

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	AiiDA 0.7.0 documentation

[image: _images/AiiDA_transparent_logo.png]
Automated Interactive Infrastructure and Database for Computational Science

Welcome to AiiDA’s documentation!

AiiDA is a sophisticated framework designed from scratch to be a flexible and scalable infrastructure for computational science. Being able to store the full data provenance of each simulation, and based on a tailored database solution built for efficient data mining implementations, AiiDA gives the user the ability to interact seamlessly with any number of HPC machines and codes thanks to its flexible plugin interface, together with a powerful workflow engine for the automation of simulations.

The software is available at http://www.aiida.net.

If you use AiiDA for your research, please cite the following work:

Giovanni Pizzi, Andrea Cepellotti, Riccardo Sabatini, Nicola Marzari,
and Boris Kozinsky, AiiDA: automated interactive infrastructure and database
for computational science, Comp. Mat. Sci 111, 218-230 (2016);
http://dx.doi.org/10.1016/j.commatsci.2015.09.013; http://www.aiida.net.

This is the documentation of the AiiDA framework. For the first setup, configuration and
usage, refer to the user’s guide below.

If, instead, you plan to add new plugins, or you simply want to understand
AiiDA internals, refer to the developer’s guide.

User’s guide

	User’s guide
	Databases for AiiDA
	Supported databases

	Setup instructions
	SQLite

	PostgreSQL

	MySQL

	AiiDA Backup
	How to backup the databases
	SQLite backup

	PostgreSQL backup

	MySQL backup

	How to retrieve the database from a backup

	PostgreSQL backup

	How to move the physical location of a database
	PostgreSQL move

	How to set up an incremental backup for the repository

	Installation and Deployment of AiiDA
	Supported architecture

	Installing python

	Installation of the core dependencies
	Database

	Other core dependencies

	Downloading the code

	Python dependencies

	AiiDA configuration
	Path configuration

	AiiDA first setup

	Start the daemon

	Optional dependencies
	CIF manipulation

	Further comments and troubleshooting

	Updating AiiDA from a previous version
	Updating from 0.6.0 Django to 0.7.0 Django

	Updating from 0.6.0 Django to 0.7.0 SQLAlchemy

	Updating from 0.5.0 to 0.6.0

	Updating from 0.4.1 to 0.5.0

	Setup of computers and codes
	Remote computer requirements

	Computer setup and configuration

	Code setup and configuration
	Remote codes

	Local codes

	Setting up a code

	Plug-ins for AiiDA
	Available plugins
	Quantum Espresso

	cod-tools

	ASE

	Wannier90

	NWChem

	Scripting with AiiDA
	verdi shell

	Writing python scripts for AiiDA
	The verdi run command and the runaiida executable

	StructureData tutorial
	General comments

	Tutorial

	Internals: Kinds and Sites

	Conversion to/from ASE
	Creating multiple species

	Conversion to/from pymatgen

	Quantum Espresso PWscf user-tutorial
	Your classic pw.x input file

	Quantum Espresso Pw Walkthrough

	Code

	Structure

	Parameters
	Input parameters validation

	Other inputs

	Calculation

	Pseudopotentials

	Labels and comments

	Execute

	Script: source code

	Compact script

	Exception tolerant code

	Advanced features

	Importing previously run Quantum ESPRESSO pw.x calculations: PwImmigrant
	Quantum Espresso PWscf immigration user-tutorial
	Imports and database environement

	Code, computer, and resources

	Initialization of the calculation

	The immigration

	Compact script

	Quantum Espresso PWscf immigration user-tutorial
	Imports and database environement

	Code, computer, and resources

	Initialization of the calculation

	The immigration

	Compact script

	Quantum Espresso Phonon user-tutorial
	Walkthrough

	Code

	Parameter

	Calculation

	Parent calculation

	Execution

	Script to execute

	Exception tolerant code

	Quantum Espresso Car-Parrinello user-tutorial
	Walkthrough

	Exception tolerant code

	Wannier90 user-tutorial
	Calculation Setup

	Input Script

	Additional Exercises

	Exception tolerant code

	Quantum Espresso Projwfc user-tutorial
	Script to execute

	Getting parsed calculation results
	The CalculationResultManager

	Pseudopotential families tutorial
	What is a pseudopotential family

	How to create a pseudopotential family

	Get the list of existing families

	Manually loading pseudopotentials

	The verdi commands
	verdi calculation

	verdi code

	verdi comment

	verdi completioncommand

	verdi computer

	verdi daemon

	verdi data

	verdi devel

	verdi export

	verdi group

	verdi import

	verdi install

	verdi node

	verdi profile

	verdi run

	verdi runserver

	verdi shell

	verdi user

	verdi workflow

	AiiDA schedulers
	Supported schedulers
	PBSPro

	SLURM

	SGE

	PBS/Torque & Loadleveler

	Direct execution (bypassing schedulers)

	Job resources
	NodeNumberJobResource (PBS-like)

	ParEnvJobResource (SGE-like)

	Calculations

	Check the state of calculations
	The verdi calculation command
	Possible calculation states

	Directly in python

	The verdi calculation gotocomputer command

	Set calculation properties

	Comments

	Extracting data from the Database
	Finding input and output nodes

	Querying in AiiDA
	Directly querying in Django

	Directly querying in SQLAlchemy

	Using the querytool

	The transitive closure table

	Using the QueryBuilder
	Introduction

	The appender method

	The queryhelp

	AiiDA workflows
	How it works

	The AiiDA daemon

	A workflow demo

	Running a workflow

	A more sophisticated workflow

	Chaining workflows

	Import structures from external databases
	Available plugins
	ICSD database importer

	COD database importer

	Export data to external databases
	Supported databases
	TCOD database exporter

	Run scripts and open an interactive shell with AiiDA
	How to run a script

	verdi shell

Other guide resources

	Other guide resources
	AiiDA cookbook (useful code snippets)
	Deletion of nodes

	Troubleshooting and tricks
	Some tricks

	Connection problems

	Increasing the debug level

	Tips to ease the life of the hard drive (for large databases)

	Using AiiDA in multi-user mode

	Deploying AiiDA using Apache

	AiiDA Website

Developer’s guide

	Developer’s guide
	Developer’s Guide For AiiDA
	Python style

	Version number

	Inline calculations

	Database schema

	Commits and GIT usage

	Tests

	Virtual environment

	Deprecated features, renaming, and adding new methods

	AiiDA internals
	Node

	DbNode

	Folders

	Developer calculation plugin tutorial - Integer summation
	Overview

	Code

	Input plugin

	Setup of the code

	Output plugin: the parser

	Submission script

	Conclusion

	Developer data plugin tutorial - Float summation
	Introducing a new data type

	Exercise: Modifying the calculation plugin

	Developer code plugin tutorial - Quantum Espresso
	InputPlugin

	OutputPlugin

	Parser warnings policy
	Warnings

	Parser_warnings

	Automated parser tests
	Test folders

	Creation of a test from an existing calculation

	Running tests

	Workflow’s Guide For AiiDA
	Creating new workflows

	Developer Workflow tutorial
	Creating new workflows

	Running a workflow

	Exercise

	Verdi command line plugins
	Framework for verdi data

	Adding a verdi command

	Exporting structures to TCOD

	GIT cheatsheet
	Interesting online resources

	Set the push default behavior to push only the current branch

	View commits that would be pushed

	Switch to another branch

	Associate a local and remote branch

	Branch renaming

	Create a new (lightweight) tag

	Create a new branch from a given tag

	Disallow a branch deletion, or committing to a branch, on BitBucket

	Merge from a different repository

	Sphinx cheatsheet
	Main Titles and Subtitles

	Formatting

	Links, Code Display, Cross References

	Table of Contents Docs and Code

	How To Format Docstrings

	Changing The Docs

	Properties

Modules provided with aiida

	Modules
	aiida.common
	Calculation datastructures

	Exceptions

	Extended dictionaries

	Folders

	Plugin loaders

	Utilities

	aiida.transport documentation
	Generic transport class

	Developing a plugin

	aiida.scheduler documentation
	Generic scheduler class

	Scheduler datastructures

	aiida.cmdline documentation
	Baseclass

	Verdi lib

	Daemon

	Data

	aiida.execmanager documentation
	Execution Manager

	aiida.backends.djsite documentation
	Database schema

	ORM documentation: generic aiida.orm
	Computer

	Node

	Workflow

	Code

	ORM documentation: Data
	Structure

	Folder

	Singlefile

	Upf

	Cif

	Parameter

	Remote

	ArrayData
	ArrayData subclasses

	ORM documentation: Calculations
	Quantum ESPRESSO
	Quantum Espresso - pw.x

	Quantum Espresso - Dos

	Quantum Espresso - Projwfc

	Quantum Espresso - PW immigrant

	Wannier90 - Wannier90

	TemplateReplacer

	Calculation parsers
	Quantum ESPRESSO parsers
	Basic Raw Cp Parser

	Basic Raw Pw Parser

	Basic Pw Parser

	Constants

	Cp Parser

	QueryTool documentation

	QueryBuilder documentation

	DbImporter documentation
	Generic database importer class

	Structural databases
	COD database importer

	ICSD database importer

	MPOD database importer

	OQMD database importer

	PCOD database importer

	TCOD database importer

	Other databases
	NNINC database importer

	DbExporter documentation
	TCOD database exporter

	TCOD parameter translator documentation
	Base class

	CP

	NWChem (pymatgen-based)

	PW

	aiida.tools documentation
	Tools
	pw input parser

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

User’s guide

	Databases for AiiDA
	Supported databases

	Setup instructions
	SQLite

	PostgreSQL

	MySQL

	AiiDA Backup
	How to backup the databases
	SQLite backup

	PostgreSQL backup

	MySQL backup

	How to retrieve the database from a backup

	PostgreSQL backup

	How to move the physical location of a database
	PostgreSQL move

	How to set up an incremental backup for the repository

	Installation and Deployment of AiiDA
	Supported architecture

	Installing python

	Installation of the core dependencies
	Database

	Other core dependencies

	Downloading the code

	Python dependencies

	AiiDA configuration
	Path configuration
	Bash completion

	AiiDA first setup

	Start the daemon

	Optional dependencies
	CIF manipulation

	Further comments and troubleshooting

	Updating AiiDA from a previous version
	Updating from 0.6.0 Django to 0.7.0 Django

	Updating from 0.6.0 Django to 0.7.0 SQLAlchemy

	Updating from 0.5.0 to 0.6.0

	Updating from 0.4.1 to 0.5.0

	Setup of computers and codes
	Remote computer requirements

	Computer setup and configuration

	Code setup and configuration
	Remote codes

	Local codes

	Setting up a code

	Plug-ins for AiiDA
	Available plugins
	Quantum Espresso
	Description

	Plugins

	cod-tools
	Description

	Installation

	Examples

	Plugins

	ASE
	Description

	Plugins

	Wannier90
	Description

	Plugins

	NWChem
	Description

	Plugins

	Scripting with AiiDA
	verdi shell

	Writing python scripts for AiiDA
	The verdi run command and the runaiida executable

	StructureData tutorial
	General comments

	Tutorial

	Internals: Kinds and Sites

	Conversion to/from ASE
	Creating multiple species

	Conversion to/from pymatgen

	Quantum Espresso PWscf user-tutorial
	Your classic pw.x input file

	Quantum Espresso Pw Walkthrough

	Code

	Structure

	Parameters
	Input parameters validation

	Other inputs

	Calculation

	Pseudopotentials

	Labels and comments

	Execute

	Script: source code

	Compact script

	Exception tolerant code

	Advanced features

	Importing previously run Quantum ESPRESSO pw.x calculations: PwImmigrant
	Quantum Espresso PWscf immigration user-tutorial
	Imports and database environement

	Code, computer, and resources

	Initialization of the calculation

	The immigration

	Compact script

	Quantum Espresso PWscf immigration user-tutorial
	Imports and database environement

	Code, computer, and resources

	Initialization of the calculation

	The immigration

	Compact script

	Quantum Espresso Phonon user-tutorial
	Walkthrough

	Code

	Parameter

	Calculation

	Parent calculation

	Execution

	Script to execute

	Exception tolerant code

	Quantum Espresso Car-Parrinello user-tutorial
	Walkthrough

	Exception tolerant code

	Wannier90 user-tutorial
	Calculation Setup

	Input Script

	Additional Exercises

	Exception tolerant code

	Quantum Espresso Projwfc user-tutorial
	Script to execute

	Getting parsed calculation results
	The CalculationResultManager

	Pseudopotential families tutorial
	What is a pseudopotential family

	How to create a pseudopotential family

	Get the list of existing families

	Manually loading pseudopotentials

	The verdi commands
	verdi calculation

	verdi code

	verdi comment

	verdi completioncommand

	verdi computer

	verdi daemon

	verdi data

	verdi devel

	verdi export

	verdi group

	verdi import

	verdi install

	verdi node

	verdi profile

	verdi run

	verdi runserver

	verdi shell

	verdi user

	verdi workflow

	AiiDA schedulers
	Supported schedulers
	PBSPro

	SLURM

	SGE

	PBS/Torque & Loadleveler

	Direct execution (bypassing schedulers)

	Job resources
	NodeNumberJobResource (PBS-like)

	ParEnvJobResource (SGE-like)

	Calculations

	Check the state of calculations
	The verdi calculation command
	Possible calculation states

	Directly in python

	The verdi calculation gotocomputer command

	Set calculation properties

	Comments

	Extracting data from the Database
	Finding input and output nodes

	Querying in AiiDA
	Directly querying in Django

	Directly querying in SQLAlchemy

	Using the querytool

	The transitive closure table

	Using the QueryBuilder
	Introduction

	The appender method

	The queryhelp

	AiiDA workflows
	How it works

	The AiiDA daemon

	A workflow demo

	Running a workflow

	A more sophisticated workflow

	Chaining workflows

	Import structures from external databases
	Available plugins
	ICSD database importer
	Setup

	How to do a query

	Full example

	Troubleshooting: Testing the mysql connection

	COD database importer
	Setup

	How to do a query

	Using data from CodEntry

	Export data to external databases
	Supported databases
	TCOD database exporter
	Setup

	How to deposit a structure

	Return values

	Run scripts and open an interactive shell with AiiDA
	How to run a script

	verdi shell

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Databases for AiiDA

AiiDA needs a database backend to store the nodes, node attributes and other
information, allowing the end user to perform very fast queries of the results.

Before installing AiiDA, you have to choose (and possibly configure) a suitable
supported backend.

Supported databases

Note

For those who do not want to read all this section, the short answer
if you want to choose a database is SQLite if you just want to try out AiiDA
without spending too much time in configuration (but SQLite is not suitable
for production runs), while PostgreSQL for regular production use of AiiDA.

For those who are interested in the details, there
are three supported database backends:

	SQLite [http://www.sqlite.org/] The SQLite backend is the fastest to configure: in fact, it does
not really use a “real” database, but stores everything in a file.
This is great if you never configured a database before and you just want
to give AiiDA a try. However, keep in mind that it has many big
shortcomings for a real AiiDA usage!

In fact, since everything is stored on a single file, each access (especially
when writing or doing a transaction) to the database locks it: this means
that a second thread wanting to access the database has to wait that the
lock is released. We set up a timeout of about 60 seconds for each thread to
retry to connect to the database, but after that time you will get an
exception, with the risk of storing corrupted data in the AiiDA repository.

Therefore, it is OK to use SQLite for testing, but as soon as you want to use
AiiDA in production, with more than one calculation submitted at each given
time, please switch to a real database backend, like PostgreSQL.

Note

note, however, that typically SQLite is pretty fast for queries,
once the database is loaded into memory, so it could be an interesting
solution if you do not want to launch new calculations, but only to
import the results and then query them (in a single-user approach).

	PostgreSQL [http://www.postgresql.org/] This is the database backend that the we, the AiiDA developers,
suggest to use, because it is the one with most features.

	MySQL [http://www.mysql.com/] This is another possible backend that you could use. However, we
suggest that you use PostgreSQL instead of MySQL, due to some MySQL
limitations (unless you have very strong reasons to prefer MySQL over
PostgreSQL).
In particular, some of the limitations of MySQL are:

	Only a precision of 1 second is possible for time objects, while PostgreSQL
supports microsecond precision. This can be relevant for a proper sorting
of calculations launched almost simultaneously.

	Indexed text columns can have an hardcoded maximum length. This can give
issues with attributes, if you have very long key names or nested
dictionaries/lists. These cannot be natively stored and therefore you
either end up storing a JSON (therefore partially losing query capability)
or you can even incur in problems.

Setup instructions

For any database, you may need to install a specific python package using
pip; this typically also requires to have the development libraries
installed (the .h C header files). Refer to the
installation documentation for more details.

SQLite

To use SQLite as backend, please install:

sudo apt-get install libsqlite3-dev

SQLite requires almost no configuration. In the verdi install phase,
just type sqlite when the Database engine is required,
and then provide an absolute path
for the AiiDA Database location field, that will be the file that
will store the full database (if
no file exists yet in that position, a fresh AiiDA database will be created).

Note

Do not forget to backup your database (instructions here).

PostgreSQL

Note

We assume here that you already installed PostgreSQL on your computer and that
you know the password for the postgres user
(there are many tutorials online that explain how to do it,
depending on your operating system and distribution).
To install PostgreSQL under Ubuntu, you can do:

sudo apt-get install postgresql
sudo apt-get install postgresql-server-dev-all
sudo apt-get install postgresql-client

On Mac OS X, you can download binary packages to install PostgreSQL
from the official website.

To properly configure a new database for AiiDA with PostgreSQL, you need to
create a new aiida user and a new aiidadb table.

To create the new aiida user and the aiidadb database, first
become the UNIX postgres user, typing as root:

su - postgres

(or equivalently type sudo su - postgres, depending on your distribution).

Then type the following command to enter in the PostgreSQL shell in the
modality to create users:

psql template1

To create a new user for postgres (you can call it simply aiida, as in the
example below), type in the psql shell:

CREATE USER aiida WITH PASSWORD 'the_aiida_password';

where of course you have to change the_aiida_password with a valid password.

Note

Remember, however, that since AiiDA needs to connect to this database,
you will need to store this password in clear text in your home folder
for each user that wants to have direct access to the database, therefore
choose a strong password, but different from any that you already use!

Note

Did you just copy and paste the line above, therefore setting the
password to the_aiida_password? Then, let’s change it! Choose a good
password this time, and then type the following command (this time replacing
the string new_aiida_password with the password you chose!):

ALTER USER aiida PASSWORD 'new_aiida_password';

Then create a new aiidadb database for AiiDA, and give ownership to user aiida created above:

CREATE DATABASE aiidadb OWNER aiida;

and grant all privileges on this DB to the previously-created aiida user:

GRANT ALL PRIVILEGES ON DATABASE aiidadb to aiida;

Finally, type \q to quit the template1 shell, and exit to exit the PostgreSQL shell.

To test if this worked, type this on a bash terminal (as a normal user):

psql -h localhost -d aiidadb -U aiida -W

and type the password you inserted before, when prompted.
If everything worked, you should get no error and the psql shell.
Type \q to exit.

If you use the names suggested above, in the verdi install phase
you should use the following parameters:

Database engine: postgresql
PostgreSQL host: localhost
PostgreSQL port: 5432
AiiDA Database name: aiidadb
AiiDA Database user: aiida
AiiDA Database password: the_aiida_password

Note

Do not forget to backup your database (instructions here).

Note

If you want to move the physical location of the data files
on your hard drive AFTER it has been created and filled, look at the
instructions here.

Note

Due to the presence of a bug, PostgreSQL could refuse to restart after a crash.
If this happens you should follow the instructions written here [https://wiki.postgresql.org/wiki/May_2015_Fsync_Permissions_Bug/].

MySQL

To use properly configure a new database for AiiDA with MySQL, you need to
create a new aiida user and a new aiidadb table.

We assume here that you already installed MySQL on your computer and that
you know your MySQL root password (there are many tutorials online that explain
how to do it, depending on your operating system and distribution). To install
mysql-client, you can do:

sudo apt-get install libmysqlclient-dev

After MySQL is installed, connect to it as the MySQL root account to create
a new account. This can be done typing in the shell:

mysql -h localhost mysql -u root -p

(we are assuming that you installed the database on localhost, even if this
is not strictly required - if this is not the case, change localhost
with the proper database host, but note that also some of the commands
reported below need to be adapted) and then type the MySQL root password when
prompted.

In the MySQL shell, type the following command to create a new user:

CREATE USER 'aiida'@'localhost' IDENTIFIED BY 'the_aiida_password';

where of course you have to change the_aiida_password with a valid password.

Note

Remember, however, that since AiiDA needs to connect to this database,
you will need to store this password in clear text in your home folder
for each user that wants to have direct access to the database, therefore
choose a strong password, but different from any that you already use!

Then, still in the MySQL shell, create a new database named aiida using the
command:

CREATE DATABASE aiidadb;

and give all privileges to the aiida user on this database:

GRANT ALL PRIVILEGES on aiidadb.* to aiida@localhost;

Note

‘’(only for developers)’’ If you are a developer and want to run
the tests using the MySQL database (to do so, you also have to set the
tests.use_sqlite AiiDA property to False using the
verdi devel setproperty tests.use_sqlite False command), you also have
to create a test_aiidadb database. In this case, run also the two
following commands:

CREATE DATABASE test_aiidadb;
GRANT ALL PRIVILEGES on test_aiidadb.* to aiida@localhost;

If you use the names suggested above, in the verdi install phase
you should use the following parameters:

Database engine: mysql
mySQL host: localhost
mySQL port: 3306
AiiDA Database name: aiidadb
AiiDA Database user: aiida
AiiDA Database password: the_aiida_passwd

Note

Do not forget to backup your database (instructions here).

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

AiiDA Backup

In this page you will find useful information on how to backup your database,
how to move it to a different location and how to backup your repository.

How to backup the databases

It is strongly advised to backup the content of your database daily. Below are
instructions to set this up for the SQLite, PostgreSQL and MySQL databases, under Ubuntu
(tested with version 12.04).

SQLite backup

Note

Perform the following operation after having set up AiiDA. Only then
the ~/.aiida folder (and the files within) will be created.

Simply make sure your database folder (typically /home/USERNAME/.aiida/ containing
the file aiida.db and the repository directory) is properly backed up by
your backup software (under Ubuntu, Backup -> check the “Folders” tab).

PostgreSQL backup

Note

Perform the following operation after having set up AiiDA. Only then
the ~/.aiida folder (and the files within) will be created.

The database files are not put in the .aiida folder but in the system directories
which typically are not backed up. Moreover, the database is spread over lots of files
that, if backed up as they are at a given time, cannot be re-used to restore the database.

So you need to periodically (typically once a day) dump the database contents in a file
that will be backed up.
This can be done by the following bash script
backup_postgresql.sh:

#!/bin/bash
AIIDAUSER=aiida
AIIDADB=aiidadb
AIIDAPORT=5432
STORE THE PASSWORD, IN THE PROPER FORMAT, IN THE ~/.pgpass file
see http://www.postgresql.org/docs/current/static/libpq-pgpass.html
AIIDALOCALTMPDUMPFILE=~/.aiida/${AIIDADB}-backup.psql.gz

if [-e ${AIIDALOCALTMPDUMPFILE}]
then
 mv ${AIIDALOCALTMPDUMPFILE} ${AIIDALOCALTMPDUMPFILE}~
fi

NOTE: password stored in ~/.pgpass, where pg_dump will read it automatically
pg_dump -h localhost -p $AIIDAPORT -U $AIIDAUSER $AIIDADB | gzip > $AIIDALOCALTMPDUMPFILE || rm $AIIDALOCALTMPDUMPFILE

Before launching the script you need to create the file ~/.pgpass to avoid having to enter your database
password each time you use the script. It should look like (.pgpass):

localhost:5432:aiidadb:aiida:YOUR_DATABASE_PASSWORD

where YOUR_DATABASE_PASSWORD is the password you set up for the database.

Note

Do not forget to put this file in ~/ and to name it .pgpass.
Remember also to give it the right permissions (read and write): chmod u=rw .pgpass.

To dump the database in a file automatically everyday, you can add the following script
backup-aiidadb-USERNAME in /etc/cron.daily/, which will
launch the previous script once per day:

#!/bin/bash
su USERNAME -c "/home/USERNAME/.aiida/backup_postgresql.sh"

where all instances of USERNAME are replaced by your actual user name. The su USERNAME
makes the dumped file be owned by you rather than by root.
Remember to give the script the right permissions:

sudo chmod +x /etc/cron.daily/backup-aiidadb-USERNAME

Finally make sure your database folder (/home/USERNAME/.aiida/) containing this dump file
and the repository directory, is properly backed up by
your backup software (under Ubuntu, Backup -> check the “Folders” tab).

Note

If your database is very large (more than a few hundreds of thousands
of nodes and workflows), a standard backup of your repository folder will be
very slow (up to days), thus slowing down your computer dramatically. To fix
this problem you can set up an incremental backup of your repository by following
the instructions here.

MySQL backup

Todo

Back-up instructions for the MySQL database.

We do not have explicit instructions on how to back-up MySQL yet, but you
can find plenty of information on Google.

How to retrieve the database from a backup

PostgreSQL backup

In order to retrieve the database from a backup, you have first to
create a empty database following the instructions described above in
“Setup instructions: PostgreSQL” except the verdi install
phase. Once that you have created your empty database with the same
names of the backuped one, type the following command:

psql -h localhost -U aiida -d aiidadb -f aiidadb-backup.psql

How to move the physical location of a database

It might happen that you need to move the physical location of the database
files on your hard-drive (for instance, due to the lack of space in the
partition where it is located). Below we explain how to do it.

PostgreSQL move

First, make sure you have a backup of the full database (see instructions
here), and that the AiiDA daemon is not running.
Then, become the UNIX postgres user, typing as root:

su - postgres

(or, equivalently, type sudo su - postgres, depending on your distribution).

Stop the postgres database daemon:

service postgresql stop

Then enter the postgres shell:

psql

and look for the current location of the data directory:

SHOW data_directory;

Typically you should get something like /var/lib/postgresql/9.1/main.

Note

If you are experiencing memory problems and cannot enter the postgres
shell, you can look directly into the file /etc/postgresql/9.1/main/postgresql.conf
and check out the line defining the variable data_directory.

Then exit the shell with \q, go to this directory and copy all the
files to the new directory:

cp -a SOURCE_DIRECTORY DESTINATION_DIRECTORY

where SOURCE_DIRECTORY is the directory you got from the
SHOW data_directory; command, and DESTINATION_DIRECTORY is the new
directory for the database files.

Make sure the permissions, owner and group are the same in the old and new directory
(including all levels above the DESTINATION_DIRECTORY). The owner and group
should be both postgres, at the notable exception of some symbolic links in
server.crt and server.key.

Note

If the permissions of these links need to be changed, use the -h
option of chown to avoid changing the permissions of the destination of the
links. In case you have changed the permission of the links destination by
mistake, they should typically be (beware that this might depend on your
actual distribution!):

-rw-r--r-- 1 root root 989 Mar 1 2012 /etc/ssl/certs/ssl-cert-snakeoil.pem
-rw-r----- 1 root ssl-cert 1704 Mar 1 2012 /etc/ssl/private/ssl-cert-snakeoil.key

Then you can change the postgres configuration file, that should typically
be located here:

/etc/postgresql/9.1/main/postgresql.conf

Make a backup version of this file, then look for the line defining
data_directory and replace it with the new data directory path:

data_directory = 'NEW_DATA_DIRECTORY'

Then start again the database daemon:

service postgresql start

You can check that the data directory has indeed changed:

psql
SHOW data_directory;
\q

Before removing definitely the previous location of the database files,
first rename it and test AiiDA with the new database location (e.g. do simple
queries like verdi code list or create a node and store it). If
everything went fine, you can delete the old database location.

How to set up an incremental backup for the repository

Apart from the database backup, you should also backup the AiiDA repository.
For small repositories, this can be easily done by a simple directory copy or,
even better, with the use of the rsync command which can copy only the differences.
However, both of the aforementioned approaches are not efficient in big
repositories where even a partial recursive directory listing may take
significant time, especially for filesystems where accessing a directory has
a constant (and significant) latency time. Therefore, we provide scripts for
making efficient backups of the AiiDA repository.

Before running the backup script, you will have to configure it. Therefore you
should execute the backup_setup.py which is located under
MY_AIIDA_FOLDER/aiida/common/additions/backup_script. For example:

verdi -p PROFILENAME run MY_AIIDA_FOLDER/aiida/common/additions/backup_script/backup_setup.py

where PROFILENAME is the name of the profile you want to use (if you don’t specify the -p option, the default profile will be used). This will ask a set of questions. More precisely, it will initially ask for:

	The backup folder. This is the destination of the backup configuration file.
By default a folder named backup in your .aiida directory is
proposed to be created.

	The destination folder of the backup. This is the destination folder of the
files to be backed up. By default it is a folder inside the aforementioned
backup folder (e.g. /home/aiida_user/.aiida/backup/backup_dest).

Note

You should backup the repository on a different disk than the one in
which you have the AiiDA repository! If you just use the same disk, you don’t
have any security against the most common data loss cause: disk failure.
The best option is to use a destination folder mounted over ssh. For this
you need to install sshfs (under ubuntu: sudo apt-get install sshfs).

E.g. Imagine that you run your calculations on server_1 and you would like to
take regular repository backups to server_2. Then, you could mount a server_2
directory via sshfs on server_1 using the following command on server_1:

sshfs -o idmap=user -o rw backup_user@server_2:/home/backup_user/backup_destination_dir/
/home/aiida_user/remote_backup_dir/

You should put this line into the actions performed at start-up (under gnome you
can access them by typing gnome-session-properties in a terminal), so that the
remote directory is mounted automatically after a reboot (but do not put it in
your .bashrc file otherwise each time you open a new terminal, your
computer will complain that the mount point is not empty...).

A template backup configuration file (backup_info.json.tmpl) will be copied
in the backup folder. You can set the backup variables by yourself after renaming
the template file to backup_info.json, or you can answer the questions asked
by the script, and then backup_info.json will be created based on you answers.

The main script backs up the AiiDA repository that is referenced by the current
AiiDA database. The script will start from the oldest_object_backedup date
or the date of the oldest node/workflow object found and it will periodically
backup (in periods of periodicity days) until the ending date of the backup
specified by end_date_of_backup or days_to_backup

The backup parameters to be set in the backup_info.json are:

	periodicity (in days): The backup runs periodically for a number of days
defined in the periodicity variable. The purpose of this variable is to limit
the backup to run only on a few number of days and therefore to limit the
number of files that are backed up at every round. e.g. "periodicity": 2
Example: if you have files in the AiiDA repositories created in the past 30
days, and periodicity is 15, the first run will backup the files of the first
15 days; a second run of the script will backup the next 15 days, completing
the backup (if it is run within the same day). Further runs will only backup
newer files, if they are created.

	oldest_object_backedup (timestamp or null): This is the timestamp of the
oldest object that was backed up. If you are not aware of this value or if it
is the first time that you start a backup up for this repository, then set
this value to null. Then the script will search the creation date of the
oldest workflow or node object in the database and it will start
the backup from that date. E.g. "oldest_object_backedup": "2015-07-20 11:13:08.145804+02:00"

	end_date_of_backup: If set, the backup script will backup files that
have a modification date until the value specified by this variable. If not set,
the ending of the backup will be set by the following variable
(days_to_backup) which specifies how many days to backup from the start
of the backup. If none of these variables are set (end_date_of_backup
and days_to_backup), then the end date of backup is set to the current date.
E.g. "end_date_of_backup": null or "end_date_of_backup": "2015-07-20 11:13:08.145804+02:00"

	days_to_backup: If set, you specify how many days you will backup from the starting date
of your backup. If it set to null and also
end_date_of_backup is set to null, then the end date of the backup is set
to the current date. You can not set days_to_backup & end_date_of_backup
at the same time (it will lead to an error). E.g. "days_to_backup": null
or "days_to_backup": 5

	backup_length_threshold (in hours): The backup script runs in rounds and
on every round it backs-up a number of days that are controlled primarily by
periodicity and also by end_date_of_backup / days_to_backup,
for the last backup round. The backup_length_threshold specifies the
lowest acceptable round length. This is important for the end of the backup.

	backup_dir: The destination directory of the backup. e.g.
"backup_dir": "/home/aiida_user/.aiida/backup/backup_dest"

To start the backup, run the start_backup.py script. Run as often as needed to complete a
full backup, and then run it periodically (e.g. calling it from a cron script, for instance every
day) to backup new changes.

Note

You can set up a cron job using the following command:

sudo crontab -u aiida_user -e

It will open an editor where you can add a line of the form:

00 03 * * * /home/aiida_user/.aiida/backup/start_backup.py 2>&1 | mail -s "Incremental backup of the repository" aiida_user_email@domain.net

or (if you need to backup a different profile than the default one):

00 03 * * * verdi -p PROFILENAME run /home/aiida_user/.aiida/backup/start_backup.py 2>&1 | mail -s "Incremental backup of the repository" aiida_user_email@domain.net

This will launch the backup of the database every day at 3 AM, and send the output
(or any error message) to the email address of the user (provided the mail
command – from mailutils – is configured appropriately).

Finally, do not forget to exclude the repository folder from the normal backup
of your home directory!

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Installation and Deployment of AiiDA

If you are updating from a previous version and you don’t want to
reinstall everything from scratch, read the instructions
here.

Supported architecture

AiiDA has a few strict requirements, in its current version:
first, it will run only on Unix-like systems - it
is tested (and developed) in Mac OS X and Linux (Ubuntu), but other Unix
flavours should work as well.

Moreover, on the clusters (computational resources) side, it expects to find
a Unix system, and the default shell is required to be bash.

Installing python

AiiDA requires python 2.7.x (only CPython has been tested).
It is probable that you already have a version of
python installed on your computer. To check, open a terminal and type:

python -V

that will print something like this:

Python 2.7.3

If you don’t have python installed, or your version is outdated, please install
a suitable version of python (either refer to the manual of your Linux
distribution, or for instance you can download the ActiveState Python from
ActiveState [http://www.activestate.com/activepython/downloads]. Choose the appropriate distribution corresponding to your
architecture, and with version 2.7.x.x).

Installation of the core dependencies

Database

As a first thing, choose and setup the database that you want to
use.

Other core dependencies

Before continuing, you still need to install a few more programs. Some of them
are mandatory, while others are optional (but often strongly suggested), also
depending for instance on the type of database
that you plan to use.

Here is a list of packages/programs that you need to install (for each of them,
there may be a specific/easier way to install them in your distribution, as
for instance apt-get in Debian/Ubuntu -see below for the specific names
of packages to install- or yum in RedHat/Fedora).

	git [http://git-scm.com/] (required to download the code)

	python-pip [https://pypi.python.org/pypi/pip] (required to automatically download and install further
python packages required by AiiDA)

	ipython [http://ipython.org/] (optional, but strongly recommended for interactive usage)

	python 2.7 development files (these may be needed; refer to your distribution
to know how to locate and install them)

	To support SQLite:
	SQLite3 development files [http://www.sqlite.org/] (required later to compile the library,
when configuring the python sqlite module; see below for the Ubuntu
module required to install these files)

	To support PostgreSQL:
	PostgreSQL development files [http://www.postgresql.org/] (required later to compile the library,
when configuring the python psycopg2 module; see below for the Ubuntu
module required to install these files)

For Ubuntu, you can install the above packages using (tested on Ubuntu 12.04,
names may change in different releases):

sudo apt-get install git python-pip ipython python2.7-dev

Note

For the latter line, please use the same version (in the
example above is 9.1) of the
postgresql server that you installed (in this case, to install the server of
the same version, use the sudo apt-get install postgresql-9.1 command).

If you want to use postgreSQL, use a version greater than 9.1
(the greatest that your distribution supports).

For Mac OS X, you may either already have some of the dependencies above
(e.g., git), or you can download binary packages to install (e.g., for
PostgreSQL you can download and install the binary package from the
official website).

Downloading the code

Download the code using git in a directory of your choice (~/git/aiida in
this tutorial), using the
following command:

git clone https://USERNAME@bitbucket.org/aiida_team/aiida_core.git

(or use git@bitbucket.org:aiida_team/aiida_core.git if you are downloading
through SSH; note that this requires your ssh key to be added on the
Bitbucket account.)

Python dependencies

Python dependencies are managed using pip, that you have installed in the
previous steps.

As a first step, check that pip is at its most recent version.

One possible way of doing this is to update pip with itself, with
a command similar to the following:

sudo pip install -U pip

Then, install the python dependencies is as simple as this:

cd ~/git/aiida # or the folder where you downloaded AiiDA
pip install --user -U -r requirements.txt

(this will download and install requirements that are listed in the
requirements.txt file; the --user option allows to install
the packages as a normal user, without the need of using sudo or
becoming root). Check that every package is installed correctly.

There are some additional dependencies need to be installed if you are
using PostgreSQL or MySql as backend database. No additional dependency
is required for SQLite.

For PostgreSQL:

pip install --user psycopg2==2.6

For MySQL:

pip install --user MySQL-python==1.2.5

Note

This step should work seamlessly, but there are a number of reasons
for which problems may occur. Often googling for the error message helps in
finding a solution. Some common pitfalls are described in the notes below.

Note

if the pip install command gives you this kind of error message:

OSError: [Errno 13] Permission denied: '/usr/local/bin/easy_install'

then try again as root:

sudo pip install -U -r requirements.txt

If everything went smoothly, congratulations! Now the code is installed!
However, we need still a few steps to properly configure AiiDA for your user.

Note

if the pip install command gives you an error that
resembles the one
shown below, you might need to downgrade to an older version of pip:

Cannot fetch index base URL https://pypi.python.org/simple/

To downgrade pip, use the following command:

sudo easy_install pip==1.2.1

Note

Several users reported the need to install also libqp-dev:

apt-get install libqp-dev

But under Ubuntu 12.04 this is not needed.

Note

If the installation fails while installing the packages related
to the database, you may have not installed or set up the database
libraries as described in the section Other core dependencies.

In particular, on Mac OS X, if you installed the binary package of
PostgreSQL, it is possible that the PATH environment variable is not
set correctly, and you get a “Error: pg_config executable not found.” error.
In this case, discover where the binary is located, then add a line to
your ~/.bashrc file similar to the following:

export PATH=/the/path/to/the/pg_config/file:${PATH}

and then open a new bash shell.
Some possible paths can be found at this
Stackoverflow link [http://stackoverflow.com/questions/21079820/how-to-find-pg-config-pathlink] and a non-exhaustive list of possible
paths is the following (version number may change):

	/Applications/Postgres93.app/Contents/MacOS/bin

	/Applications/Postgres.app/Contents/Versions/9.3/bin

	/Library/PostgreSQL/9.3/bin/pg_config

Similarly, if the package installs but then errors occur during the first
of AiiDA (with Symbol not found errors or similar), you may need to
point to the path where the dynamical libraries are. A way to do it is to
add a line similar to the following to the ~/.bashrc and then open
a new shell:

export DYLD_FALLBACK_LIBRARY_PATH=/Library/PostgreSQL/9.3/lib:$DYLD_FALLBACK_LIBRARY_PATH

(you should of course adapt the path to the PostgreSQL libraries).

AiiDA configuration

Path configuration

The main interface to AiiDA is through its command-line tool, called verdi.
For it to work, it must be on the system path, and moreover the AiiDA python
code must be found on the python path.

To do this, add the following to your ~/.bashrc file (create it if not already present):

export PYTHONPATH=~/git/aiida:${PYTHONPATH}
export PATH=~/git/aiida/bin:${PATH}

and then source the .bashrc file with the command source ~/.bashrc, or login
in a new window.

Note

replace ~/git/aiida with the path where you installed AiiDA. Note
also that in the PYTHONPATH you simply have to specify the AiiDA path, while
in PATH you also have to append the /bin subfolder!

Note

if you installed the modules with the --user parameter during the
pip install step, you will need to add one more directory to your PATH
variable in the ~/.bashrc file.
For Linux systems, the path to add is usually ~/.local/bin:

export PATH=~/git/aiida/bin:~/.local/bin:${PATH}

For Mac OS X systems, the path to add is usually ~/Library/Python/2.7/bin:

export PATH=~/git/aiida/bin:~/Library/Python/2.7/bin:${PATH}

To verify if this is the correct path to add, navigate to this location and
you should find the executable supervisord in the directory.

To verify if the path setup is OK:

	type verdi on your terminal, and check if the program starts (it should
provide a list of valid commands). If it doesn’t, check if you correctly set
up the PATH environmente variable above.

	go in your home folder or in another folder different from the AiiDA folder,
run python or ipython and try to import a module, e.g. typing:

import aiida

If the setup is ok, you shouldn’t get any error. If you do get an
ImportError instead, check if you correctly set up the PYTHONPATH
environment variable in the steps above.

Bash completion

verdi fully supports bash completion (i.e., the possibility to press the
TAB of your keyboard to get a list of sensible commands to type.
We strongly suggest to enable bash completion by adding also the following
line to your .bashrc, after the previous lines:

eval "$(verdi completioncommand)"

If you feel that the bash loading time is becoming too slow, you can instead
run the:

verdi completioncommand

on a shell, and copy-paste the output directly inside your .bashrc file,
instead of the eval "$(verdi completioncommand)" line.

Remember, after any modification to the .bashrc file, to source it,
or to open a new shell window.

Note

remember to check that your .bashrc is sourced also from your
.profile or .bash_profile script. E.g., if not already present,
you can add to your ~/.bash_profile the following lines:

if [-f ~/.bashrc]
then
 . ~/.bashrc
fi

AiiDA first setup

Run the following command:

verdi install

to configure AiiDA. The command will guide you through a process to configure
the database, the repository location, and it will finally (automatically) run
a django migrate command, if needed, that creates the required tables
in the database and installs the database triggers.

The first thing that will be asked to you is the timezone, extremely important
to get correct dates and times for your calculations.

AiiDA will do its best to try and understand the local timezone (if properly
configured on your machine), and will suggest a set of sensible values.
Choose the timezone that fits best to you (that is, the nearest city in your
timezone - for Lausanne, for instance, we choose Europe/Zurich) and type
it at the prompt.

If the automatic zone detection did not work for you, type instead another
valid string.
A list of valid strings can be found at
http://en.wikipedia.org/wiki/List_of_tz_database_time_zones
but for the definitive list of timezones supported by your system, open
a python shell and type:

import pytz
print pytz.all_timezones

as AiiDA will not accept a timezone string that is not in the above list.

As a second parameter to input during the verdi install phase,
the “Default user email” is asked.

We suggest here to use your institution email, that will be used to associate
the calculations to you.

Note

In AiiDA, the user email is used as
username, and also as unique identifier when importing/exporting data from
AiiDA.

Note

Even if you choose an email different from the default one
(aiida@localhost), a user with email aiida@localhost will be
set up,
with its password set to None (disabling access via this user
via API or Web interface).

The existence of a default user is internally useful for multi-user
setups, where only one user
runs the daemon, even if many users can simultaneously access the DB.
See the page on setting up AiiDA in multi-user mode
for more details (only for advanced users).

Note

The password, in the current version of AiiDA, is not used (it will
be used only in the REST API and in the web interface). If you leave the
field empty, no password will be set and no access will be granted to the
user via the REST API and the web interface.

Then, the following prompts will help you configure the database. Typical settings are:

Insert your timezone: Europe/Zurich
Default user email: richard.wagner@leipzig.de
Database engine: sqlite3
AiiDA Database location: /home/wagner/.aiida/aiida.db
AiiDA repository directory: /home/wagner/.aiida/repository/
[...]
Configuring a new user with email 'richard.wagner@leipzig.de'
First name: Richard
Last name: Wagner
Institution: BRUHL, LEIPZIG
The user has no password, do you want to set one? [y/N] y
Insert the new password:
Insert the new password (again):

Note

When the “Database engine” is asked, use ‘sqlite3’ only if you want
to try out AiiDA without setting up a database.

However, keep in mind that for serious use, SQLite has serious
limitations!! For instance, when many calculations are managed at the same
time, the database file is locked by SQLite to avoid corruption, but this
can lead to timeouts that do not allow to AiiDA to properly store the
calculations in the DB.

Therefore, for production use of AiiDA, we strongly suggest to setup a
“real” database as PostgreSQL or MySQL. Then, in the “Database engine”
field, type either ‘postgres’ or ‘mysql’ according to the database you
chose to use. See here for the documentation
to setup such databases (including info on how to proceed with verdi install
in this case).

At the end, AiiDA will also ask to configure your user, if you set up a user
different from aiida@localhost.

If something fails, there is a high chance that you may have misconfigured
the database. Double-check your settings before reporting an error.

Note

The repository will contain the same number of folders
as the number of nodes plus the number of workflows. For very large databases,
some operations on the repository folder, such as rsync or scanning its content,
might be very slow, and if they are performed reguarly this will slow down
the computer due to an intensive use of the hard drive.
Check out our tips in the
troubeshooting section in case this happens.

Start the daemon

If you configured your user account with your personal email (or if in
general there are more than just one user) you will not be able to
start the daemon with the command verdi daemon start before its configuration.

If you are working in a single-user mode, and you are sure that nobody else
is going to run the daemon, you can configure your user as the (only)
one who can run the daemon.

To configure the deamon, run:

verdi daemon configureuser

and (after having read and understood the warning text that appears) insert
the email that you used above during the verdi install phase.

To try AiiDA and start the daemon, run:

verdi daemon start

If everything was done correctly, the daemon should start.
You can inquire the daemon status using:

verdi daemon status

and, if the daemon is running, you should see something like:

* aiida-daemon[0] RUNNING pid 12076, uptime 0:39:05
* aiida-daemon-beat[0] RUNNING pid 12075, uptime 0:39:05

To stop the daemon, use:

verdi daemon stop

A log of the warning/error messages of the daemon
can be found in in ~/.aiida/daemon/log/, and can also be seen using
the verdi daemon logshow command. The daemon is
a fundamental component of AiiDA, and it is in charge of submitting new
calculations, checking their status on the cluster, retrieving and parsing
the results of finished calculations, and managing the workflow steps.

Congratulations, your setup is complete!

Before going on, however, you will need to setup at least one computer (i.e.,
on computational resource as a cluster or a supercomputer, on which you want
to run your calculations) and one code. The documentation for these steps can
be found here.

Optional dependencies

CIF manipulation

For the manipulation of Crystallographic Information Framework (CIF) files [http://www.iucr.org/resources/cif],
following dependencies are required to be installed:

	PyCifRW [https://pypi.python.org/pypi/PyCifRW/3.6.2]

	pymatgen [http://pymatgen.org]

	pyspglib [http://spglib.sourceforge.net/pyspglibForASE/]

	jmol [http://jmol.sourceforge.net]

	Atomic Simulation Environment (ASE) [https://wiki.fysik.dtu.dk/ase/]

	cod-tools

First four can be installed from the default repositories:

sudo pip install pycifrw==3.6.2.1
sudo pip install pymatgen==3.0.13
sudo pip install pyspglib
sudo apt-get install jmol

ASE has to be installed from source:

curl https://wiki.fysik.dtu.dk/ase-files/python-ase-3.8.1.3440.tar.gz > python-ase-3.8.1.3440.tar.gz
tar -zxvf python-ase-3.8.1.3440.tar.gz
cd python-ase-3.8.1.3440
setup.py build
setup.py install
export PYTHONPATH=$(pwd):$PYTHONPATH

For the setting up of cod-tools please refer to
installation of cod-tools.

Further comments and troubleshooting

	For some reasons, on some machines (notably often on Mac OS X) there is no
default locale defined, and when you run verdi install for the first
time it fails (see also this issue [https://code.djangoproject.com/ticket/16017] of django). To solve the problem, first
remove the sqlite database that was created.

Then, run in your terminal (or maybe even better, add to your .bashrc, but
then remember to open a new shell window!):

export LANG="en_US.UTF-8"
export LC_ALL="en_US.UTF-8"

and then run verdi install again.

	[Only for developers] The developer tests of the SSH transport plugin are
performed connecting to localhost. The tests will fail if
a passwordless ssh connection is not set up. Therefore, if you want to run
the tests:

	make sure to have a ssh server. On Ubuntu, for instance, you can install
it using:

sudo apt-get install openssh-server

	Configure a ssh key for your user on your machine, and then add
your public key to the authorized keys of localhsot.
The easiest way to achieve this is to run:

ssh-copy-id localhost

(it will ask your password, because it is connecting via ssh to localhost
to install your public key inside ~/.ssh/authorized_keys).

Updating AiiDA from a previous version

Note

A few important points regarding the updates:

	If you encounter any problems and/or inconsistencies, delete any .pyc
files that may have remained from the previous version. E.g. If you are
in your AiiDA folder you can type find . -name "*.pyc" -type f -delete.

	The requirements file may have changed. Please be sure that you have
installed all the needed requirements. This can be done by executing:
pip install --user -U -r requirements.txt.

Updating from 0.6.0 Django to 0.7.0 Django

In version 0.7 we have changed the Django database schema and we also have
updated the AiiDA configuration files.

	Stop your daemon (using verdi daemon stop).

	Store your aiida source folder somewhere in case you did some
modifications to some files.

	Replace the aiida folder with the new one (either from the tar.gz or,
if you are using git, by doing a git pull). If you use the same
folder name, you will not need to update the PATH and PYTHONPATH
variables.

	Run a verdi command, e.g., verdi calculation list. This should
raise an exception, and in the exception message you will see the
command to run to update the schema version of the DB (v.0.7.0
is using a newer version of the schema).
The command will look like
python manage.py --aiida-profile=default migrate, but please read the
message for the correct command to run.

	If you run verdi calculation list again now, it should work without
error messages.

	To update the AiiDA configuration files, you should execute the migration
script (python _your_aiida_folder_/aiida/common/additions/migration_06dj_to_07dj.py).

	You can now restart your daemon and work as usual.

Updating from 0.6.0 Django to 0.7.0 SQLAlchemy

The SQLAlchemy backend is in beta mode for version 0.7.0. Therefore some of
the verdi commands may not work as expected or at all (these are very few).
If you would like to test the new backend with your existing AiiDA database,
you should convert it to the new JSON format. We provide a transition script
that will update your config files and change your database to the new schema.

Note

Please note that the transition script expects that you are already at
version 0.6.0. Therefore if you use a previous version of AiiDA please
update first to 0.6.0.

	Stop your daemon (using verdi daemon stop).

	Store your aiida source folder somewhere in case you did some
modifications to some files.

	Replace the aiida folder with the new one (either from the tar.gz or,
if you are using git, by doing a git pull). If you use the same
folder name, you will not need to update the PATH and PYTHONPATH
variables.

	Go to you AiiDA folder and run ipython. Then execute
from aiida.backends.sqlalchemy.transition_06dj_to_07sqla import transition
and transition(profile="your_profile",group_size=10000) by replacing
your_profile with the name of the profile that you would like to
transition.

	You can now exit ipython, restart your daemon and work as usual.

Updating from 0.5.0 to 0.6.0

This migration will update your AiiDA configuration files making them
compatible with AiiDA version 0.6.0.

Note

We performed a lot of changes to introduce in one of our following
releases a second object-relational mapper (we will refer to it as
back-end) for the management of the used DBMSs and more specifically
of PostgreSQL.

Even if most of the needed restructuring & code addition has been finished,
a bit of more work is needed before we make the new back-end available.

Note

A few important points regarding the upgrade:

	Please try to checkout the latest version from the corresponding
development branch. Problems encountered are resolved and fixes are
pushed to the branch.

	You can not directly import data (verdi import) that you have exported
(verdi export) with a previous version of AiiDA. Please use
this script
to convert it to the new schema. (Usage: python
convert_exportfile_version.py input_file output_file).

To perform the update:

	Stop your daemon (using verdi daemon stop).

	Backup your configuration files that are in .aiida directory.

	Replace the aiida folder with the new one (e.g. by doing a git pull).
If you use the same folder name, you will not need to update the
PATH and PYTHONPATH variables.

	Execute the migration script (python _your_aiida_folder_/aiida/common/additions/migration.py).

	Start again you daemon (using verdi daemon start).

Updating from 0.4.1 to 0.5.0

	Stop your daemon (using verdi daemon stop)

	Store your aiida source folder somewhere in case you did some
modifications to some files

	Replace the aiida folder with the new one (either from the tar.gz or,
if you are using git, by doing a git pull). If you use the same
folder name, you will not need to update the PATH and PYTHONPATH
variables

	Run a verdi command, e.g., verdi calculation list. This should
raise an exception, and in the exception message you will see the
command to run to update the schema version of the DB (v.0.5.0
is using a newer version of the schema).
The command will look like
python manage.py --aiida-profile=default migrate, but please read the
message for the correct command to run.

	If you run verdi calculation list again now, it should work without
error messages.

	You can now restart your daemon and work as usual.

Note

If you modified or added files, you need to put them back in place.
Note that if you were working on a plugin, the plugin interface changed:
you need to change the CalcInfo returning also a CodeInfo, as specified
here and also accept a Code object
among the inputs (also described in the same page).

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Setup of computers and codes

Before being able to run the first calculation, you need to setup at least one
computer and one code, as described below.

Remote computer requirements

A computer in AiiDA denotes any computational resource (with a batch job
scheduler) on which you will run your calculations. Computers typically are
clusters or supercomputers.

Requirements for a computer are:

	It must run a Unix-like operating system

	The default shell must be bash

	It should have a batch scheduler installed (see here
for a list of supported batch schedulers)

	It must be accessible from the machine that runs AiiDA using one of the
available transports (see below).

The first step is to choose the transport to connect to the computer. Typically,
you will want to use the SSH transport, apart from a few special cases where
SSH connection is not possible (e.g., because you cannot setup a password-less
connection to the computer). In this case, you can install AiiDA directly on
the remote cluster, and use the local transport (in this way, commands to
submit the jobs are simply executed on the AiiDA machine, and files are simply
copied on the disk instead of opening an SFTP connection).

If you plan to use the local transport, you can skip to the next section.

If you plan to use the SSH transport, you have to configure a password-less
login from your user to the cluster. To do so type first (only if you do not
already have some keys in your local ~/.ssh directory - i.e. files like
id_rsa.pub):

ssh-keygen -t rsa

Then copy your keys to the remote computer (in ~/.ssh/authorized_keys) with:

ssh-copy-id YOURUSERNAME@YOURCLUSTERADDRESS

replacing YOURUSERNAME and YOURCLUSTERADDRESS by respectively your username
and cluster address. Finally add the following lines to ~/.ssh/config (leaving an empty
line before and after):

Host YOURCLUSTERADDRESS
 User YOURUSERNAME
 HostKeyAlgorithms ssh-rsa
 IdentityFile YOURRSAKEY

replacing YOURRSAKEY by the path to the rsa private key you want to use
(it should look like ~/.ssh/id_rsa).

Note

In principle you don’t have to put the IdentityFile line if you have
only one rsa key in your ~/.ssh folder.

Before proceeding to setup the computer, be sure that you are able to
connect to your cluster using:

ssh YOURCLUSTERADDRESS

without the need to type a password. Moreover, make also sure you can connect
via sftp (needed to copy files). The following command:

sftp YOURCLUSTERADDRESS

should show you a prompt without errors (possibly with a message saying
Connected to YOURCLUSTERADDRESS).

Warning

Due to a current limitation of the current ssh transport module, we
do not support ECDSA, but only RSA or DSA keys. In the present guide we’ve
shown RSA only for simplicity. The first time you connect to
the cluster, you should see something like this:

The authenticity of host 'YOURCLUSTERADDRESS (IP)' can't be established.
RSA key fingerprint is xx:xx:xx:xx:xx.
Are you sure you want to continue connecting (yes/no)?

Make sure you see RSA written. If you already installed the keys in the past,
and you don’t know which keys you are using, you could remove the cluster
YOURCLUSTERADDRESS from the file ~/.ssh/known-hosts (backup it first!) and try
to ssh again. If you are not using a RSA or DSA key, you may see later on a
submitted calculation going in the state SUBMISSIONFAILED.

Note

If the ssh command works, but the sftp command does not
(e.g. it just prints Connection closed), a possible reason can be
that there is a line in your ~/.bashrc that either produces an output,
or an error. Remove/comment it until no output or error is produced: this
should make sftp working again.

Finally, try also:

ssh YOURCLUSTERADDRESS QUEUE_VISUALIZATION_COMMAND

replacing QUEUE_VISUALIZATION_COMMAND by the scheduler command that prints on screen the
status of the queue on the cluster (i.e. qstat for PBSpro scheduler, squeue for SLURM, etc.).
It should print a snapshot of the queue status, without any errors.

Note

If there are errors with the previous command, then
edit your ~/.bashrc file in the remote computer and add a line at the beginning
that adds the path to the scheduler commands, typically (here for
PBSpro):

export PATH=$PATH:/opt/pbs/default/bin

Or, alternatively, find the path to the executables (like using which qsub)

Note

If you need your remote .bashrc to be sourced before you execute the code
(for instance to change the PATH), make sure the .bashrc file does not contain
lines like:

[-z "$PS1"] && return

or:

case $- in
 i) ;;
 *) return;;
esac

in the beginning (these would prevent the bashrc to be executed when you ssh
to the remote computer). You can check that e.g. the PATH variable is correctly
set upon ssh, by typing (in your local computer):

ssh YOURCLUSTERADDRESS 'echo $PATH'

Note

If you need to ssh to a computer A first, from which you can then
connect to computer B you wanted to connect to, you can use the
proxy_command feature of ssh, that we also support in
AiiDA. For more information, see Using the proxy_command option with ssh.

Computer setup and configuration

The configuration of computers happens in two steps.

Note

The commands use some readline extensions to provide default
answers, that require an advanced terminal. Therefore, run the commands from
a standard terminal, and not from embedded terminals as the ones included in
text editors, unless you know what you are doing. For instance, the
terminal embedded in emacs is known to give problems.

	Setup of the computer, using the:

verdi computer setup

command. This command allows to create a new computer instance in the DB.

Tip

The code will ask you a few pieces of information. At every prompt, you can
type the ? character and press <enter> to get a more detailed
explanation of what is being asked.

Tip

You can press <CTRL>+C at any moment to abort the setup process.
Nothing will be stored in the DB.

Note

For multiline inputs (like the prepend text and the append text, see below)
you have to press <CTRL>+D to complete the input, even if you do not want
any text.

Here is a list of what is asked, together with an explanation.

	Computer name: the (user-friendly) name of the new computer instance
which is about to be created in the DB (the name is used for instance when
you have to pick up a computer to launch a calculation on it). Names must
be unique. This command should be thought as a AiiDA-wise configuration of
computer, independent of the AiiDA user that will actually use it.

	Fully-qualified hostname: the fully-qualified hostname of the computer
to which you want to connect (i.e., with all the dots: bellatrix.epfl.ch,
and not just bellatrix). Type localhost for the local transport.

	Description: A human-readable description of this computer; this is
useful if you have a lot of computers and you want to add some text to
distinguish them (e.g.: “cluster of computers at EPFL, installed in 2012, 2 GB of RAM per CPU”)

	Enabled: either True or False; if False, the computer is disabled
and calculations associated with it will not be submitted. This allows to
disable temporarily a computer if it is giving problems or it is down for
maintenance, without the need to delete it from the DB.

	Transport type: The name of the transport to be used. A list of valid
transport types can be obtained typing ?

	Scheduler type: The name of the plugin to be used to manage the
job scheduler on the computer. A list of valid
scheduler plugins can be obtained typing ?. See
here for a documentation of scheduler plugins
in AiiDA.

	AiiDA work directory: The absolute path of the directory on the
remote computer where AiiDA will run the calculations
(often, it is the scratch of the computer). You can (should) use the
{username} replacement, that will be replaced by your username on the
remote computer automatically: this allows the same computer to be used
by different users, without the need to setup a different computer for
each one. Example:

/scratch/{username}/aiida_work/

	mpirun command: The mpirun command needed on the cluster to run parallel MPI
programs. You can (should) use the {tot_num_mpiprocs} replacement,
that will be replaced by the total number of cpus, or the other
scheduler-dependent fields (see the scheduler docs
for more information). Some examples:

mpirun -np {tot_num_mpiprocs}
aprun -n {tot_num_mpiprocs}
poe

	Text to prepend to each command execution: This is a multiline string,
whose content will be prepended inside the submission script before the
real execution of the job. It is your responsibility to write proper bash code!
This is intended for computer-dependent code, like for instance loading a
module that should always be loaded on that specific computer. Remember
to end the input by pressing <CTRL>+D.
A practical example:

export NEWVAR=1
source some/file

A not-to-do example:

#PBS -l nodes=4:ppn=12

(it’s the plugin that will do this!)

	Text to append to each command execution: This is a multiline string,
whose content will be appended inside the submission script after the
real execution of the job. It is your responsibility to write proper bash code!
This is intended for computer-dependent code. Remember
to end the input by pressing <CTRL>+D.

At the end, you will get a confirmation command, and also the ID in the
database (pk, i.e. the principal key, and uuid).

	Configuration of the computer, using the:

verdi computer configure COMPUTERNAME

command. This will allow to access more detailed configurations, that are
often user-dependent and also depend on the specific transport (for instance,
if the transport is SSH, it will ask for username, port, ...).

The command will try to provide automatically default answers, mainly reading
the existing ssh configuration in ~/.ssh/config, and in most cases one
simply need to press enter a few times.

Note

At the moment, the in-line help (i.e., just typing ? to get
some help) is not yet supported in verdi configure, but only in
verdi setup.

For local transport, you need to run the command,
even if nothing will be asked to you.
For ssh transport, the following will be asked:

	username: your username on the remote machine

	port: the port to connect to (the default SSH port is 22)

	look_for_keys: automatically look for the private key in ~/.ssh.
Default: True.

	key_filename: the absolute path to your private SSH key. You can leave
it empty to use the default SSH key, if you set look_for_keys to True.

	timeout: A timeout in seconds if there is no response (e.g., the
machine is down. You can leave it empty to use the default value.

	allow_agent: If True, it will try to use an SSH agent.

	proxy_command: Leave empty if you do not need a proxy command (i.e.,
if you can directly connect to the machine). If you instead need to connect
to an intermediate computer first, you need to provide here the
command for the proxy: see documentation here
for how to use this option, and in particular the notes
here for the format of this field.

	compress: True to compress the traffic (recommended)

	load_system_host_keys: True to load the known hosts keys from the
default SSH location (recommended)

	key_policy: What is the policy in case the host is not known.
It is a string among the following:
	RejectPolicy (default, recommended): reject the connection if the
host is not known.

	WarningPolicy (not recommended): issue a warning if the
host is not known.

	AutoAddPolicy (not recommended): automatically add the host key
at the first connection to the host.

After these two steps have been completed, your computer is ready to go!

Note

To check if you set up the computer correctly,
execute:

verdi computer test COMPUTERNAME

that will run a few tests (file copy, file retrieval, check of the jobs in
the scheduler queue) to verify that everything works as expected.

Note

If you are not sure if your computer is already set up, use the command:

verdi computer list

to get a list of existing computers, and:

verdi computer show COMPUTERNAME

to get detailed information on the specific computer named COMPUTERNAME.
You have also the:

verdi computer rename OLDCOMPUTERNAME NEWCOMPUTERNAME

and:

verdi computer delete COMPUTERNAME

commands, whose meaning should be self-explanatory.

Note

You can delete computers only if no entry in the database is using
them (as for instance Calculations, or RemoteData objects). Otherwise, you
will get an error message.

Note

It is possible to disable a computer.

Doing so will prevent AiiDA
from connecting to the given computer to check the state of calculations or
to submit new calculations. This is particularly useful if, for instance,
the computer is under maintenance but you still want to use AiiDA with
other computers, or submit the calculations in the AiiDA database anyway.

When the computer comes back online, you can re-enable it;
at this point pending calculations in the TOSUBMIT state will be
submitted, and calculations WITHSCHEDULER will be checked and possibly
retrieved.

The relevant commands are:

verdi computer enable COMPUTERNAME
verdi computer disable COMPUTERNAME

Note that the above commands will disable the computer for all AiiDA users.
If instead, for some reason, you want to disable the computer only for a
given user, you can use the following command:

verdi computer disable COMPUTERNAME --only-for-user USER_EMAIL

(and the corresponding verdi computer enable command to re-enable it).

Code setup and configuration

Once you have at least one computer configured, you can configure the codes.

In AiiDA, for full reproducibility of each calculation, we store each code in
the database, and attach to each calculation a given code. This has the further
advantage to make very easy to query for all calculations that were run with
a given code (for instance because I am looking for phonon calculations, or
because I discovered that a specific version had a bug and I want to rerun
the calculations).

In AiiDA, we distinguish two types of codes: remote codes and local codes,
where the distinction between the two is described here below.

Remote codes

With remote codes we denote codes that are installed/compiled
on the remote computer. Indeed, this is very often the case for codes installed
in supercomputers for high-performance computing applications, because the
code is typically installed and optimized on the supercomputer.

In AiiDA, a remote code is identified by two mandatory pieces of information:

	A computer on which the code is (that must be a previously configured computer);

	The absolute path of the code executable on the remote computer.

Local codes

With local codes we denote codes for which the code is not
already present on the remote machine, and must be copied for every submission.
This is the case if you have for instance a small, machine-independent Python
script that you did not copy previously in all your clusters.

In AiiDA, a local code can be set up by specifying:

	A folder, containing all files to be copied over at every submission

	The name of executable file among the files inside the folder specified above

Setting up a code

The:

verdi code

command allows to manage codes in AiiDA.

To setup a new code, you execute:

verdi code setup

and you will be guided through a process to setup your code.

Tip

The code will ask you a few pieces of information. At every prompt, you can
type the ? character and press <enter> to get a more detailed
explanation of what is being asked.

You will be asked for:

	label: A label to refer to this code. Note: this label is not enforced
to be unique. However, if you try to keep it unique, at least within
the same computer, you can use it later
to refer and use to your code. Otherwise, you need to remember its ID or UUID.

	description: A human-readable description of this code (for instance “Quantum
Espresso v.5.0.2 with 5.0.3 patches, pw.x code, compiled with openmpi”)

	default input plugin: A string that identifies the default input plugin to
be used to generate new calculations to use with this code.
This string has to be a valid string recognized by the CalculationFactory
function. To get the list of all available Calculation plugin strings,
use the verdi calculation plugins command. Note: if you do not want to
specify a default input plugin, you can write the string “None”, but this is
strongly discouraged, because then you will not be able to use
the .new_calc method of the Code object.

	local: either True (for local codes) or False (for remote
codes). For the meaning of the distinction, see above. Depending
on your choice, you will be asked for:
	LOCAL CODES:
	Folder with the code: The folder on your local computer in which there
are the files to be stored in the AiiDA repository, and that will then be
copied over to the remote computers for every submitted calculation.
This must be an absolute path on your computer.

	Relative path of the executable: The relative path of the executable
file inside the folder entered in the previous step.

	REMOTE CODES:
	Remote computer name: The computer name as on which the code resides,
as configured and stored in the AiiDA database

	Remote absolute path: The (full) absolute path of the code executable
on the remote machine

For any type of code, you will also be asked for:

	
	Text to prepend to each command execution: This is a multiline string,

	whose content will be prepended inside the submission script before the
real execution of the job. It is your responsibility to write proper bash code!
This is intended for code-dependent code, like for instance loading the
modules that are required for that specific executable to run.
Example:

module load intelmpi

Remember
to end the input by pressing <CTRL>+D.

	Text to append to each command execution: This is a multiline string,
whose content will be appended inside the submission script after the
real execution of the job. It is your responsibility to write proper bash code!
This is intended for code-dependent code. Remember
to end the input by pressing <CTRL>+D.

At the end, you will get a confirmation command, and also the ID of the code in the
database (the pk, i.e. the principal key, and the uuid).

Note

Codes are a subclass of the Node class,
and as such you can attach any set of attributes to the code. These can
be extremely useful for querying: for instance, you can attach the version
of the code as an attribute, or the code family (for instance: “pw.x code of
Quantum Espresso”) to later query for all runs done with a pw.x code and
version more recent than 5.0.0, for instance. However, in the
present AiiDA version you cannot add attributes from the command line using
verdi, but you have to do it using Python code.

Note

You can change the label of a code by using the following command:

verdi code rename "ID"

(Without the quotation marks!) “ID” can either be the numeric ID (PK) of
the code (preferentially), or possibly its label (or label@computername),
if this string uniquely identifies a code.

You can also list all available codes (and their relative IDs) with:

verdi code list

The verdi code list accepts some flags to filter only codes on a
given computer, only codes using a specific plugin, etc.; use the -h
command line option to see the documentation of all possible options.

You can then get the information of a specific code with:

verdi code show "ID"

Finally, to delete a code use:

verdi code delete "ID"

(only if it wasn’t used by any calculation, otherwise an exception
is raised)

And now, you are ready to launch your calculations! You may want to follow to
the examples of how you can submit a single calculation, as for instance the
specific tutorial for Quantum Espresso.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Plug-ins for AiiDA

AiiDA plug-ins are input generators and output parsers, enabling the
integration of codes into AiiDA calculations and workflows.

Available plugins

	Quantum Espresso
	Description

	Plugins
	PW
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	Additional advanced features

	CP
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	PH
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	Matdyn
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	Q2R
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	NEB
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	cod-tools
	Description

	Installation

	Examples

	Plugins
	codtools.ciffilter
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	codtools.cifcellcontents
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	codtools.cifcodcheck
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	codtools.cifcoddeposit
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	codtools.cifcodnumbers
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	codtools.cifsplitprimitive
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	ASE
	Description

	Plugins
	ASE
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	Examples

	Wannier90
	Description

	Plugins
	Wannier90
	Description

	Supported codes

	Inputs

	Files Copied

	Outputs

	Errors

	NWChem
	Description

	Plugins
	nwchem.basic
	Description

	Inputs

	Outputs

	nwchem.nwcpymatgen
	Description

	Inputs

	Outputs

	Errors

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

Quantum Espresso

Description

Quantum Espresso [http://www.quantum-espresso.org/] is a suite of open-source codes for electronic-structure calculations
from first principles, based on density-functional theory, plane waves, and pseudopotentials,
freely available online [http://qe-forge.org/gf/project/q-e/frs/?action=FrsReleaseBrowse&frs_package_id=18].
Documentation of the code and its internal details can be found in the distributed software, and in the online forum [http://www.quantum-espresso.org/forum/] (and its search engine [https://www.google.com/cse/home?cx=000217952118062629757:xew9tb5yarq]).

The plugins of quantumespresso in AiiDA are not meant to completely automatize the calculation of the electronic properties. It is still required an underlying knowledge of how quantum espresso is working, which flags it requires, etc. A total automatization, if desired, has to be implemented at the level of a workflow.

Currently supported codes are:

	PW: Ground state properties, total energy, ionic relaxation, molecular dynamics, forces, etc...

	CP: Car-Parrinello molecular dynamics

	PH: Phonons from density functional perturbation theory

	Q2R: Fourier transform the dynamical matrices in the real space

	Matdyn: Fourier transform the dynamical matrices in the real space

	NEB: Energy barriers and reaction pathways using the Nudged Elastic Band (NEB) method

Moreover, support for further codes can be implemented adapting the namelist plugin.

Plugins

	PW
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	Additional advanced features
	Parsing band energies

	Fixing some atom coordinates

	Passing an explicit list of kpoints on a grid

	Gamma-only calculation

	Initialization only

	Different set of namelists

	Adding command-line options

	Using symlinks for the restarts

	Retrieving more files

	CP
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	PH
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	Matdyn
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	Q2R
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	NEB
	Description

	Supported codes

	Inputs

	Outputs

	Errors

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	Quantum Espresso

PW

Description

Use the plugin to support inputs of Quantum Espresso pw.x executable.

Supported codes

	tested from pw.x v5.0 onwards. Back compatibility is not guaranteed (although
versions 4.3x might work most of the times).

Inputs

	pseudo, class UpfData
One pseudopotential file per atomic species.

Alternatively, pseudo for every atomic species can be set with the use_pseudos_from_family
method, if a family of pseudopotentials has been installed..

	kpoints, class KpointsData
Reciprocal space points on which to build the wavefunctions. Can either be
a mesh or a list of points with/without weights

	parameters, class ParameterData
Input parameters of pw.x, as a nested dictionary, mapping the input of QE.
Example:

{"CONTROL":{"calculation":"scf"},
 "ELECTRONS":{"ecutwfc":30.,"ecutrho":100.},
}

See the QE documentation for the full list of variables and their meaning.
Note: some keywords don’t have to be specified or Calculation will enter
the SUBMISSIONFAILED state, and are already taken care of by AiiDA (are related
with the structure or with path to files):

'CONTROL', 'pseudo_dir': pseudopotential directory
'CONTROL', 'outdir': scratch directory
'CONTROL', 'prefix': file prefix
'SYSTEM', 'ibrav': cell shape
'SYSTEM', 'celldm': cell dm
'SYSTEM', 'nat': number of atoms
'SYSTEM', 'ntyp': number of species
'SYSTEM', 'a': cell parameters
'SYSTEM', 'b': cell parameters
'SYSTEM', 'c': cell parameters
'SYSTEM', 'cosab': cell parameters
'SYSTEM', 'cosac': cell parameters
'SYSTEM', 'cosbc': cell parameters

	structure, class StructureData

	settings, class ParameterData (optional)
An optional dictionary that activates non-default operations. For a list of possible
values to pass, see the section on the advanced features.

	parent_folder, class RemoteData (optional)
If specified, the scratch folder coming from a previous QE calculation is
copied in the scratch of the new calculation.

	vdw_table, class SinglefileData (optional)
If specified, it should be a file for the van der Waals kernel table.
The file is copied in the pseudo subfolder, without changing its name, and
without any check, so it is your responsibility to select the correct file
that you want to use.

Outputs

Note

The output_parameters has more parsed values in the EPFL version and output_bands is parsed only in the EPFL version.

There are several output nodes that can be created by the plugin, according to the calculation details.
All output nodes can be accessed with the calculation.out method.

	output_parameters ParameterData
(accessed by calculation.res)
Contains the scalar properties. Example: energy (in eV),
total_force (modulus of the sum of forces in eV/Angstrom),
warnings (possible error messages generated in the run).

	output_array ArrayData
Produced in case of calculations which do not change the structure, otherwise,
an output_trajectory is produced.
Contains vectorial properties, too big to be put in the dictionary.
Example: forces (eV/Angstrom), stresses, ionic positions.
Quantities are parsed at every step of the ionic-relaxation / molecular-dynamics run.

	output_trajectory ArrayData
Produced in case of calculations which change the structure, otherwise an
output_array is produced. Contains vectorial properties, too big to be put
in the dictionary. Example: forces (eV/Angstrom), stresses, ionic positions.
Quantities are parsed at every step of the ionic-relaxation / molecular-dynamics run.

	output_band (non spin polarized calculations)) or output_band1 + output_band2
(spin polarized calculations) BandsData
Present only if parsing is activated with the `ALDO_BANDS` setting.
Contains the list of electronic energies for every kpoint.
If calculation is a molecular dynamics or a relaxation run, bands refer only to the last ionic configuration.

	output_structure StructureData
Present only if the calculation is moving the ions.
Cell and ionic positions refer to the last configuration.

	output_kpoints KpointsData
Present only if the calculation changes the cell shape.
Kpoints refer to the last structure.

Errors

Errors of the parsing are reported in the log of the calculation (accessible
with the verdi calculation logshow command).
Moreover, they are stored in the ParameterData under the key warnings, and are
accessible with Calculation.res.warnings.

Additional advanced features

In this section we describe how to use some advanced functionality in the
Quantum ESPRESSO pw.x plugin (note that most of them apply also to the
cp.x plugin).

While the input link with name ‘parameters’ is used for the content of the
namelists, additional parameters can be specified in the ‘settings’ input,
also of type ParameterData.

Below we summarise some of the options that you can specify, and their effect.
In each case, after having defined the content of settings_dict, you can use
it as input of a calculation calc by doing:

calc.use_settings(ParameterData(dict=settings_dict))

Parsing band energies

During each scf or nscf run, QE stores the band energies at the k-points
of interest in .xml files in the output directory. If you want to retrieve
and parse them, you can set:

settings_dict = {
 'also_bands': True
}

Fixing some atom coordinates

If you want to ask QE to keep some coordinates of some atoms fixed
(called if_pos in the QE documentation, and typically specified with
0 or 1 values after the atomic coordinates), you can specify the following
list of lists:

settings_dict = {
 'fixed_coords': [
 [True,False,False],
 [True,True,True],
 [False,False,False],
 [False,False,False],
 [False,False,False],
],
}

the list of lists (of booleans) must be of length N times 3, where N is the
number of sites (i.e., atoms) in the input structure. False means that
the coordinate is free to move, True blocks that coordinate.

Passing an explicit list of kpoints on a grid

Some codes (e.g., Wannier90) require that a QE calculation is run with
an explicit grid of points (i.e., all points in a grid, even if they are
equivalent by symmetry). Instead of generating it manually, you can
pass a usual KpointsData specifying a mesh, and then pass the following
variable:

settings_dict = {
 'force_kpoints_list': True,
}

Gamma-only calculation

If you are using only the Gamma point (a grid of 1x1x1 without offset), you
may want to use the following flag to tell QE to use the gamma-only routines
(typically twice faster):

settings_dict = {
 'gamma_only': False,
}

Initialization only

Sometimes you want to run QE but stop it immediately after the initialisation
part (e.g. to parse the number of symmetries detected, the number of G vectors,
of k-points, ...)
In this case, by specifying:

settings_dict = {
 'only_initialization': True,
}

a file named aiida.EXIT (where aiida is the prefix) will be also generated,
asking QE to exit cleanly after the initialisation.

Different set of namelists

The QE plugin will automatically figure out which namelists should be specified
(and in which order) depending con CONTROL.calculation (e.g. for SCF only
CONTROL, SYSTEM, ELECTRONS, but also IONS for RELAX, ...).
If you want to override the automatic list, you can specify the list
of namelists you want to produce as follows:

settings_dict = {
 'namelists': ['CONTROL', 'SYSTEM', 'ELECTRONS', 'IONS', 'CELL', 'OTHERNL'],
}

Adding command-line options

If you want to add command-line options to the executable (particularly
relevant e.g. to tune the parallelization level), you can pass each option
as a string in a list, as follows:

settings_dict = {
 'cmdline': ['-nk', '4'],
}

Using symlinks for the restarts

During a restart, the output directory of QE (stored by default in the subfolder
./out) containing charge density, wavefunctions, ...is copied over.
This is done in order to make sure one can perform multiple restarts of the
same calculation without affecting it (QE often changes/replaces the content
of that folder).

However, for big calculations this may take time at each restart, or fill the
scratch directory of your computing cluster. If you prefer to use symlinks,
pass:

settings_dict = {
 'parent_folder_symlink': True,
}

Note

Use this flag ONLY IF YOU KNOW WHAT YOU ARE DOING. In particular,
if you run a NSCF with this flag after a SCF calculation, the scratch directory
of the SCF will change and you may have problems restarting other calculations
from the SCF.

Retrieving more files

If you know that your calculation is producing additional files that you want to
retrieve (and preserve in the AiiDA repository in the long term), you can add
those files as a list as follows (here in the case of a file named
testfile.txt):

settings_dict = {
 'additional_retrieve_list': ['testfile.txt'],
}

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	Quantum Espresso

CP

Description

Use the plugin to support inputs of Quantum Espresso cp.x executable.
Note that most of the options are the same of the pw.x plugin, so refer to
that page for more details.

Supported codes

	tested from cp.x v5.0 onwards. Back compatibility is not guaranteed (although
versions 4.3x might work most of the times).

Inputs

	pseudo, class UpfData
One pseudopotential file per atomic species.

Alternatively, pseudo for every atomic species can be set with the use_pseudos_from_family
method, if a family of pseudopotentials has been installed..

	parameters, class ParameterData
Input parameters of cp.x, as a nested dictionary, mapping the input of QE.
Example:

{"ELECTRONS":{"ecutwfc":"30","ecutrho":"100"},
}

See the QE documentation for the full list of variables and their meaning.
Note: some keywords don’t have to be specified or Calculation will enter
the SUBMISSIONFAILED state, and are already taken care of by AiiDA (are related
with the structure or with path to files):

'CONTROL', 'pseudo_dir': pseudopotential directory
'CONTROL', 'outdir': scratch directory
'CONTROL', 'prefix': file prefix
'SYSTEM', 'ibrav': cell shape
'SYSTEM', 'celldm': cell dm
'SYSTEM', 'nat': number of atoms
'SYSTEM', 'ntyp': number of species
'SYSTEM', 'a': cell parameters
'SYSTEM', 'b': cell parameters
'SYSTEM', 'c': cell parameters
'SYSTEM', 'cosab': cell parameters
'SYSTEM', 'cosac': cell parameters
'SYSTEM', 'cosbc': cell parameters

	structure, class StructureData
The initial ionic configuration of the CP molecular dynamics.

	settings, class ParameterData (optional)
An optional dictionary that activates non-default operations. Check the section
Advanced features (on the PW plugin documentation page)
to know which flags can be passed.

	parent_folder, class RemoteData (optional)
If specified, the scratch folder coming from a previous QE calculation is
copied in the scratch of the new calculation.

Outputs

There are several output nodes that can be created by the plugin, according to the calculation details.
All output nodes can be accessed with the calculation.out method.

	output_parameters ParameterData
(accessed by calculation.res)
Contains the scalar properties. Example: energies (in eV) of the last configuration,
wall_time,
warnings (possible error messages generated in the run).

	output_trajectory_array TrajectoryData
Contains vectorial properties, too big to be put in the dictionary, like
energies, positions, velocities, cells, at every saved step.

	output_structure StructureData
Structure of the last step.

Errors

Errors of the parsing are reported in the log of the calculation (accessible
with the verdi calculation logshow command).
Moreover, they are stored in the ParameterData under the key warnings, and are
accessible with Calculation.res.warnings.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	Quantum Espresso

PH

Note

The PH plugin referenced below is available in the EPFL version.

Description

Plugin for the Quantum Espresso ph.x executable.

Supported codes

	tested from ph.x v5.0 onwards. Back compatibility is not guaranteed (although
versions 4.3x might work most of the times).

Inputs

	parent_calculation, can either be a PW calculation to get the ground state on which to compute
the phonons, or a PH calculation in case of restarts.

Note: There are no direct links between calculations. The use_parent_calculation will set
a link to the RemoteFolder attached to that calculation. Alternatively, the method use_parent_folder
can be used to set this link directly.

	qpoints, class KpointsData
Reciprocal space points on which to build the dynamical matrices. Can either be
a mesh or a list of points. Note: up to QE 5.1 only either an explicit list
of 1 qpoint (1 point only) can be provided, or a mesh (containing gamma).

	parameters, class ParameterData
Input parameters of ph.x, as a nested dictionary, mapping the input of QE.
Example:

{"INPUTPH":{"ethr-ph":1e-16},
}

See the QE documentation for the full list of variables and their meaning.
Note: some keywords don’t have to be specified or Calculation will enter
the SUBMISSIONFAILED state, and are already taken care of by AiiDA (are related
with the structure or with path to files):

'INPUTPH', 'outdir': scratch directory
'INPUTPH', 'prefix': file prefix
'INPUTPH', 'iverbosity': file prefix
'INPUTPH', 'fildyn': file prefix
'INPUTPH', 'ldisp': logic displacement
'INPUTPH', 'nq1': q-mesh on b1
'INPUTPH', 'nq2': q-mesh on b2
'INPUTPH', 'nq3': q-mesh on b3
'INPUTPH', 'qplot': flag for list of qpoints

	settings, class ParameterData (optional)
An optional dictionary that activates non-default operations. Possible values are:

	‘PARENT_CALC_OUT_SUBFOLDER’: string. The subfolder of the parent
scratch to be copied in the new scratch.

	‘PREPARE_FOR_D3’: boolean. If True, more files are created in
preparation of the calculation of a D3 calculation.

	‘NAMELISTS’: list of strings. Specify all the list of Namelists to be
printed in the input file.

	‘PARENT_FOLDER_SYMLINK’: boolean # If True, create a symlnk to the scratch
of the parent folder, otherwise the folder is copied (default: False)

	‘CMDLINE’: list of strings. parameters to be put after the executable and before the input file.
Example: [“-npool”,”4”] will produce ph.x -npool 4 < aiida.in

	‘ADDITIONAL_RETRIEVE_LIST’: list of strings. Extra files to be retrieved.
By default, dynamical matrices, text output and main xml files are retrieved.

Outputs

There are several output nodes that can be created by the plugin, according to the calculation details.
All output nodes can be accessed with the calculation.out method.

	output_parameters ParameterData
(accessed by calculation.res)
Contains small properties. Example: dielectric constant,
warnings (possible error messages generated in the run).
Furthermore, various dynamical_matrix_* keys are created, each is a dictionary containing
the keys q_point and frequencies.

Errors

Errors of the parsing are reported in the log of the calculation (accessible
with the verdi calculation logshow command).
Moreover, they are stored in the ParameterData under the key warnings, and are
accessible with Calculation.res.warnings.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	Quantum Espresso

Matdyn

Note

The Matdyn plugin referenced below is available in the EPFL
version.

Description

Use the plugin to support inputs of Quantum Espresso matdyn.x executable.

Supported codes

	tested from matdyn.x v5.0 onwards. Back compatibility is not guaranteed (although
versions 4.3x might work most of the times).

Inputs

	parameters, class ParameterData
Input parameters of pw.x, as a nested dictionary, mapping the input of QE.
Example:

{"INPUT":{"ars":"simple"},
}

See the QE documentation for the full list of variables and their meaning.
Note: some keywords don’t have to be specified or Calculation will enter
the SUBMISSIONFAILED state, and are already taken care of by AiiDA (are related
with the structure or with path to files):

'INPUT', 'flfrq': file with frequencies in output
'INPUT', 'flvec': file with eigenvecors
'INPUT', 'fldos': file with dos
'INPUT', 'q_in_cryst_coord': for qpoints
'INPUT', 'flfrc': input force constants

	parent_calculation, pass the parent q2r calculation of its FolderData as the parent_folder
to pass the input force constants.

	kpoints, class KpointsData
Points on which to compute the interpolated frequencies.
Must contain a list of kpoints.

Outputs

There are several output nodes that can be created by the plugin, according to the calculation details.
All output nodes can be accessed with the calculation.out method.

	output_parameters ParameterData
(accessed by calculation.res)
Contains warnings

	output_phonon_bands BandsData
Phonon frequencies as a function of qpoints.

Errors

Errors of the parsing are reported in the log of the calculation (accessible
with the verdi calculation logshow command).
Moreover, they are stored in the ParameterData under the key warnings, and are
accessible with Calculation.res.warnings.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	Quantum Espresso

Q2R

Note

The Q2R plugin referenced below is available in the EPFL version.

Description

Use the plugin to support inputs of Quantum Espresso q2r.x executable.

Supported codes

	tested from q2r.x v5.0 onwards. Back compatibility is not guaranteed (although
versions 4.3x might work most of the times).

Inputs

	parameters, class ParameterData
Input parameters of q2r.x, as a nested dictionary, mapping the input of QE.
Example:

{"INPUT":{"zasr":"simple"},
}

See the QE documentation for the full list of variables and their meaning.
Note: some keywords don’t have to be specified or Calculation will enter
the SUBMISSIONFAILED state, and are already taken care of by AiiDA (are related
with the structure or with path to files):

'INPUT', 'fildyn': name of input dynamical matrices
'INPUT', 'flfrc': name of output force constants

	parent_calculation. Use the parent PH calculation, to take the dynamical matrices
and convert them in real space. Alternatively, use the parent_folder to point explicitely
to the retrieved FolderData of the parent PH calculation.

Outputs

	force_constants SinglefileData
A file containing the force constants in real space.

Errors

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	Quantum Espresso

NEB

Note

The NEB plugin referenced below is available in the EPFL version.

Description

Plugin for the Quantum Espresso neb.x executable.

Supported codes

	tested from neb.x v5.2 onwards.

Inputs

	pseudo, class UpfData
One pseudopotential file per atomic species.

Alternatively, pseudo for every atomic species can be set with the use_pseudos_from_family
method, if a family of pseudopotentials has been installed..

	kpoints, class KpointsData
Reciprocal space points on which to build the wavefunctions. Can either be
a mesh or a list of points with/without weights

	neb_parameters, class ParameterData
Input parameters of neb.x, as a nested dictionary, mapping the input of QE.
Example:

{"PATH":{"num_of_images":6, "string_method": "neb", "nstep_path": 50},
}

See the QE documentation for the full list of variables and their meaning.

	pw_parameters, class ParameterData
Nested dictionary containing the input parameters in PW format common to all images.
Example:

{"CONTROL":{"calculation":"scf"},
 "ELECTRONS":{"ecutwfc":"30","ecutrho":"100"},
}

See the QE documentation for the full list of variables and their meaning.
Note: some keywords don’t have to be specified or Calculation will enter
the SUBMISSIONFAILED state, and are already taken care of by AiiDA (are related
with the structure or with path to files):

'CONTROL', 'pseudo_dir': pseudopotential directory
'CONTROL', 'outdir': scratch directory
'CONTROL', 'prefix': file prefix
'SYSTEM', 'ibrav': cell shape
'SYSTEM', 'celldm': cell dm
'SYSTEM', 'nat': number of atoms
'SYSTEM', 'ntyp': number of species
'SYSTEM', 'a': cell parameters
'SYSTEM', 'b': cell parameters
'SYSTEM', 'c': cell parameters
'SYSTEM', 'cosab': cell parameters
'SYSTEM', 'cosac': cell parameters
'SYSTEM', 'cosbc': cell parameters

	first_structure, class StructureData
Structure of the first image.

	last_structure, class StructureData
Structure of the last image.

	settings, class ParameterData (optional)
An optional dictionary that activates non-default operations. Possible values are:

	‘CLIMBING_IMAGES’: list of integers. Specify the indices of the climbing images.
Read only if the climbing image scheme is set to manual in neb_parameters.

	‘FIXED_COORDS’: a list Nx3 booleans, with N the number of atoms. If True,
the atomic position is fixed.

	‘GAMMA_ONLY’: boolean. If True and the kpoint mesh is gamma, activate
a speed up of the calculation.

	‘NAMELISTS’: list of strings. Specify all the list of Namelists to be
printed in the input file.

	‘PARENT_FOLDER_SYMLINK’: boolean. If True, create a symlnk to the scratch
of the parent folder, otherwise the folder is copied (default: False)

	‘CMDLINE’: list of strings. parameters to be put after the executable in addition to -input_images 2.
Example: [“-npool”,”4”] will produce neb.x -input_images 2 -npool 4 > aiida.out

	‘ADDITIONAL_RETRIEVE_LIST’: list of strings. Specify additional files to be retrieved.
By default, the following files are already retrieved:
* NEB output file
* PATH output file containing the information on structures and gradients of each image at last iteration
* The calculated and interpolated energy profile as a function of the reaction coordinate (.dat and .int files)
* The PW output and xml file for each image

	‘ALL_ITERATIONS’: boolean. If true the energies and forces for each image at each intermediate
iteration are also parsed and stored in the output node iteration_array (default: False)

	parent_folder, class RemoteData (optional)
If specified, the scratch folder coming from a previous NEB calculation is
copied in the scratch of the new calculation.

Outputs

There are several output nodes that can be created by the plugin, according to the calculation details.
All output nodes can be accessed with the calculation.out method.

	output_parameters ParameterData
(accessed by calculation.res)
Contains the data obtained by parsing the NEB output file. Information on the last iteration are only reported.
The parsed PW outputs of each image are also reported as a subdictionaries.

	mep_array ArrayData
Contains the parsed data on the calculated and interpolated Minimim Energy Path (MEP),
i.e. the energy profile as a function of the reaction coordinate.

	output_trajectory ArrayData
Contains the structure of the images at the last iteration of the NEB calculation,
too big to be put in the dictionary.

	iteration_array ArrayData , and other quantities at intermediate iterations.

Errors

Errors of the parsing are reported in the log of the calculation (accessible
with the verdi calculation logshow command).
Moreover, they are stored in the ParameterData under the key warnings, and are
accessible with Calculation.res.warnings.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

cod-tools

Description

cod-tools (more info here [http://wiki.crystallography.net/cod-tools]) is an open-source collection of command
line scripts for
handling of Crystallographic Information Framework (CIF) files [http://www.iucr.org/resources/cif]. The
package is developed by the team of Crystallography Open Database [http://www.crystallography.net] (COD)
developers. Detailed information for the usage of each individual script
from the package can be obtained by invoking commands with --help and
--usage command line options. For example:

cif_filter --help
cif_filter --usage

	
	cif_cod_check

	Parse a CIF file, check if certain data values match COD
requirements and IUCr data validation criteria (Version: 2000.06.09,
ftp://ftp.iucr.ac.uk/pub/dvntests or ftp://ftp.iucr.org/pub/dvntests)

	
	cif_cod_deposit

	Deposit CIFs into COD database using CGI deposition interface.

	
	cif_cod_numbers

	Find COD numbers for the .cif files in given directories of file lists.

	
	cif_correct_tags

	Correct misspelled tags in a CIF file.

	
	cif_filter

	Parse a CIF file and print out essential data values in the CIF
format, the COD CIF style.

This script has also many capabilities – it can restore spacegroup
symbols from symmetry operators (consulting pre-defined tables),
parse and tidy-up _chemical_formula_sum, compute cell volume,
exclude unknown or “empty” tags, and add specified bibliography data.

	
	cif_fix_values

	Correct temperature values which have units specified or convert
between Celsius degrees and Kelvins. Changes ‘room/ambiante
temperature’ to the appropriate numeric value.
Fixes other undefined values (no, not measured, etc.) to ‘?’ symbol.
Determine a report about changes made into standart I/O streams.

Fixes enumeration values in CIF file against CIF dictionaries.

	
	cif_mark_disorder

	Marks disorder in CIF files judging by distance and occupancy.

	
	cif_molecule

	Restores molecules from a CIF file.

	
	cif_select

	Read CIFs and print out selected tags with their values.

	
	cif_split

	Split CIF files into separate files with one data_ section each.

This script parses given CIF files to separate the datablocks, so is
capable of splitting non-correctly formatted and nested CIF files.

	
	cif_split_primitive

	Split CIF files into separate files with one data_ section each.

This is a very naive and primitive version of the splitter, which
expects each data_... section to start on a new line. It may fail on
some CIF files that do not follow such convention. For splitting of
any correctly formatted CIF files, one must do full CIF parsing
using CIF grammar and tokenisation of the file.

Installation

Currently cod-tools package is distributed via source code only. To
prepare the package for usage (as of source revision 2930) one has to
follow these steps:

	Retrieve the source from the Subversion [https://subversion.apache.org] repository:

svn co svn://www.crystallography.net/cod-tools/trunk cod-tools

	Install the dependencies:

bash -e cod-tools/dependencies/Ubuntu-12.04/install.sh

Note

the dependency installer is written for Ubuntu 12.04, but
works fine on some older or newer Ubuntu as well as Debian
distributions.

	Build and test:

make -C cod-tools

	
	Prepare the environment:

	Described below are two methods of setting the environment for
cod-tools as of source revision 3393:

	Using Bash:

CODTOOLS_SRC=~/src/cod-tools

export PATH=${CODTOOLS_SRC}/scripts:${PATH}
export PERL5LIB=${CODTOOLS_SRC}/src/lib/perl5:${PERL5LIB}

These commands can be pasted to ~/.bashrc file, which is sourced
automatically by the AiiDA before each calculation.

Note

Be sure to restart the AiiDA daemon after modifying the
~/.bashrc.

