. The codec can decrease the memory consumption of your program
and reduce the time it takes to send a message.

28 Chapter 2. Contents:

http://blosc.org/

aiomas Documentation, Release 2.0.1

Note: All codecs live in the aiomas.codecs package but, for your convenience, you can also import
them directly from aiomas.

How do I use codecs?

As a normal user, you don’t have to interact with codecs directly. You only need to pass the class object
of the desired codec as a parameter to some functions and classes if you don’t want to use the default.

Which object types can be (de)serialized?

All codecs bundled with aiomas support serializing the following types out of the box:

• NoneType

• bool

• int

• float

• str

• list / tuple

• dict

MsgPack and MsgPackBlosc also support bytes.

Note: JSON deserializes both, lists and tuples, to lists. MsgPack on the other hand deserializes them
to tuples.

RPC connections support serializing arbitrary objects with RPC routers which get deserialized to Proxies
for the corresponding remote object. See Bi-directional RPC: How to allow callbacks from server to
client for details.

In addition, connections made by a Container support Arrow date objects.

How do I add serializers for additional object types?

All functions and classes that accept a codec parameter also accept an optional list of extra_serializers.
The list must contain callables with the following signature: callable() -> tuple(type,
serialization_func, deserialisation_func).

The type is a class object. The serializer will be applied to all direct instances of that class but not to
subclasses. This may change in the future, however. The only exception is a serializer for object
which, if specified, serves as a fall-back for objects that couln’t be serialized other ways (this is used by
RPC connections to serialize objects with an RPC router).

The serializer_func is a callable with one argument – the object to be serialized – and needs to return an
object that is serializable by the base codec (e.g., a str, bytes or dict).

2.3. Topical Guides 29

https://arrow.readthedocs.io/en/latest/

aiomas Documentation, Release 2.0.1

The deserializer_func has the same signature, but the argument is the serialized object and the return
value a deserialized equivalent of the original object. Usually, “equivalent” means “an object of the
same type as the original”, but objects with an RPC router, for example, get deserialized to proxies for
the original objects in order to allow remote procedure calls on them.

Here is an example that shows how a serializer for NumPy arrays might look like. It will only work for
the MsgPack and MsgPackBlosc codecs, because the dict returned by _serialize_ndarray() contains byte
strings which JSON cannot handle:

import aiomas
import numpy as np

def get_np_serializer():
"""Return a tuple *(type, serialize(), deserialize())* for NumPy arrays
for usage with an :class:`aiomas.codecs.MsgPack` codec.

"""
return np.ndarray, _serialize_ndarray, _deserialize_ndarray

def _serialize_ndarray(obj):
return {

'type': obj.dtype.str,
'shape': obj.shape,
'data': obj.tostring(),

}

def _deserialize_ndarray(obj):
array = np.fromstring(obj['data'], dtype=np.dtype(obj['type']))
return array.reshape(obj['shape'])

Usage:
c = aiomas.Container(('localhost', 5555), codec=aiomas.MsgPack,

extra_serializers=[get_np_serializer])

How to create custom codecs

The base class for all codecs is aiomas.codecs.Codec.

Subclasses must at least implement the encode() and decode() methods.

You can use the existing codecs (e.g., JSON or MsgPack) as examples.

2.3.5 Container clocks

Clocks and time are a very important instrument and required, if your agents want to delay the execution
of a task for some time, schedule a task at a certain time or just need to define a timeout.

Usually, the real (or wall-clock) time is used for this. In some contexts, however, you need a different
notion of time – for example if you want to couple a multi-agent system with external simulators that
usually run faster than real-time.

30 Chapter 2. Contents:

aiomas Documentation, Release 2.0.1

For this reason, every agent container provides a clock via its clock attribute. The default clock is the
real-time clock that asyncio uses (AsyncioClock).

An alternative clock is the ExternalClock. The time of this clock can be set by external processes
so that the time within your agent system passes as fast (or slow) as in that external process.

The benefit of using aiomas’ clocks compared to just using what asyncio offers is, that you can easily
switch clocks (e.g., from the AsyncioClock to the ExternalClock) without touching the agents:

>>> import aiomas
>>>
>>>
>>> CLOCK = aiomas.AsyncioClock()
>>> # CLOCK = aiomas.ExternalClock('2016-01-01T00:00:00')
>>>
>>> class Sleeper(aiomas.Agent):
... async def run(self):
... # await asyncio.sleep(.5) # <-- Don't use this!
... # Depending on the clock used, this sleeps for a "real" half
... # second or whatever the ExternalClock tells you:
... await self.container.clock.sleep(.5)
>>>
>>> container = aiomas.Container.create(('127.0.0.1', 5555), clock=CLOCK)
>>> agent = Sleeper(container)
>>> aiomas.run(agent.run())
>>> container.shutdown()

(If you uncomment the ExternalClock in the example above, your program won’t terminate because
there’s no process that sets its time.)

Date/time representations

All clocks represent time as a monotonically increasing number (not necessarily with a defined initial
value) and as date/time object (for which the arrow package is used).

You can get the numeric time via the clock’s time() method. Its usage is comparable to that of
Python’s time.monotonic() function.

The method utcnow() returns an Arrow object with the current date and time in UTC.

Note: You should work with UTC dates as much as possible. Input dates with a local timezone should
be converted to UTC as early as possible. If you output dates, convert them as late as possible back to
local time.

Doing date and time calclulations in UTC saves you from a lot of bugs, i.e., when dealing with daylight-
saving times.

This blog post by Armin Ronacher and this talk by Taavi Burns provide more background to the issue.

Sleeping

The container clock provides tasks that let your agent sleep for a given amount of time or until a given
time is reached.

2.3. Topical Guides 31

https://arrow.readthedocs.io/en/latest/
https://docs.python.org/3/library/time.html#time.monotonic
https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
http://lucumr.pocoo.org/2011/7/15/eppur-si-muove/
https://www.youtube.com/watch?v=LnVkLXRIbIg

aiomas Documentation, Release 2.0.1

In order to sleep for a given time, you have to use the method sleep() with the number of seconds (as
float) that you want to sleep.

The method sleep_until() also accepts a number in seconds (which must be greater than the
current value of time()) or an Arrow date object (which must be greater than the current value of
utcnow()).

Both methods return a future which you have to await in order to actually sleep.

Scheduling tasks

Comparably to sleeping, you can schedule the future execution of a task in a given period of time or at
a given time.

The method call_in() will run the specified task after a delay dt in seconds; BaseClock.
call_at() will run the task at the specified date (either in seconds or as Arrow date). You can
only pass positional arguments to these methods, because that’s what the underlying asyncio functions
allow.

Both methods are normal functions that return a handle to the scheduled call. You can use this handle to
cancel() the scheduled execution of the task.

How to use the ExternalClock

Remember the first example which did not actually work if you used the ExternalClock? Here is a
fully working version of it:

>>> import asyncio
>>> import time
>>>
>>> import aiomas
>>>
>>>
>>> CLOCK = aiomas.ExternalClock('2016-01-01T00:00:00')
>>>
>>> class Sleeper(aiomas.Agent):
... async def run(self):
... print('Gonna sleep for 1s ...')
... await self.container.clock.sleep(1)
>>>
>>>
>>> async def clock_setter(factor=0.5):
... """Let the time pass *factor* as fast as real-time."""
... while True:
... await asyncio.sleep(factor)
... CLOCK.set_time(CLOCK.time() + 1)
>>>
>>> container = aiomas.Container.create(('127.0.0.1', 5555), clock=CLOCK)
>>>
>>> # Start the process that sets the clock:
>>> t_clock_setter = asyncio.async(clock_setter())
>>>
>>> # Start the agent an measure how long he runs in real-time:
>>> agent = Sleeper(container)
>>> start = time.monotonic()

32 Chapter 2. Contents:

https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow
https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow

aiomas Documentation, Release 2.0.1

>>> aiomas.run(agent.run())
Gonna sleep for 1s ...
>>> print('Agent process finished after %.1fs' % (time.monotonic() -
→˓start))
Agent process finished after 0.5s
>>>
>>> _ = t_clock_setter.cancel()
>>> container.shutdown()

Now that we have a background process that steps the time forward, the example actually terminates.

In scenarios where you want to couple you agent system with the clock of another system, the
clock_setter() process would not sleep but receive clock updates from that other process and
use these updates to set the agent’s clock to a new time.

If you distribute your agent system over multiple processes, make sure that you spread the clock up-
dates to all agent containers. Therefore, the Manager agent in the aiomas.subproc exposes a
set_time() method that an agent in your master process can call.

2.3.6 Testing and debugging

Here are some general rules and ideas for developing and debugging distributed systems with aiomas:

• Distributed systems are complex. Always start as simple as possible. Examine and understand the
behavior of that system. Start adding a bit more complexity. Repeat.

• I find using a debugger does not work very well with async., distributed systems, so I tend to add
a lot of logging and or print()s to my code for debugging purposes.

• Read Develop with asyncio.

• If you enable asyncio’s debug mode, aiomas also falls into debug mode. It gives you better / more
detailed exceptions in some cases. This impacts performance, so it isn’t activated always.

• Write unit and integration tests and run them as often as possible. Also check that your tests will
fail if they should.

Testing coroutines and agents with pytest

My preferred testing tool is pytest. The plug-in pytest-asyncio makes testing asyncio based programs a
lot easier.

As an introduction, I also suggest reading my articles on testing with asyncio. They are especially
helpful if you are using the channel and RPC layers. Testing agent systems is a bit “easier” (in the sense
that the tests are easier to setup). You can, of course, also look at aiomas’ test suite itself.

Here is a small example that demonstrate how you could test an agent. In this case, the agent class itself
and the tests for it are in the same module. In real life, you would have the agent and its test in separate
packages (e.g., exampleagent.py and test_exampleagent.py).

import pytest
import aiomas

#
Production code (exampleagent.py)
#

2.3. Topical Guides 33

https://docs.python.org/3/library/functions.html#print
https://docs.python.org/3/library/asyncio-dev.html
https://docs.python.org/3/library/asyncio-dev.html#asyncio-debug-mode
http://pytest.org/
https://pypi.python.org/pypi/pytest-asyncio
https://stefan.sofa-rockers.org/tag/asyncio/
https://gitlab.com/sscherfke/aiomas/tree/master/tests

aiomas Documentation, Release 2.0.1

class ExampleAgent(aiomas.Agent):
async def run(self, target_addr, num):

remote_agent = await self.container.connect(target_addr)
return (await remote_agent.service(num))

@aiomas.expose
async def service(self, val):

await self.container.clock.sleep(0.001)
return val

#
Testing code (test_exampleagent.py)
#

@pytest.yield_fixture
def container(event_loop, unused_tcp_port):

"""This fixture creates a new Container instance for every test and
→˓binds

it to a random port.