	Using modulefile [http://linux.die.net/man/4/modulefile]:

#%Module1.0###
module-whatis loads the cod-tools environment

set CODTOOLS_SRC ~/src/cod-tools
prepend-path PATH ${CODTOOLS_SRC}/scripts
prepend-path PERL5LIB ${CODTOOLS_SRC}/src/lib/perl5

Examples

	Fix a syntactically incorrect structure:

Some simple common CIF syntax errors can be fixed automatically using
cif_filter with --fix-syntax option. In example, such structure:

data_broken
_publ_section_title "Runaway quote
loop_
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
C 0 0 0

can be fixed (provided it’s stored in test.cif):

cif_filter --fix test.cif

Obtained structure:

data_broken
_publ_section_title 'Runaway quote'
loop_
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
C 0 0 0

A warning message tells what was done:

cif_filter: test.cif(2) data_broken: warning, double-quoted string is missing a closing quote -- fixed

	where:

	
	cif_filter is the name of the used script;

	test.cif is the name of the CIF file;

	2 is the number of a line in the file;

	data_broken is the CIF datablock name;

	warning is the level of severity;

	rest is the message text.

	Fetch a structure from Web, filter and fix it, restore the crystal
contents and calculate summary formulae per each compound in a crystal:

curl --silent http://www.crystallography.net/cod/2231955.cif \
 | cif_filter \
 | cif_fix_values \
 | cif_molecule \
 | cif_cell_contents --use-attached-hydrogens

Obtained result:

C9 H14 N
C10 H6 O6 S2
H2 O

As well as a warning message:

cif_molecule: - data_2231955: WARNING, multiplicity ratios are given instead of multiplicities for 39 atoms -- taking calculated values.

	Fetch a structure from Web and mark alternative atoms sharing same site:

curl --silent http://www.crystallography.net/2018107.cif \
 | cif_mark_disorder \
 | cif_select --cif --tag _atom_site_label

Obtained result:

data_2018107
loop_
_atom_site_type_symbol
_atom_site_label
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_u_iso_or_equiv
_atom_site_adp_type
_atom_site_calc_flag
_atom_site_refinement_flags
_atom_site_occupancy
_atom_site_symmetry_multiplicity
_atom_site_disorder_assembly
_atom_site_disorder_group
Pb Pb1 0.5000 0.0000 0.2500 0.0213(13) Uani d S 1 4 . .
Mo Mo2 0.0000 0.0000 0.0000 0.022(4) Uani d S 1 4 . .
Pb Pb3 0.5000 0.5000 0.0000 0.025(2) Uani d SP 0.881(8) 4 A 1
Mo Mo3 0.5000 0.5000 0.0000 0.025(2) Uani d SP 0.119(8) 4 A 2
Mo Mo1 0.0000 0.5000 0.2500 0.018(3) Uani d S 1 4 . .
O O1 0.2344(13) -0.1372(14) 0.0806(6) 0.0302(17) Uani d . 1 1 . .
O O2 0.2338(14) 0.3648(14) 0.1697(6) 0.0307(17) Uani d . 1 1 . .

As well as output messages:

cif_mark_disorder: - data_2018107: NOTE, atoms 'Mo3', 'Pb3' were marked as alternatives.
cif_mark_disorder: - data_2018107: NOTE, 1 site(s) were marked as disorder assemblies.

Note

atoms Mo3 and Pb3 share the same site, as can be
found out by checking their coordinates. Moreover, sum of their
occupancies are close to 1. In the original CIF file these sites have
both _atom_site_disorder_assembly and _atom_site_disorder_group
set to ‘.‘.

Plugins

	codtools.ciffilter
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	codtools.cifcellcontents
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	codtools.cifcodcheck
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	codtools.cifcoddeposit
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	codtools.cifcodnumbers
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	codtools.cifsplitprimitive
	Description

	Supported codes

	Inputs

	Outputs

	Errors

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	cod-tools

codtools.ciffilter

Description

This plugin is designed for filter-like codes from the cod-tools
package, but can be adapted to any command line utilities, accepting
CIF file as standard input and producing CIF file as standard output and
messages/errors in the standard output (if any), without modifications.

Supported codes

	cif_adjust_journal_name_volume

	cif_CODify

	cif_correct_tags

	cif_create_AMCSD_pressure_temp_tags

	cif_estimate_spacegroup

	cif_eval_numbers

	cif_fillcell

	cif_filter

	cif_fix_values

	cif_hkl_check

	cif_mark_disorder

	cif_molecule

	cif_p1

	cif_reformat_AMCSD_author_names

	cif_reformat_pubmed_author_names

	cif_reformat_uppercase_author_names

	cif_select [1]

	cif_set_value

	cif_symop_apply

Inputs

	
	CifData

	A CIF file.

	
	ParameterData (optional)

	Contains the command line parameters, specified in key-value fashion.
Leading dashes (single or double) must be stripped from the keys.
Values can be arrays with multiple items. Keys without values should
point to boolean True value. In example:

calc = Code.get_from_string('cif_filter').new_calc()
calc.use_parameters(ParameterData(dict={
 's' : True,
 'exclude-empty-tags' : True,
 'dont-reformat-spacegroup': True,
 'add-cif-header' : ['standard.txt', 'user.txt'],
 'bibliography' : 'bibliography.cif',
 }))

is equivallent to command line:

cif_filter \
 -s \
 --exclude-empty-tags \
 --dont-reformat-spacegroup \
 --add-cif-header standard.txt \
 --add-cif-header user.txt \
 --bibliography bibliography.cif

Note

it should be kept in mind that no escaping of Shell
metacharacters are performed by the plugin. AiiDA encloses each
command line argument with single quotes and that’s being relied on.

Outputs

	
	CifData

	A CIF file.

	
	ParameterData (optional)

	Contains lines of output messages and/or errors. For example:

print load_node(1, parent_class=ParameterData).get_dict()

would print:

{u'output_messages': [u'cif_cod_check: test.cif data_4000000: _publ_section_title is undefined']}

Errors

Run-time errors are returned line-by-line in the
ParameterData object.

Footnotes

	[1]	Only with the --output-cif command line option.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	cod-tools

codtools.cifcellcontents

Description

This plugin is used for chemical formula calculations from the CIF files,
as being done by cif_cell_contents code from the cod-tools package.

Supported codes

	cif_cell_contents

Inputs

	
	CifData

	A CIF file.

	
	ParameterData (optional)

	Contains the command line parameters, specified in key-value fashion.
For more information refer to
inputs for codtools.ciffilter plugin.

Outputs

	
	ParameterData

	Contains formulae in (CIF datablock name,`formula`) pairs. For
example:

print load_node(1, parent_class=ParameterData).get_dict()

would print:

{u'formulae': {
 u'4000001': u'C24 H17 F5 Fe',
 u'4000002': u'C24 H17 F5 Fe',
 u'4000003': u'C24 H17 F5 Fe',
 u'4000004': u'C22 H8 F10 Fe'
 }})

Note

data_ is not prepended to the CIF datablock name – the
CIF file, used for the example above, contains CIF datablocks
data_4000001, data_4000002, data_4000003 and
data_4000004.

	
	ParameterData

	Contains lines of output messages and/or errors. For more information
refer to
outputs for codtools.ciffilter plugin.

Errors

Run-time errors are returned line-by-line in the
ParameterData object.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	cod-tools

codtools.cifcodcheck

Description

This plugin is specific for cif_cod_check script.

Supported codes

	cif_cod_check

Inputs

	
	CifData

	A CIF file.

	
	ParameterData (optional)

	Contains the command line parameters, specified in key-value fashion.
For more information refer to
inputs for codtools.ciffilter plugin.

Outputs

	
	ParameterData

	Contains lines of output messages and/or errors. For more information
refer to
outputs for codtools.ciffilter plugin.

Errors

Run-time errors are returned line-by-line in the
ParameterData object.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	cod-tools

codtools.cifcoddeposit

Description

This plugin is specific for cif_cod_deposit script.

Supported codes

	cif_cod_deposit

Inputs

	
	CifData

	A CIF file.

	
	ParameterData

	Contains deposition information, such as user name, password and
deposition type:

	username: depositor’s user name to access the *COD deposition
interface;

	password: depositor’s password to access the *COD deposition
interface;

	deposition-type: determines a type of the deposited CIF file,
which can be one of the following:
	published: CIF file is already published in a scientific
paper;

	prepublication: CIF file is a prepublication material and
should not be revealed to the public until the publication of
a scientific paper. In this case, a hold_period also has
to be specified;

	personal: CIF file is personal communication.

	url: URL of *COD deposition API (optional, default URL is
http://test.crystallography.net/cgi-bin/cif-deposit.pl);

	journal: name of the journal, where the CIF is/will be
published;

	user_email: depositor’s e-mail address;

	author_name: name of the CIF file author;

	author_email: e-mail of the CIF file author;

	hold_period: a period (in number months) for the structure to
be kept on-hold (only for deposition_type == 'prepublication').

Outputs

	
	ParameterData

	Contains the result of deposition:

	output_messages: lines of output messages and/or errors. For
more information refer to
outputs for codtools.ciffilter plugin.

	status: a string, one of the following:
	SUCCESS: a deposition is successful, newly assigned *COD
number(s) is/are present in output_messages field;

	DUPLICATE: submitted data is already in the *COD database
thus is not deposited once more;

	UNCHANGED: the redeposition of the data is unnecessary, as
nothing was changed in the contents of file to be replaced;

	INPUTERROR: an error, related to the input, has occurred,
detailed reason may be present in output_messages field;

	SERVERERROR: an internal server error has occurred, detailed
reason may be present in output_messages field;

	UNKNOWN: the result of the deposition is unknown.

Errors

Run-time errors are returned line-by-line in the output_messages field
of ParameterData object.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	cod-tools

codtools.cifcodnumbers

Description

This plugin is specific for cif_cod_numbers script.

Supported codes

	cif_cod_numbers

Inputs

	
	CifData

	A CIF file.

	
	ParameterData (optional)

	Contains the command line parameters, specified in key-value fashion.
For more information refer to
inputs for codtools.ciffilter plugin.

Outputs

	
	ParameterData

	Contains two subdictionaries: duplicates and errors. In
duplicates correspondence between the database and supplied file(s)
is described. Example:

{
 "duplicates": [
 {
 "codid": "4000099",
 "count": 1,
 "formula": "C50_H44_N2_Ni_O4"
 }
],
 "errors": []
}

Here codid is numeric ID of a hit in the database, count is
total number of hits for the particular datablock and formula is
the summary formula of the described datablock.

Errors

Run-time errors are returned line-by-line in the
ParameterData object.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	cod-tools

codtools.cifsplitprimitive

Description

This plugin is used by cif_split and cif_split_primitive codes from
the cod-tools package.

Supported codes

	cif_split [1]

	cif_split_primitive

Inputs

	
	CifData

	A CIF file.

	
	ParameterData (optional)

	Contains the command line parameters, specified in key-value fashion.
For more information, refer to
inputs for codtools.ciffilter plugin.

Outputs

	
	List of CifData

	One or more CIF files.

	
	ParameterData (optional)

	Contains lines of output messages and/or errors.

Errors

Run-time errors are returned line-by-line in the
ParameterData object.

	[1]	Incompatible with --output-prefixed and --output-tar command
line options.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

ASE

Note

The ASE plugin referenced below is available in the EPFL version.

Description

ASE (Atomic Simulation Environment) is a set of tools and Python modules for
setting up, manipulating, running, visualizing and analyzing atomistic
simulations. The ASE code is freely available under the GNU LGPL license (the
ASE installation guide and the source can be found here [http://wiki.fysik.dtu.dk/ase/]).

Besides the manipulation of structures (Atoms objects), one can attach
calculators to a structure and run it to compute, as an example, energies or
forces.
Multiple calculators are currently supported by ASE, like GPAW, Vasp, Abinit and
many others.

In AiiDA, we have developed a plugin which currently supports the use of ASE
calculators for total energy calculations and structure optimizations.

Plugins

	ASE
	Description

	Supported codes

	Inputs

	Outputs

	Errors

	Examples

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	ASE

ASE

Note

The ASE plugin referenced below is available in the EPFL version.

Description

Use the plugin to support inputs of ASE structure optimizations and of total
energy calculations.
Requires the installation of ASE on the computer where AiiDA is running.

Supported codes

	tested on ASE v3.8.1 and on GPAW v0.10.0.
ASE back compatibility is not guaranteed.
Calculators different from GPAW should work, if they follow the interface
description of ASE calculators, but have not been tested.
Usage requires the installation of both ASE and of the software used by the
calculator.

Inputs

	kpoints, class KpointsData (optional)
Reciprocal space points on which to build the wavefunctions. Only kpoints
meshes are currently supported.

	parameters, class ParameterData
Input parameters that defines the calculations to be performed, and their
parameters.
See the ASE documentation for more details.

	structure, class StructureData

	settings, class ParameterData (optional)
An optional dictionary that activates non-default operations. Possible values are:

	‘CMDLINE’: list of strings. parameters to be put after the executable and before the input file.
Example: [“-npool”,”4”] will produce gpaw -npool 4 < aiida_input

	‘ADDITIONAL_RETRIEVE_LIST’: list of strings. Specify additional files to be retrieved.
By default, the output file and the xml file are already retrieved.

Outputs

Actual output production depends on the input provided.

	output_parameters ParameterData
(accessed by calculation.res)
Contains the scalar properties. Example: energy (in eV) or
warnings (possible error messages generated in the run).

	output_array ArrayData
Stores vectorial quantities (lists, tuples, arrays), if requested in output.
Example: forces, stresses, positions.
Units are those produced by the calculator.

	output_structure StructureData
Present only if the structure is optimized.

Errors

Errors of the parsing are reported in the log of the calculation (accessible
with the verdi calculation logshow command).
Moreover, they are stored in the ParameterData under the key warnings, and are
accessible with Calculation.res.warnings.

Examples

The following example briefly describe the usage of GPAW within AiiDA, assuming
that both ASE and GPAW have been installed on the remote machine.
Note that ASE calculators, at times, require the definition of environment
variables. Take your time to find them and make sure that they are loaded by the
submission script of AiiDA (use the prepend text fields of a Code, for example).

First of all install the AiiDA Code as usual, noting that, if you plan to use
the serial version of GPAW (applies to all other calculators) the remote absolute
path of the code has to point to the python executable (i.e. the output of
which python on the remote machine, typically it might be /usr/bin/python).
If the parallel version of GPAW is used, set instead the path to gpaw-python.

To understand the plugin, it is probably easier to try to run one test, to see
the python script which is produced and executed on the remote machine.
We describe in the following some example script, which can be called through
the verdi run command (example: verdi run test_script.py). You should
see a folder submit_test created in the location from which you run
the command. Here there is the input script that is going to be executed in
the remote machine, with the syntax of the ASE software.

In this first example script and execute it with
the verdi run command.
This is a minimal script that uses GPAW and a plane-wave basis to compute the
total energy of a structure.
Note that for a serial calculation, it is necessary to run the
calculation.set_withmpi(False) method.
Note also, that by default, only the total energy of the structure is computed
and retrieved.

This second example instead shows a demo of all
possible options supported by the current plugin.
By specifying an optimizer key in the dictionary, the ASE optimizers are run.
In the example, the QuasiNewton algorithm is run to minimize the forces and find
the equilibrium structures.
By specifying the key “calculator_getters”, the code will get from the
calculator, the properties which are specified in the value, using the get
method of the calculator; similar applies for the atoms_getters, which will
call the atoms.get method.
extra_lines and post_lines are used to insert python commands that are
executed before or after the call to the calculators.
extra_imports is used to specify the import of more modules.

Lastly, this script is an example of how to
run GPAW parallel. Essentially, nothing has to be changed in input, except that
there is no need to call the method calculation.set_withmpi(False).

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

Wannier90

Note

The Wannier plugin referenced below is available in the EPFL version.

Description

Wannier90 is a tool for obtaining maximally localized wannier functions from
DFT calculations. The Wannier90 code is freely available under the GNU LGPL license (the
Wannier90 installation guide and the source can be found here [http://www.wannier.org/index.html]).

In AiiDA, this plugin will support input to wannier90, through any calculations done in QE, via the
pw2wann code.

Plugins

	Wannier90
	Description

	Supported codes

	Inputs

	Files Copied

	Outputs

	Errors

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	Wannier90

Wannier90

Note

The Wannier90 plugin referenced below is available in the EPFL version.

Description

Wannier90 is a tool for obtaining maximally localized wannier functions from
DFT calculations. The Wannier90 code is freely available under the GNU LGPL license (the
Wannier90 installation guide and the source can be found here [http://www.wannier.org/index.html]).

In AiiDA, this plugin will support input to wannier90, through any calculations done in QE, via the
pw2wannier90.x code.

Supported codes

	tested on Wannier90 v2.0.1

Inputs

	parent_calculation, The parent calculation can either be a PW calculation or Wannier90. See
the Files Copied for more details.

Note

There are no direct links between calculations. The use_parent_calculation will set
a link to the RemoteFolder attached to that calculation. Alternatively, the method use_parent_folder
can be used to set this link directly.

	kpoints, class KpointsData
Reciprocal space points on which to build the wannier functions. Note that this must be an evenly spaced grid
and must be constructed using an mp_grid kpoint mesh, with {‘FORCE_KPOINTS_LIST’: True} setting
in the PW nscf calculation. It is a requirement of Wannier90, though not of this plugin, that symmetry not
be used in the parent calculation, that is the setting card ['SYSTEM'].update({'nosym': True}) be applied in
the parent calculation.

	kpoints_path, class KpointsData (optional)
A set of kpoints which indicate the path to be plotted by wannier90 band plot feature.

	parameters, class ParameterData
Input parameters that defines the calculations to be performed, and their
parameters. Unlike the wannier90 code, which does not check capitilization, this plugin is case sensitive.
All keys must be lowercase e.g. num_wann is acceptable but NUM_WANN is not.
See the Wannier90 documentation for more details.

	precode_parameters, class ParameterData (optional)
Input parameters for the precode. For this plugin the precode is expected to be pw2wannier. As with parameters, all keys must
be capitalized.
See the Wannier90 documentation for more details on the input parameters for pw2wannier.

	structure, class StructureData
Input structure mandatory for execution of the code.

	projections, class OrbitalData
An OrbitalData object containing it it a list of orbitals

Note

You should construct the projections using the convenience method gen_projections. Which
will produce an OrbitalData given a list of dictionaries.
Some examples, taken directly from the wannier90 user guide, would be:

	CuO, SP, P, and D on all Cu; SP3 hyrbrids on O.

In Wannier90 Cu:l=0;l=1;l=2 for Cu and O:l=-3 or O:sp3 for O

Would become {'kind_name':'Cu','ang_mtm_name':['SP','P','D']} for Cu and {'kind_name':'O','ang_mtm_l':-3} or {..., 'ang_mtm_name':['SP3']} for O

	A single projection onto a PZ orbital orientated in the (1,1,1) direction:

In Wannier90 c=0,0,0:l=1:z=1,1,1 or c=0,0,0:pz:z=1,1,1

Would become {'position_cart':(0,0,0),'ang_mtm_l':1,'zaxis':(1,1,1)} or {... , 'ang_mtm_name':'PZ',...}

	Project onto S, P, and D (with no radial nodes), and S and P (with one radial node) in silicon:

In Wannier90 Si:l=0;l=1;l=2, Si:l=0;l=1;r=2

Would become [{'kind_name':'Si','ang_mtm_l':[0,1,2]}, {'kind_name':'Si','ang_mtm_l':[0,1],'radial_nodes':2}]

	settings, class ParameterData
An optional dictionary that activates non-default operations. Possible values are:

	‘INIT_ONLY’: If set to true, will only initialize the calculation, but will not run
the actual wannierization. That is, wannier90.x -pp aiida.win and precode2wannier < aiida.in > aiida.out will be run only.
This is ideal in use as a start point for future restarts.

	‘ADDITIONAL_RETRIEVE_LIST’: A list of additional files to be retrieved at the end of the calculation.

	‘ADDITIONAL_SYMLINK_LIST’: A list of additional files to be symlinked from the parent calculation.

	‘ADDITIONAL_COPY_LIST’: A list of additional files to be copied from the parent calculation.

	use_preprocessing_code a preprocessing code may be supplied, currently the code must be a pw2wannier
code, with which the initial setup of the wannierization will be performed. If a pre_processing_code is
supplied the following will be run. wannier90.x -pp aiida.win, precode2wannier < aiida.in > aiida.out, wannier90.x aiida.win.
However, if no preprocessing code is supplied only wannier90.x aiida.win will be run.

Files Copied

Depending on the startup settings used, and what the parent calculation was will alter which files are copied, which are symlinked see the table below.
The goal being to copy the minimum number of files, and to not symlink to files that will be rewritten.
The calculation names used in the table are:

	NOT WANNIER The parent is not a wannier calculation

	HAS PRECODE A wannier90 calculation run with a precode, e.g. initializations

	NO PRECODE A wannier90 calculation run with no precode, e.g. restarts

The following operations will be performed on the files:

	copy: the file, if present, is copied from the parent

	sym: the file, if present, will be symlinked to the parent

	none: the file will neither be copied or symlinked

	
	
	Parent Calculation

	Child Calculation
	
	NOT WANNIER

	
	HAS PRECODE

	
	NO PRECODE

	
	HAS PRECODE

	
	./out/ copy

	.EIG,.MMN,.UNK
none

	.AMN
none

	.CHK
none

	
	./out/ sym

	.MMN,.UNK
sym

	.AMN, .EIG
none

	.CHK
none

	
	./out/ sym

	.MMN,.UNK
sym

	.AMN, .EIG
none

	.CHK
none

	
	NO PRECODE

	
	NOT ALLOWED

	
	./out/ sym

	.MMN,.UNK
sym

	.AMN, .EIG
sym

	.CHK
copy

	
	./out/ sym

	.MMN,.UNK
sym

	.AMN, .EIG
sym

	.CHK
copy

Note

For the case where the child has precode and the parent is a wannier calculation
the .MMN file will hard-set not to be written, regardless of what is
in the precode_parameters. (i.e. if the parent is not a wannier90 calc,
WRITE_MMN = .false. is automatically set in precode.)

Note

The .MMN file is only calculated for the case of the parent
being a NOT WANNIER. (See the table) If, for whatever reason, you wish to
recalculate these files please use NOT WANNIER as a parent.

Outputs

	output_parameters ParameterData
(accessed by calculation.res)
Contains the scalar properties. Currently parsed parameters include:
	number_wannier_functions: the number of wannier functions

	Omega_D, Omega_I, Omega_OD, Omega_total wich are: the diagonal [image: \Omega_D],
invariant [image: \Omega_I], offdiagonal [image: \Omega_{OD}], and total spread [image: \Omega_{total}]. Units are always Ang^2

	wannier_functions_output a list of dictionaries containing:
	coordinates: the center of the wannier function

	spread: the spread of the wannier function. Units are always Ang^2

	wannier_function: numerical index of the wannier function

	im_re_ratio: if available the Imaginary/Real ratio of the wannier function

	Warnings: parsed list of warnings

	output_verbosity: the output verbosity, throws a warning if any value other than default is used

	preprocess_only: whether the calc only did the preprocessing step wannier90 -pp

	r2_nm_writeout: whether r^2 nm file was written

	wannierise_convergence_tolerence: the tolerance for convergence, units of Ang^2

	xyz_wf_center_writeout: whether xyz_wf_center file was explicitly and independently written

	Other parameters, should match those described in the user guide

	interpolated_bands BandsData
If available, will parse the interpolated bands and store them.

Errors

Errors of the parsing are reported in the log of the calculation (accessible
with the verdi calculation logshow command).
Moreover, they are stored in the ParameterData under the key warnings, and are
accessible with Calculation.res.warnings.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

NWChem

Description

NWChem [http://www.nwchem-sw.org] is an open-source high performance computational chemistry tool.

Plugins

	nwchem.basic
	Description

	Inputs

	Outputs

	nwchem.nwcpymatgen
	Description

	Inputs

	Outputs

	Errors

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	NWChem

nwchem.basic

Description

A very simple plugin for main NWChem’s nwchem executable.

Inputs

	
	StructureData

	A structure.

	
	ParameterData (optional)

	A dictionary with control variables. An example (default values):

{
 "abbreviation": "aiida_calc", # Short name for the computation
 "title": "AiiDA NWChem calculation", # Long name for the computation
 "basis": # Basis per chemical type
 {
 "Ba": "library 6-31g",
 "Ti": "library 6-31g",
 "O": "library 6-31g",
 },
 "task": "scf", # Computation task
 "add_cell": True, # Include cell parameters?
}

Outputs

	
	ParameterData

	A dictionary with energy values. For example:

{
 "nuclear_repulsion_energy": "9.194980930276",
 "one_electron_energy": "-122.979939235872",
 "total_scf_energy": "-75.983997570474",
 "two_electron_energy": "37.800960735123"
}

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Plug-ins for AiiDA

 	NWChem

nwchem.nwcpymatgen

Description

pymatgen-based input plugin for main NWChem‘s nwchem executable.

Inputs

	
	StructureData (optional)

	A structure.

	
	ParameterData

	A dictionary with control variables.

Outputs

	
	job_info: ParameterData

	A dictionary of general parameters of the computation, like details of
compilation, used time and memory.

May also contain one or more of the following:

	
	output: ParameterData

	A dictionary describing the job. An example:

{
 "basis_set": {},
 "corrections": {},
 "energies": [],
 "errors": [],
 "frequencies": null,
 "has_error": false,
 "job_type": "NWChem Geometry Optimization"
}

	
	trajectory: TrajectoryData (optional)

	A trajectory, made of structures, produced in the steps of geometry
optimization.

Note

Functionality to extract structures from NWChem‘s output is
not present in pymatgen 3.0.13 or earlier.

Errors

Errors are reported in the errors field of output
ParameterData
dictionary. Additionally, there’s a boolean flag has_error in the same
dictionary.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Scripting with AiiDA

While many common functionalities are provided by either command-line tools
(via verdi) or the web interface, for fine tuning (or automatization)
it is useful to directly access the python objects and call their methods.

This is possible in two ways, either via an interactive shell, or writing and
running a script. Both methods are described below.

verdi shell

By running verdi shell on the terminal, a new interactive
IPython [http://ipython.org/] shell will be opened (this requires that
IPython is installed on your computer).

Note that simply opening IPython and loading the AiiDA modules will not work
(unless you perform the operations described in the
following section) because
the database settings are not loaded by default and AiiDA does not know how to
access the database.

Moreover, by calling verdi shell, you have the additional advantage that
some classes and modules are automatically loaded. In particular the following
modules/classes are already loaded and available:

from aiida.orm import (Node, Calculation, JobCalculation, Code, Data,
 Computer, Group, DataFactory, CalculationFactory)
from aiida.backends.djsite.db import models

Note

It is possible to customize the shell by adding modules to be loaded
automatically, thanks to the verdi devel setproperty verdishell.modules command.
See here for more information.

A further advantage is that bash completion is enabled, allowing to press the
TAB key to see available submethods of a given object (see for instance
the documentation of the ResultManager).

Writing python scripts for AiiDA

Alternatively, if you do not need an interactive shell but you prefer to write
a script and then launch it from the command line, you can just write a
standard python .py file. The only modification that you need to do is
to add, at the beginning of the file and before loading any other AiiDA module,
the following two lines:

from aiida import load_dbenv
load_dbenv()

that will load the database settings and allow AiiDA to reach your database.
Then, you can load as usual python and AiiDA modules and classes, and use them.
If you want to have the same environment of the verdi shell interactive
shell, you can also add (below the load_dbenv call) the following lines:

from aiida.orm import Calculation, Code, Computer, Data, Node
from aiida.orm import CalculationFactory, DataFactory
from aiida.backends.djsite.db import models

or simply import the only modules that you will need in the script.

While this method will work, we strongly suggest to use instead the
verdi run command, described here below.

The verdi run command and the runaiida executable

In order to simplify the procedure described above, it is possible to
execute a python file using verdi run: this command will accept
as parameter the name of a file, and will execute it after having
loaded the modules described above.

The command verdi run has
the additional advantage of adding all stored nodes to suitable special
groups, of type autogroup.run, for later usage.
You can get the list of all these groups with the command:

verdi group list -t autogroup.run

Some further command line options of verdi run allow the user
to fine-tune the autogrouping behavior;
for more details, refer to the output of verdi run -h.
Note also that further command line parameters to verdi run are
passed to the script as sys.argv.

Note

It is not possible to run multiple times the load_dbenv()
command. Since calling verdi run will automatically call
the load_dbenv() command, you cannot run a script that
contains this call (this is instead needed if you want to run
the script simply via python scriptname.py).
If you want to allow for both options, use the following method
to discover if the db environment was already loaded:

from aiida import load_dbenv, is_dbenv_loaded

if not is_dbenv_loaded():
 load_dbenv()

Finally, we also defined a runaiida command, that simply will
pass all its parameters to verdi run. The reason for this is that
one can define a new script to be run with verdi run, add as the
first line the shebang command #!/usr/bin/env runaiida, and give
to the file execution permissions, and the file will become an
executable that is run using AiiDA. A simple example could be:

#!/usr/bin/env runaiida
import sys

pk = int(sys.argv[1])
node = load_node(pk)
print "Node {} is: {}".format(pk, repr(node))

import aiida
print "AiiDA version is: {}".format(aiida.get_version())

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

StructureData tutorial

General comments

This section contains an example of how you can use the
StructureData object
to create complex crystals.

With the StructureData class we did not
try to have a full set of features to manipulate crystal structures.
Indeed, other libraries such as ASE [https://wiki.fysik.dtu.dk/ase/] exist,
and we simply provide easy
ways to convert between the ASE and the AiiDA formats. On the other hand,
we tried to define a “standard” format for structures in AiiDA, that can be
used across different codes.

Tutorial

Take a look at the following example:

alat = 4. # angstrom
cell = [[alat, 0., 0.,],
 [0., alat, 0.,],
 [0., 0., alat,],
]
s = StructureData(cell=cell)
s.append_atom(position=(0.,0.,0.), symbols='Fe')
s.append_atom(position=(alat/2.,alat/2.,alat/2.), symbols='O')

With the commands above, we have created a crystal structure s with
a cubic unit cell and lattice parameter of 4 angstrom, and two atoms in the
cell: one iron (Fe) atom in the origin, and one oxygen (O) at the center of
the cube (this cell has been just chosen as an example and most probably does
not exist).

Note

As you can see in the example above, both the cell coordinates and
the atom coordinates are expressed in angstrom, and the position of
the atoms are given in a global absolute reference frame.

In this way, any periodic structure can be defined. If you want to import
from ASE in order to specify the coordinates, e.g., in terms of the crystal
lattice vectors, see the guide on the conversion to/from ASE below.

When using the append_atom()
method, further parameters can be passed. In particular, one can specify
the mass of the atom, particularly important if you want e.g. to run a
phonon calculation. If no mass is specified, the mass provided by
NIST [http://www.nist.gov/pml/data/index.cfm] (retrieved in October 2014)
is going to be used. The list of
masses is stored in the module aiida.common.constants, in the
elements dictionary.

Moreover, in the StructureData class
of AiiDA we also support the storage of crystal structures with alloys,
vacancies or partial occupancies.
In this case, the argument of the parameter symbols
should be a list of symbols, if you want to consider an alloy;
moreover, you must pass a weights list, with the same length as symbols,
and with values between 0. (no occupancy) and 1. (full occupancy), to specify
the fractional occupancy of that site for each of the symbols specified
in the symbols list. The sum of
all occupancies must be lower or equal to one; if the sum is lower than one,
it means that there is a given probability of having a vacancy at that
specific site position.

As an example, you could use:

s.append_atom(position=(0.,0.,0.),symbols=['Ba','Ca'],weights=[0.9,0.1])

to add a site at the origin of a structure s consisting of an alloy of
90% of Barium and 10% of Calcium (again, just an example).

The following line instead:

s.append_atom(position=(0.,0.,0.),symbols='Ca',weights=0.9)

would create a site with 90% probability of being occupied by Calcium, and
10% of being a vacancy.

Utility methods s.is_alloy() and s.has_vacancies() can be used to
verify, respectively, if more than one element if given in the symbols list,
and if the sum of all weights is smaller than one.

Note

if you pass more than one symbol, the method s.is_alloy() will
always return True, even if only one symbol has occupancy 1. and
all others have occupancy zero:

>>> s = StructureData(cell=[[4,0,0],[0,4,0],[0,0,4]])
>>> s.append_atom(position=(0.,0.,0.), symbols=['Fe', 'O'], weights=[1.,0.])
>>> s.is_alloy()
True

Internals: Kinds and Sites

Internally, the append_atom()
method works by manipulating the kinds and sites of the current structure.
Kinds are instances of the Kind class and
represent a chemical species, with given properties (composing element or
elements, occupancies, mass, ...) and identified
by a label (normally, simply the element chemical symbol).

Sites are instances of the Site class
and represent instead each single site. Each site refers
to a Kind to
identify its properties (which element it is, the mass, ...) and to its three
spatial coordinates.

The append_atom() works in
the following way:

	It creates a new Kind
class with the properties passed as parameters
(i.e., all parameters except position).

	It tries to identify if an identical Kind already exists in the list
of kinds of the structure (e.g., in the same atom with the same mass was
already previously added). Comparison of kinds is performed using
aiida.orm.data.structure.Kind.compare_with(), and in particular
it returns True if the mass and the list of symbols and of weights are
identical (within a threshold). If an identical kind k is found,
it simply adds a new site referencing to kind k and with the provided
position. Otherwise, it appends k to the list of kinds of the current
structure and then creates the site referencing to k. The name of the
kind is chosen, by default, equal to the name of the chemical symbol (e.g.,
“Fe” for iron).

	If you pass more than one species for the same chemical symbol, but e.g. with
different masses, a new kind is created and the name is obtained postponing
an integer to the chemical symbol name. For instance, the following lines:

s.append_atom(position = [0,0,0], symbols='Fe', mass = 55.8)
s.append_atom(position = [1,1,1], symbols='Fe', mass = 57)
s.append_atom(position = [1,1,1], symbols='Fe', mass = 59)

will automatically create three kinds, all for iron, with names Fe,
Fe1 and Fe2, and masses 55.8, 57. and 59. respecively.

	In case of alloys, the kind name is obtained concatenating all chemical
symbols names (and a X is the sum of weights is less than one). The same
rules as above are used to append a digit to the kind name, if needed.

	Finally, you can simply specify the kind_name to automatically generate a
new kind with a specific name. This is the case if you want a name different
from the automatically generated one, or for instance if you want to create
two different species with the same properties (same mass, symbols, ...).
This is for instance the case in Quantum ESPRESSO in order to describe an
antiferromagnetic cyrstal, with different magnetizations on the different
atoms in the unit cell.

In this case, you can for instance use:

s.append_atom(position = [0,0,0], symbols='Fe', mass = 55.845, name='Fe1')
s.append_atom(position = [2,2,2], symbols='Fe', mass = 55.845, name='Fe2')

To create two species Fe1 and Fe2 for iron, with the same mass.

Note

You do not need to specify explicitly the mass if the default one
is ok for you. However, when you pass explicitly a name and it coincides
with the name of an existing species, all properties that you
specify must be identical to the ones of the existing species, or the
method will raise an exception.

Note

If you prefer to work with the
internal Kind
and Site classes,
you can obtain the same
result of the two lines above with:

from aiida.orm.data.structure import Kind, Site
s.append_kind(Kind(symbols='Fe', mass=55.845, name='Fe1'))
s.append_kind(Kind(symbols='Fe', mass=55.845, name='Fe1'))
s.append_site(Site(kind_name='Fe1', position=[0.,0.,0.]))
s.append_site(Site(kind_name='Fe2', position=[2.,2.,2.]))

Conversion to/from ASE

If you have an AiiDA structure, you can get an ase.Atom object by
just calling the get_ase
method:

ase_atoms = aiida_structure.get_ase()

Note

As we support alloys and vacancies in AiiDA, while ase.Atom does not,
it is not possible to export to ASE a structure with vacancies or alloys.

If instead you have as ASE Atoms object and you want to load the structure
from it, just pass it when initializing the class:

StructureData = DataFactory('structure')
or:
from aiida.orm.data.structure import StructureData
aiida_structure = StructureData(ase = ase_atoms)

Creating multiple species

We implemented the possibility of specifying different Kinds (species) in the
ase.atoms and then importing them.

In particular, if you specify atoms with different mass in ASE, during the
import phase different kinds will be created:

>>> import ase
>>> StructureData = DataFactory("structure")
>>> asecell = ase.Atoms('Fe2')
>>> asecell[0].mass = 55.
>>> asecell[1].mass = 56.
>>> s = StructureData(ase=asecell)
>>> for kind in s.kinds:
>>> print kind.name, kind.mass
Fe 55.0
Fe1 56.0

Moreover, even if the mass is the same, but you want to get different species,
you can use the ASE tags to specify the number to append to the element
symbol in order to get the species name:

>>> import ase
>>> StructureData = DataFactory("structure")
>>> asecell = ase.Atoms('Fe2')
>>> asecell[0].tag = 1
>>> asecell[1].tag = 2
>>> s = StructureData(ase=asecell)
>>> for kind in s.kinds:
>>> print kind.name
Fe1
Fe2

Note

in complicated cases (multiple tags, masses, ...),
it is possible that exporting a AiiDA structure
to ASE and then importing it again will not perfectly preserve the kinds and
kind names.

Conversion to/from pymatgen

AiiDA structure can be converted to pymatgen’s Molecule [http://pymatgen.org/pymatgen.core.html#pymatgen.core.structure.Molecule] and
Structure [http://pymatgen.org/pymatgen.core.html#pymatgen.core.structure.Structure] objects by using, accordingly,
get_pymatgen_molecule
and
get_pymatgen_structure
methods:

pymatgen_molecule = aiida_structure.get_pymatgen_molecule()
pymatgen_structure = aiida_structure.get_pymatgen_structure()

A single method
get_pymatgen can be
used for both tasks: converting periodic structures (periodic boundary
conditions are met in all three directions) to pymatgen’s Structure and
other structures to pymatgen’s Molecule:

pymatgen_object = aiida_structure.get_pymatgen()

It is also possible to convert pymatgen’s Molecule and Structure
objects to AiiDA structures:

StructureData = DataFactory("structure")
from_mol = StructureData(pymatgen_molecule=mol)
from_struct = StructureData(pymatgen_structure=struct)

Also in this case, a generic converter is provided:

StructureData = DataFactory("structure")
from_mol = StructureData(pymatgen=mol)
from_struct = StructureData(pymatgen=struct)

Note

Converters work with version 3.0.13 or later of
pymatgen. Earlier versions may cause errors.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Quantum Espresso PWscf user-tutorial

This chapter will show how to launch a single PWscf (pw.x) calculation. It is assumed that you have already performed the installation, and that you already setup a computer (with verdi), installed Quantum Espresso on the cluster and in AiiDA. Although the code could be quite readable, a basic knowledge of Python and object programming is useful.

Your classic pw.x input file

This is the input file of Quantum Espresso that we will try to execute. It consists in the total energy calculation of a 5 atom cubic cell of BaTiO3. Note also that AiiDA is a tool to use other codes: if the following input is not clear to you, please refer to the Quantum Espresso Documentation.

&CONTROL
 calculation = 'scf'
 outdir = './out/'
 prefix = 'aiida'
 pseudo_dir = './pseudo/'
 restart_mode = 'from_scratch'
 verbosity = 'high'
 wf_collect = .true.
/
&SYSTEM
 ecutrho = 2.4000000000d+02
 ecutwfc = 3.0000000000d+01
 ibrav = 0
 nat = 5
 ntyp = 3
/
&ELECTRONS
 conv_thr = 1.0000000000d-06
/
ATOMIC_SPECIES
Ba 137.33 Ba.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF
Ti 47.88 Ti.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF
O 15.9994 O.pbesol-n-rrkjus_psl.0.1-tested-pslib030.UPF
ATOMIC_POSITIONS angstrom
Ba 0.0000000000 0.0000000000 0.0000000000
Ti 2.0000000000 2.0000000000 2.0000000000
O 2.0000000000 2.0000000000 0.0000000000
O 2.0000000000 0.0000000000 2.0000000000
O 0.0000000000 2.0000000000 2.0000000000
K_POINTS automatic
4 4 4 0 0 0
CELL_PARAMETERS angstrom
 4.0000000000 0.0000000000 0.0000000000
 0.0000000000 4.0000000000 0.0000000000
 0.0000000000 0.0000000000 4.0000000000

In the old way, not only you had to prepare ‘manually’ this file, but also prepare the scheduler submission script, send everything on the cluster, etc.
We are going instead to prepare everything in a more programmatic way.

Quantum Espresso Pw Walkthrough

We’ve got to prepare a script to submit a job to your local installation of AiiDA.
This example will be a rather long script: in fact there is still nothing in your database, so that we will have to load everything, like the pseudopotential files and the structure.
In a more practical situation, you might load data from the database and perform a small modification to re-use it.

Let’s say that through the verdi command you have already installed
a cluster, say TheHive, and that you also compiled Quantum Espresso
on the cluster, and installed the code pw.x with verdi with label pw-5.1
for instance, so that in the rest of this tutorial we will reference to the
code as pw-5.1@TheHive.

Let’s start writing the python script.
First of all, we need to load the configuration concerning your
particular installation, in particular, the details of your database installation:

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv()

Code

Now we have to select the code. Note that in AiiDA the object ‘code’ in the
database is meant to represent a specific executable, i.e. a given
compiled version of a code.
This means that if you install Quantum Espresso (QE) on two computers A and B,
you will need to have two different ‘codes’ in the database
(although the source of the code is the same, the binary file is different).

If you setup the code pw-5.1 on machine TheHive correctly, then it is
sufficient to write:

codename = 'pw-5.1@TheHive'
from aiida.orm import Code
code = Code.get_from_string(codename)

Where in the last line we just load the database object representing the code.

Note

the .get_from_string() method is just a helper method for user
convenience, but there are some weird cases that cannot be dealt in a
simple way (duplicated labels, code names
that are an integer number, code names containing the ‘@’ symbol, ...: try
to not do this! This is not an error, but does not allow to use the
.get_from_string() method to get those calculations).
In this case, you can use directly the .get() method, for instance:

code = Code.get(label='pw-5.1', machinename='TheHive',
 useremail='user@domain.com')

or even more generally get the code from its (integer) PK:

code = load_node(PK)

Structure

We now proceed in setting up the structure.

Note

Here we discuss only the main features of structures in AiiDA, needed
to run a Quantum ESPRESSO PW calculation.

For more detailed information, give a look to the
StructureData tutorial.

There are two ways to do that in AiiDA, a first one is to use the AiiDA Structure, which we will explain in the following; the second choice is the Atomic Simulation Environment (ASE) [http://wiki.fysik.dtu.dk/ase/] which provides excellent tools to manipulate structures (the ASE Atoms object needs to be converted into an AiiDA Structure, see the note at the end of the section).

We first have to load the abstract object class that describes a structure.
We do it in the following way: we load the DataFactory, which is a tool to load the classes by their name, and then call StructureData the abstract class that we loaded.
(NB: it’s not yet a class instance!)
(If you are not familiar with the terminology of object programming, we could take Wikipedia [http://en.wikipedia.org/wiki/Object_(computer_science)] and see their short explanation: in common speech that one refers to a file as a class, while the file is the object or the class instance. In other words, the class is our definition of the object Structure, while its instance is what will be saved as an object in the database):

from aiida.orm import DataFactory
StructureData = DataFactory('structure')

We define the cell with a 3x3 matrix (we choose the convention where each ROW represents a lattice vector), which in this case is just a cube of size 4 Angstroms:

alat = 4. # angstrom
cell = [[alat, 0., 0.,],
 [0., alat, 0.,],
 [0., 0., alat,],
]

Now, we create the StructureData instance, assigning immediately the cell.
Then, we append to the empty crystal cell the atoms, specifying their element name and their positions:

BaTiO3 cubic structure
s = StructureData(cell=cell)
s.append_atom(position=(0.,0.,0.),symbols='Ba')
s.append_atom(position=(alat/2.,alat/2.,alat/2.),symbols='Ti')
s.append_atom(position=(alat/2.,alat/2.,0.),symbols='O')
s.append_atom(position=(alat/2.,0.,alat/2.),symbols='O')
s.append_atom(position=(0.,alat/2.,alat/2.),symbols='O')

To see more methods associated to the class StructureData, look at the Structure documentation.

Note

When you create a node (in this case a StructureData node) as
described above, you are just creating it in the computer memory, and not
in the database. This is particularly useful to run tests without filling
the AiiDA database with garbage.

You will see how to store all the nodes in one shot toward the end of this
tutorial; if, however, you want to directly store the structure in the
database for later use, you can just call the store() method of the Node:

s.store()

For an extended tutorial about the creation of Structure objects,
check this tutorial.

Note

AiiDA supports also ASE structures. Once you created your structure
with ASE, in an object instance called say ase_s, you can
straightforwardly use it to create the AiiDA StructureData, as:

s = StructureData(ase=ase_s)

and then save it s.store().

Parameters

Now we need to provide also the parameters of a Quantum Espresso calculation,
like the cutoff for the wavefunctions, some convergence threshold, etc...
The Quantum ESPRESSO pw.x plugin requires to pass this information within a
ParameterData object, that is a specific AiiDA data node that can store a
dictionary (even nested) of basic data types: integers, floats, strings, lists,
dates, ...
We first load the class through the DataFactory, just like we did for the Structure.
Then we create the instance of the object parameter.
To represent closely the structure of the QE input file,
ParameterData is a nested dictionary, at the first level the namelists
(capitalized), and then the variables with their values (in lower case).

Note also that numbers and booleans are written in Python, i.e. False and
not the Fortran string .false.!

ParameterData = DataFactory('parameter')

parameters = ParameterData(dict={
 'CONTROL': {
 'calculation': 'scf',
 'restart_mode': 'from_scratch',
 'wf_collect': True,
 },
 'SYSTEM': {
 'ecutwfc': 30.,
 'ecutrho': 240.,
 },
 'ELECTRONS': {
 'conv_thr': 1.e-6,
 }})

Note

also in this case, we chose not to store the parameters node.
If we wanted, we could even have done it in a single line:

parameters = ParameterData(dict={...}).store()

The experienced QE user will have noticed also that a couple of variables
are missing: the prefix, the pseudo directory and the scratch directory are
reserved to the plugin which will use default values, and there are specific
AiiDA methods to restart from a previous calculation.

Input parameters validation

The dictionary provided above is the standard format for storing the inputs
of Quantum ESPRESSO pw.x in the database. It is important to store the inputs
of different calculations in a consistent way because otherwise later querying
becomes impossible (e.g. if different units are used for the same flags,
if the same input is provided in different formats, ...).

In the PW input plugin, we provide a function that will help you in
both validating the input, and creating the input in the expected format
without remembering in which namelists the keywords are located.

You can access this function as follows. First, you define the input dictionary:

test_dict = {
 'CONTROL': {
 'calculation': 'scf',
 },
 'SYSTEM': {
 'ecutwfc': 30.,
 },
 'ELECTRONS': {
 'conv_thr': 1.e-6,
 }}

Then, you can verify if the input is correct by using the
pw_input_helper() function,
conveniently exposes also as a input_helper class method of the PwCalculation class:

resdict = CalculationFactory('quantumespresso.pw').input_helper(test_dict, structure=s)

If the input is invalid, the function will raise a InputValidationError
exception, and the error message will have a verbose explanation of the possible
errors, and in many cases it will suggest how to fix them. Otherwise, in resdict
you will find the same dictionary you passed in input, potentially slightly modified
to fix some small mistakes (e.g., if you pass an integer value where a float is expected,
the type will be converted). You can then use the output for the input ParameterData node:

parameters = ParameterData(dict=resdict)

As an example, if you pass an incorrect input, e.g. the following where we have introduced
a few errors:

test_dict = {
 'CONTROL': {
 'calculation': 'scf',
 },
 'SYSTEM': {
 'ecutwfc': 30.,
 'cosab': 10.,
 'nosym': 1,
 },
 'ELECTRONS': {
 'convthr': 1.e-6,
 'ecutrho': 100.
 }}

After running the input_helper method, you will get an exception with a message
similar to the following:

QEInputValidationError: Errors! 4 issues found:
* You should not provide explicitly keyword 'cosab'.
* Problem parsing keyword convthr. Maybe you wanted to specify one of these: conv_thr, nconstr, forc_conv_thr?
* Expected a boolean for keyword nosym, found <type 'int'> instead
* Error, keyword 'ecutrho' specified in namelist 'ELECTRONS', but it should be instead in 'SYSTEM'

As you see, a quite large number of checks are done, and if a name is not provided, a list of
similar valid names is provided (e.g. for the wrong keyword “convthr” above).

There are a few additional options that are useful:

	If you don’t want to remember the namelists, you can pass a ‘flat’ dictionary, without
namelists, and add the flat_mode=True option to input_helper. Beside the usual
validation, the function will reconstruct the correct dictionary to pass as input for
the AiiDA QE calculation. Example:

test_dict_flat = {
 'calculation': 'scf',
 'ecutwfc': 30.,
 'conv_thr': 1.e-6,
 }
resdict = CalculationFactory('quantumespresso.pw').input_helper(
 test_dict_flat, structure=s, flat_mode = True)

and after running, resdict will contain:

test_dict = {
 'CONTROL': {
 'calculation': 'scf',
 },
 'SYSTEM': {
 'ecutwfc': 30.,
 },
 'ELECTRONS': {
 'conv_thr': 1.e-6,
 }}

where the namelists have been automatically generated.

	You can pass a string with a specific version number for a feature that was added
only in a given version. For instance:

resdict = CalculationFactory('quantumespresso.pw').input_helper(
 test_dict, structure=s,version='5.3.0')

If the specific version is not among those for which we have a list of valid parameters,
the error message will tell you which versions are available.

Note

We will try to maintain the input_helper every time a new version of Quantum ESPRESSO
is released, but consider the input_helper function as a utility, rather than the
official way to provide the input – the only officially supported way to provide
an input to pw.x is through a direct dictionary, as described earlier in the section “Parameters”.
This applies in particular if you are using very old versions of QE, or customized versions
that accept different parameters.

Other inputs

The k-points have to be saved in another kind of data, namely KpointsData:

KpointsData = DataFactory('array.kpoints')
kpoints = KpointsData()
kpoints.set_kpoints_mesh([4,4,4])

In this case it generates a 4*4*4 mesh without offset. To add an offset one
can replace the last line by:

kpoints.set_kpoints_mesh([4,4,4],offset=(0.5,0.5,0.5))

Note

Only offsets of 0 or 0.5 are possible (this is imposed by PWscf).

You can also specify kpoints manually, by inputing a list of points
in crystal coordinates (here they all have equal weights):

import numpy
kpoints.set_kpoints([[i,i,0] for i in numpy.linspace(0,1,10)],
 weights = [1. for i in range(10)])

Note

It is also possible to generate a gamma-only computation. To do so
one has to specify additional settings, of type ParameterData, putting
gamma-only to True:

settings = ParameterData(dict={'gamma_only':True})

then set the kpoints mesh to a single point (gamma):

kpoints.set_kpoints_mesh([1,1,1])

and in the end add (after calc = code.new_calc(), see below) a line to use
these settings:

calc.use_settings(settings)

As a further comment, this is specific to the way the plugin
for Quantum Espresso works.
Other codes may need more than two ParameterData, or even none of them.
And also how this parameters have to be written depends on the plugin:
what is discussed here is just the format that we decided for
the Quantum Espresso plugins.

Calculation

Now we proceed to set up the calculation.
Since during the setup of the code we already set the code to be a
quantumespresso.pw code, there is a simple method to create a new
calculation:

calc = code.new_calc()

We have to specify the details required by the scheduler.
For example, on a SLURM or PBS scheduler, we have to specify the number
of nodes (num_machines), possibly the number of MPI processes per node
(num_mpiprocs_per_machine) if we want to run with a different number
of MPI processes with respect to the default value configured when setting up
the computer in AiiDA, the job walltime, the queue name (if desired), ...:

calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_resources({"num_machines": 1})
OPTIONAL, use only if you need to explicitly specify a queue name
calc.set_queue_name("the_queue_name")

(For the complete scheduler documentation, see Supported schedulers)

Note

an alternative way of calling a method starting with the string
set_, is to pass directly the value to the .new_calc() method. This
is to say that the following lines:

calc = code.new_calc()
calc.set_max_wallclock_seconds(3600)
calc.set_resources({"num_machines": 1})

is equivalent to:

calc = code.new_calc(max_wallclock_seconds=3600,
 resources={"num_machines": 1})

At this point, we just created a “lone” calculation, that still does not know
anything about the inputs that we created before. We need therefore to
tell the calculation to use the parameters that we prepared before, by
properly linking them using the use_ methods:

calc.use_structure(s)
calc.use_code(code)
calc.use_parameters(parameters)
calc.use_kpoints(kpoints)

In practice, when you say calc.use_structure(s), you are setting a link
between the two nodes (s and calc), that means that
s is the input structure for calculation calc. Also these links
are cached and do not require to store anything in the database yet.

In the case of the gamma-only computation (see above), you
also need to add:

calc.use_settings(settings)

Pseudopotentials

There is still one missing piece of information, that is the
pseudopotential files, one for each element of the structure.

In AiiDA, it is possible to specify manually which pseudopotential files to use
for each atomic species. However, for any practical use, it is convenient
to use the pseudopotential families.
Its use is documented in Pseudopotential families tutorial.
If you got one installed, you can simply tell the calculation to use the
pseudopotential family with a given name, and AiiDA will take care of
linking the proper pseudopotentials to the calculation, one for each atomic
species present in the input structure. This can be done using:

calc.use_pseudos_from_family('my_pseudo_family')

Labels and comments

Sometimes it is useful to attach some notes to the calculation,
that may help you later understand why you did such a calculation,
or note down what you understood out of it.
Comments are a special set of properties of the calculation, in the sense
that it is one of the few properties that can be changed, even after
the calculation has run.

Comments come in various flavours. The most basic one is the label property,
a string of max 255 characters, which is meant to be the title of the calculation.
To create it, simply write:

calc.label = "A generic title"

The label can be later accessed as a class property, i.e. the command:

calc.label

will return the string you previously set (empty by default).
Another important property to set is the description, which instead does not have a
limitation on the maximum number of characters:

calc.description = "A much longer description"

And finally, there is the possibility to add comments to any calculation
(actually, to any node).
The peculiarity of comments is that they are user dependent
(like the comments that you can post on facebook pages), so it is best
suited to calculation exposed on a website, where you want to remember
the comments of each user.
To set a comment, you need first to import the django user, and then
write it with a dedicated method:

from aiida.backends.djsite.utils import get_automatic_user
calc.add_comment("Some comment", user=get_automatic_user())

The comments can be accessed with this function:

calc.get_comments_tuple()

Execute

If we are satisfied with what you created, it is time to store everything
in the database.
Note that after storing it, it will not be possible to modify it
(nor you should: you risk of compromising the integrity of the database)!

Unless you already stored all the inputs beforehand, you will need to store
the inputs before being able to store the calculation itself.
Since this is a very common operation, there is an utility method that will
automatically store both all the input nodes of calc and then calc
itself:

calc.store_all()

Once we store the calculation, it is useful to print its PK (principal key,
that is its identifier) that is useful in the following to interact with it:

print "created calculation; with uuid='{}' and PK={}".format(calc.uuid,calc.pk)

Note

the PK will change if you give the calculation to someone else,
while the UUID (the Universally Unique IDentifier) is a string that is
assured to be always the same also if you share your data with collaborators.

Summarizing, we created all the inputs needed by a PW calculation,
that are: parameters, kpoints, pseudopotential files and the structure.
We then created the calculation, where we specified that it is a PW calculation
and we specified the details of the remote cluster.
We set the links between the inputs and the calculation (calc.use_***)
and finally we stored all this objects in the database (.store_all()).

That’s all that the calculation needs. Now we just need to submit it:

calc.submit()

Everything else will be managed by AiiDA: the inputs will be checked to verify
that it is consistent with a PW input. If the input is complete, the pw input
file will be prepared in a folder together with all the other files required
for the execution (pseudopotentials, etc.). It will be then sent on cluster,
submitted, and after execution automatically retrieved and parsed.

To know how to monitor and check the state of submitted calculations, go to
Calculations.

To continue the tutorial with the ph.x phonon code of Quantum ESPRESSO,
continue here: Quantum Espresso Phonon user-tutorial.

Script: source code

In this section you’ll find two scripts that do what explained in the tutorial.
The compact is a script with a minimal configuration required.
You can copy and paste it (or download it), modify the two strings codename
and pseudo_family with the correct values, and execute it with:

python pw_short_example.py

(It requires to have one family of pseudopotentials configured).

You will also find a longer version, with more exception checks, error
management and user interaction.
Note that the configuration of the computer resources
(like number of nodes and machines) is hardware and scheduler dependent.
The configuration used below should work for a pbspro or slurm cluster,
asking to run on 1 node only.

Compact script

Download: this example script

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv()

from aiida.orm import Code, DataFactory
StructureData = DataFactory('structure')
ParameterData = DataFactory('parameter')
KpointsData = DataFactory('array.kpoints')

###############################
Set your values here
codename = 'pw-5.1@TheHive'
pseudo_family = 'lda_pslibrary'
###############################

code = Code.get_from_string(codename)

BaTiO3 cubic structure
alat = 4. # angstrom
cell = [[alat, 0., 0.,],
 [0., alat, 0.,],
 [0., 0., alat,],
]
s = StructureData(cell=cell)
s.append_atom(position=(0.,0.,0.),symbols='Ba')
s.append_atom(position=(alat/2.,alat/2.,alat/2.),symbols='Ti')
s.append_atom(position=(alat/2.,alat/2.,0.),symbols='O')
s.append_atom(position=(alat/2.,0.,alat/2.),symbols='O')
s.append_atom(position=(0.,alat/2.,alat/2.),symbols='O')

parameters = ParameterData(dict={
 'CONTROL': {
 'calculation': 'scf',
 'restart_mode': 'from_scratch',
 'wf_collect': True,
 },
 'SYSTEM': {
 'ecutwfc': 30.,
 'ecutrho': 240.,
 },
 'ELECTRONS': {
 'conv_thr': 1.e-6,
 }})

kpoints = KpointsData()
kpoints.set_kpoints_mesh([4,4,4])

calc = code.new_calc(max_wallclock_seconds=3600,
 resources={"num_machines": 1})
calc.label = "A generic title"
calc.description = "A much longer description"

calc.use_structure(s)
calc.use_code(code)
calc.use_parameters(parameters)
calc.use_kpoints(kpoints)
calc.use_pseudos_from_family(pseudo_family)

calc.store_all()
print "created calculation with PK={}".format(calc.pk)
calc.submit()

Exception tolerant code

You can find a more sophisticated example, that checks the possible exceptions
and prints nice error messages inside your AiiDA folder, under
examples/submission/test_pw.py.

Advanced features

For a list of advanced features that can be activated (change of the
command line parameters, blocking some coordinates, ...) you can refer
to this section
in the pw.x input plugin documentation.

Importing previously run Quantum ESPRESSO pw.x calculations: PwImmigrant

Once you start using AiiDA to run simulations, we believe that you will find it
so convenient that you will use it for all your calculations.

At the beginning, however, you may have some calculations that you already have
run and are sitting in some folders, and that you want to import inside AiiDA.

This can be achieved with the PwImmigrant class described below.

	Quantum Espresso PWscf immigration user-tutorial
	Imports and database environement

	Code, computer, and resources

	Initialization of the calculation

	The immigration

	Compact script

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Quantum Espresso PWscf user-tutorial

Quantum Espresso PWscf immigration user-tutorial

If you are a new AiiDA user, it’s likely you already have a large number of calculations that you ran before installing AiiDA. This tutorial will show you how to immigrate any of these PWscf (pw.x) calculations into your AiiDA database. They will then exist there as if you had actually run them using AiiDA (with the exception of the times and dates the calculations were run).

It is assumed that you have already performed the installation, that you already setup a computer (with verdi), and that you have installed Quantum Espresso on the cluster and pw.x as a code in AiiDA. You should also be familiar with using AiiDA to run a PWscf calculation and the various input and output nodes of a PwCalculation. Please go through Quantum Espresso PWscf user-tutorial before proceeding.

Example details

The rest of the tutorial will detail the steps of immigrating two example pw.x calculations that were run in /scratch/, using the code named 'pw_on_TheHive', on 1 node with 1 mpi process. The input/output file names of these calculations are

	pw_job1.in/pw_job1.out

	pw_job2.in/pw_job2.out

Imports and database environement

As usual, we load the database environment and load the PwimmigrantCalculation class using the CalculationFactory.

from aiida import load_dbenv
from aiida.orm.code import Code
from aiida.orm import CalculationFactory

Load the database environment.
load_dbenv()

Load the PwimmigrantCalculation class.
PwimmigrantCalculation = CalculationFactory('quantumespresso.pwimmigrant')

Code, computer, and resources

Important

It is up to the user to setup and link the following calculation inputs manually:

	the code

	the computer

	the resources

These input nodes should be created to be representative of those that were used for the calculation that is to be immigrated. (Eg. If the job was run using version 5.1 of Quantum-Espresso, the user should have already run verdi code setup to create the code’s node and should load and pass this code when initializing the calculation node.) If any of these input nodes are not representative of the actual properties the calculation was run with, there may be errors when performing a calculation restart of an immigrated calculation, for example.

Next, we load the code and computer that have already been configured to be representative of those used to perform the calculation. We also define the resources representive of those that were used to run the calculation.

Load the Code node representative of the one used to perform the calculations.
code = Code.get('pw_on_TheHive')

Get the Computer node representative of the one the calculations were run on.
computer = code.get_remote_computer()

Define the computation resources used for the calculations.
resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1}

Initialization of the calculation

Now, we are ready to initialize the immigrated calculation objects from the PwimmigrantCalculation class. We will pass the necessary parameters as keywords during the initialization calls. Then, we link the code from above as an input node.

Initialize the pw_job1 calculation node.
calc1 = PwimmigrantCalculation(computer=computer,
 resources=resources,
 remote_workdir='/scratch/',
 input_file_name='pw_job1.in',
 output_file_name='pw_job1.out')

Initialize the pw_job2 calculation node.
calc2 = PwimmigrantCalculation(computer=computer,
 resources=resources,
 remote_workdir='/scratch/',
 input_file_name='pw_job2.in',
 output_file_name='pw_job2.out')

Link the code that was used to run the calculations.
calc1.use_code(code)
calc2.use_code(code)

The user may have noticed the additional initialization keywords/parameters–remote_wordir, input_file_name, and output_file_name–passed here. These are necessary in order to tell AiiDA which files to use to automatically generate the calculation`s input nodes in the next step.

The immigration

Now that AiiDA knows where to look for the input files of the calculations we are immigrating, all we need to do in order to generate all the input nodes is call the create_input_nodes method. This method is the most helpful method of the PwimmigrantCalculation class. It parses the job’s input file and creates and links the follow types of input nodes:

	ParameterData – based on the namelists and their variable-value pairs

	KpointsData – based on the K_POINTS card

	SturctureData – based on the ATOMIC_POSITIONS and CELL_PARAMETERS cards (and the a or celldm(1) of the &SYSTEM namelist, if alat is specified through these variables)

	UpfData – one for each of the atomic species, based on the pseudopotential files specified in the ATOMIC_SPECIES card

	settings ParameterData – if there are any fixed coordinates, or if the gamma kpoint is used

All units conversion and/or coordinate transformations are handled automatically, and the input nodes are generated in the correct units and coordinates required by AiiDA.

Note

Any existing UpfData nodes are simply linked without recreation; no duplicates are generated during this method call.

Note

After this method call, the calculation and the generated input nodes are still in the cached state and are not yet stored in the database. Therefore, the user may examine the input nodes that were generated (by examining the attributes of the NodeInputManager, calc.inp) and edit or replace any of them. The immigration can also be canceled at this point, in which case the calculation and the input nodes would not be stored in the database.

Finally, the last step of the immigration is to call the prepare_for_retrieval_and_parsing method. This method stores the calculation and it’s input nodes in the database, copies the original input file to the calculation’s repository folder, and then tells the daemon to retrieve and parse the calculation’s output files.

Note

If the daemon is not currently running, the retrieval and parsing process will not begin until it is started.

Because the input and pseudopotential files need to be retrieved from the computer, the computer’s transport plugin needs to be open. Rather than opening and closing the transport for each calculation, we instead require the user to pass an open transport instance as a parameter to the create_input_nodes and prepare_for_retrieval_and_parsing methods. This minimizes the number of transport opening and closings, which is highly beneficial when immigrating a large number of calculations.

Calling these methods with an open transport is performed as follows:

Get the computer's transport and create an instance.
Transport = computer.get_transport_class()
transport = Transport()

Open the transport for the duration of the immigrations, so it's not
reopened for each one. This is best performed using the transport's
context guard through the ``with`` statement.
with transport as open_transport:

 # Parse the calculations' input files to automatically generate and link the
 # calculations' input nodes.
 calc1.create_input_nodes(open_transport)
 calc2.create_input_nodes(open_transport)

 # Store the calculations and their input nodes and tell the daeomon the output
 # is ready to be retrieved and parsed.
 calc1.prepare_for_retrieval_and_parsing(open_transport)
 calc2.prepare_for_retrieval_and_parsing(open_transport)

The process above is easily expanded to large-scale immigrations of multiple jobs.

Compact script

Download: this example script

#!/usr/bin/env python
from aiida import load_dbenv
from aiida.orm.code import Code
from aiida.orm import CalculationFactory

Load the database environment.
load_dbenv()

Load the PwimmigrantCalculation class.
PwimmigrantCalculation = CalculationFactory('quantumespresso.pwimmigrant')

Load the Code node representative of the one used to perform the calculations.
code = Code.get('pw_on_TheHive')

Get the Computer node representative of the one the calculations were run on.
computer = code.get_remote_computer()

Define the computation resources used for the calculations.
resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1}

Initialize the pw_job1 calculation node.
calc1 = PwimmigrantCalculation(computer=computer,
 resources=resources,
 remote_workdir='/scratch/',
 input_file_name='pw_job1.in',
 output_file_name='pw_job1.out')

Initialize the pw_job2 calculation node.
calc2 = PwimmigrantCalculation(computer=computer,
 resources=resources,
 remote_workdir='/scratch/',
 input_file_name='pw_job2.in',
 output_file_name='pw_job2.out')

Link the code that was used to run the calculations.
calc1.use_code(code)
calc2.use_code(code)

Get the computer's transport and create an instance.
Transport = computer.get_transport_class()
transport = Transport()

Open the transport for the duration of the immigrations, so it's not
reopened for each one. This is best performed using the transport's
context guard through the ``with`` statement.
with transport as open_transport:

 # Parse the calculations' input files to automatically generate and link the
 # calculations' input nodes.
 calc1.create_input_nodes(open_transport)
 calc2.create_input_nodes(open_transport)

 # Store the calculations and their input nodes and tell the daeomon the output
 # is ready to be retrieved and parsed.
 calc1.prepare_for_retrieval_and_parsing(open_transport)
 calc2.prepare_for_retrieval_and_parsing(open_transport)

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Quantum Espresso PWscf user-tutorial

Quantum Espresso PWscf immigration user-tutorial

If you are a new AiiDA user, it’s likely you already have a large number of calculations that you ran before installing AiiDA. This tutorial will show you how to immigrate any of these PWscf (pw.x) calculations into your AiiDA database. They will then exist there as if you had actually run them using AiiDA (with the exception of the times and dates the calculations were run).

It is assumed that you have already performed the installation, that you already setup a computer (with verdi), and that you have installed Quantum Espresso on the cluster and pw.x as a code in AiiDA. You should also be familiar with using AiiDA to run a PWscf calculation and the various input and output nodes of a PwCalculation. Please go through Quantum Espresso PWscf user-tutorial before proceeding.

Example details

The rest of the tutorial will detail the steps of immigrating two example pw.x calculations that were run in /scratch/, using the code named 'pw_on_TheHive', on 1 node with 1 mpi process. The input/output file names of these calculations are

	pw_job1.in/pw_job1.out

	pw_job2.in/pw_job2.out

Imports and database environement

As usual, we load the database environment and load the PwimmigrantCalculation class using the CalculationFactory.

from aiida import load_dbenv
from aiida.orm.code import Code
from aiida.orm import CalculationFactory

Load the database environment.
load_dbenv()

Load the PwimmigrantCalculation class.
PwimmigrantCalculation = CalculationFactory('quantumespresso.pwimmigrant')

Code, computer, and resources

Important

It is up to the user to setup and link the following calculation inputs manually:

	the code

	the computer

	the resources

These input nodes should be created to be representative of those that were used for the calculation that is to be immigrated. (Eg. If the job was run using version 5.1 of Quantum-Espresso, the user should have already run verdi code setup to create the code’s node and should load and pass this code when initializing the calculation node.) If any of these input nodes are not representative of the actual properties the calculation was run with, there may be errors when performing a calculation restart of an immigrated calculation, for example.

Next, we load the code and computer that have already been configured to be representative of those used to perform the calculation. We also define the resources representive of those that were used to run the calculation.

Load the Code node representative of the one used to perform the calculations.
code = Code.get('pw_on_TheHive')

Get the Computer node representative of the one the calculations were run on.
computer = code.get_remote_computer()

Define the computation resources used for the calculations.
resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1}

Initialization of the calculation

Now, we are ready to initialize the immigrated calculation objects from the PwimmigrantCalculation class. We will pass the necessary parameters as keywords during the initialization calls. Then, we link the code from above as an input node.

Initialize the pw_job1 calculation node.
calc1 = PwimmigrantCalculation(computer=computer,
 resources=resources,
 remote_workdir='/scratch/',
 input_file_name='pw_job1.in',
 output_file_name='pw_job1.out')

Initialize the pw_job2 calculation node.
calc2 = PwimmigrantCalculation(computer=computer,
 resources=resources,
 remote_workdir='/scratch/',
 input_file_name='pw_job2.in',
 output_file_name='pw_job2.out')

Link the code that was used to run the calculations.
calc1.use_code(code)
calc2.use_code(code)

The user may have noticed the additional initialization keywords/parameters–remote_wordir, input_file_name, and output_file_name–passed here. These are necessary in order to tell AiiDA which files to use to automatically generate the calculation`s input nodes in the next step.

The immigration

Now that AiiDA knows where to look for the input files of the calculations we are immigrating, all we need to do in order to generate all the input nodes is call the create_input_nodes method. This method is the most helpful method of the PwimmigrantCalculation class. It parses the job’s input file and creates and links the follow types of input nodes:

	ParameterData – based on the namelists and their variable-value pairs

	KpointsData – based on the K_POINTS card

	SturctureData – based on the ATOMIC_POSITIONS and CELL_PARAMETERS cards (and the a or celldm(1) of the &SYSTEM namelist, if alat is specified through these variables)

	UpfData – one for each of the atomic species, based on the pseudopotential files specified in the ATOMIC_SPECIES card

	settings ParameterData – if there are any fixed coordinates, or if the gamma kpoint is used

All units conversion and/or coordinate transformations are handled automatically, and the input nodes are generated in the correct units and coordinates required by AiiDA.

Note

Any existing UpfData nodes are simply linked without recreation; no duplicates are generated during this method call.

Note

After this method call, the calculation and the generated input nodes are still in the cached state and are not yet stored in the database. Therefore, the user may examine the input nodes that were generated (by examining the attributes of the NodeInputManager, calc.inp) and edit or replace any of them. The immigration can also be canceled at this point, in which case the calculation and the input nodes would not be stored in the database.

Finally, the last step of the immigration is to call the prepare_for_retrieval_and_parsing method. This method stores the calculation and it’s input nodes in the database, copies the original input file to the calculation’s repository folder, and then tells the daemon to retrieve and parse the calculation’s output files.

Note

If the daemon is not currently running, the retrieval and parsing process will not begin until it is started.

Because the input and pseudopotential files need to be retrieved from the computer, the computer’s transport plugin needs to be open. Rather than opening and closing the transport for each calculation, we instead require the user to pass an open transport instance as a parameter to the create_input_nodes and prepare_for_retrieval_and_parsing methods. This minimizes the number of transport opening and closings, which is highly beneficial when immigrating a large number of calculations.

Calling these methods with an open transport is performed as follows:

Get the computer's transport and create an instance.
Transport = computer.get_transport_class()
transport = Transport()

Open the transport for the duration of the immigrations, so it's not
reopened for each one. This is best performed using the transport's
context guard through the ``with`` statement.
with transport as open_transport:

 # Parse the calculations' input files to automatically generate and link the
 # calculations' input nodes.
 calc1.create_input_nodes(open_transport)
 calc2.create_input_nodes(open_transport)

 # Store the calculations and their input nodes and tell the daeomon the output
 # is ready to be retrieved and parsed.
 calc1.prepare_for_retrieval_and_parsing(open_transport)
 calc2.prepare_for_retrieval_and_parsing(open_transport)

The process above is easily expanded to large-scale immigrations of multiple jobs.

Compact script

Download: this example script

#!/usr/bin/env python
from aiida import load_dbenv
from aiida.orm.code import Code
from aiida.orm import CalculationFactory

Load the database environment.
load_dbenv()

Load the PwimmigrantCalculation class.
PwimmigrantCalculation = CalculationFactory('quantumespresso.pwimmigrant')

Load the Code node representative of the one used to perform the calculations.
code = Code.get('pw_on_TheHive')

Get the Computer node representative of the one the calculations were run on.
computer = code.get_remote_computer()

Define the computation resources used for the calculations.
resources = {'num_machines': 1, 'num_mpiprocs_per_machine': 1}

Initialize the pw_job1 calculation node.
calc1 = PwimmigrantCalculation(computer=computer,
 resources=resources,
 remote_workdir='/scratch/',
 input_file_name='pw_job1.in',
 output_file_name='pw_job1.out')

Initialize the pw_job2 calculation node.
calc2 = PwimmigrantCalculation(computer=computer,
 resources=resources,
 remote_workdir='/scratch/',
 input_file_name='pw_job2.in',
 output_file_name='pw_job2.out')

Link the code that was used to run the calculations.
calc1.use_code(code)
calc2.use_code(code)

Get the computer's transport and create an instance.
Transport = computer.get_transport_class()
transport = Transport()

Open the transport for the duration of the immigrations, so it's not
reopened for each one. This is best performed using the transport's
context guard through the ``with`` statement.
with transport as open_transport:

 # Parse the calculations' input files to automatically generate and link the
 # calculations' input nodes.
 calc1.create_input_nodes(open_transport)
 calc2.create_input_nodes(open_transport)

 # Store the calculations and their input nodes and tell the daeomon the output
 # is ready to be retrieved and parsed.
 calc1.prepare_for_retrieval_and_parsing(open_transport)
 calc2.prepare_for_retrieval_and_parsing(open_transport)

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Quantum Espresso Phonon user-tutorial

Note

The Phonon plugin referenced below is available in the EPFL version.

In this chapter will get you through the launching of a phonon calculation with Quantum Espresso, with ph.x, a density functional perturbation theory code.
For this tutorial, it is required that you managed to launch the pw.x calculation, which is at the base of the phonon code; and of course it is assumed that you already know how to use the QE code.

The input of a phonon calculation can be actually simple, the only care that has to be taken, is to point to the same scratch of the previous pw calculation.
Here we will try to compute the dynamical matrix on a mesh of points (actually consisting of a 1x1x1 mesh for brevity).
The input file that we should create is more or less this one:

AiiDA calculation
&INPUTPH
 epsil = .true.
 fildyn = 'DYN_MAT/dynamical-matrix-'
 iverbosity = 1
 ldisp = .true.
 nq1 = 1
 nq2 = 1
 nq3 = 1
 outdir = './out/'
 prefix = 'aiida'
 tr2_ph = 1.0000000000d-08
/

Walkthrough

This input is much simpler than the previous PWscf work, here the only novel thing you will have to learn is how to set a parent calculation.

As before, we write a script step-by-step.

We first load a couple of useful modules that you already met in the previous tutorial, and load the database settings:

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv()

from aiida.orm import Code
from aiida.orm import CalculationFactory, DataFactory

So, you were able to launch previously a pw.x calculation.

Code

Again, you need to have compiled the code on the cluster and configured a new code ph.x in AiiDA in the very same way you installed pw.x (see).
Then we load the Code class-instance from the database:

codename = 'my-ph.x'
code = Code.get_from_string(codename)

Parameter

Just like the PWscf calculation, here we load the class ParameterData and we instanciate it in parameters.
Again, ParameterData will simply represent a nested dictionary in the database, namelists at the first level, and then variables and values.
But this time of course, we need to use the variables of PHonon!

ParameterData = DataFactory('parameter')
parameters = ParameterData(dict={
 'INPUTPH': {
 'tr2_ph' : 1.0e-8,
 'epsil' : True,
 'ldisp' : True,
 'nq1' : 1,
 'nq2' : 1,
 'nq3' : 1,
 }})

Calculation

Now we create the object PH-calculation.
As for pw.x, we simply do:

calc = code.new_calc()

and we set the parameters of the scheduler
(and just like the PWscf, this is a configuration valid
for the PBSpro and slurm schedulers only, see Supported schedulers).

calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_resources({"num_machines": 1})

We then tell the calculation to use the code and the parameters that we prepared above:

calc.use_parameters(parameters)

Parent calculation

The phonon calculation needs to know on which PWscf do the perturbation theory calculation.
From the database point of view, it means that the PHonon calculation
is always a child of a PWscf.
In practice, this means that when you want to impose this relationship,
you decided to take the input parameters of the parent PWscf calculation,
take its charge density and use them in the phonon run.
That’s way we need to set the parent calculation.

You first need to remember the ID of the parent calculation that you launched
before (let’s say it’s #6): so that you can load the class of a
QE-PWscf calculation (with the CalculationFactory),
and load the object that represent the QE-PWscf calculation with ID #6:

from aiida.orm import CalculationFactory
PwCalculation = CalculationFactory('quantumespresso.pw')
parent_id = 6
parentcalc = load_node(parent_id)

Now that we loaded the parent calculation, we can set the phonon calc to
inherit the right information from it:

calc.use_parent_calculation(parentcalc)

Note that in our database schema relations between two calculation
objects are prohibited. The link between the two is indirect and is
mediated by a third Data object, which represent the scratch folder
on the remote cluster. Therefore the relation between the parent Pw
and the child Ph appears like: Pw -> remotescratch -> Ph.

Execution

Now, everything is ready, and just like PWscf, you just need to store all the
nodes and submit this input to AiiDA, and the calculation will launch!

calc.store_all()
calc.submit()

Script to execute

This is the script described in the tutorial above. You can use it, just
remember to customize it using the right parent_id,
the code, and the proper scheduler info.

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv()

from aiida.orm import Code
from aiida.orm import CalculationFactory, DataFactory

#####################
ADAPT TO YOUR NEEDS
parent_id = 6
codename = 'my-ph.x'
#####################

code = Code.get_from_string(codename)

ParameterData = DataFactory('parameter')
parameters = ParameterData(dict={
 'INPUTPH': {
 'tr2_ph' : 1.0e-8,
 'epsil' : True,
 'ldisp' : True,
 'nq1' : 1,
 'nq2' : 1,
 'nq3' : 1,
 }})

QEPwCalc = CalculationFactory('quantumespresso.pw')
parentcalc = load_node(parent_id)

calc = code.new_calc()
calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_resources({"num_machines": 1})

calc.use_parameters(parameters)
calc.use_code(code)
calc.use_parent_calculation(parentcalc)

calc.store_all()
print "created calculation with PK={}".format(calc.pk)
calc.submit()

Exception tolerant code

You can find a more sophisticated example, that checks the possible exceptions
and prints nice error messages inside your AiiDA folder, under
examples/submission/test_ph.py.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Quantum Espresso Car-Parrinello user-tutorial

This chapter will teach you how to set up a Car-Parrinello (CP)
calculation as implemented in the Quantum Espresso distribution.
Again, AiiDA is not meant to teach you how to use a Quantum-Espresso code,
it is assumed that you already know CP.

It is recommended that you first learn how to launch a PWscf calculation
before proceeding in this tutorial (see Quantum Espresso PWscf user-tutorial), since
here we will only emphasize the differences with respect to launching a PW
calculation.

We want to setup a CP run of a 5 atom cell of BaTiO3.
The input file that we should create is more or less this one:

&CONTROL
 calculation = 'cp'
 dt = 3.0000000000d+00
 iprint = 1
 isave = 100
 max_seconds = 1500
 ndr = 50
 ndw = 50
 nstep = 10
 outdir = './out/'
 prefix = 'aiida'
 pseudo_dir = './pseudo/'
 restart_mode = 'from_scratch'
 verbosity = 'high'
 wf_collect = .false.
/
&SYSTEM
 ecutrho = 2.4000000000d+02
 ecutwfc = 3.0000000000d+01
 ibrav = 0
 nat = 5
 nr1b = 24
 nr2b = 24
 nr3b = 24
 ntyp = 3
/
&ELECTRONS
 electron_damping = 1.0000000000d-01
 electron_dynamics = 'damp'
 emass = 4.0000000000d+02
 emass_cutoff = 3.0000000000d+00
/
&IONS
 ion_dynamics = 'none'
/
ATOMIC_SPECIES
Ba 137.33 Ba.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF
Ti 47.88 Ti.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF
O 15.9994 O.pbesol-n-rrkjus_psl.0.1-tested-pslib030.UPF
ATOMIC_POSITIONS angstrom
Ba 0.0000000000 0.0000000000 0.0000000000
Ti 2.0000000000 2.0000000000 2.0000000000
O 2.0000000000 2.0000000000 0.0000000000
O 2.0000000000 0.0000000000 2.0000000000
O 0.0000000000 2.0000000000 2.0000000000
CELL_PARAMETERS angstrom
 4.0000000000 0.0000000000 0.0000000000
 0.0000000000 4.0000000000 0.0000000000
 0.0000000000 0.0000000000 4.0000000000

You can immediately see that the structure of this input file closely
resembles that of the PWscf: only some variables are different.

Walkthrough

Everything works like the PW calculation: you need to get the code from
the database:

codename = 'my_cp'
code = Code.get_from_string(codename)

Then create the StructureData with the structure, and a ParameterData
node for the inputs. This time, of course, you have to specify the correct
variables for a cp.x calculation:

StructureData = DataFactory('structure')
alat = 4. # angstrom
cell = [[alat, 0., 0.,],
 [0., alat, 0.,],
 [0., 0., alat,],
]
s = StructureData(cell=cell)
s.append_atom(position=(0.,0.,0.),symbols=['Ba'])
s.append_atom(position=(alat/2.,alat/2.,alat/2.),symbols=['Ti'])
s.append_atom(position=(alat/2.,alat/2.,0.),symbols=['O'])
s.append_atom(position=(alat/2.,0.,alat/2.),symbols=['O'])
s.append_atom(position=(0.,alat/2.,alat/2.),symbols=['O'])

ParameterData = DataFactory('parameter')
parameters = ParameterData(dict={
 'CONTROL': {
 'calculation': 'cp',
 'restart_mode': 'from_scratch',
 'wf_collect': False,
 'iprint': 1,
 'isave': 100,
 'dt': 3.,
 'max_seconds': 25*60,
 'nstep': 10,
 },
 'SYSTEM': {
 'ecutwfc': 30.,
 'ecutrho': 240.,
 'nr1b': 24,
 'nr2b': 24,
 'nr3b': 24,
 },
 'ELECTRONS': {
 'electron_damping': 1.e-1,
 'electron_dynamics': 'damp',
 'emass': 400.,
 'emass_cutoff': 3.,
 },
 'IONS': {
 'ion_dynamics': 'none',
 }}).store()

We then create a new calculation with the proper settings:

calc = code.new_calc()
calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_resources({"num_machines": 1, "num_mpiprocs_per_machine": 16})

And we link the input data to the calculation
(and therefore set the links in the database). The main difference
here is that CP does not support k-points, so you should not (and cannot)
link any kpoint as input:

calc.use_structure(s)
calc.use_code(code)
calc.use_parameters(parameters)

Finally, load the proper pseudopotentials using
e.g. a pseudopotential family (see Pseudopotential families tutorial):

pseudo_family = 'lda_pslib'
calc.use_pseudos_from_family(pseudo_family)

and store everything and submit:

calc.store_all()
calc.submit()

And now, the calculation will be executed and saved in the database automatically.

Exception tolerant code

You can find a more sophisticated example, that checks the possible exceptions
and prints nice error messages inside your AiiDA folder, under
examples/submission/test_cp.py.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Wannier90 user-tutorial

Note

The Wannier90 plugin referenced below is available in the EPFL version.

Here we will review an example application of the wannier90 input plugin. In this example we will attempt to
make MLWF for the oxygen 2p states in BaTiO3. This tutorial assumes that you are already familiar with the
wannier90 code [http://www.wannier.org/index.html]). You should also finish the Quantum Espresso PWscf user-tutorial. This tutorial will make use of parent_calculations
and therefore it would be helpful, though not necessary, to do Quantum Espresso Phonon user-tutorial.
For more details on the wannier90 plugin consult Wannier90.

Calculation Setup

Prior to running this tutorial first you must prepare the SCF and NSCF calculations. First run an SCF calculation for BaTiO3,
you can use the settings in examples/submission/test_pw.py which should properly setup the SCF calculation. After the SCF
calculation you will need to compute an NSCF calculation, with the kpoint grid explicitly written. You may use
examples/submission/wannier/test_nscf4wann.py to help here. Before continuing, note inside the nscf script. You should see the following lines:

settings_dict.update({ 'FORCE_KPOINTS_LIST':True})
kpoints = KpointsData()
kpoints_mesh = 4
kpoints.set_kpoints_mesh([kpoints_mesh, kpoints_mesh, kpoints_mesh])

This is very similar to using a kpoint mesh for a PW calculation, but note that we must use the FORCE_KPOINTS_LIST in the settings dict. The
following settings should be used as cards in the PW calculation setup:

 new_input_dict['CONTROL'].update({'calculation': 'nscf'})
 new_input_dict['SYSTEM'].update({'nosym': True})
 # new_input_dict['SYSTEM'].update({'nbnd':20}) # Tune if you need more bands

where the nosym is a requirement of wannier90.x but not of this plugin specifically. It is often useful to change the number of bands in the calculation
as shown in the ``{'nbnd':20}`` dictionary.

Input Script

Here we will go through a sample input script. First import the wannier90 code name and setup a new calculation:

Basic Code setup
from aiida.orm import Code
codename = "MY_Wannier90_CODENAME"
code = Code.get_from_string(codename)
calc = code.new_calc()

Then set up the precode, e.g. pw2wannier90.x:

Basic Precode setup
pre_codename = "MY_PRECODE_NAME"
pre_code = Code.get_from_string(pre_codename)
calc.use_preprocessing_code(pre_code)

Note

Whether a pre_code is supplied or not will change the way the calculation is run. After finishing
this tutorial try running the same calculation again without a precode by commenting out calc.use_preprocessing_code(pre_code). You
should also change the parent_id to the wannier90 calculation produced by running this script the first time.

Then use a parent calculation, in this case the parent should be an nscf calculation the first time through this tutorial. (You can then try
playing with using wannier90 calculations as parent):

parent_id = "MY_PARENT_NSCF_CALC_PK"
parent_calc = Calculation.get_subclass_from_pk(parent_id)
calc.use_parent_calculation(parent_calc)

We can then setup the parameters using ParameterData, this syntax is very similar to that used in PW. You can then
input the parameters to be used in the calculation like how it is shown below:

from aiida.orm import DataFactory
ParameterData = DataFactory('parameter')
parameter = ParameterData(dict={'bands_plot':True,
 'num_iter': 100,
 'dis_num_iter': 200,
 'num_print_cycles': 10,
 'guiding_centres': True,
 'num_wann': 9,
 'exclude_bands': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]
 })
calc.use_parameters(parameter)

Specific parameters can then be passed to preprocessing code using precode_parameters (in this case we are not using an precode_paramters):

precode_parameter = {}
precode_parameter = ParameterData(dict=precode_parameter)
calc.use_precode_parameters(precode_parameter)

Note

One example of a useful precode_parameter would be to tell the preprocessing code to write UNK files. Try this out by adding
precode_parameter.update({'write_unk':True}) after precode_parameter = {}.

For both the structure and the kpoints, you should always just copy those used by the parent like how it is done below:

structure = parent_calc.get_inputs_dict()['structure']
calc.use_structure(structure)
kpoints = parent_calc.get_inputs_dict()['kpoints']
calc.use_kpoints(kpoints)

If you wish to supply a kpoint path for band plotting in the following way

kpoints_path = DataFactory('array.kpoints')()
kpoints_path.set_cell_from_structure(structure)
kpoints_path.set_kpoints_path()
calc.use_kpoints_path(kpoints_path)

In this example we would like to have our intitial projections be ‘P’ like on every Oxygen, ‘O’ site. In wannier90 syntax this would
be equivalent to writing O:P in the projections section. See projections in Inputs for more details
on how to use projections in the wannier90 plugin. For this plugin we would use the following:

orbitaldata = calc.gen_projections([{'kind_name':"O",'ang_mtm_name':"P"}])
calc.use_projections(orbitaldata)

After set remainging computer settings, as well as an input settings:

calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_resources({"num_machines": 1})
settings_dict = {}
settings = ParameterData(dict=settings_dict)
calc.use_settings(settings)

Note

one useful setting to try would be to tell the code to only do the preprocessing steps but not the actual wannierization. This
could be done by using settings_dict.update({'INIT_ONLY':True}) after settings_dict = {}.
See settings in Inputs for information on this and other settings and how the impact code
running.

Finally store and launch the calculation:

calc.store_all()
print "created calculation; ID={}".format(calc.dbnode.pk)
calc.submit()
print "submitted calculation; ID={}".format(calc.dbnode.pk)

Additional Exercises

After this try looking at the output. Particularly the centers and spread of the wannier functions, and the gauge-invarient spread Omega_I. After this
try doing the following:

	Try plotting the band structure, add {‘RESTART’:’plot’} to parameter and comment out calc.use_precode_parameters using the wannier90 calculation as parent

	Do a new initialization calculation that writes UNK files, using INIT_ONLY in the settings_dict and WRITE_UNK in precode_parameters

	Use this calculation to run another wannier90 calculation, change WANNIER_PLOT in parameters run again without any precode and see the im_re_ratio in the resulting wannier functions.

Exception tolerant code

You can find a more sophisticated example, that checks the possible exceptions
and prints nice error messages inside your AiiDA folder, under
examples/submission/wannier/test_wannier_BaTiO3.py.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Quantum Espresso Projwfc user-tutorial

Note

The Quantum Espresso Projwfc plugin referenced below is available in
the EPFL version.

This chapter will show how to launch a single Projwfc (projwfc.x) calculation. It assumes you already familiar with the underlying code as well
as how to use basic features of AiiDA. This tutorial assumes you are at least familiar with the concepts introduced during the Quantum Espresso Phonon user-tutorial, specifically you should be familiar with using a parent calculation.

This section is intentially left short, as there is really nothing new in using projwfc calculations relative to ph calculations. Simply adapt the
script below to suit your needs, refer to the quantum espresso documentation.

Script to execute

This is the script described in the tutorial above. You can use it, just
remember to customize it using the right parent_id,
the code, and the proper scheduler info.

#!/usr/bin/env python
from aiida import load_dbenv
load_dbenv()

from aiida.orm import Code
from aiida.orm import CalculationFactory, DataFactory

#####################
ADAPT TO YOUR NEEDS
parent_id = 6
codename = 'my-projwfc.x'
#####################

code = Code.get_from_string(codename)

ParameterData = DataFactory('parameter')
parameters = ParameterData(dict={
 'PROJWFC': {
 'DeltaE' : 0.2,
 'ngauss' : 1,
 'degauss' : 0.02
 }})

QEPwCalc = CalculationFactory('quantumespresso.projwfc')
parentcalc = load_node(parent_id)

calc = code.new_calc()
calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_resources({"num_machines": 1})

calc.use_parameters(parameters)
calc.use_code(code)
calc.use_parent_calculation(parentcalc)

calc.store_all()
print "created calculation with PK={}".format(calc.pk)
calc.submit()

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Getting parsed calculation results

In this section, we describe how to get the results of a calculation, after AiiDA
parsed the output of the calculation.

When a calculation is done on the remote computer, AiiDA will retrieve the
results and try to parse the results with the default parser, if one is
available for the given calculation.
These results are stored in new nodes, and connected as output of the
calculation. Of course, it is possible for a given calculation to check
output nodes and get their content. However, AiiDA provides a way to directly
access the results, using the
aiida.orm.calculation.job.CalculationResultManager class,
described in the next section.

The CalculationResultManager

Note

In the following, we assume that calc is a correctly finished
and parsed Quantum ESPRESSO pw.x calculation. You can load such a calculation
for instance with the command:

calc = load_node(YOURPK)

either in verdi shell, or in a python script
(see here for more information
on how to use verdi shell or how to run python scripts for AiiDA),
and where YOURPK is substituted by a valid calculation PK in your database.

Each JobCalculation has a res attribute that is a
CalculationResultManager object and
gives direct access to parsed data.

To use it, you can just use then:

calc.res

that will however just return the class. You can however convert it to
a list, to get all the possible keys that were parsed. For instance, if you
type:

print list(calc.res)

you will get something like this:

[u'rho_cutoff', u'energy', u'energy_units', ...]

(the list of keys has been cut for clarity: you will get many more
keys).

Once you know which keys have been parsed, you can access the parsed
value simply as an attribute of the res ResultManager. For
instance, to get the final total energy, you can use:

print calc.res.energy

that will print the total energy in units of eV, as also stated in the
energy_units key:

print calc.res.energy_units

Similarly, you can get any other parsed value, for any code that
provides a parser.

Note

the CalculationResultManager is also integrated with
iPython/verdi shell completion mechanism: if calc is a valid
JobCalculation, you can type:

calc.res.

and then press the TAB key of the keyboard to get/complete the list of valid
parsed properties for the calculation calc.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Pseudopotential families tutorial

What is a pseudopotential family

As you might have seen in the previous PWscf tutorial, the procedure of
attaching a pseudopotential file to each atomic species could be a bit tedious.
In many situations, you will not produce a different pseudopotential file
for every calculation you do.
More likely, when you start a project you will stick to a pseudopotential file
for as long as possible.
Moreover, in a high-throughput calculation, you will like to do calculation
over several elements keeping the same functional.
That’s also part of the reason why there are several projects
(like PSLibrary [http://qe-forge.org/gf/project/pslibrary/frs/]
or GBRV [http://www.physics.rutgers.edu/gbrv/] to name a few),
that intend to develop a set of pseudopotentials
that covers most of the periodic table for different functionals.

That’s why we introduced the pseudopotential families.
They are basically a set of pseudopotentials that are grouped together in a
special type of AiiDA Group of nodes, with the requirement that at most one
pseudopotential can be present for a given chemical element.

Of course, no requirements are enforced on the complete coverage of the periodic
table (also because really complete pseudopotential sets for the whole periodic
table do not exist). In other words, this means that you can create a
pseudopotential family containing the pseudopotentials only for a few elements
that you are interested in.

Note

it is your responsibility to group together pseudopotentials of the
same type, or obtained using the same functionals, approximations
and/or levels of theory.

How to create a pseudopotential family

Let’s say for example that we want to create a family of LDA ultrasoft
pseudopotentials. As the first step,
you need to get all the pseudopotential files in a single folder.
For your convenience, it is useful to use a common name for your files,
for example with a structure like ‘Element.a-short-description.UPF’.

The utility to upload a family of pseudopotentials is accessed via verdi:

verdi data upf uploadfamily path/to/folder name_of_the_family "some description for your convenience"

where path/to/folder is the path to the folder where you collected all the
UPF files that you want to add to the AiiDA database and to the family with
name name_of_the_family, and the final parameter is a string that is
set in the description field of the group.

Note

This command will first check the MD5 checksum of each file, and
it will not create a new UPFData node if the pseudopotential is already
present in the DB. In this case, it will simply add that UpfData node
to the group with name name_of_the_family.

Note

if you add the optional flag --stop-if-existing,
the code will stop (without creating any new UPFData node, nor creating a group)
if at least one of the files in the folder is already found in the AiiDA DB.

After the upload (which may take some seconds, so please be patient)
the upffamily will be ready to be used.

Note that if you pass as name_of_the_family a name that already exists,
the pseudopotentials in the folder will be added to the existing group. The
code will raise an error if you try to add two (different) pseudopotentials for
the same element.

Get the list of existing families

If you want to know what are the pseudopotential families already existing in
the DB, type:

verdi data upf listfamilies

Add a -d (or --with-description) flag if you want to read also the
description of the family.

You can also filter the groups to get only a list of those containing
a set of given elements using the -e option. For instance, if you want
to get only the families containing the elements Ba, Ti and O, use:

verdi data upf listfamilies -e Ba Ti O

For more help on the command line options, type:

verdi data upf listfamilies -h

Manually loading pseudopotentials

If you do not want to use pseudopotentials from a family, it is also possible
to load them manually (even if this is, in general, discouraged by us).

A possible way of doing it is the following: we start by creating a list
of pseudopotential filenames that we need to use:

raw_pseudos = [
 "Ba.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF",
 "Ti.pbesol-spn-rrkjus_psl.0.2.3-tot-pslib030.UPF",
 "O.pbesol-n-rrkjus_psl.0.1-tested-pslib030.UPF"]

(in this simple example, we expect the pseudopotentials to be in the same
folder of the script).
Then, we loop over the filenames and add them to the AiiDA database. The
get_or_create method checks if the pseudopotential is already in the
database (by checking its MD5 checksum) and either stores it, or just returns
the node already present in the database (the second value returned is a
boolean and tells us if the pseudo was already present or not).
We also store the returned nodes in a list (pseudos_to_use).

UpfData = DataFactory('upf')
pseudos_to_use = []

for filename in raw_pseudos:
 absname = os.path.abspath(filename)
 pseudo, created = UpfData.get_or_create(absname,use_first=True)
 pseudos_to_use.append(pseudo)

As the last step, we make a loop over the pseudopotentials,
and attach its pseudopotential object to the calculation:

for pseudo in pseudos_to_use:
 calc.use_pseudo(pseudo, kind=pseudo.element)

Note

when the pseudopotential is created, it is parsed and the elements
to which it refers is stored in the database and can be accessed using the
pseudo.element property, as shown above.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

The verdi commands

For some the most common operations on the AiiDA software, you can work directly
on the command line using the set of verdi commands.
You already used the verdi install when installing the software.
There are quite some more functionalities attached to this command, here’s a
list:

	calculation: query and interact with calculations

	code: setup and manage codes to be used

	comment: manage general properties of nodes in the database

	completioncommand: return the bash completion function to put in ~/.bashrc

	computer: setup and manage computers to be used

	daemon: manage the AiiDA daemon

	data: setup and manage data specific types

	devel: AiiDA commands for developers

	export: export nodes and group of nodes

	group: setup and manage groups

	import: export nodes and group of nodes

	install: install/setup aiida for the current user/create a new profile

	node: manage operations on AiiDA nodes

	profile: list and manage AiiDA profiles

	run: execute an AiiDA script

	runserver: run the AiiDA webserver on localhost

	shell: run the interactive shell with the Django environment

	user: list and configure new AiiDA users.

	workflow: manage the AiiDA worflow manager

Each command above can be preceded by the -p <profile> or --profile=<profile>
option, as in:

verdi -p <profile> calculation list

This allows to select a specific AiiDA profile, and therefore a specific database,
on which the command is executed. Thus several databases can be handled and
accessed simultaneously by AiiDA. To install a new profile, use the
install command.

Note

This profile selection has no effect on the verdi daemon commands.

Following below, a list with the subcommands available.

verdi calculation

	kill: stop the execution on the cluster of a calculation.

	logshow: shows the logs/errors produced by a calculation

	plugins: lists the supported calculation plugins

	inputcat: shows an input file of a calculation node.

	inputls: shows the list of the input files of a calculation node.

	list: list the AiiDA calculations. By default, lists only the running
calculations.

	outputcat: shows an ouput file of a calculation node.

	outputls: shows the list of the output files of a calculation node.

	show: shows the database information related to the calculation:
used code, all the input nodes and all the output nodes.

	gotocomputer: open a shell to the calc folder on the cluster

	label: view / set the label of a calculation

	description: view / set the description of a calculation

Note

When using gotocomputer, be careful not to change any file
that AiiDA created,
nor to modify the output files or resubmit the calculation,
unless you really know what you are doing,
otherwise AiiDA may get very confused!

verdi code

	show: shows the information of the installed code.

	list: lists the installed codes

	hide: hide codes from verdi code list

	reveal: un-hide codes for verdi code list

	setup: setup a new code

	rename: change the label (name) of a code. If you like to load codes
based on their labels and not on their UUID’s or PK’s, take care of using
unique labels!

	update: change (some of) the installation description of the code given
at the moment of the setup.

	delete: delete a code from the database. Only possible for disconnected
codes (i.e. a code that has not been used yet)

verdi comment

Manages the comments attached to a database node.

	add: add a new comment

	update: change an existing comment

	remove: remove a comment

	show: show the comments attached to a node.

verdi completioncommand

Prints the string to be copied and pasted to the bashrc in order to allow for
autocompletion of the verdi commands.

verdi computer

	setup: creates a new computer object

	configure: set up some extra info that can be used in the connection
with that computer.

	enable: to enable a computer. If the computer is disabled, the daemon
will not try to connect to the computer, so it will not retrieve or launch
calculations. Useful if a computer is under mantainance.

	rename: changes the name of a computer.

	disable: disable a computer (see enable for a larger description)

	show: shows the details of an installed computer

	list: list all installed computers

	delete: deletes a computer node. Works only if the computer node is
a disconnected node in the database (has not been used yet)

	test: tests if the current user (or a given user) can connect to the
computer and if basic operations perform as expected (file copy, getting
the list of jobs in the scheduler queue, ...)

verdi daemon

Manages the daemon, i.e. the process that runs in background and that manages
submission/retrieval of calculations.

	status: see the status of the daemon. Typically, it will either show
Daemon not running or you will see two
processes with state RUNNING.

	stop: stops the daemon

	configureuser: sets the user which is running the daemon. See the
installation guide for more details.

	start: starts the daemon.

	logshow: show the last lines of the daemon log (use for debugging)

	restart: restarts the daemon.

verdi data

Manages database data objects.

	upf: handles the Pseudopotential Datas
	listfamilies: list presently stored families of pseudopotentials

	uploadfamily: install a new family (group) of pseudopotentials

	import: create or return (if already present) a database node,
having the contents of a supplied file

	exportfamily: export a family of pseudopotential files into a folder

	structure: handles the StructureData
	list: list currently saved nodes of StructureData kind

	show: use a third-party visualizer (like vmd or xcrysden)
to graphically show the StructureData

	export: export the node as a string of a specified format

	deposit: deposit the node to a remote database

	parameter: handles the ParameterData objects
	show: output the content of the python dictionary in different
formats.

	cif: handles the CifData objects
	list: list currently saved nodes of CifData kind

	show: use third-party visualizer (like jmol) to graphically show
the CifData

	import: create or return (if already present) a database node,
having the contents of a supplied file

	export: export the node as a string of a specified format

	deposit: deposit the node to a remote database

	trajectory: handles the TrajectoryData objects
	list: list currently saved nodes of TrajectoryData kind

	show: use third-party visualizer (like jmol) to graphically show
the TrajectoryData

	export: export the node as a string of a specified format

	deposit: deposit the node to a remote database

	label: view / set the label of a data

	description: view / set the description of a data

verdi devel

Here there are some functions that are in the development stage, and that might
eventually find their way outside of this placeholder.
As such, they are buggy, possibly difficult to use, not necessarily documented,
and they might be subject to non back-compatible changes.

	delproperty, describeproperties, getproperty, listproperties,
setproperty: handle the properties, see here for more information.

verdi export

Export data from the AiiDA database to a file.
See also verdi import to import this data on another database.

verdi group

	list: list all the groups in the database.

	description: show or change the description of a group

	show: show the content of a group.

	create: create a new empty group.

	delete: delete an existing group (but not the nodes belonging to it).

	addnodes: add nodes to a group.

	removenodes: remove nodes from a group.

verdi import

Imports data (coming from other AiiDA databases) in the current database

verdi install

Used in the installation to configure the database.
If it finds an already installed database, it updates the tables migrating them
to the new schema.

Note

One can also create a new profile with this command:

verdi -p <new_profile_name> install

The install procedure then works as usual, and one can select there a new database.
See also the profile command.

verdi node

	repo: Show files and their contents in the local repository

	show: Show basic node information (PK, UUID, class, inputs and
outputs)

verdi profile

	list: Show the list of currently available profiles, indicating which
one is the default one, and showing the current one with a > symbol

	setdefault: Set the default profile, i.e. the one to be used when no
-p option is specified before the verdi command

verdi run

Run a python script for AiiDA. This is the command line equivalent of the verdi
shell. Has also features of autogroupin: by default, every node created in one
a call of verdi run will be grouped together.

verdi runserver

Starts a lightweight Web server for development and also serves static files.
Currently in ongoing development.

verdi shell

Runs a Python interactive interpreter.
Tries to use IPython or bpython, if one of them is available.
Loads on start a good part of the AiiDA infrastructure (see here
for information on how to customize it).

verdi user

Manages the AiiDA users. Two valid subcommands.

	list: list existing users configured for your AiiDA installation.

	configure: configure a new AiiDA user.

verdi workflow

Manages the workflow. Valid subcommands:

	report: display the information on how the workflow is evolving.

	kill: kills a workflow.

	list: lists the workflows present in the database.
By default, shows only the running ones.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

AiiDA schedulers

Supported schedulers

The list below describes the supported schedulers, i.e. the batch job
schedulers that manage the job queues and execution on any given computer.

PBSPro

The PBSPro [http://www.pbsworks.com/Product.aspx?id=1] scheduler is supported (and it has been tested with version 12.1).

All the main features are supported with this scheduler.

The JobResource class to be used when setting the job resources is the
NodeNumberJobResource (PBS-like)

SLURM

The SLURM [https://computing.llnl.gov/linux/slurm/] scheduler is supported (and it has been tested with version 2.5.4).

All the main features are supported with this scheduler.

The JobResource class to be used when setting the job resources is the
NodeNumberJobResource (PBS-like)

SGE

The SGE [http://www.oracle.com/us/products/tools/oracle-grid-engine-075549.html] scheduler (Sun Grid Engine, now called Oracle Grid Engine)
is supported (and it has been tested with version GE 6.2u3),
together with some of the main variants/forks.

All the main features are supported with this scheduler.

The JobResource class to be used when setting the job resources is the
ParEnvJobResource (SGE-like)

PBS/Torque & Loadleveler

PBS/Torque and Loadleveler are not fully supported yet, even if their support is one of our
top priorities. For the moment, you can try the PBSPro plugin instead of PBS/Torque, that may
also work for PBS/Torque (even if there will probably be some small issues).

Direct execution (bypassing schedulers)

The direct scheduler, to be used mainly for debugging, is an implementation
of a scheduler plugin that does not require a real scheduler installed,
but instead directly executes a command, puts it in the background, and checks
for its process ID (PID) to discover if the execution is completed.

Warning

The direct execution mode is very fragile. Currently, it
spawns a separate Bash shell to execute a job and track each shell by
process ID (PID). This poses following problems:

	PID numeration is reset during reboots;

	PID numeration is different from machine to machine, thus direct
execution is not possible in multi-machine clusters, redirecting
each SSH login to a different node in round-robin fashion;

	there is no real queueing, hence, all calculation started will be run in
parallel.

Warning

Direct execution bypasses schedulers, so it should be used
with care in order not to disturb the functioning of machines.

All the main features are supported with this scheduler.

The JobResource class to be used when setting the job resources is the
NodeNumberJobResource (PBS-like)

Job resources

When asking a scheduler to allocate some nodes/machines for a given job,
we have to specify some job resources (that typically include information as,
for instance, the number of required nodes or the numbers of MPI processes
per node).

Unfortunately, the way of specifying this piece of information is different on
different clusters. Instead of having one only abstract class, we chose to
adopt different subclasses, keeping in this way the specification of the
resources as similar as possible to what the user would do when writing
a scheduler script. Note that only one subclass can be used, given a
specific scheduler.

The base class, from which all job resource subclasses inherit, is
aiida.scheduler.datastructures.JobResource. All classes define
at least one method, get_tot_num_mpiprocs(),
that returns the total number of MPI processes requested.

Note

to load a specific job resource subclass, you can load it manually
by directly loading the correct class, e..g.:

from aiida.scheduler.datastructures import NodeNumberJobResource

However, in general, you will pass the fields to set directly to the
set_resources() method
of a JobCalculation object. For instance:

calc = JobCalculation(computer=...) # select here a given computer configured
 # in AiiDA

This assumes that the computer is configured to use a scheduler with
job resources of type NodeNumberJobResource
calc.set_resources({"num_machines": 4, "num_mpiprocs_per_machine": 16})

NodeNumberJobResource (PBS-like)

This is the way of specifying the job resources in PBS and SLURM. The class is
aiida.scheduler.datastructures.NodeNumberJobResource.

Once an instance of the class is obtained,
you have the following fields that you can set:

	res.num_machines: specify the number of machines (also called nodes) on
which the code should run

	res.num_mpiprocs_per_machine: number of MPI processes
to use on each machine

	res.tot_num_mpiprocs: the total number of MPI processes that this job is
requesting

	res.num_cores_per_machine: specify the number of cores to use on each
machine

	res.num_cores_per_mpiproc: specify the number of cores to run each MPI
process

Note that you need to specify only two among the first three fields above, for
instance:

res = NodeNumberJobResource()
res.num_machines = 4
res.num_mpiprocs_per_machine = 16

asks the scheduler to allocate 4 machines, with 16 MPI processes on
each machine.
This will automatically ask for a total of 4*16=64 total number of
MPI processes.

The same can be achieved passing the fields directly to the constructor:

res = NodeNumberJobResource(num_machines=4, num_mpiprocs_per_machine=16)

or, even better, directly calling the set_resources()
method of the JobCalculation class
(assuming here that calc is your calculation object):

calc.set_resources({"num_machines": 4, "num_mpiprocs_per_machine": 16})

Note

	If you specify res.num_machines, res.num_mpiprocs_per_machine,

	and res.tot_num_mpiprocs fields (not recommended), make sure that they satisfy:

res.num_machines * res.num_mpiprocs_per_machine = res.tot_num_mpiprocs

Moreover, if you specify res.tot_num_mpiprocs, make sure that this is a multiple
of res.num_machines and/or res.num_mpiprocs_per_machine.

Note

When creating a new computer, you will be asked for a
default_mpiprocs_per_machine. If you specify it, then you can
avoid to specify num_mpiprocs_per_machine when creating the
resources for that computer, and the default number will be used.

Of course, all the requirements between num_machines,
num_mpiprocs_per_machine and tot_num_mpiprocs still apply.

Moreover, you can explicitly specify num_mpiprocs_per_machine if
you want to use a value different from the default one.

The num_cores_per_machine and num_cores_per_mpiproc fields are optional.
If you specify num_mpiprocs_per_machine and num_cores_per_machine fields,
make sure that:

res.num_cores_per_mpiproc * res.num_mpiprocs_per_machine = res.num_cores_per_machine

If you want to specifiy single value in num_mpiprocs_per_machine and
num_cores_per_machine, please make sure that res.num_cores_per_machine is
multiple of res.num_cores_per_mpiproc and/or res.num_mpiprocs_per_machine.

Note

In PBSPro, the num_mpiprocs_per_machine and num_cores_per_machine fields
are used for mpiprocs and ppn respectively.

Note

In Torque, the num_mpiprocs_per_machine field is used for ppn unless
the num_mpiprocs_per_machine is specified.

ParEnvJobResource (SGE-like)

In SGE and similar schedulers, one has to specify a parallel environment and
the total number of CPUs requested. The class is
aiida.scheduler.datastructures.ParEnvJobResource.

Once an instance of the class is obtained,
you have the following fields that you can set:

	res.parallel_env: specify the parallel environment in which you want
to run your job (a string)

	res.tot_num_mpiprocs: the total number of MPI processes that this job is
requesting

Remember to always specify both fields. No checks are done on the consistency
between the specified parallel environment and the total number of MPI processes
requested (for instance, some parallel environments may have been configured
by your cluster administrator to run on a single machine). It is your
responsibility to make sure that the information is valid, otherwise the
submission will fail.

Some examples:

	setting the fields one by one:

res = ParEnvJobResource()
res.parallel_env = 'mpi'
res.tot_num_mpiprocs = 64

	setting the fields directly in the class constructor:

res = ParEnvJobResource(parallel_env='mpi', tot_num_mpiprocs=64)

	even better, directly calling the set_resources()
method of the JobCalculation class
(assuming here that calc is your calculation object):

calc.set_resources({"parallel_env": 'mpi', "tot_num_mpiprocs": 64})

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Calculations

AiiDA calculations can be of two kinds:

	JobCalculation:
those who need to be run on a scheduler

	InlineCalculation:
rapid executions that are executed by the daemon itself, on your local
machine.

In the following, we will refer to the JobCalculations as a Calculation for the sake of
simplicity, unless we explicitly say otherwise. In the same way, also the command
verdi calculation refers to JobCalculation’s.

Check the state of calculations

Once a calculation has been submitted to AiiDA, everything else will be
managed by AiiDA: the inputs will be checked to verify
that they are consistent. If the inputs are complete, the input
files will be prepared, sent on cluster, and a job will be
submitted. The AiiDA daemon will then monitor the scheduler, and after
execution the outputs automatically retrieved and parsed.

During these phases, it is useful to be able to check and verify the state of
a calculation. There are different ways to perform such an operation, described
below.

The verdi calculation command

The simplest way to check the state of submitted calculations is to use
the verdi calculation list command from the command line.
To get help on its use and command line options, run it with the -h
or --help option:

verdi calculation list --help

Possible calculation states

The calculation could be in several states.
The most common you should see:

	NEW: the calculation node has been created, but has not been submitted
yet.

	WITHSCHEDULER: the job is in some queue on the remote computer.
Note that this does not mean that the job is waiting in
a queue, but it may be running or finishing,
but it did not finish yet. AiiDA has to wait.

	FINISHED: the job on the cluster was finished, AiiDA already retrieved
it and stored the results in the database.
In most cases, this also means that the parser managed to
parse the output file.

	FAILED: something went wrong, and AiiDA rose an exception.
The error could be of various nature: the inputs were not enough
or were not correct, the execution on the cluster failed,
or (depending on the output plugin) the code ended without
completing successfully or producing a valid output file. Other possible
more specific “failed” states include SUBMISSIONFAILED,
RETRIEVALFAILED and PARSINGFAILED.

	For very short times, when the job completes on the remote computer and AiiDA
retrieves and parses it, you may happen to see a calculation in the
COMPUTED, RETRIEVING and PARSING states.

Eventually, when the calculation has finished, you will find the computed
quantities in the database, and you will be able to query the database for
the results that were parsed!

Directly in python

If you prefer to have more flexibility or to check the state of a calculation
programmatically, you can execute a script like the following, where you just
need to specify the ID of the calculation you are interested in:

from aiida import load_dbenv
load_dbenv()

from aiida.orm import JobCalculation

pk must be a valid integer pk
calc = load_node(pk)
Alternatively, with the UUID (uuid must be a valid UUID string)
calc = load_node(uuid)
print "AiiDA state:", calc.get_state()
print "Last scheduler state seen by the AiiDA deamon:", calc.get_scheduler_state()

Note that, as specified in the comments, you can also get a code by knowing its
UUID; the advantage is that, while the numeric ID will typically change after
a sync of two databases, the UUID is a unique identifier and will be preserved
across different AiiDA instances.

Note

calc.get_scheduler_state() returns the state on the scheduler
(queued, held, running, ...) as seen the last time that the daemon connected
to the remote computer. The time at which the last check was performed is
returned by the calc.get_scheduler_lastchecktime() method (that returns
None if no check has been performed yet).

The verdi calculation gotocomputer command

Sometimes, it may be useful to directly go to the folder on
which the calculation is running, for instance to check if the
output file has been created.

In this case, it is possible to run:

verdi calculation gotocomputer CALCULATIONPK

where CALCULATIONPK is the PK of the calculation. This will
open a new connection to the computer (either simply a bash shell
or a ssh connection, depending on the transport) and directly
change directory to the appropriate folder where the code is
running.

Note

Be careful not to change any file that AiiDA created,
nor to modify the output files or resubmit the calculation,
unless you really know what you are doing,
otherwise AiiDA may get very confused!

Set calculation properties

There are various methods which specify the calculation properties.
Here follows a brief documentation of their action.

	c.set_max_memory_kb: require explicitely the memory to be allocated to the scheduler
job.

	c.set_append_text: write a set of bash commands to be executed after the call to the
executable. These commands are executed only for this instance of calculations. Look also
at the computer and code append_text to write bash commands for any job run on that
computer or with that code.

	c.set_max_wallclock_seconds: set (as integer) the scheduler-job wall-time in seconds.

	c.set_computer: set the computer on which the calculation is run. Unnecessary if the
calculation has been created from a code.

	c.set_mpirun_extra_params: set as a list of strings the parameters to be passed to
the mpirun command.
Example: mpirun -np 8 extra_params[0] extra_params[1] ... exec.x
Note: the process number is set by the resources.

	c.set_custom_scheduler_commands: set a string (even multiline) which contains
personalized job-scheduling commands. These commands are set at the beginning of the
job-scheduling script, before any non-scheduler command. (prepend_texts instead are set
after all job-scheduling commands).

	c.set_parser_name: set the name of the parser to be used on the output. Typically, a
plugin will have already a default plugin set, use this command to change it.

	c.set_environment_variables: set a dictionary, whose key and values will be used to
set new environment variables in the job-scheduling script before the execution of the
calculation. The dictionary is translated to: export 'keys'='values'.

	c.set_prepend_text: set a string that contains bash commands, to be written
in the job-scheduling script for this calculation, right before the call to the executable.
(it is used for example to load modules). Note that there are also prepend text for the
computer (that are used for any job-scheduling script on the given computer) and for the
code (that are used for any scheduling script using the given code), the prepend_text here
is used only for this instance of the calculation: be careful in
avoiding duplication of bash commands.

	c.set_extra: pass a key and a value, to be stored in the Extra attribute table in
the database.

	c.set_extras: like set extra, but you can pass a dictionary with multiple keys and values.

	c.set_priority: set the job-scheduler priority of the calculation (AiiDA does not
have internal priorities). The function accepts a value that depends on the scheduler.
plugin (but typically is an integer).

	c.set_queue_name: pass in a string the name of the queue to use on the job-scheduler.

	c.set_import_sys_environment: default=True. If True, the job-scheduling script will
load the environment variables.

	c.set_resources: set the resources to be used by the calculation
like the number of nodes, wall-time, ..., by passing a dictionary to
this method. The keys of this dictionary, i.e. the resources, depend
on the specific scheduler plugin that has to run them. Look at the
documentation of the scheduler (type is given by: calc.get_computer().get_scheduler_type()).

	c.set_withmpi: True or False, if True (the default) it will
call the executable as a parallel run.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Comments

There are various ways of attaching notes/comments to a node within AiiDA.
In the first examples of scripting, you should already have notices the
possibility of storing a label or a description to any AiiDA Node.
However, these properties are defined at the creation of the Node, and it is not
possible to modify them after the Node has been stored.

The Node comment provides a simple way to have a more dynamic management
of comments, in which any user can write a comment on the Node, or modify it or
delete it.

The verdi comment provides a set of methods that are used to manipulate the
comments:

	add: add a new comment to a Node.

	update: modify a comment.

	show: show the existing comments attached to the Node.

	remove: remove a comment.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Extracting data from the Database

In this section we will overview some of the tools provided by AiiDA by means of you can navigate through the data inside the AiiDA database.

Finding input and output nodes

Let’s start with a reference node that you loaded from the database, for example the node with PK 17:

n = load_node(17)

Now, we want to find the nodes which have a direct link to this node.
There are several methods to extract this information (for developers see all
the methods and their docstring: get_outputs, get_outputs_dict,
c.get_inputs and c.get_inputs_dict).
The most practical way to access this information, especially when working on
the verdi shell, is by means of the inp and out methods.

The inp method is used to list and access the nodes with a direct link to
n in input.
The names of the input links can be printed by list(n.inp) or interactively
by n.inp. + TAB.
As an example, suppose that n has an input KpointsData object under the linkname
kpoints. The command:

n.inp.kpoints

returns the KpointsData object.

Similar methods exists for the out method, which will display the names of
links in output from n and can be used to access such output nodes.
Suppose that n has an output FolderData with linkname retrieved, than
the command:

n.out.retrieved

returns the FolderData object.

Note

At variance with input, there can be more than one output
objects with the same linkname (for example: a code object can be used by several
calculations always with the same linkname code).
As such, for every output linkname, we append the string _pk, with the pk of
the output node. There is also a linkname without pk appended, which is
assigned to the oldest link. As an example, imagine that n is a code, which
is used by calculation #18 and #19, the linknames shown by n.out are:

n.out. >>
 * code
 * code_18
 * code_19

The method n.out.code_18 and n.out.code_19 will return two different
calculation objects, and n.out.code will return the oldest (the reference
is the creation time) between calculation
18 and 19. If one calculation (say 18) exist only in output, there is then less
ambiguity, and you are sure that the output of n.out.code coincides with
n.out.code_18.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Querying in AiiDA

The advantage of storing information in a database is that questions can
be asked on the data, and an answer can be rapidly provided.

Here we describe different approaches to query the data in AiiDA.

Note

This section is still only a stub and will be significantly
improved in the next versions.

	Directly querying in Django

	Directly querying in SQLAlchemy

	Using the querytool

	The transitive closure table

	Using the QueryBuilder
	Introduction

	The appender method

	The queryhelp

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Querying in AiiDA

Directly querying in Django

If you know how AiiDA stores the data internally in the database, you can
directly use Django to query the database (or even use directly SQL commands,
if you really feel the urge to do so). Documentation on how queries work
in Django can be found on the official Django documentation [https://docs.djangoproject.com/en/1.7/topics/db/queries/]. The models can be found in
aiida.backends.djsite.db.models and is directly accessible as models
in the verdi shell via verdi run.

Directly querying in SQLAlchemy

Check out the documentation on <http://www.sqlalchemy.org/>.
Models are in aiida.backends.sqlalchemy.models

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Querying in AiiDA

Using the querytool

We provide a Python class (aiida.orm.querytool.QueryTool) to perform the most common types of queries
(mainly on nodes, links and their attributes) through an easy Python
class interface, without the need to know anything about the SQL query language.

Note

We are working a lot on the interface for querying through
the QueryTool, so the interface could change significantly in the future
to allow for more advanced querying capabilities.

To use it, in your script (or within the verdi shell)
you need first to load the QueryTool class:

from aiida.orm.querytool import QueryTool

Then, create an instance of this class, which will represent your query (you need to create a new instance for each different query you want to execute):

q = QueryTool()

Now, you can call a set of methods on the q object to decide the filters
you want to apply. The first type of filter one may want to apply is on the
type of nodes you want to obtain (the QueryTool, in the current version,
always queries only nodes in the DB). You can do so passing the correct
Node subclass to the set_class()
method, for instance:

q.set_class(Calculation)

Then, if you want to query only calculations within a given group:

q.set_group(group_name, exclude=False)

where group_name is the name of the group you want to select.
The exclude parameter, if True,
negates the query (i.e., considers all objects not included in the
give group). You can call the
set_group() method
multiple times to add more filters.

The most important query specification, though, is on the attributes of a
given node.

If you want to query for attributes in the DbAttribute table,
use the
add_attr_filter() method:

q.add_attr_filter("energy", "<=", 0., relnode="res")

At this point, the query q describes a query you still have to run, which
will return each calculation calc
for which the result node calc.res.energy is less or equal to 0.

The relnode parameter allows the user to perform queries not only
on the nodes you want to get out of the query (in this case, do not specify
any relnode parameter) but also on the value of the attributes of
nodes linked to the result nodes. For instance, specifying "res"
as relnode, one gets as result of the query nodes whose output result
has a negative energy.

Also in this case, you can add multiple filters on attributes, or you can
use the same syntax also on data you stored in the DbExtra table
using add_extra_filter().

Note

We remind here that while attributes are properties that describe
a node, are used internally by AiiDA and cannot be changed
after the node is stored –
for instance, the coordinates of atoms in a crystal structure, the input
parameters for a calculation, ... – extras (stored in DbExtra) have
the same format and are at full disposal of the user for adding metadata
to each node, tagging, and later quick querying.

Finally, to run the query and get the results, you can use the
run_query() method, that will
return an iterator over the results of the query. For instance, if you
stored A and B as extra data of a given node, you can get a list
of the energy of each calculation, and the value of A and B, using
the following command:

res = [(node.res.energy,
 node.get_extra("A"),
 node.get_extra("B"))
 for node in q.run_query()]

Note

After having run a query, if you want to run a new one, even if
it is a simple modification of the current one, please discard the q
object and create a new one with the new filters.

The transitive closure table

Another type of query that is very common is the discovery of whether
two nodes are linked through a path in the AiiDA graph database, regardless
of how many nodes are in between.

This is particularly important because, for instance, you may be interested
in discovering which crystal structures have, say, all phonon frequencies
that are positive; but the information on the phonon frequencies is in a
node that is typically not directly linked to the crystal structure (you
typically have in between at least a SCF calculation, a phonon calculation
on a coarse grid, and an interpolation of the phonon bands on a denser grid;
moreover, each calculation may include multiple restarts).

In order to make these queries very efficient (and since we expect that
typical workflows, especially in Physics and Materials Science, involve
a lot of relatively small, disconnected graphs), we have implemented
triggers at the database SQL level to automatically generate a
transitive closure table, i.e., a table that for each node contains
all his parents (at any depth level) and all the children (at any depth
level). This means that, every time two nodes are joined by a link,
this table is automatically updated to contain all the new available paths.

With the aid of such a table, discovering if two nodes are connected or not
becomes a matter of a single query.
This table is accessible using Django commands, and is called
DbPath.

Transitive closure paths contain a parent and a child.
Moreover, they also contain a depth, giving how many nodes have to
be traversed to connect the two parent and child nodes (to make
this possible, an entry in the DbPath table is stored for each possible
path in the graph). The depth does not include the first and last node
(so, a depth of zero means that two nodes are directly connected through
a link).

Three further columns are stored, and they are mainly used to quickly (and
recursively) discover which are the nodes that have been traversed.

Todo

The description of the exact meaning of the three additional
columns (entry_edge_id, direct_edge_id, and exit_edge_id,
will be added soon; in the meatime, you can give a look to the
implementation of the expand()
method).

Finally, given a DbPath object, we provide a
expand() method to get a list
of all the nodes (in the correct order) that are traversed by
the specific path. List elements are AiiDA nodes.

Here we present a simple example of how you can use the transitive closure
table, imagining that you want to get the path between two nodes n1
and n2.
We will assume that only a single path exists between the two nodes. If no
path exists, an exception will be raised in the line marked below.
If more than one path exists, only the first one will be returned.
The extension to manage the exception and to manage multiple paths
is straightforward:

n1 = load_node(NODEPK1)
n2 = load_node(NODEPK2)
In the following line, we are choosing only the first
path returned by the query (with [0]).
Change here to manage zero or multiple paths!
dbpath = models.DbPath.objects.filter(parent=n1, child=n2)[0]
Print all nodes in the path
print dbpath.expand()

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Querying in AiiDA

Using the QueryBuilder

Introduction

This section describes the use of the QueryBuilder, which is meant to help you
querying the database with a Python interface and regardless of backend and
schema employed in the background.
Before jumping into the specifics, let’s discuss what you should be clear about
before writing a query:

	You should know what you want to query for. In database-speek, you need to
tell the backend what to project. For example, you might be
interested in the label of a calculation and the pks of all its outputs.

	In many use-cases, you will query for relationships between entities that are
connected in a graph-like fashion, with links as edges and nodes as vertices.
You have to know the relationships between these entities.
A Node can be either input or output of another Node, but also an
ancestor or a descendant.

	In almost all cases, you will be interested in a subset of all possible
entities that could be returned based on the joins between the entities of
your graph. In other ways, you need to have an idea of how to filter the
results.

If you are clear about what you want and how you can get it, you will have to
provide this information to QueryBuilder, who will build an SQL-query for you.
There is more than one possible API that you can use:

	The appender-method

	Using the queryhelp

What you will use depends on the specific use case.
The functionalities are the same, so it’s up to you what to use.

The appender method

Let’s first discuss the appender-method using some concrete examples.
We will start from simple examples and get to more complex ones later.
The first thing to know is how to chose entities that you want to query:

from aiida.orm.querybuilder import QueryBuilder
qb = QueryBuilder() # Instantiating instance
qb.append(JobCalculation) # Setting first vertice of path

So, let’s suppose that’s what we want to query for (all job calculations in the
database). The question is how to get the results from the query:

from aiida.orm.querybuilder import QueryBuilder
qb = QueryBuilder() # Instantiating instance
qb.append(JobCalculation) # Setting first vertice of path

first_row = qb.first() # Returns a list (!)
 # of the results of the first row

all_results = qb.dict() # Returns all results as
 # a list of dictionaries

all_r_generator = qb.iterdict() # Return a generator of dictionaries
 # of all results

Some more (for completeness)
all_rows = qb.all() # Returns a list of lists

all_rows_generator = qb.iterall() # Returns a generator of lists

Since we now know how to set an entity, we can start to filter by properties
of that entity.
Suppose we do not want to all JobCalculations, but only the ones in state
‘FINISHED’:

qb = QueryBuilder() # An empty QueryBuilder instances
qb.append(
 JobCalculation, # I am appending a JobCalculation
 filters={ # Specifying the filters:
 'state':{'==':'FINISHED'}, # the calculation has to have finished
 },
)

How, can we have multiple filters?
Suppose you are interested in all calculations in your database that are in
state ‘FINISHED’ and were created in the last n days:

from datetime import timedelta
from aiida.utils import timezone
now = timezone.now()
time_n_days_ago = now - timedelta(days=n)

qb = QueryBuilder() # An empty QueryBuilder instances
qb.append(
 JobCalculation, # I am appending a JobCalculation
 filters={ # Specifying the filters:
 'state':{'==':'FINISHED'}, # the calculation has to have finished AND
 'ctime':{'>':time_n_days_ago} # created in the last n days
 },
)
resultgen = qb.dict() # Give me all results

Let’s go through the above example.
We have instantiated QueryBuilder instance.
We appended to its path a JobCalculation (a remote calculation),
and specified that we are only interested in calculations
that have finished and that were created in the last n days.

What if we want calculations that have finished or were created in the last
n days:

qb = QueryBuilder()
qb.append(
 JobCalculation,
 filters={
 'or':[
 {'state':{'==':'FINISHED'}},
 {'ctime':{'>': now - timedelta(days=n)}}
]
 },
)
res =qb.dict()

If we’d have written and instead of or, we would have created the exact same
query as in the first query, because and is the default behavior if
you attach several filters.
What if you want calculation in state ‘FINISHED’ or ‘RETRIEVING’?
This will be the next example:

qb = QueryBuilder()
qb.append(
 JobCalculation,
 filters={
 'state':{'in':['FINISHED', 'RETRIEVING']}
 },
)
res = qb.all()

In order to negate a filter, that is to apply the not operator, precede the filter
keyword with an exclamation mark.
So, to ask for all calculations that are not in ‘FINISHED’ or ‘RETRIEVING’:

qb = QueryBuilder()
qb.append(
 JobCalculation,
 filters={
 'state':{'!in':['FINISHED', 'RETRIEVING']}
 },
)
res = qb.all()

This showed you how to ‘filter’ by properties of a node (and implicitly by type)
So far we can do that for a single a single node in the database.
But we sometimes need to query relationships in graph-like database.
There are several relationships that entities in Aiida can have:

	Entity from
	Entity to
	Relationship
	Explanation

	Node
	Node
	input_of
	One node as input of another node

	Node
	Node
	output_of
	One node as output of another node

	Node
	Node
	ancestor_of
	One node as the ancestor of another node (Path)

	Node
	Node
	descendant_of
	One node as descendant of another node (Path)

	Node
	Group
	group_of
	The group of a node

	Group
	Node
	member_of
	The node is a member of a group

	Node
	Computer
	computer_of
	The computer of a node

	Computer
	Node
	has_computer
	The node of a computer

	Node
	User
	creator_of
	The creator of a node is a user

	User
	Node
	created_by
	The node was created by a user

Let’s join a node to its output, e.g. StructureData and JobCalculation (as output):

qb = QueryBuilder()
qb.append(StructureData, tag='structure')
qb.append(JobCalculation, output_of='structure')

In the above example, we have first appended StructureData to the path.
So that we can refer to that vertice later, we tag it with a unique keyword
of our choice, which can be used only once.
When we append another vertice to the path, we specify the relationship
to a previous entity by using one of the keywords in the above table
and as a value the tag of the vertice that it has a relationship with.
Some more examples:

StructureData as an input of a job calculation
qb = QueryBuilder()
qb.append(JobCalculation, tag='calc')
qb.append(StructureData, input_of='calc')

StructureData and ParameterData as inputs to a calculation
qb = QueryBuilder()
qb.append(JobCalculation, tag='calc')
qb.append(StructureData, input_of='calc')
qb.append(ParameterDataData, input_of='calc')

Filtering the remote data instance by the computer it ran on (name)
qb = QueryBuilder()
qb.append(RemoteData, tag='remote')
qb.append(Computer, computer_of='remote', filters={'name':{'==':'mycomputer'}})

Find all descendants of a structure with a certain uuid
qb = QueryBuilder()
qb.append(StructureData, tag='structure', filters={'uuid':{'==':myuuid}})
qb.append(Node, descendant_of='structure')

The above QueryBuilder will join a structure to all its descendants via the
transitive closure table.
But what will the query return exactly. We do not want everything returned
because it might lead to a big overhead.
You need to specify what you want to return using the keyword project.

Let’s stick to the previous example:

Find all descendants of a structure with a certain uuid
qb = QueryBuilder()
qb.append(
 StructureData,
 tag='structure',
 filters={'uuid':{'==':myuuid}},
)
qb.append(
 Node,
 descendant_of='structure',
 project=['type', 'uuid'], # returns type (string) and uuid (string)
)

In the above example, executing the query returns the type and the id of
all Node that are descendants of the structure:

qb = QueryBuilder()
qb.append(
 StructureData,
 tag='structure',
 filters={'uuid':{'==':myuuid}},
)
qb.append(
 Node,
 descendant_of='structure',
 project=['type', 'id'], # returns type (string) and id (string)
 tag='descendant'
)

Return the dictionaries:
print "\n\nqb.iterdict()"
for d in qb.iterdict():
 print '>>>', d

Return the lists:
print "\n\nqb.iterall()"
for l in qb.iterall():
 print '>>>', l

Return the first result:
print "\n\nqb.first()"
print '>>>', qb.first()

results in the following output:

qb.iterdict()
>>> {'descendant': {'type': u'calculation.job.quantumespresso.pw.PwCalculation.', 'id': 7716}}
>>> {'descendant': {'type': u'data.remote.RemoteData.', 'id': 8510}}
>>> {'descendant': {'type': u'data.folder.FolderData.', 'id': 9090}}
>>> {'descendant': {'type': u'data.array.ArrayData.', 'id': 9091}}
>>> {'descendant': {'type': u'data.array.trajectory.TrajectoryData.', 'id': 9092}}
>>> {'descendant': {'type': u'data.parameter.ParameterData.', 'id': 9093}}

qb.iterall()
>>> [u'calculation.job.quantumespresso.pw.PwCalculation.', 7716]
>>> [u'data.remote.RemoteData.', 8510]
>>> [u'data.folder.FolderData.', 9090]
>>> [u'data.array.ArrayData.', 9091]
>>> [u'data.array.trajectory.TrajectoryData.', 9092]
>>> [u'data.parameter.ParameterData.', 9093]

qb.first()
>>> [u'calculation.job.quantumespresso.pw.PwCalculation.', 7716]

Asking only for the properties that you are interested in can result
in much faster queries. If you want the Aiida-ORM instance, add ‘*’ to your list
of projections:

qb = QueryBuilder()
qb.append(
 StructureData,
 tag='structure',
 filters={'uuid':{'==':myuuid}},
)
qb.append(
 Node,
 descendant_of='structure',
 project=['*'], # returns the Aiida ORM instance
 tag='desc'
)

Return the dictionaries:
print "\n\nqb.iterdict()"
for d in qb.iterdict():
 print '>>>', d

Return the lists:
print "\n\nqb.iterall()"
for l in qb.iterall():
 print '>>>', l

Return the first result:
print "\n\nqb.first()"
print '>>>', qb.first()

Output:

qb.iterdict()
>>> {'desc': {'*': <PwCalculation: uuid: da720712-3ca3-490b-abf4-b0fb3174322e (pk: 7716)>}}
>>> {'desc': {'*': <RemoteData: uuid: 13a378f8-91fa-42c7-8d7a-e469bbf02e2d (pk: 8510)>}}
>>> {'desc': {'*': <FolderData: uuid: 91d5a5e8-6b88-4e43-9652-9efda4adb4ce (pk: 9090)>}}
>>> {'desc': {'*': <ArrayData: uuid: 7c34c219-f400-42aa-8bf2-ee36c7c1dd40 (pk: 9091)>}}
>>> {'desc': {'*': <TrajectoryData: uuid: 09288a5f-dba5-4558-b115-1209013b6b32 (pk: 9092)>}}
>>> {'desc': {'*': <ParameterData: uuid: 371677e1-d7d4-4f2e-8a41-594aace02759 (pk: 9093)>}}

qb.iterall()
>>> [<PwCalculation: uuid: da720712-3ca3-490b-abf4-b0fb3174322e (pk: 7716)>]
>>> [<RemoteData: uuid: 13a378f8-91fa-42c7-8d7a-e469bbf02e2d (pk: 8510)>]
>>> [<FolderData: uuid: 91d5a5e8-6b88-4e43-9652-9efda4adb4ce (pk: 9090)>]
>>> [<ArrayData: uuid: 7c34c219-f400-42aa-8bf2-ee36c7c1dd40 (pk: 9091)>]
>>> [<TrajectoryData: uuid: 09288a5f-dba5-4558-b115-1209013b6b32 (pk: 9092)>]
>>> [<ParameterData: uuid: 371677e1-d7d4-4f2e-8a41-594aace02759 (pk: 9093)>]

qb.first()
>>> [<PwCalculation: uuid: da720712-3ca3-490b-abf4-b0fb3174322e (pk: 7716)>]

Note

Be aware that, for consistency, QueryBuilder.all / iterall always
returns a list of lists, and first always a list, even if you project
on one entity!

If you are not sure which keys to ask for, you can project with ‘**’, and the QueryBuilder instance
will return all column properties:

qb = QueryBuilder()
qb.append(
 StructureData,
 project=['**']
)

Output:

qb.limit(1).dict()
>>> {'StructureData': {
 u'user_id': 2,
 u'description': u'',
 u'ctime': datetime.datetime(2016, 2, 3, 18, 20, 17, 88239),
 u'label': u'',
 u'mtime': datetime.datetime(2016, 2, 3, 18, 20, 17, 116627),
 u'id': 3028,
 u'dbcomputer_id': None,
 u'nodeversion': 1,
 u'type': u'data.structure.StructureData.',
 u'public': False,
 u'uuid': u'93c0db51-8a39-4a0d-b14d-5a50e40a2cc4'
 }}

You should know by now that you can define additional properties of nodes
in the attributes and the extras of a node.
There will be many cases where you will either want to filter or project on
those entities. The following example gives us a PwCalculation where the cutoff
for the wavefunctions has a value above 30.0 Ry:

qb = QueryBuilder()
qb.append(PwCalculation, project=['*'], tag='calc')
qb.append(
 ParameterData,
 input_of='calc',
 filters={'attributes.SYSTEM.ecutwfc':{'>':30.0}},
 project=[
 'attributes.SYSTEM.ecutwfc',
 'attributes.SYSTEM.ecutrho',
]
)

The above examples filters by a certain attribute.
Notice how you expand into the dictionary using the dot (.).
That works the same for the extras.

Note

Comparisons in the attributes (extras) are also implicitly done by type.

Let’s do a last example. You are familiar with the Quantum Espresso tutorial?
Great, because this will be
our use case here.
We will query for calculations that were done on a certain structure (mystructure),
that fulfill certain requirements, such as a cutoff above 30.0.
In our case, we have a structure (an instance of StructureData) and an instance
of ParameterData that are both inputs to a PwCalculation.
You need to tell the QueryBuilder that:

qb = QueryBuilder()
qb.append(
 StructureData,
 filters={'uuid':{'==':mystructure.uuid}},
 tag='strucure'
)
qb.append(
 PwCalculation,
 output_of='strucure',
 project=['*'],
 tag='calc'
)
qb.append(
 ParameterData,
 filters={'attributes.SYSTEM.ecutwfc':{'>':30.0}},
 input_of='calc',
 tag='params'
)

A few cheats to save some typing:

	The default edge specification, if no keyword is provided, is always
output_of the previous vertice.

	Equality filters (‘==’) can be shortened, as will be shown below.

	Tags are not necessary, you can simply use the class as a label.
This works as long as the same Aiida-class is not used again

A shorter version of the previous example:

qb = QueryBuilder()
qb.append(
 StructureData,
 filters={'uuid':mystructure.uuid},
)
qb.append(
 PwCalculation,
 project='*',
)
qb.append(
 ParameterData,
 filters={'attributes.SYSTEM.ecutwfc':{'>':30.0}},
 input_of=PwCalculation
)

Let’s proceed to some more advanced stuff. If you’ve understood everything so far
you’re in good shape to query the database, so you can skip the rest if you want.

Another feature that had to be added are projections, filters and labels on
the edges of the graphs, that is to say links or paths between nodes.
It works the same way, just that the keyword is preceeded by ‘link‘.
Let’s take the above example, but put a filter on the label of the link,
project the label and label:

qb = QueryBuilder()
qb.append(
 JobCalculation,
 filters={'ctime':{'>': now - timedelta(days=3)}},
 project={'id':{'func':'count'}}
)
qb.append(
 ParameterData,
 filters={'attributes.energy':{'>':-5.0}},
 edge_filters={'label':{'like':'output_%'}},
 edge_project='label'
)

You can also order by properties of the node, although ordering by attributes
or extras is not implemented yet.
Assuming you want to order the above example by the time of the calculations:

qb = QueryBuilder()
qb.append(
 JobCalculation,
 project=['*']
)
qb.append(
 ParameterData,
 filters={'attributes.energy':{'>':-5.0}},
)

qb.order_by({JobCalculation:{'ctime':'asc'}}) # 'asc' or 'desc' (ascending/descending)

You can also limit the number of rows returned with the method limit:

qb = QueryBuilder()
qb.append(
 JobCalculation,
 filters={'ctime':{'>': now - timedelta(days=3)}},
 project=['*']
)
qb.append(
 ParameterData,
 filters={'attributes.energy':{'>':-5.0}},
)

order by time descending
qb.order_by({JobCalculation:{'ctime':'desc'}})

Limit to results to the first 10 results:
qb.limit(10)

The above query returns the latest 10 calculation that produced
a final energy above -5.0.

The queryhelp

As mentioned above, there are two possibilities to tell the QueryBuilder what to do.
The second uses one big dictionary that we can call the queryhelp in the following.
It has the same functionalities as the appender method. But you could save this dictionary in a
JSON or in the database and use it over and over.
Using the queryhelp, you have to specify the path, the filter and projections beforehand and
instantiate the QueryBuilder with that dictionary:

qb = Querybuilder(**queryhelp)

What do you have to specify:

	Specifying the path:
Here, the user specifies the path along which to join tables as a list,
each list item being a vertice in your path.
You can define the vertice in two ways:
The first is to give the Aiida-class:

queryhelp = {
 'path':[Data]
}

or (better)

queryhelp = {
 'path':[
 {'cls': Data}
]
}

Another way is to give the polymorphic identity of this class, in our case stored in type:

queryhelp = {
 'path':[
 {'type':"data."}
]
}

Note

In Aiida, polymorphism is not strictly enforced, but
done with type specification.
Type-discrimination when querying is achieved by attaching a filter on the
type every time a subclass of Node is given.

Each node has to have a unique tag.
If not given, the tag is chosen to be equal to the name of the class.
This will not work if the user chooses the same class twice.
In this case he has to provide the tag:

queryhelp = {
 'path':[
 {
 'cls':Node,
 'tag':'node_1'
 },
 {
 'cls':Node,
 'tag':'node_2'
 }
]
}

There also has to be some information on the edges,
in order to join correctly.
There are several redundant ways this can be done:

	You can specify that this node is an input or output of another node
preceding the current one in the list.
That other node can be specified by an
integer or the class or type.
The following examples are all valid joining instructions,
assuming there is a structure defined at index 2
of the path with tag “struc1”:

edge_specification = queryhelp['path'][3]
edge_specification['output_of'] = 2
edge_specification['output_of'] = StructureData
edge_specification['output_of'] = 'struc1'
edge_specification['input_of'] = 2
edge_specification['input_of'] = StructureData
edge_specification['input_of'] = 'struc1'

	queryhelp_item[‘direction’] = integer

If any of the above specs (“input_of”, “output_of”)
were not specified, the key “direction” is looked for.
Directions are defined as distances in the tree.
1 is defined as one step down the tree along a link.
This means that 1 joins the node specified in this dictionary
to the node specified on list-item before as an output.
Direction defaults to 1, which is why, if nothing is specified,
this node is joined to the previous one as an output by default.
A minus sign reverse the direction of the link.
The absolute value of the direction defines the table to join to
with respect to your own position in the list.
An absolute value of 1 joins one table above, a
value of 2 to the table defined 2 indices above.
The two following queryhelps yield the same query:

qh1 = {
 'path':[
 {
 'cls':PwCalculation
 },
 {
 'cls':Trajectory
 },
 {
 'cls':ParameterData,
 'direction':-2
 }
]
}

returns same query as:

qh2 = {
 'path':[
 {
 'cls':PwCalculation
 },
 {
 'cls':Trajectory
 },
 {
 'cls':ParameterData,
 'input_of':PwCalculation
 }
]
}

Shorter version:

qh3 = {
 'path':[
 ParameterData,
 PwCalculation,
 Trajectory,
]
}

	Project: Determing which columns the query will return:

queryhelp = {
 'path':[Relax],
 'project':{
 Relax:['state', 'id'],
 }
}

If you are using JSONB columns,
you can also project a value stored inside the json:

queryhelp = {
 'path':[
 Relax,
 StructureData,
],
 'project':{
 Relax:['state', 'id'],
 }
}

Returns the state and the id of all instances of Relax
where a structures is linked as output of a relax-calculation.
The strings that you pass have to be name of the columns.
If you pass a star (‘*’),
the query will return the instance of the AiidaClass.

	Filters:
What if you want not every structure,
but only the ones that were added
after a certain time t and have an id higher than 50:

queryhelp = {
 'path':[
 {'cls':Relax}, # Relaxation with structure as output
 {'cls':StructureData}
],
 'filters':{
 StructureData:{
 'time':{'>': t},
 'id':{'>': 50}
 }
 }
}

If you want to include filters and projections on links between nodes, you
will have to add these to filters and projections in the queryhelp.
Let’s take an example that we had and add a few filters on the link:

queryhelp = {
 'path':[
 {'cls':Relax, 'tag':'relax'}, # Relaxation with structure as output
 {'cls':StructureData, 'tag':'structure'}
],
 'filters':{
 'structure':{
 'time':{'>': t},
 'id':{'>': 50}
 },
 'relax--structure':{
 'time':{'>': t},
 'label':{'like':'output_%'},
 }
 },
 'project':{
 'relax--structure':['label'],
 'structure':['label'],
 'relax':['label', 'state'],
 }
}

Notice that the label for the link, by default, is the labels of the two connecting
nodes delimited by two dashes ‘–’.
The order does not matter, the following queryhelp would results in the same query:

queryhelp = {
 'path':[
 {'cls':Relax, 'label':'relax'}, # Relaxation with structure as output
 {'cls':StructureData, 'label':'structure'}
],
 'filters':{
 'structure':{
 'time':{'>': t},
 'id':{'>': 50}
 },
 'relax--structure':{
 'time':{'>': t},
 'label':{'like':'output_%'},
 }
 },
 'project':{
 'relax--structure':['label'],
 'structure':['label'],
 'relax':['label', 'state'],
 }
}

If you dislike that way to label the link, you can choose the linklabel in the
path when definining the entity to join:

queryhelp = {
 'path':[
 {'cls':Relax, 'label':'relax'}, # Relaxation with structure as output
 {
 'cls':StructureData,
 'label':'structure',
 'edge_tag':'ThisIsMyLinkLabel' # Definining the linklabel
 }
],
 'filters':{
 'structure':{
 'time':{'>': t},
 'id':{'>': 50}
 },
 'ThisIsMyLinkLabel':{ # Using this linklabel
 'time':{'>': t},
 'label':{'like':'output_%'},
 }
 },
 'project':{
 'ThisIsMyLinkLabel':['label'],
 'structure':['label'],
 'relax':['label', 'state'],
 }
}

You can set a limit and an offset in the queryhelp:

queryhelp = {
 'path':[Node],
 'limit':10,
 'offset':20
}

That queryhelp would tell the QueryBuilder to return 10 rows after the first 20
have been skipped.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

AiiDA workflows

Workflows are one of the most important components for real high-throughput calculations, allowing the user
to scale well defined chains of calculations on any number of input structures, both generated or acquired from an external source.

Instead of offering a limited number of automatization schemes, crafted for some specific functions (equation of states,
phonons, etc...) in AiiDA a complete workflow engine is present, where the user can script in principle any possible
interaction with all the AiiDA components, from the submission engine to the materials databases connections. In AiiDA
a workflow is a python script executed by a daemon, containing several user defined functions called steps. In each step
all the AiiDA functions are available and calculations and launched and retrieved, as well as other sub-workflows.

In this document we’ll introduce the main workflow infrastructure from the user perspective, discussing and presenting some examples
that will cover all the features implemented in the code. A more detailed description of each function can be found in the
developer documentation.

How it works

The rationale of the entire workflow infrastructure is to make efficient, reproducible and scriptable anything a user can do
in the AiiDA shell. A workflow in this sense is nothing more than a list of AiiDA commands, split in different steps
that depend one on each other and that are executed in a specific order. A workflow step is written with the same
python language, using the same commands and libraries you use in the shell, stored in a file as a python class and
managed by a daemon process.

Before starting to analyze our first workflow we should summarize very shortly the main working logic of a typical workflow
execution, starting with the definition of the management daemon. The AiiDA daemon handles all the operations of a workflow,
script loading, error handling and reporting, state monitoring and user interaction with the execution queue.

The daemon works essentially as an infinite loop, iterating several simple operations:

	It checks the running step in all the active workflows, if there are new calculations attached to a step it submits them.

	It retrieves all the finished calculations. If one step of one workflow exists where all the calculations are correctly
finished it reloads the workflow and executes the next step as indicated in the script.

	If a workflow’s next step is the exit one, the workflow is terminated and the report is closed.

This simplified process is the very heart of the workflow engine, and while the process loops a user can submit a new workflow
to be managed from the Verdi shell (or through a script loading the necessary Verdi environment). In the next chapter we’ll
initialize the daemon and analyze a simple workflow, submitting it and retrieving the results.

Note

The workflow engine of AiiDA is now fully operational but will undergo major
improvements in a near future. Therefore, some of the methods or functionalities
described in the following might change.

The AiiDA daemon

As explained the daemon must be running to allow the execution of workflows, so the first thing needed to start it to launch the
daemon. We can use the verdi script facility from your computer’s shell:

>> verdi daemon start

This command will launch a background job (a daemon in fact) that will continuously check for new or running workflow to manage. Thanks
to the asynchronous structure of AiiDA if the daemon gets interrupted (or the computer running the daemon restarted for example),
once it will be restarted all the workflow will proceed automatically without any problem. The only thing you need to do to restart the
workflow it’s exactly the same command above. To stop the daemon instead we use the same command with the stop directive, and to
have a very fast check about the execution we can use the state directive to obtain more information.

A workflow demo

Now that the daemon is running we can focus on how to write our first workflow. As explained a workflow is essentially a python
class, stored in a file accessible by AiiDA (in the same AiiDA path). By convention workflows are stored in .py
files inside the aiida/workflows directory; in the distribution you’ll find some examples (some of them analyzed here) and
a user directory where user defined workflows can be stored. Since the daemon is aware only of the classes present at the time of its
launch, remember to restart the daemon (verdi daemon restart) every time you add a new workflow to let AiiDA see it.

We can now study a very first example workflow, contained in the wf_demo.py file inside the distribution’s workflows directory.
Even if this is just a toy model, it helps us to introduce all the features and details on how a workflow works, helping
us to understand the more sophisticated examples reported later.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

	import aiida.common
from aiida.common import aiidalogger
from aiida.orm.workflow import Workflow
from aiida.orm import Code, Computer

logger = aiidalogger.getChild('WorkflowDemo')

class WorkflowDemo(Workflow):

 def __init__(self,**kwargs):

 super(WorkflowDemo, self).__init__(**kwargs)

 def generate_calc(self):

 from aiida.orm import Code, Computer, CalculationFactory
 from aiida.common.datastructures import calc_states

 CustomCalc = CalculationFactory('simpleplugins.templatereplacer')

 computer = Computer.get("localhost")

 calc = CustomCalc(computer=computer,withmpi=True)
 calc.set_resources(num_machines=1, num_mpiprocs_per_machine=1)
 calc._set_state(calc_states.FINISHED)
 calc.store()

 return calc

 @Workflow.step
 def start(self):

 from aiida.orm.node import Node

 # Testing parameters
 p = self.get_parameters()

 # Testing calculations
 self.attach_calculation(self.generate_calc())
 self.attach_calculation(self.generate_calc())

 # Testing report
 self.append_to_report("Starting workflow with params: {0}".format(p))

 # Testing attachments
 n = Node()
 attrs = {"a": [1,2,3], "n": n}
 self.add_attributes(attrs)

 # Test process
 self.next(self.second_step)

 @Workflow.step
 def second_step(self):

 # Test retrieval
 calcs = self.get_step_calculations(self.start)
 self.append_to_report("Retrieved calculation 0 (uuid): {0}".format(calcs[0].uuid))

 # Testing report
 a = self.get_attributes()
 self.append_to_report("Execution second_step with attachments: {0}".format(a))

 # Test results
 self.add_result("scf_converged", calcs[0])

 self.next(self.exit)

As discussed before this is native python code, meaning that a user can load any library or script accessible from their PYTHONPATH
and interacting with any database or service of preference inside the workflow. We’ll now go through all the details of the first workflow,
line by line, discussing the most important methods and discovering along the way all the features available.

lines 1-7 Module imports. Some are necessary for the Workflow objects but many more can be added for user defined functions and libraries.

lines 8-12 Superclass definition, a workflow MUST extend the Workflow class from the aiida.orm.workflow. This is a fundamental
requirement, since the subclassing is the way AiiDA understand if a class inside the file is an AiiDA workflow or a simple utility class. Note that
for back-compatibility with python 2.7 also the explicit initialization of line 12 is necessary to make things work correctly.

lines 14-28 Once the class is defined a user can add as many methods as he wishes, to generate calculations or to download structures
or to compute new ones starting form a query in previous AiiDA calculations present in the DB. In the script above the method generate_calc
will simply prepare a dummy calculation, setting it’s state to finished and returning the object after having it stored in the repository.
This utility function will allow the dummy workflow run without the need of any code or machine except for localhost configured. In real
cases, as we’ll see, a calculation will be set up with parameters and structures defined in more sophisticated ways, but the logic underneath
is identical as far as the workflow inner working is concerned.

lines 30-51 This is the first step, one of the main components in the workflow logic. As you can see the start
method is decorated as a Workflow.step making it a very unique kind of method, automatically stored in the database as a container of
calculations and sub-workflows. Several functions are available to the user when coding a workflow step, and in this method we can see most
of the basic ones:

	line 36 self.get_parameters(). With this method we can retrieve the parameters passed to the workflow
when it was initialized. Parameters cannot be modified during an execution, while attributes can be added and removed.

	lines 39-40 self.attach_calculation(JobCalculation). This is a key point in the workflow, and
something possible only inside a step method. JobCalculations, generated in the methods or retrieved from other utility methods, are
attached to the workflow’s step, launched and executed completely by the daemon, without the need of user interaction. Failures,
re-launching and queue management are all handled by the daemon, and thousands of calculations can be attached. The daemon will
poll the servers until all the step calculations will be finished, and only after that it will pass to the next step.

	line 43 self.append_to_report(string). Once the workflow will be launched, the user interactions
are limited to some events (stop, relaunch, list of the calculations) and most of the times is very useful to have custom messages
during the execution. For this each workflow is equipped with a reporting facility, where the user can fill with any text and can
retrieve both live and at the end of the execution.

	lines 45-48 self.add_attributes(dict). Since the workflow is instantiated every step from scratch, if a
user wants to pass arguments between steps he must use the attributes facility, where a dictionary of values (accepted values are
basic types and AiiDA nodes) can be saved and retrieved from other steps during future executions.

	line 52 self.next(Workflow.step). This is the final part of a step, where the user points the engine
about what to do after all the calculations in the steps (on possible sub-workflows, as we’ll see later) are terminated. The argument of
this function has to be a Workflow.step decorated method of the same workflow class, or in case this is the last step to be executed you can
use the common method self.exit, always present in each Workflow subclass.

Note

make sure to store() all input nodes for the attached calculations, as unstored nodes will be lost during the transition
from one step to another.

lines 53-67 When the workflow will be launched through the start method, the AiiDA daemon will load the workflow, execute the step,
launch all the calculations and monitor their state. Once all the calculations in start will be finished the daemon will then load and
execute the next step, in this case the one called second_step. In this step new features are shown:

	line 57 self.get_step_calculations(Workflow.step). Anywhere after the first step we may need to retrieve and analyze calculations
executed in a previous steps. With this method we can have access to the list of calculations of a specific workflows step, passed as
an argument.

	line 61 self.get_attributes(). With this call we can retrieve the attributes stored in previous steps. Remember that this is the only
way to pass arguments between different steps, adding them as we did in line 48.

	line 65 self.add_result(). When all the calculations are done it’s useful to tag some of them as results, using custom string to be
later searched and retrieved. Similarly to the get_step_calculations, this method works on the entire workflow and not on a single step.

	line 67 self.next(self.exit). This is the final part of each workflow, setting the exit. Every workflow inheritate a fictitious step
called exit that can be set as a next to any step. As the names suggest, this implies the workflow execution to finish correctly.

Running a workflow

After saving the workflow inside a python file located in the aiida/workflows directory, we can launch the workflow simply invoking the
specific workflow class and executing the start() method inside the Verdi shell. It’s important to remember that all the AiiDA framework
needs to be accessible for the workflow to be launched, and this can be achieved either with the verdi shell or by any other python environment
that has previously loaded the AiiDA framework (see the developer manual for this).

To launch the verdi shell execute verdi shell from the command line; once inside the shell we have to import the workflow class we
want to launch (this command depends on the file location and the class name we decided). In this case we expect we’ll launch the
WorkflowDemo presented before, located in the wf_demo.py file in the clean AiiDA distribution. In the shell we execute:

>> from aiida.workflows.wf_demo import WorkflowDemo
>> params = {"a":[1,2,3]}
>> wf = WorkflowDemo(params=params)
>> wf.start()

Note

If you want to write the above script in a file, remember to run it
with verdi run and not simply with python, or otherwise to use the other
techniques described here.

In these four lines we loaded the class, we created some fictitious parameter and
we initialized the workflow. Finally we launched it with the
start() method, a lazy command that in the backgroud adds the workflow to
the execution queue monitored by the verdi daemon. In the backgroud
the daemon will handle all the workflow processes, stepping each method, launching
and retrieving calculations and monitoring possible errors and problems.

Since the workflow is now managed by the daemon, to interact with it we need
special methods. There are basically two ways to see how the workflows
are running: by printing the workflow list or its report.

	Workflow list

From the command line we run:

>> verdi workflow list

This will list all the running workflows, showing the state of each step
and each calculation (and, when present, each sub-workflow - see below). It
is the fastest way to have a snapshot of
what your AiiDA workflow daemon is working on. An example output
right after the WorkflowDemo submission should be

+ Workflow WorkflowDemo (pk: 1) is RUNNING [0h:05m:04s]
|-* Step: start [->second_step] is RUNNING
| | Calculation (pk: 1) is FINISHED
| | Calculation (pk: 2) is FINISHED

For each workflow is reported the pk number, a unique
id identifying that specific execution of the workflow, something
necessary to retrieve it at any other time in the future (as explained in the
next point).

Note

You can also print the list of any individual workflow from the verdi
shell (here in the shell where you defined your workflow as wf, see above):

>> import aiida.orm.workflow as wfs
>> print "\n".join(wfs.get_workflow_info(wf._dbworkflowinstance))

	Workflow report

As explained, each workflow is equipped with a reporting facility the user can
use to log any important intermediate information, useful to debug the state
or show some details. Moreover the report is also used by AiiDA as an error
reporting tool: in case of errors encountered during the execution, the AiiDA
daemon will copy the entire stack trace in the workflow report before
halting it’s execution.
To access the report we need the specific pk of the workflow. From the
command line we would run:

>> verdi workflow report PK_NUMBER

while from the verdi shell the same operation requires to use the get_report() method:

>> load_workflow(PK_NUMBER).get_report()

In both variants, PK_NUMBER is the pk number of the workflow we want
the report of. The load_workflow function loads a Workflow instance from
its pk number, or from its uuid (given as a string).

Note

It’s always recommended to get the workflow instance
from load_workflow (or from the Workflow.get_subclass_from_pk method)
without saving this object in a variable.
The information generated in the report may change and the user calling a
get_report method of a class instantiated in the past will probably lose
the most recent additions to the report.

Once launched, the workflows will be handled by the daemon until the final step
or until some error occurs. In the last case, the workflow gets halted and the report
can be checked to understand what happened.

	Killing a workflow

A user can also kill a workflow while it’s running. This can be done with
the following verdi command:

>> verdi workflow kill PK_NUMBER_1 PK_NUMBER_2 PK_NUMBER_N

where several pk numbers can be given. A prompt will ask for a confirmation;
this can be avoided by using the -f option.

An alternative way to kill an individual workflow is to use the kill method.
In the verdi shell type:

>> load_workflow(PK_NUMBER).kill()

or, equivalently:

>> Workflow.get_subclass_from_pk(PK_NUMBER).kill()

Note

Sometimes the kill operation might fail because one calculation cannot be
killed (e.g. if it’s running but not in the WITHSCHEDULER, TOSUBMIT or
NEW state), or because one workflow step is in the CREATED state. In that case the
workflow is put to the SLEEP state, such that no more workflow steps will be launched
by the daemon. One can then simply wait until the calculation or step changes state,
and try to kill it again.

A more sophisticated workflow

In the previous chapter we’ve been able to see almost all the workflow features, and we’re now ready to work on some more sophisticated examples,
where real calculations are performed and common real-life issues are solved. As a real case example we’ll compute the equation of state
of a simple class of materials, XTiO3; the workflow will accept as an input the X material, it will build several structures with different
crystal parameters, run and retrieve all the simulations, fit the curve and run an optimized final structure saving it as the workflow results,
aside to the final optimal cell parameter value.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

	 ## ===
 ## WorkflowXTiO3_EOS
 ## ===

 class WorkflowXTiO3_EOS(Workflow):

 def __init__(self,**kwargs):

 super(WorkflowXTiO3_EOS, self).__init__(**kwargs)

 ## ===
 ## Object generators
 ## ===

 def get_structure(self, alat = 4, x_material = 'Ba'):

 cell = [[alat, 0., 0.,],
 [0., alat, 0.,],
 [0., 0., alat,],
]

 # BaTiO3 cubic structure
 s = StructureData(cell=cell)
 s.append_atom(position=(0.,0.,0.),symbols=x_material)
 s.append_atom(position=(alat/2.,alat/2.,alat/2.),symbols=['Ti'])
 s.append_atom(position=(alat/2.,alat/2.,0.),symbols=['O'])
 s.append_atom(position=(alat/2.,0.,alat/2.),symbols=['O'])
 s.append_atom(position=(0.,alat/2.,alat/2.),symbols=['O'])
 s.store()

 return s

 def get_pw_parameters(self):

 parameters = ParameterData(dict={
 'CONTROL': {
 'calculation': 'scf',
 'restart_mode': 'from_scratch',
 'wf_collect': True,
 },
 'SYSTEM': {
 'ecutwfc': 30.,
 'ecutrho': 240.,
 },
 'ELECTRONS': {
 'conv_thr': 1.e-6,
 }}).store()

 return parameters

 def get_kpoints(self):

 kpoints = KpointsData()
 kpoints.set_kpoints_mesh([4,4,4])
 kpoints.store()

 return kpoints

 def get_pw_calculation(self, pw_structure, pw_parameters, pw_kpoint):

 params = self.get_parameters()

 pw_codename = params['pw_codename']
 num_machines = params['num_machines']
 num_mpiprocs_per_machine = params['num_mpiprocs_per_machine']
 max_wallclock_seconds = params['max_wallclock_seconds']
 pseudo_family = params['pseudo_family']

 code = Code.get_from_string(pw_codename)
 computer = code.get_remote_computer()

 QECalc = CalculationFactory('quantumespresso.pw')

 calc = QECalc(computer=computer)
 calc.set_max_wallclock_seconds(max_wallclock_seconds)
 calc.set_resources({"num_machines": num_machines, "num_mpiprocs_per_machine": num_mpiprocs_per_machine})
 calc.store()

 calc.use_code(code)

 calc.use_structure(pw_structure)
 calc.use_pseudos_from_family(pseudo_family)
 calc.use_parameters(pw_parameters)
 calc.use_kpoints(pw_kpoint)

 return calc

 ## ===
 ## Workflow steps
 ## ===

 @Workflow.step
 def start(self):

 params = self.get_parameters()
 x_material = params['x_material']

 self.append_to_report(x_material+"Ti03 EOS started")
 self.next(self.eos)

 @Workflow.step
 def eos(self):

 from aiida.orm import Code, Computer, CalculationFactory
 import numpy as np

 params = self.get_parameters()

 x_material = params['x_material']
 starting_alat = params['starting_alat']
 alat_steps = params['alat_steps']

 a_sweep = np.linspace(starting_alat*0.85,starting_alat*1.15,alat_steps).tolist()

 aiidalogger.info("Storing a_sweep as "+str(a_sweep))
 self.add_attribute('a_sweep',a_sweep)

 for a in a_sweep:

 self.append_to_report("Preparing structure {0} with alat {1}".format(x_material+"TiO3",a))

 calc = self.get_pw_calculation(self.get_structure(alat=a, x_material=x_material),
 self.get_pw_parameters(),
 self.get_kpoints())

 self.attach_calculation(calc)

 self.next(self.optimize)

 @Workflow.step
 def optimize(self):

 from aiida.orm.data.parameter import ParameterData

 x_material = self.get_parameter("x_material")
 a_sweep = self.get_attribute("a_sweep")

 aiidalogger.info("Retrieving a_sweep as {0}".format(a_sweep))

 # Get calculations
 start_calcs = self.get_step_calculations(self.eos) #.get_calculations()

 # Calculate results
 #---

 e_calcs = [c.res.energy for c in start_calcs]
 v_calcs = [c.res.volume for c in start_calcs]

 e_calcs = zip(*sorted(zip(a_sweep, e_calcs)))[1]
 v_calcs = zip(*sorted(zip(a_sweep, v_calcs)))[1]

 # Add to report
 #---
 for i in range (len(a_sweep)):
 self.append_to_report(x_material+"Ti03 simulated with a="+str(a_sweep[i])+", e="+str(e_calcs[i]))

 # Find optimal alat
 #---

 murnpars, ier = Murnaghan_fit(e_calcs, v_calcs)

 # New optimal alat
 optimal_alat = murnpars[3]** (1 / 3.0)
 self.add_attribute('optimal_alat',optimal_alat)

 # Build last calculation
 #---

 calc = self.get_pw_calculation(self.get_structure(alat=optimal_alat, x_material=x_material),
 self.get_pw_parameters(),
 self.get_kpoints())
 self.attach_calculation(calc)

 self.next(self.final_step)

 @Workflow.step
 def final_step(self):

 from aiida.orm.data.parameter import ParameterData

 x_material = self.get_parameter("x_material")
 optimal_alat = self.get_attribute("optimal_alat")

 opt_calc = self.get_step_calculations(self.optimize)[0] #.get_calculations()[0]
 opt_e = opt_calc.get_outputs(type=ParameterData)[0].get_dict()['energy']

 self.append_to_report(x_material+"Ti03 optimal with a="+str(optimal_alat)+", e="+str(opt_e))

 self.add_result("scf_converged", opt_calc)

 self.next(self.exit)

Before getting into details, you’ll notice that this workflow is devided into sections by comments in the script. This is not necessary, but helps
the user to differentiate the main parts of the code. In general it’s useful to be able to recognize immediately which functions are steps and
which are instead utility or support functions that either generate structure, modify them, add special parameters for the calculations, etc. In
this case the support functions are reported first, under the Object generators part, while Workflow steps are reported later in the soundy
Workflow steps section. Lets now get in deeper details for each function.

	__init__ Usual initialization function, notice again the necessary super class initialization for back compatibility.

	start The workflow tries to get the X material from the parameters, called in this case x_material. If the entry is not present
in the dictionary an error will be thrown and the workflow will hang, reporting the error in the report. After that a simple line
in the report is added to notify the correct start and the eos step will be chained to the execution.

	eos This step is the heart of this workflow. At the beginning parameters needed to investigate the equation of states are retrieved. In this
case we chose a very simple structure with only one interesting cell parameter, called starting_alat. The code will take this alat as the
central point of a linear mesh going from 0.85 alat to 1.15 alat where only a total of alat_steps will be generated. This decision
is very much problem dependent, and your workflows will certanly need more parameters or more sophisticated meshes to run a satisfactory
equation of state analysis, but again this is only a tutorial and the scope is to learn the basic concepts.

After retrieving the parameters, a linear interpolation is generated between the values of interest and for each of these values a calculation
is generated by the support function (see later). Each calculation is then attached to the step and finally the step chains optimize as the
step. As told, the manager will handle all the job execution and retrieval for all the step’s calculation before calling the next step, and this
ensures that no optimization will be done before all the alat steps are computed with success.

	optimize In the first lines the step will retrieve the initial parameters, the a_sweep attribute computed in the previous step and all
the calculations launched and succesfully retrieved. Energy and volume in each calculation is retrieved thanks to the output parser functions
mentioned in the other chapters, and a simple message is added to the report for each calculation.

Having the volume and the energy for each simulation we can run a Murnaghan fit to obtain the optimal cell parameter and expected energy, to
do this we use a simple fitting function Murnaghan_fit defined at the bottom of the workflow file wf_XTiO3.py. The optimal alat is then saved in
the attributes and a new calculation is generated for it. The calculation is attached to the step and the final_step is attached to the
execution.

	final_step In this step the main result is collected and stored. Parameters and attributes are retrieved, a new entry in the report is stored
pointing to the optimal alat and to the final energy of the structure. Finally the calculation is added to the workflow results and the exit
step is chained for execution.

	get_pw_calculation (get_kpoints, get_pw_parameters, get_structure) As you noticed to let the code clean all the functions needed to generate
AiiDA Calculation objects have been factored in the utility functions. These functions are highly specific for the task needed, and unrelated
to the workflow functions. Nevertheless they’re a good example of best practise on how to write clean and reusable workflows, and we’ll comment
the most important feature.

get_pw_calculation is called in the workflow’s steps, and it handles the entire Calculation object creation. First it extracts the
parameters from the workflow initialization necessary for the execution (the machine, the code, and the number of core, pseudos, etc..) and
then it generates and stores the JobCalculation objects, returning it for later use.

get_kpoints genetates a k-point mesh suitable for the calculation, in this case a fixed MP mesh 4x4x4. In a real case scenario this
needs much more sophisticated calculations to ensure a correct convergence, not necessary for the tutorial.

get_pw_parameters builds the minimum set of parameters necessary to run the Quantum Espresso simulations. In this case as well parameters
are not for production.

get_structure generates the real atomic arrangement for the specific calculation. In this case the configuration is extremely simple, but
in principle this can be substituted with an external funtion, implementing even very sophisticated approaches such as genetic algorithm evolution
or semi-randomic modifications, or any other structure evolution function the user wants to test.

As you noticed this workflow needs several parameters to be correctly executed, something natural for real case scenarios. Nevertheless the
launching procedure is identical as for the simple example before, with just a little longer dictionary of parameters:

>> from aiida.workflows.wf_XTiO3 import WorkflowXTiO3_EOS
>> params = {'pw_codename':'PWcode', 'num_machines':1, 'num_mpiprocs_per_machine':8, 'max_wallclock_seconds':30*60, 'pseudo_family':'PBE', 'alat_steps':5, 'x_material':'Ba','starting_alat':4.0}
>> wf = WorkflowXTiO3_EOS(params=params)
>> wf.start()

To run this workflow remember to update the params dictionary with the correct values for your AiiDA installation (namely pw_codename and
pseudo_family).

Chaining workflows

After the previous chapter we’re now able to write a real case workflow that runs in a fully automatic way EOS analysis for simple
structures. This covers almost all the workflow engine’s features implemented in AiiDA, except for workflow chaining.

Thanks to their modular structure a user can write task-specific workflows very easly. An example is the EOS before, or an energy
convergence procedure to find optimal cutoffs, or any other necessity the user can code. These self contained workflows can easily become
a library of result-oriented scripts that a user would be happy to reuse in several ways. This is exactly where sub-workflows come in handy.

Workflows, in an abstract sense, are in fact calculations, that accept as input some parameters and that produce results as output.
The way this calculations are handled is competely transparent for the user and the engine, and if a workflow could launch other
workflows it would just be a natural extension of the step’s calculation concept. This is in fact how workflow chaining has been
implemented in AiiDA. Just as with calculations, in each step a workflow can attach another workflow for executions, and the AiiDA
daemon will handle its execution waiting for its successful end (in case of errors in any subworkflow, such errors will be reported and the
entire workflow tree will be halted, exactly as when a calculation fails).

To introduce this function we analyze our last example, where the WorkflowXTiO3_EOS is used as a sub workflow. The general idea of this
new workflow is simple: if we’re now able to compute the EOS of any XTiO3 structure we can build a workflow to loop among several X
materials, obtain the relaxed structure for each material and run some more sophisticated calculation. In this case we’ll compute
phonon vibrational frequncies for some XTiO3 materials, namely Ba, Sr and Pb.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110

	 ## ===
 ## WorkflowXTiO3
 ## ===

 class WorkflowXTiO3(Workflow):

 def __init__(self,**kwargs):

 super(WorkflowXTiO3, self).__init__(**kwargs)

 ## ===
 ## Calculations generators
 ## ===

 def get_ph_parameters(self):

 parameters = ParameterData(dict={
 'INPUTPH': {
 'tr2_ph' : 1.0e-8,
 'epsil' : True,
 'ldisp' : True,
 'nq1' : 1,
 'nq2' : 1,
 'nq3' : 1,
 }}).store()

 return parameters

 def get_ph_calculation(self, pw_calc, ph_parameters):

 params = self.get_parameters()

 ph_codename = params['ph_codename']
 num_machines = params['num_machines']
 num_mpiprocs_per_machine = params['num_mpiprocs_per_machine']
 max_wallclock_seconds = params['max_wallclock_seconds']

 code = Code.get_from_string(ph_codename)
 computer = code.get_remote_computer()

 QEPhCalc = CalculationFactory('quantumespresso.ph')
 calc = QEPhCalc(computer=computer)

 calc.set_max_wallclock_seconds(max_wallclock_seconds) # 30 min
 calc.set_resources({"num_machines": num_machines, "num_mpiprocs_per_machine": num_mpiprocs_per_machine})
 calc.store()

 calc.use_parameters(ph_parameters)
 calc.use_code(code)
 calc.use_parent_calculation(pw_calc)

 return calc

 ## ===
 ## Workflow steps
 ## ===

 @Workflow.step
 def start(self):

 params = self.get_parameters()
 elements_alat = [('Ba',4.0),('Sr', 3.89), ('Pb', 3.9)]

 for x in elements_alat:

 params.update({'x_material':x[0]})
 params.update({'starting_alat':x[1]})

 aiidalogger.info("Launching workflow WorkflowXTiO3_EOS for {0} with alat {1}".format(x[0],x[1]))

 w = WorkflowXTiO3_EOS(params=params)
 w.start()
 self.attach_workflow(w)

 self.next(self.run_ph)

 @Workflow.step
 def run_ph(self):

 # Get calculations
 sub_wfs = self.get_step(self.start).get_sub_workflows()

 for sub_wf in sub_wfs:

 # Retrieve the pw optimized calculation
 pw_calc = sub_wf.get_step("optimize").get_calculations()[0]

 aiidalogger.info("Launching PH for PW {0}".format(pw_calc.get_job_id()))
 ph_calc = self.get_ph_calculation(pw_calc, self.get_ph_parameters())
 self.attach_calculation(ph_calc)

 self.next(self.final_step)

 @Workflow.step
 def final_step(self):

 #self.append_to_report(x_material+"Ti03 EOS started")
 from aiida.orm.data.parameter import ParameterData
 import aiida.tools.physics as ps

 params = self.get_parameters()

 # Get calculations
 run_ph_calcs = self.get_step_calculations(self.run_ph) #.get_calculations()

 for c in run_ph_calcs:
 dm = c.get_outputs(type=ParameterData)[0].get_dict()['dynamical_matrix_1']
 self.append_to_report("Point q: {0} Frequencies: {1}".format(dm['q_point'],dm['frequencies']))

 self.next(self.exit)

Most of the code is now simple adaptation of previous examples, so we’re going to comment only the most relevant differences where
workflow chaining plays an important role.

	start This workflow accepts the same input as the WorkflowXTiO3_EOS, but right at the beginning the workflow a list of X materials
is defined, with their respective initial alat. This list is iterated and for each material a new Workflow is both generated, started and
attached to the step. At the end run_ph is chained as the following step.

	run_ph Only after all the subworkflows in start are succesfully completed this step will be executed, and it will immediately retrieve
all the subworkflow, and from each of them it will get the result calculations. As you noticed the result can be stored with any user defined key,
and this is necessary when someone wants to retrieve it from a completed workflow. For each result a phonon calculation is launched and then
the final_step step is chained.

To launch this new workflow we have only to add a simple entry in the previous parameter dictionary, specifing the phonon code, as reported here:

>> from aiida.workflows.wf_XTiO3 import WorkflowXTiO3
>> params = {'pw_codename':'PWcode', 'ph_codename':'PHcode', 'num_machines':1, 'num_mpiprocs_per_machine':8, 'max_wallclock_seconds':30*60, 'pseudo_family':'PBE', 'alat_steps':5 }
>> wf = WorkflowXTiO3(params=params)
>> wf.start()

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Import structures from external databases

We support the import of structures from external databases.
The base class that defines the API for the importers can
be found here: DbImporter.
Below, you can find a list of existing plugins that have already been
implemented.

Available plugins

	ICSD database importer
	Setup

	How to do a query

	Full example

	Troubleshooting: Testing the mysql connection

	COD database importer
	Setup

	How to do a query

	Using data from CodEntry

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Import structures from external databases

ICSD database importer

In this section we explain how to import CIF files from the ICSD
database using the
IcsdDbImporter
class.

Before being able to query ICSD, provided by FIZ Karlsruhe, you should have the intranet database installed on a server (http://www.fiz-karlsruhe.de/icsd_intranet.html). Follow the installation as decsribed in the manual.

It is necessary to know the webpage of the icsd web interface and have access to the full database from the local machine.

You can either query the mysql database or the web page, the latter is restricted to a maximum of 1000 search results, which makes it unsuitable for data mining. So better set up the mysql connection.

Setup

An instance of the IcsdDbImporter can be created as follows:

importer = aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter(server="http://ICSDSERVER.com/", host= "127.0.0.1")

Here is a list of the most important input parameters with an
explanation.

For both connection types (web and SQL):

	server: address of web interface of the icsd database; it should
contain both the protocol and the domain name and end with a slash;
example:

server = "http://ICSDSERVER.com/"

The following parameters are required only for the mysql query:

	host: database host name address.

Tip

If the database is not hosted on your local machine, it can be useful to
create an ssh tunnel to the 3306 port of the database host:

ssh -L 3306:localhost:3306 username@icsddbhostname.com

If you get an URLError with Errno 111 (Connection refused) when
you query the database, try to use instead:

ssh -L 3306:localhost:3306 -L 8010:localhost:80 username@icsddbhostname.com

The database can then be accessed using “127.0.0.1” as host:

host = "127.0.0.1"

	
	user / pass_wd / db / port: Login username, password, name of database and port of your mysql database.

	If the standard installation of ICSD intranet version has been followed, the default values should work.
Otherwise contact your system administrator to get the required information:

user = "dba", pass_wd = "sql", db = "icsd", port = 3306

Other settings:

	querydb: If True (default) the mysql database is queried, otherwise the web page is queried.

A more detailed documentation and additional settings are found under
IcsdDbImporter.

How to do a query

If the setup worked, you can do your first query:

cif_nr_list = ["50542","617290","35538"]

queryresults = importer.query(id= cif_nr_list)

All supported keywords can be obtained using:

importer.get_supported_keywords()

More information on the keywords are found under
http://www.fiz-karlsruhe.de/fileadmin/be_user/ICSD/PDF/sci_man_ICSD_v1.pdf

A query returns an instance of IcsdSearchResults

The IcsdEntry at position i can be accessed using:

queryresults.at(i)

You can also iterate through all query results:

for entry in query_results:
 do something

Instances of IcsdEntry have following methods:

	get_cif_node(): Return an instance of CifData, which can be used in an AiiDA workflow.

	get_aiida_structure(): Return an AiiDA structure

	get_ase_structure(): Return an ASE structure

The most convenient format can be chosen for further processing.

Full example

Here is a full example how the icsd importer can be used:

import aiida.tools.dbimporters.plugins.icsd

cif_nr_list = [
"50542",
"617290",
"35538 ",
"165226",
"158366"
]

importer = aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter(server="http://ICSDSERVER.com/",
 host= "127.0.0.1")
query_results = importer.query(id=cif_nr_list)
for result in query_results:
 print result.source['db_id']
 aiida_structure = result.get_aiida_structure()
 #do something with the structure

Troubleshooting: Testing the mysql connection

To test your mysql connection, first make sure that you can connect
to the 3306 port of the machine hosting the database.
If the database is not hosted by your local machine,
use the local port tunneling provided by ssh, as follows:

ssh -L 3306:localhost:3306 username@icsddbhostname.com

Note

If you get an URLError with Errno 111 (Connection refused) when
you query the database, try to use instead:

ssh -L 3306:localhost:3306 -L 8010:localhost:80 username@icsddbhostname.com

Note

You need an account on the host machine.

Note

There are plenty of explanations online explaining
how to setup an tunnel over a SSH connection using the -L
option, just google for it in case you need more information.

Then open a new verdi shell and type:

import MySQLdb

db = MySQLdb.connect(host = "127.0.0.1", user ="dba", passwd = "sql", db = "icsd", port=3306)

If you do not get an error and it does not hang, you have successfully
established your connection to the mysql database.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Import structures from external databases

COD database importer

COD database importer is used to import crystal structures from the
Crystallography Open Database [http://www.crystallography.net] (COD) to AiiDA.

Setup

An instance of
CodDbImporter
is created as follows:

from aiida.tools.dbimporters.plugins.cod import CodDbImporter
importer = CodDbImporter()

No additional parameters are required for standard queries on the main COD
server.

How to do a query

A search is initiated by supplying query statements using keyword=value
syntax:

results = importer.query(chemical_name="caffeine")

List of possible keywords can be listed using:

importer.get_supported_keywords()

Values for the most of the keywords can be list. In that case the query
will return entries, that match any of the values (binary OR) from the
list. Moreover, in the case of multiple keywords, entries, that match all
the conditions imposed by the keywords, will be returned (binary AND).

Example:

results = importer.query(chemical_name=["caffeine","serotonin"],
 year=[2000,2001])

is equivalent to the following SQL statement:

results = SELECT * FROM data WHERE
 (chemical_name == "caffeine" OR chemical_name == "serotonin") AND
 (year = 2000 OR year = 2001)

A query returns an instance of
CodSearchResults,
which can be used in a same way as a list of
CodEntry instances:

print len(results)

for entry in results:
 print entry

Using data from CodEntry

CodEntry has a
few functions to access the contents of it’s instances:

CodEntry.get_aiida_structure()
CodEntry.get_ase_structure()
CodEntry.get_cif_node()
CodEntry.get_parsed_cif()
CodEntry.get_raw_cif()

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Export data to external databases

We support the export of data to external databases. In the most general
way, the export to external databases can be viewed as a subworkflow,
taking data as input and resulting in the deposition of it to external
database(s). Below is a list of supported databases with deposition
routines described in comments-type style.

Supported databases

	TCOD database exporter
	Setup

	How to deposit a structure

	Return values

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

 	Export data to external databases

TCOD database exporter

TCOD database exporter is used to export computation results of
StructureData,
CifData and
TrajectoryData
(or any other data type, which can be converted to them) to the
Theoretical Crystallography Open Database [http://www.crystallography.net/tcod/] (TCOD).

Setup

To be able to export data to TCOD, one has to
install dependencies for CIF manipulation
as well as cod-tools package, and set up an
AiiDA Code for cif_cod_deposit script
from cod-tools.

How to deposit a structure

Best way to deposit data is to use the command line interface:

verdi DATATYPE structure deposit tcod [--type {published,prepublication,personal}]
 [--username USERNAME] [--password]
 [--user-email USER_EMAIL] [--title TITLE]
 [--author-name AUTHOR_NAME]
 [--author-email AUTHOR_EMAIL] [--url URL]
 [--code CODE_LABEL]
 [--computer COMPUTER_NAME]
 [--replace REPLACE] [-m MESSAGE]
 [--reduce-symmetry] [--no-reduce-symmetry]
 [--parameter-data PARAMETER_DATA]
 [--dump-aiida-database]
 [--no-dump-aiida-database]
 [--exclude-external-contents]
 [--no-exclude-external-contents] [--gzip]
 [--no-gzip]
 [--gzip-threshold GZIP_THRESHOLD]
 PK

Where:

	DATATYPE – one of AiiDA structural data types (at the moment of
writing, they were
StructureData,
CifData and
TrajectoryData);

	TITLE – the title of the publication, where the exported data
is/will be published; in case of personal communication, the title
should be chosen so as to reflect the exported dataset the best;

	CODE_LABEL – label of AiiDA Code,
associated with cif_cod_deposit;

	COMPUTER_NAME – name of AiiDA
Computer, where
cif_cod_deposit script is to be launched;

	REPLACE – TCOD ID [http://wiki.crystallography.net/tcod_id/] of the replaced entry in the event of
redeposition;

	MESSAGE – string to describe changes for redeposited structures;

	--reduce-symmetry, --no-reduce-symmetry – turn on/off symmetry
reduction of the exported structure (on by default);

	--parameter-data – specify the PK of
ParameterData
object, describing the result of the final (or single) calculation step
of the workflow;

	--dump-aiida-database, --no-dump-aiida-database – turn on/off
addition of relevant AiiDA database dump (on by default).

Warning

be aware that TCOD is an open database, thus no
copyright-protected data should be deposited unless permission is
given by the owner of the rights.

Note

data, which is deposited as pre-publication material, will
be kept private on TCOD server and will not be disclosed to anyone
without depositor’s permission.

	--exclude-external-contents, --no-exclude-external-contents –
exclude contents of initial input files, that contain
source property with
definitions on how to obtain the contents from external resources (on
by default);

	--gzip, –no-gzip` – turn on/off gzip compression for large
files (off by default); --gzip-threshold sets the minimum file size
to be compressed.

Other command line options correspond to the options of
cif_cod_deposit of the same
name. To ease the use of TCOD exporter, one can define persistent
parameters in AiiDA properties. Corresponding
command line parameters and AiiDA properties are presented in the table:

	Command line parameter
	AiiDA property

	--author-email
	tcod.depositor_author_email

	--author-name
	tcod.depositor_author_name

	--user-email
	tcod.depositor_email

	--username
	tcod.depositor_password

	--password
	tcod.depositor_username

Note

--password does not accept any value; instead, the option
will prompt the user to enter one’s password in the terminal.

Note

command line parameters can be used to override AiiDA
properties even if properties are set.

Return values

The deposition process, which is of
JobCalculation
type, returns the output of cif_cod_deposit, wrapped in
ParameterData.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	User’s guide

Run scripts and open an interactive shell with AiiDA

How to run a script

In order to run a script that interacts with the database, you need
to select the proper settings for the database.

To simplify the procedure, we provide an utility command, load_dbenv.
As the first two lines of your script, write:

from aiida import load_dbenv
load_dbenv()

From there on, you can import without problems any module and interact with
the database (submit calculations, perform queries, ...).

verdi shell

If you want to work in interactive mode (rather than writing a script and
then execute it), we strongly suggest that you use the verdi shell command.

This command will run an IPython shell, if ipython is installed in the system
(it also supports bpython), which has many nice features, including TAB
completion and much more.

Moreover, it will automatically execute the load_dbenv command, and
automatically several modules/classes.

Note

It is possible to customize the shell by adding modules to be loaded
automatically, thanks to the verdi devel setproperty verdishell.modules
command.
See here for more information.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

Other guide resources

	AiiDA cookbook (useful code snippets)
	Deletion of nodes

	Troubleshooting and tricks
	Some tricks
	Using the proxy_command option with ssh

	Connection problems

	Increasing the debug level

	Tips to ease the life of the hard drive (for large databases)
	Repository backup

	mlocate cron job

	Using AiiDA in multi-user mode

	Deploying AiiDA using Apache

	AiiDA Website

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Other guide resources

AiiDA cookbook (useful code snippets)

This cookbook is intended to be a collection of useful short scripts and
code snippets that may be useful in the everyday usage of AiiDA.
Please read carefully the nodes (if any) before running the scripts!

Deletion of nodes

At the moment, we do not support natively the deletion of nodes. This is
mainly because it is very dangerous to delete data, as this is cannot be
undone.

If you really feel the need to delete some code, you can use the
function below.

Note

WARNING! In order to preserve the provenance, this function
will delete not only the list of specified nodes,
but also all the children nodes! So please be sure to double check what
is going to be deleted before running this function.

Here is the function, pass a list of PKs as parameter to delete those nodes
and all the children nodes:

def delete_nodes(pks_to_delete):
 """
 Delete a set of nodes.

 :note: The script will also delete
 all children calculations generated from the specified nodes.