It requires the *event_loop" fixture, so every test will also have a
→˓fresh

event loop.

"""
Create container and bind its server socket to a random port:
c = aiomas.Container.create(('127.0.0.1', unused_tcp_port))

Yield the container to the test case:
yield c

Clean-up that is run after the test finished:
c.shutdown()

The "@pytest.mark.asyncio" decorator allows you do use "await"/"yield
→˓from"
directly within your test case.
#
The "container" argument tells pytest to pass the return/yield value of
→˓the
corresponding fixture to your test.
@pytest.mark.asyncio
async def test_example_agent(container):

num = 42
Start two agents:
agents = [ExampleAgent(container) for _ in range(2)]
Run the 1st one and let it connect to the 2nd one. Check the return
value of the 1st one's run() task:
res = await agents[0].run(agents[1].addr, num)
assert res == num

34 Chapter 2. Contents:

aiomas Documentation, Release 2.0.1

2.3.7 Enabling transport security (TLS)

This guide explains how you can encrypt all messages sent with aiomas. Transport layer security (TLS,
formerly known as SSL) can be applied in a similar fashion to all three layers (channel, RPC, agent) of
aiomas and the following sections will show you how.

Note: Even if you don’t have much experience with cryptography, you should be able to follow this
guide and use TLS encryption for your program.

Nonetheless, I strongly recommend you to learn the basics of it. A good read is Crypto 101, by Laurens
Van Houtven. Sean Cassidy also provides a nice overview about starting with crypto. There are also
various tutorials for setting up your own PKI (1, 2, 3, 4).

Security architecture

This guide assumes that your system is self-contained and you control all parts of it. This allows you to
use TLS 1.2 with a modern cipher and to setup a public key infrastructure (PKI) with a self-signed root
CA. All machines that you deploy your system on only thrust that CA (and ignore the CAs bundled with
your OS or web browser).

Ideally, the root CA should be created on separate, non-production machine. Depending on your security
requirements, that machine should not even be connected to the network.

You create a certificate signing request (CSR) on each production machine. You copy the CSR to your
root CA which signs it. You then copy the signed certificate back to the production machine. Ideally,
you should use an SD card for this (they are more secure than USB flash drives), but again, this depends
on your security requirements and using SSH might also work for you.

The root CA

First, you create the root CA’s private key. It should at least be 2048, or better, 4096 bits long. It should
also be encrypted with a strong passphrase:

$ openssl genrsa -aes256 -out ca.key 4096

The key should never leave the machine, except if you store it somewhere save (e.g., on an SD card).

Now you sign the key and create the root certificate. You use it together with the private key for signing
CSRs for other machines:

$ openssl req -new -x509 -nodes -key ca.key -out ca.pem -days 1000

The command above requires some input from you. The Common Name (e.g., the FQDN) that you
associate with the certificate must be different from the ones that you use for your production machine’s
CSRs. The certificate should be valid for a longer period of time than the CSRs that it signs.

Certificates for production machines

You need to create one private key and CSR on each of your production machines:

2.3. Topical Guides 35

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://www.crypto101.io/
https://www.crypto101.io/
https://www.seancassidy.me/so-you-want-to-crypto.html
https://datacenteroverlords.com/2012/03/01/creating-your-own-ssl-certificate-authority/
http://blog.gosquadron.com/use-tls
https://blog.cloudflare.com/how-to-build-your-own-public-key-infrastructure/
https://www.area536.com/projects/be-your-own-certificate-authority-with-openssl/

aiomas Documentation, Release 2.0.1

$ openssl genrsa -out device.key 4096
$ openssl req -new -key device.key -out device.csr

This time, the private key is not encrypted. Otherwise, you’d have to hard-code the password into your
source code (which would make the encryption futile) or enter it each time you start your program
(which is unfeasible for a distributed multi-agent system). The private key should still not leave the
machine; so don’t even think of putting it into version control or reusing it on another machine.

The CSR creation requires similar input as the CA certificate that you created above. As Common Name
or FQDN you should enter the address on which the machines server socket will be listening.

Copy device.csr to the root CA machine and sign it there:

$ openssl x509 -CA ca.pem -CAkey ca.key -CAcreateserial -req -in device.
→˓csr -out device.pem -days 365

The certificate will be valid for one year. You can change this if you want.

Transfer the certificate device.pem as well as copy of the CA certificate ca.pem back to the origi-
nating machine.

The device.pem will be used to authenticate that machine against other machines. ca.pem will be
used to verify other machine’s certificates when they try to authenticate themselves.

Enabling TLS for channels and RPC connections

In pure asyncio programs, you enable SSL/TLS by passing an ssl.SSLContext instance to
create_connection() and create_server().

aiomas.channel.open_connection() and aiomas.channel.start_server() (and
similarly in the aiomas.rpc module) are just wrappers for the corresponding asyncio methods and
will forward an SSLContext to them if one is provided.

Here is a minimal, commented example that demonstrate how to create proper SSL contexts:

>>> import asyncio
>>> import ssl
>>>
>>> import aiomas
>>>
>>>
>>> async def client(addr, ssl):
... """Connect to *addr* and use the *ssl* context to enable TLS.
... Send "ohai" to the server, print its reply and terminate."""
... channel = await aiomas.channel.open_connection(addr, ssl=ssl)
... reply = await channel.send('ohai')
... print(reply)
... await channel.close()
>>>
>>>
>>> async def handle_client(channel):
... """Handle client requests by printing them. Send a reply and
... terminate."""
... request = await channel.recv()
... print(request.content)
... await request.reply('cya')

36 Chapter 2. Contents:

https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/ssl.html#ssl.SSLContext

aiomas Documentation, Release 2.0.1

... await channel.close()
>>>
>>>
>>> addr = ('127.0.0.1', 5555)
>>>
>>> # Create an SSLContext for the server supporting (only) TLS 1.2 with
>>> # Eliptic Curve Diffie-Hellman and AES in Galois/Counter Mode
>>> server_ctx = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
>>> server_ctx.set_ciphers('ECDH+AESGCM')
>>> # Load the cert and key for authentication against clients
>>> server_ctx.load_cert_chain(certfile='device.pem', keyfile='device.key')
>>> # The client also needs to authenticate itself with a cert signed by
→˓ca.pem
>>> server_ctx.verify_mode = ssl.CERT_REQUIRED
>>> server_ctx.load_verify_locations(cafile='ca.pem')
>>> # Only use ECDH keys once per SSL session
>>> server_ctx.options |= ssl.OP_SINGLE_ECDH_USE
>>> # Disable TLS compression
>>> server_ctx.options |= ssl.OP_NO_COMPRESSION
>>>
>>> # Start the server.
>>> # It will use "server_ctx" to enable TLS for each connection.
>>> server = aiomas.run(aiomas.channel.start_server(addr, handle_client,
... ssl=server_ctx))
>>>
>>> # Create an SSLContext for the client supporting (only) TLS 1.2 with
>>> # Eliptic Curve Diffie-Hellman and AES in Galois/Counter Mode
>>> client_ctx = ssl.SSLContext(ssl.PROTOCOL_TLSv1_2)
>>> client_ctx.set_ciphers('ECDH+AESGCM')
>>> # The server needs to authenticate itself with a cert signed by ca.pem.
>>> # And we also want ot verify its hostname.
>>> client_ctx.verify_mode = ssl.CERT_REQUIRED
>>> client_ctx.load_verify_locations(cafile='ca.pem')
>>> client_ctx.check_hostname = True
>>> # Load the cert and key for authentication against the server
>>> client_ctx.load_cert_chain(certfile='device.pem', keyfile='device.key')
>>>
>>> # Run the client. It will use "client_ctx" to enable TLS.
>>> aiomas.run(client(addr, client_ctx))
ohai
cya
>>>
>>> # Shutdown the server
>>> server.close()
>>> aiomas.run(server.wait_closed())

As you can see, the SSL contexts used by servers and clients are slightly different. Clients should verify
that the hostname they connected to is the same as in the server’s certificate. Servers on the other hand
can set a few more options for a TLS connection.

aiomas offers two functions that create secure SSL contexts with the same settings as in the example
above – make_ssl_server_context() and make_ssl_client_context():

>>> server_ctx = aiomas.make_ssl_server_context('ca.pem', 'device.pem',
→˓'device.key')
>>> server = aiomas.run(aiomas.channel.start_server(
... addr, handle_client, ssl=server_ctx))

2.3. Topical Guides 37

aiomas Documentation, Release 2.0.1

>>>
>>> client_ctx = aiomas.make_ssl_client_context('ca.pem', 'device.pem',
→˓'device.key')
>>> aiomas.run(client(addr, client_ctx))
ohai
cya
>>> server.close()
>>> aiomas.run(server.wait_closed())

TLS configuration for agent containers

An agent Container has its own server socket and creates a number of client sockets when it connects
to other containers.

You can easily enable TLS for both socket types by passing an SSLCerts instance to the container.
This is a named tuple with the filenames of the root CA certificate, the certificate for authenticating the
container as well as the corresponding private key:

>>> import aiomas
>>>
>>> sslcerts = aiomas.SSLCerts('ca.pem', 'device.pem', 'device.key')
>>> c = aiomas.Container.create(('127.0.0.1', 5555), ssl=sslcerts)
>>>
>>> # Start agents and run your system
>>> # ...
>>>
>>> c.shutdown()

The container will use the make_ssl_server_context() and
make_ssl_client_context() functions to create the necessary SSL contexts.

If you need more flexibility, you can alternatively pass a tuple with two SSL contexts (one for the server
and one for client sockets) to the container:

>>> import aiomas
>>>
>>> server_ctx = aiomas.make_ssl_server_context('ca.pem', 'device.pem',
→˓'device.key')
>>> client_ctx = aiomas.make_ssl_client_context('ca.pem', 'device.pem',
→˓'device.key')
>>> c = aiomas.Container.create(('127.0.0.1', 5555), ssl=(server_ctx,
→˓client_ctx))
>>>
>>> # Start agents and run your system
>>> # ...
>>>
>>> c.shutdown()

38 Chapter 2. Contents:

aiomas Documentation, Release 2.0.1

2.4 Developer Docs

2.4.1 Development Setup

This documents explains how to setup a virtual environment for developing aiomas, how to build the
documentation and how to run its test suite.

Setup

You should use at latest version of Python 3 for your devleopment, but at least Python 3.4.

Create a fresh virtualenv with that interpreter and activate it. You can then install all development
dependencies with pip:

(aiomas)$ pip install -r requirements-setup.txt

This installs the newest version of everything. If you should into problems with this, you can also install
a well-tested set of all dependencies:

(aiomas)$ pip install -r requirements.txt

Note: If you are on Windows, you might want to download msgpack and blosc wheel packages from
Christoph Gohlke’s website instead of compiling them on your own.

Apart from installing aiomas in editable mode, it also provides you the following list of tools:

• Flake8: for checking code quality and style guides

• Pytest: for running the tests and measuing the test coverage inside your virtualenv

• Sphinx: for building the documentation

• Tox: for running the test suite with all supported Python versions

• Twine: for uploading packages to PyPI

Building the docs

Sphinx is used to build the docs. You can find ReST source files in the docs/ folder. The output folder
for HTML documentation (and other formats) is docs/_build/. The online documentation on Read
the Docs is everytime you push something to Bitbucket.

When once you’ve set-up your venv, you can build aiomas’ documentation this way:

(aiomas)$ cd docs/
(aiomas)$ make html # For quick builds
(aiomas)$ make clean html # For a clean/full build

For Windows user, there is a make.bat which does the same.

You can also let Sphinx check all external links:

2.4. Developer Docs 39

https://www.dabapps.com/blog/introduction-to-pip-and-virtualenv-python/
https://www.lfd.uci.edu/~gohlke/pythonlibs/#msgpack
https://www.lfd.uci.edu/~gohlke/pythonlibs/#blosc
https://www.lfd.uci.edu/~gohlke/pythonlibs/
https://pip.pypa.io/en/stable/reference/pip_install/?highlight=editable#editable-installs
https://aiomas.readthedocs.io/
https://readthedocs.org/
https://readthedocs.org/
https://gitlab.com/sscherfke/aiomas/

aiomas Documentation, Release 2.0.1

(aiomas)$ make linkcheck

You can get a full list of make targets by running make help.

Running the tests

Aiomas uses pytest with the plugins pytest-asyncio and pytest-cov as testing tool. Its configuration is
stored in the [pytest] sectionin of setup.cfg.

You can run all tests by executing:

(aiomas)$ py.test

By default, all doctests in README.rst and docs/, all examples in examples/ and all tests in
tests/ are run.

In order to measure the test coverage, run pytest with the following arguments:

(aiomas)$ py.test --cov=src/ --cov-report=html

This will produces a folder htmlcov with the coverage results.

You can use tox to run the test suite on all supported Python interpreters. It also runs flake8 to do some
code quality and style checks. Currently, you need to have python3.4 and python3.5 available in
your path. Running tox is then easy:

(aiomas)$ tox
[...]
________ summary ________

py34: commands succeeded
py35: commands succeeded
docs: commands succeeded
flake8: commands succeeded
congratulations :)

If you cannot / do not want to install all the Python versions, you can limit tox to run only a selected
environment:

(aiomas)$ tox -e py35 # Only run tests on Python 3.5
(aiomas)$ tox -e flake8 # Only run flake8 checks

2.4.2 How to Contribute

Every open source project lives from the generous help by contributors that sacrifice their time and
aiomas is no different.

Here are a few guidelines to get you started:

• Try to limit each pull request to one change only.

• Run the tests before you commit. The docs explain how to setup a development environment and
run the tests.

• No contribution is too small; please submit as many fixes for typos and grammar bloopers as you
can!

40 Chapter 2. Contents:

https://pytest.org/
https://pypi.python.org/pypi/pytest-asyncio
https://pypi.python.org/pypi/pytest-cov
https://aiomas.readthedocs.io/en/latest/development/dev_setup.html

aiomas Documentation, Release 2.0.1

• Don’t break backward compatibility unless absolutely necessary.

• Always add tests and docs for your code.

This is a hard rule; patches with missing tests or documentation won’t be merged.

• Write good test docstrings.

• Obey PEP 8 and PEP 257. Run flake8.

Thank you for considering to contribute to aiomas!

2.4.3 Change log

2.0.1 – 2017-12-29

• [CHANGE] Restore support for Python 3.5 so that the docs on Read the Docs build again.

2.0.0 – 2017-12-28

• [BREAKING] Converted to f-Strings and async/await syntax. The minimum required Python
versions are now Python 3.6 and PyPy3 5.10.0.

• [BREAKING] Removed aiomas.util.async() and aiomas.util.create_task().

• [CHANGE] Move from Bitbucket and Mercurial to GitLab and Git.

• [FIX] Adjust to asyncio changes and explicitly pass references to the current event loop where
necessary.

1.0.3 – 2016-05-09

• [FIX] The function asyncio.ensure_future() called in aiomas.util.
create_task() was introduced in Python 3.4.4 and is not available in Python 3.4.0–3.4.3
(which is, e.g., used on Ubuntu 14.04). There is now a fallback to asyncio.async() if
asyncio.ensure_future() is not available.

1.0.2 – 2016-05-04

• [CHANGE] aiomas.util.create_task() replaces aiomas.util.async().
aiomas.util.async() is now deprecated and will be removed in aiomas 2 and when a new
Python release no longer allows to use async as name.

• [NEW] Added developer documentation.

1.0.1 – 2016-04-22

• [BREAKING CHANGE] Renamed the async argument for Container.create() and
Container.shutdown() to as_coro. Realized to late that it will come to name clashes with
the async keyword added to Python 3.5. I assume that no one really uses this project yet, thus I
mark it as bug-fix relaese rather then bumping aiomas to v2.

2.4. Developer Docs 41

https://jml.io/pages/test-docstrings.html
https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0257/
https://docs.python.org/3/library/asyncio-future.html#asyncio.ensure_future
https://docs.python.org/3/library/asyncio-future.html#asyncio.ensure_future

aiomas Documentation, Release 2.0.1

1.0.0 – 2016-04-18

• [BREAKING CHANGE] channel.Channel.close() and rpc.RpcClient.close()
are now coroutines.

• [BREAKING CHANGE] rpc.start_server() and rpc.open_connection() now
take RPC services instead of routers. Services are the objects that contain the
routers. To fix your code, replace things like router=MyService().router with
rpc_service=MyService().

• [CHANGE] channel.Channel.send() now raises a ValueError if a message is too long
to be send. A message is too long if its length does not fit into a 32bit unsigned integer.

• [NEW] The various connect functions now accept a timeout parameter. If it is set to a number >
0 (or to None) it tries to connect for the specified amount of time (or indefinitely) before raise a
ConnectionRefusedError. This way, you can start clients before (or at the “same” time)
you start the server.

• [NEW] You can register a callback to rpc.RpcClient that gets called when the network con-
nection is reset. This helps reacting to connection losses if the rpc.RpcClient only has an
RPC service running but is not actively performing any task.

• [NEW] Added a SerializationError that gets raised if a message cannot be serialized.

• [NEW] Added a subproc module that helps you to spawn subprocesses for agents. Each sub-
process will have a container and a managing agent that can be remote-controlled to start more
agents within its container.

• [NEW] Added a LocalQueue transport that sends messages of multiple connections (e.g., from
different agent containers) within a process in a deterministic order. This should make debugging,
tuning and testing easier.

• [NEW] A lot of documentation.

0.6.1 – 2015-10-21

• [CHANGE] Agent now also accepts subclasses of Container (issue #17).

• [FIX] issue #16: Container API docs no correctly refer to the “create()” method.

0.6.0 – 2015-09-18

• [CHANGE] Asserted Python 3.5 compatibility and converted all examples to use the new async
and await keywords.

• [CHANGE] Container.__init__() no longer contains an asynchronous task. Instead, you
now need to call the factory function Container.create().

• [CHANGE] Removed Container.spawn(). You can now directly instantiate agent instances
but you still need to pass a reference to the agent’s container to Agent.__init__().

• [NEW] AiomasError is the new base class for all errors in aiomas (issue #15).

• [NEW] Documentation tests now have their own tox environment (tox -e docs).

• [NEW] Added support and docs for TLS encryption.

42 Chapter 2. Contents:

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError
https://bitbucket.org/sscherfke/aiomas/issues/17/
https://bitbucket.org/sscherfke/aiomas/issues/16/
https://bitbucket.org/sscherfke/aiomas/issues/15/
https://aiomas.readthedocs.io/en/latest/guides/tls.html

aiomas Documentation, Release 2.0.1

• [NEW] Added some documentation about the channel layer.

0.5.0 – 2015-06-27

• [CHANGE] Agent addresses now start with tcp:// or ipc:// (for Unix domain sockets) instead of
just agent://.

• [CHANGE] Using dictionaries as routers is now easier (issue #13).

• [CHANGE] Renamed the rpc attribute for routers to router.

• [CHANGE] Renamed Agent.name to Agent.addr and improved agent’s str representation.

• [CHANGE] Updated and improved str and repr for agents, proxies and agent proxies.

• [CHANGE] Codec.add_serializer() now raises an exception if there is already a serial-
izer for a given type (issue #9).

• [NEW] Added aiomas.util.run() (and an aiomas.run() alias)
which are shortcuts for loop = asyncio.get_event_loop();
loop_run_{until_complete|forever}().

• [NEW] Added a @serializable decorator to aiomas.codecs which simplifies making a
type serializable.

• [NEW] Documentation: Overview, Agents, Codecs, Clocks (draft), Testing (draft).

• [NEW] Container.connect() checks if an agent exists in the remote container.

• [NEW] Proxies are now cached with weakrefs.

• [FIX] issue #12: Router.path reversed the order of path components.

• [FIX] Fixed a bug where concurrent calls to Container.connect() would lead to multiple
connections to the same address.

0.4.0 – 2015-04-15

• [CHANGE] Channel and Container no longer take codec instances but classes. They also
accept a list of factories for extra serializers.