 :param pks_to_delete: a list of the PKs of the nodes to delete
 """
 from django.db import transaction
 from django.db.models import Q
 from aiida.backends.djsite.db import models
 from aiida.orm import load_node

 # Delete also all children of the given calculations
 # Here I get a set of all pks to actually delete, including
 # all children nodes.
 all_pks_to_delete = set(pks_to_delete)
 for pk in pks_to_delete:
 all_pks_to_delete.update(models.DbNode.objects.filter(
 parents__in=pks_to_delete).values_list('pk', flat=True))

 print "I am going to delete {} nodes, including ALL THE CHILDREN".format(
 len(all_pks_to_delete))
 print "of the nodes you specified. Do you want to continue? [y/N]"
 answer = raw_input()

 if answer.strip().lower() == 'y':
 # Recover the list of folders to delete before actually deleting
 # the nodes. I will delete the folders only later, so that if
 # there is a problem during the deletion of the nodes in
 # the DB, I don't delete the folders
 folders = [load_node(pk).folder for pk in all_pks_to_delete]

 with transaction.atomic():
 # Delete all links pointing to or from a given node
 models.DbLink.objects.filter(
 Q(input__in=all_pks_to_delete) |
 Q(output__in=all_pks_to_delete)).delete()
 # now delete nodes
 models.DbNode.objects.filter(pk__in=all_pks_to_delete).delete()

 # If we are here, we managed to delete the entries from the DB.
 # I can now delete the folders
 for f in folders:
 f.erase()

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Other guide resources

Troubleshooting and tricks

Some tricks

	Using the proxy_command option with ssh

Connection problems

	When AiiDA tries to connect to the remote computer, it says
paramiko.SSHException: Server u'FULLHOSTNAME' not found in known_hosts

AiiDA uses the paramiko library to establish SSH connections.
paramiko is able to read the remote host keys
from the ~/.ssh/known_hosts of the
user under which the AiiDA daemon is running. You therefore have to make
sure that the key of the remote host is stored in the file.

	As a first check, login as the user under which the AiiDA daemon is running
and run a:

ssh FULLHOSTNAME

command, where FULLHOSTNAME is the complete
host name of the remote computer configured in AiiDA. If the key of the
remote host is not in the known_hosts file, SSH will ask confirmation
and then add it to the file.

	If the above point is not sufficient, check the format of the remote host
key. On some machines (we know that this issue happens at least on recent
Ubuntu distributions) the default format is not RSA but ECDSA. However,
paramiko is still not able to read keys written in this format.

To discover the format, run the following command:

ssh-keygen -F FULLHOSTNAME

that will print the remote host key. If the output contains the string
ecdsa-sha2-nistp256, then paramiko will not be able to use this
key (see below for a solution).
If instead ssh-rsa, the key should be OK and
paramiko will be able to use it.

In case your key is in ecdsa format, you have to first delete the key
by using the command:

ssh-keygen -R FULLHOSTNAME

Then, in your ~/.ssh/config file (create it if it does not exist)
add the following lines:

Host *
 HostKeyAlgorithms ssh-rsa

(use the same indentation, and leave an empty line before and one after).
This will set the RSA algorithm as the default one for all remote hosts.
In case, you can set the HostKeyAlgorithms attribute only to the
relevant computers (use man ssh_config for more information).

Then, run a:

ssh FULLHOSTNAME

command. SSH will ask confirmation and then add it to the file, but
this time it should use the ssh-rsa format (it will say so in the
prompt messsage). You can also double-check that the host key was
correctly inserted using the ssh-keygen -F FULLHOSTNAME command
as described above. Now, the error messsage should not appear anymore.

Increasing the debug level

By default, the logging level of AiiDA is minimal to avoid filling logfiles.
Only warnings and errors are logged (to the
~/.aiida/daemon/log/aiida_daemon.log file), while info and debug
messages are discarded.

If you are experiencing a problem, you can change the default minimum logging
level of AiiDA messages (and celery messages – celery is the library that we
use to manage the daemon process) using, on the command line, the two
following commands:

verdi devel setproperty logging.celery_loglevel DEBUG
verdi devel setproperty logging.aiida_loglevel DEBUG

After rebooting the daemon (verdi daemon restart), the number of messages
logged will increase significantly and may help in understanding
the source of the problem.

Note

In the command above, you can use a different level than DEBUG.
The list of the levels and their order is the same of the standard python
logging module [https://docs.python.org/2/library/logging.html#logging-levels].

Note

When the problem is solved, we suggest to bring back the default
logging level, using the two commands:

verdi devel delproperty logging.celery_loglevel
verdi devel delproperty logging.aiida_loglevel

to avoid to fill the logfiles.

Tips to ease the life of the hard drive (for large databases)

Those tips are useful when your database is very large, i.e. several hundreds of
thousands of nodes and workflows or more. With such large databases the hard drive
may be constantly working and the computer slowed down a lot. Below are some
solutions to take care of the most typical reasons.

Repository backup

The backup of the repository takes an extensively long time if it is done through
a standard rsync or backup software, since it contains as many folders as the number
of nodes plus the number of workflows (and each folder can contain many files!).
A solution is to use instead the incremental
backup described in the repository backup section.

mlocate cron job

Under typical Linux distributions, there is a cron job (called
updatedb.mlocate) running every day to update a database of files and
folders – this is to be used by the locate command. This might become
problematic since the repository contains many folders and
will be scanned everyday. The net effect is a hard drive almost constantly
working.

To avoid this issue, edit as root the file /etc/updatedb.conf
and put in PRUNEPATHS the name of the repository folder.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Other guide resources

 	Troubleshooting and tricks

Using the proxy_command option with ssh

This page explains how to use the proxy_command feature of ssh. This feature
is needed when you want to connect to a computer B, but you are not allowed to
connect directly to it; instead, you have to connect to computer A first, and then
perform a further connection from A to B.

Requirements

The idea is that you ask ssh to connect to computer B by using
a proxy to create a sort of tunnel. One way to perform such an
operation is to use netcat, a tool that simply takes the standard input and
redirects it to a given TCP port.

Therefore, a requirement is to install netcat on computer A.
You can already check if the netcat or nc command is available
on you computer, since some distributions include it (if it is already
installed, the output of the command:

which netcat

or:

which nc

will return the absolute path to the executable).

If this is not the case, you will need to install it on your own.
Typically, it will be sufficient to look for a netcat distribution on
the web, unzip the downloaded package, cd into the folder and
execute something like:

./configure --prefix=.
make
make install

This usually creates a subfolder bin, containing the netcat
and nc executables.
Write down the full path to nc that we will need later.

ssh/config

You can now test the proxy command with ssh. Edit the
~/.ssh/config file on the computer on which you installed AiiDA
(or create it if missing) and add the following lines:

Host FULLHOSTNAME_B
Hostname FULLHOSTNAME_B
User USER_B
ProxyCommand ssh USER_A@FULLHOSTNAME_A ABSPATH_NETCAT %h %p

where you have to replace:

	FULLHOSTNAMEA and FULLHOSTNAMEB with
the fully-qualified hostnames of computer A and B (remembering that B
is the computer you want to actually connect to, and A is the
intermediate computer to which you have direct access)

	USER_A and USER_B are the usernames on the two machines (that
can possibly be the same).

	ABSPATH_NETCAT is the absolute path to the nc executable
that you obtained in the previous step.

Remember also to configure passwordless ssh connections using ssh keys
both from your computer to A, and from A to B.

Once you add this lines and save the file, try to execute:

ssh FULLHOSTNAME_B

which should allow you to directly connect to B.

WARNING

There are several versions of netcat available on the web.
We found at least one case in which the executable wasn’t working
properly.
At the end of the connection, the netcat executable might still be
running: as a result, you may rapidly
leave the cluster with hundreds of opened ssh connections, one for
every time you connect to the cluster B.
Therefore, check on both computers A and B that the number of
processes netcat and ssh are disappearing if you close the
connection.
To check if such processes are running, you can execute:

ps -aux | grep <username>

Remember that a cluster might have more than one login node, and the ssh
connection will randomly connect to any of them.

AiiDA config

If the above steps work, setup and configure now the computer as
explained here.

If you properly set up the ~/.ssh/config file in the previous
step, AiiDA should properly parse the information in the file and
provide the correct default value for the proxy_command during the
verdi computer configure step.

Some notes on the proxy_command option

	In the ~/.ssh/config file, you can leave the %h and %p
placeholders, that are then automatically replaced by ssh with the hostname
and the port of the machine B when creating the proxy.
However, in the AiiDA proxy_command option, you need to put the
actual hostname and port. If you start from a properly configured
~/.ssh/config file, AiiDA will already replace these
placeholders with the correct values. However, if you input the proxy_command
value manually, remember to write the
hostname and the port and not %h and %p.

	In the ~/.ssh/config file, you can also insert stdout and stderr
redirection, e.g. 2> /dev/null to hide any error that may occur
during the proxying/tunneling. However, you should only give AiiDA
the actual command to be executed, without any redirection. Again,
AiiDA will remove the redirection when it automatically reads the
~/.ssh/config file, but be careful if entering manually the
content in this field.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Other guide resources

Using AiiDA in multi-user mode

Note

multi-user mode is still not fully supported, and the way it
works will change significantly soon. Do not use unless you know what you
are doing.

Todo

To be documented.

Discuss:

	Security issues

	Under which linux user (aiida) to run, and remove the pwd with passwd -d aiida.

	How to setup each user (aiida@localhost for the daemon user,
correct email for the others using verdi install --only-config)

	How to configure a given user (verdi user configure)

	How to list users (also the –color option, and the meaning of colors)

	How to setup the daemon user (verdi daemon configureuser)

	How to start the daemon

	How to configure the permissions! (all AiiDA in the same group, and
set the ‘chmod -R g+s’ flag to all folders and subfolders of the AiiDA repository)
(comment that by default now we have a flag (harcoded to True) in aiida.common.folders
to give write permissions to the group both to files and folders
created using the Folder class.

	Some configuration example:

{u'compress': True,
 u'key_filename': u'/home/aiida/.aiida/sshkeys/KEYFILE',
 u'key_policy': u'RejectPolicy',
 u'load_system_host_keys': True,
 u'port': 22,
 u'proxy_command': u'ssh -i /home/aiida/.aiida/sshkeys/KEYFILE USERNAME@MIDDLECOMPUTER /bin/nc FINALCOMPUTER 22',
 u'timeout': 60,
 u'username': u'xxx'}

	Moreover, on the remote computer do:

ssh-keyscan FINALCOMPUTER

and append the output to the known_hosts of the aiida daemon account.
Do the same also for the MIDDLECOMPUTER if a proxy_command is user.

	

Deploying AiiDA using Apache

Note

At this stage, this section is meant for developers only.

Todo

To be documented.

Some notes:

	Configure your default site of Apache (check in /etc/apache2/sites-enabled,
probably it is called 000-default).

Add the full ServerName outside of any <VirtualHost> section:

ServerName FULLSERVERNAMEHERE

and inside the VirtualHost that provide access, specifiy the email of the
server administrator (note that the email will be accessible, e.g. it is
shown if a INTERNAL ERROR 500 page is shown):

<VirtualHost *:80>
 ServerAdmin administratoremail@xxx.xx

 # [...]

</VirtualHost>

	Login as the user running apache, e.g. www-data in Ubuntu; use something
like:

sudo su www-data -s /bin/bash

and run ``verdi install`` to configure where the DB and the files stay, etc.

Be also sure to check that this apache user belongs to the group that has
read/write permissions to the AiiDA repository.

	If you home directory is set to /var/www, and this is published by Apache,
double check that nobody can access the .aiida subfolder! By default, during
verdi install AiiDA puts inside the folder a .htaccess file to disallow
access, but this file is not read by some default Apache configurations.

To have Apache honor the .htaccess file, in the default Apache site
(probably the same file as above) you need to set the AllowOverride all
flag in the proper VirtualHost and Directory (note that there can be more
than one, e.g. if you have both HTTP and HTTPS).

You should have something like:

<VirtualHost *:80>
 ServerAdmin xxx@xxx.xx

 DocumentRoot /var/www
 <Directory /var/www/>
 AllowOverride all
 </Directory>
</VirtualHost>

Note

Of course, you will typically have other configurations as well, the
snippet above just shows where the AllowOverride all line should appear.

Double check if you cannot list/read the files (e.g. connecting to
http://YOURSERVER/.aiida).

Todo

Allow to have a trick to have only one file in .aiida, containing
the url where the actual configuration stuff resides (or some other trick
to physically move the configuration files out of /var/www).

	Create a /etc/apache2/sites-available/wsgi-aiida file,
with content:

Alias /static/awi /PATH_TO_AIIDA/aiida.backends.djsite/awi/static/awi/
Alias /favicon.ico /PATH_TO_AIIDA/aiida.backends.djsite/awi/static/favicon.ico

WSGIScriptAlias / /PATH_TO_AIIDA/aiida.backends.djsite/settings/wsgi.py
WSGIPassAuthorization On
WSGIPythonPath /PATH_TO_AIIDA/

<Directory /PATH_TO_AIIDA/aiida.backends.djsite/settings>
<Files wsgi.py>
Order deny,allow
Allow from all
For Apache >= 2.4, replace the two lines above with the one below:
Require all granted
</Files>
</Directory>

Note

Replace everywhere PATH_TO_AIIDA with the full path to the
AiiDA source code. Check that the user running the Apache daemon
can read/access all files in that folder and subfolders.

Note

in the WSGIPythonPath you can also add other folders that should
be in the Python path (e.g. if you use other libraries that should be
accessible). The different paths must be separated with :.

Note

For Apache >= 2.4, replace the two lines:

Order deny,allow
Allow from all

with:

Require all granted

Note

The WSGIScriptAlias exposes AiiDA under main address of your
website (http://SERVER/).

If you want to serve AiiDA under a subfolder, e.g. http://SERVER/aiida,
then change the line containing WSGIScriptAlias with:

WSGIScriptAlias /aiida /PATH_TO_AIIDA/aiida.backends.djsite/settings/wsgi.py

without any trailing slashes after ‘/aiida’.

	Enable the given
site:

sudo a2ensite wsgi-aiida

and reload the Apache configuration to load the new site:

sudo /etc/init.d/apache2 reload

	A comment on permissions (to be improved):
the default Django Authorization (used e.g. in the API) does not allow a
“standard” user to modify data in the DB, but only to read it, therefore
if you are accessing with a user that is not a superuser, all API calls
trying to modify the DB will return an HTTP UNAUTHORIZED message.

Temporarily, you can fix this by going in a verdi shell, loading your user
with something like:

u = models.DbUser.objects.get(email='xxx')

and then upgrading the user to a superuser:

u.is_superuser = True
u.save()

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Other guide resources

AiiDA Website

To run the server:

verdi runserver

For more info:

verdi runserver --help

Anyway the options are those of Django at https://docs.djangoproject.com/en/1.5/ref/django-admin/#runserver-port-or-address-port

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

Developer’s guide

	Developer’s Guide For AiiDA
	Python style
	Pylint

	Version number

	Inline calculations

	Database schema

	Commits and GIT usage

	Tests
	Running the tests

	The test-first approach

	Creating a new test

	Virtual environment
	Basic usage

	Deprecated features, renaming, and adding new methods

	AiiDA internals
	Node
	Methods & properties

	DbNode

	Folders
	Folder

	RepositoryFolder

	SandboxFolder

	Developer calculation plugin tutorial - Integer summation
	Overview

	Code

	Input plugin
	Defining the accepted input Data nodes

	The main plugin logic

	The last step: the calcinfo

	Setup of the code

	Output plugin: the parser

	Submission script

	Conclusion

	Developer data plugin tutorial - Float summation
	Introducing a new data type

	Exercise: Modifying the calculation plugin
	Changes to the parser

	Changes to the input plugin

	Code

	Submission script

	Developer code plugin tutorial - Quantum Espresso
	InputPlugin
	Step 1: inheritance

	Step 2: define input nodes

	Step 3: prepare a text input

	OutputPlugin

	Parser warnings policy
	Warnings

	Parser_warnings

	Automated parser tests
	Test folders

	Creation of a test from an existing calculation

	Running tests

	Workflow’s Guide For AiiDA
	Creating new workflows

	Developer Workflow tutorial
	Creating new workflows

	Running a workflow

	Exercise

	Verdi command line plugins
	Framework for verdi data
	Adding plugins for show, import, export and like

	Implementing list

	Adding a verdi command

	Exporting structures to TCOD

	GIT cheatsheet
	Interesting online resources

	Set the push default behavior to push only the current branch

	View commits that would be pushed

	Switch to another branch

	Associate a local and remote branch

	Branch renaming

	Create a new (lightweight) tag

	Create a new branch from a given tag

	Disallow a branch deletion, or committing to a branch, on BitBucket

	Merge from a different repository

	Sphinx cheatsheet
	Main Titles and Subtitles
	subtitles are made like this

	Formatting
	Basic Paragraph Formatting

	Paragraph and Indentation

	Terminal and Code Formatting

	Notes

	Bullet Points and Lists

	Links, Code Display, Cross References
	External Links

	Code Download

	Code Display

	Cross Reference Docs

	Cross Reference Classes and Methods

	Table of Contents Docs and Code
	Table of Contents for Docs

	Table of Contents for Code

	Automodules Example

	How To Format Docstrings

	Changing The Docs
	This Page

	Properties

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

Developer’s Guide For AiiDA

Python style

When writing python code, a more than reasonable guideline is given by
the Google python styleguide
http://google-styleguide.googlecode.com/svn/trunk/pyguide.html.
The documentation should be written consistently in the style of
sphinx.

And more generally, write verbose! Will you remember
after a month why you had to write that check on that line? (Hint: no)
Write comments!

Pylint

You can check your code style and other important code errors by using Pylint.
Once installed you can run Pylint from the root source directory on the code
using the command:

pylint aiida

The most important part is the summary under the Messages table near the
end.

Version number

The AiiDA version number is stored in aiida/__init__.py. Make sure to
update this when changing version number.

Inline calculations

If an operation is extremely fast to be run, this can be done directly in
Python, without being submitted to a cluster.
However, this operation takes one (or more) input data nodes, and creates new
data nodes, the operation itself is not recorded in the database, and provenance
is lost. In order to put a Calculation object inbetween, we define the
InlineCalculation
class, that is used as the class for these calculations that are run “in-line”.

We also provide a wrapper (that also works as a decorator of a function),
make_inline(). This can be used
to wrap suitably defined function, so that after their execution,
a node representing their execution is stored in the DB, and suitable input
and output nodes are also stored.

Note

See the documentation of this function for further documentation of
how it should be used, and of the requirements for the wrapped function.

Database schema

The Django database schema can be found in aiida.backends.djsite.db.models.

If you need to change the database schema follow these steps:

	Make all the necessary changes to aiida.backends.djsite.db.models

	Create a new migration file. From aiida/backends/djsite, run:

python manage.py makemigrations

This will create the migration file in aiida/backends/djsite/db/migrations whose
name begins with a number followed by some description. If the description
is not appropriate then change to it to something better but retain the
number.

	Open the generated file and make the following changes:

from aiida.backends.djsite.db.migrations import update_schema_version
...
SCHEMA_VERSION = # choose an appropriate version number
 # (hint: higher than the last migration!)
...
class Migration(migrations.Migration):
 ...
 operations = [
 ..
 update_schema_version(SCHEMA_VERSION)
]

	Change the LATEST_MIGRATION variable in
aiida/backends/djsite/db/migrations/__init__.py to the name of your migration
file:

LATEST_MIGRATION = '0003_my_db_update'

This let’s AiiDA get the version number from your migration and make sure the
database and the code are in sync.

	Migrate your database to the new version, (again from aiida/backends/djsite),
run:

python manage.py migrate

Commits and GIT usage

In order to have an efficient management of the project development, we chose
to adopt the guidelines for the branching model described
here [http://nvie.com/posts/a-successful-git-branching-model/].
In particular:

	The main branch in which one should work is called develop

	The master branch is reserved for releases: every commit there implies
a new release. Therefore, one should never commit directly there (except once
per every release).

	New releases should also be tagged.

	Any new modification requiring just one commit can be done in develop

	mid-to-long development efforts should be done in a branch, branching off
from develop (e.g. a long bugfix, or a new feature)

	while working on the branch, often merge the develop branch back
into it (if you also have a remote branch and there are no conflicts,
that can be done with one click from the BitBucket web interface,
and then you just do a local ‘git pull’)

	remember to fix generic bugs in the develop (or in a branch to be
then merged in the develop), not in your local branch
(except if the bug is present only in the branch); only then merge
develop back into your branch. In particular, if it is a complex bugfix,
better to have a branch because it allows to
backport the fix also in old releases, if we want to support multiple versions

	only when a feature is ready, merge it back into develop. If it is
a big change, better to instead do a pull request on BitBucket instead
of directly merging and wait for another (or a few other)
developers to accept it beforehand, to be sure it does not break anything.

For a cheatsheet of git commands, see here.

Note

Before committing, always run:

verdi devel tests

to be sure that your modifications did not introduce any new bugs in existing
code. Remember to do it even if you believe your modification to be small -
the tests run pretty fast!

Tests

Running the tests

To run the tests, use the:

verdi devel tests

command. You can add a list of tests after the
command to run only a selected portion of tests (e.g. while developing, if you
discover that only a few tests fail). Use TAB completion to get the full list
of tests. For instance, to run only the tests for transport and the generic
tests on the database, run:

verdi devel tests aiida.transport db.generic

The test-first approach

Remember in best codes actually the tests are written even before writing the
actual code [http://it.wikipedia.org/wiki/Test_Driven_Development], because this helps in having a clear API.

For any new feature that you add/modify, write a test for it! This is extremely
important to have the project last and be as bug-proof as possible. Even more
importantly, add a test that fails when you find a new bug, and then solve the
bug to make the test work again, so that in the future the bug is not introduced
anymore.

Remember to make unit tests as atomic as possible, and to document them so that
other developers can understand why you wrote that test, in case it should fail
after some modification.

Creating a new test

There are three types of tests:

	Tests that do not require the usage of the database (testing the creation of
paths in k-space, the functionality of a transport plugin, ...)

	Tests that require the database, but do not require submission (e.g.
verifying that node attributes can be correctly queried, that the transitive
closure table is correctly generated, ...)

	Tests that require the submission of jobs

For each of the above types of tests, a different testing approach is followed
(you can also see existing tests as guidelines of how tests are written):

	Tests are written inside the package that one wants to test, creating
a test_MODULENAME.py file. For each group of tests, create a new subclass
of unittest.TestCase, and then create the tests as methods using
the unittests module [https://docs.python.org/2/library/unittest.html].
Tests inside a selected number of AiiDA packages are automatically discovered
when running verdi devel tests. To make sure that your test is discovered,
verify that its parent module is listed in the
base_allowed_test_folders property of the Devel class, inside
aiida.cmdline.commands.devel.

For an example of this type of tests, see, e.g.,
the aiida.common.test_utils module.

	In this case, we use the testing functionality of
Django [https://docs.djangoproject.com/en/dev/topics/testing/],
adapted to run smoothly with AiiDA.

To create a new group of tests, create a new python file under
aiida.backends.djsite.db.substests, and instead of inheriting each class directly
from unittest, inherit from aiida.backends.djsite.db.testbase.AiidaTestCase.
In this way:

	The Django testing functionality is used, and a temporary database is used

	every time the class is created to run its tests, default data are
added to the database, that would otherwise be empty (in particular, a
computer and a user; for more details, see the code of
the AiidaTestCase.setUpClass() method).

	at the end of all tests of the class, the database is cleaned
(nodes, links, ... are deleted) so that the temporary database
is ready to run the tests of the following test classes.

Note

it is extremely important that these tests are run from the
verdi devel tests command line interface. Not only this will ensure
that a temporary database is used (via Django), but also that a temporary
repository folder is used. Otherwise, you risk to corrupt your database
data. (In the codes there are some checks to avoid that these classes
are run without the correct environment being prepared by verdi
devel tests.)

Once you create a new file in aiida.backends.djsite.db.substests, you have to
add a new entry to the db_test_list inside aiida.backends.djsite.db.testbase
module in order for verdi devel tests to find it. In particular,
the key should be the name that you want to use on the command line of
verdi devel tests to run the test, and the value should be the full
module name to load. Note that, in verdi devel tests,
the string db. is prepended to the name of each test involving the
database.
Therefore, if you add a line:

db_test_list = {
 ...
 'newtests': 'aiida.backends.djsite.db.subtests.mynewtestsmodule',
 ...
}

you will be able to run all all tests inside
aiida.backends.djsite.db.subtests.mynewtestsmodule with the command:

verdi devel tests db.newtests

Note

If in the list of parameters to verdi devel tests you add
also a db parameter, then all database-related tests will be run, i.e.,
all tests that start with db. (or, if you want, all tests in the
db_test_list described above).

Note

By default, the test database is created using an in-memory SQLite
database, which is much faster than creating from scratch a new test
database with PostgreSQL or SQLite. However, if you want to test
database-specific settings and you want to use the same type of database
you are using with AiiDA, set the tests.use_sqlite global property to
False:

verdi devel setproperty tests.use_sqlite false

	These tests require an external engine to submit the calculations and then
check the results at job completion. We use for this a continuous integration
server, and the best approach is to write suitable workflows to run
simulations and then verify the results at the end.

Special tests

Some tests have special routines to ease and simplify the creation of new tests.
One case is represented by the tests for transport. In this case, you can define
tests for a specific plugin as described above (e.g., see the
aiida.transport.plugins.test_ssh and aiida.transport.plugins.test_local
tests). Moreover, there is a test_all_plugins module in the same folder.
Inside this module, the discovery code is adapted so that each test method
defined in that file and decorated with @run_for_all_plugins is
run for all available plugins, to avoid to rewrite the same
test code more than once and ensure that all plugins behave in the
same way (e.g., to copy files, remove folders, etc.).

Virtual environment

Sometimes it’s useful to have a virtual environment that separates out the
AiiDA dependencies from the rest of the system. This is especially the case
when testing AiiDA against library versions that are different from those
installed on the system.

First, install virtualenv using pip:

pip install virtualenv

Basic usage

	To create a virtual environment in folder venv, while in the AiiDA
directory type:

virtualenv venv

This puts a copy of the Python executables and the pip library within the
venv folder hierarchy.

	Activate the environment with:

source venv/bin/activate

Your shell should now be prompt should now start with (venv).

	(optional) Install AiiDA:

pip install .

	Deactivate the virtual environment:

deactivate

Deprecated features, renaming, and adding new methods

In case a method is renamed or removed, this is the procedure to follow:

	(If you want to rename) move the code to the new function name.
Then, in the docstring, add something like:

.. versionadded:: 0.7
 Renamed from OLDMETHODNAME

	Don’t remove directly the old function, but just change the code to use
the new function, and add in the docstring:

.. deprecated:: 0.7
 Use :meth:`NEWMETHODNAME` instead.

Moreover, at the beginning of the function, add something like:

import warnings

warnings.warn(
 "OLDMETHODNAME is deprecated, use NEWMETHODNAME instead",
 DeprecationWarning)

(of course, replace OLDMETHODNAME and NEWMETHODNAME with the
correct string, and adapt the strings to the correct content if you are
only removing a function, or just adding a new one).

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

AiiDA internals

Node

The Node class is the basic class that represents all the possible objects at the AiiDA world. More precisely it is inherited by many classes including (among others) the Calculation class, representing computations that convert data into a different form, the Code class representing executables and file collections that are used by calculations and the Data class which represents data that can be input or output of calculations.

Methods & properties

In the sequel the most important methods and properties of the Node class will be described.

Node subclasses organization

The Node class has two important variables:

	_plugin_type_string characterizes the class of the object.

	_query_type_string characterizes the class and all its subclasses (by pointing to the package or Python file that contain the class).

The convention for all the Node subclasses is that if a class B is inherited by a class A then there should be a package A under aiida/orm that has a file __init__.py and a B.py in that directory (or a B package with the corresponding __init__.py)

An example of this is the ArrayData and the KpointsData. ArrayData is placed in aiida/orm/data/array/__init__.py and KpointsData which inherits from ArrayData is placed in aiida/orm/data/array/kpoints.py

This is an implicit & quick way to check the inheritance of the Node subclasses.

General purpose methods

	__init__(): The initialization of the Node class can be done by not providing any attributes or by providing a DbNode as initialization. E.g.:

dbn = a_dbnode_object
n = Node(dbnode=dbn.dbnode)

	ctime() and mtime() provide the creation and the modification time of the node.

	is_stored() informs whether a node is already stored to the database.

	query() queries the database by filtering for the results for similar nodes (if the used object is a subclass of Node) or with no filtering if it is a Node class. Note that for this check _plugin_type_string should be properly set.

	computer() returns the computer associated to this node.

	_validate() does a validation check for the node. This is important for Node subclasses where various attributes should be checked for consistency before storing.

	get_user() returns the user that created the node.

	_increment_version_number_db(): increment the version number of the node on the DB. This happens when adding an attribute or an extra to the node. This method should not be called by the users.

	copy() returns a not stored copy of the node with new UUID that can be edited directly.

	uuid() returns the universally unique identifier (UUID) of the node.

	pk() returns the principal key (ID) of the node.

	dbnode() returns the corresponding Django object.

	get_computer() & set_computer() get and set the computer to be used & is associated to the node.

Annotation methods

The Node can be annotated with labels, description and comments. The following methods can be used for the management of these properties.

Label management:

	label() returns the label of the node. The setter method can be used for the update of the label.

	_update_db_label_field() updates the label in the database. This is used by the setter method of the label.

Description management:

	description(): the description of the node (more detailed than the label). There is also a setter method.

	_update_db_description_field(): update the node description in the database.

Comment management:

	add_comment() adds a comment.

	get_comments() returns a sorted list of the comments.

	_get_dbcomments() is similar to get_comments(), just the sorting changes.

	_update_comment() updates the node comment. It can be done by verdi comment update.

	_remove_comment() removes the node comment. It can be done by verdi comment remove.

Link management methods

Node objects and objects of its subclasses can have ancestors and descendants. These are connected with links. The following methods exist for the processing & management of these links.

	_has_cached_links() shows if there are cached links to other nodes.

	add_link_from() adds a link to the current node from the ‘src’ node with the given label. Depending on whether the nodes are stored or node, the linked are written to the database or to the cache.

	_add_cachelink_from() adds a link to the cache.

	_replace_link_from() replaces or creates an input link.

	_remove_link_from() removes an input link that is stored in the database.

	_replace_dblink_from() is similar to _replace_link_from() but works directly on the database.

	_remove_dblink_from() is similar to _remove_link_from() but works directly on the database.

	_add_dblink_from() adds a link to the current node from the given ‘src’ node. It acts directly on the database.

Listing links example

Assume that the user wants to see the available links of a node in order to understand the structure of the graph and maybe traverse it. In the following example, we load a specific node and we list its input and output links. The returned dictionaries have as keys the link name and as value the linked node. Here is the code:

In [1]: # Let's load a node with a specific pk

In [2]: c = load_node(139168)

In [3]: c.get_inputs_dict()
Out[3]:
{u'code': <Code: Remote code 'cp-5.1' on daint, pk: 75709, uuid: 3c9cdb7f-0cda-402e-b898-4dd0d06aa5a4>,
 u'parameters': <ParameterData: uuid: 94efe64f-7f7e-46ea-922a-fe64a7fba8a5 (pk: 139166)>,
 u'parent_calc_folder': <RemoteData: uuid: becb4894-c50c-4779-b84f-713772eaceff (pk: 139118)>,
 u'pseudo_Ba': <UpfData: uuid: 5e53b22d-5757-4d50-bbe0-51f3b9ac8b7c (pk: 1905)>,
 u'pseudo_O': <UpfData: uuid: 5cccd0d9-7944-4c67-b3c7-a39a1f467906 (pk: 1658)>,
 u'pseudo_Ti': <UpfData: uuid: e5744077-8615-4927-9f97-c5f7b36ba421 (pk: 1660)>,
 u'settings': <ParameterData: uuid: a5a828b8-fdd8-4d75-b674-2e2d62792de0 (pk: 139167)>,
 u'structure': <StructureData: uuid: 3096f83c-6385-48c4-8cb2-24a427ce11b1 (pk: 139001)>}

In [4]: c.get_outputs_dict()
Out[4]:
{u'output_parameters': <ParameterData: uuid: f7a3ca96-4594-497f-a128-9843a1f12f7f (pk: 139257)>,
 u'output_parameters_139257': <ParameterData: uuid: f7a3ca96-4594-497f-a128-9843a1f12f7f (pk: 139257)>,
 u'output_trajectory': <TrajectoryData: uuid: 7c5b65bc-22bb-4b87-ac92-e8a78cf145c3 (pk: 139256)>,
 u'output_trajectory_139256': <TrajectoryData: uuid: 7c5b65bc-22bb-4b87-ac92-e8a78cf145c3 (pk: 139256)>,
 u'remote_folder': <RemoteData: uuid: 17642a1c-8cac-4e7f-8bd0-1dcebe974aa4 (pk: 139169)>,
 u'remote_folder_139169': <RemoteData: uuid: 17642a1c-8cac-4e7f-8bd0-1dcebe974aa4 (pk: 139169)>,
 u'retrieved': <FolderData: uuid: a9037dc0-3d84-494d-9616-42b8df77083f (pk: 139255)>,
 u'retrieved_139255': <FolderData: uuid: a9037dc0-3d84-494d-9616-42b8df77083f (pk: 139255)>}

Understanding link names

The nodes may have input and output links. Every input link of a node should have a unique name and this unique name is mapped to a specific node. On the other hand, given a node c, many output nodes may share the same output link name. To differentiate between the output nodes of c that have the same link name, the pk of the output node is added next to the link name (please see the input & output nodes in the above example).

Input/output related methods

The input/output links of the node can be accessed by the following methods.

Methods to get the input data

	get_inputs_dict() returns a dictionary where the key is the label of the input link.

	get_inputs() returns the list of input nodes

	inp() returns a NodeInputManager() object that can be used to access the node’s parents.

	has_parents() returns true or false whether the node has parents

Methods to get the output data

	get_outputs_dict() returns a dictionary where the key is the label of the output link, and the value is the output node.

	get_outputs() returns a list of output nodes.

	out() returns a NodeOutputManager() object that can be used to access the node’s children.

	has_children() returns true or false whether the node has children.

Navigating in the ``node`` graph

The user can easily use the NodeInputManager() and the NodeOutputManager() objects of a node (provided by the inp() and out() respectively) to traverse the node graph and access other connected nodes. inp() will give us access to the input nodes and out() to the output nodes. For example:

In [1]: # Let's load a node with a specific pk

In [2]: c = load_node(139168)

In [3]: c
Out[3]: <CpCalculation: uuid: 49084dcf-c708-4422-8bcf-808e4c3382c2 (pk: 139168)>

In [4]: # Let's traverse the inputs of this node.

In [5]: # By typing c.inp. we get all the input links

In [6]: c.inp.
c.inp.code c.inp.parent_calc_folder c.inp.pseudo_O c.inp.settings
c.inp.parameters c.inp.pseudo_Ba c.inp.pseudo_Ti c.inp.structure

In [7]: # We may follow any of these links to access other nodes. For example, let's follow the parent_calc_folder

In [8]: c.inp.parent_calc_folder
Out[8]: <RemoteData: uuid: becb4894-c50c-4779-b84f-713772eaceff (pk: 139118)>

In [9]: # Let's assign to r the node reached by the parent_calc_folder link

In [10]: r = c.inp.parent_calc_folder

In [11]: r.inp.__dir__()
Out[11]:
['__class__',
 '__delattr__',
 '__dict__',
 '__dir__',
 '__doc__',
 '__format__',
 '__getattr__',
 '__getattribute__',
 '__getitem__',
 '__hash__',
 '__init__',
 '__iter__',
 '__module__',
 '__new__',
 '__reduce__',
 '__reduce_ex__',
 '__repr__',
 '__setattr__',
 '__sizeof__',
 '__str__',
 '__subclasshook__',
 '__weakref__',
 u'remote_folder']

In [12]: r.out.
r.out.parent_calc_folder r.out.parent_calc_folder_139168

In [13]: # By following the same link from node r, you will get node c

In [14]: r.out.parent_calc_folder
Out[14]: <CpCalculation: uuid: 49084dcf-c708-4422-8bcf-808e4c3382c2 (pk: 139168)>

Attributes related methods

Each Node() object can have attributes which are properties that characterize the node. Such properties can be the energy, the atom symbols or the lattice vectors. The following methods can be used for the management of the attributes.

	_set_attr() adds a new attribute to the node. The key of the attribute is the property name (e.g. energy, lattice_vectors etc) and the value of the attribute is the value of that property.

	_del_attr() & _del_all_attrs() delete a specific or all attributes.

	get_attr() returns a specific attribute.

	iterattrs() returns an iterator over the attributes. The iterators returns tuples of key/value pairs.

	attrs() returns the keys of the attributes.

Extras related methods

Extras are additional information that are added to the calculations. In contrast to files and attributes, extras are information added by the user (user specific).

	set_extra() adds an extra to the database. To add a more extras at once, set_extras() can be used.

	get_extra() and get_extras() return a specific extra or all the available extras respectively. extras() returns the keys of the extras. iterextras() returns an iterator (returning key/value tuples) of the extras.

	del_extra() deletes an extra.

Folder management

Folder objects represent directories on the disk (virtual or not) where extra information for the node are stored. These folders can be temporary or permanent.

	folder() returns the folder associated to the node.

	get_folder_list() returns the list of files that are in the path sub-folder of the repository folder.

	_repository_folder() returns the permanent repository folder.

	_get_folder_pathsubfolder() returns the path sub-folder in the repository.

	_get_temp_folder() returns the node folder in the temporary repository.

	remove_path() removes a file/directory from the repository.

	add_path() adds a file or directory to the repository folder.

	get_abs_path() returns the absolute path of the repository folder.

Store & deletion

	store_all() stores all the input nodes, then it stores the current node and in the end, it stores the cached input links.

	_store_input_nodes() stores the input nodes.

	_check_are_parents_stored() checks that the parents are stored.

	_store_cached_input_links() stores the input links that are in memory.

	store() method checks that the node data is valid, then check if node‘s parents are stored, then moves the contents of the temporary folder to the repository folder and in the end, it stores in the database the information that are in the cache. The latter happens with a database transaction. In case this transaction fails, then the data transfered to the repository folder are moved back to the temporary folder.

	__del__() deletes temporary folder and it should be called when an in-memory object is deleted.

DbNode

The DbNode is the Django class that corresponds to the Node class allowing to store and retrieve the needed information from and to the database. Other classes extending the Node class, like Data, Calculation and Code use the DbNode code too to interact with the database. The main methods are:

	get_aiida_class() which returns the corresponding AiiDA class instance.

	get_simple_name() which returns a string with the type of the class (by stripping the path before the class name).

	attributes() which returns the all the attributes of the specific node as a dictionary.

	extras() which returns all the extras of the specific node as a dictionary.

Folders

AiiDA uses Folder and its subclasses to add an abstraction layer between the functions and methods working directly on the file-system and AiiDA. This is particularly useful when we want to easily change between different folder options (temporary, permanent etc) and storage options (plain local directories, compressed files, remote files & directories etc).

Folder

This is the main class of the available Folder classes. Apart from the abstraction provided to the OS operations needed by AiiDA, one of its main features is that it can restrict all the available operations within a given folder limit. The available methods are:

	mode_dir() and mode_file() return the mode with which folders and files should be writable.

	get_subfolder() returns the subfolder matching the given name

	get_content_list() returns the contents matching a pattern.

	insert_path() adds a file/folder to a specific location and remove_path() removes a file/folder

	get_abs_path() returns the absolute path of a file/folder under a given folder and abspath() returns the absolute path of the folder.

	create_symlink() creates a symlink pointing the given location inside the folder.

	create_file_from_filelike() creates a file from the given contents.

	open() opens a file in the folder.

	folder_limit() returns the limit under which the creation of files/folders is restrained.

	exists() returns true or false depending whether a folder exists or not.

	isfile() and py:meth:~aiida.common.folders.Folder.isdir return true or false depending on the existence of the given file/folder.

	create() creates the folder, erase() deletes the folder and replace_with_folder() copies/moves a given folder.

RepositoryFolder

Objects of this class correspond to the repository folders. The RepositoryFolder specific methods are:

	__init__() initializes the object with the necessary folder names and limits.

	get_topdir() returns the top directory.

	section() returns the section to which the folder belongs. This can be for the moment a workflow or node.

	subfolder() returns the subfolder within the section/uuid folder.

	uuid() the UUID of the corresponding node or workflow.

SandboxFolder

SandboxFolder objects correspond to temporary (“sandbox”) folders. The main methods are:

	__init__() creates a new temporary folder

	__exit__() destroys the folder on exit.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

Developer calculation plugin tutorial - Integer summation

In this chapter we will give you some examples and a brief guide on how to write
a plugin to support a new code. We will focus here on a very simple code (that
simply adds two numbers), so that we can focus only on how AiiDA manages
the calculation. At the end, you will have an overview of how a plugin is
developed. You will be able then to proceed to more complex plugin guides like
the guide for the Quantum Espresso plugin, or you can directly jump in
and develop your own plugin!

Overview

Before analysing the different components of the plugin, it is important to
understand which are these and their interaction.

We should keep in mind that AiiDA is a tool allowing us to perform easily
calculations and to maintain data provenance. That said, it should be clear
that AiiDA doesn’t perform the calculations but orchestrates the calculation
procedure following the user’s directives. Therefore, AiiDA executes (external)
codes and it needs to know:

	where the code is;

	how to prepare the input for the code. This is called an input plugin or a
Calculation subclass;

	how to parse the output of the code. This is called an output plugin or a
Parser subclass.

It is also useful, but not necessary, to have a script that prepares the
calculation for AiiDA with the necessary parameters and submits it.
Let’s start to see how to prepare these components.

Code

The code is an external program that does a useful calculation for us. For
detailed information on how to setup the new codes, you can have a look at the
respective documentation page.

Imagine that we have the following python code that we want to install. It
does the simple task of adding two numbers that are found in a JSON file, whose
name is given as a command-line parameter:

#!/usr/bin/env python
-*- coding: utf-8 -*-

import json
import sys

in_file = sys.argv[1]
out_file = sys.argv[2]

with open(in_file) as f:
 in_dict = json.load(f)

out_dict = { 'sum':in_dict['x1']+in_dict['x2'] }

with open(out_file,'w') as f:
 json.dump(out_dict,f)

The result will be stored in JSON format in a file which name is also passed
as parameter. The resulting file from the script will be handled by AiiDA. The
code can be downloaded from here. We will now
proceed to prepare an AiiDA input plugin for this code.

Input plugin

In abstract term, this plugin must contain the following two pieces of
information:

	what are the input data objects of the calculation;

	how to convert the input data object in the actual input file required by
the external code.

Let’s have a look at the input plugin developed for the aforementioned
summation code (a detailed description of the different sections follows):

-*- coding: utf-8 -*-

from aiida.orm import JobCalculation
from aiida.orm.data.parameter import ParameterData
from aiida.common.utils import classproperty
from aiida.common.exceptions import InputValidationError
from aiida.common.exceptions import ValidationError
from aiida.common.datastructures import CalcInfo, CodeInfo
import json

class SumCalculation(JobCalculation):
 """
 A generic plugin for adding two numbers.
 """

 def _init_internal_params(self):
 super(SumCalculation, self)._init_internal_params()

 self._INPUT_FILE_NAME = 'in.json'
 self._OUTPUT_FILE_NAME = 'out.json'
 self._default_parser = 'sum'

 @classproperty
 def _use_methods(cls):
 """
 Additional use_* methods for the namelists class.
 """
 retdict = JobCalculation._use_methods
 retdict.update({
 "parameters": {
 'valid_types': ParameterData,
 'additional_parameter': None,
 'linkname': 'parameters',
 'docstring': ("Use a node that specifies the input parameters "
 "for the namelists"),
 },
 })
 return retdict

 def _prepare_for_submission(self,tempfolder, inputdict):
 """
 This is the routine to be called when you want to create
 the input files and related stuff with a plugin.

 :param tempfolder: a aiida.common.folders.Folder subclass where
 the plugin should put all its files.
 :param inputdict: a dictionary with the input nodes, as they would
 be returned by get_inputs_dict (with the Code!)
 """
 try:
 parameters = inputdict.pop(self.get_linkname('parameters'))
 except KeyError:
 raise InputValidationError("No parameters specified for this "
 "calculation")
 if not isinstance(parameters, ParameterData):
 raise InputValidationError("parameters is not of type "
 "ParameterData")
 try:
 code = inputdict.pop(self.get_linkname('code'))
 except KeyError:
 raise InputValidationError("No code specified for this "
 "calculation")
 if inputdict:
 raise ValidationError("Cannot add other nodes beside parameters")

 ##############################
 # END OF INITIAL INPUT CHECK #
 ##############################

 input_json = parameters.get_dict()

 # write all the input to a file
 input_filename = tempfolder.get_abs_path(self._INPUT_FILE_NAME)
 with open(input_filename, 'w') as infile:
 json.dump(input_json, infile)

 # ============================ calcinfo ================================

 calcinfo = CalcInfo()
 calcinfo.uuid = self.uuid
 calcinfo.local_copy_list = []
 calcinfo.remote_copy_list = []
 calcinfo.retrieve_list = [self._OUTPUT_FILE_NAME]

 codeinfo = CodeInfo()
 codeinfo.cmdline_params = [self._INPUT_FILE_NAME,self._OUTPUT_FILE_NAME]
 codeinfo.code_uuid = code.uuid
 calcinfo.codes_info = [codeinfo]

 return calcinfo

The above input plugin can be downloaded from
(here) and should be placed at
aiida/orm/calculation/job/sum.py.

In order the plugin to be automatically discoverable by AiiDA, it is important
to:

	give the right name to the file. This should be the name of your input plugin
(all lowercase);

	place the plugin under aiida/orm/calculation/job;

	name the class inside the plugin as PluginnameCalculation. For example, the
class name of the summation input plugin is, as you see above,
SumCalculation. The first letter must be capitalized, the other letters
must be lowercase;

	inherit the class from JobCalculation.

By doing the above, your plugin will be discoverable and loadable
using CalculationFactory.

Note

The base Calculation class should only be used as the abstract
base class. Any calculation that needs to run on a remote scheduler must
inherit from JobCalculation, that
contains all the methods to run on a remote scheduler, get the calculation
state, copy files remotely and retrieve them, ...

Defining the accepted input Data nodes

The input data nodes that the input plugin expects are those returned by the
_use_methods class property.
It is important to always extend the dictionary returned by the parent class,
starting this method with:

retdict = JobCalculation._use_methods

(or the correct parent class, instead of JobCalculation, if you are
inheriting from a subclass).

The specific parameters needed by the plugin are defined by the following
code snippet:

retdict.update({
 "parameters": {
 'valid_types': ParameterData,
 'additional_parameter': None,
 'linkname': 'parameters',
 'docstring': ("Use a node that specifies the input parameters "
 "for the namelists"),
 },
 })

This means that this specific summation plugin expects only one input data
node, which is of the type ParameterData and with link name parameters.

The main plugin logic

The main logic of the plugin (called by AiiDA just before submission, in order
to read the AiiDA input data nodes and create the actual input files for the
extenal code) must be defined inside a method _prepare_for_submission, that
will receive (beside self) two parameters, a temporary folder tempfolder
in which content can be written, and a dictionary containing all the input
nodes that AiiDA will retrieve from the database (in this way, the plugin does
not need to browse the database).

The input data node with the parameter is retrieved using its link name
parameters specified above:

parameters = inputdict.pop(self.get_linkname('parameters'))

A few additional checks are performed to retrieve also the input code (the AiiDA
node representing the code executable, that we are going to setup in the next
section) and verify that there are no unexpected additional input nodes.

The following lines do the actual job, and prepare the input file for the
external code, creating a suitable JSON file:

input_json = parameters.get_dict()

write all the input to a file
input_filename = tempfolder.get_abs_path(self._INPUT_FILE_NAME)
with open(input_filename, 'w') as infile:
 json.dump(input_json, infile)

The last step: the calcinfo

We can now create the calculation info: an object containing some additional
information that AiiDA needs (beside the files you generated in the folder)
in order to submit the claculation.
In the calcinfo object, you need to store the calculation UUID:

calcinfo.uuid = self.uuid

You should also define a list of output files that will be retrieved
automatically after the code execution, and that will be stored permanently
into the AiiDA database:

calcinfo.retrieve_list = [self._OUTPUT_FILE_NAME]

For the time being, just define also the following variables as empty lists
(we will describe them in the next sections):

calcinfo.local_copy_list = []
calcinfo.remote_copy_list = []

Finally, you need to specify which code executable(s) need to be called
link the code to the codeinfo object.
For each code, you need to create a CodeInfo object, specify the code UUID,
and define the command line parameters that should be passed to the code as a
list of strings (only paramters after the executable name must be specified.
Moreover, AiiDA takes care of escaping spaces and other symbols).
In our case, our code requires the name of the input file, followed by the
name of the output file, so we write:

codeinfo.cmdline_params = [self._INPUT_FILE_NAME,self._OUTPUT_FILE_NAME]

Finally, we link the just created codeinfo to the calcinfo, and return
it:

calcinfo.codes_info = [codeinfo]

return calcinfo

Note

calcinfo.codes_info is a list of CodeInfo objects. This
allows to support the execution of more than one code, and will be described
later.

Note

All content stored in the tempfolder will be then stored into the
AiiDA database, potentially forever. Therefore, before generating
huge files, you should carefully think at how to design your plugin
interface. In particular, give a look to the local_copy_list and
remote_copy_list attributes of calcinfo,
described in more detail in the Quantum ESPRESSO developer
plugin tutorial.

By doing all the above, we have clarified what parameters should be passed
to which code, we have prepared the input file that the code will access
and we let also AiiDA know the name of the output file: our first input plugin
is ready!

Note

A few class internal parameters can (or should) be defined inside the
_init_internal_params method:

def _init_internal_params(self):
 super(SumCalculation, self)._init_internal_params()

 self._INPUT_FILE_NAME = 'in.json'
 self._OUTPUT_FILE_NAME = 'out.json'
 self._default_parser = 'sum'

In particular, it is good practice to define
a _INPUT_FILE_NAME and _OUTPUT_FILE_NAME attributes (pointing to the
default input and output file name – these variables are then used by some
verdi commands, such as verdi calculation outputcat). Also, you need
to define the name of the default parser that will be invoked when the
calculation completes in _default_parser.
In the example above, we choose the ‘sum’ plugin (that
we are going to define later on). If you don’t want to call any parser,
set this variable to None.

As a final step, after copying the file in the location specified above, we
can check if AiiDA recognised the plugin, by running the command
verdi calculation plugins and veryfing that our new sum plugin is
now listed.

Setup of the code

Now that we know the executable that we want to run, and we have setup the
input plugin, we can proceed to configure AiiDA by setting up a new code to
execute:

verdi code setup

During the setup phase, you can either configure a remote code (meaning that
you are going to place the python executable in the right folder of the remote
computer, and then just instruct AiiDA on the location), or as a local folder,
meaning that you are going to store (during the setup phase) the python
executable into the AiiDA DB, and AiiDA will copy it to the remote computer
when needed. In this second case, put the sum_executable.py in an empty
folder and pass this folder in the setup phase.

Note

In both cases, remember to set the executable flag to the code by
running chmod +x sum_executable.py.

After defining the code, we should be able to see it in the list of our installed
codes by typing:

verdi code list

A typical output of the above command is:

$ verdi code list
List of configured codes:
(use 'verdi code show CODEID' to see the details)
* Id 73: sum

Where we can see the already installed summation code. We can further see the
specific parameters that we gave when we set-up the code by typing:

verdi code show 73

Which will give us an output similar to the following:

$ verdi code show 73
 * PK: 73
* UUID: 34b44d33-86c1-478b-88ff-baadfb6f30bf
 * Label: sum
 * Description: A simple sum executable
 * Default plugin: sum
 * Used by: 0 calculations
 * Type: local
 * Exec name: ./sum_executable.py
 * List of files/folders:
 * [file] sum_executable.py
 * prepend text:
 # No prepend text.
 * append text:
 # No append text.

What is important to keep from the above is that we have informed AiiDA for the
existence of a code that resides at a specific location and we have also
specified the default (input) plugin that will be used.

Output plugin: the parser

In general, it is useful to parse files generated by the code to import
relevant data into the database. This has two advantages:

	we can store information in specific data classes to facilitate their use
(e.g. crystal structures, parameters, ...)

	we can then make use of efficient database queries if, e.g., output quantities
are stored as integers or floats rather than as strings in a long text file.

The following is a sample output plugin for the summation code, described in
detail later:

-*- coding: utf-8 -*-

from aiida.orm.calculation.job.sum import SumCalculation
from aiida.parsers.parser import Parser
from aiida.parsers.exceptions import OutputParsingError
from aiida.orm.data.parameter import ParameterData

import json

class SumParser(Parser):
 """
 This class is the implementation of the Parser class for Sum.
 """
 def parse_with_retrieved(self, retrieved):
 """
 Parses the datafolder, stores results.
 This parser for this simple code does simply store in the DB a node
 representing the file of forces in real space
 """

 successful = True
 # select the folder object
 # Check that the retrieved folder is there
 try:
 out_folder = retrieved[self._calc._get_linkname_retrieved()]
 except KeyError:
 self.logger.error("No retrieved folder found")
 return False, ()

 # check what is inside the folder
 list_of_files = out_folder.get_folder_list()
 # at least the stdout should exist
 if self._calc._OUTPUT_FILE_NAME not in list_of_files:
 successful = False
 self.logger.error("Output json not found")
 return successful,()

 try:
 with open(out_folder.get_abs_path(self._calc._OUTPUT_FILE_NAME)) as f:
 out_dict = json.load(f)
 except ValueError:
 successful=False
 self.logger.error("Error parsing the output json")
 return successful,()

 # save the arrays
 output_data = ParameterData(dict=out_dict)
 link_name = self.get_linkname_outparams()
 new_nodes_list = [(link_name, output_data)]

 return successful,new_nodes_list

As mentioned above the output plugin will parse the output of the executed
code at the remote computer and it will store the results to the AiiDA database.

All the parsing code is enclosed in a single method parse_with_retrieved,
that will receive as a single parameter retrieved, a dictionary of retrieved
nodes. The default behavior is to create a single FolderData node, that can
be retrieved using:

out_folder = retrieved[self._calc._get_linkname_retrieved()]

We then read and parse the output file that will contain the result:

with open(out_folder.get_abs_path(self._calc._OUTPUT_FILE_NAME)) as f:
 out_dict = json.load(f)

Note

all parsers have a self._calc attribute that points to the
calculation being parsed. This is automatically set in the parent Parser
class.

After loading the code result data to the dictionary out_dict,
we construct a ParameterData object (ParameterData(dict=out_dict))
that will be linked to the calculation in the AiiDA graph to be later
in the database:

output_data = ParameterData(dict=out_dict)
link_name = self.get_linkname_outparams()
new_nodes_list = [(link_name, output_data)]

return successful,new_nodes_list

Note

Parsers should not store nodes manually. Instead, they should return
a list of output unstored nodes (together with a link name string, as shown
above). AiiDA will then take care of storing the node, and creating the
appropriate links in the DB.

Note

the self.get_linkname_outparams() is a string automatically
defined in all Parser classes and subclasses. In general, you can have
multiple output nodes with any name, but it is good pratice so have also
one of the output nodes with link name self.get_linkname_outparams()
and of type ParameterData. The reason is that this node is the one exposed
with the calc.res interface (for instance, later we will be able to get
the results using print calc.res.sum.

The above output plugin can be downloaded from here
and should be placed at aiida/parsers/plugins/sum.py.

Note

Before continuing, it is important to restart the daemon, so that
it can recognize the new files added into the aiida code and use the new
plugins. To do so, run now:

verdi daemon restart

Submission script

It’s time to calculate how much 2+3 is! We need to submit a new calculation.
To this aim, we don’t necessarily need a submission script, but it
definitely facilitates the calculation submission. A very minimal
sample script follows (other examples can be found in the
aiida/examples/submission folder):

#!/usr/bin/env runaiida
-*- coding: utf-8 -*-
import sys
import os

from aiida.common.exceptions import NotExistent
ParameterData = DataFactory('parameter')

The name of the code setup in AiiDA
codename = 'sum'
computer_name = 'localhost'

##
try:
 dontsend = sys.argv[1]
 if dontsend == "--dont-send":
 submit_test = True
 elif dontsend == "--send":
 submit_test = False
 else:
 raise IndexError
except IndexError:
 print >> sys.stderr, ("The first parameter can only be either "
 "--send or --dont-send")
 sys.exit(1)

code = Code.get_from_string(codename)
The following line is only needed for local codes, otherwise the
computer is automatically set from the code
computer = Computer.get(computer_name)

These are the two numbers to sum
parameters = ParameterData(dict={'x1':2,'x2':3})

calc = code.new_calc()
calc.label = "Test sum"
calc.description = "Test calculation with the sum code"
calc.set_max_wallclock_seconds(30*60) # 30 min
calc.set_computer(computer)
calc.set_withmpi(False)
calc.set_resources({"num_machines": 1})

calc.use_parameters(parameters)

if submit_test:
 subfolder, script_filename = calc.submit_test()
 print "Test submit file in {}".format(os.path.join(
 os.path.relpath(subfolder.abspath),
 script_filename
))
else:
 calc.store_all()
 calc.submit()
 print "submitted calculation; calc=Calculation(uuid='{}') # ID={}".format(
 calc.uuid,calc.dbnode.pk)

What is important to note in the script above is the definition of the code
to be used:

codename = 'sum'
code = Code.get_from_string(codename)

and the definition of the parameters:

parameters = ParameterData(dict={'x1':2,'x2':3})
calc.use_parameters(parameters)

If everything is done correctly, by running the script a new calculation will
be generated and submitted to AiiDA (to run the script, remember to change its
permissions with chmod +x filename first,
and then run it with ./scriptname.py).
When the code finishes its
execution, AiiDA will retrieve the results, parse and store them back to
the AiiDA database using the output plugin.
You can download the submission script from here.

Conclusion

We have just managed to write our first AiiDA plugin! What is important to
remember is that:

	AiiDA doesn’t know how to execute your code. Therefore, you have to setup
your code (with verdi code setup) and let AiiDA know how to prepare the
data that will be given to the code (input plugin or calculation) and how
to handle the result of the code (output plugin or parser).

	you need to do pass the actual data for the calculation you want to
submit, either in the interactive shell, or via a submission script.

As usual, we can see the executed calculations by doing a
verdi calculation list. To see the calculations of the last day:

$ verdi calculation list -a -p1
Last daemon state_updater check: 0h:00m:06s ago (at 20:10:31 on 2015-10-20)
Pk|State |Creation|Sched. state|Computer |Type
327 |FINISHED |4h ago |DONE |localhost |sum

and we can see the result of the sum by running in the verdi shell the following
commands (change 327 with the correct calculation PK):

>>> calc = load_node(327)
>>> print calc.res.sum
<<< 5

So we verified that, indeed, 2+3=5.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

Developer data plugin tutorial - Float summation

Now that you have writen your first AiiDA plugin,
we can try to extend it to see how we can introduce different type of parameters
and how the plugins have to be modified to encompass these changes.

Introducing a new data type

We will start by describing what is a data plugin, and by creating a new one.

A data plugin is a subclass of Data. What
you have to do is just to define a subclass with a suitable name inside the
aiida/orm/data folder (with the same name convention of Calculation plugins:
the class should be called NameData (with Name being a name of your
choice) and put in a aiida/orm/data/name.py file.
In the class, you should provide methods that the end user should use to store
high-level objects (for instance, for a crystal structure, there can be a method
for setting the unit cell, one for adding an atom in a given position, ...).
Internally, you should choose where to store the content. There are two options:

	In the AiiDA database. This is useful for small amounts of data, that you plan
to query. In this case, use self._set_attr(attr_name, attr_value) to store
the required value.

	In the AiiDA file repository (as a file on the disk). This is suitable
for big files and quantities that you do not
want to query. In this case, access the folder using self.folder and
use the methods of self.folder to create files, subfolders, ...

Of course, it is also good practice to provide “getter” methods to retrieve
the data in the database and return it back to the user. The idea is that the
user can operate directly only with the methods you provide, and should not
need to know how you decided to store the data inside the AiiDA database.

As a simple example that we will use for the exercise below,
imagine that we want to introduce a new type of data node that simply
stores a float number. We will call it FloatData, and the class
implementation can look like this:

from aiida.orm.data import Data

class FloatData(Data):

 @property
 def value(self):
 """
 The value of the Float
 """
 return self.get_attr('number')

 @value.setter
 def value(self,value):
 """
 Set the value of the Float

 :raise ValueError:
 """
 self._set_attr('number', float(value))

This file should be placed under aiida/orm/data/float.py and it should
extend the class Data.

Exercise: Modifying the calculation plugin

Your exercise consists in creating a new code plugin (let’s call it for instance
floatsum) that will also perform the sum, but accept as input two FloatData
node and return also a FloatData node containing the sum.

Below, you will find some hints on the parts you need to modify with respect
to the previous tutorial using instead
ParameterData both as inputs and outputs.

Note

remember to create copies of your files with a new name
floatsum.py instead of sum.py, and to change the class
name accordingly.

Changes to the parser

The plugin should now return a FloatData instead of a ParameterData,
therefore the parser code should contain something like the following:

output_data = FloatData()
output_data.value = out_dict["sum"]
linkname = 'output_data'

Changes to the input plugin

To be able to run your new FloatsumParser, you will need the corresponding
input plugin (FloatsumCalculation). The first modification is then to link
to the correct parser class:

self._default_parser = 'floatsum'

For consistency, we also want that the input plugin accepts two
FloatData instead of a single ParameterData.
Therefore, you have to update the retdict object accordingly:

retdict.update({
 "float_data_1": {
 'valid_types': FloatData,
 'additional_parameter': None,
 'linkname': 'float_data_1',
 'docstring': ("The first addend"),
 },
 "float_data_2": {
 'valid_types': FloatData,
 'additional_parameter': None,
 'linkname': 'float_data_2',
 'docstring': ("The second addend"),
 },
 })

You need then to change the main code to use the values obtained from the
two nodes, rather than from a single node as before. This should be easy,
so we leave this task to you. Note that we plan to use the same python code
to actually perform the sum, so the JSON file to be generated should have
the same format.

We also suggest that you add utility methods (to the benefit of the end user)
to provide the addends to the code, something like:

def set_addend1(self, value):
 fl = FloatData()
 fl.value = value
 self.use_float_data_1(fl)

and similarly for the second addend.

The final input plugin should be placed
at aiida/orm/calculation/job/floatsum.py.

Code

The python code that actually performs the calculation does not need to be
modified. We can reuse the same file, but we suggest to setup a new code
in AiiDA, with a different name, using as default plugin the floatsum
plugin.

Submission script

Finally, adapt your submission script to create the correct input nodes,
and try to perform a sum of two numbers to verify that you did all correctly!

Note

After placing your files, do not forget to restart the daemon so that
it will recognize the files! The same should be done if you do any change to
the plugin, otherwise the daemon may have cached the old file and will keep
using it.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

Developer code plugin tutorial - Quantum Espresso

In this section we will focus on AiiDA’s Quantum Espresso plugin that we are
going to analyse and show how a physics oriented plugin is developed.
It will be assumed that you have already tried to run an example of Quantum
Espresso, and you know more or less how the AiiDA interface works. We hope
that in the end you will be able to replicate the task for other codes.

In fact, when writing your own plugin, keep in mind that you need to
satisfy multiple users, and the interface needs to be simple (not the
code below). But always try to follow the Zen of Python:

Simple is better than complex.

Complex is better than complicated.

Readability counts.

As demonstrated in previous sections, there will be two kinds of plugins:
the input and the output. The former has the purpose to convert python object
in text inputs that can be executed by external software. The latter will
convert the text output of these software back into python dictionaries/objects
that can be put back in the database.

InputPlugin

Create a new file, which has the same name as the class you are
creating (in this way, it will be possible to load it with
CalculationFactory).
Save it in a subfolder at the path aiida/orm/calculation/job.

Step 1: inheritance

First define the class:

class SubclassCalculation(JobCalculation):

(Substitute Subclass with the name of your plugin).
Take care of inheriting the JobCalculation class, or the plugin will not work.

Now, you will likely need to define some variables that belong to
SubclassCalculation.
In order to be sure that you don’t lose any variables belonging to the
inherited class, every subclass of calculation needs to have a method which is
called _init_internal_params().
An example of it would look like:

def _init_internal_params(self):
 super(SubclassCalculation, self)._init_internal_params()

 self.A_NEW_VARIABLE = 'nabucco'

This function will be called by the __init__ method and will initialize
the variable A_NEW_VARIABLE at the moment of the instancing.
The second line will call the _init_internal_params() of the parent class and
load other variables eventually defined there.
Now you are able to access the variable A_NEW_VARIABLE also in the rest of
the class by calling self.A_NEW_VARIABLE.

Note

Even if you don’t need to define new variables, it is safer to define
the method with the call to super().

Note

It is not recommended to rewrite an __init__ by yourself: this
method is inherited from the classes Node and Calculation, and you
shouldn’t alter it unless you really know the code down to the lowest-level.

Note

The following is a list of
relevant parameters you may want to (re)define in _init_internal_params:

	self._default_parser: set to the string of the default parser to be
used, in the form accepted by the plugin loader (e.g., for the
Quantum ESPRESSO plugin for phonons, this would be “quantumespresso.ph”,
loaded from the aiida.parsers.plugins module).

	self._DEFAULT_INPUT_FILE: specify here the relative path to the
filename of the default file that should be shown by
verdi calculation outputcat --default . If not specified, the default
value is None and verdi calculation outputcat will not accept the
--default option, but it will instead always ask for a specific path name.

	self._DEFAULT_OUTPUT_FILE: same of _DEFAULT_INPUT_FILE, but for
the default output file.

Step 2: define input nodes

First, you need to specify what are the objects that are going to be
accepted as input to the calculation class.
This is done by the class property _use_methods.
An example is as follows:

from aiida.common.utils import classproperty

class SubclassCalculation(JobCalculation):

 def _init_internal_params(self):
 super(SubclassCalculation, self)._init_internal_params()

 @classproperty
 def _use_methods(cls):
 retdict = JobCalculation._use_methods
 retdict.update({
 "settings": {
 'valid_types': ParameterData,
 'additional_parameter': None,
 'linkname': 'settings',
 'docstring': "Use an additional node for special settings",
 },
 "pseudo": {
 'valid_types': UpfData,
 'additional_parameter': 'kind',
 'linkname': cls._get_pseudo_linkname,
 'docstring': ("Use a remote folder as parent folder (for "
 "restarts and similar"),
 },
 })
 return retdict

 @classmethod
 def _get_pseudo_linkname(cls, kind):
 """
 Return the linkname for a pseudopotential associated to a given
 structure kind.
 """
 return "pseudo_{}".format(kind)

After this piece of code is written, we now have defined two methods
of the calculation that specify what DB object could be set as input
(and draw the graph in the DB).
Specifically, here we will find the two methods:

calculation.use_settings(an_object)
calculation.use_pseudo(another_object,'object_kind')

What did we do?

	We added implicitly the two new use_settings and use_pseudo methods
(because the dictionary returned by _use_methods now contains a
settings and a pseudo key)

	We did not lose the use_code call defined in the Calculation
base class, because we are extending
Calculation._use_methods. Therefore: don’t specify a code as
input in the plugin!

	use_settings will accept only one parameter, the node specifying the
settings, since the additional_parameter value is None.

	use_pseudo will require two parameters instead, since
additional_parameter value is not None. If the second parameter
is passed via kwargs, its name must be ‘kind’ (the value of
additional_parameters). That is, you can call use_pseudo in one of
the two following ways:

use_pseudo(pseudo_node, 'He')
use_pseudo(pseudo_node, kind='He')

to associate the pseudopotential node pseudo_node (that you must have
loaded before) to helium (He) atoms.

	The type of the node that you pass as first parameter will be checked
against the type (or the tuple of types) specified with valid_types
(the check is internally done using the isinstance python call).

	The name of the link is taken from the linkname value. Note that
if additional_parameter is None, this is simply a string; otherwise,
it must be a callable that accepts one single parameter (the further
parameter passed to the use_XXX function) and returns a string with the
proper name. This functionality is provided to have a single use_XXX
method to define more than one input node, as it is the case for
pseudopotentials, where one input pseudopotential node must be specified for
each atomic species or kind.

	Finally, docstring will contain the documentation of the function,
that the user can obtain by printing e..g. use_pseudo.__doc__.

Note

The actual implementation of the use_pseudo method in the
Quantum ESPRESSO tutorial is slightly different, as it allows the user
to specify a list of kinds that are associated with the same pseudopotential
file (while in the example above only one kind string can be passed).

Step 3: prepare a text input

How are the input nodes used internally?
Every plugin class is required to have the following method:

def _prepare_for_submission(self,tempfolder,inputdict):

This function is called by the daemon when it is trying to create a new calculation.

There are two arguments:

	tempfolder: is an object of kind SandboxFolder, which behaves
exactly as a folder. In this placeholder, you are going to write
the input files. This tempfolder is gonna be copied to the remote
cluster.

2. inputdict: contains all the input data nodes as a dictionary, in the
same format that is returned by the get_inputs_dict() method,
i.e. a linkname as key, and the object as value.

Changed in version 0.5: inputdict should contain all input Data nodes, and the code.
(this is what the get_inputs_dict() method returns, by the way).
In older versions, the code is not present.

In general, you simply want to do:

inputdict = self.get_inputs_dict()

right before calling _prepare_for_submission.
The reason for having this explicitly passed is that the plugin does not have
to perform explicit database queries, and moreover this is useful to test
for submission without the need to store all nodes on the DB.

For the sake of clarity, it’s probably going to be easier looking at
an implemented example. Take a look at the NamelistsCalculation located in
aiida.orm.calculation.job.quantumespresso.namelists.

How does the method _prepare_for_submission work in practice?

	You should start by checking if the input nodes passed in inputdict
are logically sufficient to run an actual calculation.
Remember to raise an exception (for example InputValidationError) if
something is missing or if something
unexpected is found. Ideally, it is better
to discover now if something is missing, rather than waiting the queue
on the cluster and see that your job has crashed.
Also, if there are some nodes left unused, you are gonna leave a DB more
complicated than what has really been, and therefore is better to stop
the calculation now.

	create an input file (or more if needed). In the Namelist plugin is
done like:

input_filename = tempfolder.get_abs_path(self.INPUT_FILE_NAME)
with open(input_filename,'w') as infile:
 # Here write the information of a ParameterData inside this
 # file

Note that here it all depends on how you decided the ParameterData to
be written. In the namelists plugin we decided the convention that a
ParameterData of the format:

ParameterData(dict={"INPUT":{'smearing':2,
 'cutoff':30}
 })

is written in the input file as:

&INPUT
 smearing = 2,
 cutoff=30,
/

Of course, it’s up to you to decide a convention which defines how to convert
the dictionary to the input file.
You can also impose some default values for simplicity. For example,
the location of the scratch directory, if needed, should be imposed by
the plugin and not by the user, and similarly you can/should decide the
naming of output files.

Note

it is convenient to avoid hard coding of all the variables
that your code has. The convention stated above is
sufficient for all inputs structured as fortran cards,
without the need of knowing which variables are accepted.
Hard coding variable names implies that every time the
external software is updated, you need to modify the plugin:
in practice the plugin will easily become obsolete if poor maintained.
Easyness of maintainance here win over user comfort!

	copy inside this folder some auxiliary files that resides on your
local machine, like for example pseudopotentials.

	return a CalcInfo object.

This object contains some accessory information. Here’s a template of
what it may look like:

calcinfo = CalcInfo()

calcinfo.uuid = self.uuid
calcinfo.local_copy_list = local_copy_list
calcinfo.remote_copy_list = remote_copy_list

calcinfo.retrieve_list = []
Modify here !
calcinfo.retrieve_list.append('Every file/folder you want to store back locally')
Modify here!
calcinfo.retrieve_singlefile_list = []

Modify here and put a name for standard input/output files
codeinfo = CodeInfo()
codeinfo.cmdline_params = settings_dict.pop('CMDLINE', [])
codeinfo.stdin_name = self.INPUT_FILE_NAME
codeinfo.stdout_name = self.OUTPUT_FILE_NAME
codeinfo.withmpi = self.get_withmpi()
codeinfo.code_pk = code.pk

calcinfo.codes_info = [codeinfo]

return calcinfo

There are a couple of things to be set on calcinfo.

	retrieve_list: a list of relative file pathnames, that will be copied
from the cluster to the aiida server, after the calculation has run on
cluster.
Note that all the file names you need to modify are not absolute path
names (you don’t know the name of the folder where it will be created) but
rather the path relative to the scratch folder.

	local_copy_list: a list of length-two-tuples: (localabspath,
relativedestpath). Files to be copied from the aiida server to the cluster.

	remote_copy_list: a list of tuples: (remotemachinename, remoteabspath,
relativedestpath). Files/folders to be copied from a remote source to a
remote destination, sitting both on the same machine.

	retrieve_singlefile_list: a list of triplets, in the form
["linkname_from calc to singlefile","subclass of
singlefile","filename"]. If this is specified, at the end of the
calculation it will be created a SinglefileData-like object in the
Database, children of the calculation, if of course the file is found
on the cluster.

	codes_info: a list of informations that needs to be passed on the command
line to the code, passed in the form of a list of CalcInfo objects (see later).
Every element in this list corresponds to a call to a code that will be
executed in the same scheduling job.
This can be useful if a code needs to execute a short preprocessing. For
long preprocessings, consider to develop a separate plugin.

	codes_run_mode: a string, only necessary if you want to run more than one code
in the same scheduling job. Determines the order in which the multiple
codes are run (i.e. sequentially or all at the same time.
It assumes one of the values of aiida.common.datastructures.code_run_modes,
like code_run_modes.PARALLEL or code_run_modes.SERIAL

A CodeInfo object, as said before, describes how a code has to be executed.
The list of CodeInfo objects passed to calcinfo will determined the ordered
execution of one (or more) calls to executables.
The attributes that can be set to CodeInfo are:

	stdin_name: the name of the standard input.

	stdin_name: the name of the standard output.

	cmdline_params: like parallelization flags, that will be used when
running the code.

	stderr_name: the name of the error output.

	withmpi: whether the code has to be called with mpi or not.

	code_pk: the pk of the code associated to the CodeInfo instance.

If you need to change other settings to make the plugin work, you
likely need to add more information to the calcinfo than what we
showed here.
For the full definition of CalcInfo() and CodeInfo(), refer to the
source aiida.common.datastructures.

That’s what is needed to write an input plugin.
To test that everything is done properly, remember to use the
calculation.submit_test() method, which creates locally the folder
to be sent on cluster, without submitting the calculation on the cluster.

OutputPlugin

Well done! You were able to have a successful input plugin.
Now we are going to see what you need to do for an output plugin.
First of all let’s create a new folder:
$path_to_aiida/aiida/parsers/plugins/the_name_of_new_code, and put there an
empty __init__.py file.
Here you will write in a new python file the output parser class.
It is actually a rather simple class, performing only a few (but tedious) tasks.

After the calculation has been computed and retrieved from the
cluster, that is, at the moment when the parser is going to be called,
the calculation has two children: a RemoteData and a FolderData.
The RemoteData is an object which represents the scratch folder on the
cluster: you don’t need it for the parsing phase.
The FolderData is the folder in the AiiDA server which contains the
files that have been retrieved from the cluster.
Moreover, if you specified a retrieve_singlefile_list, at this stage
there is also going to be some children of SinglefileData kind.

Let’s say that you copied the standard output in the FolderData.
The parser than has just a couple of tasks:

	open the files in the FolderData

	read them

	convert the information into objects that can be saved in the
Database

	return the objects and the linkname.

Note

The parser should not save any object in the DB, that is
a task of the daemon: never use a .store() method!

Basically, you just need to specify an __init__() method, and a
function parse_with_retrieved(calc, retrieved)__, which does the actual work.

The difficult and long part is the point 3, which is the actual
parsing stage, which convert text into python objects.
Here, you should try to parse as much as you can from the output files.
The more you will write, the better it will be.

Note

You should not only parse physical values, a very
important thing that could be used by workflows are exceptions or
others errors occurring in the calculation.
You could save them in a dedicated key of the dictionary (say
‘warnings’), later a workflow can easily read the exceptions from the
results and perform a dedicated correction!

In principle, you can save the information in an arbitrary number of
objects.
The most useful classes to store the information back into the DB are:

	ParameterData:
This is the DB representation of a python dictionary. If you put
everything in a single ParameterData, then this could be easily
accessed from the calculation with the .res method. If you have to
store arrays / large lists or matrices, consider using ArrayData instead.

	ArrayData:
If you need to store large arrays of values, for
example, a list of points or a molecular dynamic trajectory, we
strongly encourage you to use this class.
At variance with ParameterData, the values are not stored in the
DB, but are written to a file (mapped back in the DB). If instead
you store large arrays of numbers in the DB with ParameterData, you might
soon realize that: a) the DB grows large really rapidly; b) the time it takes
to save an object in the DB gets very large.

	StructureData:
If your code relaxes an input structure, you can end up with an output structure.

Of course, you can create new classes to be stored in the DB, and use
them at your own advantage.

A kind of template for writing such parser for the calculation class
NewCalculation is as follows:

class NewParser(Parser):
 """
 A doc string
 """

 def __init__(self,calc):
 """
 Initialize the instance of NewParser
 """
 # check for valid input
 if not isinstance(calc,NewCalculation):
 raise ParsingError("Input must calc must be a NewCalculation")

 super(NewParser, self).__init__(calc)

 def parse_with_retrieved(self, retrieved):
 """
 Parses the calculation-output datafolder, and stores
 results.

 :param retrieved: a dictionary of retrieved nodes, where the keys
 are the link names of retrieved nodes, and the values are the
 nodes.
 """
 # check the calc status, not to overwrite anything
 state = calc.get_state()
 if state != calc_states.PARSING:
 raise InvalidOperation("Calculation not in {} state"
 .format(calc_states.PARSING))

 # retrieve the whole list of input links
 calc_input_parameterdata = self._calc.get_inputs(node_type=ParameterData,
 also_labels=True)

 # then look for parameterdata only
 input_param_name = self._calc.get_linkname('parameters')
 params = [i[1] for i in calc_input_parameterdata if i[0]==input_param_name]
 if len(params) != 1:
 # Use self.logger to log errors, warnings, ...
 # This will also add an entry to the DbLog table associated
 # to the calculation that we are trying to parse, that can
 # be then seen using 'verdi calculation logshow'
 self.logger.error("Found {} input_params instead of one"
 .format(params))
 successful = False
 calc_input = params[0]

 # Check that the retrieved folder is there
 try:
 out_folder = retrieved[self._calc._get_linkname_retrieved()]
 except KeyError:
 self.logger.error("No retrieved folder found")
 return False, ()

 # check what is inside the folder
 list_of_files = out_folder.get_folder_list()
 # at least the stdout should exist
 if not calc.OUTPUT_FILE_NAME in list_of_files:
 raise QEOutputParsingError("Standard output not found")
 # get the path to the standard output
 out_file = os.path.join(out_folder.get_abs_path('.'),
 calc.OUTPUT_FILE_NAME)

 # read the file
 with open(out_file) as f:
 out_file_lines = f.readlines()

 # call the raw parsing function. Here it was thought to return a
 # dictionary with all keys and values parsed from the out_file (i.e. enery, forces, etc...)
 # and a boolean indicating whether the calculation is successfull or not
 # In practice, this is the function deciding the final status of the calculation
 out_dict,successful = parse_raw_output(out_file_lines)

 # convert the dictionary into an AiiDA object, here a
 # ParameterData for instance
 output_params = ParameterData(dict=out_dict)

 # prepare the list of output nodes to be returned
 # this must be a list of tuples having 2 elements each: the name of the
 # linkname in the database (the one below, self.get_linkname_outparams(),
 # is defined in the Parser class), and the object to be saved
 new_nodes_list = [(self.get_linkname_outparams(),output_params)]

 # The calculation state will be set to failed if successful=False,
 # to finished otherwise
 return successful, new_nodes_list

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

Parser warnings policy

As a rule of thumb, always include two keys in the output parameters of a
calculation, warnings and parser_warnings. These two keys contain
a list of messages (strings) that are
useful for debugging problems in the execution of calculations.
Below are the guidelines for the usage of the keys
warnings and parser_warnings in the output parameters of a calculation.

Warnings

These should be devoted to
warnings or error messages relative to the execution of the code. As a
(non-exhaustive) list of examples, for Quantum-ESPRESSO, run-time messages such as

	Maximum CPU time exceeded.

	c_bands: 2 eigenvalues not converged

	Not enough space allocated for radial FFT

	The scf cycle did not reach convergence.

	The FFT is incommensurate: some symmetries may be lost.

	Error in routine [...]

should be put in the warnings. In the above cases the warning messages are
directly copied from the output of the code, but a warning can also be
elaborated by the parser when it finds out that something strange went on
during the execution of the code. For QE an example is
QE pw run did not reach the end of the execution.

Among the code-based warnings, some can be identified as ‘’critical’‘, meaning
that when present the calculation should be set in FAILED state.
There should be an internal list in the parser, e.g. critical_messages, defining
such critical warnings.
Other non-critical warnings instead might be used to signal the presence of some
possible source of troubles, but that nevertheless did not prevent the calculation
to be considered FINISHED.

Parser_warnings

These should be reserved to warnings occurring during parsing, i.e. when
the parser does not find an information it was looking for in the output files.
For Quantum-ESPRESSO (PW), examples are

	Skipping the parsing of the xml file.

	Error while parsing for energy terms.

	etc.

Therefore, these warnings should be placed just to notify that the output was
not found in the way the developer had expected, and they signal the necessity
of improving the parser code.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

Automated parser tests

AiiDA testing facility can check for the proper functionality of parsers
automatically. To facilitate the creation of new tests, we
provide a simple tool to create a new parser test from a calculation
that you already run in your AiiDA database, described below.

Test folders

Each folder inside the path aiida.backends.djsite/db/subtests/parser_tests
constitutes a single test.
The naming convention for folders is the following:

	it should contain only digits, letters and underscores, otherwise the
folder will be ignored when running verdi devel tests db.parsers;

	the folder name should start with test_;

	the name should be followed by the parser plugin name, as returned
by calculation.get_parser_name(), and with dots replaced with underscores;

	it should be followed by an underscore;

	finally it should be followed by a string that explains what is tested.

For instance, a valid name is test_quantumespresso_pw_vanderwaals.
Note that the naming scheme is only a convention, and that the parser to
use for the test is selected automatically.

Creation of a test from an existing calculation

In order to create the folder, you can open verdi shell while being
in the folder aiida.backends.djsite/db/subtests/parser_tests, import
the following function:

from aiida.backends.djsite.db.subtests.parsers import output_test

and then run it with the correct parameters. The documentation of the function
can be found here.

An example call could be:

output_test(
 pk=21,
 testname='vanderwaals',
 skip_uuids_from_inputs=[
 'f579974c-6a9e-4eb4-9b41-e72486f86ac5',
 'ee0df234-955e-4f99-9808-17e168e6a769']
)

where:

	21 is the PK of the calculation that you want to export

	vanderwaals is the name of the test: if for instance the node with pk=21 is a
Quantum ESPRESSO pw.x calculation, the script will create a folder named
test_quantumespresso_pw_vanderwaals

	the (optional) skip_uuids_from_inputs is a list of UUIDs of input nodes that
will not be exported.

The script will create a new folder, containing the exported content of the calculation,
its direct inputs (except those listed in the
skip_uuids_from_inputs list), and the output retrieved node.
The format of the exported data is the same of the export files of
AiiDA, but the folder is not zipped.

Note

The skip_uuids_from_inputs parameter is typically
useful for input nodes containing large files that are not
needed for parsing and would just create a large test; a
typical example is given by pseudopotential input nodes for
Quantum ESPRESSO.

After having run the command, the existence of the folder will only
test that the parser is able to parse the calculation without errors.
Typically, however, you will also want to check some parsed values.

In this case, you need to modify the _aiida_checks.json
JSON file inside the folder. The syntax is the following:

	each key represents an output node that should be generated by the parser;

	each value is a dictionary with multiple keys (an empty dictionary
will just check for the existence of the output node);

	each key of the subdictionary is an attribute to check for.
The value is a list of dictionaries, one for each test to perform
on the given value; multiple tests are therefore possible.
The dictionary should have at least have one key:
“comparison”, a string to specifies the type of comparison.
The other keys depend on the type of comparison, and typically
there is at least a “value” key, the value to compare with. An example:

{
 "output_parameters": {
 "energy": [
 {
 "comparison": "AlmostEqual",
 "value": -3699.26590536037
 }
],
 "energy_units": [
 {
 "comparison": "Equal",
 "value": "eV"
 }
]
 },
 "output_array": {
 }
}

The list of valid comparisons is hardcoded inside the
aiida.backends.djsite.db.subtests.parsers module;
if you need new comparison types, add them directly to the module.

Running tests

Finally, in order to run all tests contained in the folder aiida.backends.djsite/db/subtests/parser_tests
one can use the following verdi command:

verdi devel tests db.parsers

If no fail message appears it means that the test was successful.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

Workflow’s Guide For AiiDA

Creating new workflows

New user specific workflows should be put in aiida/workflows/user. If the
workflow is general enough to be of interest for the community, the best is to
create a git repository (e.g. on Bitbucket [http://bitbucket.org]) and clone
the content of the repository in a subfolder of aiida/workflows/user, e.g.
in aiida/workflows/user/epfl_theos for workflows from the group THEOS at EPFL.

Put __init__.py files in all subdirectories of aiida/workflows/user
to be able to import any workflows. Also, it may be a good
idea to create a specific workflow factory to load easily workflows of the subdirectory.
To do so place in your __init__.py file in the main workflow directory
(e.g. in aiida/workflows/user/epfl_theos/__init__.py in the example above):

from aiida.orm.workflow import Workflow

def TheosWorkflowFactory(module):
 """
 Return a suitable Workflow subclass for the workflows defined here.
 """
 from aiida.common.pluginloader import BaseFactory

 return BaseFactory(module, Workflow, "aiida.workflows.user.epfl_theos")

In this example, a workflow located in e.g. aiida/workflows/user/epfl_theos/quantumespresso/pw.py
can be loaded simply by typing:

TheosWorkflowFactory('quantumespresso.pw')

Note

The class name of the workflow should be compliant with the BaseFactory
syntax. In the above example, it should be called PwWorkflow otherwise
the workflow factory won’t work.

You can also customize your verdi shell by adding this function to the modules
to be loaded automatically – see here for more information.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

Developer Workflow tutorial

Creating new workflows

In this section we are going to write a very simple AiiDA workflow.
Before starting this tutorial, we assume that you have successfully
completed the Developer calculation
plugin tutorial and have your input and
output plugins ready to use with this tutorial.

This tutorial creates a workflow for the addition of three numbers.
Number could be an integer or a float value. All three numbers will be passed
as parameters to the workflow in dictionary format
(e.g. {"a": 1, "b": 2.2, "c":3}).

To demonstrate how a workflow works, we will perform the sum of three
numbers in two steps:

	Step 1: temp_value = a + b

	Step 2: sum = temp_value + c

A workflow in AiiDA is a python script with several user defined functions called steps. All AiiDA functions are available inside “steps” and calculations or sub-workflows can be launched and retrieved. The AiiDA daemon executes a workflow and handles all the operations starting from script loading, error handling and reporting, state monitoring and user interaction with the execution queue. The daemon works essentially as an infinite loop, iterating several simple operations:

	It checks the running step in all the active workflows, if there are new calculations attached to a step it submits them.

	It retrieves all the finished calculations. If one step of one workflow exists where all the calculations are correctly finished it reloads the workflow and executes the next step as indicated in the script.

	If a workflow’s next step is the exit one, the workflow is terminated and the report is closed.

Note

Since the daemon is aware only of the classes present at the time
of its launch, make sure you restart the daemon every time you add a
new workflow, or modify an existing one.
To restart a daemon, use following command:

verdi daemon restart

Let’s start to write a workflow step by step. First we have to import some
packages:

from aiida.common import aiidalogger
from aiida.orm.workflow import Workflow
from aiida.orm import Code, Computer
from aiida.orm.data.parameter import ParameterData
from aiida.common.exceptions import InputValidationError

In order to write a workflow, we must create a class by extending the
Workflow class from aiida.orm.workflow. This is a fundamental
requirement, since the subclassing is the way AiiDA understand if a class
inside the file is an AiiDA workflow or a simple utility class. In the class,
you need to re-define an __init__ method as shown below (in the current
code version, this is a requirement).
Create a new file, which has the same name as the class you are creating
(in this way, it will be possible to load it with WorkflowFactory),
in this case addnumbers.py, with the following content:

class AddnumbersWorkflow(Workflow):
 """
 This workflow takes 3 numbers as an input and gives
 its addition as an output.
 Workflow steps:
 passed parameters: a,b,c
 1st step: a + b = step1_result
 2nd step: step1_result + c = final_result
 """

 def __init__(self, **kwargs):
 super(AddnumbersWorkflow, self).__init__(**kwargs)

Once the class is defined a user can add methods to generate calculations, download structures or compute new structures starting form a query in previous AiiDA calculations present in the DB. Here we will add simple helper function to validate the input parameters which will be the dictionary with keys a, b and c. All dictionary values should be of type integer or float.

def validate_input(self):
 """
 Check if the passed parameters are of type int or float
 else raise exception
 """
 # get parameters passed to workflow when it was
 # initialised. These parameters can not be modified
 # during an execution
 params = self.get_parameters()

 for k in ['a','b','c']:
 try:
 # check if value is int or float
 if not (isinstance(params[k], int) or isinstance(params[k], float)):
 raise InputValidationError("Value of {} is not of type int or float".format(k))
 except KeyError:
 raise InputValidationError("Missing input key {}".format(k))

 # add in report
 self.append_to_report("Starting workflow with params: {0}".format(params))

In the above method we have used append_to_report workflow method. Once the workflow is launched, the user interactions are limited to some events (stop, relaunch, list of the calculations). So most of the times it is very useful to have custom messages during the execution. Hence, workflow is equipped with a reporting facility self.append_to_report(string), where the user can fill with any text and can retrieve both live and at the end of the execution.

Now we will add the method to launch the actual calculations. We have already done this as part of plugin exercise and hence we do not discuss it in detail here.

def get_calculation_sum(self, a, b):
 """
 launch new calculation
 :param a: number
 :param b: number
 :return: calculation object, already stored
 """
 # get code/executable file
 codename = 'sum'
 code = Code.get_from_string(codename)

 computer_name = 'localhost'
 computer = Computer.get(computer_name)

 # create new calculation
 calc = code.new_calc()
 calc.set_computer(computer)
 calc.label = "Add two numbers"
 calc.description = "Calculation step in a workflow to add more than two numbers"
 calc.set_max_wallclock_seconds(30*60) # 30 min
 calc.set_withmpi(False)
 calc.set_resources({"num_machines": 1})

 # pass input to the calculation
 parameters = ParameterData(dict={'x1': a,'x2':b,})
 calc.use_parameters(parameters)

 # store calculation in database
 calc.store_all()
 return calc

Now we will write the first step which is one of the main components
in the workflow. In the example below, the start method is decorated with
Workflow.step making it a very unique kind of method, automatically stored
in the database as a container of calculations and sub-workflows.

@Workflow.step
 def start(self):
 """
 Addition for first two parameters passed to workflow
 when it was initialised
 """

 try:
 self.validate_input()
 except InputValidationError:
 self.next(self.exit)
 return

 # get first parameter passed to workflow when it was initialised.
 a = self.get_parameter("a")
 # get second parameter passed to workflow when it was initialised.
 b = self.get_parameter("b")

 # start first calculation
 calc = self.get_calculation_sum(a, b)

 # add in report
 self.append_to_report("First step calculation is running...")

 # attach calculation in workflow to access in next steps
 self.attach_calculation(calc)

 # go to next step
 self.next(self.stage2)

Several functions are available to the user when coding a workflow step, and
in the above method we have used basic ones discussed below:

	self.get_parameters(): with this method we can retrieve the parameters
passed to the workflow when it was initialized. Parameters cannot be modified
during an execution, while attributes can be added and removed.

	self.attach_calculation(calc): this is a key point in the workflow, and
something possible only inside a step method. Every JobCalculation, generated in
the method itself or retrieved from other utility methods, is attached to the
workflow’s step. They are then launched and executed completely by
the daemon, without the need of user interaction.
Any number of calculations can be attached. The
daemon will poll the servers until all the step calculations will be finished,
and only after that it will call the next step.

	self.next(Workflow.step): this is the final part of a step,
where the user points the engine about what to do after all the calculations
in the steps (on possible sub-workflows, as we will see later) are terminated.
The argument of this function has to be a Workflow.step decorated method
of the same workflow class, or in case this is the last step to be executed,
you can use the common method self.exit which is always present in
each Workflow subclass.
Note that while this call typically occurs at the end of the function, this
is not required and you can call the next() method as soon as you can
decide which method should follow the current one. As it can be seen above,
we can use some python logic (if, ...) to decide what the next method
is going to be (above, we directly point to self.exit if the input is
invalid).

Note

remember to call self.next(self.stage2) and NOT
self.next(self.stage2())!! In the first case, we are correctly passing
the method stage2 to next. In the second case we are instead
immediately running the stage2 method, something we do not want to do
(we need to wait for the current step to finish), and passing its return
value to self.next (which is wrong).

The above start step calls method validate_input() to validate the input
parameters. When the workflow will be launched through the start method,
the AiiDA daemon will load the workflow, execute the step, launch all the
calculations and monitor their state.

Now we will create a second step to retrieve the addition of first two numbers
from the first step and then we will add the third input number.
Once all the calculations in the start step will be finished,
the daemon will load and execute the next step i.e. stage2, shown below:

@Workflow.step
 def stage2(self):
 """
 Get result from first calculation and add third value passed
 to workflow when it was initialised
 """
 # get third parameter passed to workflow when it was initialised.
 c = self.get_parameter("c")
 # get result from first calculation
 start_calc = self.get_step_calculations(self.start)[0]

 # add in report
 self.append_to_report("Result of first step calculation is {}".format(
 start_calc.res.sum))

 # start second calculation
 result_calc = self.get_calculation_sum(start_calc.res.sum, c)

 # add in report
 self.append_to_report("Second step calculation is done..")

 # attach calculation in workflow to access in next steps
 self.attach_calculation(result_calc)

 # go to next step
 self.next(self.stage3)

The new feature used in the above step is:

	self.get_step_calculations(Workflow.step): anywhere after the first step
we may need to retrieve and analyze calculations executed in a previous steps.
With this method we can have access to the list of calculations of a specific
workflows step, passed as an argument.

Now in the last step of the workflow we will retrieve the results from
stage2 and exit the workflow by calling self.next(self.exit) method:

@Workflow.step
 def stage3(self):
 """
 Get the result from second calculation and add it as final
 result of this workflow
 """
 # get result from second calculation
 second_calc = self.get_step_calculations(self.stage2)[0]

 # add in report
 self.append_to_report("Result of second step calculation is {}".format(
 second_calc.res.sum))

 # add workflow result
 self.add_result('value',second_calc.res.sum)

 # add in report
 self.append_to_report("Added value to workflow results")

 # Exit workflow
 self.next(self.exit)

The new features used in the above step are:

	self.add_result(): When all calculations are done it is useful to tag
some of them as results, using custom string to be later searched and
retrieved. Similarly to the get_step_calculations, this method works
on the entire workflow and not on a single step.

	self.next(self.exit): This is the final part of each workflow. Every
workflow inheritate a fictitious step called exit that can be set as
a next to any step. As the names suggest, this implies the workflow
execution finished correctly.

Running a workflow

After saving the workflow inside a python file (i.e. addnumbers.py`)
located in the ``aiida/workflows directory, we can launch the workflow
simply invoking the specific workflow class and executing the start()
method inside the verdi shell or in a python script (with the AiiDA framework
loaded).

Note

Don’t forget to (re)start your daemon at this point!

In this case, let’s use the verdi shell. In the shell we execute:

AddnumbersWorkflow = WorkflowFactory("addnumbers")
params = {"a":2, "b": 1.4, "c": 1}
wobject = AddnumbersWorkflow(params=params)
wobject.store()
wobject.start()

In the above example we initialized the workflow with input parameters as
a dictionary. The WorkflowFactory will work only if you gave the correct
name both the python file and to the class. Otherwise, you can just substitute
that line with a suitable import like:

from aiida.orm.workflows.addnumbers import AddnumbersWorkflow

We launched the workflow using start() method after storing it.
Since start is a decorated workflow step, the workflow is added to the
workflow to the execution queue monitored by the AiiDA daemon.