• [CHANGE] The rpc.open_connection() and rpc.start_server() methods no
longer accept the add_to parameter. rpc.start_server() accept a client_connected_cb
instead, which should be a function with one argument, the RpcClient for each new connection.
rpc.open_connection() already returns the RpcClient().

• [CHANGE] Renamed the package extras from MsgPack to mp and from MsgPackBlosc to mpb to
work around a bug in pip/setuptools. They are also shorter now. ;-)

• [NEW] RpcClient no has a channel and a service attribute.

• [NEW] Improved error message for LookupError.

• [FIX] issue #8: Every channel instance created by channel.start_server() now has a
separate codec instance to avoid problems with some serializers.

2.4. Developer Docs 43

https://bitbucket.org/sscherfke/aiomas/issues/13/
https://bitbucket.org/sscherfke/aiomas/issues/9/
https://bitbucket.org/sscherfke/aiomas/issues/12/
https://bitbucket.org/sscherfke/aiomas/issues/8/

aiomas Documentation, Release 2.0.1

0.3.0 – 2015-03-11

• [CHANGE] Removed LocalProxies and everything related to it because they caused several prob-
lems. That means that agents within a single container now also communicate via TCP sockets.
Maybe something similar but more robust will be reintroduced in a later release.

• [CHANGE] Channel.send() is no longer a coroutine. It returns a Future instead.

• [CHANGE] Removed Container.get_url_for() which didn’t (and couldn’t) work as I
originally assumed.

• [CHANGE] JSON is now the default codec. msgpack and blosc don’t get installed by de-
fault. This way, we only have pure Python dependencies for the default installation which is
very handy if you are on Windows. You can enable the other codecs via pip install -U
aiomas[MsgPack] or pip install -U aiomas[MsgPackBlosc].

• [NEW] Support for Python 3.4.0 and 3.4.1 (yes, Python 3.3 with asyncio works, too, but I’ll drop
support for it as soon as it becomes a burden) (Resolves issue #6).

• [NEW] ExternalClock accepts a date string or an Arrow object to set the inital date and time.

• [NEW] aiomas.util.async() which is like asyncio.async() but registers a callback
that instantly captures and raises exceptions, instead of delaying them until the task gets garbage
collected.

• [NEW] The agent container adds a serializer for Arrow dates.

• [NEW] Proxy implements __eq__() and __hash__(). Two different proxy objects sharing
the same channel and pointing to the same remote function will no appear to be equal. This makes
it less error prone to use Proxy instances as keys in dictionaries.

• [NEW] Updated and improved flow-control for Channel and its protocol.

• [NEW] Improved error handling if the future returned by Channel.send() is triggered or
cancelled by an external party (e.g., by going out of scope). If asyncio’s DEBUG mode is enabled,
you will even get more detailed error messages.

• [NEW] MessagePackBlosc codec. It uses msgpack to serialize messages and blosc to com-
press them. It can massively reduce the message size and consumes very little CPU time.

• [NEW] A Contract Net example (https://gitlab.com/sscherfke/aiomas/blob/master/examples/
agent_contractnet.py)

• [NEW] __str__() representations for agents, containers and codecs (fixes issue #5).

• [FIX] issue #7: Improved error handling and messages if the (de)serialization raises an exception.

• [FIX] Containers now work with unix domain sockets.

• [FIX] Various minor bug-fixes

0.2.0 - 2015-01-23

• [CHANGE] The MsgPack codec is now the default. Thus, msgpack-python is now a mandatory
dependency.

• [CHANGE] Renamed RpcClient.call to RpcClient.remote.

44 Chapter 2. Contents:

https://bitbucket.org/sscherfke/aiomas/issues/6/
https://gitlab.com/sscherfke/aiomas/blob/master/examples/agent_contractnet.py
https://gitlab.com/sscherfke/aiomas/blob/master/examples/agent_contractnet.py
https://bitbucket.org/sscherfke/aiomas/issues/5/
https://bitbucket.org/sscherfke/aiomas/issues/7/

aiomas Documentation, Release 2.0.1

• [NEW] aiomas.agent module with an Agent base class and a Container for agents.
Agents within a container communicate via direct method calls. Agents in different containers
use RPC.

• [NEW] aiomas.clock module which offers various clocks for a MAS:

– AsyncioClock is a real-time clock and wraps asyncio’s time(), sleep(),
call_later() and call_at() functions.

– ExternalClock can be synchronized with external simulation environments. This allows
you to stop the time or let it pass faster/slower than the wall-clock time.

• [NEW] Support for unix domain sockets in aiomas.channel and aiomas.rpc.

• [NEW] “rpc_service()” tasks created by an RPC server can now be collected so that you can wait
for their completion before you shutdown your program.

• [NEW] Added contents to the README and created a Sphinx project. Only the API reference is
done yet. A tutorial and topical guides will follow.

• [FIX] aiomas with the JSON codec is now compatible to simpy.io

0.1.0 – 2014-12-18

Initial release with the following features:

• A request-reply channel via TCP that allows to send multiple messages and to asynconously wait
for results (or an exception).

• Messages can be serialized with JSON or msgpack.

• The underlying communication protocol should be compatible with simpy.io (if you use JSON
and no custom serializers).

• Remote procedure calls (RPCs) supporting nested handlers and bidirectional calls (callees can
make calls to the caller before returning the actual result).

2.4.4 Release Process

This document describes how to release a new version of aiomas.

Preparations

1. Close all tickets for the next version.

2. Update the minium required versions of dependencies in setup.py. Update the exact version of
all entries in requirements.txt.

3. Make sure the pipeline passes.

Additionaly, you should run tox. All tests must pass.

4. Check if all authors are listed in AUTHORS.rst.

5. Update the change logs (CHANGES.rst and docs/development/changelog.rst).
Only keep changes for the current major release in CHANGES.rst and reference the history
page from there.

2.4. Developer Docs 45

https://bitbucket.org/simpy/simpy.io/
https://gitlab.com/sscherfke/aiomas/issues
https://gitlab.com/sscherfke/aiomas/pipelines

aiomas Documentation, Release 2.0.1

6. Commit all changes:

$ git add -u
$ git commit -m 'Updated change log for the upcoming release.'

7. Update the version number in setup.py, docs/conf.py, and src/aiomas/__init__.
py. Commit:

$ git add -u
$ git commit -m 'Bump version from x.y.z to a.b.c'

Warning: Do not yet tag and push the changes so that you can safely do a rollback if one of
the next step fails and you need change something!

8. Write a draft for the announcement mail with a list of changes, acknowledgements and installation
instructions.

Build and release

1. Test the release process. Build a source distribution and a wheel package and test them:

$ python setup.py sdist bdist_wheel
$ ls dist/
aiomas-a.b.c-py2.py3-none-any.whl aiomas-a.b.c.tar.gz

Test if the packages can be installed:

$./release_test.sh a.b.c
Checking packages for aiomas==a.b.c
[...]
Source distribution looks okay.
[...]
Wheel package looks okay.

2. Create or check your accounts for the test server <https://testpypi.python.org/pypi> and PyPI.
Update your ~/.pypirc with your current credentials:

[distutils]
index-servers =

pypi
test

[pypi]
repository = https://upload.pypi.org/legacy/
username = <your production user name goes here>

[test]
repository = https://test.pypi.org/legacy/
username = <your test user name goes here>

3. Upload the distributions for the new version to the test server and test the installation again:

46 Chapter 2. Contents:

https://pypi.python.org/pypi/wheel
https://pypi.python.org/pypi

aiomas Documentation, Release 2.0.1

$ twine upload -r test dist/aiomas*a.b.c*
$ pip install -i https://testpypi.python.org/pypi aiomas[mpb]

4. Check if the package is displayed correctly: https://testpypi.python.org/pypi/aiomas

5. Finally upload the package to PyPI and test its installation one last time:

$ twine upload -r pypi dist/aiomas*a.b.c*
$ pip install -U aiomas[mpb]

6. Check if the package is displayed correctly: https://pypi.python.org/pypi/aiomas

Post release

1. Push your changes:

$ git tag a.b.c
$ git push origin master a.b.c

2. Send the prepared email to the mailing list and post it on Twitter/Google+.

3. Post something to Planet Python (e.g., via Stefan’s blog).

2.4.5 License

The MIT License (MIT)

Copyright (c) 2014 Stefan Scherfke

Permission is hereby granted, free of charge, to any person obtaining a
→˓copy of
this software and associated documentation files (the "Software"), to deal
→˓in
the Software without restriction, including without limitation the rights
→˓to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell
→˓copies of
the Software, and to permit persons to whom the Software is furnished to
→˓do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in
→˓all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
→˓FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
→˓AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
→˓WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

2.4. Developer Docs 47

https://testpypi.python.org/pypi/aiomas
https://pypi.python.org/pypi/aiomas

aiomas Documentation, Release 2.0.1

2.5 API reference

The API reference provides detailed descriptions of aiomas’ classes and functions.

2.5.1 aiomas

This module provides easier access to the most used components of aiomas. This purely for your
convenience and you can, of cource, also import everything from its actual submodule.

Decorators

expose(func) Decorator that enables RPC access to the decorated
function.

serializable([cls, repr]) Class decorator that makes the decorated class seri-
alizable by aiomas.codecs.

Functions

get_queue(queue_id) Return a LocalQueue instance for the given
queue_id.

make_ssl_server_context(cafile, certfile,
. . .)

Return an ssl.SSLContext that can be used by
a server socket.

make_ssl_client_context(cafile, certfile,
. . .)

Return an ssl.SSLContext that can be used by
a client socket.

run([until, loop]) Run the event loop forever or until the task/future
until is finished.

Exceptions

AiomasError Base class for all exceptions defined by aiomas.
RemoteException(origin, remote_traceback) Wraps a traceback of an exception on the other side

of a channel.

Classes

Agent(container) Base class for all agents.
AsyncioClock([loop]) asyncio based real-time clock.
Container(base_url, loop, clock, con-
nect_kwargs)

Container for agents.

ExternalClock(utc_start[, init_time, loop]) A clock that can be set by external process in order
to synchronize it with other systems.

JSON () A Codec that uses JSON to encode and decode
messages.

Continued on next page

48 Chapter 2. Contents:

https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/asyncio.html#module-asyncio

aiomas Documentation, Release 2.0.1

Table 2.4 – continued from previous page
MsgPack() A Codec that uses msgpack to encode and decode

messages.
MsgPackBlosc() A Codec that uses msgpack to encode and decode

messages and blosc to compress them.
SSLCerts(cafile, certfile, keyfile) namedtuple() storing the names of a CA file, a

2.5.2 aiomas.agent

This module implements the base class for agents (Agent) and containers for agents (Container).

Every agent must live in a container. A container can contain one ore more agents. Containers are
responsible for making connections to other containers and agents. They also provide a factory function
for spawning new agent instances and registering them with the container.

Thus, the Agent base class is very light-weight. It only has a name, a reference to its container and an
RPC router (see aiomas.rpc).

class aiomas.agent.SSLCerts(cafile, certfile, keyfile)
namedtuple() storing the names of a CA file, a certificate file and the associated private key
file.

See also aiomas.util.make_ssl_server_context() and aiomas.util.
make_ssl_client_context().

cafile
Alias for field number 0

certfile
Alias for field number 1

keyfile
Alias for field number 2

class aiomas.agent.Container(base_url, loop, clock, connect_kwargs)
Container for agents.

You should not instantiate containers directly but use the create() method/coroutine instead.
This makes sure that the container’s server socket is fully operational when it is created.

The container allows its agents to create connections to other agents (via connect()).

In order to destroy a container and close all of its sockets, call shutdown().

classmethod create(addr, *, clock=None, codec=None, extra_serializers=None,
ssl=None, as_coro=False, loop=None)

Instantiate a container and create a server socket for it.

This function is a classmethod and coroutine.

Parameters

• addr – is the address that the server socket is bound to. It may be a
(host, port) tuple for a TCP socket, a path for a Unix domain socket,
or a LocalQueue instance as returned by the aiomas.local_queue.
get_queue() function.

TCP sockets

2.5. API reference 49

https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/collections.html#collections.namedtuple
https://docs.python.org/3/library/asyncio-task.html#coroutine

aiomas Documentation, Release 2.0.1

If host is '0.0.0.0' or '::', the server is bound to all available IPv4 or
IPv6 interfaces respectively. If host is None or '', the server is bound to
all available IPv4 and IPv6 interfaces. In these cases, the machine’s FQDN
(see socket.getfqdn()) should be resolvable and point to that machine
as it will be used for the agent’s addresses.

If host is a simple (IPv4 or IPv6) IP address, it will be used for the agent’s
addresses as is.

LocalQueue

In contrast to TCP, multiple LocalQueue connections between containers
(within the same thread and OS process) send and receive message in a
deterministic order, which is useful for testing and debugging.

LocalQueue instances should be retrieved via the aiomas.
local_queue.get_queue() function (which also available as
aiomas.get_queue()). This function always returns the same instance
for a given queue ID.

• clock – can be an instance of BaseClock.

It allows you to decouple the container’s (and thus, its agent’s) time from
the system clock. This makes it easier to integrate your system with other
simulators that may provide a clock for you or to let your MAS run as fast
as possible.

By default, the real-time AsyncioClock will be used.

• codec – can be a Codec subclass (not an instance!). JSON is used by
default.

• extra_serializers – is an optional list of extra serializers for the
codec. The list entries need to be callables that return a tuple with the argu-
ments for add_serializer().

• ssl – allows you to enable TLS for all incoming and outgoing TCP con-
nections. It may either be an SSLCerts instance or a tuple containing
two SSLContext instances, where the first one will be used for the server
socket, the second one for client sockets.

• as_coro – must be set to True if the event loop is already running when
you call this method. This function then returns a coroutine that you need to
await in order to get the container. By default it will block until the server
has been started and return the container.

• loop – The asyncio event loop to use. If None, the default one will be
used.

Returns a fully initialized Container instance if async is False or else a
coroutine returning the instance when it is done.

Invocation examples:

Synchronous:
container = Container.create(...)

Asynchronous:
container = await Container.create(..., as_coro=True)

50 Chapter 2. Contents:

https://docs.python.org/3/library/socket.html#socket.getfqdn
https://docs.python.org/3/library/ssl.html#ssl.SSLContext

aiomas Documentation, Release 2.0.1

loop
The event loop the container is using.

clock
The clock of the container. Instance of aiomas.clocks.BaseClock.

connect(url, timeout=0)
Connect to the argent available at url and return a proxy to it.

url is a string <protocol>://<addr>//<agent-id> (e.g., 'tcp://
localhost:5555/0').

With a timeout of 0 (the default), there will only be one connection attempt before
an error is raised (ConnectionRefusedError for TCP sockets and LocalQueue,
FileNotFoundError for Unix domain sockets). If you set timeout to a number > 0
or None, this function will try to connect repeatedly for at most that many seconds (or in-
definitely) before an error is raised. Use this if the remote agent’s container may not yet
exist.

This function is a coroutine.

shutdown(as_coro=False)
Close the container’s server socket and the RPC services for all outgoing TCP connections.

If async is left to False, this method calls asyncio.AbstractEventLoop.
run_until_complete() in order to wait until all sockets are closed.

Set async to True if the event loop is already running (e.g., because you are in a coroutine).
The return value then is a coroutine that you need to await in order to actually shut the
container down:

await container.shutdown(as_coro=True)

validate_aid(aid)
Return the class name for the agent represented by aid if it exists or None.

class aiomas.agent.Agent(container)
Base class for all agents.

router
Descriptor that creates an RPC Router for every agent instance.

You can override this in a sub-class if you need to. (Usually, you don’t.)

container
The Container that the agent lives in.

addr
The agent’s address.

2.5.3 aiomas.channel

This module implements and asyncio asyncio.Protocol protocol for a request-reply Channel.

aiomas.channel.DEFAULT_CODEC
Default codec: JSON

2.5. API reference 51

https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/asyncio-task.html#coroutine
https://docs.python.org/3/library/asyncio-task.html#coroutine
https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol

aiomas Documentation, Release 2.0.1

aiomas.channel.open_connection(addr, *, loop=None, codec=None, ex-
tra_serializers=(), timeout=0, **kwds)

Return a Channel connected to addr.

This is a convenience wrapper for asyncio.AbstractEventLoop.
create_connection(), asyncio.AbstractEventLoop.
create_unix_connection(), and aiomas.local_queue.
create_connection().

If addr is a tuple (host, port), a TCP connection will be created. If addr is a string, it
should be a path name pointing to the unix domain socket to connect to. If addr is a aiomas.
local_queue instance, a LocalQueue connection will be created.

You can optionally provide the event loop to use.

By default, the JSON codec is used. You can override this by passing any subclass of aiomas.
codecs.Codec as codec.

You can also pass a list of extra_serializers for the codec. The list entires need to be callables that
return a tuple with the arguments for add_serializer().

With a timeout of 0 (the default), there will only be one connection attempt before an error is raised
(ConnectionRefusedError for TCP sockets and LocalQueue, FileNotFoundError for
Unix domain sockets). If you set timeout to a number > 0 or None, this function will try to connect
repeatedly for at most that many seconds (or indefinitely) before an error is raised. Use this if you
need to start the client before the server.

The remaining keyword argumens kwds are forwarded to asyncio.AbstractEventLoop.
create_connection() and asyncio.AbstractEventLoop.
create_unix_connection() respectively.

This function is a coroutine.

aiomas.channel.start_server(addr, client_connected_cb, *, loop=None,
codec=None, extra_serializers=(), **kwds)

Start a server listening on addr and call client_connected_cb for every client connecting to it.

This function is a convenience wrapper for asyncio.AbstractEventLoop.
create_server(), asyncio.AbstractEventLoop.create_unix_server(),
and aiomas.local_queue.create_server().

If addr is a tuple (host, port), a TCP socket will be created. If addr is a string, a unix
domain socket at this path will be created. If addr is a aiomas.local_queue instance, a
LocalQueue server will be created.

The single argument of the callable client_connected_cb is a new instance of Channel.

You can optionally provide the event loop to use.

By default, the JSON codec is used. You can override this by passing any subclass of aiomas.
codecs.Codec as codec.

You can also pass a list of extra_serializers for the codec. The list entires need to be callables that
return a tuple with the arguments for add_serializer().

The remaining keyword argumens kwds are forwarded to asyncio.AbstractEventLoop.
create_server() and asyncio.AbstractEventLoop.create_unix_server()
respectively.

This function is a coroutine.

52 Chapter 2. Contents:

https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError
https://docs.python.org/3/library/exceptions.html#FileNotFoundError
https://docs.python.org/3/library/asyncio-task.html#coroutine
https://docs.python.org/3/library/asyncio-task.html#coroutine

aiomas Documentation, Release 2.0.1

class aiomas.channel.ChannelProtocol(codec, client_connected_cb=None, *,
loop)

Asyncio asyncio.Protocol which connects the low level transport with the high level
Channel API.

The codec is used to (de)serialize messages. It should be a sub-class of aiomas.codecs.
Codec.

Optionally you can also pass a function/coroutine client_connected_cb that will be executed when
a new connection is made (see start_server()).

connection_made(transport)
Create a new Channel instance for a new connection.

Also call the client_connected_cb if one was passed to this class.

connection_lost(exc)
Set a ConnectionError to the Channel to indicate that the connection is closed.

data_received(data)
Buffer incomming data until we have a complete message and then pass it to Channel.

Messages are fixed length. The first four bytes (in network byte order) encode the length
of the following payload. The payload is a triple (msg_type, msg_id, content)
encoded with the specified codec.

eof_received()
Set a ConnectionResetError to the Channel.

write(len_bytes, content)
Serialize content and write the result to the transport.

This method is a coroutine.

pause_writing()
Set the paused flag to True.

Can only be called if we are not already paused.

resume_writing()
Set the paused flat to False and trigger the waiter future.

Can only be called if we are paused.

class aiomas.channel.Request(content, message_id, protocol)
Represents a request returned by Channel.recv(). You shoudn’t instantiate it yourself.

content contains the incoming message.

msg_id is the ID for that message. It is unique within a channel.

protocol is the channel’s ChannelProtocol instance that is used for writing back the reply.

To reply to that request you can await Request.reply() or Request.fail().

content
The content of the incoming message.

reply(result)
Reply to the request with the provided result.

This method is a coroutine.