We now need to know what is going on.
There are basically two main ways to see the workflows that are running:
by printing the workflow list or a single workflow report.

	Workflow list

From the command line we run:

>> verdi workflow list

This will list all the running workflows, showing the state of each step
and each calculation (and, when present, each sub-workflow). It
is the fastest way to have a snapshot of
what your AiiDA workflow daemon is working on. An example output
right after the AddnumbersWorkflow submission should be:

+ Workflow AddnumbersWorkflow (pk: 76) is RUNNING [0h:00m:14s ago]
|-* Step: start [->stage2] is RUNNING
| | Calculation ('Number sum', pk: 739) is TOSUBMIT
|

The pk number of each workflow is reported, a unique
ID identifying that specific execution of the workflow, something
necessary to retrieve it at any other time in the future (as explained in the
next point).

	Workflow report

As explained, each workflow is equipped with a reporting facility the user can
use to log any intermediate information, useful to debug the state
or show some details. Moreover the report is also used by AiiDA as an error
reporting tool: in case of errors encountered during the execution, the AiiDA
daemon will copy the entire stack trace in the workflow report before
halting its execution.
To access the report we need the specific pk of the workflow. From the
command line you would run:

verdi workflow report PK_NUMBER

while from the verdi shell the same operation requires to use the
get_report() method:

>> load_workflow(PK_NUMBER).get_report()

In both variants, PK_NUMBER is the pk number of the workflow we want
the report of. The load_workflow function loads a Workflow instance from
its pk number, or from its uuid (given as a string).

Once launched, the workflows will be handled by the daemon until the final step
or until some error occurs. In the last case, the workflow gets halted and the report
can be checked to understand what happened.

	Workflow result

As explained, when all the calculations are done it is useful to tag some
nodes or quantities as results, using a custom string to be later searched
and retrieved. This method works on the entire workflow and not on a
single step.

To access the results we need the specific pk of the workflow. From the
verdi shell, you can use the get_report() method:

>> load_workflow(PK_NUMBER).get_results()

In both variants, PK_NUMBER is the pk number of the workflow we want
the report of.

	Killing a workflow

A user can also kill a workflow while it is running. This can be done with
the following verdi command:

>> verdi workflow kill PK_NUMBER_1 PK_NUMBER_2 PK_NUMBER_N

where several pk numbers can be given. A prompt will ask for a confirmation;
this can be avoided by using the -f option.

An alternative way to kill an individual workflow is to use the kill method.
In the verdi shell type:

>> load_workflow(PK_NUMBER).kill()

Exercise

In the exercise you have to write a workflow for the addition of
six numbers, using the workflow we just wrote as subworkflows.

For this workflow use:

	
	Input parameters:

	params = {“w1”: {“a”: 2, “b”: 2.1, “c”: 1}, “w2”: {“a”: 2, “b”: 2.1, “c”: 4}}

	
	start step:

	Use two sub workflows (the ones developed above)
for the addition of three numbers:

	Sub workflow with input w1 and calculate its sum (temp_result1)

	Sub workflow with input w2 and calculate its sum (temp_result2)

	
	stage2 step:

	final_result = temp_result1 + temp_result2
Add final_result to the workflow results and exit the workflow.

Some notes and tips:

	You can attach a subworkflow similarly to how you attach a calculation: in the
step, create the new subworkflow, set its parameters using set_parameters,
store it, call the start() method, and then call
self.attach_workflow(wobject) to attach it to the current step.

	If you want to pass intermediate data from one step to another, you can set
the data as a workflow attibute: in a step, call
self.set_attribute(attr_name, attr_value), and retrieve it
in another step using attr_value = self.get_attribute(attr_name).
Values can be any JSON-serializable value, or an AiiDA node.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

Verdi command line plugins

AiiDA can be extended by adding custom means of use to interact with it via
the command line, by extending the ‘verdi’ commands.

We will describe in particular how to extend verdi data by adding a
new subcommand.

Framework for verdi data

The code for each of the verdi data <datatype> <action> [--format <plugin>]
commands is placed in _<Datatype> class inside
aiida.cmdline.commands.data.py. Standard actions, such as

	list

	show

	import

	export

are implemented in corresponding classes:

	Listable

	Visualizable

	Importable

	Exportable,

which are inherited by _<Datatype> classes (multiple inheritance is
possible). Actions show, import and export can be extended with
new format plugins simply by adding additional methods in _<Datatype>
(these are automatically detected). Action list can be extended by
overriding default methods of the
Listable.

Adding plugins for show, import, export and like

A plugin to show, import or export the data node can be added by inserting
a method to _<Datatype> class. Each new method is automatically detected,
provided it starts with _<action>_ (that means _show_ for show,
import for import and _export_ for export). Node for each
of such method is passed using a parameter.

Note

plugins for show are passed a list of nodes, while plugins for
import and export are passed a single node.

As the --format option is optional, the default plugin can be specified
by setting the value for _default_<action>_plugin in the inheriting class,
for example:

class _Parameter(VerdiCommandWithSubcommands, Visualizable):
 """
 View and manipulate Parameter data classes.
 """

 def __init__(self):
 """
 A dictionary with valid commands and functions to be called.
 """
 from aiida.orm.data.parameter import ParameterData
 self.dataclass = ParameterData
 self._default_show_format = 'json_date'
 self.valid_subcommands = {
 'show': (self.show, self.complete_visualizers),
 }

 def _show_json_date(self, exec_name, node_list):
 """
 Show contents of ParameterData nodes.
 """

If the default plugin is not defined and there are more than one plugin,
an exception will be raised upon issuing verdi data <datatype> <action>
to be caught and explained for the user.

Plugin-specific command line options

Plugin-specific command line options can be appended in plugin-specific
methods _<action>_<plugin>_parameters(self,parser). All these methods
are called before parsing command line arguments, and are passed an
argparse.ArgumentParser instance, to which command line argument
descriptions can be appended using parser.add_argument(). For example:

def _show_jmol_parameters(self, parser):
 """
 Describe command line parameters.
 """
 parser.add_argument('--step',
 help="ID of the trajectory step. If none is "
 "supplied, all steps are exported.",
 type=int, action='store')

Note

as all _<action>_<plugin>_parameters(self,parser) methods are
called, it requires some attention in order not to make conflicting
command line argument names!

Note

it’s a good practice to set default=None for all command line
arguments, since None-valued arguments are excluded before passing
the parsed argument dictionary to a desired plugin.

Implementing list

As listing of data nodes can be extended with filters, controllable using
command line parameters, the code of
Listable is split into a few
separate methods, that can be individually overridden:

	
	list:

	the main method, parsing the command line arguments and printing the
data node information to the standard output;

	
	query:

	takes the parsed command line arguments and performs a query on the
database, returns table of unformatted strings, representing the hits;

	
	append_list_cmdline_arguments:

	informs the command line argument parser about additional, user-defined
parameters, used to control the
query function;

	
	get_column_names:

	returns the names of columns to be printed by
list method.

Adding a verdi command

Here we will add a new verdi command for the FloatData datatype
we created and used in
Developer code plugin tutorial
exercise.

The new command will be:

>> verdi data float show <pk>

To create the above verdi command, we will write a _Float class
inheriting from both VerdiCommandWithSubcommands and Visualizable
classes; this class will be added
inside aiida.cmdline.commands.data.py file.
By inheriting from Visualizable, our class will have a``show()`` method,
that we can use as the default action for verdi data float show:

class _Float(VerdiCommandWithSubcommands, Visualizable):
 """
 View and manipulate Float data classes.
 """

 def __init__(self):
 """
 A dictionary with valid commands and functions to be called.
 """
 from aiida.orm.data.float import FloatData

 self.dataclass = FloatData
 self.valid_subcommands = {
 'show': (self.show, self.complete_none),
 }
 self._default_show_format = 'simple'

The features used in init method are:

	self.dataclass: It is the data type for which the command is written.
In this example it is FloatData.

	self.valid_subcommands: It is the dictionary of valid subcommands and the
two functions to be called when the given command is called, or when bash
completion is needed. Each key will be the command for the defined data
type. For FloatData we are therefore adding a show command,
that will call self.show() as method from base cass to be called on.
We pass self.complete_none as completion function to disable further
bash completion after the command (this method is defined in the
VerdiCommandWithSubcommands base class).
The self.show() method creates a list of all methods of the current class
with prefix _show_ in their name, and provides them as possible
formats.

	self._default_show_format: It is the default format to be displayed
for the show' command when no specific format is passed as an argument.
For FloatData, we will show data in a simple format by default.
To display node in simple format, we will simply add a method called
_show_simple() in the _Float class.
Please note that the method name should follow the convention
show + format_name.

The _show_simple() method will be:

def _show_simple(self, exec_name, node_list):
 """
 Show contents of FloatData nodes.
 """
 from aiida.cmdline import print_dictionary

 for node in node_list:
 print node.value

In this method we have passed the executable name and the list of nodes.
To print FloatData in simple format we are just printing the corresponding
value on screen.

Once the _Float class is added, make sure to add entry in
self.routed_subcommands dictionary in the __init__ method of the
Data class in aiida.cmdline.commands.data.py file as shown below.

class Data(VerdiCommandRouter):
 """
 Setup and manage data specific types

 There is a list of subcommands for managing specific types of data.
 For instance, 'data upf' manages pseudopotentials in the UPF format.
 """

 def __init__(self):
 """
 A dictionary with valid commands and functions to be called.
 """
 ## Add here the classes to be supported.
 self.routed_subcommands = {
 .
 .
 # other entries
 'float': _Float,
 }

The new verdi command float, is now ready!

Try experimenting by adding other formats for show command
or by adding other commands like list, import and export
for FloatData data type.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

Exporting structures to TCOD

Export of
StructureData and
CifData (or any other data type,
which can be converted to them) to the
Theoretical Crystallography Open Database [http://www.crystallography.net/tcod/] (TCOD) can be divided into
following workflow steps:

	No.
	Description
	Input
	Output
	Type
	Implemented?

	0
	Conversion of the StructureData
to CifData
	StructureData
	CifData
	Inline
	+

	1
	Detection of the symmetry and
reduction to the unit cell
	CifData
	CifData
	Inline
	+

	2
	Niggli reduction of the unit
cell
	CifData
	CifData
	Inline
	—

	3
	Addition of structure
properties (total energy,
residual forces)
	CifData,
ParameterData
	CifData
	Inline
	PW and CP

	4
	Addition of the metadata for
reproduction of the results
	CifData
	CifData
	Inline
	~

	5
	Depostition to the TCOD
	CifData
	ParameterData
	Job
	+

Type of each step’s calculation
(InlineCalculation
or JobCalculation)
defined in column Type. Each step is described in more detail below:

	
	Conversion of the StructureData to CifData

	Conversion between the
StructureData and
CifData is done via
ASE atoms object.

	
	Detection of the symmetry and reduction to the unit cell

	Detection of the symmetry and reduction to the unit cell is performed
using pyspglib.spglib.refine_cell() function [http://spglib.sourceforge.net/api.html#spg-refine-cell].

	
	Niggli reduction of the unit cell

	Reduction of the unit cell to Niggli cell is a nice to have feature,
as it would allow to represent structure as an unambiguously selected
unit cell.

	
	Addition of structure properties (energy, remaining forces)

	The structure properties from the calculations, such as total energy
and residual forces can be extracted from
ParameterData
nodes and put into related TCOD CIF dictionaries [http://www.crystallography.net/tcod/cif/dictionaries/] tags using
calculation-specific parameter translator, derived from
BaseTcodtranslator.

	
	Addition of the metadata for reproduction of the results

	Current metadata, added for reproducibility, includes scripts for
re-running of calculations, outputs from the calculations and exported
subset of AiiDA database. It’s not quite clear what/how to record the
metadata for calculations of type
InlineCalculation.

	
	Depostition to the TCOD

	Deposition of the final
CifData to the TCOD is
performed using
cif_cod_deposit script from cod-tools package.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

GIT cheatsheet

Excellent and thorough documentation on how to use GIT can be found online on
the official GIT documentation or by searching on Google. We summarize here
only a set of commands that may be useful.

Interesting online resources

	Atlassian forking-workflow guide [https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow]

	Gitflow model [http://nvie.com/posts/a-successful-git-branching-model/]

Set the push default behavior to push only the current branch

The default push behavior may not be what you expect: if a branch you
are not working on changes, you may not be able to push your own
branch, because git tries to check them all. To avoid this, use:

git config push.default upstream

to set the default push.default behaviour to push the current
branch to its upstream branch. Note the actual string to set depends on
the version of git; newer versions allow to use:

git config push.default simple

which is better; see also discussion on this stackoverflow page [http://stackoverflow.com/questions/948354/default-behavior-of-git-push-without-a-branch-specified].

View commits that would be pushed

If you want to see which commits would be sent to the remote repository upon a
git push command, you can use (e.g. if you want to compare with the
origin/develop remote branch):

git log origin/develop..HEAD

to see the logs of the commits, or:

git diff origin/develop..HEAD

to see also the differences among the current HEAD and the version on
origin/develop.

Switch to another branch

You can switch to another branch with:

git checkout newbranchname

and you can see the list of checked-out branches, and the one you are in,
with:

git branch

(or git branch -a to see also the list of remote branches).

Associate a local and remote branch

To tell GIT to always push a local branch (checked-out) to a remote branch
called remotebranchname, check out the correct local branch and then
do:

git push --set-upstream origin remotebranchname

From now on, you will just need to run git push. This will create a new
entry in .git/config similar to:

[branch "localbranchname"]
 remote = origin
 merge = refs/heads/remotebranchname

Branch renaming

To rename a branch locally, from oldname to newname:

git checkout oldname
git branch -m oldname newname

If you want also to rename it remotely, you have to create a new branch and
then delete the old one. One way to do it, is first editing ~/.git/config
so that the branch points to the new remote name, changing
refs/heads/oldname to refs/heads/newname in the correct section:

[branch "newname"]
 remote = origin
 merge = refs/heads/newname

Then, do a:

git push origin newname

to create the new branch, and finally delete the old one with:

git push origin :oldname

(notice the : symbol).
Note that if you are working e.g. on BitBucket, there may be a filter to
disallow the deletion of branches (check in the repository settings, and
then under “Branch management”). Moreover, the “Main branch” (set in the
repository settings, under “Repository details”) cannot be deleted.

Create a new (lightweight) tag

If you want to create a new tag, e.g. for a new version, and you have checked
out the commit that you want to tag, simply run:

git tag TAGNAME

(e.g., git tag v0.2.0). Afterwards, remember to push the tag to the remote
repository (otherwise it will remain only local):

git push --tags

Create a new branch from a given tag

This will create a new newbranchname branch starting from tag v0.2.0:

git checkout -b newbranchname v0.2.0

Then, if you want to push the branch remotely and have git remember
the association:

git push --set-upstream origin remotebranchname

(for the meaning of –set-upsteam see the section
Associate a local and remote branch above).

Disallow a branch deletion, or committing to a branch, on BitBucket

You can find these settings in the repository settings of the web interface, and
then under “Branch management”.

Note

if you commit to a branch (locally) and then discover that you cannot
push (e.g. you mistakenly committed to the master branch), you can remove
your last commit using:

git reset --hard HEAD~1

(this removes one commit only, and you should have no local modifications;
if you do it, be sure to avoid losing your modifications!)

Merge from a different repository

It is possible to do a pull request of a forked repository from the BitBucket
web interface. However, if one just wants to keep in sync, e.g., the main
AiiDA repository with a fork you are working into without creating a pull
request (e.g., for daily merge of your fork’s develop into the main repo’s
develop), you can:

	commit and pull all your changes in your fork

	from the BitBucket web interface, sync your fork with the main repository,
if needed

	go in a local cloned version of the main repository

	[only the first time] add a remote pointing to the new repository, with
the name you prefer (here: myfork):

git remote add myfork git@bitbucket.org:BUTBUCKETUSER/FORKEDREPO.git

	checkout to the correct branch you want to merge into (git
checkout develop)

	do a git pull (just in case)

	Fetch the correct branch of the other repository (e.g., the develop branch):

git fetch myfork develop

(this will fetch that branch into a temporary location called FETCH_HEAD).

	Merge the modifications:

git merge FETCH_HEAD

	Fix any merge conflicts (if any) and commit.

	Finally, push the merged result into the main repository:

git push

(or, if you did not use the default remote with --set-upstream, specify
the correct remote branch, e.g. git push origin develop).

Note

If you want to fetch and transfer also tags,
use instead:

git fetch -t myfork develop
git merge FETCH_HEAD
git push --tags

to get the tags from myfork and then push them in the current repository.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

Sphinx cheatsheet

A brief overview of some of the main functions of Sphinx
as used in the aiida documentation. View This Page to see
how this page was formatted. This is only a brief outline for more
please see the Sphinx documentation [http://sphinx-doc.org/contents.html]

Main Titles and Subtitles

This is an example of a main title.

subtitles are made like this

This is an example of a subtitle.

Formatting

Basic Paragraph Formatting

Words can be written in italics or in bold. Text describing a specific
computer_thing can be formatted as well.

Paragraph and Indentation

Much like in regular python, the indentation plays a strong role in the formatting.

For example all of this sentence will
appear on the same line.

	While this sentence will appear

	differently because there is an indent.

Terminal and Code Formatting

Something to be run in command line can be formatted like this:

>> Some command

As can be seen above, while snippets of python on code can be done like this:

import module
print('hello world')

Notes

Note

Notes can be added like this.

Bullet Points and Lists

	Bullet points can be added

	Just like this
* With sub-bullets like this

	While numerical bullets

	Can be added

	Like this

Links, Code Display, Cross References

External Links

Can be done like here for AiiDA

Code Download

Code can be downloaded like this.

Download: this example script

Code Display

Can be done like this. This entire document can be seen unformated below using this method.

#!/usr/bin/env python
-*- coding: utf-8 -*-
import json
import sys

in_file = sys.argv[1]
out_file = sys.argv[2]

print "Some output from the code"

with open(in_file) as f:
 in_dict = json.load(f)

out_dict = { 'sum':in_dict['x1']+in_dict['x2'] }

with open(out_file,'w') as f:
 json.dump(out_dict,f)

Cross Reference Docs

Here is an example of a reference to the StructureData tutorial which is on another page

Here is an example of a reference to something on the same page, Cross Reference Docs

Note

References within the same document need a reference label, see .. _self-reference:
used in this section for an example. Hidden in formatted page, can only be seen in the
input text.

Cross Reference Classes and Methods

Any class can be referenced for example StructureData references the
StructureData data class.

Similarily any method can be referenced for example append_atom()
shows the StructureData class’ append atom method.

Table of Contents Docs and Code

Table of Contents for Docs

An example of the table of contents syntax for the GIT cheatsheet can be seen here
note that these are especially important in the global structure of the
document, as found in index.rst files.

	GIT cheatsheet
	Interesting online resources

	Set the push default behavior to push only the current branch

	View commits that would be pushed

	Switch to another branch

	Associate a local and remote branch

	Branch renaming

	Create a new (lightweight) tag

	Create a new branch from a given tag

	Disallow a branch deletion, or committing to a branch, on BitBucket

	Merge from a different repository

Note

The maxdepth parameter can be used to change how deep the title indexing goes. See This Page.

Table of Contents for Code

Table of contents, that cross reference code, can be done very similarly to how
it is done for documents. For example the parser docs can be indexed like this

	ORM documentation: generic aiida.orm

	ORM documentation: Data

	ORM documentation: Calculations

	Calculation parsers

Automodules Example

This module defines the main data structures used by the Calculation.

	
class aiida.common.datastructures.CalcInfo(init=None)[source]

	This object will store the data returned by the calculation plugin and to be
passed to the ExecManager

	
class aiida.common.datastructures.CodeInfo(init=None)[source]

	This attribute-dictionary contains the information needed to execute a code.
Possible attributes are:

	cmdline_params: a list of strings, containing parameters to be written on
the command line right after the call to the code, as for example:

code.x cmdline_params[0] cmdline_params[1] ... < stdin > stdout

	stdin_name: (optional) the name of the standard input file. Note, it is
only possible to use the stdin with the syntax:

code.x < stdin_name

If no stdin_name is specified, the string “< stdin_name” will not be
passed to the code.
Note: it is not possible to substitute/remove the ‘<’ if stdin_name is specified;
if that is needed, avoid stdin_name and use instead the cmdline_params to
specify a suitable syntax.

	stdout_name: (optional) the name of the standard output file. Note, it is
only possible to pass output to stdout_name with the syntax:

code.x ... > stdout_name

If no stdout_name is specified, the string “> stdout_name” will not be
passed to the code.
Note: it is not possible to substitute/remove the ‘>’ if stdout_name is specified;
if that is needed, avoid stdout_name and use instead the cmdline_params to
specify a suitable syntax.

	stderr_name: (optional) a string, the name of the error file of the code.

	join_files: (optional) if True, redirects the error to the output file.
If join_files=True, the code will be called as:

code.x ... > stdout_name 2>&1

otherwise, if join_files=False and stderr is passed:

code.x ... > stdout_name 2> stderr_name

	withmpi: if True, executes the code with mpirun (or another MPI installed
on the remote computer)

	code_uuid: the uuid of the code associated to the CodeInfo

	
aiida.common.datastructures.sort_states(list_states)[source]

	Given a list of state names, return a sorted list of states (the first
is the most recent) sorted according to their logical appearance in
the DB (i.e., NEW before of SUBMITTING before of FINISHED).

Note

The order of the internal variable _sorted_datastates is
used.

	Parameters:	list_states – a list (or tuple) of state strings.

	Returns:	a sorted list of the given data states.

	Raises:	ValueError – if any of the given states is not a valid state.

Note

A :noindex: directive was added to avoid duplicate object
description for this example. Do not put the keyword in a real
documentation.

How To Format Docstrings

Much of the work will be done automatically by Sphinx, just format the docstrings with the same syntax used here,
a few extra examples of use would include:

:param parameters: some notes on input parameters

:return returned: some note on what is returned

:raise Errors: Notes on warnings raised

Changing The Docs

If you are creating a new .rst file, make sure to add it in
the relevant index.rst tree. This can be done by:

	Modifying relevant doc strings or .rst files (be sure to modify them in the /doc/source/ folder and not /doc/build)

	Making sure that all relevant .rst files are added
to the relevant index.rst file

	Running make html in /aiida/docs/ folder

	Be sure to check for any warnings and correct if possible

This Page

Sphinx cheatsheet
+++++++++++++++++

A brief overview of some of the main functions of Sphinx
as used in the aiida documentation. View :ref:`this-page` to see
how this page was formatted. This is only a brief outline for more
please see `the Sphinx documentation <http://sphinx-doc.org/contents.html>`_

Main Titles and Subtitles

This is an example of a main title.

subtitles are made like this
============================

This is an example of a subtitle.

Formatting

Basic Paragraph Formatting
==========================

Words can be written in *italics* or in **bold**. Text describing a specific
``computer_thing`` can be formatted as well.

Paragraph and Indentation
=========================

Much like in regular python, the indentation plays a strong role in the formatting.

For example all of this sentence will
appear on the same line.

While this sentence will appear
 differently because there is an indent.

Terminal and Code Formatting
============================

Something to be run in command line can be formatted like this::

 >> Some command

As can be seen above, while snippets of python on code can be done like this::

 import module
 print('hello world')

Notes
=====
.. note:: Notes can be added like this.

Bullet Points and Lists
=======================

* Bullet points can be added
* Just like this
 * With sub-bullets like this

#. While numerical bullets
#. Can be added
#. Like this

Links, Code Display, Cross References

External Links
==============
Can be done like here for `AiiDA <www.aiida.net/>`_

Code Download
=============

Code can be downloaded like this.

Download: :download:`this example script <devel_tutorial/sum_executable.py>`

Code Display
============

Can be done like this. This entire document can be seen unformated below using this method.

.. literalinclude:: devel_tutorial/sum_executable.py

.. _self-reference:

Cross Reference Docs
====================

Here is an example of a reference to the :ref:`structure_tutorial` which is on *another page*

Here is an example of a reference to something on the same page, :ref:`self-reference`

.. note:: References within the same document need a reference label, see `.. _self-reference:`
 used in this section for an example. *Hidden in formatted page, can only be seen in the
 input text.*

Cross Reference Classes and Methods
===================================

Any class can be referenced for example :py:class:`~aiida.orm.data.structure.StructureData` references the
StructureData data class.

Similarily any method can be referenced for example :py:meth:`~aiida.orm.data.structure.StructureData.append_atom`
shows the StructureData class' append atom method.

Table of Contents Docs and Code

Table of Contents for Docs
==========================
An example of the table of contents syntax for the :ref:`git-cheatsheet` can be seen here
note that these are especially important in the global structure of the
document, as found in index.rst files.

.. toctree::
 :maxdepth: 2

 git_cheatsheet

.. note:: The `maxdepth` parameter can be used to change how deep the title indexing goes. See :ref:`this-page`.

Table of Contents for Code
==========================

Table of contents, that cross reference code, can be done very similarly to how
it is done for documents. For example the parser docs can be indexed like this

.. toctree::
 :maxdepth: 1

 aiida.orm <../orm/dev>
 ../parsers/dev

Automodules Example
====================

.. toctree::
 :maxdepth: 2

.. automodule:: aiida.common.datastructures
 :members:
 :noindex:

.. note:: A `:noindex:` directive was added to avoid duplicate object
 description for this example. Do not put the keyword in a real
 documentation.

How To Format Docstrings

Much of the work will be done automatically by Sphinx, just format the docstrings with the same syntax used here,
a few extra examples of use would include::

 :param parameters: some notes on input parameters

 :return returned: some note on what is returned

 :raise Errors: Notes on warnings raised

Changing The Docs

If you are creating a new .rst file, make sure to add it in
the relevant index.rst tree. This can be done by:

* Modifying relevant doc strings or .rst files (be sure to modify them in the /doc/source/ folder and not /doc/build)

* Making sure that all relevant .rst files are added
 to the relevant index.rst file

* Running `make html` in /aiida/docs/ folder

* Be sure to check for any warnings and correct if possible

.. _this-page:

This Page
=========

.. literalinclude:: sphinx_cheatsheet.rst

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

GIT cheatsheet

Excellent and thorough documentation on how to use GIT can be found online on
the official GIT documentation or by searching on Google. We summarize here
only a set of commands that may be useful.

Interesting online resources

	Atlassian forking-workflow guide [https://www.atlassian.com/git/tutorials/comparing-workflows/forking-workflow]

	Gitflow model [http://nvie.com/posts/a-successful-git-branching-model/]

Set the push default behavior to push only the current branch

The default push behavior may not be what you expect: if a branch you
are not working on changes, you may not be able to push your own
branch, because git tries to check them all. To avoid this, use:

git config push.default upstream

to set the default push.default behaviour to push the current
branch to its upstream branch. Note the actual string to set depends on
the version of git; newer versions allow to use:

git config push.default simple

which is better; see also discussion on this stackoverflow page [http://stackoverflow.com/questions/948354/default-behavior-of-git-push-without-a-branch-specified].

View commits that would be pushed

If you want to see which commits would be sent to the remote repository upon a
git push command, you can use (e.g. if you want to compare with the
origin/develop remote branch):

git log origin/develop..HEAD

to see the logs of the commits, or:

git diff origin/develop..HEAD

to see also the differences among the current HEAD and the version on
origin/develop.

Switch to another branch

You can switch to another branch with:

git checkout newbranchname

and you can see the list of checked-out branches, and the one you are in,
with:

git branch

(or git branch -a to see also the list of remote branches).

Associate a local and remote branch

To tell GIT to always push a local branch (checked-out) to a remote branch
called remotebranchname, check out the correct local branch and then
do:

git push --set-upstream origin remotebranchname

From now on, you will just need to run git push. This will create a new
entry in .git/config similar to:

[branch "localbranchname"]
 remote = origin
 merge = refs/heads/remotebranchname

Branch renaming

To rename a branch locally, from oldname to newname:

git checkout oldname
git branch -m oldname newname

If you want also to rename it remotely, you have to create a new branch and
then delete the old one. One way to do it, is first editing ~/.git/config
so that the branch points to the new remote name, changing
refs/heads/oldname to refs/heads/newname in the correct section:

[branch "newname"]
 remote = origin
 merge = refs/heads/newname

Then, do a:

git push origin newname

to create the new branch, and finally delete the old one with:

git push origin :oldname

(notice the : symbol).
Note that if you are working e.g. on BitBucket, there may be a filter to
disallow the deletion of branches (check in the repository settings, and
then under “Branch management”). Moreover, the “Main branch” (set in the
repository settings, under “Repository details”) cannot be deleted.

Create a new (lightweight) tag

If you want to create a new tag, e.g. for a new version, and you have checked
out the commit that you want to tag, simply run:

git tag TAGNAME

(e.g., git tag v0.2.0). Afterwards, remember to push the tag to the remote
repository (otherwise it will remain only local):

git push --tags

Create a new branch from a given tag

This will create a new newbranchname branch starting from tag v0.2.0:

git checkout -b newbranchname v0.2.0

Then, if you want to push the branch remotely and have git remember
the association:

git push --set-upstream origin remotebranchname

(for the meaning of –set-upsteam see the section
Associate a local and remote branch above).

Disallow a branch deletion, or committing to a branch, on BitBucket

You can find these settings in the repository settings of the web interface, and
then under “Branch management”.

Note

if you commit to a branch (locally) and then discover that you cannot
push (e.g. you mistakenly committed to the master branch), you can remove
your last commit using:

git reset --hard HEAD~1

(this removes one commit only, and you should have no local modifications;
if you do it, be sure to avoid losing your modifications!)

Merge from a different repository

It is possible to do a pull request of a forked repository from the BitBucket
web interface. However, if one just wants to keep in sync, e.g., the main
AiiDA repository with a fork you are working into without creating a pull
request (e.g., for daily merge of your fork’s develop into the main repo’s
develop), you can:

	commit and pull all your changes in your fork

	from the BitBucket web interface, sync your fork with the main repository,
if needed

	go in a local cloned version of the main repository

	[only the first time] add a remote pointing to the new repository, with
the name you prefer (here: myfork):

git remote add myfork git@bitbucket.org:BUTBUCKETUSER/FORKEDREPO.git

	checkout to the correct branch you want to merge into (git
checkout develop)

	do a git pull (just in case)

	Fetch the correct branch of the other repository (e.g., the develop branch):

git fetch myfork develop

(this will fetch that branch into a temporary location called FETCH_HEAD).

	Merge the modifications:

git merge FETCH_HEAD

	Fix any merge conflicts (if any) and commit.

	Finally, push the merged result into the main repository:

git push

(or, if you did not use the default remote with --set-upstream, specify
the correct remote branch, e.g. git push origin develop).

Note

If you want to fetch and transfer also tags,
use instead:

git fetch -t myfork develop
git merge FETCH_HEAD
git push --tags

to get the tags from myfork and then push them in the current repository.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

 	Sphinx cheatsheet

ORM documentation: generic aiida.orm

This section describes the aiida object-relational mapping.

Some generic methods of the module aiida.orm.utils

	
aiida.orm.utils.CalculationFactory(module, from_abstract=False)[source]

	Return a suitable JobCalculation subclass.

	Parameters:	
	module – a valid string recognized as a Calculation plugin

	from_abstract – A boolean. If False (default), actually look only
to subclasses to JobCalculation, not to the base Calculation class.
If True, check for valid strings for plugins of the Calculation base class.

	
aiida.orm.utils.DataFactory(module)[source]

	Return a suitable Data subclass.

	
aiida.orm.utils.WorkflowFactory(module)[source]

	Return a suitable Workflow subclass.

	
aiida.orm.utils.load_node(node_id=None, pk=None, uuid=None, parent_class=None)[source]

	Return an AiiDA node given PK or UUID.

	Parameters:	
	node_id – PK (integer) or UUID (string) or a node

	pk – PK of a node

	uuid – UUID of a node

	parent_class – if specified, checks whether the node loaded is a
subclass of parent_class

	Returns:	an AiiDA node

	Raises:	
	ValueError – if none or more than one of parameters is supplied
or type of node_id is neither string nor integer.

	NotExistent – if the parent_class is specified
and no matching Node is found.

	
aiida.orm.utils.load_workflow(wf_id=None, pk=None, uuid=None)[source]

	Return an AiiDA workflow given PK or UUID.

	Parameters:	
	wf_id – PK (integer) or UUID (string) or a workflow

	pk – PK of a workflow

	uuid – UUID of a workflow

	Returns:	an AiiDA workflow

	Raises:	ValueError if none or more than one of parameters is supplied
or type of wf_id is neither string nor integer

Computer

	
class aiida.orm.implementation.general.computer.AbstractComputer(**kwargs)[source]

	Base class to map a node in the DB + its permanent repository counterpart.

Stores attributes starting with an underscore.

Caches files and attributes before the first save, and saves everything only on store().
After the call to store(), in general attributes cannot be changed, except for those
listed in the self._updatable_attributes tuple (empty for this class, can be
extended in a subclass).

Only after storing (or upon loading from uuid) metadata can be modified
and in this case they are directly set on the db.

In the plugin, also set the _plugin_type_string, to be set in the DB in the ‘type’ field.

	
copy()[source]

	Return a copy of the current object to work with, not stored yet.

	
full_text_info

	Return a (multiline) string with a human-readable detailed information
on this computer.

	
classmethod get(computer)[source]

	Return a computer from its name (or from another Computer or DbComputer instance)

	
get_dbauthinfo(user)[source]

	Return the aiida.backends.djsite.db.models.DbAuthInfo instance for the
given user on this computer, if the computer
is not configured for the given user.

	Parameters:	user – a DbUser instance.

	Returns:	a aiida.backends.djsite.db.models.DbAuthInfo instance

	Raises:	NotExistent – if the computer is not configured for the given
user.

	
get_default_mpiprocs_per_machine()[source]

	Return the default number of CPUs per machine (node) for this computer,
or None if it was not set.

	
get_mpirun_command()[source]

	Return the mpirun command. Must be a list of strings, that will be
then joined with spaces when submitting.

I also provide a sensible default that may be ok in many cases.

	
id

	Return the principal key in the DB.

	
is_user_configured(user)[source]

	Return True if the computer is configured for the given user,
False otherwise.

	Parameters:	user – a DbUser instance.

	Returns:	a boolean.

	
is_user_enabled(user)[source]

	Return True if the computer is enabled for the given user (looking only
at the per-user setting: the computer could still be globally disabled).

	Note:	Return False also if the user is not configured for the computer.

	Parameters:	user – a DbUser instance.

	Returns:	a boolean.

	
classmethod list_names()[source]

	Return a list with all the names of the computers in the DB.

	
pk

	Return the principal key in the DB.

	
set_default_mpiprocs_per_machine(def_cpus_per_machine)[source]

	Set the default number of CPUs per machine (node) for this computer.
Accepts None if you do not want to set this value.

	
set_mpirun_command(val)[source]

	Set the mpirun command. It must be a list of strings (you can use
string.split() if you have a single, space-separated string).

	
store()[source]

	Store the computer in the DB.

Differently from Nodes, a computer can be re-stored if its properties
are to be changed (e.g. a new mpirun command, etc.)

	
uuid

	Return the UUID in the DB.

	
validate()[source]

	Check if the attributes and files retrieved from the DB are valid.
Raise a ValidationError if something is wrong.

Must be able to work even before storing: therefore, use the get_attr and similar methods
that automatically read either from the DB or from the internal attribute cache.

For the base class, this is always valid. Subclasses will reimplement this.
In the subclass, always call the super().validate() method first!

Node

	
class aiida.orm.implementation.general.node.AbstractNode(**kwargs)[source]

	Base class to map a node in the DB + its permanent repository counterpart.

Stores attributes starting with an underscore.

Caches files and attributes before the first save, and saves everything
only on store(). After the call to store(), in general attributes cannot
be changed, except for those listed in the self._updatable_attributes
tuple (empty for this class, can be extended in a subclass).

Only after storing (or upon loading from uuid) extras can be modified
and in this case they are directly set on the db.

In the plugin, also set the _plugin_type_string, to be set in the DB in
the ‘type’ field.

	
__init__(**kwargs)[source]

	Initialize the object Node.

	Parameters:	uuid (optional) – if present, the Node with given uuid is
loaded from the database.
(It is not possible to assign a uuid to a new Node.)

	
add_comment(content, user=None)[source]

	Add a new comment.

	Parameters:	content – string with comment

	
add_link_from(src, label=None, link_type=<LinkType.UNSPECIFIED: 'unspecified'>)[source]

	Add a link to the current node from the ‘src’ node.
Both nodes must be a Node instance (or a subclass of Node)
:note: In subclasses, change only this. Moreover, remember to call
the super() method in order to properly use the caching logic!

	Parameters:	
	src – the source object

	label (str) – the name of the label to set the link from src.
Default = None.

	link_type – The type of link, must be one of the enum values
from LinkType

	
add_path(src_abs, dst_path)[source]

	Copy a file or folder from a local file inside the repository directory.
If there is a subpath, folders will be created.

Copy to a cache directory if the entry has not been saved yet.

	Parameters:	
	src_abs (str) – the absolute path of the file to copy.

	dst_filename (str) – the (relative) path on which to copy.

	Todo:	in the future, add an add_attachment() that has the same
meaning of a extras file. Decide also how to store. If in two
separate subfolders, remember to reset the limit.

	
attrs()[source]

	Returns the keys of the attributes.

	Returns:	a list of strings

	
copy()[source]

	Return a copy of the current object to work with, not stored yet.

This is a completely new entry in the DB, with its own UUID.
Works both on stored instances and with not-stored ones.

Copies files and attributes, but not the extras.
Does not store the Node to allow modification of attributes.

	Returns:	an object copy

	
ctime

	Return the creation time of the node.

	
dbnode

	

	Returns:	the corresponding DbNode object.

	
del_extra(key)[source]

	Delete a extra, acting directly on the DB!
The action is immediately performed on the DB.
Since extras can be added only after storing the node, this
function is meaningful to be called only after the .store() method.

	Parameters:	key (str) – key name

	Raise:	AttributeError: if key starts with underscore

	Raise:	ModificationNotAllowed: if the node is not stored yet

	
description

	Get the description of the node.

	Returns:	a string

	
extras()[source]

	Get the keys of the extras.

	Returns:	a list of strings

	
folder

	Get the folder associated with the node,
whether it is in the temporary or the permanent repository.

	Returns:	the RepositoryFolder object.

	
get_abs_path(path=None, section=None)[source]

	Get the absolute path to the folder associated with the
Node in the AiiDA repository.

	Parameters:	
	path (str) – the name of the subfolder inside the section. If None
returns the abspath of the folder. Default = None.

	section – the name of the subfolder (‘path’ by default).

	Returns:	a string with the absolute path

For the moment works only for one kind of files, ‘path’ (internal files)

	
get_attr(key, default=())[source]

	Get the attribute.

	Parameters:	
	key – name of the attribute

	default (optional) – if no attribute key is found, returns default

	Returns:	attribute value

	Raises:	AttributeError – If no attribute is found and there is no default

	
get_attrs()[source]

	Return a dictionary with all attributes of this node.

	
get_comments(pk=None)[source]

	Return a sorted list of comment values, one for each comment associated
to the node.

	Parameters:	pk – integer or list of integers. If it is specified, returns the
comment values with desired pks. (pk refers to DbComment.pk)

	Returns:	the list of comments, sorted by pk; each element of the
list is a dictionary, containing (pk, email, ctime, mtime, content)

	
get_computer()[source]

	Get the computer associated to the node.

	Returns:	the Computer object or None.

	
get_extra(key, *args)[source]

	Get the value of a extras, reading directly from the DB!
Since extras can be added only after storing the node, this
function is meaningful to be called only after the .store() method.

	Parameters:	
	key (str) – key name

	value (optional) – if no attribute key is found, returns value

	Returns:	the key value

	Raises:	ValueError – If more than two arguments are passed to get_extra

	
get_extras()[source]

	Get the value of extras, reading directly from the DB!
Since extras can be added only after storing the node, this
function is meaningful to be called only after the .store() method.

	Returns:	the dictionary of extras ({} if no extras)

	
get_folder_list(subfolder='.')[source]

	Get the the list of files/directory in the repository of the object.

	Parameters:	subfolder (str,optional) – get the list of a subfolder

	Returns:	a list of strings.

	
get_inputs(node_type=None, also_labels=False, only_in_db=False, link_type=None)[source]

	Return a list of nodes that enter (directly) in this node

	Parameters:	
	node_type – If specified, should be a class, and it filters only
elements of that specific type (or a subclass of ‘type’)

	also_labels – If False (default) only return a list of input nodes.
If True, return a list of tuples, where each tuple has the
following format: (‘label’, Node), with ‘label’ the link label,
and Node a Node instance or subclass

	only_in_db – Return only the inputs that are in the database,
ignoring those that are in the local cache. Otherwise, return
all links.

	link_type – Only get inputs of this link type, if None then
returns all inputs of all link types.

	
get_inputs_dict(only_in_db=False, link_type=None)[source]

	Return a dictionary where the key is the label of the input link, and
the value is the input node.

	Parameters:	
	only_in_db – If true only get stored links, not cached

	link_type – Only get inputs of this link type, if None then
returns all inputs of all link types.

	Returns:	a dictionary {label:object}

	
get_outputs(type=None, also_labels=False, link_type=None)[source]

	Return a list of nodes that exit (directly) from this node

	Parameters:	
	type – if specified, should be a class, and it filters only
elements of that specific type (or a subclass of ‘type’)

	also_labels – if False (default) only return a list of input nodes.
If True, return a list of tuples, where each tuple has the
following format: (‘label’, Node), with ‘label’ the link label,
and Node a Node instance or subclass

	
get_outputs_dict(link_type=None)[source]

	Return a dictionary where the key is the label of the output link, and
the value is the input node.
As some Nodes (Datas in particular) can have more than one output with
the same label, all keys have the name of the link with appended the pk
of the node in output.
The key without pk appended corresponds to the oldest node.

	Returns:	a dictionary {linkname:object}

	
classmethod get_subclass_from_pk(pk)[source]

	Get a node object from the pk, with the proper subclass of Node.
(integer primary key used in this database),
but loading the proper subclass where appropriate.

	Parameters:	pk – a string with the pk of the object to be loaded.

	Returns:	the object of the proper subclass.

	Raise:	NotExistent: if there is no entry of the desired
object kind with the given pk.

	
classmethod get_subclass_from_uuid(uuid)[source]

	Get a node object from the uuid, with the proper subclass of Node.
(if Node(uuid=...) is called, only the Node class is loaded).

	Parameters:	uuid – a string with the uuid of the object to be loaded.

	Returns:	the object of the proper subclass.

	Raise:	NotExistent: if there is no entry of the desired
object kind with the given uuid.

	
get_user()[source]

	Get the user.

	Returns:	a Django DbUser model object

	
has_children

	Property to understand if children are attached to the node
:return: a boolean

	
has_parents

	Property to understand if parents are attached to the node
:return: a boolean

	
id

	

	Returns:	the principal key (the ID) as an integer, or None if the
node was not stored yet

	
inp

	Traverse the graph of the database.
Returns a databaseobject, linked to the current node, by means of the linkname.
Example:
B = A.inp.parameters: returns the object (B), with link from B to A, with linkname parameters
C= A.inp: returns an InputManager, an object that is meant to be accessed as the previous example

	
iterattrs()[source]

	Iterator over the attributes, returning tuples (key, value)

	Todo:	optimize! At the moment, the call is very slow because it is
also calling attr.getvalue() for each attribute, that has to
perform complicated queries to rebuild the object.

	Parameters:	also_updatable (bool) – if False, does not iterate over
attributes that are updatable

	
iterextras()[source]

	Iterator over the extras, returning tuples (key, value)

	Todo:	verify that I am not creating a list internally

	
label

	Get the label of the node.

	Returns:	a string.

	
logger

	Get the logger of the Node object.

	Returns:	Logger object

	
mtime

	Return the modification time of the node.

	
out

	Traverse the graph of the database.
Returns a databaseobject, linked to the current node, by means of the linkname.
Example:
B = A.out.results: Returns the object B, with link from A to B, with linkname parameters

	
pk

	

	Returns:	the principal key (the ID) as an integer, or None if the
node was not stored yet

	
classmethod query(*args, **kwargs)[source]

	Map to the aiidaobjects manager of the DbNode, that returns
Node objects (or their subclasses) instead of DbNode entities.

TODO: VERY IMPORTANT: the recognition of a subclass from the type
does not work if the modules defining the subclasses are not
put in subfolders.
In the future, fix it either to make a cache and to store the
full dependency tree, or save also the path.

	
querybuild(*args, **kwargs)[source]

	Instantiates and
:returns: a QueryBuilder instance.

The QueryBuilder’s path has one vertice so far, namely this class.
Additional parameters (e.g. filters or a label),
can be passes as keyword arguments.

	Parameters:	
	label – Label to give

	filters – filters to apply

	project – projections

This class is a comboclass (see combomethod())
therefore the method can be called as class or instance method.
If called as an instance method, adds a filter on the id.

	
remove_path(path)[source]

	Remove a file or directory from the repository directory.
Can be called only before storing.

	Parameters:	path (str) – relative path to file/directory.

	
set(**kwargs)[source]

	For each k=v pair passed as kwargs, call the corresponding
set_k(v) method (e.g., calling self.set(property=5, mass=2) will
call self.set_property(5) and self.set_mass(2).
Useful especially in the __init__.

	Note:	it uses the _set_incompatibilities list of the class to check
that we are not setting methods that cannot be set at the same time.
_set_incompatibilities must be a list of tuples, and each tuple
specifies the elements that cannot be set at the same time.
For instance, if _set_incompatibilities = [(‘property’, ‘mass’)],
then the call self.set(property=5, mass=2) will raise a ValueError.
If a tuple has more than two values, it raises ValueError if all
keys are provided at the same time, but it does not give any error
if at least one of the keys is not present.

	Note:	If one element of _set_incompatibilities is a tuple with only
one element, this element will not be settable using this function
(and in particular,

	Raises:	ValueError – if the corresponding set_k method does not exist
in self, or if the methods cannot be set at the same time.

	
set_computer(computer)[source]

	Set the computer to be used by the node.

Note that the computer makes sense only for some nodes: Calculation,
RemoteData, ...

	Parameters:	computer – the computer object

	
set_extra(key, value, exclusive=False)[source]

	Immediately sets an extra of a calculation, in the DB!
No .store() to be called. Can be used only after saving.

	Parameters:	
	key (string) – key name

	value – key value

	exclusive – (default=False).
If exclusive is True, it raises a UniquenessError if an Extra with
the same name already exists in the DB (useful e.g. to “lock” a
node and avoid to run multiple times the same computation on it).

	Raises:	UniquenessError – if extra already exists and exclusive is True.

	
set_extras(the_dict)[source]

	Immediately sets several extras of a calculation, in the DB!
No .store() to be called.
Can be used only after saving.

	Parameters:	the_dict – a dictionary of key:value to be set as extras

	
store(with_transaction=True)[source]

	Store a new node in the DB, also saving its repository directory
and attributes.

After being called attributes cannot be
changed anymore! Instead, extras can be changed only AFTER calling
this store() function.

	Note:	After successful storage, those links that are in the cache, and
for which also the parent node is already stored, will be
automatically stored. The others will remain unstored.

	Parameters:	with_transaction – if False, no transaction is used. This
is meant to be used ONLY if the outer calling function has already
a transaction open!

	
store_all(with_transaction=True)[source]

	Store the node, together with all input links, if cached, and also the
linked nodes, if they were not stored yet.

	Parameters:	with_transaction – if False, no transaction is used. This
is meant to be used ONLY if the outer calling function has already
a transaction open!

	
uuid

	

	Returns:	a string with the uuid

	
class aiida.orm.implementation.general.node.AttributeManager(node)[source]

	An object used internally to return the attributes as a dictionary.

	Note:	Important! It cannot be used to change variables, just to read
them. To change values (of unstored nodes), use the proper Node methods.

	
__init__(node)[source]

	

	Parameters:	node – the node object.

	
class aiida.orm.implementation.general.node.NodeInputManager(node)[source]

	To document

	
__init__(node)[source]

	

	Parameters:	node – the node object.

	
class aiida.orm.implementation.general.node.NodeOutputManager(node)[source]

	To document

	
__init__(node)[source]

	

	Parameters:	node – the node object.

Workflow

	
class aiida.orm.implementation.general.workflow.AbstractWorkflow(**kwargs)[source]

	Base class to represent a workflow. This is the superclass of any workflow implementations,
and provides all the methods necessary to interact with the database.

The typical use case are workflow stored in the aiida.workflow packages, that are initiated
either by the user in the shell or by some scripts, and that are monitored by the aiida daemon.

Workflow can have steps, and each step must contain some calculations to be executed. At the
end of the step’s calculations the workflow is reloaded in memory and the next methods is called.

	
add_attribute(_name, _value)[source]

	Add one attributes to the Workflow. If another attribute is present with the same name it will
be overwritten.
:param name: a string with the attribute name to store
:param value: a storable object to store

	
add_attributes(_params)[source]

	Add a set of attributes to the Workflow. If another attribute is present with the same name it will
be overwritten.
:param name: a string with the attribute name to store
:param value: a storable object to store

	
add_path(src_abs, dst_path)[source]

	Copy a file or folder from a local file inside the repository directory.
If there is a subpath, folders will be created.

Copy to a cache directory if the entry has not been saved yet.
src_abs: the absolute path of the file to copy.
dst_filename: the (relative) path on which to copy.

	
add_result(_name, _value)[source]

	Add one result to the Workflow. If another result is present with the same name it will
be overwritten.
:param name: a string with the result name to store
:param value: a storable object to store

	
add_results(_params)[source]

	Add a set of results to the Workflow. If another result is present with the same name it will
be overwritten.
:param name: a string with the result name to store
:param value: a storable object to store

	
append_to_report(text)[source]

	Adds text to the Workflow report.

	Note:	Once, in case the workflow is a subworkflow of any other Workflow this method
calls the parent append_to_report method; now instead this is not the
case anymore

	
attach_calculation(calc)[source]

	Adds a calculation to the caller step in the database. This is a lazy call, no
calculations will be launched until the next method gets called. For a step to be
completed all the calculations linked have to be in RETRIEVED state, after which the next
method gets called from the workflow manager.
:param calc: a JobCalculation object
:raise: AiidaException: in case the input is not of JobCalculation type

	
attach_workflow(sub_wf)[source]

	Adds a workflow to the caller step in the database. This is a lazy call, no
workflow will be started until the next method gets called. For a step to be
completed all the workflows linked have to be in FINISHED state, after which the next
method gets called from the workflow manager.
:param next_method: a Workflow object

	
clear_report()[source]

	Wipe the Workflow report. In case the workflow is a subworflow of any other Workflow this method
calls the parent clear_report method.

	
current_folder

	Get the current repository folder,
whether the temporary or the permanent.

	Returns:	the RepositoryFolder object.

	
dbworkflowinstance

	Get the DbWorkflow object stored in the super class.

	Returns:	DbWorkflow object from the database

	
description

	Get the description of the workflow.

	Returns:	a string

	
exit()[source]

	This is the method to call in next to finish the Workflow. When exit is the next method,
and no errors are found, the Workflow is set to FINISHED and removed from the execution manager
duties.

	
get_abs_path(path, section=None)[source]

	TODO: For the moment works only for one kind of files, ‘path’ (internal files)

	
get_all_calcs(calc_class=<class 'aiida.orm.implementation.django.calculation.job.JobCalculation'>, calc_state=None, depth=15)[source]

	Get all calculations connected with this workflow and all its subworflows up to a given depth.
The list of calculations can be restricted to a given calculation type and state
:param calc_class: the calculation class to which the calculations should belong (default: JobCalculation)

	Parameters:	
	calc_state – a specific state to filter the calculations to retrieve

	depth – the maximum depth level the recursion on sub-workflows will
try to reach (0 means we stay at the step level and don’t go
into sub-workflows, 1 means we go down to one step level of
the sub-workflows, etc.)

	Returns:	a list of JobCalculation objects

	
get_attribute(_name)[source]

	Get one Workflow attribute
:param name: a string with the attribute name to retrieve
:return: a dictionary of storable objects

	
get_attributes()[source]

	Get the Workflow attributes
:return: a dictionary of storable objects

	
get_folder_list(subfolder='.')[source]

	Get the the list of files/directory in the repository of the object.

	Parameters:	subfolder (str,optional) – get the list of a subfolder

	Returns:	a list of strings.

	
get_parameter(_name)[source]

	Get one Workflow paramenter
:param name: a string with the parameters name to retrieve
:return: a dictionary of storable objects

	
get_parameters()[source]

	Get the Workflow paramenters
:return: a dictionary of storable objects

	
get_report()[source]

	Return the Workflow report.

	Note:	once, in case the workflow is a subworkflow of any other Workflow this method
calls the parent get_report method.
This is not the case anymore.

	Returns:	a list of strings

	
get_result(_name)[source]

	Get one Workflow result
:param name: a string with the result name to retrieve
:return: a dictionary of storable objects

	
get_results()[source]

	Get the Workflow results
:return: a dictionary of storable objects

	
get_state()[source]

	Get the Workflow’s state
:return: a state from wf_states in aiida.common.datastructures

	
get_step(step_method)[source]

	Retrieves by name a step from the Workflow.
:param step_method: a string with the name of the step to retrieve or a method
:raise: ObjectDoesNotExist: if there is no step with the specific name.
:return: a DbWorkflowStep object.

	
get_step_calculations(step_method, calc_state=None)[source]

	Retrieves all the calculations connected to a specific step in the database. If the step
is not existent it returns None, useful for simpler grammatic in the workflow definition.
:param next_method: a Workflow step (decorated) method
:param calc_state: a specific state to filter the calculations to retrieve
:return: a list of JobCalculations objects

	
get_step_workflows(step_method)[source]

	Retrieves all the workflows connected to a specific step in the database. If the step
is not existent it returns None, useful for simpler grammatic in the workflow definition.
:param next_method: a Workflow step (decorated) method

	
get_steps(state=None)[source]

	Retrieves all the steps from a specific workflow Workflow with the possibility to limit the list
to a specific step’s state.
:param state: a state from wf_states in aiida.common.datastructures
:return: a list of DbWorkflowStep objects.

	
classmethod get_subclass_from_dbnode(wf_db)[source]

	Loads the workflow object and reaoads the python script in memory with the importlib library, the
main class is searched and then loaded.
:param wf_db: a specific DbWorkflowNode object representing the Workflow
:return: a Workflow subclass from the specific source code

	
classmethod get_subclass_from_pk(pk)[source]

	Calls the get_subclass_from_dbnode selecting the DbWorkflowNode from
the input pk.
:param pk: a primary key index for the DbWorkflowNode
:return: a Workflow subclass from the specific source code

	
classmethod get_subclass_from_uuid(uuid)[source]

	Calls the get_subclass_from_dbnode selecting the DbWorkflowNode from
the input uuid.
:param uuid: a uuid for the DbWorkflowNode
:return: a Workflow subclass from the specific source code

	
get_temp_folder()[source]

	Get the folder of the Node in the temporary repository.

	Returns:	a SandboxFolder object mapping the node in the repository.

	
has_failed()[source]

	Returns True is the Workflow’s state is ERROR

	
has_finished_ok()[source]

	Returns True is the Workflow’s state is FINISHED

	
has_step(step_method)[source]

	Return if the Workflow has a step with a specific name.
:param step_method: a string with the name of the step to retrieve or a method

	
info()[source]

	Returns an array with all the informations about the modules, file, class to locate
the workflow source code

	
is_new()[source]

	Returns True is the Workflow’s state is CREATED

	
is_running()[source]

	Returns True is the Workflow’s state is RUNNING

	
is_subworkflow()[source]

	Return True is this is a subworkflow (i.e., if it has a parent),
False otherwise.

	
kill(verbose=False)[source]

	Stop the Workflow execution and change its state to FINISHED.

This method calls the kill method for each Calculation and each
subworkflow linked to each RUNNING step.

	Parameters:	verbose – True to print the pk of each subworkflow killed

	Raises:	InvalidOperation – if some calculations cannot be killed (the
workflow will be also put to SLEEP so that it
can be killed later on)

	
kill_step_calculations(step)[source]

	Calls the kill method for each Calculation linked to the step method passed as argument.
:param step: a Workflow step (decorated) method

	
label

	Get the label of the workflow.

	Returns:	a string

	
logger

	Get the logger of the Workflow object, so that it also logs to the
DB.

	Returns:	LoggerAdapter object, that works like a logger, but also has
the ‘extra’ embedded

	
next(next_method)[source]

	Adds the a new step to be called after the completion of the caller method’s calculations and subworkflows.

This method must be called inside a Workflow step, otherwise an error is thrown. The
code finds the caller method and stores in the database the input next_method as the next
method to be called. At this point no execution in made, only configuration updates in the database.

If during the execution of the caller method the user launched calculations or subworkflows, this
method will add them to the database, making them available to the workflow manager to be launched.
In fact all the calculation and subworkflow submissions are lazy method, really executed by this call.

	Parameters:	next_method – a Workflow step method to execute after the caller method

	Raise:	AiidaException: in case the caller method cannot be found or validated

	Returns:	the wrapped methods, decorated with the correct step name

	
pk

	Returns the DbWorkflow pk

	
classmethod query(*args, **kwargs)[source]

	Map to the aiidaobjects manager of the DbWorkflow, that returns
Workflow objects instead of DbWorkflow entities.

	
remove_path(path)[source]

	Remove a file or directory from the repository directory.

Can be called only before storing.

	
repo_folder

	Get the permanent repository folder.
Use preferentially the current_folder method.

	Returns:	the permanent RepositoryFolder object

	
set_params(params, force=False)[source]

	Adds parameters to the Workflow that are both stored and used every time
the workflow engine re-initialize the specific workflow to launch the new methods.

	
set_state(state)[source]

	Set the Workflow’s state
:param name: a state from wf_states in aiida.common.datastructures

	
sleep()[source]

	Changes the workflow state to SLEEP, only possible to call from a Workflow step decorated method.

	
classmethod step(fun)[source]

	This method is used as a decorator for workflow steps, and handles the method’s execution,
the state updates and the eventual errors.

The decorator generates a wrapper around the input function to execute, adding with the correct
step name and a utility variable to make it distinguishable from non-step methods.

When a step is launched, the wrapper tries to run the function in case of error the state of
the workflow is moved to ERROR and the traceback is stored in the report. In general the input
method is a step obtained from the Workflow object, and the decorator simply handles a controlled
execution of the step allowing the code not to break in case of error in the step’s source code.

The wrapper also tests not to run two times the same step, unless a Workflow is in ERROR state, in this
case all the calculations and subworkflows of the step are killed and a new execution is allowed.

	Parameters:	fun – a methods to wrap, making it a Workflow step

	Raise:	AiidaException: in case the workflow state doesn’t allow the execution

	Returns:	the wrapped methods,

	
store()[source]

	Stores the DbWorkflow object data in the database

	
uuid

	Returns the DbWorkflow uuid

	
exception aiida.orm.implementation.general.workflow.WorkflowKillError(*args, **kwargs)[source]

	An exception raised when a workflow failed to be killed.
The error_message_list attribute contains the error messages from
all the subworkflows.

	
exception aiida.orm.implementation.general.workflow.WorkflowUnkillable[source]

	Raised when a workflow cannot be killed because it is in the FINISHED or
ERROR state.

	
aiida.orm.implementation.general.workflow.get_workflow_info(w, tab_size=2, short=False, pre_string='', depth=16)[source]

	Return a string with all the information regarding the given workflow and
all its calculations and subworkflows.
This is a recursive function (to print all subworkflows info as well).

	Parameters:	
	w – a DbWorkflow instance

	tab_size – number of spaces to use for the indentation

	short – if True, provide a shorter output (only total number of
calculations, rather than the state of each calculation)

	pre_string – string appended at the beginning of each line

	depth – the maximum depth level the recursion on sub-workflows will
try to reach (0 means we stay at the step level and don’t go
into sub-workflows, 1 means we go down to one step level of
the sub-workflows, etc.)

	Return lines:	list of lines to be outputed

	
aiida.orm.implementation.general.workflow.kill_all()[source]

	Kills all the workflows not in FINISHED state running the kill_from_uuid
method in a loop.

	Parameters:	uuid – the UUID of the workflow to kill

	
aiida.orm.implementation.general.workflow.kill_from_pk()[source]

	Kills a workflow from its pk.

	Parameters:	pk – the Pkof the workflow to kill

Code

	
class aiida.orm.implementation.general.code.AbstractCode(**kwargs)[source]

	A code entity.
It can either be ‘local’, or ‘remote’.

	Local code: it is a collection of files/dirs (added using the add_path() method), where one file is flagged as executable (using the set_local_executable() method).

	Remote code: it is a pair (remotecomputer, remotepath_of_executable) set using the set_remote_computer_exec() method.

For both codes, one can set some code to be executed right before or right after
the execution of the code, using the set_preexec_code() and set_postexec_code()
methods (e.g., the set_preexec_code() can be used to load specific modules required
for the code to be run).

	
can_run_on(computer)[source]

	Return True if this code can run on the given computer, False otherwise.

Local codes can run on any machine; remote codes can run only on the machine
on which they reside.

TODO: add filters to mask the remote machines on which a local code can run.

	
full_text_info

	Return a (multiline) string with a human-readable detailed information
on this computer.

	
classmethod get(label, computername=None, useremail=None)[source]

	Get a code from its label.

	Parameters:	
	label – the code label

	computername – filter only codes on computers with this name

	useremail – filter only codes belonging to a user with this
email

	Raises:	
	NotExistent – if no matches are found

	MultipleObjectsError – if multiple matches are found. In this case
you may want to pass the additional parameters to filter the codes,
or relabel the codes.

	
get_append_text()[source]

	Return the postexec_code, or an empty string if no post-exec code was defined.

	
get_execname()[source]

	Return the executable string to be put in the script.
For local codes, it is ./LOCAL_EXECUTABLE_NAME
For remote codes, it is the absolute path to the executable.

	
classmethod get_from_string(code_string)[source]

	Get a Computer object with given identifier string, that can either be
the numeric ID (pk), or the label (if unique); the label can either
be simply the label, or in the format label@machinename. See the note
below for details on the string detection algorithm.

Note

If a string that can be converted to an integer is given,
the numeric ID is verified first (therefore, is a code A with a
label equal to the ID of another code B is present, code A cannot
be referenced by label). Similarly, the (leftmost) ‘@’ symbol is
always used to split code and computername. Therefore do not use
‘@’ in the code name if you want to use this function
(‘@’ in the computer name are instead valid).

	Parameters:	code_string – the code string identifying the code to load

	Raises:	
	NotExistent – if no code identified by the given string is found

	MultipleObjectsError – if the string cannot identify uniquely
a code

	
get_input_plugin_name()[source]

	Return the name of the default input plugin (or None if no input plugin
was set.

	
get_prepend_text()[source]

	Return the code that will be put in the scheduler script before the
execution, or an empty string if no pre-exec code was defined.

	
is_local()[source]

	Return True if the code is ‘local’, False if it is ‘remote’ (see also documentation
of the set_local and set_remote functions).

	
classmethod list_for_plugin(plugin, labels=True)[source]

	Return a list of valid code strings for a given plugin.

	Parameters:	
	plugin – The string of the plugin.

	labels – if True, return a list of code names, otherwise
return the code PKs (integers).

	Returns:	a list of string, with the code names if labels is True,
otherwise a list of integers with the code PKs.

	
new_calc(*args, **kwargs)[source]

	Create and return a new Calculation object (unstored) with the correct
plugin subclass, as obtained by the self.get_input_plugin_name() method.

Parameters are passed to the calculation __init__ method.

	Note:	it also directly creates the link to this code (that will of
course be cached, since the new node is not stored yet).

	Raises:	
	MissingPluginError – if the specified plugin does not exist.

	ValueError – if no plugin was specified.

	
set_append_text(code)[source]

	Pass a string of code that will be put in the scheduler script after the
execution of the code.

	
set_files(files)[source]

	Given a list of filenames (or a single filename string),
add it to the path (all at level zero, i.e. without folders).
Therefore, be careful for files with the same name!

	Todo:	decide whether to check if the Code must be a local executable
to be able to call this function.

	
set_input_plugin_name(input_plugin)[source]

	Set the name of the default input plugin, to be used for the automatic
generation of a new calculation.

	
set_local_executable(exec_name)[source]

	Set the filename of the local executable.
Implicitly set the code as local.

	
set_prepend_text(code)[source]

	Pass a string of code that will be put in the scheduler script before the
execution of the code.

	
set_remote_computer_exec(remote_computer_exec)[source]

	Set the code as remote, and pass the computer on which it resides
and the absolute path on that computer.

	Args:

	
	remote_computer_exec: a tuple (computer, remote_exec_path), where

	computer is a aiida.orm.Computer or an
aiida.backends.djsite.db.models.DbComputer object, and
remote_exec_path is the absolute path of the main executable on
remote computer.

	
aiida.orm.implementation.general.code.delete_code(code)[source]

	Delete a code from the DB.
Check before that there are no output nodes.

NOTE! Not thread safe... Do not use with many users accessing the DB
at the same time.

Implemented as a function on purpose, otherwise complicated logic would be
needed to set the internal state of the object after calling
computer.delete().

ORM documentation: Data

	
class aiida.orm.data.Data(**kwargs)[source]

	This class is base class for all data objects.

Specifications of the Data class:
AiiDA Data objects are subclasses of Node and should have

Multiple inheritance must be suppoted, i.e. Data should have methods for
querying and be able to inherit other library objects such as ASE for
structures.

Architecture note:
The code plugin is responsible for converting a raw data object produced by
code to AiiDA standard object format. The data object then validates itself
according to its method. This is done independently in order to allow
cross-validation of plugins.

	
convert(object_format=None, *args)[source]

	Convert the AiiDA StructureData into another python object

	Parameters:	object_format – Specify the output format

	
export(fname, fileformat=None)[source]

	Save a Data object to a file.

	Parameters:	
	fname – string with file name. Can be an absolute or relative path.

	fileformat – kind of format to use for the export. If not present,
it will try to use the extension of the file name.

	
importfile(fname, fileformat=None)[source]

	Populate a Data object from a file.

	Parameters:	
	fname – string with file name. Can be an absolute or relative path.

	fileformat – kind of format to use for the export. If not present,
it will try to use the extension of the file name.

	
importstring(inputstring, fileformat, **kwargs)[source]

	Converts a Data object to other text format.

	Parameters:	fileformat – a string (the extension) to describe the file format.

	Returns:	a string with the structure description.

	
set_source(source)[source]

	Sets the dictionary describing the source of Data object.

	
source

	Gets the dictionary describing the source of Data object. Possible
fields:

	db_name: name of the source database.

	db_uri: URI of the source database.

	uri: URI of the object’s source. Should be a permanent link.

	id: object’s source identifier in the source database.

	version: version of the object’s source.

	extras: a dictionary with other fields for source description.

	source_md5: MD5 checksum of object’s source.

	
	description: human-readable free form description of the

	object’s source.

	license: a string with a type of license.

Note

some limitations for setting the data source exist, see
_validate().

	Returns:	dictionary describing the source of Data object.

Structure

This module defines the classes for structures and all related
functions to operate on them.

	
class aiida.orm.data.structure.Kind(**kwargs)[source]

	This class contains the information about the species (kinds) of the system.

It can be a single atom, or an alloy, or even contain vacancies.

	
__init__(**kwargs)[source]

	Create a site.
One can either pass:

	Parameters:	
	raw – the raw python dictionary that will be converted to a
Kind object.

	ase – an ase Atom object

	kind – a Kind object (to get a copy)

Or alternatively the following parameters:

	Parameters:	
	symbols – a single string for the symbol of this site, or a list
of symbol strings

	(optional) (mass) – the weights for each atomic species of
this site.
If only a single symbol is provided, then this value is
optional and the weight is set to 1.

	(optional) – the mass for this site in atomic mass units.
If not provided, the mass is set by the
self.reset_mass() function.

	name – a string that uniquely identifies the kind, and that
is used to identify the sites.

	
compare_with(other_kind)[source]

	Compare with another Kind object to check if they are different.

Note

This does NOT check the ‘type’ attribute. Instead, it compares
(with reasonable thresholds, where applicable): the mass, and the list
of symbols and of weights. Moreover, it compares the
_internal_tag, if defined (at the moment, defined automatically
only when importing the Kind from ASE, if the atom has a non-zero tag).
Note that the _internal_tag is only used while the class is loaded,
but is not persisted on the database.

	Returns:	A tuple with two elements. The first one is True if the two sites
are ‘equivalent’ (same mass, symbols and weights), False otherwise.
The second element of the tuple is a string,
which is either None (if the first element was True), or contains
a ‘human-readable’ description of the first difference encountered
between the two sites.

	
get_raw()[source]

	Return the raw version of the site, mapped to a suitable dictionary.
This is the format that is actually used to store each kind of the
structure in the DB.

	Returns:	a python dictionary with the kind.

	
get_symbols_string()[source]

	Return a string that tries to match as good as possible the symbols
of this kind. If there is only one symbol (no alloy) with 100%
occupancy, just returns the symbol name. Otherwise, groups the full
string in curly brackets, and try to write also the composition
(with 2 precision only).

Note

If there is a vacancy (sum of weights<1), we indicate it
with the X symbol followed by 1-sum(weights) (still with 2
digits precision, so it can be 0.00)

Note

Note the difference with respect to the symbols and the
symbol properties!

	
has_vacancies()[source]

	Returns True if the sum of the weights is less than one.
It uses the internal variable _sum_threshold as a threshold.

	Returns:	a boolean

	
is_alloy()[source]

	To understand if kind is an alloy.

	Returns:	True if the kind has more than one element (i.e.,
len(self.symbols) != 1), False otherwise.

	
mass

	The mass of this species kind.

	Returns:	a float

	
name

	Return the name of this kind.
The name of a kind is used to identify the species of a site.

	Returns:	a string

	
reset_mass()[source]

	Reset the mass to the automatic calculated value.

The mass can be set manually; by default, if not provided,
it is the mass of the constituent atoms, weighted with their
weight (after the weight has been normalized to one to take
correctly into account vacancies).

This function uses the internal _symbols and _weights values and
thus assumes that the values are validated.

It sets the mass to None if the sum of weights is zero.

	
set_automatic_kind_name(tag=None)[source]

	Set the type to a string obtained with the symbols appended one
after the other, without spaces, in alphabetical order;
if the site has a vacancy, a X is appended at the end too.

	
set_symbols_and_weights(symbols, weights)[source]

	Set the chemical symbols and the weights for the site.

Note

Note that the kind name remains unchanged.

	
symbol

	If the kind has only one symbol, return it; otherwise, raise a
ValueError.

	
symbols

	List of symbols for this site. If the site is a single atom,
pass a list of one element only, or simply the string for that atom.
For alloys, a list of elements.

Note

Note that if you change the list of symbols, the kind
name remains unchanged.

	
weights

	Weights for this species kind. Refer also to
:func:validate_symbols_tuple for the validation rules on the weights.

	
class aiida.orm.data.structure.Site(**kwargs)[source]

	This class contains the information about a given site of the system.

It can be a single atom, or an alloy, or even contain vacancies.

	
__init__(**kwargs)[source]

	Create a site.

	Parameters:	
	kind_name – a string that identifies the kind (species) of this site.
This has to be found in the list of kinds of the StructureData
object.
Validation will be done at the StructureData level.

	position – the absolute position (three floats) in angstrom

	
get_ase(kinds)[source]

	Return a ase.Atom object for this site.

	Parameters:	kinds – the list of kinds from the StructureData object.

Note

If any site is an alloy or has vacancies, a ValueError
is raised (from the site.get_ase() routine).

	
get_raw()[source]

	Return the raw version of the site, mapped to a suitable dictionary.
This is the format that is actually used to store each site of the
structure in the DB.

	Returns:	a python dictionary with the site.

	
kind_name

	Return the kind name of this site (a string).

The type of a site is used to decide whether two sites are identical
(same mass, symbols, weights, ...) or not.

	
position

	Return the position of this site in absolute coordinates,
in angstrom.

	
class aiida.orm.data.structure.StructureData(**kwargs)[source]

	This class contains the information about a given structure, i.e. a
collection of sites together with a cell, the
boundary conditions (whether they are periodic or not) and other
related useful information.

	
append_atom(**kwargs)[source]

	Append an atom to the Structure, taking care of creating the
corresponding kind.

	Parameters:	
	ase – the ase Atom object from which we want to create a new atom
(if present, this must be the only parameter)

	position – the position of the atom (three numbers in angstrom)

	symbols, weights, name (..) – any further parameter is passed
to the constructor of the Kind object. For the ‘name’ parameter,
see the note below.

Note

Note on the ‘name’ parameter (that is, the name of the kind):

	if specified, no checks are done on existing species. Simply,
a new kind with that name is created. If there is a name
clash, a check is done: if the kinds are identical, no error
is issued; otherwise, an error is issued because you are trying
to store two different kinds with the same name.

	if not specified, the name is automatically generated. Before
adding the kind, a check is done. If other species with the
same properties already exist, no new kinds are created, but
the site is added to the existing (identical) kind.
(Actually, the first kind that is encountered).
Otherwise, the name is made unique first, by adding to the string
containing the list of chemical symbols a number starting from 1,
until an unique name is found

Note

checks of equality of species are done using
the compare_with() method.

	
append_kind(kind)[source]

	Append a kind to the
StructureData.
It makes a copy of the kind.

	Parameters:	kind – the site to append, must be a Kind object.

	
append_site(site)[source]

	Append a site to the
StructureData.
It makes a copy of the site.

	Parameters:	site – the site to append. It must be a Site object.

	
cell

	Returns the cell shape.

	Returns:	a 3x3 list of lists.

	
cell_angles

	Get the angles between the cell lattice vectors in degrees.

	
cell_lengths

	Get the lengths of cell lattice vectors in angstroms.

	
clear_kinds()[source]

	Removes all kinds for the StructureData object.

Note

Also clear all sites!

	
clear_sites()[source]

	Removes all sites for the StructureData object.

	
get_ase()[source]

	Get the ASE object.
Requires to be able to import ase.

	Returns:	an ASE object corresponding to this
StructureData
object.

Note

If any site is an alloy or has vacancies, a ValueError
is raised (from the site.get_ase() routine).

	
get_cell_volume()[source]

	Returns the cell volume in Angstrom^3.

	Returns:	a float.

	
get_composition()[source]

	Returns the chemical composition of this structure as a dictionary,
where each key is the kind symbol (e.g. H, Li, Ba),
and each value is the number of occurences of that element in this
structure. For BaZrO3 it would return {‘Ba’:1, ‘Zr’:1, ‘O’:3}.
No reduction with smallest common divisor!

	Returns:	a dictionary with the composition

	
get_formula(mode='hill', separator='')[source]

	Return a string with the chemical formula.

	Parameters:	
	mode – a string to specify how to generate the formula, can
assume one of the following values:

	‘hill’ (default): count the number of atoms of each species,
then use Hill notation, i.e. alphabetical order with C and H
first if one or several C atom(s) is (are) present, e.g.
['C','H','H','H','O','C','H','H','H'] will return 'C2H6O'
['S','O','O','H','O','H','O'] will return 'H2O4S'
From E. A. Hill, J. Am. Chem. Soc., 22 (8), pp 478–494 (1900)

	‘hill_compact’: same as hill but the number of atoms for each
species is divided by the greatest common divisor of all of them, e.g.
['C','H','H','H','O','C','H','H','H','O','O','O']
will return 'CH3O2'

	‘reduce’: group repeated symbols e.g.
['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
'Ba', 'Ti', 'Ti', 'O', 'O', 'O'] will return 'BaTiO3BaTiO3BaTi2O3'

	‘group’: will try to group as much as possible parts of the formula
e.g.
['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
'Ba', 'Ti', 'Ti', 'O', 'O', 'O'] will return '(BaTiO3)2BaTi2O3'

	‘count’: same as hill (i.e. one just counts the number
of atoms of each species) without the re-ordering (take the
order of the atomic sites), e.g.
['Ba', 'Ti', 'O', 'O', 'O','Ba', 'Ti', 'O', 'O', 'O']
will return 'Ba2Ti2O6'

	‘count_compact’: same as count but the number of atoms
for each species is divided by the greatest common divisor of
all of them, e.g.
['Ba', 'Ti', 'O', 'O', 'O','Ba', 'Ti', 'O', 'O', 'O']
will return 'BaTiO3'

	separator – a string used to concatenate symbols. Default empty.

	Returns:	a string with the formula

Note

in modes reduce, group, count and count_compact, the
initial order in which the atoms were appended by the user is
used to group and/or order the symbols in the formula

	
get_kind(kind_name)[source]

	Return the kind object associated with the given kind name.

	Parameters:	kind_name – String, the name of the kind you want to get

	Returns:	The Kind object associated with the given kind_name, if
a Kind with the given name is present in the structure.

	Raise:	ValueError if the kind_name is not present.

	
get_kind_names()[source]

	Return a list of kind names (in the same order of the self.kinds
property, but return the names rather than Kind objects)

Note

This is NOT necessarily a list of chemical symbols! Use
get_symbols_set for chemical symbols

	Returns:	a list of strings.

	
get_pymatgen()[source]

	Get pymatgen object. Returns Structure for structures with
periodic boundary conditions (in three dimensions) and Molecule
otherwise.

Note

Requires the pymatgen module (version >= 3.0.13, usage
of earlier versions may cause errors).

	
get_pymatgen_molecule()[source]

	Get the pymatgen Molecule object.

Note

Requires the pymatgen module (version >= 3.0.13, usage
of earlier versions may cause errors).

	Returns:	a pymatgen Molecule object corresponding to this
StructureData
object.

	
get_pymatgen_structure()[source]

	Get the pymatgen Structure object.

Note

Requires the pymatgen module (version >= 3.0.13, usage
of earlier versions may cause errors).

	Returns:	a pymatgen Structure object corresponding to this
StructureData
object.

	Raises:	ValueError – if periodic boundary conditions do not hold
in at least one dimension of real space.

	
get_site_kindnames()[source]

	Return a list with length equal to the number of sites of this structure,
where each element of the list is the kind name of the corresponding site.

Note

This is NOT necessarily a list of chemical symbols! Use
[self.get_kind(s.kind_name).get_symbols_string() for s in self.sites]
for chemical symbols

	Returns:	a list of strings

	
get_symbols_set()[source]

	Return a set containing the names of all elements involved in
this structure (i.e., for it joins the list of symbols for each
kind k in the structure).

	Returns:	a set of strings of element names.

	
has_vacancies()[source]

	To understand if there are vacancies in the structure.

	Returns:	a boolean, True if at least one kind has a vacancy

	
is_alloy()[source]

	To understand if there are alloys in the structure.

	Returns:	a boolean, True if at least one kind is an alloy

	
kinds

	Returns a list of kinds.

	
pbc

	Get the periodic boundary conditions.

	Returns:	a tuple of three booleans, each one tells if there are periodic
boundary conditions for the i-th real-space direction (i=1,2,3)

	
reset_cell(new_cell)[source]

	Reset the cell of a structure not yet stored to a new value.

	Parameters:	new_cell – list specifying the cell vectors

	Raises:	ModificationNotAllowed: if object is already stored

	
reset_sites_positions(new_positions, conserve_particle=True)[source]

	Replace all the Site positions attached to the Structure

	Parameters:	
	new_positions – list of (3D) positions for every sites.

	conserve_particle – if True, allows the possibility of removing a site.
currently not implemented.

	Raises:	
	ModificationNotAllowed – if object is stored already

	ValueError – if positions are invalid

Note

it is assumed that the order of the new_positions is
given in the same order of the one it’s substituting, i.e. the
kind of the site will not be checked.

	
set_ase(aseatoms)[source]

	Load the structure from a ASE object

	
set_pymatgen(obj, **kwargs)[source]

	Load the structure from a pymatgen object.

Note

Requires the pymatgen module (version >= 3.0.13, usage
of earlier versions may cause errors).

	
set_pymatgen_molecule(mol, margin=5)[source]

	Load the structure from a pymatgen Molecule object.

	Parameters:	margin – the margin to be added in all directions of the
bounding box of the molecule.

Note

Requires the pymatgen module (version >= 3.0.13, usage
of earlier versions may cause errors).

	
set_pymatgen_structure(struct)[source]

	Load the structure from a pymatgen Structure object.

Note

periodic boundary conditions are set to True in all
three directions.

Note

Requires the pymatgen module (version >= 3.0.13, usage
of earlier versions may cause errors).

	
sites

	Returns a list of sites.

	
aiida.orm.data.structure.ase_refine_cell(aseatoms, **kwargs)[source]

	Detect the symmetry of the structure, remove symmetric atoms and
refine unit cell.

	Parameters:	
	aseatoms – an ase.atoms.Atoms instance

	symprec – symmetry precision, used by pyspglib

	Return newase:	refined cell with reduced set of atoms

	Return symmetry:

		a dictionary describing the symmetry space group

	
aiida.orm.data.structure.calc_cell_volume(cell)[source]

	Calculates the volume of a cell given the three lattice vectors.

It is calculated as cell[0] . (cell[1] x cell[2]), where . represents
a dot product and x a cross product.

	Parameters:	cell – the cell vectors; the must be a 3x3 list of lists of floats,
no other checks are done.

	Returns:	the cell volume.

	
aiida.orm.data.structure.get_formula(symbol_list, mode='hill', separator='')[source]

	Return a string with the chemical formula.

	Parameters:	
	symbol_list – a list of symbols, e.g. ['H','H','O']

	mode – a string to specify how to generate the formula, can
assume one of the following values:

	‘hill’ (default): count the number of atoms of each species,
then use Hill notation, i.e. alphabetical order with C and H
first if one or several C atom(s) is (are) present, e.g.
['C','H','H','H','O','C','H','H','H'] will return 'C2H6O'
['S','O','O','H','O','H','O'] will return 'H2O4S'
From E. A. Hill, J. Am. Chem. Soc., 22 (8), pp 478–494 (1900)

	‘hill_compact’: same as hill but the number of atoms for each
species is divided by the greatest common divisor of all of them, e.g.
['C','H','H','H','O','C','H','H','H','O','O','O']
will return 'CH3O2'

	‘reduce’: group repeated symbols e.g.
['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
'Ba', 'Ti', 'Ti', 'O', 'O', 'O'] will return 'BaTiO3BaTiO3BaTi2O3'

	‘group’: will try to group as much as possible parts of the formula
e.g.
['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
'Ba', 'Ti', 'Ti', 'O', 'O', 'O'] will return '(BaTiO3)2BaTi2O3'

	‘count’: same as hill (i.e. one just counts the number
of atoms of each species) without the re-ordering (take the
order of the atomic sites), e.g.
['Ba', 'Ti', 'O', 'O', 'O','Ba', 'Ti', 'O', 'O', 'O']
will return 'Ba2Ti2O6'

	‘count_compact’: same as count but the number of atoms
for each species is divided by the greatest common divisor of
all of them, e.g.
['Ba', 'Ti', 'O', 'O', 'O','Ba', 'Ti', 'O', 'O', 'O']
will return 'BaTiO3'

	separator – a string used to concatenate symbols. Default empty.

	Returns:	a string with the formula

Note

in modes reduce, group, count and count_compact, the
initial order in which the atoms were appended by the user is
used to group and/or order the symbols in the formula

	
aiida.orm.data.structure.get_formula_from_symbol_list(_list, separator='')[source]

	Return a string with the formula obtained from the list of symbols.
Examples:
* [[1,'Ba'],[1,'Ti'],[3,'O']] will return 'BaTiO3'
* [[2, [[1, 'Ba'], [1, 'Ti']]]] will return '(BaTi)2'

	Parameters:	
	_list – a list of symbols and multiplicities as obtained from
the function group_symbols

	separator – a string used to concatenate symbols. Default empty.

	Returns:	a string

	
aiida.orm.data.structure.get_formula_group(symbol_list, separator='')[source]

	Return a string with the chemical formula from a list of chemical symbols.
The formula is written in a compact” way, i.e. trying to group as much as
possible parts of the formula.

Note

it works for instance very well if structure was obtained
from an ASE supercell.

Example of result:
['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
'Ba', 'Ti', 'Ti', 'O', 'O', 'O'] will return '(BaTiO3)2BaTi2O3'.

	Parameters:	
	symbol_list – list of symbols
(e.g. [‘Ba’,’Ti’,’O’,’O’,’O’])

	separator – a string used to concatenate symbols. Default empty.

	Returns:	a string with the chemical formula for the given structure.

	
aiida.orm.data.structure.get_pymatgen_version()[source]

	

	Returns:	string with pymatgen version, None if can not import.

	
aiida.orm.data.structure.get_structuredata_from_qeinput(filepath=None, text=None)[source]

	Function that receives either
:param filepath: the filepath storing or
:param text: the string of a standard QE-input file.
An instance of StructureData() is initialized with kinds, positions and cell
as defined in the input file.
This function can deal with ibrav being set different from 0 and the cell being defined
with celldm(n) or A,B,C, cosAB etc.

	
aiida.orm.data.structure.get_symbols_string(symbols, weights)[source]

	Return a string that tries to match as good as possible the symbols
and weights. If there is only one symbol (no alloy) with 100%
occupancy, just returns the symbol name. Otherwise, groups the full
string in curly brackets, and try to write also the composition
(with 2 precision only).
If (sum of weights<1), we indicate it with the X symbol followed
by 1-sum(weights) (still with 2 digits precision, so it can be 0.00)

	Parameters:	
	symbols – the symbols as obtained from <kind>._symbols

	weights – the weights as obtained from <kind>._weights

Note

Note the difference with respect to the symbols and the
symbol properties!

	
aiida.orm.data.structure.get_valid_pbc(inputpbc)[source]

	Return a list of three booleans for the periodic boundary conditions,
in a valid format from a generic input.

	Raises:	ValueError – if the format is not valid.

	
aiida.orm.data.structure.group_symbols(_list)[source]

	Group a list of symbols to a list containing the number of consecutive
identical symbols, and the symbol itself.

Examples:

	['Ba','Ti','O','O','O','Ba'] will return
[[1,'Ba'],[1,'Ti'],[3,'O'],[1,'Ba']]

	[[[1,'Ba'],[1,'Ti']],[[1,'Ba'],[1,'Ti']]] will return
[[2, [[1, 'Ba'], [1, 'Ti']]]]

	Parameters:	_list – a list of elements representing a chemical formula

	Returns:	a list of length-2 lists of the form [multiplicity , element]

	
aiida.orm.data.structure.has_ase()[source]

	

	Returns:	True if the ase module can be imported, False otherwise.

	
aiida.orm.data.structure.has_pymatgen()[source]

	

	Returns:	True if the pymatgen module can be imported, False otherwise.

	
aiida.orm.data.structure.has_pyspglib()[source]

	

	Returns:	True if the pyspglib module can be imported, False otherwise.

	
aiida.orm.data.structure.has_vacancies(weights)[source]

	Returns True if the sum of the weights is less than one.
It uses the internal variable _sum_threshold as a threshold.
:param weights: the weights
:return: a boolean

	
aiida.orm.data.structure.is_ase_atoms(ase_atoms)[source]

	Check if the ase_atoms parameter is actually a ase.Atoms object.

	Parameters:	ase_atoms – an object, expected to be an ase.Atoms.

	Returns:	a boolean.

Requires the ability to import ase, by doing ‘import ase’.

	
aiida.orm.data.structure.is_valid_symbol(symbol)[source]

	Validates the chemical symbol name.

	Returns:	True if the symbol is a valid chemical symbol (with correct
capitalization), False otherwise.

Recognized symbols are for elements from hydrogen (Z=1) to lawrencium
(Z=103).

	
aiida.orm.data.structure.symop_fract_from_ortho(cell)[source]

	Creates a matrix for conversion from fractional to orthogonal
coordinates.

Taken from
svn://www.crystallography.net/cod-tools/trunk/lib/perl5/Fractional.pm,
revision 850.

	Parameters:	cell – array of cell parameters (three lengths and three angles)

	
aiida.orm.data.structure.symop_ortho_from_fract(cell)[source]

	Creates a matrix for conversion from orthogonal to fractional
coordinates.

Taken from
svn://www.crystallography.net/cod-tools/trunk/lib/perl5/Fractional.pm,
revision 850.

	Parameters:	cell – array of cell parameters (three lengths and three angles)

	
aiida.orm.data.structure.validate_symbols_tuple(symbols_tuple)[source]

	Used to validate whether the chemical species are valid.

	Parameters:	symbols_tuple – a tuple (or list) with the chemical symbols name.

	Raises:	ValueError if any symbol in the tuple is not a valid chemical
symbols (with correct capitalization).

Refer also to the documentation of :func:is_valid_symbol

	
aiida.orm.data.structure.validate_weights_tuple(weights_tuple, threshold)[source]

	Validates the weight of the atomic kinds.

	Raise:	ValueError if the weights_tuple is not valid.

	Parameters:	
	weights_tuple – the tuple to validate. It must be a
a tuple of floats (as created by :func:_create_weights_tuple).

	threshold – a float number used as a threshold to check that the sum
of the weights is <= 1.

If the sum is less than one, it means that there are vacancies.
Each element of the list must be >= 0, and the sum must be <= 1.

Folder

	
class aiida.orm.data.folder.FolderData(**kwargs)[source]

	Stores a folder with subfolders and files.

No special attributes are set.

	
get_file_content(path)[source]

	Return the content of a path stored inside the folder as a string.

	Raises:	NotExistent – if the path does not exist.

	
replace_with_folder(folder, overwrite=True)[source]

	Replace the data with another folder, always copying and not moving the
original files.

	Args:

	folder: the folder to copy from
overwrite: if to overwrite the current content or not

Singlefile

Implement subclass for a single file in the permanent repository
files = [one_single_file]
jsons = {}

methods:
* get_content
* get_path
* get_aiidaurl (?)
* get_md5
* ...

To discuss: do we also need a simple directory class for full directories
in the perm repo?

	
class aiida.orm.data.singlefile.SinglefileData(**kwargs)[source]

	Pass as input a file parameter with the (absolute) path of a file
on the hard drive.
It will get copied inside the node.

Internally must have a single file, and stores as internal attribute
the filename in the ‘filename’ attribute.

	
add_path(src_abs, dst_filename=None)[source]

	Add a single file

	
del_file(filename)[source]

	Remove a file from SingleFileData
:param filename: name of the file stored in the DB

	
filename

	Returns the name of the file stored

	
get_file_abs_path()[source]

	Return the absolute path to the file in the repository

	
set_file(filename)[source]

	Add a file to the singlefiledata
:param filename: absolute path to the file

Upf

This module manages the UPF pseudopotentials in the local repository.

	
class aiida.orm.data.upf.UpfData(**kwargs)[source]

	Function not yet documented.

	
classmethod from_md5(md5)[source]

	Return a list of all UPF pseudopotentials that match a given MD5 hash.

Note that the hash has to be stored in a _md5 attribute, otherwise
the pseudo will not be found.

	
classmethod get_or_create(filename, use_first=False, store_upf=True)[source]

	Pass the same parameter of the init; if a file with the same md5
is found, that UpfData is returned.

	Parameters:	
	filename – an absolute filename on disk

	use_first – if False (default), raise an exception if more than one potential is found. If it is True, instead, use the first available pseudopotential.

	store_upf (bool) – If false, the UpfData objects are not stored in
the database. default=True.

	Return (upf, created):

		where upf is the UpfData object, and create is either True if the object was created, or False if the object was retrieved from the DB.

	
get_upf_family_names()[source]

	Get the list of all upf family names to which the pseudo belongs

	
classmethod get_upf_group(group_name)[source]

	Return the UpfFamily group with the given name.

	
classmethod get_upf_groups(filter_elements=None, user=None)[source]

	Return all names of groups of type UpfFamily, possibly with some filters.

	Parameters:	
	filter_elements – A string or a list of strings.
If present, returns only the groups that contains one Upf for
every element present in the list. Default=None, meaning that
all families are returned.

	user – if None (default), return the groups for all users.
If defined, it should be either a DbUser instance, or a string
for the username (that is, the user email).

	
set_file(filename)[source]

	I pre-parse the file to store the attributes.

	
store(*args, **kwargs)[source]

	Store the node, reparsing the file so that the md5 and the element
are correctly reset.

	
aiida.orm.data.upf.get_pseudos_from_structure(structure, family_name)[source]

	Given a family name (a UpfFamily group in the DB) and a AiiDA
structure, return a dictionary associating each kind name with its
UpfData object.

	Raises:	
	MultipleObjectsError – if more than one UPF for the same element is
found in the group.

	NotExistent – if no UPF for an element in the group is
found in the group.

	
aiida.orm.data.upf.parse_upf(fname, check_filename=True)[source]

	Try to get relevant information from the UPF. For the moment, only the
element name. Note that even UPF v.2 cannot be parsed with the XML minidom!
(e.g. due to the & characters in the human-readable section).

If check_filename is True, raise a ParsingError exception if the filename
does not start with the element name.

	
aiida.orm.data.upf.upload_upf_family(folder, group_name, group_description, stop_if_existing=True)[source]

	Upload a set of UPF files in a given group.

	Parameters:	
	folder – a path containing all UPF files to be added.
Only files ending in .UPF (case-insensitive) are considered.

	group_name – the name of the group to create. If it exists and is
non-empty, a UniquenessError is raised.

	group_description – a string to be set as the group description.
Overwrites previous descriptions, if the group was existing.

	stop_if_existing – if True, check for the md5 of the files and,
if the file already exists in the DB, raises a MultipleObjectsError.
If False, simply adds the existing UPFData node to the group.

Cif

	
class aiida.orm.data.cif.CifData(**kwargs)[source]

	Wrapper for Crystallographic Interchange File (CIF)

Note

the file (physical) is held as the authoritative source of
information, so all conversions are done through the physical file:
when setting ase or values, a physical CIF file is generated
first, the values are updated from the physical CIF file.

	
ase

	ASE object, representing the CIF.

Note

requires ASE module.

	
classmethod from_md5(md5)[source]

	Return a list of all CIF files that match a given MD5 hash.

Note

the hash has to be stored in a _md5 attribute,
otherwise the CIF file will not be found.

	
generate_md5()[source]

	Generate MD5 hash of the file’s contents on-the-fly.

	
get_ase(**kwargs)[source]

	Returns ASE object, representing the CIF. This function differs
from the property ase by the possibility to pass the keyworded
arguments (kwargs) to ase.io.cif.read_cif().

Note

requires ASE module.

	
get_formulae(mode='sum')[source]

	Get the formula.

	
classmethod get_or_create(filename, use_first=False, store_cif=True)[source]

	Pass the same parameter of the init; if a file with the same md5
is found, that CifData is returned.

	Parameters:	
	filename – an absolute filename on disk

	use_first – if False (default), raise an exception if more than one CIF file is found. If it is True, instead, use the first available CIF file.

	store_cif (bool) – If false, the CifData objects are not stored in
the database. default=True.

	Return (cif, created):

		where cif is the CifData object, and create is either True if the object was created, or False if the object was retrieved from the DB.

	
get_spacegroup_numbers()[source]

	Get the spacegroup international number.

	
has_attached_hydrogens()[source]

	Check if there are hydrogens without coordinates, specified
as attached to the atoms of the structure.
:return: True if there are attached hydrogens, False otherwise.

	
has_partial_occupancies()[source]

	Check if there are float values in the atom occupancies.
:return: True if there are partial occupancies, False
otherwise.

	
static read_cif(fileobj, index=-1, **kwargs)[source]

	A wrapper method that simulates the behaviour of the older versions of
the read_cif. It behaves similarly with the older and newer versions
of ase.io.cif.read_cif.

	
set_file(filename)[source]

	Set the file. If the source is set and the MD5 checksum of new file
is different from the source, the source has to be deleted.

	
store(*args, **kwargs)[source]

	Store the node.

	
values

	PyCifRW structure, representing the CIF datablocks.