2.5. API reference 53

https://docs.python.org/3/library/asyncio-protocol.html#asyncio.Protocol
https://docs.python.org/3/library/exceptions.html#ConnectionError
https://docs.python.org/3/library/exceptions.html#ConnectionResetError
https://docs.python.org/3/library/asyncio-task.html#coroutine
https://docs.python.org/3/library/asyncio-task.html#coroutine

aiomas Documentation, Release 2.0.1

fail(exception)
Indicate a failure described by the exception instance.

This will raise a RemoteException on the other side of the channel.

This method is a coroutine.

class aiomas.channel.Channel(protocol, codec, transport, loop)
A Channel represents a request-reply channel between two endpoints. An instance of it is returned
by open_connection() or is passed to the callback of start_server().

protocol is an instance of ChannelProtocol.

transport is an asyncio.BaseTransport.

loop is an instance of an asyncio.AbstractEventLoop.

codec
The codec used to de-/encode messages send via the channel.

transport
The transport of this channel (see the Python documentation for details).

send(content)
Send a request content to the other end and return a future which is triggered when a reply
arrives.

One of the following exceptions may be raised:

• ValueError if the message is too long (the length of the encoded message does not
fit into a long, which is ~ 4 GiB).

• RemoteException: The remote site raised an exception during the computation of
the result.

• ConnectionError (or its subclass ConnectionResetError): The connection
was closed during the request.

• RuntimeError:

– If an invalid message type was received.

– If the future returned by this method was already triggered or canceled by a third
party when an answer to the request arrives (e.g., if a task containing the future
is cancelled). You get more detailed exception messages if you enable asyncio’s
debug mode

try:
result = await channel.request('ohai')

except RemoteException as exc:
print(exc)

recv()
Wait for an incoming Request and return it.

May raise one of the following exceptions:

• ConnectionError (or its subclass ConnectionResetError): The connection
was closed during the request.

54 Chapter 2. Contents:

https://docs.python.org/3/library/asyncio-task.html#coroutine
https://docs.python.org/3/library/asyncio-protocol.html#asyncio.BaseTransport
https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.AbstractEventLoop
https://docs.python.org/3/library/asyncio-protocol.html#transports
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ConnectionError
https://docs.python.org/3/library/exceptions.html#ConnectionResetError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/asyncio-dev.html
https://docs.python.org/3/library/asyncio-dev.html
https://docs.python.org/3/library/exceptions.html#ConnectionError
https://docs.python.org/3/library/exceptions.html#ConnectionResetError

aiomas Documentation, Release 2.0.1

• RuntimeError: If two processes try to read from the same channel or if an invalid
message type was received.

This method is a coroutine.

close()
Coroutine that closes the channel and waits for all sub tasks to finish.

get_extra_info(name, default=None)
Wrapper for asyncio.BaseTransport.get_extra_info().

2.5.4 aiomas.clocks

Clocks to be used with aiomas.agent.Container.

All clocks should subclass BaseClock. Currently available clock types are:

• AsyncioClock: a real-time clock synchronized with the asyncio event loop.

• ExternalClock: a clock that can be set by external tasks / processes in order to synchronize it
with external systems or simulators.

class aiomas.clocks.BaseClock
Interface for clocks.

Clocks must at least implement time() and utcnow().

time()
Return the value (in seconds) of a monotonic clock.

The return value of consecutive calls is guaranteed to be greater or equal then the results of
previous calls.

The initial value may not be defined. Don’t depend on it.

utcnow()
Return an arrow.arrow.Arrow date with the current time in UTC.

sleep(dt, result=None)
Sleep for a period dt in seconds. Return an asyncio.Future.

If result is provided, it will be passed back to the caller when the coroutine has finished.

sleep_until(t, result=None)
Sleep until the time t. Return an asyncio.Future.

t may either be a number in seconds or an arrow.arrow.Arrow date.

If result is provided, it will be passed back to the caller when the coroutine has finished.

call_in(dt, func, *args)
Schedule the execution of func(*args) in dt seconds and return immediately.

Return an opaque handle which lets you cancel the scheduled call via its cancel()method.

call_at(t, func, *args)
Schedule the execution of func(*args) at t and return immediately.

t may either be a number in seconds or an arrow.arrow.Arrow date.

Return an opaque handle which lets you cancel the scheduled call via its cancel()method.

2.5. API reference 55

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/asyncio-task.html#coroutine
https://docs.python.org/3/library/asyncio-task.html#coroutine
https://docs.python.org/3/library/asyncio-protocol.html#asyncio.BaseTransport.get_extra_info
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://docs.python.org/3/library/asyncio-future.html#asyncio.Future
https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow
https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow

aiomas Documentation, Release 2.0.1

class aiomas.clocks.AsyncioClock(loop=None)
asyncio based real-time clock.

class aiomas.clocks.ExternalClock(utc_start, init_time=0, loop=None)
A clock that can be set by external process in order to synchronize it with other systems.

The initial UTC date utc_start may either be an arrow.arrow.Arrow instance or something
that arrow.factory.ArrowFactory.get() can parse.

class aiomas.clocks.TimerHandle(future, callback)
This class lets you cancel calls scheduled by ExternalClock.

cancel()
Cancel the scheduled call represented by this handle.

2.5.5 aiomas.codecs

This package imports the codecs that can be used for de- and encoding incoming and outgoing messages:

• JSON uses JSON

• MsgPack uses msgpack

• MsgPackBlosc uses msgpack and Blosc

All codecs should implement the base class Codec.

aiomas.codecs.serializable(repr=True)
Class decorator that makes the decorated class serializable by aiomas.codecs.

The decorator tries to extract all arguments to the class’ __init__(). That means, the argu-
ments must be available as attributes with the same name.

The decorator adds the following methods to the decorated class:

• __asdict__(): Returns a dict with all __init__ parameters

• __fromdict__(dict): Creates a new class instance from dict

• __serializer__(): Returns a tuple with args for Codec.add_serializer()

• __repr__(): Returns a generic instance representation. Adding this method can be deac-
tivated by passing repr=False to the decorator.

Example:

>>> import aiomas.codecs
>>>
>>> @aiomas.codecs.serializable
... class A:
... def __init__(self, x, y):
... self.x = x
... self._y = y
...
... @property
... def y(self):
... return self._y
>>>
>>> codec = aiomas.codecs.JSON()
>>> codec.add_serializer(*A.__serializer__())

56 Chapter 2. Contents:

https://docs.python.org/3/library/asyncio.html#module-asyncio
https://arrow.readthedocs.io/en/latest/index.html#arrow.arrow.Arrow
https://arrow.readthedocs.io/en/latest/index.html#arrow.factory.ArrowFactory.get
http://www.json.org/
https://msgpack.org/
https://msgpack.org/
http://blosc.org/

aiomas Documentation, Release 2.0.1

>>> a = codec.decode(codec.encode(A(1, 2)))
>>> a
A(x=1, y=2)

class aiomas.codecs.Codec
Base class for all Codecs.

Subclasses must implement encode() and decode().

encode(data)
Encode the given data and return a bytes object.

decode(data)
Decode data from bytes to the original data structure.

add_serializer(type, serialize, deserialize)
Add methods to serialize and deserialize objects typed type.

This can be used to de-/encode objects that the codec otherwise couldn’t encode.

serialize will receive the unencoded object and needs to return an encodable serialization of
it.

deserialize will receive an objects representation and should return an instance of the original
object.

serialize_obj(obj)
Serialize obj to something that the codec can encode.

deserialize_obj(obj_repr)
Deserialize the original object from obj_repr.

class aiomas.codecs.JSON
A Codec that uses JSON to encode and decode messages.

class aiomas.codecs.MsgPack
A Codec that uses msgpack to encode and decode messages.

class aiomas.codecs.MsgPackBlosc
A Codec that uses msgpack to encode and decode messages and blosc to compress them.

2.5.6 aiomas.exceptions

Exception types used by aiomas.

exception aiomas.exceptions.AiomasError
Base class for all exceptions defined by aiomas.

exception aiomas.exceptions.RemoteException(origin, remote_traceback)
Wraps a traceback of an exception on the other side of a channel.

origin is the remote peername.

remote_traceback is the remote exception’s traceback.

origin = None
Peername (producer of the exception)

2.5. API reference 57

https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#bytes

aiomas Documentation, Release 2.0.1

remote_traceback = None
Original traceback

exception aiomas.exceptions.SerializationError
Raised when an object cannot be serialized.

2.5.7 aiomas.local_queue

The local queue transport roughly mimics a normal TCP transport, but it sends and receives messages
via two asyncio.Queue instances.

Its purpose is to aid the development and debugging of complex networking algorithms and dis-
tributed or multi-agent systems. In contrast to normal network transports, messages send via the
LocalQueueTransport will always arrive in a deterministic order1.

This transport does not work across multiple processes and is not thread safe, so it should only be used
within a single thread and process.

The easiest way to use it is to create a LocalQueue instance via the get_queue() function and
pass it to aiomas.channel.start_server()/aiomas.channel.open_connection()
or aiomas.agent.Container.create() as addr argument.

aiomas.local_queue.get_queue(queue_id)
Return a LocalQueue instance for the given queue_id.

If no instance is cached yet, create a new one.

Queue IDs must be strings and must not contain the / character. Raise a ValueError if these
rules are violated.

aiomas.local_queue.clear_queue_cache()
Clear the global queue cache.

aiomas.local_queue.create_connection(protocol_factory, lq, *, loop=None,
**kwds)

Connect to a LocalQueue lq and return a (transport, protocol) pair.

The protocol_factory must be a callable returning a protocol instance.

Before a connection to lq can be made, a server must be started for this instance (see
create_server()).

aiomas.local_queue.create_server(protocol_factory, lq, **kwds)
Create a LocalQueue server bound to lq.

The protocol_factory must be a callable returning a protocol instance.

Return a LocalQueueServer instance. That instance is also set as server for lq.

class aiomas.local_queue.LocalQueue(queue_id)
An instance of this class serves as transport description when creating a server or connection.

1 Actually, message sent via a single TCP connection also arrive at a deterministic order (this is a property of the TCP/IP
protocol). So the LocalQueue transport won’t give you any benefits in this case.

However, if you have multiple connections to the same server and send message through them in parallel, it’s no longer
deterministic in which order the messages arrive from the different connections. In this case, the LocalQueue transport can
help you.

58 Chapter 2. Contents:

https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/asyncio-protocol.html
https://docs.python.org/3/library/asyncio-protocol.html

aiomas Documentation, Release 2.0.1

The functions create_server() and create_connection() both require an instance
of this class. Alternatively, instances of this class can be passed as addr argument to aiomas.
channel.start_server() and aiomas.channel.open_connection()

A server needs to be started before any connections can be made.

queue_id
The queue’s ID.

server
The LocalQueueServer instance that was bound to this instance or None if no server
has yet been started.

set_server(server)
Set a LocalQueueServer instance.

Raise a RuntimeError if a server has already been bound to this instance.

This method is called by create_server().

unset_server()
Unset the server from this instance.

This method is called when the server is closed (see LocalQueueServer.close()).

new_connection(sendq, recvq, loop=None)
Create a connection endpoint on the server side.

This method is called by create_connection().

sendq and recvq are the queues used for sending and receiving messages to and from the
client.

class aiomas.local_queue.LocalQueueServer(protocol_factory, lq)
Implements asyncio.events.AbstractServer. An instance of this class is returned by
create_server().

lq is the LocalQueue instance that this server was bound to.

protocol_factory is a callable that is called for each new client connection in order to create a new
protocol instance.

lq
The LocalQueue the server is bound to.

new_connection(sendq, recvq, loop)
Create a new protocol and transport instance.

Call the protocol factory, create a new LocalQueueTransport with sendq and recvq
and wire them together.

Called by create_connection() via LocalQueue.new_connection().

close()
Close the server and unset this instance from the associated LocalQueue instance.

wait_closed()
Immediately return (there’s nothing to wait for).

class aiomas.local_queue.LocalQueueTransport(lq, sendq, recvq, protocol,
loop)

Implements asyncio.transports.Transport.

2.5. API reference 59

https://docs.python.org/3/library/exceptions.html#RuntimeError

aiomas Documentation, Release 2.0.1

A LocalQueueTransport has two asynchronous queues (instances of asyncio.Queue) – one
for sending messages to the other side and one for receiving messages from it.

close()
Close the transport.

Buffered data will be flushed asynchronously. No more data will be received. After all
buffered data is flushed, the protocol’s connection_lost() method will (eventually)
be called with None as its argument.

write(data)
Write some data bytes to the transport.

This does not block; it buffers the data and arranges for it to be sent out asynchronously.

can_write_eof()
Return False. This transport does not support write_eof().

abort()
Close the transport immediately.

Buffered data will be lost. No more data will be received. The protocol’s
connection_lost() method will (eventually) be called with None as its argument.

2.5.8 aiomas.rpc

This module implements remote procedure calls (RPC) on top of request-reply channels (see aiomas.
channel).

RPC connections are represented by instances of RpcClient (one for each side of a aiomas.
channel.Channel). They provide access to the functions served by the peer via Proxy instances.
Optionally, they can provide their own RPC service so that the peer can make calls as well.

An RPC service is an object with a router attribute which is an instance of Router. A router resolves
paths requested by the peer. It can also handle sub-routers (which allows you to build hierarchies for
nested calls) and is able to perform a reverse-lookup of a router (mapping a fuction to its path).

Routers an be attached to both, classes and dictionaries with functions. Dictionaires need to be wrapped
with a ServiceDict. Classes need to have a Service class attribute named router. Service is
a descriptor which creates a Router for every instance of that class.

Functions that should be callable from the remote side must be decorated with expose(); Router.
expose() and Service.expose() are aliases for it.

aiomas.rpc.open_connection(addr, *, rpc_service=None, **kwds)
Return an RpcClient connected to addr.

This is a convenience wrapper for aiomas.channel.open_connection(). All keyword
arguments (kwds) are forwared to it.

You can optionally pass a rpc_service to allow the peer to call back to us.

This function is a coroutine.

aiomas.rpc.start_server(addr, rpc_service, client_connected_cb=None, **kwds)
Start a server socket on host:port and create an RPC service with the provided handler for each
new client.

60 Chapter 2. Contents:

https://docs.python.org/3/library/asyncio-queue.html#asyncio.Queue
https://docs.python.org/3/library/asyncio-task.html#coroutine

aiomas Documentation, Release 2.0.1

This is a convenience wrapper for aiomas.channel.start_server(). All keyword argu-
ments (kwds) are forwared to it.

rpc_service must be an RPC service (an object with a router attribute that is an instance of
Router).

client_connected_cb is an optional callback that will be called with with the RpcClient instance
for each new connection.

Raise a ValueError if handler is not decorated properly.

This function is a coroutine.

aiomas.rpc.rpc_service_process(rpc_client, router, channel)
RPC service process for a connection rpc_lient.

Serves the functions provided by the Router router via the Channel channel.

Forward errors raised by the handler to the caller.

Stop running when the connection closes.

This function is a coroutine.

aiomas.rpc.expose(func)
Decorator that enables RPC access to the decorated function.

func will not be wrapped but only gain an __rpc__ attribute.

class aiomas.rpc.ServiceDict(dict=None)
Wrapper for dicts so that they can be used as RPC routers.

dict = None
The wrapped dict.

router = None
The dict’s router instance.

class aiomas.rpc.Service(sub_routers=())
A Data Descriptor that creates a new Router instance for each class instance to which it is set.

The attribute name for the Service should always be router:

class Spam:
router = aiomas.rpc.Service()

You can optionally pass a list with the attribute names of classes with sub-routers. This required
to build hierarchies of routers, e.g.:

class Eggs:
router = aiomas.rpc.Service()

class Spam:
router = aiomas.rpc.Service(['eggs'])

def __init__(self):
self.eggs = Eggs() # Instance with a sub-router

static expose(func)
Alias for expose().

2.5. API reference 61

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/asyncio-task.html#coroutine
https://docs.python.org/3/library/asyncio-task.html#coroutine

aiomas Documentation, Release 2.0.1

class aiomas.rpc.Router(obj)
The Router resolves paths to functions provided by their object obj (or its children). It can also
perform a reverse lookup to get the path of the router (and the router’s obj).

The obj can be a class, an instance or a dict.

obj = None
The object to which this router belongs to.

name = None
The name of the router (empty for root routers).

parent = None
The parent router or None for root routers.

path
The path to this router (without trailing slash).

resolve(path)
Resolve path and return the corresponding function.

path is a string with path components separated by / (without trailing slash).

Raise a LookupError if no handler function can be found for path or if the function is not
exposed (see expose()).

static expose(func)
Alias for expose().

add(name)
Add the sub-router name (stored at self.obj.<name>) to this router.

Convenience wrapper for set_sub_router().

set_sub_router(router, name)
Set self as parent for the router named name.

class aiomas.rpc.RpcClient(channel, rpc_service=None)
The RpcClient provides proxy objects for remote calls via its remote attribute.

channel is a Channel instance for communicating with the remote side.

If rpc_service is not None, it will also start its own RPC service so the peer can call the functions
we provide.

channel
The communication Channel of this instance.

service
The RPC service process for this connection.

remote
A Proxy for remote methods.

on_connection_reset(callback)
Add a callback that gets called if the peer closes the connection and thus causing the
service process to abort.

callback is a callable with a single argument, the exception that the service process raises
if the connection is reset by the peer.

62 Chapter 2. Contents:

https://docs.python.org/3/library/exceptions.html#LookupError

aiomas Documentation, Release 2.0.1

If this method is called multiple times, override the current callback with the new one. If
callback is None, delete the current callback.

Raise a ValueError if callback is neither callable nor None.

Raise a RuntimeError if this instance has not service task running.

close()
Coroutine that closes the connection and waits for all sub tasks to finish.

class aiomas.rpc.Proxy(channel, path)
Proxy object for remote objects and functions.

__weakref__
list of weak references to the object (if defined)

__getattr__(name)
Return a new proxy for name.

__call__(*args, **kwargs)
Call the remote method represented by this proxy and return its result.

The result is a future, so you need to await it in order to get the actual return value (or
exception).

2.5.9 aiomas.subproc

This module helps you to start() an agent container in a new subprocess. The new container will
have a Manager agent that allows the master process to spawn other agents in the new container.

The following example demonstrate how you can build a nice CLI with the click around this module.
The script will start you a container with an ExternalClock and the MsgPackBlosc codec:

container.py
import logging

import aiomas
import arrow
import click

def validate_addr(ctx, param, value):
try:

host, port = value.rsplit(':', 1)
return (host, int(port))

except ValueError as e:
raise click.BadParameter(e)

def validate_start_date(ctx, param, value):
try:

arrow.get(value) # Check if the date can be parsed
except arrow.parser.ParserError as e:

raise click.BadParameter(e)
return value

@click.command()
@click.option('--start-date', required=True,

2.5. API reference 63

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/asyncio-task.html#coroutine
http://click.pocoo.org

aiomas Documentation, Release 2.0.1

callback=validate_start_date,
help='Start date for the agents (ISO-8601 compliant, e.g.: '

'2010-03-27T00:00:00+01:00')
@click.option('--log-level', '-l', default='info', show_default=True,

type=click.Choice(['debug', 'info', 'warning', 'error',
'critical']),

help='Log level for the MAS')
@click.argument('addr', metavar='HOST:PORT', callback=validate_addr)
def main(addr, start_date, log_level):

logging.basicConfig(level=getattr(logging, log_level.upper()))
clock = aiomas.ExternalClock(start_date, init_time=-1)
codec = aiomas.codecs.MsgPackBlosc
task = aiomas.subproc.start(addr, clock=clock, codec=codec)
aiomas.run(until=task)

if __name__ == '__main__':
main()

Example usage: python container.py --start-date=2010-03-27T00:00:00+01:00
localhost:5556.

Note: You should use sys.executable instead of just 'python'when you start a new subprocess
from within a Python script to make sure you use the correct (same) interpreter.

aiomas.subproc.start(addr, **container_kwargs)
Coroutine that starts a container with a Manager agent.

The agent will connect to addr ('host', port) and wait for commands to spawn new agents
within its container.

The container_kwargs will be passed to aiomas.agent.Container.create() factory
function.

This coroutine finishes after Manager.stop() was called or when a KeyboardInterrupt
is raised.

class aiomas.subproc.Manager(container)
An agent that can start other agents within its container.

If the container uses an ExternalClock, it can also set the time for the container’s clock.

spawn(qualname, *args, **kwargs)
Create a new instance of an agent and return a proxy to it and its address.

qualname is a string defining a class (or factory method/coroutine) for instantiating the agent
(see aiomas.util.obj_from_str() for details). args and kwargs get passed to this
callable as positional and keyword arguemnts respectively.