Note

requires PyCifRW module.

	
aiida.orm.data.cif.cif_from_ase(ase, full_occupancies=False, add_fake_biso=False)[source]

	Construct a CIF datablock from the ASE structure. The code is taken
from
https://wiki.fysik.dtu.dk/ase/epydoc/ase.io.cif-pysrc.html#write_cif,
as the original ASE code contains a bug in printing the
Hermann-Mauguin symmetry space group symbol.

	Parameters:	ase – ASE “images”

	Returns:	array of CIF datablocks

	
aiida.orm.data.cif.has_pycifrw()[source]

	

	Returns:	True if the PyCifRW module can be imported, False otherwise.

	
aiida.orm.data.cif.parse_formula(formula)[source]

	Parses the Hill formulae, written with spaces for separators.

	
aiida.orm.data.cif.pycifrw_from_cif(datablocks, loops={}, names=None)[source]

	Constructs PyCifRW’s CifFile from an array of CIF datablocks.

	Parameters:	
	datablocks – an array of CIF datablocks

	loops – optional list of lists of CIF tag loops.

	names – optional list of datablock names

	Returns:	CifFile

	
aiida.orm.data.cif.symop_string_from_symop_matrix_tr(matrix, tr=[0, 0, 0], eps=0)[source]

	Construct a CIF representation of symmetry operator plus translation.
See International Tables for Crystallography Vol. A. (2002) for
definition.

	Parameters:	
	matrix – 3x3 matrix, representing the symmetry operator

	tr – translation vector of length 3 (default [0, 0, 0])

	eps – epsilon parameter for fuzzy comparison x == 0

	Returns:	CIF representation of symmetry operator

Parameter

	
class aiida.orm.data.parameter.ParameterData(**kwargs)[source]

	Pass as input in the init a dictionary, and it will get stored as internal
attributes.

Usual rules for attribute names apply (in particular, keys cannot start with
an underscore). If this is the case, a ValueError will be raised.

You can then change/delete/add more attributes before storing with the
usual methods of aiida.orm.Node

	
dict

	To be used to get direct access to the underlying dictionary with the
syntax node.dict.key or node.dict[‘key’].

	Returns:	an instance of the AttributeResultManager.

	
get_dict()[source]

	Return a dict with the parameters

	
keys()[source]

	Iterator of valid keys stored in the ParameterData object

	
set_dict(dict)[source]

	Replace the current dictionary with another one.

	Parameters:	dict – The dictionary to set.

	
update_dict(dict)[source]

	Update the current dictionary with the keys provided in the dictionary.

	Parameters:	dict – a dictionary with the keys to substitute. It works like
dict.update(), adding new keys and overwriting existing keys.

Remote

	
class aiida.orm.data.remote.RemoteData(**kwargs)[source]

	Store a link to a file or folder on a remote machine.

Remember to pass a computer!

	
add_path(src_abs, dst_filename=None)[source]

	Disable adding files or directories to a RemoteData

	
is_empty()[source]

	Check if remote folder is empty

ArrayData

	
class aiida.orm.data.array.ArrayData(*args, **kwargs)[source]

	Store a set of arrays on disk (rather than on the database) in an efficient
way using numpy.save() (therefore, this class requires numpy to be
installed).

Each array is stored within the Node folder as a different .npy file.

	Note:	Before storing, no caching is done: if you perform a
get_array() call, the array will be re-read from disk.
If instead the ArrayData node has already been stored,
the array is cached in memory after the first read, and the cached array
is used thereafter.
If too much RAM memory is used, you can clear the
cache with the clear_internal_cache() method.

	
arraynames()[source]

	Return a list of all arrays stored in the node, listing the files (and
not relying on the properties).

Deprecated since version 0.7: Use get_arraynames() instead.

	
clear_internal_cache()[source]

	Clear the internal memory cache where the arrays are stored after being
read from disk (used in order to reduce at minimum the readings from
disk).
This function is useful if you want to keep the node in memory, but you
do not want to waste memory to cache the arrays in RAM.

	
delete_array(name)[source]

	Delete an array from the node. Can only be called before storing.

	Parameters:	name – The name of the array to delete from the node.

	
get_array(name)[source]

	Return an array stored in the node

	Parameters:	name – The name of the array to return.

	
get_arraynames()[source]

	Return a list of all arrays stored in the node, listing the files (and
not relying on the properties).

New in version 0.7: Renamed from arraynames

	
get_shape(name)[source]

	Return the shape of an array (read from the value cached in the
properties for efficiency reasons).

	Parameters:	name – The name of the array.

	
iterarrays()[source]

	Iterator that returns tuples (name, array) for each array stored in the
node.

	
set_array(name, array)[source]

	Store a new numpy array inside the node. Possibly overwrite the array
if it already existed.

Internally, it stores a name.npy file in numpy format.

	Parameters:	
	name – The name of the array.

	array – The numpy array to store.

ArrayData subclasses

The following are Data classes inheriting from ArrayData.

KpointsData

This module defines the classes related to band structures or dispersions
in a Brillouin zone, and how to operate on them.

	
class aiida.orm.data.array.kpoints.KpointsData(*args, **kwargs)[source]

	Class to handle array of kpoints in the Brillouin zone. Provide methods to
generate either user-defined k-points or path of k-points along symmetry
lines.
Internally, all k-points are defined in terms of crystal (fractional)
coordinates.
Cell and lattice vector coordinates are in Angstroms, reciprocal lattice
vectors in Angstrom^-1 .
:note: The methods setting and using the Bravais lattice info assume the
PRIMITIVE unit cell is provided in input to the set_cell or
set_cell_from_structure methods.

	
cell

	The crystal unit cell. Rows are the crystal vectors in Angstroms.
:return: a 3x3 numpy.array

	
get_kpoints(also_weights=False, cartesian=False)[source]

	Return the list of kpoints

	Parameters:	
	also_weights – if True, returns also the list of weights.
Default = False

	cartesian – if True, returns points in cartesian coordinates,
otherwise, returns in crystal coordinates. Default = False.

	
get_kpoints_mesh(print_list=False)[source]

	Get the mesh of kpoints.

	Parameters:	print_list – default=False. If True, prints the mesh of kpoints as a list

	Raises:	AttributeError – if no mesh has been set

	Return mesh,offset:

		(if print_list=False) a list of 3 integers and a list of three
floats 0<x<1, representing the mesh and the offset of kpoints

	Return kpoints:	(if print_list = True) an explicit list of kpoints coordinates,
similar to what returned by get_kpoints()

	
labels

	Labels associated with the list of kpoints.
List of tuples with kpoint index and kpoint name: [(0,’G’),(13,’M’),...]

	
pbc

	The periodic boundary conditions along the vectors a1,a2,a3.

	Returns:	a tuple of three booleans, each one tells if there are periodic
boundary conditions for the i-th real-space direction (i=1,2,3)

	
set_cell(cell, pbc=None)[source]

	Set a cell to be used for symmetry analysis.
To set a cell from an AiiDA structure, use “set_cell_from_structure”.

	Parameters:	
	cell – 3x3 matrix of cell vectors. Orientation: each row
represent a lattice vector. Units are Angstroms.

	pbc – list of 3 booleans, True if in the nth crystal direction the
structure is periodic. Default = [True,True,True]

	
set_cell_from_structure(structuredata)[source]

	Set a cell to be used for symmetry analysis from an AiiDA structure.
Inherits both the cell and the pbc’s.
To set manually a cell, use “set_cell”

	Parameters:	structuredata – an instance of StructureData

	
set_kpoints(kpoints, cartesian=False, labels=None, weights=None, fill_values=0)[source]

	Set the list of kpoints. If a mesh has already been stored, raise a
ModificationNotAllowed

	Parameters:	
	kpoints – a list of kpoints, each kpoint being a list of one, two
or three coordinates, depending on self.pbc: if structure is 1D
(only one True in self.pbc) one allows singletons or scalars for
each k-point, if it’s 2D it can be a length-2 list, and in all
cases it can be a length-3 list.
Examples:

	[[0.,0.,0.],[0.1,0.1,0.1],...] for 1D, 2D or 3D

	[[0.,0.],[0.1,0.1,],...] for 1D or 2D

	[[0.],[0.1],...] for 1D

	[0., 0.1, ...] for 1D (list of scalars)

For 0D (all pbc are False), the list can be any of the above
or empty - then only Gamma point is set.
The value of k for the non-periodic dimension(s) is set by
fill_values

	cartesian – if True, the coordinates given in input are treated
as in cartesian units. If False, the coordinates are crystal,
i.e. in units of b1,b2,b3. Default = False

	labels – optional, the list of labels to be set for some of the
kpoints. See labels for more info

	weights – optional, a list of floats with the weight associated
to the kpoint list

	fill_values – scalar to be set to all
non-periodic dimensions (indicated by False in self.pbc), or list of
values for each of the non-periodic dimensions.

	
set_kpoints_mesh(mesh, offset=[0.0, 0.0, 0.0])[source]

	Set KpointsData to represent a uniformily spaced mesh of kpoints in the
Brillouin zone. This excludes the possibility of set/get kpoints

	Parameters:	
	mesh – a list of three integers, representing the size of the
kpoint mesh along b1,b2,b3.

	offset ((optional)) – a list of three floats between 0 and 1.
[0.,0.,0.] is Gamma centered mesh
[0.5,0.5,0.5] is half shifted
[1.,1.,1.] by periodicity should be equivalent to [0.,0.,0.]
Default = [0.,0.,0.].

	
set_kpoints_mesh_from_density(distance, offset=[0.0, 0.0, 0.0], force_parity=False)[source]

	Set a kpoints mesh using a kpoints density, expressed as the maximum
distance between adjacent points along a reciprocal axis

	Parameters:	
	distance – distance (in 1/Angstrom) between adjacent
kpoints, i.e. the number of kpoints along each reciprocal
axis i is [image: |b_i|/distance]
where [image: |b_i|] is the norm of the reciprocal cell vector.

	offset ((optional)) – a list of three floats between 0 and 1.
[0.,0.,0.] is Gamma centered mesh
[0.5,0.5,0.5] is half shifted
Default = [0.,0.,0.].

	force_parity ((optional)) – if True, force each integer in the mesh
to be even (except for the non-periodic directions).

	Note:	a cell should be defined first.

	Note:	the number of kpoints along non-periodic axes is always 1.

TrajectoryData

	
class aiida.orm.data.array.trajectory.TrajectoryData(*args, **kwargs)[source]

	Stores a trajectory (a sequence of crystal structures with timestamps, and
possibly with velocities).

	
get_cells()[source]

	Return the array of cells, if it has already been set.

	Raises:	KeyError – if the trajectory has not been set yet.

	
get_index_from_stepid(stepid)[source]

	Given a value for the stepid (i.e., a value among those of the steps
array), return the array index of that stepid, that can be used in other
methods such as get_step_data() or
get_step_structure().

New in version 0.7: Renamed from get_step_index

Note

Note that this function returns the first index found
(i.e. if multiple steps are present with the same value,
only the index of the first one is returned).

	Raises:	ValueError – if no step with the given value is found.

	
get_positions()[source]

	Return the array of positions, if it has already been set.

	Raises:	KeyError – if the trajectory has not been set yet.

	
get_step_data(index)[source]

	Return a tuple with all information concerning
the stepid with given index (0 is the first step, 1 the second step
and so on). If you know only the step value, use the
get_index_from_stepid() method to get the
corresponding index.

If no velocities were specified, None is returned as the last element.

	Returns:	A tuple in the format
(stepid, time, cell, symbols, positions, velocities),
where stepid is an integer, time is a float, cell is a
[image: 3 \times 3] matrix, symbols is an array of length n,
positions is a [image: n \times 3] array, and velocities is either
None or a [image: n \times 3] array

	Parameters:	index – The index of the step that you want to retrieve, from
0 to self.numsteps - 1.

	Raises:	
	IndexError – if you require an index beyond the limits.

	KeyError – if you did not store the trajectory yet.

	
get_step_index(step)[source]

	
Deprecated since version 0.7: Use get_index_from_stepid() instead.

	
get_step_structure(index, custom_kinds=None)[source]

	Return an AiiDA aiida.orm.data.structure.StructureData node
(not stored yet!) with the coordinates of the given step, identified by
its index. If you know only the step value, use the
get_index_from_stepid() method to get the corresponding index.

Note

The periodic boundary conditions are always set to True.

New in version 0.7: Renamed from step_to_structure

	Parameters:	
	index – The index of the step that you want to retrieve, from
0 to self.numsteps- 1.

	custom_kinds – (Optional) If passed must be a list of
aiida.orm.data.structure.Kind objects. There must be one
kind object for each different string in the symbols array, with
kind.name set to this string.
If this parameter is omitted, the automatic kind generation of AiiDA
aiida.orm.data.structure.StructureData nodes is used,
meaning that the strings in the symbols array must be valid
chemical symbols.

	
get_stepids()[source]

	Return the array of steps, if it has already been set.

New in version 0.7: Renamed from get_steps

	Raises:	KeyError – if the trajectory has not been set yet.

	
get_steps()[source]

	
Deprecated since version 0.7: Use get_stepids() instead.

	
get_symbols()[source]

	Return the array of symbols, if it has already been set.

	Raises:	KeyError – if the trajectory has not been set yet.

	
get_times()[source]

	Return the array of times (in ps), if it has already been set.

	Raises:	KeyError – if the trajectory has not been set yet.

	
get_velocities()[source]

	Return the array of velocities, if it has already been set.

Note

This function (differently from all other get_*
functions, will not raise an exception if the velocities are not
set, but rather return None (both if no trajectory was not set yet,
and if it the trajectory was set but no velocities were specified).

	
numsites

	Return the number of stored sites, or zero if nothing has been stored yet.

	
numsteps

	Return the number of stored steps, or zero if nothing has been stored yet.

	
set_structurelist(structurelist)[source]

	Create trajectory from the list of
aiida.orm.data.structure.StructureData instances.

	Parameters:	structurelist – a list of
aiida.orm.data.structure.StructureData instances.

	Raises:	ValueError – if symbol lists of supplied structures are
different

	
set_trajectory(stepids, cells, symbols, positions, times=None, velocities=None)[source]

	Store the whole trajectory, after checking that types and dimensions
are correct.
Velocities are optional, if they are not passed, nothing is stored.

	Parameters:	
	stepids – integer array with dimension s, where s is the
number of steps. Typically represents an internal counter
within the code. For instance, if you want to store a
trajectory with one step every 10, starting from step 65,
the array will be [65,75,85,...].
No checks are done on duplicate elements
or on the ordering, but anyway this array should be
sorted in ascending order, without duplicate elements.
If your code does not provide an internal counter, just
provide for instance arange(s).
It is internally stored as an array named ‘steps’.

	cells – float array with dimension [image: s \times 3 \times 3],
where s is the
length of the stepids array. Units are angstrom.
In particular,
cells[i,j,k] is the k-th component of the j-th
cell vector at the time step with index i (identified
by step number stepid[i] and with timestamp times[i]).

	symbols – string array with dimension n, where n is the
number of atoms (i.e., sites) in the structure.
The same array is used for each step. Normally, the string
should be a valid chemical symbol, but actually any unique
string works and can be used as the name of the atomic kind
(see also the get_step_structure() method).

	positions – float array with dimension [image: s \times n \times 3],
where s is the
length of the stepids array and n is the length
of the symbols array. Units are angstrom.
In particular,
positions[i,j,k] is the k-th component of the
j-th atom (or site) in the structure at the time step
with index i (identified
by step number step[i] and with timestamp times[i]).

	times – if specified, float array with dimension s, where
s is the length of the stepids array. Contains the
timestamp of each step in picoseconds (ps).

	velocities – if specified, must be a float array with the same
dimensions of the positions array.
The array contains the velocities in the atoms.

Todo

Choose suitable units for velocities

	
step_to_structure(index, custom_kinds=None)[source]

	
Deprecated since version 0.7: Use get_step_structure() instead.

ORM documentation: Calculations

	
class aiida.orm.implementation.general.calculation.AbstractCalculation[source]

	This class provides the definition of an “abstract” AiiDA calculation.
A calculation in this sense is any computation that converts data into data.

You will typically use one of its subclasses, often a JobCalculation for
calculations run via a scheduler.

	
add_link_from(src, label=None, link_type=<LinkType.INPUT: 'inputlink'>)[source]

	Add a link with a code as destination.

You can use the parameters of the base Node class, in particular the
label parameter to label the link.

	Parameters:	
	src – a node of the database. It cannot be a Calculation object.

	label (str) – Name of the link. Default=None

	link_type – The type of link, must be one of the enum values form
LinkType

	
get_code()[source]

	Return the code for this calculation, or None if the code
was not set.

	
get_linkname(link, *args, **kwargs)[source]

	Return the linkname used for a given input link

Pass as parameter “NAME” if you would call the use_NAME method.
If the use_NAME method requires a further parameter, pass that
parameter as the second parameter.

	
logger

	Get the logger of the Calculation object, so that it also logs to the
DB.

	Returns:	LoggerAdapter object, that works like a logger, but also has
the ‘extra’ embedded

	
aiida.orm.calculation.inline.optional_inline(func)[source]

	optional_inline wrapper/decorator takes a function, which can be called
either as wrapped in InlineCalculation or a simple function, depending
on ‘store’ keyworded argument (True stands for InlineCalculation, False
for simple function). The wrapped function has to adhere to the
requirements by make_inline wrapper/decorator.

Usage example:

@optional_inline
def copy_inline(source=None):
 return {'copy': source.copy()}

Function copy_inline will be wrapped in InlineCalculation when
invoked in following way:

copy_inline(source=node,store=True)

while it will be called as a simple function when invoked:

copy_inline(source=node)

In any way the copy_inline will return the same results.

	
class aiida.orm.implementation.general.calculation.job.AbstractJobCalculation[source]

	This class provides the definition of an AiiDA calculation that is run
remotely on a job scheduler.

	
add_link_from(src, label=None, link_type=<LinkType.INPUT: 'inputlink'>)[source]

	Add a link with a code as destination. Add the additional
contraint that this is only possible if the calculation
is in state NEW.

You can use the parameters of the base Node class, in particular the
label parameter to label the link.

	Parameters:	
	src – a node of the database. It cannot be a Calculation object.

	label (str) – Name of the link. Default=None

	link_type – The type of link, must be one of the enum values form
LinkType

	
get_append_text()[source]

	Get the calculation-specific append text,
which is going to be appended in the scheduler-job script, just after
the code execution.

	
get_custom_scheduler_commands()[source]

	Return a (possibly multiline) string with the commands that the user
wants to manually set for the scheduler.
See also the documentation of the corresponding
set_ method.

	Returns:	the custom scheduler command, or an empty string if no
custom command was defined.

	
get_environment_variables()[source]

	Return a dictionary of the environment variables that are set
for this calculation.

Return an empty dictionary if no special environment variables have
to be set for this calculation.

	
get_import_sys_environment()[source]

	To check if it’s loading the system environment
on the submission script.

	Returns:	a boolean. If True the system environment will be load.

	
get_job_id()[source]

	Get the scheduler job id of the calculation.

	Returns:	a string

	
get_max_memory_kb()[source]

	Get the memory (in KiloBytes) requested to the scheduler.

	Returns:	an integer

	
get_max_wallclock_seconds()[source]

	Get the max wallclock time in seconds requested to the scheduler.

	Returns:	an integer

	
get_mpirun_extra_params()[source]

	Return a list of strings, that are the extra params to pass to the
mpirun (or equivalent) command after the one provided in
computer.mpirun_command.
Example: mpirun -np 8 extra_params[0] extra_params[1] ... exec.x

Return an empty list if no parameters have been defined.

	
get_parser_name()[source]

	Return a string locating the module that contains
the output parser of this calculation, that will be searched
in the ‘aiida/parsers/plugins’ directory. None if no parser is needed/set.

	Returns:	a string.

	
get_parserclass()[source]

	Return the output parser object for this calculation, or None
if no parser is set.

	Returns:	a Parser class.

	Raise:	MissingPluginError from ParserFactory no plugin is found.

	
get_prepend_text()[source]

	Get the calculation-specific prepend text,
which is going to be prepended in the scheduler-job script, just before
the code execution.

	
get_priority()[source]

	Get the priority, if set, of the job on the cluster.

	Returns:	a string or None

	
get_queue_name()[source]

	Get the name of the queue on cluster.

	Returns:	a string or None.

	
get_resources(full=False)[source]

	Returns the dictionary of the job resources set.

	Parameters:	full – if True, also add the default values, e.g.
default_mpiprocs_per_machine

	Returns:	a dictionary

	
get_retrieved_node()[source]

	Return the retrieved data folder, if present.

	Returns:	the retrieved data folder object, or None if no such output
node is found.

	Raises:	MultipleObjectsError – if more than one output node is found.

	
get_scheduler_error()[source]

	Return the output of the scheduler error (a string) if the calculation
has finished, and output node is present, and the output of the
scheduler was retrieved.

Return None otherwise.

	
get_scheduler_output()[source]

	Return the output of the scheduler output (a string) if the calculation
has finished, and output node is present, and the output of the
scheduler was retrieved.

Return None otherwise.

	
get_scheduler_state()[source]

	Return the status of the calculation according to the cluster scheduler.

	Returns:	a string.

	
get_state(from_attribute=False)[source]

	Get the state of the calculation.

Note

the ‘most recent’ state is obtained using the logic in the
aiida.common.datastructures.sort_states function.

Todo

Understand if the state returned when no state entry is found
in the DB is the best choice.

	Parameters:	from_attribute – if set to True, read it from the attributes
(the attribute is also set with set_state, unless the state is set
to IMPORTED; in this way we can also see the state before storing).

	Returns:	a string. If from_attribute is True and no attribute is found,
return None. If from_attribute is False and no entry is found in the
DB, also return None.

	
get_withmpi()[source]

	Get whether the job is set with mpi execution.

	Returns:	a boolean. Default=True.

	
has_failed()[source]

	Get whether the calculation is in a failed status,
i.e. SUBMISSIONFAILED, RETRIEVALFAILED, PARSINGFAILED or FAILED.

	Returns:	a boolean

	
has_finished_ok()[source]

	Get whether the calculation is in the FINISHED status.

	Returns:	a boolean

	
kill()[source]

	Kill a calculation on the cluster.

Can only be called if the calculation is in status WITHSCHEDULER.

The command tries to run the kill command as provided by the scheduler,
and raises an exception is something goes wrong.
No changes of calculation status are done (they will be done later by
the calculation manager).

	
res

	To be used to get direct access to the parsed parameters.

	Returns:	an instance of the CalculationResultManager.

	Note:	a practical example on how it is meant to be used: let’s say that there is a key ‘energy’
in the dictionary of the parsed results which contains a list of floats.
The command calc.res.energy will return such a list.

	
set_append_text(val)[source]

	Set the calculation-specific append text,
which is going to be appended in the scheduler-job script, just after
the code execution.

	Parameters:	val – a (possibly multiline) string

	
set_custom_scheduler_commands(val)[source]

	Set a (possibly multiline) string with the commands that the user
wants to manually set for the scheduler.

The difference of this method with respect to the set_prepend_text
is the position in the scheduler submission file where such text is
inserted: with this method, the string is inserted before any
non-scheduler command.

	
set_environment_variables(env_vars_dict)[source]

	Set a dictionary of custom environment variables for this calculation.

Both keys and values must be strings.

In the remote-computer submission script, it’s going to export
variables as export 'keys'='values'

	
set_import_sys_environment(val)[source]

	If set to true, the submission script will load the system
environment variables.

	Parameters:	val (bool) – load the environment if True

	
set_max_memory_kb(val)[source]

	Set the maximum memory (in KiloBytes) to be asked to the scheduler.

	Parameters:	val – an integer. Default=None

	
set_max_wallclock_seconds(val)[source]

	Set the wallclock in seconds asked to the scheduler.

	Parameters:	val – An integer. Default=None

	
set_mpirun_extra_params(extra_params)[source]

	Set the extra params to pass to the
mpirun (or equivalent) command after the one provided in
computer.mpirun_command.
Example: mpirun -np 8 extra_params[0] extra_params[1] ... exec.x

	Parameters:	extra_params – must be a list of strings, one for each
extra parameter

	
set_parser_name(parser)[source]

	Set a string for the output parser
Can be None if no output plugin is available or needed.

	Parameters:	parser – a string identifying the module of the parser.
Such module must be located within the folder ‘aiida/parsers/plugins’

	
set_prepend_text(val)[source]

	Set the calculation-specific prepend text,
which is going to be prepended in the scheduler-job script, just before
the code execution.

See also set_custom_scheduler_commands

	Parameters:	val – a (possibly multiline) string

	
set_priority(val)[source]

	Set the priority of the job to be queued.

	Parameters:	val – the values of priority as accepted by the cluster scheduler.

	
set_queue_name(val)[source]

	Set the name of the queue on the remote computer.

	Parameters:	val (str) – the queue name

	
set_resources(resources_dict)[source]

	Set the dictionary of resources to be used by the scheduler plugin,
like the number of nodes, cpus, ...
This dictionary is scheduler-plugin dependent. Look at the documentation
of the scheduler.
(scheduler type can be found with
calc.get_computer().get_scheduler_type())

	
set_withmpi(val)[source]

	Set the calculation to use mpi.

	Parameters:	val – A boolean. Default=True

	
store(*args, **kwargs)[source]

	Override the store() method to store also the calculation in the NEW
state as soon as this is stored for the first time.

	
submit()[source]

	Puts the calculation in the TOSUBMIT status.

Actual submission is performed by the daemon.

	
submit_test(folder=None, subfolder_name=None)[source]

	Test submission, creating the files in a local folder.

	Note:	this submit_test function does not require any node
(neither the calculation nor the input links) to be stored yet.

	Parameters:	
	folder – A Folder object, within which each calculation files
are created; if not passed, a subfolder ‘submit_test’ of the current
folder is used.

	subfolder_name – the name of the subfolder to use for this
calculation (within Folder). If not passed, a unique string
starting with the date and time in the format yymmdd-HHMMSS-
is used.

	
class aiida.orm.implementation.general.calculation.job.CalculationResultManager(calc)[source]

	An object used internally to interface the calculation object with the Parser
and consequentially with the ParameterData object result.
It shouldn’t be used explicitely by a user.

	
__init__(calc)[source]

	

	Parameters:	calc – the calculation object.

Quantum ESPRESSO

Quantum Espresso - pw.x

Plugin to create a Quantum Espresso pw.x file.

	
class aiida.orm.calculation.job.quantumespresso.pw.PwCalculation(**kwargs)[source]

	Main DFT code (PWscf, pw.x) of the Quantum ESPRESSO distribution.
For more information, refer to http://www.quantum-espresso.org/

	
classmethod input_helper(*args, **kwargs)[source]

	Validate if the keywords are valid Quantum ESPRESSO pw.x keywords, and
also helps in preparing the input parameter dictionary in a
‘standardized’ form (e.g., converts ints to floats when required,
or if the flag flat_mode is specified, puts the keywords in the right
namelists).

This function calls
aiida.orm.calculation.job.quantumespresso.helpers.pw_input_helper(),
see its docstring for further information.

	
exception aiida.orm.calculation.job.quantumespresso.helpers.QEInputValidationError[source]

	This class is the exception that is generated by the parser when it
encounters an error while creating the input file of Quantum ESPRESSO.

	
aiida.orm.calculation.job.quantumespresso.helpers.pw_input_helper(input_params, structure, stop_at_first_error=False, flat_mode=False, version='5.4.0')[source]

	Validate if the input dictionary for Quantum ESPRESSO is valid.
Return the dictionary (possibly with small variations: e.g. convert
integer to float where necessary, recreate the proper structure
if flat_mode is True, ...) to use as input parameters (use_parameters)
for the pw.x calculation.

	Parameters:	
	input_params –
	If flat_mode is True, pass a dictionary

	with ‘key’ = value; use the correct type
(int, bool, ...) for value. If an array is required:

	if its length is fixed: pass a list of the required length

	if its length is ‘ntyp’: pass a dictionary, associating each
specie to its value.

	(other lengths are not supported)

Example:

{
'calculation': 'vc-relax',
'ecutwfc': 30.,
'hubbard_u': {'O': 1},
}

If instead flat_mode is False, pass a dictionary in the format
expected by AiiDA (keys are namelists, values are in the format
specified above, i.e. key/value pairs for all keywords in the
given namelist).
Example:

{
 'CONTROL': {
 'calculation': 'vc-relax'
 },
 'SYSTEM': {
 'hubbard_u': {'O': 1.0},
 'ecutwfc': 30.,
 },
},

	structure – the StructureData object used as input for QE pw.x

	stop_at_first_error – if True, stops at the first error.
Otherwise, when, possible, continue and give a global error for all
the issues encountered.

	flat_mode – if True, instead of passing the dictionary of namelists,
and inside the keywords, pass directly the keywords - this function
will return the correct dictionary to pass to the PwCalculation,
with the keywords arranged in the correct namelist.

	version – string with version number, used to find the correct XML
file descriptor. If not specified, uses the most recent version
available in the validator. It reads the definitions from the XML files
in the same folder as this python module. If the version is not
recognised, the Exception message will also suggest a close-by version.

	Raises:	QeInputValidationError – (subclass of InputValidationError) if
the input is not considered valid.

Quantum Espresso - Dos

Quantum Espresso - Projwfc

Quantum Espresso - PW immigrant

Plugin to immigrate a Quantum Espresso pw.x job that was not run using AiiDa.

	
class aiida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation(**kwargs)[source]

	Create a PwCalculation object that can be used to import old jobs.

This is a sublass of aiida.orm.calculation.quantumespresso.PwCalculation
with slight modifications to some of the class variables and additional
methods that

	parse the job’s input file to create the calculation’s input
nodes that would exist if the calculation were submitted using AiiDa,

	bypass the functions of the daemon, and prepare the node’s attributes
such that all the processes (copying of the files to the repository,
results parsing, ect.) can be performed

Note

The keyword arguments of PwCalculation are also available.

	Parameters:	
	remote_workdir (str) – Absolute path to the directory where the job was run.
The transport of the computer you link ask input to the calculation is
the transport that will be used to retrieve the calculation’s files.
Therefore, remote_workdir should be the absolute path to the job’s
directory on that computer.

	input_file_name (str) – The file name of the job’s input file.

	output_file_name (str) – The file name of the job’s output file (i.e. the
file containing the stdout of QE).

	
create_input_nodes(open_transport, input_file_name=None, output_file_name=None, remote_workdir=None)[source]

	Create calculation input nodes based on the job’s files.

	Parameters:	open_transport (aiida.transport.plugins.local.LocalTransport
| aiida.transport.plugins.ssh.SshTransport) – An open instance of the transport class of the
calculation’s computer. See the tutorial for more information.

This method parses the files in the job’s remote working directory to
create the input nodes that would exist if the calculation were
submitted using AiiDa. These nodes are

	a 'parameters' ParameterData node, based on the namelists and
their variable-value pairs;

	a 'kpoints' KpointsData node, based on the K_POINTS card;

	a 'structure' StructureData node, based on the
ATOMIC_POSITIONS and CELL_PARAMETERS cards;

	one 'pseudo_X' UpfData node for the pseudopotential used for
the atomic species with name X, as specified in the
ATOMIC_SPECIES card;

	a 'settings' ParameterData node, if there are any fixed
coordinates, or if the gamma kpoint is used;

and can be retrieved as a dictionary using the get_inputs_dict()
method. These input links are cached-links; nothing is stored by this
method (including the calculation node itself).

Note

QE stores the calculation’s pseudopotential files in the
<outdir>/<prefix>.save/ subfolder of the job’s working
directory, where outdir and prefix are QE CONTROL
variables (see
pw input file description [http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html]).
This method uses these files to either get–if the a node already
exists for the pseudo–or create a UpfData node for each
pseudopotential.

Keyword arguments

Note

These keyword arguments can also be set when instantiating the
class or using the set_ methods (e.g. set_remote_workdir).
Offering to set them here simply offers the user an additional
place to set their values. Only the values that have not yet been
set need to be specified.

	Parameters:	
	input_file_name (str) – The file name of the job’s input file.

	output_file_name (str) – The file name of the job’s output file (i.e.
the file containing the stdout of QE).

	remote_workdir (str) – Absolute path to the directory where the job
was run. The transport of the computer you link ask input to the
calculation is the transport that will be used to retrieve the
calculation’s files. Therefore, remote_workdir should be the
absolute path to the job’s directory on that computer.

	Raises:	
	aiida.common.exceptions.InputValidationError – if
open_transport is a different type of transport than the
computer’s.

	aiida.common.exceptions.InvalidOperation – if
open_transport is not open.

	aiida.common.exceptions.InputValidationError – if
remote_workdir, input_file_name, and/or output_file_name
are not set prior to or during the call of this method.

	aiida.common.exceptions.FeatureNotAvailable – if the input file
uses anything other than ibrav = 0, which is not currently
implimented in aiida.

	aiida.common.exceptions.ParsingError – if there are issues
parsing the input file.

	IOError – if there are issues reading the input file.

	
prepare_for_retrieval_and_parsing(open_transport)[source]

	Tell the daemon that the calculation is computed and ready to be parsed.

	Parameters:	open_transport (aiida.transport.plugins.local.LocalTransport
| aiida.transport.plugins.ssh.SshTransport) – An open instance of the transport class of the
calculation’s computer. See the tutorial for more information.

The next time the daemon updates the status of calculations, it will
see this job is in the ‘COMPUTED’ state and will retrieve its output
files and parse the results.

If the daemon is not currently running, nothing will happen until it is
started again.

This method also stores the calculation and all input nodes. It also
copies the original input file to the calculation’s repository folder.

	Raises:	
	aiida.common.exceptions.InputValidationError – if
open_transport is a different type of transport than the
computer’s.

	aiida.common.exceptions.InvalidOperation – if
open_transport is not open.

	
set_input_file_name(input_file_name)[source]

	Set the file name of the job’s input file (e.g. 'pw.in').

	Parameters:	input_file_name (str) – The file name of the job’s input file.

	
set_output_file_name(output_file_name)[source]

	Set the file name of the job’s output file (e.g. 'pw.out').

	Parameters:	output_file_name (str) – The file name of file containing the job’s
stdout.

	
set_output_subfolder(output_subfolder)[source]

	Manually set the job’s outdir variable (e.g. './out/').

Note

The outdir variable is normally set automatically by

	looking for the outdir CONTROL namelist variable

	looking for the $ESPRESSO_TMPDIR environment variable
on the calculation’s computer (using the transport)

	using the QE default, the calculation’s remote_workdir

but this method is made available to the user, in the event that
they wish to set it manually.

	Parameters:	output_subfolder (str) – The job’s outdir variable.

	
set_prefix(prefix)[source]

	Manually set the job’s prefix variable (e.g. 'pwscf').

Note

The prefix variable is normally set automatically by

	looking for the prefix CONTROL namelist variable

	using the QE default, 'pwscf'

but this method is made available to the user, in the event that
they wish to set it manually.

	Parameters:	prefix (str) – The job’s prefix variable.

	
set_remote_workdir(remote_workdir)[source]

	Set the job’s remote working directory.

	Parameters:	remote_workdir (str) – Absolute path of the job’s remote working
directory.

Wannier90 - Wannier90

TemplateReplacer

This is a simple plugin that takes two node inputs, both of type ParameterData,
with the following labels: template and parameters.
You can also add other SinglefileData nodes as input, that will be copied according to
what is written in ‘template’ (see below).

	parameters: a set of parameters that will be used for substitution.

	template: can contain the following parameters:

	input_file_template: a string with substitutions to be managed with the format() function of python, i.e. if you want to substitute a variable called ‘varname’, you write {varname} in the text. See http://www.python.org/dev/peps/pep-3101/ for more details. The replaced file will be the input file.

	input_file_name: a string with the file name for the input. If it is not provided, no file will be created.

	output_file_name: a string with the file name for the output. If it is not provided, no redirection will be done and the output will go in the scheduler output file.

	cmdline_params: a list of strings, to be passed as command line parameters. Each one is substituted with the same rule of input_file_template. Optional

	input_through_stdin: if True, the input file name is passed via stdin. Default is False if missing.

	files_to_copy: if defined, a list of tuple pairs, with format (‘link_name’, ‘dest_rel_path’); for each tuple, an input link to this calculation is looked for, with link labeled ‘link_label’, and with file type ‘Singlefile’, and the content is copied to a remote file named ‘dest_rel_path’ Errors are raised in the input links are non-existent, or of the wrong type, or if there are unused input files.

TODO: probably use Python’s Template strings instead??
TODO: catch exceptions

	
class aiida.orm.calculation.job.simpleplugins.templatereplacer.TemplatereplacerCalculation(**kwargs)[source]

	Simple stub of a plugin that can be used to replace some text in a given
template. Can be used for many different codes, or as a starting point
to develop a new plugin.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

 	Sphinx cheatsheet

Calculation parsers

This section describes the different parsers classes for calculations.

Quantum ESPRESSO parsers

	
aiida.parsers.plugins.quantumespresso.convert_qe2aiida_structure(output_dict, input_structure=None)[source]

	Receives the dictionary cell parsed from quantum espresso
Convert it into an AiiDA structure object

Basic Raw Cp Parser

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_text_output(data, xml_data)[source]

	data must be a list of strings, one for each lines, as returned by readlines().
On output, a dictionary with parsed values

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_traj_stanzas(num_elements, splitlines, prepend_name, rescale=1.0)[source]

	num_elements: Number of lines (with three elements) between lines with two only
elements (containing step number and time in ps).
num_elements is 3 for cell, and the number of atoms for coordinates and positions.

splitlines: a list of lines of the file, already split in pieces using string.split

prepend_name: a string to be prepended to the name of keys returned
in the return dictionary.

rescale: the values in each stanza are multiplied by this factor, for units conversion

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_xml_counter_output(data)[source]

	Parse xml file print_counter.xml
data must be a single string, as returned by file.read() (notice the
difference with parse_text_output!)
On output, a dictionary with parsed values.

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_xml_output(data)[source]

	Parse xml data
data must be a single string, as returned by file.read() (notice the
difference with parse_text_output!)
On output, a dictionary with parsed values.
Democratically, we have decided to use picoseconds as units of time, eV for energies, Angstrom for lengths.

Basic Raw Pw Parser

A collection of function that are used to parse the output of Quantum Espresso PW.
The function that needs to be called from outside is parse_raw_output().
The functions mostly work without aiida specific functionalities.
The parsing will try to convert whatever it can in some dictionary, which
by operative decision doesn’t have much structure encoded, [the values are simple]

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.cell_volume(a1, a2, a3)[source]

	returns the volume of the primitive cell: |a1.(a2xa3)|

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.convert_list_to_matrix(in_matrix, n_rows, n_columns)[source]

	converts a list into a list of lists (a matrix like) with n_rows and n_columns

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.convert_qe_time_to_sec(timestr)[source]

	Given the walltime string of Quantum Espresso, converts it in a number of
seconds (float).

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_QE_errors(lines, count, warnings)[source]

	Parse QE errors messages (those appearing between some lines with
'%%%%%%%%')

	Parameters:	
	lines – list of strings, the output text file as read by readlines()
or as obtained by data.split(‘n’) when data is the text file read by read()

	count – the line at which we identified some '%%%%%%%%'

	warnings – the warnings already parsed in the file

	Return messages:

		a list of QE error messages

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_pw_text_output(data, xml_data=None, structure_data=None, input_dict=None)[source]

	Parses the text output of QE-PWscf.

	Parameters:	
	data – a string, the file as read by read()

	xml_data – the dictionary with the keys read from xml.

	structure_data – dictionary, coming from the xml, with info on the structure

	Return parsed_data:

		dictionary with key values, referring to quantities
at the last scf step.

	Return trajectory_data:

		key,values referring to intermediate scf steps,
as in the case of vc-relax. Empty dictionary if no
value is present.

	Return critical_messages:

		a list with critical messages. If any is found in
parsed_data[‘warnings’], the calculation is FAILED!

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_pw_xml_output(data, dir_with_bands=None)[source]

	Parse the xml data of QE v5.0.x
Input data must be a single string, as returned by file.read()
Returns a dictionary with parsed values

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_raw_output(out_file, input_dict, parser_opts=None, xml_file=None, dir_with_bands=None)[source]

	Parses the output of a calculation
Receives in input the paths to the output file and the xml file.

	Parameters:	
	out_file – path to pw std output

	input_dict – not used

	parser_opts – not used

	dir_with_bands – path to directory with all k-points (Kxxxxx) folders

	xml_file – path to QE data-file.xml

	Returns out_dict:

		a dictionary with parsed data

	Return successful:

		a boolean that is False in case of failed calculations

	Raises:	
	QEOutputParsingError – for errors in the parsing,

	AssertionError – if two keys in the parsed dicts are found to be qual

3 different keys to check in output: parser_warnings, xml_warnings and warnings.
On an upper level, these flags MUST be checked.
The first two are expected to be empty unless QE failures or unfinished jobs.

Basic Pw Parser

	
class aiida.parsers.plugins.quantumespresso.basicpw.BasicpwParser(calc)[source]

	This class is the implementation of the Parser class for PWscf.

	
get_linkname_out_kpoints()[source]

	Returns the name of the link to the output_kpoints
Node exists if cell has changed and no bands are stored.

	
get_linkname_outarray()[source]

	Returns the name of the link to the output_array
Node may exist in case of calculation=’scf’

	
get_linkname_outstructure()[source]

	Returns the name of the link to the output_structure
Node exists if positions or cell changed.

	
get_linkname_outtrajectory()[source]

	Returns the name of the link to the output_trajectory.
Node exists in case of calculation=’md’, ‘vc-md’, ‘relax’, ‘vc-relax’

	
get_parser_settings_key()[source]

	Return the name of the key to be used in the calculation settings, that
contains the dictionary with the parser_options

	
parse_with_retrieved(retrieved)[source]

	Receives in input a dictionary of retrieved nodes.
Does all the logic here.

Constants

Physical or mathematical constants.
Since every code has its own conversion units, this module defines what
QE understands as for an eV or other quantities.
Whenever possible, we try to use the constants defined in
:py:mod:aiida.common.constants:, but if some constants are slightly different
among different codes (e.g., different standard definition), we define
the constants in this file.

Cp Parser

	
class aiida.parsers.plugins.quantumespresso.cp.CpParser(calc)[source]

	This class is the implementation of the Parser class for Cp.

	
get_linkname_trajectory()[source]

	Returns the name of the link to the output_structure (None if not present)

	
parse_with_retrieved(retrieved)[source]

	Receives in input a dictionary of retrieved nodes.
Does all the logic here.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

Properties

Properties are configuration options that are stored in the config.json file
(within the .aiida directory). They can be accessed and modified thanks to
verdi devel commands:

	delproperty: delete a given property.

	describeproperty: describe the content of a given property.

	getproperty: get the value of a given property.

	listproperties: list all user defined properties. With -a option, list
all of them including those still at the default values.

	setproperty: set a given property (usage: verdi devel setproperty PROPERTYNAME PROPERTYVALUE).

For instance, modules to be loaded automatically in the verdi shell can be
added by putting their paths (separated by colons :) in the property
verdishell.modules, e.g. by typing something like:

verdi devel setproperty verdishell.modules aiida.common.exceptions.NotExistent:aiida.orm.autogroup.Autogroup

More information can be found in the source code: see
setup.py.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

Modules

	aiida.common
	Calculation datastructures

	Exceptions

	Extended dictionaries

	Folders

	Plugin loaders

	Utilities

	aiida.transport documentation
	Generic transport class

	Developing a plugin

	aiida.scheduler documentation
	Generic scheduler class

	Scheduler datastructures

	aiida.cmdline documentation
	Baseclass

	Verdi lib

	Daemon

	Data

	aiida.execmanager documentation
	Execution Manager

	aiida.backends.djsite documentation
	Database schema

	ORM documentation: generic aiida.orm
	Computer

	Node

	Workflow

	Code

	ORM documentation: Data
	Structure

	Folder

	Singlefile

	Upf

	Cif

	Parameter

	Remote

	ArrayData
	ArrayData subclasses

	ORM documentation: Calculations
	Quantum ESPRESSO
	Quantum Espresso - pw.x

	Quantum Espresso - Dos

	Quantum Espresso - Projwfc

	Quantum Espresso - PW immigrant

	Wannier90 - Wannier90

	TemplateReplacer

	Calculation parsers
	Quantum ESPRESSO parsers
	Basic Raw Cp Parser

	Basic Raw Pw Parser

	Basic Pw Parser

	Constants

	Cp Parser

	QueryTool documentation

	QueryBuilder documentation

	DbImporter documentation
	Generic database importer class

	Structural databases
	COD database importer

	ICSD database importer

	MPOD database importer

	OQMD database importer

	PCOD database importer

	TCOD database importer

	Other databases
	NNINC database importer

	DbExporter documentation
	TCOD database exporter

	TCOD parameter translator documentation
	Base class

	CP

	NWChem (pymatgen-based)

	PW

	aiida.tools documentation
	Tools
	pw input parser

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Modules

aiida.common documentation

Calculation datastructures

This module defines the main data structures used by the Calculation.

	
class aiida.common.datastructures.CalcInfo(init=None)[source]

	This object will store the data returned by the calculation plugin and to be
passed to the ExecManager

	
class aiida.common.datastructures.CodeInfo(init=None)[source]

	This attribute-dictionary contains the information needed to execute a code.
Possible attributes are:

	cmdline_params: a list of strings, containing parameters to be written on
the command line right after the call to the code, as for example:

code.x cmdline_params[0] cmdline_params[1] ... < stdin > stdout

	stdin_name: (optional) the name of the standard input file. Note, it is
only possible to use the stdin with the syntax:

code.x < stdin_name

If no stdin_name is specified, the string “< stdin_name” will not be
passed to the code.
Note: it is not possible to substitute/remove the ‘<’ if stdin_name is specified;
if that is needed, avoid stdin_name and use instead the cmdline_params to
specify a suitable syntax.

	stdout_name: (optional) the name of the standard output file. Note, it is
only possible to pass output to stdout_name with the syntax:

code.x ... > stdout_name

If no stdout_name is specified, the string “> stdout_name” will not be
passed to the code.
Note: it is not possible to substitute/remove the ‘>’ if stdout_name is specified;
if that is needed, avoid stdout_name and use instead the cmdline_params to
specify a suitable syntax.

	stderr_name: (optional) a string, the name of the error file of the code.

	join_files: (optional) if True, redirects the error to the output file.
If join_files=True, the code will be called as:

code.x ... > stdout_name 2>&1

otherwise, if join_files=False and stderr is passed:

code.x ... > stdout_name 2> stderr_name

	withmpi: if True, executes the code with mpirun (or another MPI installed
on the remote computer)

	code_uuid: the uuid of the code associated to the CodeInfo

	
aiida.common.datastructures.sort_states(list_states)[source]

	Given a list of state names, return a sorted list of states (the first
is the most recent) sorted according to their logical appearance in
the DB (i.e., NEW before of SUBMITTING before of FINISHED).

Note

The order of the internal variable _sorted_datastates is
used.

	Parameters:	list_states – a list (or tuple) of state strings.

	Returns:	a sorted list of the given data states.

	Raises:	ValueError – if any of the given states is not a valid state.

Exceptions

	
exception aiida.common.exceptions.AiidaException[source]

	Base class for all AiiDA exceptions.

Each module will have its own subclass, inherited from this
(e.g. ExecManagerException, TransportException, ...)

	
exception aiida.common.exceptions.AuthenticationError[source]

	Raised when a user tries to access a resource for which it is
not authenticated, e.g. an aiidauser tries to access a computer
for which there is no entry in the AuthInfo table.

	
exception aiida.common.exceptions.ConfigurationError[source]

	Error raised when there is a configuration error in AiiDA.

	
exception aiida.common.exceptions.ContentNotExistent[source]

	Raised when trying to access an attribute, a key or a file in the result
nodes that is not present

	
exception aiida.common.exceptions.DbContentError[source]

	Raised when the content of the DB is not valid.
This should never happen if the user does not play directly
with the DB.

	
exception aiida.common.exceptions.FailedError[source]

	Raised when accessing a calculation that is in the FAILED status

	
exception aiida.common.exceptions.FeatureDisabled[source]

	Raised when a feature is requested, but the user has chosen to disable
it (e.g., for submissions on disabled computers).

	
exception aiida.common.exceptions.FeatureNotAvailable[source]

	Raised when a feature is requested from a plugin, that is not available.

	
exception aiida.common.exceptions.InputValidationError[source]

	The input data for a calculation did not validate (e.g., missing
required input data, wrong data, ...)

	
exception aiida.common.exceptions.InternalError[source]

	Error raised when there is an internal error of AiiDA.

	
exception aiida.common.exceptions.InvalidOperation[source]

	The allowed operation is not valid (e.g., when trying to add a non-internal attribute
before saving the entry), or deleting an entry that is protected (e.g.,
because it is referenced by foreign keys)

	
exception aiida.common.exceptions.LicensingException[source]

	Raised when requirements for data licensing are not met.

	
exception aiida.common.exceptions.LockPresent[source]

	Raised when a lock is requested, but cannot be acquired.

	
exception aiida.common.exceptions.MissingPluginError[source]

	Raised when the user tries to use a plugin that is not available or does not exist.

	
exception aiida.common.exceptions.ModificationNotAllowed[source]

	Raised when the user tries to modify a field, object, property, ... that should not
be modified.

	
exception aiida.common.exceptions.MultipleObjectsError[source]

	Raised when more than one entity is found in the DB, but only one was
expected.

	
exception aiida.common.exceptions.NotExistent[source]

	Raised when the required entity does not exist.

	
exception aiida.common.exceptions.ParsingError[source]

	Generic error raised when there is a parsing error

	
exception aiida.common.exceptions.PluginInternalError[source]

	Error raised when there is an internal error which is due to a plugin
and not to the AiiDA infrastructure.

	
exception aiida.common.exceptions.ProfileConfigurationError[source]

	Configuration error raised when a wrong/inexistent profile is requested.

	
exception aiida.common.exceptions.RemoteOperationError[source]

	Raised when an error in a remote operation occurs, as in a failed kill()
of a scheduler job.

	
exception aiida.common.exceptions.UniquenessError[source]

	Raised when the user tries to violate a uniqueness constraint (on the
DB, for instance).

	
exception aiida.common.exceptions.ValidationError[source]

	Error raised when there is an error during the validation phase
of a property.

	
exception aiida.common.exceptions.WorkflowInputValidationError[source]

	The input data for a workflow did not validate (e.g., missing
required input data, wrong data, ...)

Extended dictionaries

	
class aiida.common.extendeddicts.AttributeDict(init=None)[source]

	This class internally stores values in a dictionary, but exposes
the keys also as attributes, i.e. asking for attrdict.key
will return the value of attrdict[‘key’] and so on.

Raises an AttributeError if the key does not exist, when called as an attribute,
while the usual KeyError if the key does not exist and the dictionary syntax is
used.

	
copy()[source]

	Shallow copy.

	
class aiida.common.extendeddicts.DefaultFieldsAttributeDict(init=None)[source]

	A dictionary with access to the keys as attributes, and with an
internal value storing the ‘default’ keys to be distinguished
from extra fields.

Extra methods defaultkeys() and extrakeys() divide the set returned by
keys() in default keys (i.e. those defined at definition time)
and other keys.
There is also a method get_default_fields() to return the internal list.

Moreover, for undefined default keys, it returns None instead of raising a
KeyError/AttributeError exception.

Remember to define the _default_fields in a subclass!
E.g.:

class TestExample(DefaultFieldsAttributeDict):
 _default_fields = ('a','b','c')

When the validate() method is called, it calls in turn all validate_KEY
methods, where KEY is one of the default keys.
If the method is not present, the field is considered to be always valid.
Each validate_KEY method should accept a single argument ‘value’ that will
contain the value to be checked.

It raises a ValidationError if any of the validate_KEY
function raises an exception, otherwise it simply returns.
NOTE: the validate_ functions are called also for unset fields, so if the
field can be empty on validation, you have to start your validation
function with something similar to:

if value is None:
 return

Todo

Decide behavior if I set to None a field.
Current behavior, if
a is an instance and ‘def_field’ one of the default fields, that is
undefined, we get:

	a.get('def_field'): None

	a.get('def_field','whatever'): ‘whatever’

	Note that a.defaultkeys() does NOT contain ‘def_field’

if we do a.def_field = None, then the behavior becomes

	a.get('def_field'): None

	a.get('def_field','whatever'): None

	Note that a.defaultkeys() DOES contain ‘def_field’

See if we want that setting a default field to None means deleting it.

	
defaultkeys()[source]

	Return the default keys defined in the instance.

	
extrakeys()[source]

	Return the extra keys defined in the instance.

	
classmethod get_default_fields()[source]

	Return the list of default fields, either defined in the instance or not.

	
validate()[source]

	Validate the keys, if any validate_* method is available.

	
class aiida.common.extendeddicts.FixedFieldsAttributeDict(init=None)[source]

	A dictionary with access to the keys as attributes, and with filtering
of valid attributes.
This is only the base class, without valid attributes;
use a derived class to do the actual work.
E.g.:

class TestExample(FixedFieldsAttributeDict):
 _valid_fields = ('a','b','c')

	
classmethod get_valid_fields()[source]

	Return the list of valid fields.

Folders

	
class aiida.common.folders.Folder(abspath, folder_limit=None)[source]

	A class to manage generic folders, avoiding to get out of
specific given folder borders.

Todo

fix this, os.path.commonprefix of /a/b/c and /a/b2/c will give
a/b, check if this is wanted or if we want to put trailing slashes.
(or if we want to use os.path.relpath and check for a string starting
with os.pardir?)

Todo

rethink whether the folder_limit option is still useful. If not, remove
it alltogether (it was a nice feature, but unfortunately all the calls
to os.path.abspath or normpath are quite slow).

	
abspath

	The absolute path of the folder.

	
create()[source]

	Creates the folder, if it does not exist on the disk yet.

It will also create top directories, if absent.

It is always safe to call it, it will do nothing if the folder
already exists.

	
create_file_from_filelike(src_filelike, dest_name)[source]

	Create a file from a file-like object.

	Note:	if the current file position in src_filelike is not 0,
only the contents from the current file position to the end of the
file will be copied in the new file.

	Parameters:	
	src_filelike – the file-like object (e.g., if you have
a string called s, you can pass StringIO.StringIO(s))

	dest_name – the destination filename will have this file name.

	
create_symlink(src, name)[source]

	Create a symlink inside the folder to the location ‘src’.

	Parameters:	
	src – the location to which the symlink must point. Can be
either a relative or an absolute path. Should, however,
be relative to work properly also when the repository is
moved!

	name – the filename of the symlink to be created.

	
erase(create_empty_folder=False)[source]

	Erases the folder. Should be called only in very specific cases,
in general folder should not be erased!

Doesn’t complain if the folder does not exist.

	Parameters:	create_empty_folder – if True, after erasing, creates an empty dir.

	
exists()[source]

	Return True if the folder exists, False otherwise.

	
folder_limit

	The folder limit that cannot be crossed when creating files and folders.

	
get_abs_path(relpath, check_existence=False)[source]

	Return an absolute path for a file or folder in this folder.

The advantage of using this method is that it checks that filename
is a valid filename within this folder,
and not something e.g. containing slashes.

	Parameters:	
	filename – The file or directory.

	check_existence – if False, just return the file path.
Otherwise, also check if the file or directory actually exists.
Raise OSError if it does not.

	
get_content_list(pattern='*', only_paths=True)[source]

	Return a list of files (and subfolders) in the folder,
matching a given pattern.

Example: If you want to exclude files starting with a dot, you can
call this method with pattern='[!.]*'

	Parameters:	
	pattern – a pattern for the file/folder names, using Unix filename
pattern matching (see Python standard module fnmatch).
By default, pattern is ‘*’, matching all files and folders.

	only_paths – if False (default), return pairs (name, is_file).
if True, return only a flat list.

	Returns:	a list of tuples of two elements, the first is the file name and
the second is True if the element is a file, False if it is a
directory.

	
get_subfolder(subfolder, create=False, reset_limit=False)[source]

	Return a Folder object pointing to a subfolder.

	Parameters:	
	subfolder – a string with the relative path of the subfolder,
relative to the absolute path of this object. Note that
this may also contain ‘..’ parts,
as far as this does not go beyond the folder_limit.

	create – if True, the new subfolder is created, if it does not exist.

	reset_limit – when doing b = a.get_subfolder('xxx', reset_limit=False),
the limit of b will be the same limit of a.
if True, the limit will be set to the boundaries of folder b.

	Returns:	a Folder object pointing to the subfolder.

	
insert_path(src, dest_name=None, overwrite=True)[source]

	Copy a file to the folder.

	Parameters:	
	src – the source filename to copy

	dest_name – if None, the same basename of src is used. Otherwise,
the destination filename will have this file name.

	overwrite – if False, raises an error on existing destination;
otherwise, delete it first.

	
isdir(relpath)[source]

	Return True if ‘relpath’ exists inside the folder and is a directory,
False otherwise.

	
isfile(relpath)[source]

	Return True if ‘relpath’ exists inside the folder and is a file,
False otherwise.

	
mode_dir

	Return the mode with which the folders should be created

	
mode_file

	Return the mode with which the files should be created

	
open(name, mode='r')[source]

	Open a file in the current folder and return the corresponding
file object.

	
remove_path(filename)[source]

	Remove a file or folder from the folder.

	Parameters:	filename – the relative path name to remove

	
replace_with_folder(srcdir, move=False, overwrite=False)[source]

	This routine copies or moves the source folder ‘srcdir’ to the local
folder pointed by this Folder object.

	Parameters:	
	srcdir – the source folder on the disk; this must be a string with
an absolute path

	move – if True, the srcdir is moved to the repository. Otherwise, it
is only copied.

	overwrite – if True, the folder will be erased first.
if False, a IOError is raised if the folder already exists.
Whatever the value of this flag, parent directories will be
created, if needed.

	Raises:	OSError or IOError: in case of problems accessing or writing
the files.

	Raises:	ValueError: if the section is not recognized.

	
class aiida.common.folders.RepositoryFolder(section, uuid, subfolder='.')[source]

	A class to manage the local AiiDA repository folders.

	
get_topdir()[source]

	Returns the top directory, i.e., the section/uuid folder object.

	
section

	The section to which this folder belongs.

	
subfolder

	The subfolder within the section/uuid folder.

	
uuid

	The uuid to which this folder belongs.

	
class aiida.common.folders.SandboxFolder[source]

	A class to manage the creation and management of a sandbox folder.

Note: this class must be used within a context manager, i.e.:

	with SandboxFolder as f:

	## do something with f

In this way, the sandbox folder is removed from disk
(if it wasn’t removed already) when exiting the ‘with’ block.

Todo

Implement check of whether the folder has been removed.

Plugin loaders

	
aiida.common.pluginloader.BaseFactory(module, base_class, base_modname, suffix=None)[source]

	Return a given subclass of Calculation, loading the correct plugin.

	Example:	If module=’quantumespresso.pw’, base_class=JobCalculation,
base_modname = ‘aiida.orm.calculation.job’, and suffix=’Calculation’,
the code will first look for a pw subclass of JobCalculation
inside the quantumespresso module. Lacking such a class, it will try to look
for a ‘PwCalculation’ inside the quantumespresso.pw module.
In the latter case, the plugin class must have a specific name and be
located in a specific file:
if for instance plugin_name == ‘ssh’ and base_class.__name__ == ‘Transport’,
then there must be a class named ‘SshTransport’ which is a subclass of base_class
in a file ‘ssh.py’ in the plugins_module folder.
To create the class name to look for, the code will attach the string
passed in the base_modname (after the last dot) and the suffix parameter,
if passed, with the proper CamelCase capitalization. If suffix is not
passed, the default suffix that is used is the base_class class name.

	Parameters:	
	module – a string with the module of the plugin to load, e.g.
‘quantumespresso.pw’.

	base_class – a base class from which the returned class should inherit.
e.g.: JobCalculation

	base_modname – a basic module name, under which the module should be
found. E.g., ‘aiida.orm.calculation.job’.

	suffix – If specified, the suffix that the class name will have.
By default, use the name of the base_class.

	
aiida.common.pluginloader.existing_plugins(base_class, plugins_module_name, max_depth=5, suffix=None)[source]

	Return a list of strings of valid plugins.

	Parameters:	
	base_class – Identify all subclasses of the base_class

	plugins_module_name – a string with the full module name separated
with dots that points to the folder with plugins.
It must be importable by python.

	max_depth – Maximum depth (of nested modules) to be used when
looking for plugins

	suffix – The suffix that is appended to the basename when looking
for the (sub)class name. If not provided (or None), use the base
class name.

	Returns:	a list of valid strings that can be used using a Factory or with
load_plugin.

	
aiida.common.pluginloader.from_type_to_pluginclassname(typestr)[source]

	Return the string to pass to the load_plugin function, starting from
the ‘type’ field of a Node.

	
aiida.common.pluginloader.get_class_typestring(type_string)[source]

	Given the type string, return three strings: the first one is
one of the first-level classes that the Node can be:
“node”, “calculation”, “code”, “data”.
The second string is the one that can be passed to the DataFactory or
CalculationFactory (or an empty string for nodes and codes);
the third one is the name of the python class that would be loaded.

	
aiida.common.pluginloader.get_query_type_string(plugin_type_string)[source]

	Receives a plugin_type_string, an attribute of subclasses of Node.
Checks whether it is a valid type_string and manipulates the string
to return a string that in a query returns all instances of a class and
all instances of subclasses.

	Parameters:	plugin_type_string (str) – The plugin_type_string

	Returns:	the query_type_string

	
aiida.common.pluginloader.load_plugin(base_class, plugins_module, plugin_type)[source]

	Load a specific plugin for the given base class.

This is general and works for any plugin used in AiiDA.

	NOTE: actually, now plugins_module and plugin_type are joined with a dot,

	and the plugin is retrieved splitting using the last dot of the resulting
string.

	TODO: understand if it is probably better to join the two parameters above

	to a single one.

	Args:

	
	base_class

	the abstract base class of the plugin.

	plugins_module

	a string with the full module name separated with dots
that points to the folder with plugins. It must be importable by python.

	plugin_type

	the name of the plugin.

	Return:

	the class of the required plugin.

	Raise:

	MissingPluginError if the plugin cannot be loaded

	Example:

	
	plugin_class = load_plugin(

	aiida.transport.Transport,’aiida.transport.plugins’,’ssh.SshTransport’)

and plugin_class will be the class ‘aiida.transport.plugins.ssh.SshTransport’

Utilities

	
class aiida.common.utils.ArrayCounter[source]

	A counter & a method that increments it and returns its value.
It is used in various tests.

	
aiida.common.utils.are_dir_trees_equal(dir1, dir2)[source]

	Compare two directories recursively. Files in each directory are
assumed to be equal if their names and contents are equal.

@param dir1: First directory path
@param dir2: Second directory path

	@return: True if the directory trees are the same and

	there were no errors while accessing the directories or files,
False otherwise.

	
aiida.common.utils.ask_question(question, reply_type, allow_none_as_answer)[source]

	This method asks a specific question, tries to parse the given reply
and then it verifies the parsed answer.
:param question: The question to be asked.
:param reply_type: The type of the expected answer (int, datetime etc). It
is needed for the parsing of the answer.
:param allow_none_as_answer: Allow empty answers?
:return: The parsed reply.

	
class aiida.common.utils.classproperty(getter)[source]

	A class that, when used as a decorator, works as if the
two decorators @property and @classmethod where applied together
(i.e., the object works as a property, both for the Class and for any
of its instance; and is called with the class cls rather than with the
instance as its first argument).

	
class aiida.common.utils.combomethod(method)[source]

	A decorator that wraps a function that can be both a classmethod or
instancemethod and behaves accordingly:

class A():

 @combomethod
 def do(self, **kwargs):
 isclass = kwargs.get('isclass')
 if isclass:
 print "I am a class", self
 else:
 print "I am an instance", self

A.do()
A().do()

>>> I am a class __main__.A
>>> I am an instance <__main__.A instance at 0x7f2efb116e60>

Attention: For ease of handling, pass keyword isclass
equal to True if this was called as a classmethod and False if this
was called as an instance.
The argument self is therefore ambiguous!

	
aiida.common.utils.conv_to_fortran(val)[source]

	

	Parameters:	val – the value to be read and converted to a Fortran-friendly string.

	
aiida.common.utils.create_display_name(field)[source]

	Given a string, creates the suitable “default” display name: replace
underscores with spaces, and capitalize each word.

	Returns:	the converted string

	
aiida.common.utils.escape_for_bash(str_to_escape)[source]

	This function takes any string and escapes it in a way that
bash will interpret it as a single string.

Explanation:

At the end, in the return statement, the string is put within single
quotes. Therefore, the only thing that I have to escape in bash is the
single quote character. To do this, I substitute every single
quote ‘ with ‘”’”’ which means:

First single quote: exit from the enclosing single quotes

Second, third and fourth character: “’” is a single quote character,
escaped by double quotes

Last single quote: reopen the single quote to continue the string

Finally, note that for python I have to enclose the string ‘”’”’
within triple quotes to make it work, getting finally: the complicated
string found below.

	
aiida.common.utils.export_shard_uuid(uuid)[source]

	Sharding of the UUID for the import/export

	
aiida.common.utils.flatten_list(value)[source]

	Flattens a list or a tuple
In [2]: flatten_list([[[[[4],3]],[3],[‘a’,[3]]]])
Out[2]: [4, 3, 3, ‘a’, 3]

	Parameters:	value – A value, whether iterable or not

	Returns:	a list of nesting level 1

	
aiida.common.utils.get_class_string(obj)[source]

	Return the string identifying the class of the object (module + object name,
joined by dots).

It works both for classes and for class instances.

	
aiida.common.utils.get_configured_user_email()[source]

	Return the email (that is used as the username) configured during the
first verdi install.

	
aiida.common.utils.get_extremas_from_positions(positions)[source]

	returns the minimum and maximum value for each dimension in the positions given

	
aiida.common.utils.get_fortfloat(key, txt, be_case_sensitive=True)[source]

	Matches a fortran compatible specification of a float behind a defined key in a string.
:param key: The key to look for
:param txt: The string where to search for the key
:param be_case_sensitive: An optional boolean whether to search case-sensitive, defaults to True

If abc is a key, and f is a float, number, than this regex
will match t and return f in the following cases:

	charsbefore, abc = f, charsafter

	charsbefore
abc = f
charsafter

	charsbefore, abc = f
charsafter

and vice-versa.
If no float is matched, returns None

Exampes of matchable floats are:

	0.1d2

	0.D-3

	.2e1

	-0.23

	
	

	232

	
aiida.common.utils.get_new_uuid()[source]

	Return a new UUID (typically to be used for new nodes).
It uses the UUID version specified in
aiida.backends.settings.AIIDANODES_UUID_VERSION

	
aiida.common.utils.get_object_from_string(string)[source]

	Given a string identifying an object (as returned by the get_class_string
method) load and return the actual object.

	
aiida.common.utils.get_repository_folder(subfolder=None)[source]

	Return the top folder of the local repository.

	
aiida.common.utils.get_suggestion(provided_string, allowed_strings)[source]

	Given a string and a list of allowed_strings, it returns a string to print
on screen, with sensible text depending on whether no suggestion is found,
or one or more than one suggestions are found.

	Args:

	provided_string: the string to compare
allowed_strings: a list of valid strings

	Returns:

	A string to print on output, to suggest to the user a possible valid
value.

	
aiida.common.utils.get_unique_filename(filename, list_of_filenames)[source]

	Return a unique filename that can be added to the list_of_filenames.

If filename is not in list_of_filenames, it simply returns the filename
string itself. Otherwise, it appends a integer number to the filename
(before the extension) until it finds a unique filename.

	Parameters:	
	filename – the filename to add

	list_of_filenames – the list of filenames to which filename
should be added, without name duplicates

	Returns:	Either filename or its modification, with a number appended
between the name and the extension.

	
aiida.common.utils.grouper(n, iterable)[source]

	Given an iterable, returns an iterable that returns tuples of groups of
elements from iterable of length n, except the last one that has the
required length to exaust iterable (i.e., there is no filling applied).

	Parameters:	
	n – length of each tuple (except the last one,that will have length
<= n

	iterable – the iterable to divide in groups

	
aiida.common.utils.gunzip_string(string)[source]

	Gunzip string contents.

	Parameters:	string – a gzipped string

	Returns:	a string

	
aiida.common.utils.gzip_string(string)[source]

	Gzip string contents.

	Parameters:	string – a string

	Returns:	a gzipped string

	
aiida.common.utils.md5_file(filename, block_size_factor=128)[source]

	Open a file and return its md5sum (hexdigested).

	Parameters:	
	filename – the filename of the file for which we want the md5sum

	block_size_factor – the file is read at chunks of size
block_size_factor * md5.block_size,
where md5.block_size is the block_size used internally by the
hashlib module.

	Returns:	a string with the hexdigest md5.

	Raises:	No checks are done on the file, so if it doesn’t exists it may
raise IOError.

	
aiida.common.utils.query_string(question, default)[source]

	Asks a question (with the option to have a default, predefined answer,
and depending on the default answer and the answer of the user the
following options are available:
- If the user replies (with a non empty answer), then his answer is
returned.
- If the default answer is None then the user has to reply with a non-empty
answer.
- If the default answer is not None, then it is returned if the user gives
an empty answer. In the case of empty default answer and empty reply from
the user, None is returned.
:param question: The question that we want to ask the user.
:param default: The default answer (if there is any) to the question asked.
:return: The returned reply.

	
aiida.common.utils.query_yes_no(question, default='yes')[source]

	Ask a yes/no question via raw_input() and return their answer.

“question” is a string that is presented to the user.
“default” is the presumed answer if the user just hits <Enter>.
It must be “yes” (the default), “no” or None (meaning
an answer is required of the user).

The “answer” return value is True for “yes” or False for “no”.

	
aiida.common.utils.sha1_file(filename, block_size_factor=128)[source]

	Open a file and return its sha1sum (hexdigested).

	Parameters:	
	filename – the filename of the file for which we want the sha1sum

	block_size_factor – the file is read at chunks of size
block_size_factor * sha1.block_size,
where sha1.block_size is the block_size used internally by the
hashlib module.

	Returns:	a string with the hexdigest sha1.

	Raises:	No checks are done on the file, so if it doesn’t exists it may
raise IOError.

	
aiida.common.utils.str_timedelta(dt, max_num_fields=3, short=False, negative_to_zero=False)[source]

	Given a dt in seconds, return it in a HH:MM:SS format.

	Parameters:	
	dt – a TimeDelta object

	max_num_fields – maximum number of non-zero fields to show
(for instance if the number of days is non-zero, shows only
days, hours and minutes, but not seconds)

	short – if False, print always max_num_fields fields, even
if they are zero. If True, do not print the first fields, if they
are zero.

	negative_to_zero – if True, set dt = 0 if dt < 0.

	
aiida.common.utils.validate_list_of_string_tuples(val, tuple_length)[source]

	Check that:

	val is a list or tuple

	each element of the list:

	is a list or tuple

	is of length equal to the parameter tuple_length

	each of the two elements is a string

Return if valid, raise ValidationError if invalid

	
aiida.common.utils.xyz_parser_iterator(string)[source]

	Yields a tuple (natoms, comment, atomiter)`for each frame
in a XYZ file where `atomiter is an iterator yielding a
nested tuple (symbol, (x, y, z)) for each entry.

	Parameters:	string – a string containing XYZ-structured text

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Modules

aiida.transport documentation

This chapter describes the generic implementation of a transport plugin.
The currently implemented are the local and the ssh plugin.
The local plugin makes use only of some standard python modules like os and shutil.
The ssh plugin is a wrapper to the library paramiko, that you installed with AiiDA.

A generic set of tests is contained in plugin_test.py, while plugin-specific tests are written separately.

Generic transport class

	
class aiida.transport.__init__.FileAttribute(init=None)[source]

	A class, resembling a dictionary, to describe the attributes of a file,
that is returned by get_attribute().
Possible keys: st_size, st_uid, st_gid, st_mode, st_atime, st_mtime

	
class aiida.transport.__init__.Transport(*args, **kwargs)[source]

	Abstract class for a generic transport (ssh, local, ...)
Contains the set of minimal methods

	
__enter__()[source]

	For transports that require opening a connection, opens
all required channels (used in ‘with’ statements)

	
__exit__(type, value, traceback)[source]

	Closes connections, if needed (used in ‘with’ statements).

	
chdir(path)[source]

	Change directory to ‘path’

	Parameters:	path (str) – path to change working directory into.

	Raises:	IOError, if the requested path does not exist

	Return type:	string

	
chmod(path, mode)[source]

	Change permissions of a path.

	Parameters:	
	path (str) – path to file

	mode (int) – new permissions

	
chown(path, uid, gid)[source]

	Change the owner (uid) and group (gid) of a file.
As with python’s os.chown function, you must pass both arguments,
so if you only want to change one, use stat first to retrieve the
current owner and group.

	Parameters:	
	path (str) – path to the file to change the owner and group of

	uid (int) – new owner’s uid

	gid (int) – new group id

	
close()[source]

	Closes the local transport channel

	
copy(remotesource, remotedestination, *args, **kwargs)[source]

	Copy a file or a directory from remote source to remote destination
(On the same remote machine)

	Parameters:	
	remotesource (str) – path of the remote source directory / file

	remotedestination (str) – path of the remote destination directory / file

	Raises:	IOError, if one of src or dst does not exist

	
copy_from_remote_to_remote(transportdestination, remotesource, remotedestination, **kwargs)[source]

	Copy files or folders from a remote computer to another remote computer.

	Parameters:	
	transportdestination – transport to be used for the destination computer

	remotesource (str) – path to the remote source directory / file

	remotedestination (str) – path to the remote destination directory / file

	kwargs – keyword parameters passed to the call to transportdestination.put,
except for ‘dereference’ that is passed to self.get

Note

the keyword ‘dereference’ SHOULD be set to False for the
final put (onto the destination), while it can be set to the
value given in kwargs for the get from the source. In that
way, a symbolic link would never be followed in the final
copy to the remote destination. That way we could avoid getting
unknown (potentially malicious) files into the destination computer.
HOWEVER, since dereference=False is currently NOT
supported by all plugins, we still force it to True for the final put.

Note

the supported keys in kwargs are callback, dereference,
overwrite and ignore_nonexisting.

	
copyfile(remotesource, remotedestination, *args, **kwargs)[source]

	Copy a file from remote source to remote destination
(On the same remote machine)

	Parameters:	
	remotesource (str) – path of the remote source directory / file

	remotedestination (str) – path of the remote destination directory / file

	Raises:	IOError – if one of src or dst does not exist

	
copytree(remotesource, remotedestination, *args, **kwargs)[source]

	Copy a folder from remote source to remote destination
(On the same remote machine)

	Parameters:	
	remotesource (str) – path of the remote source directory / file

	remotedestination (str) – path of the remote destination directory / file

	Raises:	IOError – if one of src or dst does not exist

	
exec_command_wait(command, **kwargs)[source]

	Execute the command on the shell, waits for it to finish,
and return the retcode, the stdout and the stderr.

Enforce the execution to be run from the pwd (as given by
self.getcwd), if this is not None.

	Parameters:	command (str) – execute the command given as a string

	Returns:	a list: the retcode (int), stdout (str) and stderr (str).

	
get(remotepath, localpath, *args, **kwargs)[source]

	Retrieve a file or folder from remote source to local destination
dst must be an absolute path (src not necessarily)

	Parameters:	
	remotepath – (str) remote_folder_path

	localpath – (str) local_folder_path

	
get_attribute(path)[source]

	Return an object FixedFieldsAttributeDict for file in a given path,
as defined in aiida.common.extendeddicts
Each attribute object consists in a dictionary with the following keys:

	st_size: size of files, in bytes

	st_uid: user id of owner

	st_gid: group id of owner

	st_mode: protection bits

	st_atime: time of most recent access

	st_mtime: time of most recent modification

	Parameters:	path (str) – path to file

	Returns:	object FixedFieldsAttributeDict

	
get_mode(path)[source]

	Return the portion of the file’s mode that can be set by chmod().

	Parameters:	path (str) – path to file

	Returns:	the portion of the file’s mode that can be set by chmod()

	
classmethod get_short_doc()[source]

	Return the first non-empty line of the class docstring, if available

	
classmethod get_valid_auth_params()[source]

	Return the internal list of valid auth_params

	
classmethod get_valid_transports()[source]

	

	Returns:	a list of existing plugin names

	
getcwd()[source]

	Get working directory

	Returns:	a string identifying the current working directory

	
getfile(remotepath, localpath, *args, **kwargs)[source]

	Retrieve a file from remote source to local destination
dst must be an absolute path (src not necessarily)

	Parameters:	
	remotepath (str) – remote_folder_path

	localpath (str) – local_folder_path

	
gettree(remotepath, localpath, *args, **kwargs)[source]

	Retrieve a folder recursively from remote source to local destination
dst must be an absolute path (src not necessarily)

	Parameters:	
	remotepath (str) – remote_folder_path

	localpath (str) – local_folder_path

	
glob(pathname)[source]

	Return a list of paths matching a pathname pattern.

The pattern may contain simple shell-style wildcards a la fnmatch.

	
gotocomputer_command(remotedir)[source]

	Return a string to be run using os.system in order to connect
via the transport to the remote directory.

Expected behaviors:

	A new bash session is opened

	A reasonable error message is produced if the folder does not exist

	Parameters:	remotedir (str) – the full path of the remote directory

	
iglob(pathname)[source]

	Return an iterator which yields the paths matching a pathname pattern.

The pattern may contain simple shell-style wildcards a la fnmatch.

	
isdir(path)[source]

	True if path is an existing directory.

	Parameters:	path (str) – path to directory

	Returns:	boolean

	
isfile(path)[source]

	Return True if path is an existing file.

	Parameters:	path (str) – path to file

	Returns:	boolean

	
listdir(path='.', pattern=None)[source]

	Return a list of the names of the entries in the given path.
The list is in arbitrary order. It does not include the special
entries ‘.’ and ‘..’ even if they are present in the directory.

	Parameters:	
	path (str) – path to list (default to ‘.’)

	pattern (str) – if used, listdir returns a list of files matching
filters in Unix style. Unix only.

	Returns:	a list of strings

	
logger

	Return the internal logger.
If you have set extra parameters using _set_logger_extra(), a
suitable LoggerAdapter instance is created, bringing with itself
also the extras.

	
makedirs(path, ignore_existing=False)[source]

	Super-mkdir; create a leaf directory and all intermediate ones.
Works like mkdir, except that any intermediate path segment (not
just the rightmost) will be created if it does not exist.

	Parameters:	
	path (str) – directory to create

	ignore_existing (bool) – if set to true, it doesn’t give any error
if the leaf directory does already exist

	Raises:	OSError, if directory at path already exists

	
mkdir(path, ignore_existing=False)[source]

	Create a folder (directory) named path.

	Parameters:	
	path (str) – name of the folder to create

	ignore_existing (bool) – if True, does not give any error if the
directory already exists

	Raises:	OSError, if directory at path already exists

	
normalize(path='.')[source]

	Return the normalized path (on the server) of a given path.
This can be used to quickly resolve symbolic links or determine
what the server is considering to be the “current folder”.

	Parameters:	path (str) – path to be normalized

	Raises:	IOError – if the path can’t be resolved on the server

	
open()[source]

	Opens a local transport channel

	
path_exists(path)[source]

	Returns True if path exists, False otherwise.

	
put(localpath, remotepath, *args, **kwargs)[source]

	Put a file or a directory from local src to remote dst.
src must be an absolute path (dst not necessarily))
Redirects to putfile and puttree.

	Parameters:	
	localpath (str) – absolute path to local source

	remotepath (str) – path to remote destination

	
putfile(localpath, remotepath, *args, **kwargs)[source]

	Put a file from local src to remote dst.
src must be an absolute path (dst not necessarily))

	Parameters:	
	localpath (str) – absolute path to local file

	remotepath (str) – path to remote file

	
puttree(localpath, remotepath, *args, **kwargs)[source]

	Put a folder recursively from local src to remote dst.
src must be an absolute path (dst not necessarily))

	Parameters:	
	localpath (str) – absolute path to local folder

	remotepath (str) – path to remote folder

	
remove(path)[source]

	Remove the file at the given path. This only works on files;
for removing folders (directories), use rmdir.

	Parameters:	path (str) – path to file to remove

	Raises:	IOError – if the path is a directory

	
rename(oldpath, newpath)[source]

	Rename a file or folder from oldpath to newpath.

	Parameters:	
	oldpath (str) – existing name of the file or folder

	newpath (str) – new name for the file or folder

	Raises:	
	IOError – if oldpath/newpath is not found

	ValueError – if oldpath/newpath is not a valid string

	
rmdir(path)[source]

	Remove the folder named path.
This works only for empty folders. For recursive remove, use rmtree.

	Parameters:	path (str) – absolute path to the folder to remove

	
rmtree(path)[source]

	Remove recursively the content at path

	Parameters:	path (str) – absolute path to remove

	
symlink(remotesource, remotedestination)[source]

	Create a symbolic link between the remote source and the remote
destination.

	Parameters:	
	remotesource – remote source

	remotedestination – remote destination

	
whoami()[source]

	Get the remote username

	Returns:	list of username (str),
retval (int),
stderr (str)

	
aiida.transport.__init__.TransportFactory(module)[source]

	Used to return a suitable Transport subclass.

	Parameters:	module (str) – name of the module containing the Transport subclass

	Returns:	the transport subclass located in module ‘module’

	
exception aiida.transport.__init__.TransportInternalError[source]

	Raised if there is a transport error that is raised to an internal error (e.g.
a transport method called without opening the channel first).

	
aiida.transport.__init__.copy_from_remote_to_remote(transportsource, transportdestination, remotesource, remotedestination, **kwargs)[source]

	Copy files or folders from a remote computer to another remote computer.

	Parameters:	
	transportsource – transport to be used for the source computer

	transportdestination – transport to be used for the destination computer

	remotesource (str) – path to the remote source directory / file

	remotedestination (str) – path to the remote destination directory / file

	kwargs – keyword parameters passed to the final put,
except for ‘dereference’ that is passed to the initial get

Note

it uses the method transportsource.copy_from_remote_to_remote

Developing a plugin

The transport class is actually almost never used in first person by the user.
It is mostly utilized by the ExecutionManager, that use the transport plugin to connect to the remote computer to manage the calculation.
The ExecutionManager has to be able to use always the same function, or the same interface, regardless of which kind of connection is actually really using.

The generic transport class contains a set of minimal methods that an implementation must support, in order to be fully compatible with the other plugins.
If not, a NotImplementedError will be raised, interrupting the managing of the calculation or whatever is using the transport plugin.

Since it is important that all plugins have the same interface, or the same response behavior, a set of generic tests has been written (alongside with set of tests that are implementation specific).
After every modification, or when implementing a new plugin, it is crucial to run the tests and verify that everything is passed.
The modification of tests possibly means breaking back-compatibility and/or modifications to every piece of code using a transport plugin.

If an unexpected behavior is observed during the usage, the way of fixing it is:

	Write a new test that shows the problem (one test for one problem when possible)

	Fix the bug

	Verify that the test is passed correctly

The importance of point 1) is often neglected, but unittesting is a useful tool that helps you avoiding the repetition of errors. Despite the appearence, it’s a time-saver!
Not only, the tests help you seeing how the plugin is used.

As for the general functioning of the plugin, the __init__ method is used only to initialize the class instance, without actually opening the transport channel. The connection must be opened only by the __enter__ method, (and closed by __exit__.
The __enter__ method let you use the transport class using the with statement (see Python docs [http://docs.python.org/release/2.5/whatsnew/pep-343.html]), in a way similar to the following:

t = TransportPlugin()
with open(t):
 t.do_something_remotely

To ensure this, for example, the local plugin uses a hidden boolean variable _is_open that is set when the __enter__ and __exit__ methods are called. The Ssh logic is instead given by the property sftp.

The other functions that require some care are the copying functions, called using the following terminology:

	put: from local source to remote destination

	get: from remote source to local destination

	copy: copying files from remote source to remote destination

Note that these functions must copy files or folders regardless, internally, they will fallback to functions like putfile or puttree.

The last function requiring care is exec_command_wait, which is an analogue to the subprocess [http://docs.python.org/2/library/subprocess.html] Python module.
The function gives the freedom to execute a string as a remote command, thus it could produce nasty effects if not written with care.
Be sure to escape any string for bash!

Currently, the implemented plugins are the Local and the Ssh transports.
The Local one is simply a wrapper to some standard Python modules, like shutil or os, those functions are simply interfaced in a different way with AiiDA.
The SSh instead is an interface to the Paramiko [http://www.lag.net/paramiko/] library.

Below, you can find a template to fill for a new transport plugin, with a minimal docstring that also work for the sphinx documentation.

class NewTransport(aiida.transport.Transport):

 def __init__(self, machine, **kwargs):
 """
 Initialize the Transport class.

 :param machine: the machine to connect to
 """

 def __enter__(self):
 """
 Open the connection
 """

 def __exit__(self, type, value, traceback):
 """
 Close the connection
 """

 def chdir(self,path):
 """
 Change directory to 'path'

 :param str path: path to change working directory into.
 :raises: IOError, if the requested path does not exist
 :rtype: string
 """

 def chmod(self,path,mode):
 """
 Change permissions of a path.

 :param str path: path to file
 :param int mode: new permissions
 """

 def copy(self,remotesource,remotedestination,*args,**kwargs):
 """
 Copy a file or a directory from remote source to remote destination
 (On the same remote machine)

 :param str remotesource: path of the remote source directory / file
 :param str remotedestination: path of the remote destination directory / file

 :raises: IOError, if source or destination does not exist
 """
 raise NotImplementedError

 def copyfile(self,remotesource,remotedestination,*args,**kwargs):
 """
 Copy a file from remote source to remote destination
 (On the same remote machine)

 :param str remotesource: path of the remote source directory / file
 :param str remotedestination: path of the remote destination directory / file

 :raises IOError: if one of src or dst does not exist
 """

 def copytree(self,remotesource,remotedestination,*args,**kwargs):
 """
 Copy a folder from remote source to remote destination
 (On the same remote machine)

 :param str remotesource: path of the remote source directory / file
 :param str remotedestination: path of the remote destination directory / file

 :raise IOError: if one of src or dst does not exist
 """

 def exec_command_wait(self,command, **kwargs):
 """
 Execute the command on the shell, waits for it to finish,
 and return the retcode, the stdout and the stderr.

 Enforce the execution to be run from the pwd (as given by
 self.getcwd), if this is not None.

 :param str command: execute the command given as a string
 :return: a tuple: the retcode (int), stdout (str) and stderr (str).
 """

 def get_attribute(self,path):
 """
 Return an object FixedFieldsAttributeDict for file in a given path,
 as defined in aiida.common.extendeddicts
 Each attribute object consists in a dictionary with the following keys:

 * st_size: size of files, in bytes

 * st_uid: user id of owner

 * st_gid: group id of owner

 * st_mode: protection bits

 * st_atime: time of most recent access

 * st_mtime: time of most recent modification

 :param str path: path to file
 :return: object FixedFieldsAttributeDict
 """

 def getcwd(self):
 """
 Get working directory

 :return: a string identifying the current working directory
 """

 def get(self, remotepath, localpath, *args, **kwargs):
 """
 Retrieve a file or folder from remote source to local destination
 dst must be an absolute path (src not necessarily)

 :param remotepath: (str) remote_folder_path
 :param localpath: (str) local_folder_path
 """

 def getfile(self, remotepath, localpath, *args, **kwargs):
 """
 Retrieve a file from remote source to local destination
 dst must be an absolute path (src not necessarily)

 :param str remotepath: remote_folder_path
 :param str localpath: local_folder_path
 """

 def gettree(self, remotepath, localpath, *args, **kwargs):
 """
 Retrieve a folder recursively from remote source to local destination
 dst must be an absolute path (src not necessarily)

 :param str remotepath: remote_folder_path
 :param str localpath: local_folder_path
 """

 def gotocomputer_command(self, remotedir):
 """
 Return a string to be run using os.system in order to connect
 via the transport to the remote directory.

 Expected behaviors:

 * A new bash session is opened

 * A reasonable error message is produced if the folder does not exist

 :param str remotedir: the full path of the remote directory
 """

 def isdir(self,path):
 """
 True if path is an existing directory.

 :param str path: path to directory
 :return: boolean
 """

 def isfile(self,path):
 """
 Return True if path is an existing file.

 :param str path: path to file
 :return: boolean
 """

 def listdir(self, path='.',pattern=None):
 """
 Return a list of the names of the entries in the given path.
 The list is in arbitrary order. It does not include the special
 entries '.' and '..' even if they are present in the directory.

 :param str path: path to list (default to '.')
 :param str pattern: if used, listdir returns a list of files matching
 filters in Unix style. Unix only.
 :return: a list of strings
 """

 def makedirs(self,path,ignore_existing=False):
 """
 Super-mkdir; create a leaf directory and all intermediate ones.
 Works like mkdir, except that any intermediate path segment (not
 just the rightmost) will be created if it does not exist.

 :param str path: directory to create
 :param bool ignore_existing: if set to true, it doesn't give any error
 if the leaf directory does already exist

 :raises: OSError, if directory at path already exists
 """

 def mkdir(self,path,ignore_existing=False):
 """
 Create a folder (directory) named path.

 :param str path: name of the folder to create
 :param bool ignore_existing: if True, does not give any error if the
 directory already exists

 :raises: OSError, if directory at path already exists
 """

 def normalize(self,path='.'):
 """
 Return the normalized path (on the server) of a given path.
 This can be used to quickly resolve symbolic links or determine
 what the server is considering to be the "current folder".

 :param str path: path to be normalized

 :raise IOError: if the path can't be resolved on the server
 """

 def put(self, localpath, remotepath, *args, ** kwargs):
 """
 Put a file or a directory from local src to remote dst.
 src must be an absolute path (dst not necessarily))
 Redirects to putfile and puttree.

 :param str localpath: path to remote destination
 :param str remotepath: absolute path to local source
 """

 def putfile(self, localpath, remotepath, *args, ** kwargs):
 """
 Put a file from local src to remote dst.
 src must be an absolute path (dst not necessarily))

 :param str localpath: path to remote file
 :param str remotepath: absolute path to local file
 """

 def puttree(self, localpath, remotepath, *args, ** kwargs):
 """
 Put a folder recursively from local src to remote dst.
 src must be an absolute path (dst not necessarily))

 :param str localpath: path to remote folder
 :param str remotepath: absolute path to local folder
 """

 def rename(src,dst):
 """
 Rename a file or folder from src to dst.

 :param str oldpath: existing name of the file or folder
 :param str newpath: new name for the file or folder

 :raises IOError: if src/dst is not found
 :raises ValueError: if src/dst is not a valid string
 """

 def remove(self,path):
 """
 Remove the file at the given path. This only works on files;
 for removing folders (directories), use rmdir.

 :param str path: path to file to remove

 :raise IOError: if the path is a directory
 """

 def rmdir(self,path):
 """
 Remove the folder named path.
 This works only for empty folders. For recursive remove, use rmtree.

 :param str path: absolute path to the folder to remove
 """
 raise NotImplementedError

 def rmtree(self,path):
 """
 Remove recursively the content at path

 :param str path: absolute path to remove
 """

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Modules

aiida.scheduler documentation

We report here the generic AiiDA scheduler implementation.

Generic scheduler class

	
class aiida.scheduler.__init__.Scheduler[source]

	Base class for all schedulers.

	
classmethod create_job_resource(**kwargs)[source]

	Create a suitable job resource from the kwargs specified

	
getJobs(jobs=None, user=None, as_dict=False)[source]

	Get the list of jobs and return it.

Typically, this function does not need to be modified by the plugins.

	Parameters:	
	jobs (list) – a list of jobs to check; only these are checked

	user (str) – a string with a user: only jobs of this user are checked

	as_dict (list) – if False (default), a list of JobInfo objects is
returned. If True, a dictionary is returned, having as key the
job_id and as value the JobInfo object.

Note: typically, only either jobs or user can be specified. See also
comments in _get_joblist_command.

	
get_detailed_jobinfo(jobid)[source]

	Return a string with the output of the detailed_jobinfo command.

At the moment, the output text is just retrieved
and stored for logging purposes, but no parsing is performed.

	
classmethod get_short_doc()[source]

	Return the first non-empty line of the class docstring, if available

	
get_submit_script(job_tmpl)[source]

	Return the submit script as a string.
:parameter job_tmpl: a aiida.scheduler.datastrutures.JobTemplate object.

The plugin returns something like

#!/bin/bash <- this shebang line could be configurable in the future
scheduler_dependent stuff to choose numnodes, numcores, walltime, ...
prepend_computer [also from calcinfo, joined with the following?]
prepend_code [from calcinfo]
output of _get_script_main_content
postpend_code
postpend_computer

	
kill(jobid)[source]

	Kill a remote job, and try to parse the output message of the scheduler
to check if the scheduler accepted the command.

..note:: On some schedulers, even if the command is accepted, it may
take some seconds for the job to actually disappear from the queue.

	Parameters:	jobid (str) – the job id to be killed

	Returns:	True if everything seems ok, False otherwise.

	
logger

	Return the internal logger.

	
set_transport(transport)[source]

	Set the transport to be used to query the machine or to submit scripts.
This class assumes that the transport is open and active.

	
submit_from_script(working_directory, submit_script)[source]

	Goes in the working directory and submits the submit_script.

Return a string with the JobID in a valid format to be used for
querying.

Typically, this function does not need to be modified by the plugins.

	
transport

	Return the transport set for this scheduler.

	
aiida.scheduler.__init__.SchedulerFactory(module)[source]

	Used to load a suitable Scheduler subclass.

	Parameters:	module (str) – a string with the module name

	Returns:	the scheduler subclass contained in module ‘module’

Scheduler datastructures

This module defines the main data structures used by the Scheduler.

In particular, there is the definition of possible job states (job_states),
the data structure to be filled for job submission (JobTemplate), and
the data structure that is returned when querying for jobs in the scheduler
(JobInfo).

	
class aiida.scheduler.datastructures.JobInfo(init=None)[source]

	Contains properties for a job in the queue.
Most of the fields are taken from DRMAA v.2.

Note that default fields may be undefined. This
is an expected behavior and the application must cope with this
case. An example for instance is the exit_status for jobs that have
not finished yet; or features not supported by the given scheduler.

Fields:

	job_id: the job ID on the scheduler

	title: the job title, as known by the scheduler

	exit_status: the exit status of the job as reported by the operating
system on the execution host

	terminating_signal: the UNIX signal that was responsible for the end
of the job.

	annotation: human-readable description of the reason for the job
being in the current state or substate.

	job_state: the job state (one of those defined in
aiida.scheduler.datastructures.job_states)

	job_substate: a string with the implementation-specific sub-state

	allocated_machines: a list of machines used for the current job.
This is a list of MachineInfo objects.

	job_owner: the job owner as reported by the scheduler

	num_mpiprocs: the total number of requested MPI procs

	num_cpus: the total number of requested CPUs (cores) [may be undefined]

	num_machines: the number of machines (i.e., nodes), required by the
job. If allocated_machines is not None, this number must be equal to
len(allocated_machines). Otherwise, for schedulers not supporting
the retrieval of the full list of allocated machines, this
attribute can be used to know at least the number of machines.

	queue_name: The name of the queue in which the job is queued or
running.

	wallclock_time_seconds: the accumulated wallclock time, in seconds

	requested_wallclock_time_seconds: the requested wallclock time,
in seconds

	cpu_time: the accumulated cpu time, in seconds

	submission_time: the absolute time at which the job was submitted,
of type datetime.datetime

	dispatch_time: the absolute time at which the job first entered the
‘started’ state, of type datetime.datetime

	finish_time: the absolute time at which the job first entered the
‘finished’ state, of type datetime.datetime

	
class aiida.scheduler.datastructures.JobResource(init=None)[source]

	A class to store the job resources. It must be inherited and redefined by the specific
plugin, that should contain a _job_resource_class attribute pointing to the correct
JobResource subclass.