This is an exposed coroutine.

set_time(time)
Set the agent’s container’s time to time.

This only works if the container uses an ExternalClock.

This is an exposed function.

64 Chapter 2. Contents:

https://docs.python.org/3/library/asyncio-task.html#coroutine
https://docs.python.org/3/library/exceptions.html#KeyboardInterrupt
https://docs.python.org/3/library/asyncio-task.html#coroutine

aiomas Documentation, Release 2.0.1

stop()
Triggers the stop_received future of this agent causing its container process to shutodwn and
terminate.

This is an exposed function.

2.5.10 aiomas.util

This module contains some utility functions.

aiomas.util.arrow_serializer()
Return a serializer for arrow dates.

The return value is an argument tuple for aiomas.codecs.Codec.add_serializer().

aiomas.util.run(until=None, loop=None)
Run the event loop forever or until the task/future until is finished.

This is an alias to asyncio’s run_forever() if until is None and to
run_until_complete() if not.

aiomas.util.make_ssl_server_context(cafile, certfile, keyfile)
Return an ssl.SSLContext that can be used by a server socket.

The server will use the certificate in certfile and private key in keyfile (both in PEM format) to
authenticate itself.

It requires clients to also authenticate themselves. Their certificates will be validated with the root
CA certificate in cafile.

It will use TLS 1.2 with ECDH+AESGCM encryption. ECDH keys won’t be reused in distinct
SSL sessions. Compression is disabled.

aiomas.util.make_ssl_client_context(cafile, certfile, keyfile)
Return an ssl.SSLContext that can be used by a client socket.

It uses the root CA certificate in cafile to validate the server’s certificate. It will also check the
server’s hostname.

The client will use the certificate in certfile and private key in keyfile (both in PEM format) to
authenticate itself.

It will use TLS 1.2 with ECDH+AESGCM encryption.

aiomas.util.obj_from_str(obj_path)
Return the object that the string obj_path points to.

The format of obj_path is mod:obj where mod is a (possibly nested) module name and obj is an
. separate object path, for example:

module:Class
module:Class.function
package.module:Class
package.module:Class.function

Raise a ValueError if the obj_path is malformed, an ImportError if the module cannot be
imported or an AttributeError if an object does not exist.

2.5. API reference 65

https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/ssl.html#ssl.SSLContext
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ImportError
https://docs.python.org/3/library/exceptions.html#AttributeError

aiomas Documentation, Release 2.0.1

66 Chapter 2. Contents:

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

67

aiomas Documentation, Release 2.0.1

68 Chapter 3. Indices and tables

Python Module Index

a
aiomas, 48
aiomas.agent, 49
aiomas.channel, 51
aiomas.clocks, 55
aiomas.codecs, 56
aiomas.exceptions, 57
aiomas.local_queue, 58
aiomas.rpc, 60
aiomas.subproc, 63
aiomas.util, 65

69

aiomas Documentation, Release 2.0.1

70 Python Module Index

Index

Symbols
__call__() (aiomas.rpc.Proxy method), 63
__getattr__() (aiomas.rpc.Proxy method), 63
__weakref__ (aiomas.rpc.Proxy attribute), 63

A
abort() (aiomas.local_queue.LocalQueueTransport

method), 60
add() (aiomas.rpc.Router method), 62
add_serializer() (aiomas.codecs.Codec method),

57
addr (aiomas.agent.Agent attribute), 51
Agent (class in aiomas.agent), 51
aiomas (module), 48
aiomas.agent (module), 49
aiomas.channel (module), 51
aiomas.clocks (module), 55
aiomas.codecs (module), 56
aiomas.exceptions (module), 57
aiomas.local_queue (module), 58
aiomas.rpc (module), 60
aiomas.subproc (module), 63
aiomas.util (module), 65
AiomasError, 57
arrow_serializer() (in module aiomas.util), 65
AsyncioClock (class in aiomas.clocks), 55

B
BaseClock (class in aiomas.clocks), 55

C
cafile (aiomas.agent.SSLCerts attribute), 49
call_at() (aiomas.clocks.BaseClock method), 55
call_in() (aiomas.clocks.BaseClock method), 55
can_write_eof() (aiomas.local_queue.LocalQueueTransport

method), 60
cancel() (aiomas.clocks.TimerHandle method), 56
certfile (aiomas.agent.SSLCerts attribute), 49
channel (aiomas.rpc.RpcClient attribute), 62

Channel (class in aiomas.channel), 54
ChannelProtocol (class in aiomas.channel), 52
clear_queue_cache() (in module

aiomas.local_queue), 58
clock (aiomas.agent.Container attribute), 51
close() (aiomas.channel.Channel method), 55
close() (aiomas.local_queue.LocalQueueServer

method), 59
close() (aiomas.local_queue.LocalQueueTransport

method), 60
close() (aiomas.rpc.RpcClient method), 63
codec (aiomas.channel.Channel attribute), 54
Codec (class in aiomas.codecs), 57
connect() (aiomas.agent.Container method), 51
connection_lost() (aiomas.channel.ChannelProtocol

method), 53
connection_made()

(aiomas.channel.ChannelProtocol
method), 53

container (aiomas.agent.Agent attribute), 51
Container (class in aiomas.agent), 49
content (aiomas.channel.Request attribute), 53
create() (aiomas.agent.Container class method), 49
create_connection() (in module

aiomas.local_queue), 58
create_server() (in module aiomas.local_queue),

58

D
data_received() (aiomas.channel.ChannelProtocol

method), 53
decode() (aiomas.codecs.Codec method), 57
DEFAULT_CODEC (in module aiomas.channel),

51
deserialize_obj() (aiomas.codecs.Codec method),

57
dict (aiomas.rpc.ServiceDict attribute), 61

71

aiomas Documentation, Release 2.0.1

E
encode() (aiomas.codecs.Codec method), 57
eof_received() (aiomas.channel.ChannelProtocol

method), 53
expose() (aiomas.rpc.Router static method), 62
expose() (aiomas.rpc.Service static method), 61
expose() (in module aiomas.rpc), 61
ExternalClock (class in aiomas.clocks), 56

F
fail() (aiomas.channel.Request method), 53

G
get_extra_info() (aiomas.channel.Channel

method), 55
get_queue() (in module aiomas.local_queue), 58

J
JSON (class in aiomas.codecs), 57

K
keyfile (aiomas.agent.SSLCerts attribute), 49

L
LocalQueue (class in aiomas.local_queue), 58
LocalQueueServer (class in aiomas.local_queue),

59
LocalQueueTransport (class in

aiomas.local_queue), 59
loop (aiomas.agent.Container attribute), 50
lq (aiomas.local_queue.LocalQueueServer at-

tribute), 59

M
make_ssl_client_context() (in module aiomas.util),

65
make_ssl_server_context() (in module

aiomas.util), 65
Manager (class in aiomas.subproc), 64
MsgPack (class in aiomas.codecs), 57
MsgPackBlosc (class in aiomas.codecs), 57

N
name (aiomas.rpc.Router attribute), 62
new_connection() (aiomas.local_queue.LocalQueue

method), 59
new_connection() (aiomas.local_queue.LocalQueueServer

method), 59

O
obj (aiomas.rpc.Router attribute), 62
obj_from_str() (in module aiomas.util), 65

on_connection_reset() (aiomas.rpc.RpcClient
method), 62

open_connection() (in module aiomas.channel), 51
open_connection() (in module aiomas.rpc), 60
origin (aiomas.exceptions.RemoteException at-

tribute), 57

P
parent (aiomas.rpc.Router attribute), 62
path (aiomas.rpc.Router attribute), 62
pause_writing() (aiomas.channel.ChannelProtocol

method), 53
Proxy (class in aiomas.rpc), 63

Q
queue_id (aiomas.local_queue.LocalQueue at-

tribute), 59

R
recv() (aiomas.channel.Channel method), 54
remote (aiomas.rpc.RpcClient attribute), 62
remote_traceback (aiomas.exceptions.RemoteException

attribute), 57
RemoteException, 57
reply() (aiomas.channel.Request method), 53
Request (class in aiomas.channel), 53
resolve() (aiomas.rpc.Router method), 62
resume_writing() (aiomas.channel.ChannelProtocol

method), 53
router (aiomas.agent.Agent attribute), 51
router (aiomas.rpc.ServiceDict attribute), 61
Router (class in aiomas.rpc), 61
rpc_service_process() (in module aiomas.rpc), 61
RpcClient (class in aiomas.rpc), 62
run() (in module aiomas.util), 65

S
send() (aiomas.channel.Channel method), 54
serializable() (in module aiomas.codecs), 56
SerializationError, 58
serialize_obj() (aiomas.codecs.Codec method), 57
server (aiomas.local_queue.LocalQueue attribute),

59
service (aiomas.rpc.RpcClient attribute), 62
Service (class in aiomas.rpc), 61
ServiceDict (class in aiomas.rpc), 61
set_server() (aiomas.local_queue.LocalQueue

method), 59
set_sub_router() (aiomas.rpc.Router method), 62
set_time() (aiomas.subproc.Manager method), 64
shutdown() (aiomas.agent.Container method), 51
sleep() (aiomas.clocks.BaseClock method), 55

72 Index

aiomas Documentation, Release 2.0.1

sleep_until() (aiomas.clocks.BaseClock method),
55

spawn() (aiomas.subproc.Manager method), 64
SSLCerts (class in aiomas.agent), 49
start() (in module aiomas.subproc), 64
start_server() (in module aiomas.channel), 52
start_server() (in module aiomas.rpc), 60
stop() (aiomas.subproc.Manager method), 64

T
time() (aiomas.clocks.BaseClock method), 55
TimerHandle (class in aiomas.clocks), 56
transport (aiomas.channel.Channel attribute), 54

U
unset_server() (aiomas.local_queue.LocalQueue

method), 59
utcnow() (aiomas.clocks.BaseClock method), 55

V
validate_aid() (aiomas.agent.Container method),

51

W
wait_closed() (aiomas.local_queue.LocalQueueServer

method), 59
write() (aiomas.channel.ChannelProtocol method),

53
write() (aiomas.local_queue.LocalQueueTransport

method), 60

Index 73

	Features
	Contents:
	Overview
	Installation
	Topical Guides
	Developer Docs
	API reference

	Indices and tables
	Python Module Index