It should at least define the get_tot_num_mpiprocs() method, plus an __init__ to accept
its set of variables.

Typical attributes are:

	num_machines

	num_mpiprocs_per_machine

or (e.g. for SGE)

	tot_num_mpiprocs

	parallel_env

The __init__ should take care of checking the values.
The init should raise only ValueError or TypeError on invalid parameters.

	
classmethod accepts_default_mpiprocs_per_machine()[source]

	Return True if this JobResource accepts a ‘default_mpiprocs_per_machine’
key, False otherwise.

Should be implemented in each subclass.

	
get_tot_num_mpiprocs()[source]

	Return the total number of cpus of this job resource.

	
classmethod get_valid_keys()[source]

	Return a list of valid keys to be passed to the __init__

	
class aiida.scheduler.datastructures.JobTemplate(init=None)[source]

	A template for submitting jobs. This contains all required information
to create the job header.

	The required fields are: working_directory, job_name, num_machines,

	num_mpiprocs_per_machine, argv.

Fields:

	submit_as_hold: if set, the job will be in a ‘hold’ status right
after the submission

	rerunnable: if the job is rerunnable (boolean)

	job_environment: a dictionary with environment variables to set
before the execution of the code.

	working_directory: the working directory for this job. During
submission, the transport will first do a ‘chdir’ to this directory,
and then possibly set a scheduler parameter, if this is supported
by the scheduler.

	email: an email address for sending emails on job events.

	email_on_started: if True, ask the scheduler to send an email when the
job starts.

	email_on_terminated: if True, ask the scheduler to send an email when
the job ends. This should also send emails on job failure, when
possible.

	job_name: the name of this job. The actual name of the job can be
different from the one specified here, e.g. if there are unsupported
characters, or the name is too long.

	sched_output_path: a (relative) file name for the stdout of this job

	sched_error_path: a (relative) file name for the stdout of this job

	sched_join_files: if True, write both stdout and stderr on the same
file (the one specified for stdout)

	queue_name: the name of the scheduler queue (sometimes also called
partition), on which the job will be submitted.

	job_resource: a suitable JobResource
subclass with information on how many
nodes and cpus it should use. It must be an instance of the
aiida.scheduler.Scheduler._job_resource_class class.
Use the Scheduler.create_job_resource method to create it.

	num_machines: how many machines (or nodes) should be used

	num_mpiprocs_per_machine: how many MPI procs should be used on each
machine (or node).

	priority: a priority for this job. Should be in the format accepted
by the specific scheduler.

	max_memory_kb: The maximum amount of memory the job is allowed
to allocate ON EACH NODE, in kilobytes

	max_wallclock_seconds: The maximum wall clock time that all processes
of a job are allowed to exist, in seconds

	custom_scheduler_commands: a string that will be inserted right
after the last scheduler command, and before any other non-scheduler
command; useful if some specific flag needs to be added and is not
supported by the plugin

	prepend_text: a (possibly multi-line) string to be inserted
in the scheduler script before the main execution line

	append_text: a (possibly multi-line) string to be inserted
in the scheduler script after the main execution line

	import_sys_environment: import the system environment variables

	codes_info: a list of aiida.common.datastructures.CalcInfo objects.
Each contains the information necessary to run a single code. At the
moment, it can contain:

	cmdline_parameters: a list of strings with the command line arguments
of the program to run. This is the main program to be executed.
NOTE: The first one is the executable name.
For MPI runs, this will probably be “mpirun” or a similar program;
this has to be chosen at a upper level.

	stdin_name: the (relative) file name to be used as stdin for the
program specified with argv.

	stdout_name: the (relative) file name to be used as stdout for the
program specified with argv.

	stderr_name: the (relative) file name to be used as stderr for the
program specified with argv.

	join_files: if True, stderr is redirected on the same file
specified for stdout.

	codes_run_mode: sets the run_mode with which the (multiple) codes
have to be executed. For example, parallel execution:

mpirun -np 8 a.x &
mpirun -np 8 b.x &
wait

The serial execution would be without the &’s.
Values are given by aiida.common.datastructures.code_run_modes.

	
class aiida.scheduler.datastructures.MachineInfo(init=None)[source]

	Similarly to what is defined in the DRMAA v.2 as SlotInfo; this identifies
each machine (also called ‘node’ on some schedulers)
on which a job is running, and how many CPUs are being used. (Some of them
could be undefined)

	name: name of the machine

	num_cpus: number of cores used by the job on this machine

	num_mpiprocs: number of MPI processes used by the job on this machine

	
class aiida.scheduler.datastructures.NodeNumberJobResource(**kwargs)[source]

	An implementation of JobResource for schedulers that support
the specification of a number of nodes and a number of cpus per node

	
classmethod accepts_default_mpiprocs_per_machine()[source]

	Return True if this JobResource accepts a ‘default_mpiprocs_per_machine’
key, False otherwise.

	
get_tot_num_mpiprocs()[source]

	Return the total number of cpus of this job resource.

	
classmethod get_valid_keys()[source]

	Return a list of valid keys to be passed to the __init__

	
class aiida.scheduler.datastructures.ParEnvJobResource(**kwargs)[source]

	An implementation of JobResource for schedulers that support
the specification of a parallel environment (a string) + the total number of nodes

	
classmethod accepts_default_mpiprocs_per_machine()[source]

	Return True if this JobResource accepts a ‘default_mpiprocs_per_machine’
key, False otherwise.

	
get_tot_num_mpiprocs()[source]

	Return the total number of cpus of this job resource.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Modules

aiida.cmdline documentation

Baseclass

	
class aiida.cmdline.baseclass.VerdiCommand[source]

	This command has no documentation yet.

	
complete(subargs_idx, subargs)[source]

	Method called when the user asks for the bash completion.
Print a list of valid keywords.
Returning without printing will use standard bash completion.

	Parameters:	
	subargs_idx – the index of the subargs where the TAB key was pressed (0 is the first element of subargs)

	subargs – a list of subarguments to this command

	
classmethod get_command_name()[source]

	Return the name of the verdi command associated to this
class. By default, the lower-case version of the class name.

	
get_full_command_name(with_exec_name=True)[source]

	Return the current command name. Also tries to get the subcommand name.

	Parameters:	with_exec_name – if True, return the full string, including the
executable name (‘verdi’). If False, omit it.

	
run(*args)[source]

	Method executed when the command is called from the command line.

	
class aiida.cmdline.baseclass.VerdiCommandWithSubcommands[source]

	Used for commands with subcommands. Just define, in the __init__,
the self.valid_subcommands dictionary, in the format:

self.valid_subcommands = {
 'uploadfamily': (self.uploadfamily, self.complete_auto),
 'listfamilies': (self.listfamilies, self.complete_none),
 }

where the key is the subcommand name to give on the command line, and
the value is a tuple of length 2, the first is the function to call on
execution, the second is the function to call on complete.

This class already defined the complete_auto and complete_none commands,
that respectively call the default bash completion for filenames/folders,
or do not give any completion suggestion.
Other functions can of course be defined.

Todo

Improve the docstrings for commands with subcommands.

	
get_full_command_name(*args, **kwargs)[source]

	Return the current command name. Also tries to get the subcommand name.

Also tries to see if the caller function was one specific submethod.

	Parameters:	with_exec_name – if True, return the full string, including the
executable name (‘verdi’). If False, omit it.

Verdi lib

Command line commands for the main executable ‘verdi’ of aiida

If you want to define a new command line parameter, just define a new
class inheriting from VerdiCommand, and define a run(self,*args) method
accepting a variable-length number of parameters args
(the command-line parameters), which will be invoked when
this executable is called as
verdi NAME

Don’t forget to add the docstring to the class: the first line will be the
short description, the following ones the long description.

	
class aiida.cmdline.verdilib.Completion[source]

	Manage bash completion

Return a list of available commands, separated by spaces.
Calls the correct function of the command if the TAB has been
pressed after the first command.

Returning without printing will use the default bash completion.

	
class aiida.cmdline.verdilib.CompletionCommand[source]

	Return the bash completion function to put in ~/.bashrc

This command prints on screen the function to be inserted in
your .bashrc command. You can copy and paste the output, or simply
add
eval “verdi completioncommand”
to your .bashrc, AFTER having added the aiida/bin directory to the path.

	
run(*args)[source]

	I put the documentation here, and I don’t print it, so we
don’t clutter too much the .bashrc.

	“${THE_WORDS[@]}” (with the @) puts each element as a different
parameter; note that the variable expansion etc. is performed

	I add a ‘x’ at the end and then remove it; in this way, $() will
not remove trailing spaces

	If the completion command did not print anything, we use
the default bash completion for filenames

	If instead the code prints something empty, thanks to the workaround
above $OUTPUT is not empty, so we do go the the ‘else’ case
and then, no substitution is suggested.

	
class aiida.cmdline.verdilib.Help[source]

	Describe a specific command

Pass a further argument to get a description of a given command.

	
class aiida.cmdline.verdilib.Install[source]

	Install/setup aiida for the current user

This command creates the ~/.aiida folder in the home directory
of the user, interactively asks for the database settings and
the repository location, does a setup of the daemon and runs
a migrate command to create/setup the database.

	
complete(subargs_idx, subargs)[source]

	No completion after ‘verdi install’.

	
class aiida.cmdline.verdilib.ListParams[source]

	List available commands

List available commands and their short description.
For the long description, use the ‘help’ command.

	
exception aiida.cmdline.verdilib.ProfileParsingException(*args, **kwargs)[source]

	Exception raised when parsing the profile command line option, if only
-p is provided, and no profile is specified

	
class aiida.cmdline.verdilib.Run[source]

	Execute an AiiDA script

	
class aiida.cmdline.verdilib.Runserver[source]

	Run the AiiDA webserver on localhost

This command runs the webserver on the default port. Further command line
options are passed to the Django manage runserver command

	
aiida.cmdline.verdilib.exec_from_cmdline(argv)[source]

	The main function to be called. Pass as parameter the sys.argv.

	
aiida.cmdline.verdilib.get_command_suggestion(command)[source]

	A function that prints on stderr a list of similar commands

	
aiida.cmdline.verdilib.get_listparams()[source]

	Return a string with the list of parameters, to be printed

The advantage of this function is that the calling routine can
choose to print it on stdout or stderr, depending on the needs.

	
aiida.cmdline.verdilib.parse_profile(argv, merge_equal=False)[source]

	Parse the argv to see if a profile has been specified, return it with the
command position shift (index where the commands start)

	Parameters:	merge_equal – if True, merge things like
(‘verdi’, ‘–profile’, ‘=’, ‘x’, ‘y’) to (‘verdi’, ‘–profile=x’, ‘y’)
but then return the correct index for the original array.

	Raises:	ProfileParsingException – if there is only ‘verdi’ specified, or
if only ‘verdi -p’ (in these cases, one has respectively
exception.minus_p_provided equal to False or True)

	
aiida.cmdline.verdilib.update_environment(*args, **kwds)[source]

	Used as a context manager, changes sys.argv with the
new_argv argument, and restores it upon exit.

Daemon

	
class aiida.cmdline.commands.daemon.Daemon[source]

	Manage the AiiDA daemon

This command allows to interact with the AiiDA daemon.
Valid subcommands are:

	start: start the daemon

	stop: restart the daemon

	restart: restart the aiida daemon, waiting for it to cleanly exit before restarting it.

	status: inquire the status of the Daemon.

	logshow: show the log in a continuous fashion, similar to the ‘tail -f’ command. Press CTRL+C to exit.

	
__init__()[source]

	A dictionary with valid commands and functions to be called:
start, stop, status and restart.

	
configure_user(*args)[source]

	Configure the user that can run the daemon.

	
daemon_logshow(*args)[source]

	Show the log of the daemon, press CTRL+C to quit.

	
daemon_restart(*args)[source]

	Restart the daemon. Before restarting, wait for the daemon to really
shut down.

	
daemon_start(*args)[source]

	Start the daemon

	
daemon_status(*args)[source]

	Print the status of the daemon

	
daemon_stop(*args, **kwargs)[source]

	Stop the daemon.

	Parameters:	wait_for_death – If True, also verifies that the process was already
killed. It attempts at most max_retries times, with sleep_between_retries
seconds between one attempt and the following one (both variables are
for the time being hardcoded in the function).

	Returns:	None if wait_for_death is False. True/False if the process was
actually dead or after all the retries it was still alive.

	
get_daemon_pid()[source]

	Return the daemon pid, as read from the supervisord.pid file.
Return None if no pid is found (or the pid is not valid).

	
kill_daemon()[source]

	This is the actual call that kills the daemon.

There are some print statements inside, but no sys.exit, so it is
safe to be called from other parts of the code.

	
aiida.cmdline.commands.daemon.is_daemon_user()[source]

	Return True if the user is the current daemon user, False otherwise.

Data

	
class aiida.cmdline.commands.data.Data[source]

	Setup and manage data specific types

There is a list of subcommands for managing specific types of data.
For instance, ‘data upf’ manages pseudopotentials in the UPF format.

	
__init__()[source]

	A dictionary with valid commands and functions to be called.

	
class aiida.cmdline.commands.data.Depositable[source]

	Provides shell completion for depositable data nodes.

Note

classes, inheriting Depositable, MUST NOT contain
attributes, starting with _deposit_, which are not plugins for
depositing.

	
deposit(*args)[source]

	Deposit the data node to a given database.

	Parameters:	args – a namespace with parsed command line parameters.

	
get_deposit_plugins()[source]

	Get the list of all implemented deposition methods for data class.

	
class aiida.cmdline.commands.data.Exportable[source]

	Provides shell completion for exportable data nodes.

Note

classes, inheriting Exportable, MUST NOT contain attributes,
starting with _export_, which are not plugins for exporting.

	
export(*args)[source]

	Export the data node to a given format.

	
get_export_plugins()[source]

	Get the list of all implemented exporters for data class.

	
class aiida.cmdline.commands.data.Importable[source]

	Provides shell completion for importable data nodes.

Note

classes, inheriting Importable, MUST NOT contain attributes,
starting with _import_, which are not plugins for importing.

	
get_import_plugins()[source]

	Get the list of all implemented importers for data class.

	
class aiida.cmdline.commands.data.Listable[source]

	Provides shell completion for listable data nodes.

Note

classes, inheriting Listable, MUST define value for property
dataclass (preferably in __init__), which
has to point to correct *Data class.

	
append_list_cmdline_arguments(parser)[source]

	Append additional command line parameters, that are later parsed and
used in the query construction.

	Parameters:	parser – instance of argparse.ArgumentParser

	
get_column_names()[source]

	Return the list with column names.

Note

neither the number nor correspondence of column names and
actual columns in the output from the query are checked.

	
list(*args)[source]

	List all instances of given data class.

	Parameters:	args – a list of command line arguments.

	
query(args)[source]

	Perform the query and return information for the list.

	Parameters:	args – a namespace with parsed command line parameters.

	Returns:	table (list of lists) with information, describing nodes.
Each row describes a single hit.

	
query_group(q_object, args)[source]

	Subselect to filter data nodes by their group.

	Parameters:	
	q_object – a query object

	args – a namespace with parsed command line parameters.

	
query_group_qb(filters, args)[source]

	Subselect to filter data nodes by their group.

	Parameters:	
	q_object – a query object

	args – a namespace with parsed command line parameters.

	
query_past_days(q_object, args)[source]

	Subselect to filter data nodes by their age.

	Parameters:	
	q_object – a query object

	args – a namespace with parsed command line parameters.

	
query_past_days_qb(filters, args)[source]

	Subselect to filter data nodes by their age.

	Parameters:	
	filters – the filters to be enriched.

	args – a namespace with parsed command line parameters.

	
class aiida.cmdline.commands.data.Visualizable[source]

	Provides shell completion for visualizable data nodes.

Note

classes, inheriting Visualizable, MUST NOT contain
attributes, starting with _show_, which are not plugins for
visualization.

In order to specify a default visualization format, one has to override
_default_show_format property (preferably in
__init__), setting it to the name of default visualization tool.

	
get_show_plugins()[source]

	Get the list of all implemented plugins for visualizing the structure.

	
show(*args)[source]

	Show the data node with a visualization program.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Modules

aiida.execmanager documentation

Execution Manager

This file contains the main routines to submit, check and retrieve calculation
results. These are general and contain only the main logic; where appropriate,
the routines make reference to the suitable plugins for all
plugin-specific operations.

	
aiida.daemon.execmanager.retrieve_computed_for_authinfo(authinfo)[source]

	

	
aiida.daemon.execmanager.retrieve_jobs()[source]

	

	
aiida.daemon.execmanager.submit_calc(calc, authinfo, transport=None)[source]

	Submit a calculation

	Note:	if no transport is passed, a new transport is opened and then
closed within this function. If you want to use an already opened
transport, pass it as further parameter. In this case, the transport
has to be already open, and must coincide with the transport of the
the computer defined by the authinfo.

	Parameters:	
	calc – the calculation to submit
(an instance of the aiida.orm.JobCalculation class)

	authinfo – the authinfo for this calculation.

	transport – if passed, must be an already opened transport. No checks
are done on the consistency of the given transport with the transport
of the computer defined in the authinfo.

	
aiida.daemon.execmanager.submit_jobs()[source]

	Submit all jobs in the TOSUBMIT state.

	
aiida.daemon.execmanager.submit_jobs_with_authinfo(authinfo)[source]

	Submit jobs in TOSUBMIT status belonging
to user and machine as defined in the ‘dbauthinfo’ table.

	
aiida.daemon.execmanager.update_jobs()[source]

	calls an update for each set of pairs (machine, aiidauser)

	
aiida.daemon.execmanager.update_running_calcs_status(authinfo)[source]

	Update the states of calculations in WITHSCHEDULER status belonging
to user and machine as defined in the ‘dbauthinfo’ table.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Modules

aiida.backends.djsite documentation

Database schema

	
class aiida.backends.djsite.db.models.DbAttribute(*args, **kwargs)[source]

	This table stores attributes that uniquely define the content of the
node. Therefore, their modification corrupts the data.

	
class aiida.backends.djsite.db.models.DbAttributeBaseClass(*args, **kwargs)[source]

	Abstract base class for tables storing element-attribute-value data.
Element is the dbnode; attribute is the key name.
Value is the specific value to store.

This table had different SQL columns to store different types of data, and
a datatype field to know the actual datatype.

Moreover, this class unpacks dictionaries and lists when possible, so that
it is possible to query inside recursive lists and dicts.

	
classmethod del_value_for_node(dbnode, key)[source]

	Delete an attribute from the database for the given dbnode.

	Note:	no exception is raised if no attribute with the given key is
found in the DB.

	Parameters:	
	dbnode – the dbnode for which you want to delete the key.

	key – the key to delete.

	
classmethod get_all_values_for_node(dbnode)[source]

	Return a dictionary with all attributes for the given dbnode.

	Returns:	a dictionary where each key is a level-0 attribute
stored in the Db table, correctly converted
to the right type.

	
classmethod get_all_values_for_nodepk(dbnodepk)[source]

	Return a dictionary with all attributes for the dbnode with given PK.

	Returns:	a dictionary where each key is a level-0 attribute
stored in the Db table, correctly converted
to the right type.

	
classmethod get_value_for_node(dbnode, key)[source]

	Get an attribute from the database for the given dbnode.

	Returns:	the value stored in the Db table, correctly converted
to the right type.

	Raises:	AttributeError – if no key is found for the given dbnode

	
classmethod has_key(dbnode, key)[source]

	Return True if the given dbnode has an attribute with the given key,
False otherwise.

	
classmethod list_all_node_elements(dbnode)[source]

	Return a django queryset with the attributes of the given node,
only at deepness level zero (i.e., keys not containing the separator).

	
classmethod set_value_for_node(dbnode, key, value, with_transaction=True, stop_if_existing=False)[source]

	This is the raw-level method that accesses the DB. No checks are done
to prevent the user from (re)setting a valid key.
To be used only internally.

	Todo:	there may be some error on concurrent write;
not checked in this unlucky case!

	Parameters:	
	dbnode – the dbnode for which the attribute should be stored;
in an integer is passed, this is used as the PK of the dbnode,
without any further check (for speed reasons)

	key – the key of the attribute to store; must be a level-zero
attribute (i.e., no separators in the key)

	value – the value of the attribute to store

	with_transaction – if True (default), do this within a transaction,
so that nothing gets stored if a subitem cannot be created.
Otherwise, if this parameter is False, no transaction management
is performed.

	stop_if_existing – if True, it will stop with an
UniquenessError exception if the key already exists
for the given node. Otherwise, it will
first delete the old value, if existent. The use with True is
useful if you want to use a given attribute as a “locking” value,
e.g. to avoid to perform an action twice on the same node.
Note that, if you are using transactions, you may get the error
only when the transaction is committed.

	Raises:	ValueError – if the key contains the separator symbol used
internally to unpack dictionaries and lists (defined in cls._sep).

	
class aiida.backends.djsite.db.models.DbAuthInfo(*args, **kwargs)[source]

	Table that pairs aiida users and computers, with all required authentication
information.

	
get_transport()[source]

	Given a computer and an aiida user (as entries of the DB) return a configured
transport to connect to the computer.

	
class aiida.backends.djsite.db.models.DbCalcState(*args, **kwargs)[source]

	Store the state of calculations.

The advantage of a table (with uniqueness constraints) is that this
disallows entering twice in the same state (e.g., retrieving twice).

	
class aiida.backends.djsite.db.models.DbComment(id, uuid, dbnode_id, ctime, mtime, user_id, content)[source]

	

	
class aiida.backends.djsite.db.models.DbComputer(*args, **kwargs)[source]

	Table of computers or clusters.

Attributes:
* name: A name to be used to refer to this computer. Must be unique.
* hostname: Fully-qualified hostname of the host
* transport_type: a string with a valid transport type

Note: other things that may be set in the metadata:

	mpirun command

	num cores per node

	max num cores

	workdir: Full path of the aiida folder on the host. It can contain the string {username} that will be substituted by the username of the user on that machine. The actual workdir is then obtained as workdir.format(username=THE_ACTUAL_USERNAME) Example: workdir = “/scratch/{username}/aiida/”

	allocate full node = True or False

	... (further limits per user etc.)

	
classmethod get_dbcomputer(computer)[source]

	Return a DbComputer from its name (or from another Computer or DbComputer instance)

	
class aiida.backends.djsite.db.models.DbExtra(*args, **kwargs)[source]

	This table stores extra data, still in the key-value format,
that the user can attach to a node.
Therefore, their modification simply changes the user-defined data,
but does not corrupt the node (it will still be loadable without errors).
Could be useful to add “duplicate” information for easier querying, or
for tagging nodes.

	
class aiida.backends.djsite.db.models.DbGroup(*args, **kwargs)[source]

	A group of nodes.

Any group of nodes can be created, but some groups may have specific meaning
if they satisfy specific rules (for instance, groups of UpdData objects are
pseudopotential families - if no two pseudos are included for the same
atomic element).

	
class aiida.backends.djsite.db.models.DbLink(*args, **kwargs)[source]

	Direct connection between two dbnodes. The label is identifying the
link type.

	
class aiida.backends.djsite.db.models.DbLock(key, creation, timeout, owner)[source]

	

	
class aiida.backends.djsite.db.models.DbLog(id, time, loggername, levelname, objname, objpk, message, metadata)[source]

	
	
classmethod add_from_logrecord(record)[source]

	Add a new entry from a LogRecord (from the standard python
logging facility). No exceptions are managed here.

	
class aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass(*args, **kwargs)[source]

	Abstract base class for tables storing attribute + value data, of
different data types (without any association to a Node).

	
classmethod create_value(key, value, subspecifier_value=None, other_attribs={})[source]

	Create a new list of attributes, without storing them, associated
with the current key/value pair (and to the given subspecifier,
e.g. the DbNode for DbAttributes and DbExtras).

	Note:	No hits are done on the DB, in particular no check is done
on the existence of the given nodes.

	Parameters:	
	key – a string with the key to create (can contain the
separator cls._sep if this is a sub-attribute: indeed, this
function calls itself recursively)

	value – the value to store (a basic data type or a list or a dict)

	subspecifier_value – must be None if this class has no
subspecifier set (e.g., the DbSetting class).
Must be the value of the subspecifier (e.g., the dbnode) for classes
that define it (e.g. DbAttribute and DbExtra)

	other_attribs – a dictionary of other parameters, to store
only on the level-zero attribute (e.g. for description in DbSetting).

	Returns:	always a list of class instances; it is the user
responsibility to store such entries (typically with a Django
bulk_create() call).

	
classmethod del_value(key, only_children=False, subspecifier_value=None)[source]

	Delete a value associated with the given key (if existing).

	Note:	No exceptions are raised if no entry is found.

	Parameters:	
	key – the key to delete. Can contain the separator cls._sep if
you want to delete a subkey.

	only_children – if True, delete only children and not the
entry itself.

	subspecifier_value – must be None if this class has no
subspecifier set (e.g., the DbSetting class).
Must be the value of the subspecifier (e.g., the dbnode) for classes
that define it (e.g. DbAttribute and DbExtra)

	
classmethod get_query_dict(value)[source]

	Return a dictionary that can be used in a django filter to query
for a specific value. This takes care of checking the type of the
input parameter ‘value’ and to convert it to the right query.

	Parameters:	value – The value that should be queried. Note: can only be
base datatype, not a list or dict. For those, query directly for
one of the sub-elements.

	Todo:	see if we want to give the possibility to query for the existence
of a (possibly empty) dictionary or list, of for their length.

	Note:	this will of course not find a data if this was stored in the
DB as a serialized JSON.

	Returns:	a dictionary to be used in the django .filter() method.
For instance, if ‘value’ is a string, it will return the dictionary
{'datatype': 'txt', 'tval': value}.

	Raise:	ValueError if value is not of a base datatype (string, integer,
float, bool, None, or date)

	
getvalue()[source]

	This can be called on a given row and will get the corresponding value,
casting it correctly.

	
long_field_length()

	Return the length of “long” fields.
This is used, for instance, for the ‘key’ field of attributes.
This returns 1024 typically, but it returns 255 if the backend is mysql.

	Note:	Call this function only AFTER having called load_dbenv!

	
classmethod set_value(key, value, with_transaction=True, subspecifier_value=None, other_attribs={}, stop_if_existing=False)[source]

	Set a new value in the DB, possibly associated to the given subspecifier.

	Note:	This method also stored directly in the DB.

	Parameters:	
	key – a string with the key to create (must be a level-0
attribute, that is it cannot contain the separator cls._sep).

	value – the value to store (a basic data type or a list or a dict)

	subspecifier_value – must be None if this class has no
subspecifier set (e.g., the DbSetting class).
Must be the value of the subspecifier (e.g., the dbnode) for classes
that define it (e.g. DbAttribute and DbExtra)

	with_transaction – True if you want this function to be managed
with transactions. Set to False if you already have a manual
management of transactions in the block where you are calling this
function (useful for speed improvements to avoid recursive
transactions)

	other_attribs – a dictionary of other parameters, to store
only on the level-zero attribute (e.g. for description in DbSetting).

	stop_if_existing – if True, it will stop with an
UniquenessError exception if the new entry would violate an
uniqueness constraint in the DB (same key, or same key+node,
depending on the specific subclass). Otherwise, it will
first delete the old value, if existent. The use with True is
useful if you want to use a given attribute as a “locking” value,
e.g. to avoid to perform an action twice on the same node.
Note that, if you are using transactions, you may get the error
only when the transaction is committed.

	
subspecifier_pk

	Return the subspecifier PK in the database (or None, if no
subspecifier should be used)

	
subspecifiers_dict

	Return a dict to narrow down the query to only those matching also the
subspecifier.

	
classmethod validate_key(key)[source]

	Validate the key string to check if it is valid (e.g., if it does not
contain the separator symbol.).

	Returns:	None if the key is valid

	Raises:	ValidationError – if the key is not valid

	
class aiida.backends.djsite.db.models.DbNode(*args, **kwargs)[source]

	Generic node: data or calculation or code.

Nodes can be linked (DbLink table)
Naming convention for Node relationships: A –> C –> B.

	A is ‘input’ of C.

	C is ‘output’ of A.

	A is ‘parent’ of B,C

	C,B are ‘children’ of A.

	Note:	parents and children are stored in the DbPath table, the transitive
closure table, automatically updated via DB triggers whenever a link is
added to or removed from the DbLink table.

Internal attributes, that define the node itself,
are stored in the DbAttribute table; further user-defined attributes,
called ‘extra’, are stored in the DbExtra table (same schema and methods
of the DbAttribute table, but the code does not rely on the content of the
table, therefore the user can use it at his will to tag or annotate nodes.

	Note:	Attributes in the DbAttribute table have to be thought as belonging
to the DbNode, (this is the reason for which there is no ‘user’ field
in the DbAttribute field). Moreover, Attributes define uniquely the
Node so should be immutable (except for the few ones defined in the
_updatable_attributes attribute of the Node() class, that are updatable:
these are Attributes that are set by AiiDA, so the user should not
modify them, but can be changed (e.g., the append_text of a code, that
can be redefined if the code has to be recompiled).

	
attributes

	Return all attributes of the given node as a single dictionary.

	
extras

	Return all extras of the given node as a single dictionary.

	
get_aiida_class()[source]

	Return the corresponding aiida instance of class aiida.orm.Node or a
appropriate subclass.

	
get_simple_name(invalid_result=None)[source]

	Return a string with the last part of the type name.

If the type is empty, use ‘Node’.
If the type is invalid, return the content of the input variable
invalid_result.

	Parameters:	invalid_result – The value to be returned if the node type is
not recognized.

	
class aiida.backends.djsite.db.models.DbPath(*args, **kwargs)[source]

	Transitive closure table for all dbnode paths.

	
expand()[source]

	Method to expand a DbPath (recursive function), i.e., to get a list
of all dbnodes that are traversed in the given path.

	Returns:	list of DbNode objects representing the expanded DbPath

	
class aiida.backends.djsite.db.models.DbSetting(*args, **kwargs)[source]

	This will store generic settings that should be database-wide.

	
class aiida.backends.djsite.db.models.DbUser(*args, **kwargs)[source]

	This class replaces the default User class of Django

	
class aiida.backends.djsite.db.models.DbWorkflow(id, uuid, ctime, mtime, user_id, label, description, nodeversion, lastsyncedversion, state, report, module, module_class, script_path, script_md5)[source]

	
	
get_aiida_class()[source]

	Return the corresponding aiida instance of class aiida.worflow

	
is_subworkflow()[source]

	Return True if this is a subworkflow, False if it is a root workflow,
launched by the user.

	
class aiida.backends.djsite.db.models.DbWorkflowData(id, parent_id, name, time, data_type, value_type, json_value, aiida_obj_id)[source]

	

	
class aiida.backends.djsite.db.models.DbWorkflowStep(id, parent_id, name, user_id, time, nextcall, state)[source]

	

	
aiida.backends.djsite.db.models.deserialize_attributes(data, sep, original_class=None, original_pk=None)[source]

	Deserialize the attributes from the format internally stored in the DB
to the actual format (dictionaries, lists, integers, ...

	Parameters:	
	data – must be a dictionary of dictionaries. In the top-level dictionary,
the key must be the key of the attribute. The value must be a dictionary
with the following keys: datatype, tval, fval, ival, bval, dval. Other
keys are ignored.
NOTE that a type check is not performed! tval is expected to be a string,
dval a date, etc.

	sep – a string, the separator between subfields (to separate the
name of a dictionary from the keys it contains, for instance)

	original_class – if these elements come from a specific subclass
of DbMultipleValueAttributeBaseClass, pass here the class (note: the class,
not the instance!). This is used only in case the wrong number of elements
is found in the raw data, to print a more meaningful message (if the class
has a dbnode associated to it)

	original_pk – if the elements come from a specific subclass
of DbMultipleValueAttributeBaseClass that has a dbnode associated to it,
pass here the PK integer. This is used only in case the wrong number
of elements is found in the raw data, to print a more meaningful message

	Returns:	a dictionary, where for each entry the corresponding value is
returned, deserialized back to lists, dictionaries, etc.
Example: if data = {'a': {'datatype': "list", "ival": 2, ...},
'a.0': {'datatype': "int", "ival": 2, ...},
'a.1': {'datatype': "txt", "tval": "yy"}],
it will return {"a": [2, "yy"]}

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

 	Sphinx cheatsheet

ORM documentation: generic aiida.orm

This section describes the aiida object-relational mapping.

Some generic methods of the module aiida.orm.utils

	
aiida.orm.utils.CalculationFactory(module, from_abstract=False)[source]

	Return a suitable JobCalculation subclass.

	Parameters:	
	module – a valid string recognized as a Calculation plugin

	from_abstract – A boolean. If False (default), actually look only
to subclasses to JobCalculation, not to the base Calculation class.
If True, check for valid strings for plugins of the Calculation base class.

	
aiida.orm.utils.DataFactory(module)[source]

	Return a suitable Data subclass.

	
aiida.orm.utils.WorkflowFactory(module)[source]

	Return a suitable Workflow subclass.

	
aiida.orm.utils.load_node(node_id=None, pk=None, uuid=None, parent_class=None)[source]

	Return an AiiDA node given PK or UUID.

	Parameters:	
	node_id – PK (integer) or UUID (string) or a node

	pk – PK of a node

	uuid – UUID of a node

	parent_class – if specified, checks whether the node loaded is a
subclass of parent_class

	Returns:	an AiiDA node

	Raises:	
	ValueError – if none or more than one of parameters is supplied
or type of node_id is neither string nor integer.

	NotExistent – if the parent_class is specified
and no matching Node is found.

	
aiida.orm.utils.load_workflow(wf_id=None, pk=None, uuid=None)[source]

	Return an AiiDA workflow given PK or UUID.

	Parameters:	
	wf_id – PK (integer) or UUID (string) or a workflow

	pk – PK of a workflow

	uuid – UUID of a workflow

	Returns:	an AiiDA workflow

	Raises:	ValueError if none or more than one of parameters is supplied
or type of wf_id is neither string nor integer

Computer

	
class aiida.orm.implementation.general.computer.AbstractComputer(**kwargs)[source]

	Base class to map a node in the DB + its permanent repository counterpart.

Stores attributes starting with an underscore.

Caches files and attributes before the first save, and saves everything only on store().
After the call to store(), in general attributes cannot be changed, except for those
listed in the self._updatable_attributes tuple (empty for this class, can be
extended in a subclass).

Only after storing (or upon loading from uuid) metadata can be modified
and in this case they are directly set on the db.

In the plugin, also set the _plugin_type_string, to be set in the DB in the ‘type’ field.

	
copy()[source]

	Return a copy of the current object to work with, not stored yet.

	
full_text_info

	Return a (multiline) string with a human-readable detailed information
on this computer.

	
classmethod get(computer)[source]

	Return a computer from its name (or from another Computer or DbComputer instance)

	
get_dbauthinfo(user)[source]

	Return the aiida.backends.djsite.db.models.DbAuthInfo instance for the
given user on this computer, if the computer
is not configured for the given user.

	Parameters:	user – a DbUser instance.

	Returns:	a aiida.backends.djsite.db.models.DbAuthInfo instance

	Raises:	NotExistent – if the computer is not configured for the given
user.

	
get_default_mpiprocs_per_machine()[source]

	Return the default number of CPUs per machine (node) for this computer,
or None if it was not set.

	
get_mpirun_command()[source]

	Return the mpirun command. Must be a list of strings, that will be
then joined with spaces when submitting.

I also provide a sensible default that may be ok in many cases.

	
id

	Return the principal key in the DB.

	
is_user_configured(user)[source]

	Return True if the computer is configured for the given user,
False otherwise.

	Parameters:	user – a DbUser instance.

	Returns:	a boolean.

	
is_user_enabled(user)[source]

	Return True if the computer is enabled for the given user (looking only
at the per-user setting: the computer could still be globally disabled).

	Note:	Return False also if the user is not configured for the computer.

	Parameters:	user – a DbUser instance.

	Returns:	a boolean.

	
classmethod list_names()[source]

	Return a list with all the names of the computers in the DB.

	
pk

	Return the principal key in the DB.

	
set_default_mpiprocs_per_machine(def_cpus_per_machine)[source]

	Set the default number of CPUs per machine (node) for this computer.
Accepts None if you do not want to set this value.

	
set_mpirun_command(val)[source]

	Set the mpirun command. It must be a list of strings (you can use
string.split() if you have a single, space-separated string).

	
store()[source]

	Store the computer in the DB.

Differently from Nodes, a computer can be re-stored if its properties
are to be changed (e.g. a new mpirun command, etc.)

	
uuid

	Return the UUID in the DB.

	
validate()[source]

	Check if the attributes and files retrieved from the DB are valid.
Raise a ValidationError if something is wrong.

Must be able to work even before storing: therefore, use the get_attr and similar methods
that automatically read either from the DB or from the internal attribute cache.

For the base class, this is always valid. Subclasses will reimplement this.
In the subclass, always call the super().validate() method first!

Node

	
class aiida.orm.implementation.general.node.AbstractNode(**kwargs)[source]

	Base class to map a node in the DB + its permanent repository counterpart.

Stores attributes starting with an underscore.

Caches files and attributes before the first save, and saves everything
only on store(). After the call to store(), in general attributes cannot
be changed, except for those listed in the self._updatable_attributes
tuple (empty for this class, can be extended in a subclass).

Only after storing (or upon loading from uuid) extras can be modified
and in this case they are directly set on the db.

In the plugin, also set the _plugin_type_string, to be set in the DB in
the ‘type’ field.

	
__init__(**kwargs)[source]

	Initialize the object Node.

	Parameters:	uuid (optional) – if present, the Node with given uuid is
loaded from the database.
(It is not possible to assign a uuid to a new Node.)

	
add_comment(content, user=None)[source]

	Add a new comment.

	Parameters:	content – string with comment

	
add_link_from(src, label=None, link_type=<LinkType.UNSPECIFIED: 'unspecified'>)[source]

	Add a link to the current node from the ‘src’ node.
Both nodes must be a Node instance (or a subclass of Node)
:note: In subclasses, change only this. Moreover, remember to call
the super() method in order to properly use the caching logic!

	Parameters:	
	src – the source object

	label (str) – the name of the label to set the link from src.
Default = None.

	link_type – The type of link, must be one of the enum values
from LinkType

	
add_path(src_abs, dst_path)[source]

	Copy a file or folder from a local file inside the repository directory.
If there is a subpath, folders will be created.

Copy to a cache directory if the entry has not been saved yet.

	Parameters:	
	src_abs (str) – the absolute path of the file to copy.

	dst_filename (str) – the (relative) path on which to copy.

	Todo:	in the future, add an add_attachment() that has the same
meaning of a extras file. Decide also how to store. If in two
separate subfolders, remember to reset the limit.

	
attrs()[source]

	Returns the keys of the attributes.

	Returns:	a list of strings

	
copy()[source]

	Return a copy of the current object to work with, not stored yet.

This is a completely new entry in the DB, with its own UUID.
Works both on stored instances and with not-stored ones.

Copies files and attributes, but not the extras.
Does not store the Node to allow modification of attributes.

	Returns:	an object copy

	
ctime

	Return the creation time of the node.

	
dbnode

	

	Returns:	the corresponding DbNode object.

	
del_extra(key)[source]

	Delete a extra, acting directly on the DB!
The action is immediately performed on the DB.
Since extras can be added only after storing the node, this
function is meaningful to be called only after the .store() method.

	Parameters:	key (str) – key name

	Raise:	AttributeError: if key starts with underscore

	Raise:	ModificationNotAllowed: if the node is not stored yet

	
description

	Get the description of the node.

	Returns:	a string

	
extras()[source]

	Get the keys of the extras.

	Returns:	a list of strings

	
folder

	Get the folder associated with the node,
whether it is in the temporary or the permanent repository.

	Returns:	the RepositoryFolder object.

	
get_abs_path(path=None, section=None)[source]

	Get the absolute path to the folder associated with the
Node in the AiiDA repository.

	Parameters:	
	path (str) – the name of the subfolder inside the section. If None
returns the abspath of the folder. Default = None.

	section – the name of the subfolder (‘path’ by default).

	Returns:	a string with the absolute path

For the moment works only for one kind of files, ‘path’ (internal files)

	
get_attr(key, default=())[source]

	Get the attribute.

	Parameters:	
	key – name of the attribute

	default (optional) – if no attribute key is found, returns default

	Returns:	attribute value

	Raises:	AttributeError – If no attribute is found and there is no default

	
get_attrs()[source]

	Return a dictionary with all attributes of this node.

	
get_comments(pk=None)[source]

	Return a sorted list of comment values, one for each comment associated
to the node.

	Parameters:	pk – integer or list of integers. If it is specified, returns the
comment values with desired pks. (pk refers to DbComment.pk)

	Returns:	the list of comments, sorted by pk; each element of the
list is a dictionary, containing (pk, email, ctime, mtime, content)

	
get_computer()[source]

	Get the computer associated to the node.

	Returns:	the Computer object or None.

	
get_extra(key, *args)[source]

	Get the value of a extras, reading directly from the DB!
Since extras can be added only after storing the node, this
function is meaningful to be called only after the .store() method.

	Parameters:	
	key (str) – key name

	value (optional) – if no attribute key is found, returns value

	Returns:	the key value

	Raises:	ValueError – If more than two arguments are passed to get_extra

	
get_extras()[source]

	Get the value of extras, reading directly from the DB!
Since extras can be added only after storing the node, this
function is meaningful to be called only after the .store() method.

	Returns:	the dictionary of extras ({} if no extras)

	
get_folder_list(subfolder='.')[source]

	Get the the list of files/directory in the repository of the object.

	Parameters:	subfolder (str,optional) – get the list of a subfolder

	Returns:	a list of strings.

	
get_inputs(node_type=None, also_labels=False, only_in_db=False, link_type=None)[source]

	Return a list of nodes that enter (directly) in this node

	Parameters:	
	node_type – If specified, should be a class, and it filters only
elements of that specific type (or a subclass of ‘type’)

	also_labels – If False (default) only return a list of input nodes.
If True, return a list of tuples, where each tuple has the
following format: (‘label’, Node), with ‘label’ the link label,
and Node a Node instance or subclass

	only_in_db – Return only the inputs that are in the database,
ignoring those that are in the local cache. Otherwise, return
all links.

	link_type – Only get inputs of this link type, if None then
returns all inputs of all link types.

	
get_inputs_dict(only_in_db=False, link_type=None)[source]

	Return a dictionary where the key is the label of the input link, and
the value is the input node.

	Parameters:	
	only_in_db – If true only get stored links, not cached

	link_type – Only get inputs of this link type, if None then
returns all inputs of all link types.

	Returns:	a dictionary {label:object}

	
get_outputs(type=None, also_labels=False, link_type=None)[source]

	Return a list of nodes that exit (directly) from this node

	Parameters:	
	type – if specified, should be a class, and it filters only
elements of that specific type (or a subclass of ‘type’)

	also_labels – if False (default) only return a list of input nodes.
If True, return a list of tuples, where each tuple has the
following format: (‘label’, Node), with ‘label’ the link label,
and Node a Node instance or subclass

	
get_outputs_dict(link_type=None)[source]

	Return a dictionary where the key is the label of the output link, and
the value is the input node.
As some Nodes (Datas in particular) can have more than one output with
the same label, all keys have the name of the link with appended the pk
of the node in output.
The key without pk appended corresponds to the oldest node.

	Returns:	a dictionary {linkname:object}

	
classmethod get_subclass_from_pk(pk)[source]

	Get a node object from the pk, with the proper subclass of Node.
(integer primary key used in this database),
but loading the proper subclass where appropriate.

	Parameters:	pk – a string with the pk of the object to be loaded.

	Returns:	the object of the proper subclass.

	Raise:	NotExistent: if there is no entry of the desired
object kind with the given pk.

	
classmethod get_subclass_from_uuid(uuid)[source]

	Get a node object from the uuid, with the proper subclass of Node.
(if Node(uuid=...) is called, only the Node class is loaded).

	Parameters:	uuid – a string with the uuid of the object to be loaded.

	Returns:	the object of the proper subclass.

	Raise:	NotExistent: if there is no entry of the desired
object kind with the given uuid.

	
get_user()[source]

	Get the user.

	Returns:	a Django DbUser model object

	
has_children

	Property to understand if children are attached to the node
:return: a boolean

	
has_parents

	Property to understand if parents are attached to the node
:return: a boolean

	
id

	

	Returns:	the principal key (the ID) as an integer, or None if the
node was not stored yet

	
inp

	Traverse the graph of the database.
Returns a databaseobject, linked to the current node, by means of the linkname.
Example:
B = A.inp.parameters: returns the object (B), with link from B to A, with linkname parameters
C= A.inp: returns an InputManager, an object that is meant to be accessed as the previous example

	
iterattrs()[source]

	Iterator over the attributes, returning tuples (key, value)

	Todo:	optimize! At the moment, the call is very slow because it is
also calling attr.getvalue() for each attribute, that has to
perform complicated queries to rebuild the object.

	Parameters:	also_updatable (bool) – if False, does not iterate over
attributes that are updatable

	
iterextras()[source]

	Iterator over the extras, returning tuples (key, value)

	Todo:	verify that I am not creating a list internally

	
label

	Get the label of the node.

	Returns:	a string.

	
logger

	Get the logger of the Node object.

	Returns:	Logger object

	
mtime

	Return the modification time of the node.

	
out

	Traverse the graph of the database.
Returns a databaseobject, linked to the current node, by means of the linkname.
Example:
B = A.out.results: Returns the object B, with link from A to B, with linkname parameters

	
pk

	

	Returns:	the principal key (the ID) as an integer, or None if the
node was not stored yet

	
classmethod query(*args, **kwargs)[source]

	Map to the aiidaobjects manager of the DbNode, that returns
Node objects (or their subclasses) instead of DbNode entities.

TODO: VERY IMPORTANT: the recognition of a subclass from the type
does not work if the modules defining the subclasses are not
put in subfolders.
In the future, fix it either to make a cache and to store the
full dependency tree, or save also the path.

	
querybuild(*args, **kwargs)[source]

	Instantiates and
:returns: a QueryBuilder instance.

The QueryBuilder’s path has one vertice so far, namely this class.
Additional parameters (e.g. filters or a label),
can be passes as keyword arguments.

	Parameters:	
	label – Label to give

	filters – filters to apply

	project – projections

This class is a comboclass (see combomethod())
therefore the method can be called as class or instance method.
If called as an instance method, adds a filter on the id.

	
remove_path(path)[source]

	Remove a file or directory from the repository directory.
Can be called only before storing.

	Parameters:	path (str) – relative path to file/directory.

	
set(**kwargs)[source]

	For each k=v pair passed as kwargs, call the corresponding
set_k(v) method (e.g., calling self.set(property=5, mass=2) will
call self.set_property(5) and self.set_mass(2).
Useful especially in the __init__.

	Note:	it uses the _set_incompatibilities list of the class to check
that we are not setting methods that cannot be set at the same time.
_set_incompatibilities must be a list of tuples, and each tuple
specifies the elements that cannot be set at the same time.
For instance, if _set_incompatibilities = [(‘property’, ‘mass’)],
then the call self.set(property=5, mass=2) will raise a ValueError.
If a tuple has more than two values, it raises ValueError if all
keys are provided at the same time, but it does not give any error
if at least one of the keys is not present.

	Note:	If one element of _set_incompatibilities is a tuple with only
one element, this element will not be settable using this function
(and in particular,

	Raises:	ValueError – if the corresponding set_k method does not exist
in self, or if the methods cannot be set at the same time.

	
set_computer(computer)[source]

	Set the computer to be used by the node.

Note that the computer makes sense only for some nodes: Calculation,
RemoteData, ...

	Parameters:	computer – the computer object

	
set_extra(key, value, exclusive=False)[source]

	Immediately sets an extra of a calculation, in the DB!
No .store() to be called. Can be used only after saving.

	Parameters:	
	key (string) – key name

	value – key value

	exclusive – (default=False).
If exclusive is True, it raises a UniquenessError if an Extra with
the same name already exists in the DB (useful e.g. to “lock” a
node and avoid to run multiple times the same computation on it).

	Raises:	UniquenessError – if extra already exists and exclusive is True.

	
set_extras(the_dict)[source]

	Immediately sets several extras of a calculation, in the DB!
No .store() to be called.
Can be used only after saving.

	Parameters:	the_dict – a dictionary of key:value to be set as extras

	
store(with_transaction=True)[source]

	Store a new node in the DB, also saving its repository directory
and attributes.

After being called attributes cannot be
changed anymore! Instead, extras can be changed only AFTER calling
this store() function.

	Note:	After successful storage, those links that are in the cache, and
for which also the parent node is already stored, will be
automatically stored. The others will remain unstored.

	Parameters:	with_transaction – if False, no transaction is used. This
is meant to be used ONLY if the outer calling function has already
a transaction open!

	
store_all(with_transaction=True)[source]

	Store the node, together with all input links, if cached, and also the
linked nodes, if they were not stored yet.

	Parameters:	with_transaction – if False, no transaction is used. This
is meant to be used ONLY if the outer calling function has already
a transaction open!

	
uuid

	

	Returns:	a string with the uuid

	
class aiida.orm.implementation.general.node.AttributeManager(node)[source]

	An object used internally to return the attributes as a dictionary.

	Note:	Important! It cannot be used to change variables, just to read
them. To change values (of unstored nodes), use the proper Node methods.

	
__init__(node)[source]

	

	Parameters:	node – the node object.

	
class aiida.orm.implementation.general.node.NodeInputManager(node)[source]

	To document

	
__init__(node)[source]

	

	Parameters:	node – the node object.

	
class aiida.orm.implementation.general.node.NodeOutputManager(node)[source]

	To document

	
__init__(node)[source]

	

	Parameters:	node – the node object.

Workflow

	
class aiida.orm.implementation.general.workflow.AbstractWorkflow(**kwargs)[source]

	Base class to represent a workflow. This is the superclass of any workflow implementations,
and provides all the methods necessary to interact with the database.

The typical use case are workflow stored in the aiida.workflow packages, that are initiated
either by the user in the shell or by some scripts, and that are monitored by the aiida daemon.

Workflow can have steps, and each step must contain some calculations to be executed. At the
end of the step’s calculations the workflow is reloaded in memory and the next methods is called.

	
add_attribute(_name, _value)[source]

	Add one attributes to the Workflow. If another attribute is present with the same name it will
be overwritten.
:param name: a string with the attribute name to store
:param value: a storable object to store

	
add_attributes(_params)[source]

	Add a set of attributes to the Workflow. If another attribute is present with the same name it will
be overwritten.
:param name: a string with the attribute name to store
:param value: a storable object to store

	
add_path(src_abs, dst_path)[source]

	Copy a file or folder from a local file inside the repository directory.
If there is a subpath, folders will be created.

Copy to a cache directory if the entry has not been saved yet.
src_abs: the absolute path of the file to copy.
dst_filename: the (relative) path on which to copy.

	
add_result(_name, _value)[source]

	Add one result to the Workflow. If another result is present with the same name it will
be overwritten.
:param name: a string with the result name to store
:param value: a storable object to store

	
add_results(_params)[source]

	Add a set of results to the Workflow. If another result is present with the same name it will
be overwritten.
:param name: a string with the result name to store
:param value: a storable object to store

	
append_to_report(text)[source]

	Adds text to the Workflow report.

	Note:	Once, in case the workflow is a subworkflow of any other Workflow this method
calls the parent append_to_report method; now instead this is not the
case anymore

	
attach_calculation(calc)[source]

	Adds a calculation to the caller step in the database. This is a lazy call, no
calculations will be launched until the next method gets called. For a step to be
completed all the calculations linked have to be in RETRIEVED state, after which the next
method gets called from the workflow manager.
:param calc: a JobCalculation object
:raise: AiidaException: in case the input is not of JobCalculation type

	
attach_workflow(sub_wf)[source]

	Adds a workflow to the caller step in the database. This is a lazy call, no
workflow will be started until the next method gets called. For a step to be
completed all the workflows linked have to be in FINISHED state, after which the next
method gets called from the workflow manager.
:param next_method: a Workflow object

	
clear_report()[source]

	Wipe the Workflow report. In case the workflow is a subworflow of any other Workflow this method
calls the parent clear_report method.

	
current_folder

	Get the current repository folder,
whether the temporary or the permanent.

	Returns:	the RepositoryFolder object.

	
dbworkflowinstance

	Get the DbWorkflow object stored in the super class.

	Returns:	DbWorkflow object from the database

	
description

	Get the description of the workflow.

	Returns:	a string

	
exit()[source]

	This is the method to call in next to finish the Workflow. When exit is the next method,
and no errors are found, the Workflow is set to FINISHED and removed from the execution manager
duties.

	
get_abs_path(path, section=None)[source]

	TODO: For the moment works only for one kind of files, ‘path’ (internal files)

	
get_all_calcs(calc_class=<class 'aiida.orm.implementation.django.calculation.job.JobCalculation'>, calc_state=None, depth=15)[source]

	Get all calculations connected with this workflow and all its subworflows up to a given depth.
The list of calculations can be restricted to a given calculation type and state
:param calc_class: the calculation class to which the calculations should belong (default: JobCalculation)

	Parameters:	
	calc_state – a specific state to filter the calculations to retrieve

	depth – the maximum depth level the recursion on sub-workflows will
try to reach (0 means we stay at the step level and don’t go
into sub-workflows, 1 means we go down to one step level of
the sub-workflows, etc.)

	Returns:	a list of JobCalculation objects

	
get_attribute(_name)[source]

	Get one Workflow attribute
:param name: a string with the attribute name to retrieve
:return: a dictionary of storable objects

	
get_attributes()[source]

	Get the Workflow attributes
:return: a dictionary of storable objects

	
get_folder_list(subfolder='.')[source]

	Get the the list of files/directory in the repository of the object.

	Parameters:	subfolder (str,optional) – get the list of a subfolder

	Returns:	a list of strings.

	
get_parameter(_name)[source]

	Get one Workflow paramenter
:param name: a string with the parameters name to retrieve
:return: a dictionary of storable objects

	
get_parameters()[source]

	Get the Workflow paramenters
:return: a dictionary of storable objects

	
get_report()[source]

	Return the Workflow report.

	Note:	once, in case the workflow is a subworkflow of any other Workflow this method
calls the parent get_report method.
This is not the case anymore.

	Returns:	a list of strings

	
get_result(_name)[source]

	Get one Workflow result
:param name: a string with the result name to retrieve
:return: a dictionary of storable objects

	
get_results()[source]

	Get the Workflow results
:return: a dictionary of storable objects

	
get_state()[source]

	Get the Workflow’s state
:return: a state from wf_states in aiida.common.datastructures

	
get_step(step_method)[source]

	Retrieves by name a step from the Workflow.
:param step_method: a string with the name of the step to retrieve or a method
:raise: ObjectDoesNotExist: if there is no step with the specific name.
:return: a DbWorkflowStep object.

	
get_step_calculations(step_method, calc_state=None)[source]

	Retrieves all the calculations connected to a specific step in the database. If the step
is not existent it returns None, useful for simpler grammatic in the workflow definition.
:param next_method: a Workflow step (decorated) method
:param calc_state: a specific state to filter the calculations to retrieve
:return: a list of JobCalculations objects

	
get_step_workflows(step_method)[source]

	Retrieves all the workflows connected to a specific step in the database. If the step
is not existent it returns None, useful for simpler grammatic in the workflow definition.
:param next_method: a Workflow step (decorated) method

	
get_steps(state=None)[source]

	Retrieves all the steps from a specific workflow Workflow with the possibility to limit the list
to a specific step’s state.
:param state: a state from wf_states in aiida.common.datastructures
:return: a list of DbWorkflowStep objects.

	
classmethod get_subclass_from_dbnode(wf_db)[source]

	Loads the workflow object and reaoads the python script in memory with the importlib library, the
main class is searched and then loaded.
:param wf_db: a specific DbWorkflowNode object representing the Workflow
:return: a Workflow subclass from the specific source code

	
classmethod get_subclass_from_pk(pk)[source]

	Calls the get_subclass_from_dbnode selecting the DbWorkflowNode from
the input pk.
:param pk: a primary key index for the DbWorkflowNode
:return: a Workflow subclass from the specific source code

	
classmethod get_subclass_from_uuid(uuid)[source]

	Calls the get_subclass_from_dbnode selecting the DbWorkflowNode from
the input uuid.
:param uuid: a uuid for the DbWorkflowNode
:return: a Workflow subclass from the specific source code

	
get_temp_folder()[source]

	Get the folder of the Node in the temporary repository.

	Returns:	a SandboxFolder object mapping the node in the repository.

	
has_failed()[source]

	Returns True is the Workflow’s state is ERROR

	
has_finished_ok()[source]

	Returns True is the Workflow’s state is FINISHED

	
has_step(step_method)[source]

	Return if the Workflow has a step with a specific name.
:param step_method: a string with the name of the step to retrieve or a method

	
info()[source]

	Returns an array with all the informations about the modules, file, class to locate
the workflow source code

	
is_new()[source]

	Returns True is the Workflow’s state is CREATED

	
is_running()[source]

	Returns True is the Workflow’s state is RUNNING

	
is_subworkflow()[source]

	Return True is this is a subworkflow (i.e., if it has a parent),
False otherwise.

	
kill(verbose=False)[source]

	Stop the Workflow execution and change its state to FINISHED.

This method calls the kill method for each Calculation and each
subworkflow linked to each RUNNING step.

	Parameters:	verbose – True to print the pk of each subworkflow killed

	Raises:	InvalidOperation – if some calculations cannot be killed (the
workflow will be also put to SLEEP so that it
can be killed later on)

	
kill_step_calculations(step)[source]

	Calls the kill method for each Calculation linked to the step method passed as argument.
:param step: a Workflow step (decorated) method

	
label

	Get the label of the workflow.

	Returns:	a string

	
logger

	Get the logger of the Workflow object, so that it also logs to the
DB.

	Returns:	LoggerAdapter object, that works like a logger, but also has
the ‘extra’ embedded

	
next(next_method)[source]

	Adds the a new step to be called after the completion of the caller method’s calculations and subworkflows.

This method must be called inside a Workflow step, otherwise an error is thrown. The
code finds the caller method and stores in the database the input next_method as the next
method to be called. At this point no execution in made, only configuration updates in the database.

If during the execution of the caller method the user launched calculations or subworkflows, this
method will add them to the database, making them available to the workflow manager to be launched.
In fact all the calculation and subworkflow submissions are lazy method, really executed by this call.

	Parameters:	next_method – a Workflow step method to execute after the caller method

	Raise:	AiidaException: in case the caller method cannot be found or validated

	Returns:	the wrapped methods, decorated with the correct step name

	
pk

	Returns the DbWorkflow pk

	
classmethod query(*args, **kwargs)[source]

	Map to the aiidaobjects manager of the DbWorkflow, that returns
Workflow objects instead of DbWorkflow entities.

	
remove_path(path)[source]

	Remove a file or directory from the repository directory.

Can be called only before storing.

	
repo_folder

	Get the permanent repository folder.
Use preferentially the current_folder method.

	Returns:	the permanent RepositoryFolder object

	
set_params(params, force=False)[source]

	Adds parameters to the Workflow that are both stored and used every time
the workflow engine re-initialize the specific workflow to launch the new methods.

	
set_state(state)[source]

	Set the Workflow’s state
:param name: a state from wf_states in aiida.common.datastructures

	
sleep()[source]

	Changes the workflow state to SLEEP, only possible to call from a Workflow step decorated method.

	
classmethod step(fun)[source]

	This method is used as a decorator for workflow steps, and handles the method’s execution,
the state updates and the eventual errors.

The decorator generates a wrapper around the input function to execute, adding with the correct
step name and a utility variable to make it distinguishable from non-step methods.

When a step is launched, the wrapper tries to run the function in case of error the state of
the workflow is moved to ERROR and the traceback is stored in the report. In general the input
method is a step obtained from the Workflow object, and the decorator simply handles a controlled
execution of the step allowing the code not to break in case of error in the step’s source code.

The wrapper also tests not to run two times the same step, unless a Workflow is in ERROR state, in this
case all the calculations and subworkflows of the step are killed and a new execution is allowed.

	Parameters:	fun – a methods to wrap, making it a Workflow step

	Raise:	AiidaException: in case the workflow state doesn’t allow the execution

	Returns:	the wrapped methods,

	
store()[source]

	Stores the DbWorkflow object data in the database

	
uuid

	Returns the DbWorkflow uuid

	
exception aiida.orm.implementation.general.workflow.WorkflowKillError(*args, **kwargs)[source]

	An exception raised when a workflow failed to be killed.
The error_message_list attribute contains the error messages from
all the subworkflows.

	
exception aiida.orm.implementation.general.workflow.WorkflowUnkillable[source]

	Raised when a workflow cannot be killed because it is in the FINISHED or
ERROR state.

	
aiida.orm.implementation.general.workflow.get_workflow_info(w, tab_size=2, short=False, pre_string='', depth=16)[source]

	Return a string with all the information regarding the given workflow and
all its calculations and subworkflows.
This is a recursive function (to print all subworkflows info as well).

	Parameters:	
	w – a DbWorkflow instance

	tab_size – number of spaces to use for the indentation

	short – if True, provide a shorter output (only total number of
calculations, rather than the state of each calculation)

	pre_string – string appended at the beginning of each line

	depth – the maximum depth level the recursion on sub-workflows will
try to reach (0 means we stay at the step level and don’t go
into sub-workflows, 1 means we go down to one step level of
the sub-workflows, etc.)

	Return lines:	list of lines to be outputed

	
aiida.orm.implementation.general.workflow.kill_all()[source]

	Kills all the workflows not in FINISHED state running the kill_from_uuid
method in a loop.

	Parameters:	uuid – the UUID of the workflow to kill

	
aiida.orm.implementation.general.workflow.kill_from_pk()[source]

	Kills a workflow from its pk.

	Parameters:	pk – the Pkof the workflow to kill

Code

	
class aiida.orm.implementation.general.code.AbstractCode(**kwargs)[source]

	A code entity.
It can either be ‘local’, or ‘remote’.

	Local code: it is a collection of files/dirs (added using the add_path() method), where one file is flagged as executable (using the set_local_executable() method).

	Remote code: it is a pair (remotecomputer, remotepath_of_executable) set using the set_remote_computer_exec() method.

For both codes, one can set some code to be executed right before or right after
the execution of the code, using the set_preexec_code() and set_postexec_code()
methods (e.g., the set_preexec_code() can be used to load specific modules required
for the code to be run).

	
can_run_on(computer)[source]

	Return True if this code can run on the given computer, False otherwise.

Local codes can run on any machine; remote codes can run only on the machine
on which they reside.

TODO: add filters to mask the remote machines on which a local code can run.

	
full_text_info

	Return a (multiline) string with a human-readable detailed information
on this computer.

	
classmethod get(label, computername=None, useremail=None)[source]

	Get a code from its label.

	Parameters:	
	label – the code label

	computername – filter only codes on computers with this name

	useremail – filter only codes belonging to a user with this
email

	Raises:	
	NotExistent – if no matches are found

	MultipleObjectsError – if multiple matches are found. In this case
you may want to pass the additional parameters to filter the codes,
or relabel the codes.

	
get_append_text()[source]

	Return the postexec_code, or an empty string if no post-exec code was defined.

	
get_execname()[source]

	Return the executable string to be put in the script.
For local codes, it is ./LOCAL_EXECUTABLE_NAME
For remote codes, it is the absolute path to the executable.

	
classmethod get_from_string(code_string)[source]

	Get a Computer object with given identifier string, that can either be
the numeric ID (pk), or the label (if unique); the label can either
be simply the label, or in the format label@machinename. See the note
below for details on the string detection algorithm.

Note

If a string that can be converted to an integer is given,
the numeric ID is verified first (therefore, is a code A with a
label equal to the ID of another code B is present, code A cannot
be referenced by label). Similarly, the (leftmost) ‘@’ symbol is
always used to split code and computername. Therefore do not use
‘@’ in the code name if you want to use this function
(‘@’ in the computer name are instead valid).

	Parameters:	code_string – the code string identifying the code to load

	Raises:	
	NotExistent – if no code identified by the given string is found

	MultipleObjectsError – if the string cannot identify uniquely
a code

	
get_input_plugin_name()[source]

	Return the name of the default input plugin (or None if no input plugin
was set.

	
get_prepend_text()[source]

	Return the code that will be put in the scheduler script before the
execution, or an empty string if no pre-exec code was defined.

	
is_local()[source]

	Return True if the code is ‘local’, False if it is ‘remote’ (see also documentation
of the set_local and set_remote functions).

	
classmethod list_for_plugin(plugin, labels=True)[source]

	Return a list of valid code strings for a given plugin.

	Parameters:	
	plugin – The string of the plugin.

	labels – if True, return a list of code names, otherwise
return the code PKs (integers).

	Returns:	a list of string, with the code names if labels is True,
otherwise a list of integers with the code PKs.

	
new_calc(*args, **kwargs)[source]

	Create and return a new Calculation object (unstored) with the correct
plugin subclass, as obtained by the self.get_input_plugin_name() method.

Parameters are passed to the calculation __init__ method.

	Note:	it also directly creates the link to this code (that will of
course be cached, since the new node is not stored yet).

	Raises:	
	MissingPluginError – if the specified plugin does not exist.

	ValueError – if no plugin was specified.

	
set_append_text(code)[source]

	Pass a string of code that will be put in the scheduler script after the
execution of the code.

	
set_files(files)[source]

	Given a list of filenames (or a single filename string),
add it to the path (all at level zero, i.e. without folders).
Therefore, be careful for files with the same name!

	Todo:	decide whether to check if the Code must be a local executable
to be able to call this function.

	
set_input_plugin_name(input_plugin)[source]

	Set the name of the default input plugin, to be used for the automatic
generation of a new calculation.

	
set_local_executable(exec_name)[source]

	Set the filename of the local executable.
Implicitly set the code as local.

	
set_prepend_text(code)[source]

	Pass a string of code that will be put in the scheduler script before the
execution of the code.

	
set_remote_computer_exec(remote_computer_exec)[source]

	Set the code as remote, and pass the computer on which it resides
and the absolute path on that computer.

	Args:

	
	remote_computer_exec: a tuple (computer, remote_exec_path), where

	computer is a aiida.orm.Computer or an
aiida.backends.djsite.db.models.DbComputer object, and
remote_exec_path is the absolute path of the main executable on
remote computer.

	
aiida.orm.implementation.general.code.delete_code(code)[source]

	Delete a code from the DB.
Check before that there are no output nodes.

NOTE! Not thread safe... Do not use with many users accessing the DB
at the same time.

Implemented as a function on purpose, otherwise complicated logic would be
needed to set the internal state of the object after calling
computer.delete().

ORM documentation: Data

	
class aiida.orm.data.Data(**kwargs)[source]

	This class is base class for all data objects.

Specifications of the Data class:
AiiDA Data objects are subclasses of Node and should have

Multiple inheritance must be suppoted, i.e. Data should have methods for
querying and be able to inherit other library objects such as ASE for
structures.

Architecture note:
The code plugin is responsible for converting a raw data object produced by
code to AiiDA standard object format. The data object then validates itself
according to its method. This is done independently in order to allow
cross-validation of plugins.

	
convert(object_format=None, *args)[source]

	Convert the AiiDA StructureData into another python object

	Parameters:	object_format – Specify the output format

	
export(fname, fileformat=None)[source]

	Save a Data object to a file.

	Parameters:	
	fname – string with file name. Can be an absolute or relative path.

	fileformat – kind of format to use for the export. If not present,
it will try to use the extension of the file name.

	
importfile(fname, fileformat=None)[source]

	Populate a Data object from a file.

	Parameters:	
	fname – string with file name. Can be an absolute or relative path.

	fileformat – kind of format to use for the export. If not present,
it will try to use the extension of the file name.

	
importstring(inputstring, fileformat, **kwargs)[source]

	Converts a Data object to other text format.

	Parameters:	fileformat – a string (the extension) to describe the file format.

	Returns:	a string with the structure description.

	
set_source(source)[source]

	Sets the dictionary describing the source of Data object.

	
source

	Gets the dictionary describing the source of Data object. Possible
fields:

	db_name: name of the source database.

	db_uri: URI of the source database.

	uri: URI of the object’s source. Should be a permanent link.

	id: object’s source identifier in the source database.

	version: version of the object’s source.

	extras: a dictionary with other fields for source description.

	source_md5: MD5 checksum of object’s source.

	
	description: human-readable free form description of the

	object’s source.

	license: a string with a type of license.

Note

some limitations for setting the data source exist, see
_validate().

	Returns:	dictionary describing the source of Data object.

Structure

This module defines the classes for structures and all related
functions to operate on them.

	
class aiida.orm.data.structure.Kind(**kwargs)[source]

	This class contains the information about the species (kinds) of the system.

It can be a single atom, or an alloy, or even contain vacancies.

	
__init__(**kwargs)[source]

	Create a site.
One can either pass:

	Parameters:	
	raw – the raw python dictionary that will be converted to a
Kind object.

	ase – an ase Atom object

	kind – a Kind object (to get a copy)

Or alternatively the following parameters:

	Parameters:	
	symbols – a single string for the symbol of this site, or a list
of symbol strings

	(optional) (mass) – the weights for each atomic species of
this site.
If only a single symbol is provided, then this value is
optional and the weight is set to 1.

	(optional) – the mass for this site in atomic mass units.
If not provided, the mass is set by the
self.reset_mass() function.

	name – a string that uniquely identifies the kind, and that
is used to identify the sites.

	
compare_with(other_kind)[source]

	Compare with another Kind object to check if they are different.

Note

This does NOT check the ‘type’ attribute. Instead, it compares
(with reasonable thresholds, where applicable): the mass, and the list
of symbols and of weights. Moreover, it compares the
_internal_tag, if defined (at the moment, defined automatically
only when importing the Kind from ASE, if the atom has a non-zero tag).
Note that the _internal_tag is only used while the class is loaded,
but is not persisted on the database.

	Returns:	A tuple with two elements. The first one is True if the two sites
are ‘equivalent’ (same mass, symbols and weights), False otherwise.
The second element of the tuple is a string,
which is either None (if the first element was True), or contains
a ‘human-readable’ description of the first difference encountered
between the two sites.

	
get_raw()[source]

	Return the raw version of the site, mapped to a suitable dictionary.
This is the format that is actually used to store each kind of the
structure in the DB.

	Returns:	a python dictionary with the kind.

	
get_symbols_string()[source]

	Return a string that tries to match as good as possible the symbols
of this kind. If there is only one symbol (no alloy) with 100%
occupancy, just returns the symbol name. Otherwise, groups the full
string in curly brackets, and try to write also the composition
(with 2 precision only).

Note

If there is a vacancy (sum of weights<1), we indicate it
with the X symbol followed by 1-sum(weights) (still with 2
digits precision, so it can be 0.00)

Note

Note the difference with respect to the symbols and the
symbol properties!

	
has_vacancies()[source]

	Returns True if the sum of the weights is less than one.
It uses the internal variable _sum_threshold as a threshold.

	Returns:	a boolean

	
is_alloy()[source]

	To understand if kind is an alloy.

	Returns:	True if the kind has more than one element (i.e.,
len(self.symbols) != 1), False otherwise.

	
mass

	The mass of this species kind.

	Returns:	a float

	
name

	Return the name of this kind.
The name of a kind is used to identify the species of a site.

	Returns:	a string

	
reset_mass()[source]

	Reset the mass to the automatic calculated value.

The mass can be set manually; by default, if not provided,
it is the mass of the constituent atoms, weighted with their
weight (after the weight has been normalized to one to take
correctly into account vacancies).

This function uses the internal _symbols and _weights values and
thus assumes that the values are validated.

It sets the mass to None if the sum of weights is zero.

	
set_automatic_kind_name(tag=None)[source]

	Set the type to a string obtained with the symbols appended one
after the other, without spaces, in alphabetical order;
if the site has a vacancy, a X is appended at the end too.

	
set_symbols_and_weights(symbols, weights)[source]

	Set the chemical symbols and the weights for the site.

Note

Note that the kind name remains unchanged.

	
symbol

	If the kind has only one symbol, return it; otherwise, raise a
ValueError.

	
symbols

	List of symbols for this site. If the site is a single atom,
pass a list of one element only, or simply the string for that atom.
For alloys, a list of elements.

Note

Note that if you change the list of symbols, the kind
name remains unchanged.

	
weights

	Weights for this species kind. Refer also to
:func:validate_symbols_tuple for the validation rules on the weights.

	
class aiida.orm.data.structure.Site(**kwargs)[source]

	This class contains the information about a given site of the system.

It can be a single atom, or an alloy, or even contain vacancies.

	
__init__(**kwargs)[source]

	Create a site.

	Parameters:	
	kind_name – a string that identifies the kind (species) of this site.
This has to be found in the list of kinds of the StructureData
object.
Validation will be done at the StructureData level.

	position – the absolute position (three floats) in angstrom

	
get_ase(kinds)[source]

	Return a ase.Atom object for this site.

	Parameters:	kinds – the list of kinds from the StructureData object.

Note

If any site is an alloy or has vacancies, a ValueError
is raised (from the site.get_ase() routine).

	
get_raw()[source]

	Return the raw version of the site, mapped to a suitable dictionary.
This is the format that is actually used to store each site of the
structure in the DB.

	Returns:	a python dictionary with the site.

	
kind_name

	Return the kind name of this site (a string).

The type of a site is used to decide whether two sites are identical
(same mass, symbols, weights, ...) or not.

	
position

	Return the position of this site in absolute coordinates,
in angstrom.

	
class aiida.orm.data.structure.StructureData(**kwargs)[source]

	This class contains the information about a given structure, i.e. a
collection of sites together with a cell, the
boundary conditions (whether they are periodic or not) and other
related useful information.

	
append_atom(**kwargs)[source]

	Append an atom to the Structure, taking care of creating the
corresponding kind.

	Parameters:	
	ase – the ase Atom object from which we want to create a new atom
(if present, this must be the only parameter)

	position – the position of the atom (three numbers in angstrom)

	symbols, weights, name (..) – any further parameter is passed
to the constructor of the Kind object. For the ‘name’ parameter,
see the note below.

Note

Note on the ‘name’ parameter (that is, the name of the kind):

	if specified, no checks are done on existing species. Simply,
a new kind with that name is created. If there is a name
clash, a check is done: if the kinds are identical, no error
is issued; otherwise, an error is issued because you are trying
to store two different kinds with the same name.

	if not specified, the name is automatically generated. Before
adding the kind, a check is done. If other species with the
same properties already exist, no new kinds are created, but
the site is added to the existing (identical) kind.
(Actually, the first kind that is encountered).
Otherwise, the name is made unique first, by adding to the string
containing the list of chemical symbols a number starting from 1,
until an unique name is found

Note

checks of equality of species are done using
the compare_with() method.

	
append_kind(kind)[source]

	Append a kind to the
StructureData.
It makes a copy of the kind.

	Parameters:	kind – the site to append, must be a Kind object.

	
append_site(site)[source]

	Append a site to the
StructureData.
It makes a copy of the site.

	Parameters:	site – the site to append. It must be a Site object.

	
cell

	Returns the cell shape.

	Returns:	a 3x3 list of lists.

	
cell_angles

	Get the angles between the cell lattice vectors in degrees.

	
cell_lengths

	Get the lengths of cell lattice vectors in angstroms.

	
clear_kinds()[source]

	Removes all kinds for the StructureData object.

Note

Also clear all sites!

	
clear_sites()[source]

	Removes all sites for the StructureData object.

	
get_ase()[source]

	Get the ASE object.
Requires to be able to import ase.

	Returns:	an ASE object corresponding to this
StructureData
object.

Note

If any site is an alloy or has vacancies, a ValueError
is raised (from the site.get_ase() routine).

	
get_cell_volume()[source]

	Returns the cell volume in Angstrom^3.

	Returns:	a float.

	
get_composition()[source]

	Returns the chemical composition of this structure as a dictionary,
where each key is the kind symbol (e.g. H, Li, Ba),
and each value is the number of occurences of that element in this
structure. For BaZrO3 it would return {‘Ba’:1, ‘Zr’:1, ‘O’:3}.
No reduction with smallest common divisor!

	Returns:	a dictionary with the composition

	
get_formula(mode='hill', separator='')[source]

	Return a string with the chemical formula.

	Parameters:	
	mode – a string to specify how to generate the formula, can
assume one of the following values:

	‘hill’ (default): count the number of atoms of each species,
then use Hill notation, i.e. alphabetical order with C and H
first if one or several C atom(s) is (are) present, e.g.
['C','H','H','H','O','C','H','H','H'] will return 'C2H6O'
['S','O','O','H','O','H','O'] will return 'H2O4S'
From E. A. Hill, J. Am. Chem. Soc., 22 (8), pp 478–494 (1900)

	‘hill_compact’: same as hill but the number of atoms for each
species is divided by the greatest common divisor of all of them, e.g.
['C','H','H','H','O','C','H','H','H','O','O','O']
will return 'CH3O2'

	‘reduce’: group repeated symbols e.g.
['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
'Ba', 'Ti', 'Ti', 'O', 'O', 'O'] will return 'BaTiO3BaTiO3BaTi2O3'

	‘group’: will try to group as much as possible parts of the formula
e.g.
['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
'Ba', 'Ti', 'Ti', 'O', 'O', 'O'] will return '(BaTiO3)2BaTi2O3'

	‘count’: same as hill (i.e. one just counts the number
of atoms of each species) without the re-ordering (take the
order of the atomic sites), e.g.
['Ba', 'Ti', 'O', 'O', 'O','Ba', 'Ti', 'O', 'O', 'O']
will return 'Ba2Ti2O6'

	‘count_compact’: same as count but the number of atoms
for each species is divided by the greatest common divisor of
all of them, e.g.
['Ba', 'Ti', 'O', 'O', 'O','Ba', 'Ti', 'O', 'O', 'O']
will return 'BaTiO3'

	separator – a string used to concatenate symbols. Default empty.

	Returns:	a string with the formula

Note

in modes reduce, group, count and count_compact, the
initial order in which the atoms were appended by the user is
used to group and/or order the symbols in the formula

	
get_kind(kind_name)[source]

	Return the kind object associated with the given kind name.

	Parameters:	kind_name – String, the name of the kind you want to get

	Returns:	The Kind object associated with the given kind_name, if
a Kind with the given name is present in the structure.

	Raise:	ValueError if the kind_name is not present.

	
get_kind_names()[source]

	Return a list of kind names (in the same order of the self.kinds
property, but return the names rather than Kind objects)

Note

This is NOT necessarily a list of chemical symbols! Use
get_symbols_set for chemical symbols

	Returns:	a list of strings.

	
get_pymatgen()[source]

	Get pymatgen object. Returns Structure for structures with
periodic boundary conditions (in three dimensions) and Molecule
otherwise.

Note

Requires the pymatgen module (version >= 3.0.13, usage
of earlier versions may cause errors).

	
get_pymatgen_molecule()[source]

	Get the pymatgen Molecule object.

Note

Requires the pymatgen module (version >= 3.0.13, usage
of earlier versions may cause errors).

	Returns:	a pymatgen Molecule object corresponding to this
StructureData
object.

	
get_pymatgen_structure()[source]

	Get the pymatgen Structure object.

Note

Requires the pymatgen module (version >= 3.0.13, usage
of earlier versions may cause errors).

	Returns:	a pymatgen Structure object corresponding to this
StructureData
object.

	Raises:	ValueError – if periodic boundary conditions do not hold
in at least one dimension of real space.

	
get_site_kindnames()[source]

	Return a list with length equal to the number of sites of this structure,
where each element of the list is the kind name of the corresponding site.

Note

This is NOT necessarily a list of chemical symbols! Use
[self.get_kind(s.kind_name).get_symbols_string() for s in self.sites]
for chemical symbols

	Returns:	a list of strings

	
get_symbols_set()[source]

	Return a set containing the names of all elements involved in
this structure (i.e., for it joins the list of symbols for each
kind k in the structure).

	Returns:	a set of strings of element names.

	
has_vacancies()[source]

	To understand if there are vacancies in the structure.

	Returns:	a boolean, True if at least one kind has a vacancy

	
is_alloy()[source]

	To understand if there are alloys in the structure.

	Returns:	a boolean, True if at least one kind is an alloy

	
kinds

	Returns a list of kinds.

	
pbc

	Get the periodic boundary conditions.

	Returns:	a tuple of three booleans, each one tells if there are periodic
boundary conditions for the i-th real-space direction (i=1,2,3)

	
reset_cell(new_cell)[source]

	Reset the cell of a structure not yet stored to a new value.

	Parameters:	new_cell – list specifying the cell vectors

	Raises:	ModificationNotAllowed: if object is already stored

	
reset_sites_positions(new_positions, conserve_particle=True)[source]

	Replace all the Site positions attached to the Structure

	Parameters:	
	new_positions – list of (3D) positions for every sites.

	conserve_particle – if True, allows the possibility of removing a site.
currently not implemented.

	Raises:	
	ModificationNotAllowed – if object is stored already

	ValueError – if positions are invalid

Note

it is assumed that the order of the new_positions is
given in the same order of the one it’s substituting, i.e. the
kind of the site will not be checked.

	
set_ase(aseatoms)[source]

	Load the structure from a ASE object

	
set_pymatgen(obj, **kwargs)[source]

	Load the structure from a pymatgen object.

Note

Requires the pymatgen module (version >= 3.0.13, usage
of earlier versions may cause errors).

	
set_pymatgen_molecule(mol, margin=5)[source]

	Load the structure from a pymatgen Molecule object.

	Parameters:	margin – the margin to be added in all directions of the
bounding box of the molecule.

Note

Requires the pymatgen module (version >= 3.0.13, usage
of earlier versions may cause errors).

	
set_pymatgen_structure(struct)[source]

	Load the structure from a pymatgen Structure object.

Note

periodic boundary conditions are set to True in all
three directions.

Note

Requires the pymatgen module (version >= 3.0.13, usage
of earlier versions may cause errors).

	
sites

	Returns a list of sites.

	
aiida.orm.data.structure.ase_refine_cell(aseatoms, **kwargs)[source]

	Detect the symmetry of the structure, remove symmetric atoms and
refine unit cell.

	Parameters:	
	aseatoms – an ase.atoms.Atoms instance

	symprec – symmetry precision, used by pyspglib

	Return newase:	refined cell with reduced set of atoms

	Return symmetry:

		a dictionary describing the symmetry space group

	
aiida.orm.data.structure.calc_cell_volume(cell)[source]

	Calculates the volume of a cell given the three lattice vectors.

It is calculated as cell[0] . (cell[1] x cell[2]), where . represents
a dot product and x a cross product.

	Parameters:	cell – the cell vectors; the must be a 3x3 list of lists of floats,
no other checks are done.

	Returns:	the cell volume.

	
aiida.orm.data.structure.get_formula(symbol_list, mode='hill', separator='')[source]

	Return a string with the chemical formula.

	Parameters:	
	symbol_list – a list of symbols, e.g. ['H','H','O']

	mode – a string to specify how to generate the formula, can
assume one of the following values:

	‘hill’ (default): count the number of atoms of each species,
then use Hill notation, i.e. alphabetical order with C and H
first if one or several C atom(s) is (are) present, e.g.
['C','H','H','H','O','C','H','H','H'] will return 'C2H6O'
['S','O','O','H','O','H','O'] will return 'H2O4S'
From E. A. Hill, J. Am. Chem. Soc., 22 (8), pp 478–494 (1900)

	‘hill_compact’: same as hill but the number of atoms for each
species is divided by the greatest common divisor of all of them, e.g.
['C','H','H','H','O','C','H','H','H','O','O','O']
will return 'CH3O2'

	‘reduce’: group repeated symbols e.g.
['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
'Ba', 'Ti', 'Ti', 'O', 'O', 'O'] will return 'BaTiO3BaTiO3BaTi2O3'

	‘group’: will try to group as much as possible parts of the formula
e.g.
['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
'Ba', 'Ti', 'Ti', 'O', 'O', 'O'] will return '(BaTiO3)2BaTi2O3'

	‘count’: same as hill (i.e. one just counts the number
of atoms of each species) without the re-ordering (take the
order of the atomic sites), e.g.
['Ba', 'Ti', 'O', 'O', 'O','Ba', 'Ti', 'O', 'O', 'O']
will return 'Ba2Ti2O6'

	‘count_compact’: same as count but the number of atoms
for each species is divided by the greatest common divisor of
all of them, e.g.
['Ba', 'Ti', 'O', 'O', 'O','Ba', 'Ti', 'O', 'O', 'O']
will return 'BaTiO3'

	separator – a string used to concatenate symbols. Default empty.

	Returns:	a string with the formula

Note

in modes reduce, group, count and count_compact, the
initial order in which the atoms were appended by the user is
used to group and/or order the symbols in the formula

	
aiida.orm.data.structure.get_formula_from_symbol_list(_list, separator='')[source]

	Return a string with the formula obtained from the list of symbols.
Examples:
* [[1,'Ba'],[1,'Ti'],[3,'O']] will return 'BaTiO3'
* [[2, [[1, 'Ba'], [1, 'Ti']]]] will return '(BaTi)2'

	Parameters:	
	_list – a list of symbols and multiplicities as obtained from
the function group_symbols

	separator – a string used to concatenate symbols. Default empty.

	Returns:	a string

	
aiida.orm.data.structure.get_formula_group(symbol_list, separator='')[source]

	Return a string with the chemical formula from a list of chemical symbols.
The formula is written in a compact” way, i.e. trying to group as much as
possible parts of the formula.

Note

it works for instance very well if structure was obtained
from an ASE supercell.

Example of result:
['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
'Ba', 'Ti', 'Ti', 'O', 'O', 'O'] will return '(BaTiO3)2BaTi2O3'.

	Parameters:	
	symbol_list – list of symbols
(e.g. [‘Ba’,’Ti’,’O’,’O’,’O’])

	separator – a string used to concatenate symbols. Default empty.

	Returns:	a string with the chemical formula for the given structure.

	
aiida.orm.data.structure.get_pymatgen_version()[source]

	

	Returns:	string with pymatgen version, None if can not import.

	
aiida.orm.data.structure.get_structuredata_from_qeinput(filepath=None, text=None)[source]

	Function that receives either
:param filepath: the filepath storing or
:param text: the string of a standard QE-input file.
An instance of StructureData() is initialized with kinds, positions and cell
as defined in the input file.
This function can deal with ibrav being set different from 0 and the cell being defined
with celldm(n) or A,B,C, cosAB etc.

	
aiida.orm.data.structure.get_symbols_string(symbols, weights)[source]

	Return a string that tries to match as good as possible the symbols
and weights. If there is only one symbol (no alloy) with 100%
occupancy, just returns the symbol name. Otherwise, groups the full
string in curly brackets, and try to write also the composition
(with 2 precision only).
If (sum of weights<1), we indicate it with the X symbol followed
by 1-sum(weights) (still with 2 digits precision, so it can be 0.00)

	Parameters:	
	symbols – the symbols as obtained from <kind>._symbols

	weights – the weights as obtained from <kind>._weights

Note

Note the difference with respect to the symbols and the
symbol properties!

	
aiida.orm.data.structure.get_valid_pbc(inputpbc)[source]

	Return a list of three booleans for the periodic boundary conditions,
in a valid format from a generic input.

	Raises:	ValueError – if the format is not valid.

	
aiida.orm.data.structure.group_symbols(_list)[source]

	Group a list of symbols to a list containing the number of consecutive
identical symbols, and the symbol itself.

Examples:

	['Ba','Ti','O','O','O','Ba'] will return
[[1,'Ba'],[1,'Ti'],[3,'O'],[1,'Ba']]

	[[[1,'Ba'],[1,'Ti']],[[1,'Ba'],[1,'Ti']]] will return
[[2, [[1, 'Ba'], [1, 'Ti']]]]

	Parameters:	_list – a list of elements representing a chemical formula

	Returns:	a list of length-2 lists of the form [multiplicity , element]

	
aiida.orm.data.structure.has_ase()[source]

	

	Returns:	True if the ase module can be imported, False otherwise.

	
aiida.orm.data.structure.has_pymatgen()[source]

	

	Returns:	True if the pymatgen module can be imported, False otherwise.

	
aiida.orm.data.structure.has_pyspglib()[source]

	

	Returns:	True if the pyspglib module can be imported, False otherwise.

	
aiida.orm.data.structure.has_vacancies(weights)[source]

	Returns True if the sum of the weights is less than one.
It uses the internal variable _sum_threshold as a threshold.
:param weights: the weights
:return: a boolean

	
aiida.orm.data.structure.is_ase_atoms(ase_atoms)[source]

	Check if the ase_atoms parameter is actually a ase.Atoms object.

	Parameters:	ase_atoms – an object, expected to be an ase.Atoms.

	Returns:	a boolean.

Requires the ability to import ase, by doing ‘import ase’.

	
aiida.orm.data.structure.is_valid_symbol(symbol)[source]

	Validates the chemical symbol name.

	Returns:	True if the symbol is a valid chemical symbol (with correct
capitalization), False otherwise.

Recognized symbols are for elements from hydrogen (Z=1) to lawrencium
(Z=103).

	
aiida.orm.data.structure.symop_fract_from_ortho(cell)[source]

	Creates a matrix for conversion from fractional to orthogonal
coordinates.

Taken from
svn://www.crystallography.net/cod-tools/trunk/lib/perl5/Fractional.pm,
revision 850.

	Parameters:	cell – array of cell parameters (three lengths and three angles)

	
aiida.orm.data.structure.symop_ortho_from_fract(cell)[source]

	Creates a matrix for conversion from orthogonal to fractional
coordinates.

Taken from
svn://www.crystallography.net/cod-tools/trunk/lib/perl5/Fractional.pm,
revision 850.

	Parameters:	cell – array of cell parameters (three lengths and three angles)

	
aiida.orm.data.structure.validate_symbols_tuple(symbols_tuple)[source]

	Used to validate whether the chemical species are valid.

	Parameters:	symbols_tuple – a tuple (or list) with the chemical symbols name.

	Raises:	ValueError if any symbol in the tuple is not a valid chemical
symbols (with correct capitalization).

Refer also to the documentation of :func:is_valid_symbol

	
aiida.orm.data.structure.validate_weights_tuple(weights_tuple, threshold)[source]

	Validates the weight of the atomic kinds.

	Raise:	ValueError if the weights_tuple is not valid.

	Parameters:	
	weights_tuple – the tuple to validate. It must be a
a tuple of floats (as created by :func:_create_weights_tuple).

	threshold – a float number used as a threshold to check that the sum
of the weights is <= 1.

If the sum is less than one, it means that there are vacancies.
Each element of the list must be >= 0, and the sum must be <= 1.

Folder

	
class aiida.orm.data.folder.FolderData(**kwargs)[source]

	Stores a folder with subfolders and files.

No special attributes are set.

	
get_file_content(path)[source]

	Return the content of a path stored inside the folder as a string.

	Raises:	NotExistent – if the path does not exist.

	
replace_with_folder(folder, overwrite=True)[source]

	Replace the data with another folder, always copying and not moving the
original files.

	Args:

	folder: the folder to copy from
overwrite: if to overwrite the current content or not

Singlefile

Implement subclass for a single file in the permanent repository
files = [one_single_file]
jsons = {}

methods:
* get_content
* get_path
* get_aiidaurl (?)
* get_md5
* ...

To discuss: do we also need a simple directory class for full directories
in the perm repo?

	
class aiida.orm.data.singlefile.SinglefileData(**kwargs)[source]

	Pass as input a file parameter with the (absolute) path of a file
on the hard drive.
It will get copied inside the node.

Internally must have a single file, and stores as internal attribute
the filename in the ‘filename’ attribute.

	
add_path(src_abs, dst_filename=None)[source]

	Add a single file

	
del_file(filename)[source]

	Remove a file from SingleFileData
:param filename: name of the file stored in the DB

	
filename

	Returns the name of the file stored

	
get_file_abs_path()[source]

	Return the absolute path to the file in the repository

	
set_file(filename)[source]

	Add a file to the singlefiledata
:param filename: absolute path to the file

Upf

This module manages the UPF pseudopotentials in the local repository.

	
class aiida.orm.data.upf.UpfData(**kwargs)[source]

	Function not yet documented.

	
classmethod from_md5(md5)[source]

	Return a list of all UPF pseudopotentials that match a given MD5 hash.

Note that the hash has to be stored in a _md5 attribute, otherwise
the pseudo will not be found.

	
classmethod get_or_create(filename, use_first=False, store_upf=True)[source]

	Pass the same parameter of the init; if a file with the same md5
is found, that UpfData is returned.

	Parameters:	
	filename – an absolute filename on disk

	use_first – if False (default), raise an exception if more than one potential is found. If it is True, instead, use the first available pseudopotential.

	store_upf (bool) – If false, the UpfData objects are not stored in
the database. default=True.

	Return (upf, created):

		where upf is the UpfData object, and create is either True if the object was created, or False if the object was retrieved from the DB.

	
get_upf_family_names()[source]

	Get the list of all upf family names to which the pseudo belongs

	
classmethod get_upf_group(group_name)[source]

	Return the UpfFamily group with the given name.

	
classmethod get_upf_groups(filter_elements=None, user=None)[source]

	Return all names of groups of type UpfFamily, possibly with some filters.

	Parameters:	
	filter_elements – A string or a list of strings.
If present, returns only the groups that contains one Upf for
every element present in the list. Default=None, meaning that
all families are returned.

	user – if None (default), return the groups for all users.
If defined, it should be either a DbUser instance, or a string
for the username (that is, the user email).

	
set_file(filename)[source]

	I pre-parse the file to store the attributes.

	
store(*args, **kwargs)[source]

	Store the node, reparsing the file so that the md5 and the element
are correctly reset.

	
aiida.orm.data.upf.get_pseudos_from_structure(structure, family_name)[source]

	Given a family name (a UpfFamily group in the DB) and a AiiDA
structure, return a dictionary associating each kind name with its
UpfData object.

	Raises:	
	MultipleObjectsError – if more than one UPF for the same element is
found in the group.

	NotExistent – if no UPF for an element in the group is
found in the group.

	
aiida.orm.data.upf.parse_upf(fname, check_filename=True)[source]

	Try to get relevant information from the UPF. For the moment, only the
element name. Note that even UPF v.2 cannot be parsed with the XML minidom!
(e.g. due to the & characters in the human-readable section).

If check_filename is True, raise a ParsingError exception if the filename
does not start with the element name.

	
aiida.orm.data.upf.upload_upf_family(folder, group_name, group_description, stop_if_existing=True)[source]

	Upload a set of UPF files in a given group.

	Parameters:	
	folder – a path containing all UPF files to be added.
Only files ending in .UPF (case-insensitive) are considered.

	group_name – the name of the group to create. If it exists and is
non-empty, a UniquenessError is raised.

	group_description – a string to be set as the group description.
Overwrites previous descriptions, if the group was existing.

	stop_if_existing – if True, check for the md5 of the files and,
if the file already exists in the DB, raises a MultipleObjectsError.
If False, simply adds the existing UPFData node to the group.

Cif

	
class aiida.orm.data.cif.CifData(**kwargs)[source]

	Wrapper for Crystallographic Interchange File (CIF)

Note

the file (physical) is held as the authoritative source of
information, so all conversions are done through the physical file:
when setting ase or values, a physical CIF file is generated
first, the values are updated from the physical CIF file.

	
ase

	ASE object, representing the CIF.

Note

requires ASE module.

	
classmethod from_md5(md5)[source]

	Return a list of all CIF files that match a given MD5 hash.

Note

the hash has to be stored in a _md5 attribute,
otherwise the CIF file will not be found.

	
generate_md5()[source]

	Generate MD5 hash of the file’s contents on-the-fly.

	
get_ase(**kwargs)[source]

	Returns ASE object, representing the CIF. This function differs
from the property ase by the possibility to pass the keyworded
arguments (kwargs) to ase.io.cif.read_cif().

Note

requires ASE module.

	
get_formulae(mode='sum')[source]

	Get the formula.

	
classmethod get_or_create(filename, use_first=False, store_cif=True)[source]

	Pass the same parameter of the init; if a file with the same md5
is found, that CifData is returned.

	Parameters:	
	filename – an absolute filename on disk

	use_first – if False (default), raise an exception if more than one CIF file is found. If it is True, instead, use the first available CIF file.

	store_cif (bool) – If false, the CifData objects are not stored in
the database. default=True.

	Return (cif, created):

		where cif is the CifData object, and create is either True if the object was created, or False if the object was retrieved from the DB.

	
get_spacegroup_numbers()[source]

	Get the spacegroup international number.

	
has_attached_hydrogens()[source]

	Check if there are hydrogens without coordinates, specified
as attached to the atoms of the structure.
:return: True if there are attached hydrogens, False otherwise.

	
has_partial_occupancies()[source]

	Check if there are float values in the atom occupancies.
:return: True if there are partial occupancies, False
otherwise.

	
static read_cif(fileobj, index=-1, **kwargs)[source]

	A wrapper method that simulates the behaviour of the older versions of
the read_cif. It behaves similarly with the older and newer versions
of ase.io.cif.read_cif.

	
set_file(filename)[source]

	Set the file. If the source is set and the MD5 checksum of new file
is different from the source, the source has to be deleted.

	
store(*args, **kwargs)[source]

	Store the node.

	
values

	PyCifRW structure, representing the CIF datablocks.

Note

requires PyCifRW module.

	
aiida.orm.data.cif.cif_from_ase(ase, full_occupancies=False, add_fake_biso=False)[source]

	Construct a CIF datablock from the ASE structure. The code is taken
from
https://wiki.fysik.dtu.dk/ase/epydoc/ase.io.cif-pysrc.html#write_cif,
as the original ASE code contains a bug in printing the
Hermann-Mauguin symmetry space group symbol.

	Parameters:	ase – ASE “images”

	Returns:	array of CIF datablocks

	
aiida.orm.data.cif.has_pycifrw()[source]

	

	Returns:	True if the PyCifRW module can be imported, False otherwise.

	
aiida.orm.data.cif.parse_formula(formula)[source]

	Parses the Hill formulae, written with spaces for separators.

	
aiida.orm.data.cif.pycifrw_from_cif(datablocks, loops={}, names=None)[source]

	Constructs PyCifRW’s CifFile from an array of CIF datablocks.

	Parameters:	
	datablocks – an array of CIF datablocks

	loops – optional list of lists of CIF tag loops.

	names – optional list of datablock names

	Returns:	CifFile

	
aiida.orm.data.cif.symop_string_from_symop_matrix_tr(matrix, tr=[0, 0, 0], eps=0)[source]

	Construct a CIF representation of symmetry operator plus translation.
See International Tables for Crystallography Vol. A. (2002) for
definition.

	Parameters:	
	matrix – 3x3 matrix, representing the symmetry operator

	tr – translation vector of length 3 (default [0, 0, 0])

	eps – epsilon parameter for fuzzy comparison x == 0

	Returns:	CIF representation of symmetry operator

Parameter

	
class aiida.orm.data.parameter.ParameterData(**kwargs)[source]

	Pass as input in the init a dictionary, and it will get stored as internal
attributes.

Usual rules for attribute names apply (in particular, keys cannot start with
an underscore). If this is the case, a ValueError will be raised.

You can then change/delete/add more attributes before storing with the
usual methods of aiida.orm.Node

	
dict

	To be used to get direct access to the underlying dictionary with the
syntax node.dict.key or node.dict[‘key’].

	Returns:	an instance of the AttributeResultManager.

	
get_dict()[source]

	Return a dict with the parameters

	
keys()[source]

	Iterator of valid keys stored in the ParameterData object

	
set_dict(dict)[source]

	Replace the current dictionary with another one.

	Parameters:	dict – The dictionary to set.

	
update_dict(dict)[source]

	Update the current dictionary with the keys provided in the dictionary.

	Parameters:	dict – a dictionary with the keys to substitute. It works like
dict.update(), adding new keys and overwriting existing keys.

Remote

	
class aiida.orm.data.remote.RemoteData(**kwargs)[source]

	Store a link to a file or folder on a remote machine.

Remember to pass a computer!

	
add_path(src_abs, dst_filename=None)[source]

	Disable adding files or directories to a RemoteData

	
is_empty()[source]

	Check if remote folder is empty

ArrayData

	
class aiida.orm.data.array.ArrayData(*args, **kwargs)[source]

	Store a set of arrays on disk (rather than on the database) in an efficient
way using numpy.save() (therefore, this class requires numpy to be
installed).

Each array is stored within the Node folder as a different .npy file.

	Note:	Before storing, no caching is done: if you perform a
get_array() call, the array will be re-read from disk.
If instead the ArrayData node has already been stored,
the array is cached in memory after the first read, and the cached array
is used thereafter.
If too much RAM memory is used, you can clear the
cache with the clear_internal_cache() method.

	
arraynames()[source]

	Return a list of all arrays stored in the node, listing the files (and
not relying on the properties).

Deprecated since version 0.7: Use get_arraynames() instead.

	
clear_internal_cache()[source]

	Clear the internal memory cache where the arrays are stored after being
read from disk (used in order to reduce at minimum the readings from
disk).
This function is useful if you want to keep the node in memory, but you
do not want to waste memory to cache the arrays in RAM.

	
delete_array(name)[source]

	Delete an array from the node. Can only be called before storing.

	Parameters:	name – The name of the array to delete from the node.

	
get_array(name)[source]

	Return an array stored in the node

	Parameters:	name – The name of the array to return.

	
get_arraynames()[source]

	Return a list of all arrays stored in the node, listing the files (and
not relying on the properties).

New in version 0.7: Renamed from arraynames

	
get_shape(name)[source]

	Return the shape of an array (read from the value cached in the
properties for efficiency reasons).

	Parameters:	name – The name of the array.

	
iterarrays()[source]

	Iterator that returns tuples (name, array) for each array stored in the
node.

	
set_array(name, array)[source]

	Store a new numpy array inside the node. Possibly overwrite the array
if it already existed.

Internally, it stores a name.npy file in numpy format.

	Parameters:	
	name – The name of the array.

	array – The numpy array to store.

ArrayData subclasses

The following are Data classes inheriting from ArrayData.

KpointsData

This module defines the classes related to band structures or dispersions
in a Brillouin zone, and how to operate on them.

	
class aiida.orm.data.array.kpoints.KpointsData(*args, **kwargs)[source]

	Class to handle array of kpoints in the Brillouin zone. Provide methods to
generate either user-defined k-points or path of k-points along symmetry
lines.
Internally, all k-points are defined in terms of crystal (fractional)
coordinates.
Cell and lattice vector coordinates are in Angstroms, reciprocal lattice
vectors in Angstrom^-1 .
:note: The methods setting and using the Bravais lattice info assume the
PRIMITIVE unit cell is provided in input to the set_cell or
set_cell_from_structure methods.

	
cell

	The crystal unit cell. Rows are the crystal vectors in Angstroms.
:return: a 3x3 numpy.array

	
get_kpoints(also_weights=False, cartesian=False)[source]

	Return the list of kpoints

	Parameters:	
	also_weights – if True, returns also the list of weights.
Default = False

	cartesian – if True, returns points in cartesian coordinates,
otherwise, returns in crystal coordinates. Default = False.

	
get_kpoints_mesh(print_list=False)[source]

	Get the mesh of kpoints.

	Parameters:	print_list – default=False. If True, prints the mesh of kpoints as a list

	Raises:	AttributeError – if no mesh has been set

	Return mesh,offset:

		(if print_list=False) a list of 3 integers and a list of three
floats 0<x<1, representing the mesh and the offset of kpoints

	Return kpoints:	(if print_list = True) an explicit list of kpoints coordinates,
similar to what returned by get_kpoints()

	
labels

	Labels associated with the list of kpoints.
List of tuples with kpoint index and kpoint name: [(0,’G’),(13,’M’),...]

	
pbc

	The periodic boundary conditions along the vectors a1,a2,a3.

	Returns:	a tuple of three booleans, each one tells if there are periodic
boundary conditions for the i-th real-space direction (i=1,2,3)

	
set_cell(cell, pbc=None)[source]

	Set a cell to be used for symmetry analysis.
To set a cell from an AiiDA structure, use “set_cell_from_structure”.

	Parameters:	
	cell – 3x3 matrix of cell vectors. Orientation: each row
represent a lattice vector. Units are Angstroms.

	pbc – list of 3 booleans, True if in the nth crystal direction the
structure is periodic. Default = [True,True,True]

	
set_cell_from_structure(structuredata)[source]

	Set a cell to be used for symmetry analysis from an AiiDA structure.
Inherits both the cell and the pbc’s.
To set manually a cell, use “set_cell”

	Parameters:	structuredata – an instance of StructureData

	
set_kpoints(kpoints, cartesian=False, labels=None, weights=None, fill_values=0)[source]

	Set the list of kpoints. If a mesh has already been stored, raise a
ModificationNotAllowed

	Parameters:	
	kpoints – a list of kpoints, each kpoint being a list of one, two
or three coordinates, depending on self.pbc: if structure is 1D
(only one True in self.pbc) one allows singletons or scalars for
each k-point, if it’s 2D it can be a length-2 list, and in all
cases it can be a length-3 list.
Examples:

	[[0.,0.,0.],[0.1,0.1,0.1],...] for 1D, 2D or 3D

	[[0.,0.],[0.1,0.1,],...] for 1D or 2D

	[[0.],[0.1],...] for 1D

	[0., 0.1, ...] for 1D (list of scalars)

For 0D (all pbc are False), the list can be any of the above
or empty - then only Gamma point is set.
The value of k for the non-periodic dimension(s) is set by
fill_values

	cartesian – if True, the coordinates given in input are treated
as in cartesian units. If False, the coordinates are crystal,
i.e. in units of b1,b2,b3. Default = False

	labels – optional, the list of labels to be set for some of the
kpoints. See labels for more info

	weights – optional, a list of floats with the weight associated
to the kpoint list

	fill_values – scalar to be set to all
non-periodic dimensions (indicated by False in self.pbc), or list of
values for each of the non-periodic dimensions.

	
set_kpoints_mesh(mesh, offset=[0.0, 0.0, 0.0])[source]

	Set KpointsData to represent a uniformily spaced mesh of kpoints in the
Brillouin zone. This excludes the possibility of set/get kpoints

	Parameters:	
	mesh – a list of three integers, representing the size of the
kpoint mesh along b1,b2,b3.

	offset ((optional)) – a list of three floats between 0 and 1.
[0.,0.,0.] is Gamma centered mesh
[0.5,0.5,0.5] is half shifted
[1.,1.,1.] by periodicity should be equivalent to [0.,0.,0.]
Default = [0.,0.,0.].

	
set_kpoints_mesh_from_density(distance, offset=[0.0, 0.0, 0.0], force_parity=False)[source]

	Set a kpoints mesh using a kpoints density, expressed as the maximum
distance between adjacent points along a reciprocal axis

	Parameters:	
	distance – distance (in 1/Angstrom) between adjacent
kpoints, i.e. the number of kpoints along each reciprocal
axis i is [image: |b_i|/distance]
where [image: |b_i|] is the norm of the reciprocal cell vector.

	offset ((optional)) – a list of three floats between 0 and 1.
[0.,0.,0.] is Gamma centered mesh
[0.5,0.5,0.5] is half shifted
Default = [0.,0.,0.].

	force_parity ((optional)) – if True, force each integer in the mesh
to be even (except for the non-periodic directions).

	Note:	a cell should be defined first.

	Note:	the number of kpoints along non-periodic axes is always 1.

TrajectoryData

	
class aiida.orm.data.array.trajectory.TrajectoryData(*args, **kwargs)[source]

	Stores a trajectory (a sequence of crystal structures with timestamps, and
possibly with velocities).

	
get_cells()[source]

	Return the array of cells, if it has already been set.

	Raises:	KeyError – if the trajectory has not been set yet.

	
get_index_from_stepid(stepid)[source]

	Given a value for the stepid (i.e., a value among those of the steps
array), return the array index of that stepid, that can be used in other
methods such as get_step_data() or
get_step_structure().

New in version 0.7: Renamed from get_step_index

Note

Note that this function returns the first index found
(i.e. if multiple steps are present with the same value,
only the index of the first one is returned).

	Raises:	ValueError – if no step with the given value is found.

	
get_positions()[source]

	Return the array of positions, if it has already been set.

	Raises:	KeyError – if the trajectory has not been set yet.

	
get_step_data(index)[source]

	Return a tuple with all information concerning
the stepid with given index (0 is the first step, 1 the second step
and so on). If you know only the step value, use the
get_index_from_stepid() method to get the
corresponding index.

If no velocities were specified, None is returned as the last element.

	Returns:	A tuple in the format
(stepid, time, cell, symbols, positions, velocities),
where stepid is an integer, time is a float, cell is a
[image: 3 \times 3] matrix, symbols is an array of length n,
positions is a [image: n \times 3] array, and velocities is either
None or a [image: n \times 3] array

	Parameters:	index – The index of the step that you want to retrieve, from
0 to self.numsteps - 1.

	Raises:	
	IndexError – if you require an index beyond the limits.

	KeyError – if you did not store the trajectory yet.

	
get_step_index(step)[source]

	
Deprecated since version 0.7: Use get_index_from_stepid() instead.

	
get_step_structure(index, custom_kinds=None)[source]

	Return an AiiDA aiida.orm.data.structure.StructureData node
(not stored yet!) with the coordinates of the given step, identified by
its index. If you know only the step value, use the
get_index_from_stepid() method to get the corresponding index.

Note

The periodic boundary conditions are always set to True.

New in version 0.7: Renamed from step_to_structure

	Parameters:	
	index – The index of the step that you want to retrieve, from
0 to self.numsteps- 1.

	custom_kinds – (Optional) If passed must be a list of
aiida.orm.data.structure.Kind objects. There must be one
kind object for each different string in the symbols array, with
kind.name set to this string.
If this parameter is omitted, the automatic kind generation of AiiDA
aiida.orm.data.structure.StructureData nodes is used,
meaning that the strings in the symbols array must be valid
chemical symbols.

	
get_stepids()[source]

	Return the array of steps, if it has already been set.

New in version 0.7: Renamed from get_steps

	Raises:	KeyError – if the trajectory has not been set yet.

	
get_steps()[source]

	
Deprecated since version 0.7: Use get_stepids() instead.

	
get_symbols()[source]

	Return the array of symbols, if it has already been set.

	Raises:	KeyError – if the trajectory has not been set yet.

	
get_times()[source]

	Return the array of times (in ps), if it has already been set.

	Raises:	KeyError – if the trajectory has not been set yet.

	
get_velocities()[source]

	Return the array of velocities, if it has already been set.

Note

This function (differently from all other get_*
functions, will not raise an exception if the velocities are not
set, but rather return None (both if no trajectory was not set yet,
and if it the trajectory was set but no velocities were specified).

	
numsites

	Return the number of stored sites, or zero if nothing has been stored yet.

	
numsteps

	Return the number of stored steps, or zero if nothing has been stored yet.

	
set_structurelist(structurelist)[source]

	Create trajectory from the list of
aiida.orm.data.structure.StructureData instances.

	Parameters:	structurelist – a list of
aiida.orm.data.structure.StructureData instances.

	Raises:	ValueError – if symbol lists of supplied structures are
different

	
set_trajectory(stepids, cells, symbols, positions, times=None, velocities=None)[source]

	Store the whole trajectory, after checking that types and dimensions
are correct.
Velocities are optional, if they are not passed, nothing is stored.

	Parameters:	
	stepids – integer array with dimension s, where s is the
number of steps. Typically represents an internal counter
within the code. For instance, if you want to store a
trajectory with one step every 10, starting from step 65,
the array will be [65,75,85,...].
No checks are done on duplicate elements
or on the ordering, but anyway this array should be
sorted in ascending order, without duplicate elements.
If your code does not provide an internal counter, just
provide for instance arange(s).
It is internally stored as an array named ‘steps’.

	cells – float array with dimension [image: s \times 3 \times 3],
where s is the
length of the stepids array. Units are angstrom.
In particular,
cells[i,j,k] is the k-th component of the j-th
cell vector at the time step with index i (identified
by step number stepid[i] and with timestamp times[i]).

	symbols – string array with dimension n, where n is the
number of atoms (i.e., sites) in the structure.
The same array is used for each step. Normally, the string
should be a valid chemical symbol, but actually any unique
string works and can be used as the name of the atomic kind
(see also the get_step_structure() method).

	positions – float array with dimension [image: s \times n \times 3],
where s is the
length of the stepids array and n is the length
of the symbols array. Units are angstrom.
In particular,
positions[i,j,k] is the k-th component of the
j-th atom (or site) in the structure at the time step
with index i (identified
by step number step[i] and with timestamp times[i]).

	times – if specified, float array with dimension s, where
s is the length of the stepids array. Contains the
timestamp of each step in picoseconds (ps).

	velocities – if specified, must be a float array with the same
dimensions of the positions array.
The array contains the velocities in the atoms.

Todo

Choose suitable units for velocities

	
step_to_structure(index, custom_kinds=None)[source]

	
Deprecated since version 0.7: Use get_step_structure() instead.

ORM documentation: Calculations

	
class aiida.orm.implementation.general.calculation.AbstractCalculation[source]

	This class provides the definition of an “abstract” AiiDA calculation.
A calculation in this sense is any computation that converts data into data.

You will typically use one of its subclasses, often a JobCalculation for
calculations run via a scheduler.

	
add_link_from(src, label=None, link_type=<LinkType.INPUT: 'inputlink'>)[source]

	Add a link with a code as destination.

You can use the parameters of the base Node class, in particular the
label parameter to label the link.

	Parameters:	
	src – a node of the database. It cannot be a Calculation object.

	label (str) – Name of the link. Default=None

	link_type – The type of link, must be one of the enum values form
LinkType

	
get_code()[source]

	Return the code for this calculation, or None if the code
was not set.

	
get_linkname(link, *args, **kwargs)[source]

	Return the linkname used for a given input link

Pass as parameter “NAME” if you would call the use_NAME method.
If the use_NAME method requires a further parameter, pass that
parameter as the second parameter.

	
logger

	Get the logger of the Calculation object, so that it also logs to the
DB.

	Returns:	LoggerAdapter object, that works like a logger, but also has
the ‘extra’ embedded

	
aiida.orm.calculation.inline.optional_inline(func)[source]

	optional_inline wrapper/decorator takes a function, which can be called
either as wrapped in InlineCalculation or a simple function, depending
on ‘store’ keyworded argument (True stands for InlineCalculation, False
for simple function). The wrapped function has to adhere to the
requirements by make_inline wrapper/decorator.

Usage example:

@optional_inline
def copy_inline(source=None):
 return {'copy': source.copy()}

Function copy_inline will be wrapped in InlineCalculation when
invoked in following way:

copy_inline(source=node,store=True)

while it will be called as a simple function when invoked:

copy_inline(source=node)

In any way the copy_inline will return the same results.

	
class aiida.orm.implementation.general.calculation.job.AbstractJobCalculation[source]

	This class provides the definition of an AiiDA calculation that is run
remotely on a job scheduler.

	
add_link_from(src, label=None, link_type=<LinkType.INPUT: 'inputlink'>)[source]

	Add a link with a code as destination. Add the additional
contraint that this is only possible if the calculation
is in state NEW.

You can use the parameters of the base Node class, in particular the
label parameter to label the link.

	Parameters:	
	src – a node of the database. It cannot be a Calculation object.

	label (str) – Name of the link. Default=None

	link_type – The type of link, must be one of the enum values form
LinkType

	
get_append_text()[source]

	Get the calculation-specific append text,
which is going to be appended in the scheduler-job script, just after
the code execution.

	
get_custom_scheduler_commands()[source]

	Return a (possibly multiline) string with the commands that the user
wants to manually set for the scheduler.
See also the documentation of the corresponding
set_ method.

	Returns:	the custom scheduler command, or an empty string if no
custom command was defined.

	
get_environment_variables()[source]

	Return a dictionary of the environment variables that are set
for this calculation.

Return an empty dictionary if no special environment variables have
to be set for this calculation.

	
get_import_sys_environment()[source]

	To check if it’s loading the system environment
on the submission script.

	Returns:	a boolean. If True the system environment will be load.

	
get_job_id()[source]

	Get the scheduler job id of the calculation.

	Returns:	a string

	
get_max_memory_kb()[source]

	Get the memory (in KiloBytes) requested to the scheduler.

	Returns:	an integer

	
get_max_wallclock_seconds()[source]

	Get the max wallclock time in seconds requested to the scheduler.

	Returns:	an integer

	
get_mpirun_extra_params()[source]

	Return a list of strings, that are the extra params to pass to the
mpirun (or equivalent) command after the one provided in
computer.mpirun_command.
Example: mpirun -np 8 extra_params[0] extra_params[1] ... exec.x

Return an empty list if no parameters have been defined.

	
get_parser_name()[source]

	Return a string locating the module that contains
the output parser of this calculation, that will be searched
in the ‘aiida/parsers/plugins’ directory. None if no parser is needed/set.

	Returns:	a string.

	
get_parserclass()[source]

	Return the output parser object for this calculation, or None
if no parser is set.

	Returns:	a Parser class.

	Raise:	MissingPluginError from ParserFactory no plugin is found.

	
get_prepend_text()[source]

	Get the calculation-specific prepend text,
which is going to be prepended in the scheduler-job script, just before
the code execution.

	
get_priority()[source]

	Get the priority, if set, of the job on the cluster.

	Returns:	a string or None

	
get_queue_name()[source]

	Get the name of the queue on cluster.

	Returns:	a string or None.

	
get_resources(full=False)[source]

	Returns the dictionary of the job resources set.

	Parameters:	full – if True, also add the default values, e.g.
default_mpiprocs_per_machine

	Returns:	a dictionary

	
get_retrieved_node()[source]

	Return the retrieved data folder, if present.

	Returns:	the retrieved data folder object, or None if no such output
node is found.

	Raises:	MultipleObjectsError – if more than one output node is found.

	
get_scheduler_error()[source]

	Return the output of the scheduler error (a string) if the calculation
has finished, and output node is present, and the output of the
scheduler was retrieved.

Return None otherwise.

	
get_scheduler_output()[source]

	Return the output of the scheduler output (a string) if the calculation
has finished, and output node is present, and the output of the
scheduler was retrieved.

Return None otherwise.

	
get_scheduler_state()[source]

	Return the status of the calculation according to the cluster scheduler.

	Returns:	a string.

	
get_state(from_attribute=False)[source]

	Get the state of the calculation.

Note

the ‘most recent’ state is obtained using the logic in the
aiida.common.datastructures.sort_states function.

Todo

Understand if the state returned when no state entry is found
in the DB is the best choice.

	Parameters:	from_attribute – if set to True, read it from the attributes
(the attribute is also set with set_state, unless the state is set
to IMPORTED; in this way we can also see the state before storing).

	Returns:	a string. If from_attribute is True and no attribute is found,
return None. If from_attribute is False and no entry is found in the
DB, also return None.

	
get_withmpi()[source]

	Get whether the job is set with mpi execution.

	Returns:	a boolean. Default=True.

	
has_failed()[source]

	Get whether the calculation is in a failed status,
i.e. SUBMISSIONFAILED, RETRIEVALFAILED, PARSINGFAILED or FAILED.

	Returns:	a boolean

	
has_finished_ok()[source]

	Get whether the calculation is in the FINISHED status.

	Returns:	a boolean

	
kill()[source]

	Kill a calculation on the cluster.

Can only be called if the calculation is in status WITHSCHEDULER.

The command tries to run the kill command as provided by the scheduler,
and raises an exception is something goes wrong.
No changes of calculation status are done (they will be done later by
the calculation manager).

	
res

	To be used to get direct access to the parsed parameters.

	Returns:	an instance of the CalculationResultManager.

	Note:	a practical example on how it is meant to be used: let’s say that there is a key ‘energy’
in the dictionary of the parsed results which contains a list of floats.
The command calc.res.energy will return such a list.

	
set_append_text(val)[source]

	Set the calculation-specific append text,
which is going to be appended in the scheduler-job script, just after
the code execution.

	Parameters:	val – a (possibly multiline) string

	
set_custom_scheduler_commands(val)[source]

	Set a (possibly multiline) string with the commands that the user
wants to manually set for the scheduler.

The difference of this method with respect to the set_prepend_text
is the position in the scheduler submission file where such text is
inserted: with this method, the string is inserted before any
non-scheduler command.

	
set_environment_variables(env_vars_dict)[source]

	Set a dictionary of custom environment variables for this calculation.

Both keys and values must be strings.

In the remote-computer submission script, it’s going to export
variables as export 'keys'='values'

	
set_import_sys_environment(val)[source]

	If set to true, the submission script will load the system
environment variables.

	Parameters:	val (bool) – load the environment if True

	
set_max_memory_kb(val)[source]

	Set the maximum memory (in KiloBytes) to be asked to the scheduler.

	Parameters:	val – an integer. Default=None

	
set_max_wallclock_seconds(val)[source]

	Set the wallclock in seconds asked to the scheduler.

	Parameters:	val – An integer. Default=None

	
set_mpirun_extra_params(extra_params)[source]

	Set the extra params to pass to the
mpirun (or equivalent) command after the one provided in
computer.mpirun_command.
Example: mpirun -np 8 extra_params[0] extra_params[1] ... exec.x

	Parameters:	extra_params – must be a list of strings, one for each
extra parameter

	
set_parser_name(parser)[source]

	Set a string for the output parser
Can be None if no output plugin is available or needed.

	Parameters:	parser – a string identifying the module of the parser.
Such module must be located within the folder ‘aiida/parsers/plugins’

	
set_prepend_text(val)[source]

	Set the calculation-specific prepend text,
which is going to be prepended in the scheduler-job script, just before
the code execution.

See also set_custom_scheduler_commands

	Parameters:	val – a (possibly multiline) string

	
set_priority(val)[source]

	Set the priority of the job to be queued.

	Parameters:	val – the values of priority as accepted by the cluster scheduler.

	
set_queue_name(val)[source]

	Set the name of the queue on the remote computer.

	Parameters:	val (str) – the queue name

	
set_resources(resources_dict)[source]

	Set the dictionary of resources to be used by the scheduler plugin,
like the number of nodes, cpus, ...
This dictionary is scheduler-plugin dependent. Look at the documentation
of the scheduler.
(scheduler type can be found with
calc.get_computer().get_scheduler_type())

	
set_withmpi(val)[source]

	Set the calculation to use mpi.

	Parameters:	val – A boolean. Default=True

	
store(*args, **kwargs)[source]

	Override the store() method to store also the calculation in the NEW
state as soon as this is stored for the first time.

	
submit()[source]

	Puts the calculation in the TOSUBMIT status.

Actual submission is performed by the daemon.

	
submit_test(folder=None, subfolder_name=None)[source]

	Test submission, creating the files in a local folder.

	Note:	this submit_test function does not require any node
(neither the calculation nor the input links) to be stored yet.

	Parameters:	
	folder – A Folder object, within which each calculation files
are created; if not passed, a subfolder ‘submit_test’ of the current
folder is used.

	subfolder_name – the name of the subfolder to use for this
calculation (within Folder). If not passed, a unique string
starting with the date and time in the format yymmdd-HHMMSS-
is used.

	
class aiida.orm.implementation.general.calculation.job.CalculationResultManager(calc)[source]

	An object used internally to interface the calculation object with the Parser
and consequentially with the ParameterData object result.
It shouldn’t be used explicitely by a user.

	
__init__(calc)[source]

	

	Parameters:	calc – the calculation object.

Quantum ESPRESSO

Quantum Espresso - pw.x

Plugin to create a Quantum Espresso pw.x file.

	
class aiida.orm.calculation.job.quantumespresso.pw.PwCalculation(**kwargs)[source]

	Main DFT code (PWscf, pw.x) of the Quantum ESPRESSO distribution.
For more information, refer to http://www.quantum-espresso.org/

	
classmethod input_helper(*args, **kwargs)[source]

	Validate if the keywords are valid Quantum ESPRESSO pw.x keywords, and
also helps in preparing the input parameter dictionary in a
‘standardized’ form (e.g., converts ints to floats when required,
or if the flag flat_mode is specified, puts the keywords in the right
namelists).

This function calls
aiida.orm.calculation.job.quantumespresso.helpers.pw_input_helper(),
see its docstring for further information.

	
exception aiida.orm.calculation.job.quantumespresso.helpers.QEInputValidationError[source]

	This class is the exception that is generated by the parser when it
encounters an error while creating the input file of Quantum ESPRESSO.

	
aiida.orm.calculation.job.quantumespresso.helpers.pw_input_helper(input_params, structure, stop_at_first_error=False, flat_mode=False, version='5.4.0')[source]

	Validate if the input dictionary for Quantum ESPRESSO is valid.
Return the dictionary (possibly with small variations: e.g. convert
integer to float where necessary, recreate the proper structure
if flat_mode is True, ...) to use as input parameters (use_parameters)
for the pw.x calculation.

	Parameters:	
	input_params –
	If flat_mode is True, pass a dictionary

	with ‘key’ = value; use the correct type
(int, bool, ...) for value. If an array is required:

	if its length is fixed: pass a list of the required length

	if its length is ‘ntyp’: pass a dictionary, associating each
specie to its value.

	(other lengths are not supported)

Example:

{
'calculation': 'vc-relax',
'ecutwfc': 30.,
'hubbard_u': {'O': 1},
}

If instead flat_mode is False, pass a dictionary in the format
expected by AiiDA (keys are namelists, values are in the format
specified above, i.e. key/value pairs for all keywords in the
given namelist).
Example:

{
 'CONTROL': {
 'calculation': 'vc-relax'
 },
 'SYSTEM': {
 'hubbard_u': {'O': 1.0},
 'ecutwfc': 30.,
 },
},

	structure – the StructureData object used as input for QE pw.x

	stop_at_first_error – if True, stops at the first error.
Otherwise, when, possible, continue and give a global error for all
the issues encountered.

	flat_mode – if True, instead of passing the dictionary of namelists,
and inside the keywords, pass directly the keywords - this function
will return the correct dictionary to pass to the PwCalculation,
with the keywords arranged in the correct namelist.

	version – string with version number, used to find the correct XML
file descriptor. If not specified, uses the most recent version
available in the validator. It reads the definitions from the XML files
in the same folder as this python module. If the version is not
recognised, the Exception message will also suggest a close-by version.

	Raises:	QeInputValidationError – (subclass of InputValidationError) if
the input is not considered valid.

Quantum Espresso - Dos

Quantum Espresso - Projwfc

Quantum Espresso - PW immigrant

Plugin to immigrate a Quantum Espresso pw.x job that was not run using AiiDa.

	
class aiida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation(**kwargs)[source]

	Create a PwCalculation object that can be used to import old jobs.

This is a sublass of aiida.orm.calculation.quantumespresso.PwCalculation
with slight modifications to some of the class variables and additional
methods that

	parse the job’s input file to create the calculation’s input
nodes that would exist if the calculation were submitted using AiiDa,

	bypass the functions of the daemon, and prepare the node’s attributes
such that all the processes (copying of the files to the repository,
results parsing, ect.) can be performed

Note

The keyword arguments of PwCalculation are also available.

	Parameters:	
	remote_workdir (str) – Absolute path to the directory where the job was run.
The transport of the computer you link ask input to the calculation is
the transport that will be used to retrieve the calculation’s files.
Therefore, remote_workdir should be the absolute path to the job’s
directory on that computer.

	input_file_name (str) – The file name of the job’s input file.

	output_file_name (str) – The file name of the job’s output file (i.e. the
file containing the stdout of QE).

	
create_input_nodes(open_transport, input_file_name=None, output_file_name=None, remote_workdir=None)[source]

	Create calculation input nodes based on the job’s files.

	Parameters:	open_transport (aiida.transport.plugins.local.LocalTransport
| aiida.transport.plugins.ssh.SshTransport) – An open instance of the transport class of the
calculation’s computer. See the tutorial for more information.

This method parses the files in the job’s remote working directory to
create the input nodes that would exist if the calculation were
submitted using AiiDa. These nodes are

	a 'parameters' ParameterData node, based on the namelists and
their variable-value pairs;

	a 'kpoints' KpointsData node, based on the K_POINTS card;

	a 'structure' StructureData node, based on the
ATOMIC_POSITIONS and CELL_PARAMETERS cards;

	one 'pseudo_X' UpfData node for the pseudopotential used for
the atomic species with name X, as specified in the
ATOMIC_SPECIES card;

	a 'settings' ParameterData node, if there are any fixed
coordinates, or if the gamma kpoint is used;

and can be retrieved as a dictionary using the get_inputs_dict()
method. These input links are cached-links; nothing is stored by this
method (including the calculation node itself).

Note

QE stores the calculation’s pseudopotential files in the
<outdir>/<prefix>.save/ subfolder of the job’s working
directory, where outdir and prefix are QE CONTROL
variables (see
pw input file description [http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html]).
This method uses these files to either get–if the a node already
exists for the pseudo–or create a UpfData node for each
pseudopotential.

Keyword arguments

Note

These keyword arguments can also be set when instantiating the
class or using the set_ methods (e.g. set_remote_workdir).
Offering to set them here simply offers the user an additional
place to set their values. Only the values that have not yet been
set need to be specified.

	Parameters:	
	input_file_name (str) – The file name of the job’s input file.

	output_file_name (str) – The file name of the job’s output file (i.e.
the file containing the stdout of QE).

	remote_workdir (str) – Absolute path to the directory where the job
was run. The transport of the computer you link ask input to the
calculation is the transport that will be used to retrieve the
calculation’s files. Therefore, remote_workdir should be the
absolute path to the job’s directory on that computer.

	Raises:	
	aiida.common.exceptions.InputValidationError – if
open_transport is a different type of transport than the
computer’s.

	aiida.common.exceptions.InvalidOperation – if
open_transport is not open.

	aiida.common.exceptions.InputValidationError – if
remote_workdir, input_file_name, and/or output_file_name
are not set prior to or during the call of this method.

	aiida.common.exceptions.FeatureNotAvailable – if the input file
uses anything other than ibrav = 0, which is not currently
implimented in aiida.

	aiida.common.exceptions.ParsingError – if there are issues
parsing the input file.

	IOError – if there are issues reading the input file.

	
prepare_for_retrieval_and_parsing(open_transport)[source]

	Tell the daemon that the calculation is computed and ready to be parsed.

	Parameters:	open_transport (aiida.transport.plugins.local.LocalTransport
| aiida.transport.plugins.ssh.SshTransport) – An open instance of the transport class of the
calculation’s computer. See the tutorial for more information.

The next time the daemon updates the status of calculations, it will
see this job is in the ‘COMPUTED’ state and will retrieve its output
files and parse the results.

If the daemon is not currently running, nothing will happen until it is
started again.

This method also stores the calculation and all input nodes. It also
copies the original input file to the calculation’s repository folder.

	Raises:	
	aiida.common.exceptions.InputValidationError – if
open_transport is a different type of transport than the
computer’s.

	aiida.common.exceptions.InvalidOperation – if
open_transport is not open.

	
set_input_file_name(input_file_name)[source]

	Set the file name of the job’s input file (e.g. 'pw.in').

	Parameters:	input_file_name (str) – The file name of the job’s input file.

	
set_output_file_name(output_file_name)[source]

	Set the file name of the job’s output file (e.g. 'pw.out').

	Parameters:	output_file_name (str) – The file name of file containing the job’s
stdout.

	
set_output_subfolder(output_subfolder)[source]

	Manually set the job’s outdir variable (e.g. './out/').

Note

The outdir variable is normally set automatically by

	looking for the outdir CONTROL namelist variable

	looking for the $ESPRESSO_TMPDIR environment variable
on the calculation’s computer (using the transport)

	using the QE default, the calculation’s remote_workdir

but this method is made available to the user, in the event that
they wish to set it manually.

	Parameters:	output_subfolder (str) – The job’s outdir variable.

	
set_prefix(prefix)[source]

	Manually set the job’s prefix variable (e.g. 'pwscf').

Note

The prefix variable is normally set automatically by

	looking for the prefix CONTROL namelist variable

	using the QE default, 'pwscf'

but this method is made available to the user, in the event that
they wish to set it manually.

	Parameters:	prefix (str) – The job’s prefix variable.

	
set_remote_workdir(remote_workdir)[source]

	Set the job’s remote working directory.

	Parameters:	remote_workdir (str) – Absolute path of the job’s remote working
directory.

Wannier90 - Wannier90

TemplateReplacer

This is a simple plugin that takes two node inputs, both of type ParameterData,
with the following labels: template and parameters.
You can also add other SinglefileData nodes as input, that will be copied according to
what is written in ‘template’ (see below).

	parameters: a set of parameters that will be used for substitution.

	template: can contain the following parameters:

	input_file_template: a string with substitutions to be managed with the format() function of python, i.e. if you want to substitute a variable called ‘varname’, you write {varname} in the text. See http://www.python.org/dev/peps/pep-3101/ for more details. The replaced file will be the input file.

	input_file_name: a string with the file name for the input. If it is not provided, no file will be created.

	output_file_name: a string with the file name for the output. If it is not provided, no redirection will be done and the output will go in the scheduler output file.

	cmdline_params: a list of strings, to be passed as command line parameters. Each one is substituted with the same rule of input_file_template. Optional

	input_through_stdin: if True, the input file name is passed via stdin. Default is False if missing.

	files_to_copy: if defined, a list of tuple pairs, with format (‘link_name’, ‘dest_rel_path’); for each tuple, an input link to this calculation is looked for, with link labeled ‘link_label’, and with file type ‘Singlefile’, and the content is copied to a remote file named ‘dest_rel_path’ Errors are raised in the input links are non-existent, or of the wrong type, or if there are unused input files.

TODO: probably use Python’s Template strings instead??
TODO: catch exceptions

	
class aiida.orm.calculation.job.simpleplugins.templatereplacer.TemplatereplacerCalculation(**kwargs)[source]

	Simple stub of a plugin that can be used to replace some text in a given
template. Can be used for many different codes, or as a starting point
to develop a new plugin.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Developer’s guide

 	Sphinx cheatsheet

Calculation parsers

This section describes the different parsers classes for calculations.

Quantum ESPRESSO parsers

	
aiida.parsers.plugins.quantumespresso.convert_qe2aiida_structure(output_dict, input_structure=None)[source]

	Receives the dictionary cell parsed from quantum espresso
Convert it into an AiiDA structure object

Basic Raw Cp Parser

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_text_output(data, xml_data)[source]

	data must be a list of strings, one for each lines, as returned by readlines().
On output, a dictionary with parsed values

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_traj_stanzas(num_elements, splitlines, prepend_name, rescale=1.0)[source]

	num_elements: Number of lines (with three elements) between lines with two only
elements (containing step number and time in ps).
num_elements is 3 for cell, and the number of atoms for coordinates and positions.

splitlines: a list of lines of the file, already split in pieces using string.split

prepend_name: a string to be prepended to the name of keys returned
in the return dictionary.

rescale: the values in each stanza are multiplied by this factor, for units conversion

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_xml_counter_output(data)[source]

	Parse xml file print_counter.xml
data must be a single string, as returned by file.read() (notice the
difference with parse_text_output!)
On output, a dictionary with parsed values.

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp.parse_cp_xml_output(data)[source]

	Parse xml data
data must be a single string, as returned by file.read() (notice the
difference with parse_text_output!)
On output, a dictionary with parsed values.
Democratically, we have decided to use picoseconds as units of time, eV for energies, Angstrom for lengths.

Basic Raw Pw Parser

A collection of function that are used to parse the output of Quantum Espresso PW.
The function that needs to be called from outside is parse_raw_output().
The functions mostly work without aiida specific functionalities.
The parsing will try to convert whatever it can in some dictionary, which
by operative decision doesn’t have much structure encoded, [the values are simple]

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.cell_volume(a1, a2, a3)[source]

	returns the volume of the primitive cell: |a1.(a2xa3)|

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.convert_list_to_matrix(in_matrix, n_rows, n_columns)[source]

	converts a list into a list of lists (a matrix like) with n_rows and n_columns

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.convert_qe_time_to_sec(timestr)[source]

	Given the walltime string of Quantum Espresso, converts it in a number of
seconds (float).

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_QE_errors(lines, count, warnings)[source]

	Parse QE errors messages (those appearing between some lines with
'%%%%%%%%')

	Parameters:	
	lines – list of strings, the output text file as read by readlines()
or as obtained by data.split(‘n’) when data is the text file read by read()

	count – the line at which we identified some '%%%%%%%%'

	warnings – the warnings already parsed in the file

	Return messages:

		a list of QE error messages

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_pw_text_output(data, xml_data=None, structure_data=None, input_dict=None)[source]

	Parses the text output of QE-PWscf.

	Parameters:	
	data – a string, the file as read by read()

	xml_data – the dictionary with the keys read from xml.

	structure_data – dictionary, coming from the xml, with info on the structure

	Return parsed_data:

		dictionary with key values, referring to quantities
at the last scf step.

	Return trajectory_data:

		key,values referring to intermediate scf steps,
as in the case of vc-relax. Empty dictionary if no
value is present.

	Return critical_messages:

		a list with critical messages. If any is found in
parsed_data[‘warnings’], the calculation is FAILED!

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_pw_xml_output(data, dir_with_bands=None)[source]

	Parse the xml data of QE v5.0.x
Input data must be a single string, as returned by file.read()
Returns a dictionary with parsed values

	
aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw.parse_raw_output(out_file, input_dict, parser_opts=None, xml_file=None, dir_with_bands=None)[source]

	Parses the output of a calculation
Receives in input the paths to the output file and the xml file.

	Parameters:	
	out_file – path to pw std output

	input_dict – not used

	parser_opts – not used

	dir_with_bands – path to directory with all k-points (Kxxxxx) folders

	xml_file – path to QE data-file.xml

	Returns out_dict:

		a dictionary with parsed data

	Return successful:

		a boolean that is False in case of failed calculations

	Raises:	
	QEOutputParsingError – for errors in the parsing,

	AssertionError – if two keys in the parsed dicts are found to be qual

3 different keys to check in output: parser_warnings, xml_warnings and warnings.
On an upper level, these flags MUST be checked.
The first two are expected to be empty unless QE failures or unfinished jobs.

Basic Pw Parser

	
class aiida.parsers.plugins.quantumespresso.basicpw.BasicpwParser(calc)[source]

	This class is the implementation of the Parser class for PWscf.

	
get_linkname_out_kpoints()[source]

	Returns the name of the link to the output_kpoints
Node exists if cell has changed and no bands are stored.

	
get_linkname_outarray()[source]

	Returns the name of the link to the output_array
Node may exist in case of calculation=’scf’

	
get_linkname_outstructure()[source]

	Returns the name of the link to the output_structure
Node exists if positions or cell changed.

	
get_linkname_outtrajectory()[source]

	Returns the name of the link to the output_trajectory.
Node exists in case of calculation=’md’, ‘vc-md’, ‘relax’, ‘vc-relax’

	
get_parser_settings_key()[source]

	Return the name of the key to be used in the calculation settings, that
contains the dictionary with the parser_options

	
parse_with_retrieved(retrieved)[source]

	Receives in input a dictionary of retrieved nodes.
Does all the logic here.

Constants

Physical or mathematical constants.
Since every code has its own conversion units, this module defines what
QE understands as for an eV or other quantities.
Whenever possible, we try to use the constants defined in
:py:mod:aiida.common.constants:, but if some constants are slightly different
among different codes (e.g., different standard definition), we define
the constants in this file.

Cp Parser

	
class aiida.parsers.plugins.quantumespresso.cp.CpParser(calc)[source]

	This class is the implementation of the Parser class for Cp.

	
get_linkname_trajectory()[source]

	Returns the name of the link to the output_structure (None if not present)

	
parse_with_retrieved(retrieved)[source]

	Receives in input a dictionary of retrieved nodes.
Does all the logic here.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Modules

QueryTool documentation

This section describes the querytool class for querying nodes
with an easy Python interface.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Modules

QueryBuilder documentation

The general functionalities that all querybuilders need to have
are found in this module.
AbstractQueryBuilder() is the abstract class for QueryBuilder classes.
Subclasses need to be written for every schema/backend implemented
in backends.

	
class aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder(*args, **kwargs)[source]

	QueryBuilderBase is the base class for QueryBuilder classes,
which are than adapted to the individual schema and ORM used.
In here, general graph traversal functionalities are implemented,
the specific type of node and link is dealt in subclasses.
In order to load the correct subclass:

from aiida.orm.querybuilder import QueryBuilder

	
add_filter(tagspec, filter_spec)[source]

	Adding a filter to my filters.

	Parameters:	
	tagspec – The tag, which has to exist already as a key
in self._filters

	filter_spec – The specifications for the filter, has to be a dictionary

	
add_projection(tag_spec, projection_spec)[source]

	Adds a projection

	Parameters:	
	tag_spec – A valid specification for a tag

	projection_spec – The specification for the projection.
A projection is a list of dictionaries, with each dictionary
containing key-value pairs where the key is database entity
(e.g. a column / an attribute) and the value is (optional)
additional information on how to process this database entity.

If the given projection_spec is not a list, it will be expanded to
a list.
If the listitems are not dictionaries, but strings (No additional
processing of the projected results desired), they will be expanded to
dictionaries.

Usage:

qb = QueryBuilder()
qb.append(StructureData, tag='struc')

Will project the uuid and the kinds
qb.add_projection('struc', ['uuid', 'attributes.kinds'])

	
all(batch_size=None)[source]

	Executes the full query with the order of the rows as returned by the backend.
the order inside each row is given by the order of the vertices in the path
and the order of the projections for each vertice in the path.

	Parameters:	batch_size (int) – The size of the batches to ask the backend to batch results in subcollections.
You can optimize the speed of the query by tuning this parameter.
Leave the default (None) if speed is not critical or if you don’t know
what you’re doing!

	Returns:	a list of lists of all projected entities.

	
append(cls=None, type=None, tag=None, autotag=False, filters=None, project=None, subclassing=True, edge_tag=None, edge_filters=None, edge_project=None, **kwargs)[source]

	Any iterative procedure to build the path for a graph query
needs to invoke this method to append to the path.

	Parameters:	
	cls – The Aiida-class (or backend-class) defining the appended vertice

	type – The type of the class, if cls is not given

	tag – A unique tag. If none is given, will take the classname.
See keyword autotag to achieve unique tag.

	filters – Filters to apply for this vertice.
See usage examples for details.

	autotag – Whether to search for a unique tag,
(default False). If True, will find a unique tag.
Cannot be set to True if tag is specified.

	subclassing – Whether to include subclasses of the given class
(default True).
E.g. Specifying JobCalculation will include PwCalculation

A small usage example how this can be invoked:

qb = QueryBuilder() # Instantiating empty querybuilder instance
qb.append(cls=StructureData) # First item is StructureData node
The
next node in the path is a PwCalculation, with
the structure joined as an input
qb.append(
 cls=PwCalculation,
 output_of=StructureData
)

	Returns:	self

	
children(**kwargs)[source]

	Join to children/descendants of previous vertice in path.

	Returns:	self

	
count()[source]

	Counts the number of rows returned by the backend.

	Returns:	the number of rows as an integer

	
dict(batch_size=None)[source]

	Executes the full query with the order of the rows as returned by the backend.
the order inside each row is given by the order of the vertices in the path
and the order of the projections for each vertice in the path.

	Parameters:	batch_size (int) – The size of the batches to ask the backend to batch results in subcollections.
You can optimize the speed of the query by tuning this parameter.
Leave the default (None) if speed is not critical or if you don’t know
what you’re doing!

	Returns:	a list of dictionaries of all projected entities.
Each dictionary consists of key value pairs, where the key is the tag
of the vertice and the value a dictionary of key-value pairs where key
is the entity description (a column name or attribute path)
and the value the value in the DB.

Usage:

qb = QueryBuilder()
qb.append(
 StructureData,
 tag='structure',
 filters={'uuid':{'==':myuuid}},
)
qb.append(
 Node,
 descendant_of='structure',
 project=['type', 'id'], # returns type (string) and id (string)
 tag='descendant'
)

Return the dictionaries:
print "qb.iterdict()"
for d in qb.iterdict():
 print '>>>', d

results in the following output:

qb.iterdict()
>>> {'descendant': {
 'type': u'calculation.job.quantumespresso.pw.PwCalculation.',
 'id': 7716}
 }
>>> {'descendant': {
 'type': u'data.remote.RemoteData.',
 'id': 8510}
 }

	
distinct()[source]

	Asks for distinct rows.
Does not execute the query!
If you want a distinct query:

qb = QueryBuilder(**queryhelp)
qb.distinct().all() # or
qb.distinct().get_results_dict()

	Returns:	self

	
except_if_input_to(calc_class)[source]

	Makes counterquery based on the own path, only selecting
entries that have been input to calc_class

	Parameters:	calc_class – The calculation class to check against

	Returns:	self

	
first()[source]

	Executes query asking for one instance.
Use as follows:

qb = QueryBuilder(**queryhelp)
qb.first()

	Returns:	One row of results as a list, order as given by
order of vertices in path and projections for vertice

	
get_alias(tag)[source]

	In order to continue a query by the user, this utility function
returns the aliased ormclasses.

	Parameters:	tag – The tag for a vertice in the path

	Returns:	the alias given for that vertice

	
get_aliases()[source]

	

	Returns:	the list of aliases

	
get_json_compatible_queryhelp()[source]

	Makes the queryhelp a json - compatible dictionary.
In this way,the queryhelp can be stored in a node
in the database and retrieved or shared.

	Returns:	the json-compatible queryhelp

All classes defined in the input are
converted to strings specifying the type,
for example:

	
get_query()[source]

	Checks if the query instance is still valid by hashing the queryhelp.
If not invokes QueryBuilderBase._build().

	Returns:	an instance of sqlalchemy.orm.Query

	
get_results_dict()[source]

	Deprecated, use QueryBuilderBase.dict() or
QueryBuilderBase.iterdict() instead

	
inject_query(query)[source]

	Manipulate the query an inject it back.
This can be done to add custom filters using SQLA.
:param query: A sqlalchemy.orm.Query instance

	
inputs(**kwargs)[source]

	Join to inputs of previous vertice in path.

	Returns:	self

	
iterall(batch_size=100)[source]

	Same as QueryBuilderBase.all(), but returns a generator.
Be aware that this is only safe if no commit will take place during this
transaction. You might also want to read the SQLAlchemy documentation on
http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query.yield_per

	Parameters:	batch_size (int) – The size of the batches to ask the backend to batch results in subcollections.
You can optimize the speed of the query by tuning this parameter.

	Returns:	a generator of lists

	
iterdict(batch_size=100)[source]

	Same as QueryBuilderBase.dict(), but returns a generator.
Be aware that this is only safe if no commit will take place during this
transaction. You might also want to read the SQLAlchemy documentation on
http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query.yield_per

	Parameters:	batch_size (int) – The size of the batches to ask the backend to batch results in subcollections.
You can optimize the speed of the query by tuning this parameter.

	Returns:	a generator of dictionaries

	
limit(limit)[source]

	Set the limit (nr of rows to return)

	Parameters:	limit (int) – integers of nr of rows to return

	
offset(offset)[source]

	Set the offset. If offset is set, that many rows are skipped before returning.
offset = 0 is the same as omitting setting the offset.
If both offset and limit appear,
then offset rows are skipped before starting to count the limit rows
that are returned.

	Parameters:	offset (int) – integers of nr of rows to skip

	
order_by(order_by)[source]

	Set the entity to order by

	Parameters:	order_by – This is a list of items, where each item is a dictionary specifies
what to sort for an entity

In each dictionary in that list, keys represent valid tags of
entities (tables), and values are list of columns.

Usage:

#Sorting by id (ascending):
qb = QueryBuilder()
qb.append(Node, tag='node')
qb.order_by({'node':['id']})

or
#Sorting by id (ascending):
qb = QueryBuilder()
qb.append(Node, tag='node')
qb.order_by({'node':[{'id':{'order':'asc'}}]})

for descending order:
qb = QueryBuilder()
qb.append(Node, tag='node')
qb.order_by({'node':[{'id':{'order':'desc'}}]})

or (shorter)
qb = QueryBuilder()
qb.append(Node, tag='node')
qb.order_by({'node':[{'id':'desc'}]})

	
outputs(**kwargs)[source]

	Join to outputs of previous vertice in path.

	Returns:	self

	
parents(**kwargs)[source]

	Join to parents/ancestors of previous vertice in path.

	Returns:	self

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Modules

DbImporter documentation

Generic database importer class

This section describes the base class for the import of data
from external databases.

	
aiida.tools.dbimporters.DbImporterFactory(pluginname)[source]

	This function loads the correct DbImporter plugin class

	
class aiida.tools.dbimporters.baseclasses.CifEntry(db_name=None, db_uri=None, id=None, version=None, extras={}, uri=None)[source]

	Represents an entry from the structure database (COD, ICSD, ...).

	
cif

	Returns raw contents of a CIF file as string.

	
get_aiida_structure()[source]

	

	Returns:	AiiDA structure corresponding to the CIF file.

	
get_ase_structure()[source]

	Returns ASE representation of the CIF.

Note

To be removed, as it is duplicated in
aiida.orm.data.cif.CifData.

	
get_cif_node(store=False)[source]

	Creates a CIF node, that can be used in AiiDA workflow.

	Returns:	aiida.orm.data.cif.CifData object

	
get_parsed_cif()[source]

	Returns data structure, representing the CIF file. Can be created
using PyCIFRW or any other open-source parser.

	Returns:	list of lists

	
get_raw_cif()[source]

	Returns raw contents of a CIF file as string.

	Returns:	contents of a file as string

	
class aiida.tools.dbimporters.baseclasses.DbEntry(db_name=None, db_uri=None, id=None, version=None, extras={}, uri=None)[source]

	Represents an entry from external database.

	
contents

	Returns raw contents of a file as string.

	
class aiida.tools.dbimporters.baseclasses.DbImporter[source]

	Base class for database importers.

	
get_supported_keywords()[source]

	Returns the list of all supported query keywords.

	Returns:	list of strings

	
query(**kwargs)[source]

	Method to query the database.

	Parameters:	
	id – database-specific entry identificator

	element – element name from periodic table of elements

	number_of_elements – number of different elements

	mineral_name – name of mineral

	chemical_name – chemical name of substance

	formula – chemical formula

	volume – volume of the unit cell in cubic angstroms

	spacegroup – symmetry space group symbol in Hermann-Mauguin
notation

	spacegroup_hall – symmetry space group symbol in Hall
notation

	a – length of lattice vector in angstroms

	b – length of lattice vector in angstroms

	c – length of lattice vector in angstroms

	alpha – angles between lattice vectors in degrees

	beta – angles between lattice vectors in degrees

	gamma – angles between lattice vectors in degrees

	z – number of the formula units in the unit cell

	measurement_temp – temperature in kelvins at which the
unit-cell parameters were measured

	measurement_pressure – pressure in kPa at which the
unit-cell parameters were measured

	diffraction_temp – mean temperature in kelvins at which
the intensities were measured

	diffraction_pressure – mean pressure in kPa at which the
intensities were measured

	authors – authors of the publication

	journal – name of the journal

	title – title of the publication

	year – year of the publication

	journal_volume – journal volume of the publication

	journal_issue – journal issue of the publication

	first_page – first page of the publication

	last_page – last page of the publication

	doi – digital object identifyer (DOI), refering to the
publication

	Raises:	NotImplementedError – if search using given keyword is not
implemented.

	
setup_db(**kwargs)[source]

	Sets the database parameters. The method should reconnect to the
database using updated parameters, if already connected.

	
class aiida.tools.dbimporters.baseclasses.DbSearchResults(results)[source]

	Base class for database results.

All classes, inheriting this one and overriding at(), are able to
benefit from having functions __iter__, __len__ and
__getitem__.

	
class DbSearchResultsIterator(results, increment=1)[source]

	Iterator for search results

	
DbSearchResults.__iter__()[source]

	Instances of
aiida.tools.dbimporters.baseclasses.DbSearchResults can
be used as iterators.

	
DbSearchResults.at(position)[source]

	Returns position-th result as
aiida.tools.dbimporters.baseclasses.DbEntry.

	Parameters:	position – zero-based index of a result.

	Raises:	IndexError – if position is out of bounds.

	
DbSearchResults.fetch_all()[source]

	Returns all query results as an array of
aiida.tools.dbimporters.baseclasses.DbEntry.

	
DbSearchResults.next()[source]

	Returns the next result of the query (instance of
aiida.tools.dbimporters.baseclasses.DbEntry).

	Raises:	StopIteration – when the end of result array is reached.

	
class aiida.tools.dbimporters.baseclasses.UpfEntry(db_name=None, db_uri=None, id=None, version=None, extras={}, uri=None)[source]

	Represents an entry from the pseudopotential database.

	
get_upf_node(store=False)[source]

	Creates an UPF node, that can be used in AiiDA workflow.

	Returns:	aiida.orm.data.upf.UpfData object

Structural databases

COD database importer

	
class aiida.tools.dbimporters.plugins.cod.CodDbImporter(**kwargs)[source]

	Database importer for Crystallography Open Database.

	
get_supported_keywords()[source]

	Returns the list of all supported query keywords.

	Returns:	list of strings

	
query(**kwargs)[source]

	Performs a query on the COD database using keyword = value pairs,
specified in kwargs.

	Returns:	an instance of
aiida.tools.dbimporters.plugins.cod.CodSearchResults.

	
query_sql(**kwargs)[source]

	Forms a SQL query for querying the COD database using
keyword = value pairs, specified in kwargs.

	Returns:	string containing a SQL statement.

	
setup_db(**kwargs)[source]

	Changes the database connection details.

	
class aiida.tools.dbimporters.plugins.cod.CodEntry(uri, db_name='Crystallography Open Database', db_uri='http://www.crystallography.net', **kwargs)[source]

	Represents an entry from COD.

	
class aiida.tools.dbimporters.plugins.cod.CodSearchResults(results)[source]

	Results of the search, performed on COD.

ICSD database importer

	
exception aiida.tools.dbimporters.plugins.icsd.CifFileErrorExp[source]

	Raised when the author loop is missing in a CIF file.

	
class aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter(**kwargs)[source]

	Importer for the Inorganic Crystal Structure Database, short ICSD, provided by
FIZ Karlsruhe. It allows to run queries and analyse all the results.
See the DbImporter documentation and
tutorial page for more information.

	Parameters:	
	server – Server URL, the web page of the database. It is
required in order to have access to the full database.
I t should contain both the protocol and the domain name
and end with a slash, as in:

server = "http://ICSDSERVER.com/"

	urladd – part of URL which is added between query and and the server URL
(default: index.php?). only needed for web page query

	querydb – boolean, decides whether the mysql database is queried
(default: True).
If False, the query results are obtained through the web page
query, which is
restricted to a maximum of 1000 results per query.

	dl_db – icsd comes with a full (default: icsd) and a demo
database (icsdd).
This parameter allows the user to switch to the demo database
for testing purposes, if the access rights to the full database
are not granted.

	host – MySQL database host. If the MySQL database is hosted on
a different machine, use “127.0.0.1” as host, and open
a SSH tunnel to the host using:

ssh -L 3306:localhost:3306 username@hostname.com

or (if e.g. you get an URLError with Errno 111 (Connection refused)
upon querying):

ssh -L 3306:localhost:3306 -L 8010:localhost:80 username@hostname.com

	user – mysql database username (default: dba)

	passwd – mysql database password (default: sql)

	db – name of the database (default: icsd)

	port – Port to access the mysql database (default: 3306)

	
get_supported_keywords()[source]

	

	Returns:	List of all supported query keywords.

	
query(**kwargs)[source]

	Depending on the db_parameters, the mysql database or the web page are queried.
Valid parameters are found using IcsdDbImporter.get_supported_keywords().

	Parameters:	kwargs – A list of ‘’keyword = [values]’’ pairs.

	
setup_db(**kwargs)[source]

	Change the database connection details.
At least the host server has to be defined.

	Parameters:	kwargs – db_parameters for the mysql database connection
(host, user, passwd, db, port)

	
class aiida.tools.dbimporters.plugins.icsd.IcsdEntry(uri, **kwargs)[source]

	Represent an entry from Icsd.

	Note:	
	Before July 2nd 2015, source[‘id’] contained icsd.IDNUM (internal
icsd id number) and source[‘extras’][‘cif_nr’] the cif number
(icsd.COLL_CODE).

	After July 2nd 2015, source[‘id’] has been replaced by the cif
number and source[‘extras’][‘idnum’] is icsd.IDNUM .

	
cif

	

	Returns:	cif file of Icsd entry.

	
get_aiida_structure()[source]

	

	Returns:	AiiDA structure corresponding to the CIF file.

	
get_ase_structure()[source]

	

	Returns:	ASE structure corresponding to the cif file.

	
get_cif_node()[source]

	Create a CIF node, that can be used in AiiDA workflow.

	Returns:	aiida.orm.data.cif.CifData object

	
get_corrected_cif()[source]

	Add quotes to the lines in the author loop if missing.

	Note:	ase raises an AssertionError if the quotes in the
author loop are missing.

	
class aiida.tools.dbimporters.plugins.icsd.IcsdSearchResults(query, db_parameters)[source]

	Result manager for the query performed on ICSD.

	Parameters:	
	query – mysql query or webpage query

	db_parameters – database parameter setup during the
initialisation of the IcsdDbImporter.

	
at(position)[source]

	Return position-th result as IcsdEntry.

	
next()[source]

	Return next result as IcsdEntry.

	
query_db_version()[source]

	Query the version of the icsd database (last row of RELEASE_TAGS).

	
query_page()[source]

	Query the mysql or web page database, depending on the db_parameters.
Store the number_of_results, cif file number and the corresponding icsd number.

	Note:	Icsd uses its own number system, different from the CIF
file numbers.

	
exception aiida.tools.dbimporters.plugins.icsd.NoResultsWebExp[source]

	Raised when a webpage query returns no results.

	
aiida.tools.dbimporters.plugins.icsd.correct_cif(cif)[source]

	Correct the format of the CIF files.
At the moment, it only fixes missing quotes in the authors field
(ase.read.io only works if the author names are quoted,
if not an AssertionError is raised).

	Parameters:	cif – A string containing the content of the CIF file.

	Returns:	a string containing the corrected CIF file.

MPOD database importer

	
class aiida.tools.dbimporters.plugins.mpod.MpodDbImporter(**kwargs)[source]

	Database importer for Material Properties Open Database.

	
get_supported_keywords()[source]

	Returns the list of all supported query keywords.

	Returns:	list of strings

	
query(**kwargs)[source]

	Performs a query on the MPOD database using keyword = value pairs,
specified in kwargs.

	Returns:	an instance of
aiida.tools.dbimporters.plugins.mpod.MpodSearchResults.

	
query_get(**kwargs)[source]

	Forms a HTTP GET query for querying the MPOD database.
May return more than one query in case an intersection is needed.

	Returns:	a list containing strings for HTTP GET statement.

	
setup_db(query_url=None, **kwargs)[source]

	Changes the database connection details.

	
class aiida.tools.dbimporters.plugins.mpod.MpodEntry(uri, **kwargs)[source]

	Represents an entry from MPOD.

	
class aiida.tools.dbimporters.plugins.mpod.MpodSearchResults(results)[source]

	Results of the search, performed on MPOD.

OQMD database importer

	
class aiida.tools.dbimporters.plugins.oqmd.OqmdDbImporter(**kwargs)[source]

	Database importer for Open Quantum Materials Database.

	
get_supported_keywords()[source]

	Returns the list of all supported query keywords.

	Returns:	list of strings

	
query(**kwargs)[source]

	Performs a query on the OQMD database using keyword = value pairs,
specified in kwargs.

	Returns:	an instance of
aiida.tools.dbimporters.plugins.oqmd.OqmdSearchResults.

	
query_get(**kwargs)[source]

	Forms a HTTP GET query for querying the OQMD database.

	Returns:	a strings for HTTP GET statement.

	
setup_db(query_url=None, **kwargs)[source]

	Changes the database connection details.

	
class aiida.tools.dbimporters.plugins.oqmd.OqmdEntry(uri, **kwargs)[source]

	Represents an entry from OQMD.

	
class aiida.tools.dbimporters.plugins.oqmd.OqmdSearchResults(results)[source]

	Results of the search, performed on OQMD.

PCOD database importer

	
class aiida.tools.dbimporters.plugins.pcod.PcodDbImporter(**kwargs)[source]

	Database importer for Predicted Crystallography Open Database.

	
query(**kwargs)[source]

	Performs a query on the PCOD database using keyword = value pairs,
specified in kwargs.

	Returns:	an instance of
aiida.tools.dbimporters.plugins.pcod.PcodSearchResults.

	
query_sql(**kwargs)[source]

	Forms a SQL query for querying the PCOD database using
keyword = value pairs, specified in kwargs.

	Returns:	string containing a SQL statement.

	
class aiida.tools.dbimporters.plugins.pcod.PcodEntry(uri, db_name='Predicted Crystallography Open Database', db_uri='http://www.crystallography.net/pcod', **kwargs)[source]

	Represents an entry from PCOD.

	
class aiida.tools.dbimporters.plugins.pcod.PcodSearchResults(results)[source]

	Results of the search, performed on PCOD.

TCOD database importer

	
class aiida.tools.dbimporters.plugins.tcod.TcodDbImporter(**kwargs)[source]

	Database importer for Theoretical Crystallography Open Database.

	
query(**kwargs)[source]

	Performs a query on the TCOD database using keyword = value pairs,
specified in kwargs.

	Returns:	an instance of
aiida.tools.dbimporters.plugins.tcod.TcodSearchResults.

	
class aiida.tools.dbimporters.plugins.tcod.TcodEntry(uri, db_name='Theoretical Crystallography Open Database', db_uri='http://www.crystallography.net/tcod', **kwargs)[source]

	Represents an entry from TCOD.

	
class aiida.tools.dbimporters.plugins.tcod.TcodSearchResults(results)[source]

	Results of the search, performed on TCOD.

Other databases

NNINC database importer

	
class aiida.tools.dbimporters.plugins.nninc.NnincDbImporter(**kwargs)[source]

	Database importer for NNIN/C Pseudopotential Virtual Vault.

	
get_supported_keywords()[source]

	Returns the list of all supported query keywords.

	Returns:	list of strings

	
query(**kwargs)[source]

	Performs a query on the NNIN/C Pseudopotential Virtual Vault using
keyword = value pairs, specified in kwargs.

	Returns:	an instance of
aiida.tools.dbimporters.plugins.nninc.NnincSearchResults.

	
query_get(**kwargs)[source]

	Forms a HTTP GET query for querying the NNIN/C Pseudopotential
Virtual Vault.

	Returns:	a string with HTTP GET statement.

	
setup_db(query_url=None, **kwargs)[source]

	Changes the database connection details.

	
class aiida.tools.dbimporters.plugins.nninc.NnincEntry(uri, **kwargs)[source]

	Represents an entry from NNIN/C Pseudopotential Virtual Vault.

	
class aiida.tools.dbimporters.plugins.nninc.NnincSearchResults(results)[source]

	Results of the search, performed on NNIN/C Pseudopotential Virtual
Vault.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Modules

DbExporter documentation

TCOD database exporter

	
aiida.tools.dbexporters.tcod.cif_encode_contents(content, gzip=False, gzip_threshold=1024)[source]

	Encodes data for usage in CIF text field in a best possible way:
binary data is encoded using Base64 encoding; text with non-ASCII
symbols, too long lines or lines starting with semicolons (‘;’)
is encoded using Quoted-printable encoding.

	Parameters:	content – the content to be encoded

	Return content:	encoded content

	Return encoding:

		a string specifying used encoding (None, ‘base64’,
‘ncr’, ‘quoted-printable’, ‘gzip+base64’)

	
aiida.tools.dbexporters.tcod.decode_textfield(content, method)[source]

	Decodes the contents of encoded CIF textfield.

	Parameters:	
	content – the content to be decoded

	method – method, which was used for encoding the contents
(None, ‘base64’, ‘ncr’, ‘quoted-printable’, ‘gzip+base64’)

	Returns:	decoded content

	Raises:	ValueError – if the encoding method is unknown

	
aiida.tools.dbexporters.tcod.decode_textfield_base64(content)[source]

	Decodes the contents for CIF textfield from Base64 using standard
Python implementation (base64.standard_b64decode())

	Parameters:	content – a string with contents

	Returns:	decoded string

	
aiida.tools.dbexporters.tcod.decode_textfield_gzip_base64(content)[source]

	Decodes the contents for CIF textfield from Base64 and decompresses
them with gzip.

	Parameters:	content – a string with contents

	Returns:	decoded string

	
aiida.tools.dbexporters.tcod.decode_textfield_ncr(content)[source]

	Decodes the contents for CIF textfield from Numeric Character Reference.

	Parameters:	content – a string with contents

	Returns:	decoded string

	
aiida.tools.dbexporters.tcod.decode_textfield_quoted_printable(content)[source]

	Decodes the contents for CIF textfield from quoted-printable encoding.

	Parameters:	content – a string with contents

	Returns:	decoded string

	
aiida.tools.dbexporters.tcod.deposit(what, type, author_name=None, author_email=None, url=None, title=None, username=None, password=False, user_email=None, code_label='cif_cod_deposit', computer_name=None, replace=None, message=None, **kwargs)[source]

	Launches a
aiida.orm.calculation.job.JobCalculation
to deposit data node to *COD-type database.

	Returns:	launched aiida.orm.calculation.job.JobCalculation
instance.

	Raises:	ValueError – if any of the required parameters are not given.

	
aiida.tools.dbexporters.tcod.deposition_cmdline_parameters(parser, expclass='Data')[source]

	Provides descriptions of command line options, that are used to control
the process of deposition to TCOD.

	Parameters:	
	parser – an argparse.Parser instance

	expclass – name of the exported class to be shown in help string
for the command line options

Note

This method must not set any default values for command line
options in order not to clash with any other data deposition plugins.

	
aiida.tools.dbexporters.tcod.encode_textfield_base64(content, foldwidth=76)[source]

	Encodes the contents for CIF textfield in Base64 using standard Python
implementation (base64.standard_b64encode()).

	Parameters:	
	content – a string with contents

	foldwidth – maximum width of line (default is 76)

	Returns:	encoded string

	
aiida.tools.dbexporters.tcod.encode_textfield_gzip_base64(content, **kwargs)[source]

	Gzips the given string and encodes it in Base64.

	Parameters:	content – a string with contents

	Returns:	encoded string

	
aiida.tools.dbexporters.tcod.encode_textfield_ncr(content)[source]

	Encodes the contents for CIF textfield in Numeric Character Reference.
Encoded characters:

	\x09, \x0A, \x0D, \x20–\x7E;

	‘;‘, if encountered on the beginning of the line;

	‘\t‘

	‘.‘ and ‘?‘, if comprise the entire textfield.

	Parameters:	content – a string with contents

	Returns:	encoded string

	
aiida.tools.dbexporters.tcod.encode_textfield_quoted_printable(content)[source]

	Encodes the contents for CIF textfield in quoted-printable encoding.
In addition to non-ASCII characters, that are encoded by Python
function quopri.encodestring(), following characters are encoded:

	‘;‘, if encountered on the beginning of the line;

	‘\t‘

	‘.‘ and ‘?‘, if comprise the entire textfield.

	Parameters:	content – a string with contents

	Returns:	encoded string

	
aiida.tools.dbexporters.tcod.export_cif(what, **kwargs)[source]

	Exports given coordinate-containing *Data node to string of CIF
format.

	Returns:	string with contents of CIF file.

	
aiida.tools.dbexporters.tcod.export_cifnode(what, parameters=None, trajectory_index=None, store=False, reduce_symmetry=True, **kwargs)[source]

	The main exporter function. Exports given coordinate-containing *Data
node to aiida.orm.data.cif.CifData node, ready to be
exported to TCOD. All *Data types, having method _get_cif(), are
supported in addition to aiida.orm.data.cif.CifData.

	Parameters:	
	what – data node to be exported.

	parameters – a aiida.orm.data.parameter.ParameterData
instance, produced by the same calculation as the original exported
node.

	trajectory_index – a step to be converted and exported in case a
aiida.orm.data.array.trajectory.TrajectoryData is
exported.

	store – boolean indicating whether to store intermediate nodes or
not. Default False.

	dump_aiida_database – boolean indicating whether to include the
dump of AiiDA database (containing only transitive closure of the
exported node). Default True.

	exclude_external_contents – boolean indicating whether to exclude
nodes from AiiDA database dump, that are taken from external
repositores and have a URL link allowing to refetch their contents.
Default False.

	gzip – boolean indicating whether to Gzip large CIF text fields.
Default False.

	gzip_threshold – integer indicating the maximum size (in bytes) of
uncompressed CIF text fields when the gzip option is in action.
Default 1024.

	Returns:	a aiida.orm.data.cif.CifData node.

	
aiida.tools.dbexporters.tcod.export_values(what, **kwargs)[source]

	Exports given coordinate-containing *Data node to PyCIFRW CIF data
structure.

	Returns:	CIF data structure.

Note

Requires PyCIFRW.

	
aiida.tools.dbexporters.tcod.extend_with_cmdline_parameters(parser, expclass='Data')[source]

	Provides descriptions of command line options, that are used to control
the process of exporting data to TCOD CIF files.

	Parameters:	
	parser – an argparse.Parser instance

	expclass – name of the exported class to be shown in help string
for the command line options

Note

This method must not set any default values for command line
options in order not to clash with any other data export plugins.

	
aiida.tools.dbexporters.tcod.translate_calculation_specific_values(calc, translator, **kwargs)[source]

	Translates calculation-specific values from
aiida.orm.calculation.job.JobCalculation subclass to
appropriate TCOD CIF tags.

	Parameters:	
	calc – an instance of
aiida.orm.calculation.job.JobCalculation subclass.

	translator – class, derived from
aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator.

	Raises:	ValueError – if translator is not derived from proper class.

TCOD parameter translator documentation

Base class

	
class aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator[source]

	Base translator from calculation-specific input and output parameters
to TCOD CIF dictionary tags.

	
classmethod get_BZ_integration_grid_X(calc, **kwargs)[source]

	Returns a number of points in the Brillouin zone along reciprocal
lattice vector X.

	
classmethod get_BZ_integration_grid_Y(calc, **kwargs)[source]

	Returns a number of points in the Brillouin zone along reciprocal
lattice vector Y.

	
classmethod get_BZ_integration_grid_Z(calc, **kwargs)[source]

	Returns a number of points in the Brillouin zone along reciprocal
lattice vector Z.

	
classmethod get_BZ_integration_grid_shift_X(calc, **kwargs)[source]

	Returns the shift of the Brillouin zone points along reciprocal
lattice vector X.

	
classmethod get_BZ_integration_grid_shift_Y(calc, **kwargs)[source]

	Returns the shift of the Brillouin zone points along reciprocal
lattice vector Y.

	
classmethod get_BZ_integration_grid_shift_Z(calc, **kwargs)[source]

	Returns the shift of the Brillouin zone points along reciprocal
lattice vector Z.

	
classmethod get_atom_site_residual_force_Cartesian_x(calc, **kwargs)[source]

	Returns a list of x components for Cartesian coordinates of
residual force for atom. The list order MUST be the same as in
the resulting structure.

	
classmethod get_atom_site_residual_force_Cartesian_y(calc, **kwargs)[source]

	Returns a list of y components for Cartesian coordinates of
residual force for atom. The list order MUST be the same as in
the resulting structure.

	
classmethod get_atom_site_residual_force_Cartesian_z(calc, **kwargs)[source]

	Returns a list of z components for Cartesian coordinates of
residual force for atom. The list order MUST be the same as in
the resulting structure.

	
classmethod get_atom_type_basisset(calc, **kwargs)[source]

	Returns a list of basisset names for each atom type. The list
order MUST be the same as of get_atom_type_symbol().

	
classmethod get_atom_type_symbol(calc, **kwargs)[source]

	Returns a list of atom types. Each atom site MUST occur only
once in this list. List MUST be sorted.

	
classmethod get_atom_type_valence_configuration(calc, **kwargs)[source]

	Returns valence configuration of each atom type. The list order
MUST be the same as of get_atom_type_symbol().

	
classmethod get_computation_wallclock_time(calc, **kwargs)[source]

	Returns the computation wallclock time in seconds.

	
classmethod get_ewald_energy(calc, **kwargs)[source]

	Returns Ewald energy in eV.

	
classmethod get_exchange_correlation_energy(calc, **kwargs)[source]

	Returns exchange correlation (XC) energy in eV.

	
classmethod get_fermi_energy(calc, **kwargs)[source]

	Returns Fermi energy in eV.

	
classmethod get_hartree_energy(calc, **kwargs)[source]

	Returns Hartree energy in eV.

	
classmethod get_integration_Methfessel_Paxton_order(calc, **kwargs)[source]

	Returns the order of Methfessel-Paxton approximation if used.

	
classmethod get_integration_smearing_method(calc, **kwargs)[source]

	Returns the smearing method name as string.

	
classmethod get_integration_smearing_method_other(calc, **kwargs)[source]

	Returns the smearing method name as string if the name is different
from specified in cif_dft.dic.

	
classmethod get_kinetic_energy_cutoff_EEX(calc, **kwargs)[source]

	Returns kinetic energy cutoff for exact exchange (EEX)
operator in eV.

	
classmethod get_kinetic_energy_cutoff_charge_density(calc, **kwargs)[source]

	Returns kinetic energy cutoff for charge density in eV.

	
classmethod get_kinetic_energy_cutoff_wavefunctions(calc, **kwargs)[source]

	Returns kinetic energy cutoff for wavefunctions in eV.

	
classmethod get_number_of_electrons(calc, **kwargs)[source]

	Returns the number of electrons.

	
classmethod get_one_electron_energy(calc, **kwargs)[source]

	Returns one electron energy in eV.

	
classmethod get_software_executable_path(calc, **kwargs)[source]

	Returns the file-system path to the executable that was run for
this computation.

	
classmethod get_software_package(calc, **kwargs)[source]

	Returns the package or program name that was used to produce
the structure. Only package or program name should be used,
e.g. ‘VASP’, ‘psi3’, ‘Abinit’, etc.

	
classmethod get_software_package_compilation_timestamp(calc, **kwargs)[source]

	Returns the timestamp of package/program compilation in ISO 8601
format.

	
classmethod get_software_package_version(calc, **kwargs)[source]

	Returns software package version used to compute and produce
the computed structure file. Only version designator should be
used, e.g. ‘3.4.0’, ‘2.1rc3’.

	
classmethod get_total_energy(calc, **kwargs)[source]

	Returns the total energy in eV.

CP

	
class aiida.tools.dbexporters.tcod_plugins.cp.CpTcodtranslator[source]

	Quantum ESPRESSO’s CP-specific input and output parameter translator
to TCOD CIF dictionary tags.

	
classmethod get_computation_wallclock_time(calc, **kwargs)[source]

	Returns the computation wallclock time in seconds.

	
classmethod get_number_of_electrons(calc, **kwargs)[source]

	Returns the number of electrons.

	
classmethod get_software_package(calc, **kwargs)[source]

	Returns the package or program name that was used to produce
the structure. Only package or program name should be used,
e.g. ‘VASP’, ‘psi3’, ‘Abinit’, etc.

NWChem (pymatgen-based)

	
class aiida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator[source]

	NWChem’s input and output parameter translator to TCOD CIF dictionary
tags.

	
classmethod get_atom_type_basisset(calc, **kwargs)[source]

	Returns a list of basisset names for each atom type. The list
order MUST be the same as of get_atom_type_symbol().

	
classmethod get_atom_type_symbol(calc, **kwargs)[source]

	Returns a list of atom types. Each atom site MUST occur only
once in this list. List MUST be sorted.

	
classmethod get_atom_type_valence_configuration(calc, **kwargs)[source]

	Returns valence configuration of each atom type. The list order
MUST be the same as of get_atom_type_symbol().

	
classmethod get_software_package(calc, **kwargs)[source]

	Returns the package or program name that was used to produce
the structure. Only package or program name should be used,
e.g. ‘VASP’, ‘psi3’, ‘Abinit’, etc.

	
classmethod get_software_package_compilation_timestamp(calc, **kwargs)[source]

	Returns the timestamp of package/program compilation in ISO 8601
format.

	
classmethod get_software_package_version(calc, **kwargs)[source]

	Returns software package version used to compute and produce
the computed structure file. Only version designator should be
used, e.g. ‘3.4.0’, ‘2.1rc3’.

PW

	
class aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator[source]

	Quantum ESPRESSO’s PW-specific input and output parameter translator
to TCOD CIF dictionary tags.

	
classmethod get_BZ_integration_grid_X(calc, **kwargs)[source]

	Returns a number of points in the Brillouin zone along reciprocal
lattice vector X.

	
classmethod get_BZ_integration_grid_Y(calc, **kwargs)[source]

	Returns a number of points in the Brillouin zone along reciprocal
lattice vector Y.

	
classmethod get_BZ_integration_grid_Z(calc, **kwargs)[source]

	Returns a number of points in the Brillouin zone along reciprocal
lattice vector Z.

	
classmethod get_BZ_integration_grid_shift_X(calc, **kwargs)[source]

	Returns the shift of the Brillouin zone points along reciprocal
lattice vector X.

	
classmethod get_BZ_integration_grid_shift_Y(calc, **kwargs)[source]

	Returns the shift of the Brillouin zone points along reciprocal
lattice vector Y.

	
classmethod get_BZ_integration_grid_shift_Z(calc, **kwargs)[source]

	Returns the shift of the Brillouin zone points along reciprocal
lattice vector Z.

	
classmethod get_atom_site_residual_force_Cartesian_x(calc, **kwargs)[source]

	Returns a list of x components for Cartesian coordinates of
residual force for atom. The list order MUST be the same as in
the resulting structure.

	
classmethod get_atom_site_residual_force_Cartesian_y(calc, **kwargs)[source]

	Returns a list of y components for Cartesian coordinates of
residual force for atom. The list order MUST be the same as in
the resulting structure.

	
classmethod get_atom_site_residual_force_Cartesian_z(calc, **kwargs)[source]

	Returns a list of z components for Cartesian coordinates of
residual force for atom. The list order MUST be the same as in
the resulting structure.

	
classmethod get_computation_wallclock_time(calc, **kwargs)[source]

	Returns the computation wallclock time in seconds.

	
classmethod get_ewald_energy(calc, **kwargs)[source]

	Returns Ewald energy in eV.

	
classmethod get_exchange_correlation_energy(calc, **kwargs)[source]

	Returns exchange correlation (XC) energy in eV.

	
classmethod get_fermi_energy(calc, **kwargs)[source]

	Returns Fermi energy in eV.

	
classmethod get_hartree_energy(calc, **kwargs)[source]

	Returns Hartree energy in eV.

	
classmethod get_integration_Methfessel_Paxton_order(calc, **kwargs)[source]

	Returns the order of Methfessel-Paxton approximation if used.

	
classmethod get_integration_smearing_method(calc, **kwargs)[source]

	Returns the smearing method name as string.

	
classmethod get_integration_smearing_method_other(calc, **kwargs)[source]

	Returns the smearing method name as string if the name is different
from specified in cif_dft.dic.

	
classmethod get_kinetic_energy_cutoff_EEX(calc, **kwargs)[source]

	Returns kinetic energy cutoff for exact exchange (EEX)
operator in eV.

Note

by default returns ecutrho, as indicated in
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html

	
classmethod get_kinetic_energy_cutoff_charge_density(calc, **kwargs)[source]

	Returns kinetic energy cutoff for charge density in eV.

Note

by default returns 4 * ecutwfc, as indicated in
http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html

	
classmethod get_kinetic_energy_cutoff_wavefunctions(calc, **kwargs)[source]

	Returns kinetic energy cutoff for wavefunctions in eV.

	
classmethod get_number_of_electrons(calc, **kwargs)[source]

	Returns the number of electrons.

	
classmethod get_one_electron_energy(calc, **kwargs)[source]

	Returns one electron energy in eV.

	
classmethod get_software_package(calc, **kwargs)[source]

	Returns the package or program name that was used to produce
the structure. Only package or program name should be used,
e.g. ‘VASP’, ‘psi3’, ‘Abinit’, etc.

	
classmethod get_total_energy(calc, **kwargs)[source]

	Returns the total energy in eV.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	AiiDA 0.7.0 documentation

 	Modules

aiida.tools documentation

Tools

pw input parser

Tools for parsing QE PW input files and creating AiiDa Node objects based on
them.

	TODO: Parse CONSTRAINTS, OCCUPATIONS, ATOMIC_FORCES once they are implemented

	in AiiDa

	
class aiida.tools.codespecific.quantumespresso.pwinputparser.PwInputFile(pwinput)[source]

	Class used for parsing Quantum Espresso pw.x input files and using the info.

	Variables:	
	namelists – A nested dictionary of the namelists and their key-value
pairs. The namelists will always be upper-case keys, while the parameter
keys will always be lower-case.

For example:

{"CONTROL": {"calculation": "bands",
 "prefix": "al",
 "pseudo_dir": "./pseudo",
 "outdir": "./out"},
 "ELECTRONS": {"diagonalization": "cg"},
 "SYSTEM": {"nbnd": 8,
 "ecutwfc": 15.0,
 "celldm(1)": 7.5,
 "ibrav": 2,
 "nat": 1,
 "ntyp": 1}
}

	atomic_positions – A dictionary with

	units: the units of the positions (always lower-case) or None

	names: list of the atom names (e.g. 'Si', 'Si0',
'Si_0')

	positions: list of the [x, y, z] positions

	fixed_coords: list of [x, y, z] (bools) of the force modifications
(Note: True <–> Fixed, as defined in the
BasePwCpInputGenerator._if_pos method)

For example:

{'units': 'bohr',
 'names': ['C', 'O'],
 'positions': [[0.0, 0.0, 0.0],
 [0.0, 0.0, 2.5]]
 'fixed_coords': [[False, False, False],
 [True, True, True]]}

	cell_parameters – A dictionary (if CELL_PARAMETERS is present; else: None) with

	units: the units of the lattice vectors (always lower-case) or
None

	cell: 3x3 list with lattice vectors as rows

For example:

{'units': 'angstrom',
 'cell': [[16.9, 0.0, 0.0],
 [-2.6, 8.0, 0.0],
 [-2.6, -3.5, 7.2]]}

	k_points – A dictionary containing

	type: the type of kpoints (always lower-case)

	points: an Nx3 list of the kpoints (will not be present if type =
‘gamma’ or type = ‘automatic’)

	weights: a 1xN list of the kpoint weights (will not be present if
type = ‘gamma’ or type = ‘automatic’)

	mesh: a 1x3 list of the number of equally-spaced points in each
direction of the Brillouin zone, as in Monkhorst-Pack grids (only
present if type = ‘automatic’)

	offset: a 1x3 list of the grid offsets in each direction of the
Brillouin zone (only present if type = ‘automatic’)
(Note: The offset value for each direction will be one of
0.0 [no offset] or 0.5 [offset by half a grid step].
This differs from the Quantum Espresso convention, where an offset
value of 1 corresponds to a half-grid-step offset, but adheres
to the current AiiDa convention.

Examples:

{'type': 'crystal',
 'points': [[0.125, 0.125, 0.0],
 [0.125, 0.375, 0.0],
 [0.375, 0.375, 0.0]],
 'weights': [1.0, 2.0, 1.0]}

{'type': 'automatic',
 'points': [8, 8, 8],
 'offset': [0.0, 0.5, 0.0]}

{'type': 'gamma'}

	atomic_species – A dictionary with

	names: list of the atom names (e.g. ‘Si’, ‘Si0’, ‘Si_0’) (case
as-is)

	masses: list of the masses of the atoms in ‘names’

	pseudo_file_names: list of the pseudopotential file names for the
atoms in ‘names’ (case as-is)

Example:

{'names': ['Li', 'O', 'Al', 'Si'],
 'masses': [6.941, 15.9994, 26.98154, 28.0855],
 'pseudo_file_names': ['Li.pbe-sl-rrkjus_psl.1.0.0.UPF',
 'O.pbe-nl-rrkjus_psl.1.0.0.UPF',
 'Al.pbe-nl-rrkjus_psl.1.0.0.UPF',
 'Si3 28.0855 Si.pbe-nl-rrkjus_psl.1.0.0.UPF']

	
__init__(pwinput)[source]

	Parse inputs’s namelist and cards to create attributes of the info.

	Parameters:	pwinput – Any one of the following

	A string of the (existing) absolute path to the pwinput file.

	A single string containing the pwinput file’s text.

	A list of strings, with the lines of the file as the elements.

	A file object. (It will be opened, if it isn’t already.)

	Raises:	
	IOError – if pwinput is a file and there is a problem reading
the file.

	TypeError – if pwinput is a list containing any non-string
element(s).

	aiida.common.exceptions.ParsingError – if there are issues
parsing the pwinput.

	
get_kpointsdata()[source]

	Return a KpointsData object based on the data in the input file.

This uses all of the data in the input file to do the necessary unit
conversion, ect. and then creates an AiiDa KpointsData object.

Note: If the calculation uses only the gamma k-point (if
self.k_points[‘type’] == ‘gamma’), it is necessary to also attach a
settings node to the calculation with gamma_only = True.

	Returns:	KpointsData object of the kpoints in the input file

	Return type:	aiida.orm.data.array.kpoints.KpointsData

	Raises:	aiida.common.exceptions.NotImplimentedError – if the kpoints are
in a format not yet supported.

	
get_structuredata()[source]

	Return a StructureData object based on the data in the input file.

This uses all of the data in the input file to do the necessary unit
conversion, ect. and then creates an AiiDa StructureData object.

All of the names corresponding of the Kind objects composing the
StructureData object will match those found in the ATOMIC_SPECIES
block, so the pseudopotentials can be linked to the calculation using
the kind.name for each specific type of atom (in the event that you
wish to use different pseudo’s for two or more of the same atom).

	Returns:	StructureData object of the structure in the input file

	Return type:	aiida.orm.data.structure.StructureData

	Raises:	aiida.common.exceptions.ParsingError – if there are issues
parsing the input.

	
aiida.tools.codespecific.quantumespresso.pwinputparser.parse_atomic_positions(txt)[source]

	Return a dictionary containing info from the ATOMIC_POSITIONS card block
in txt.

Note

If the units are unspecified, they will be returned as None.

	Parameters:	txt (str) – A single string containing the QE input text to be parsed.

	Returns:	A dictionary with

	units: the units of the positions (always lower-case) or None

	names: list of the atom names (e.g. 'Si', 'Si0',
'Si_0')

	positions: list of the [x, y, z] positions

	fixed_coords: list of [x, y, z] (bools) of the force modifications
(Note: True <–> Fixed, as defined in the
BasePwCpInputGenerator._if_pos method)

For example:

{'units': 'bohr',
 'names': ['C', 'O'],
 'positions': [[0.0, 0.0, 0.0],
 [0.0, 0.0, 2.5]]
 'fixed_coords': [[False, False, False],
 [True, True, True]]}

	Return type:	dictionary

	Raises:	aiida.common.exceptions.ParsingError – if there are issues
parsing the input.

	
aiida.tools.codespecific.quantumespresso.pwinputparser.parse_atomic_species(txt)[source]

	Return a dictionary containing info from the ATOMIC_SPECIES card block
in txt.

	Parameters:	txt (str) – A single string containing the QE input text to be parsed.

	Returns:	A dictionary with

	names: list of the atom names (e.g. ‘Si’, ‘Si0’, ‘Si_0’) (case
as-is)

	masses: list of the masses of the atoms in ‘names’

	pseudo_file_names: list of the pseudopotential file names for the
atoms in ‘names’ (case as-is)

Example:

{'names': ['Li', 'O', 'Al', 'Si'],
 'masses': [6.941, 15.9994, 26.98154, 28.0855],
 'pseudo_file_names': ['Li.pbe-sl-rrkjus_psl.1.0.0.UPF',
 'O.pbe-nl-rrkjus_psl.1.0.0.UPF',
 'Al.pbe-nl-rrkjus_psl.1.0.0.UPF',
 'Si3 28.0855 Si.pbe-nl-rrkjus_psl.1.0.0.UPF']

	Return type:	dictionary

	Raises:	aiida.common.exceptions.ParsingError – if there are issues
parsing the input.

	
aiida.tools.codespecific.quantumespresso.pwinputparser.parse_cell_parameters(txt)[source]

	Return dict containing info from the CELL_PARAMETERS card block in txt.

Note

This card is only needed if ibrav = 0. Therefore, if the card is
not present, the function will return None and not raise an error.

Note

If the units are unspecified, they will be returned as None. The
units interpreted by QE depend on whether or not one of ‘celldm(1)’
or ‘a’ is set in &SYSTEM.

	Parameters:	txt (str) – A single string containing the QE input text to be parsed.

	Returns:	A dictionary (if CELL_PARAMETERS is present; else: None) with

	units: the units of the lattice vectors (always lower-case) or
None

	cell: 3x3 list with lattice vectors as rows

For example:

{'units': 'angstrom',
 'cell': [[16.9, 0.0, 0.0],
 [-2.6, 8.0, 0.0],
 [-2.6, -3.5, 7.2]]}

	Return type:	dict or None

	Raises:	aiida.common.exceptions.ParsingError – if there are issues
parsing the input.

	
aiida.tools.codespecific.quantumespresso.pwinputparser.parse_k_points(txt)[source]

	Return a dictionary containing info from the K_POINTS card block in txt.

Note

If the type of kpoints (where type = x in the card header,
“K_POINTS x”) is not present, type will be returned as ‘tpiba’, the
QE default.

	Parameters:	txt (str) – A single string containing the QE input text to be parsed.

	Returns:	A dictionary containing

	type: the type of kpoints (always lower-case)

	points: an Nx3 list of the kpoints (will not be present if type =
‘gamma’ or type = ‘automatic’)

	weights: a 1xN list of the kpoint weights (will not be present if
type = ‘gamma’ or type = ‘automatic’)

	mesh: a 1x3 list of the number of equally-spaced points in each
direction of the Brillouin zone, as in Monkhorst-Pack grids (only
present if type = ‘automatic’)

	offset: a 1x3 list of the grid offsets in each direction of the
Brillouin zone (only present if type = ‘automatic’)
(Note: The offset value for each direction will be one of
0.0 [no offset] or 0.5 [offset by half a grid step].
This differs from the Quantum Espresso convention, where an offset
value of 1 corresponds to a half-grid-step offset, but adheres
to the current AiiDa convention.

Examples:

{'type': 'crystal',
 'points': [[0.125, 0.125, 0.0],
 [0.125, 0.375, 0.0],
 [0.375, 0.375, 0.0]],
 'weights': [1.0, 2.0, 1.0]}

{'type': 'automatic',
 'points': [8, 8, 8],
 'offset': [0.0, 0.5, 0.0]}

{'type': 'gamma'}

	Return type:	dictionary

	Raises:	aiida.common.exceptions.ParsingError – if there are issues
parsing the input.

	
aiida.tools.codespecific.quantumespresso.pwinputparser.parse_namelists(txt)[source]

	Parse txt to extract a dictionary of the namelist info.

	Parameters:	txt (str) – A single string containing the QE input text to be parsed.

	Returns:	A nested dictionary of the namelists and their key-value pairs. The
namelists will always be upper-case keys, while the parameter keys will
always be lower-case.For example:

{"CONTROL": {"calculation": "bands",
 "prefix": "al",
 "pseudo_dir": "./pseudo",
 "outdir": "./out"},
 "ELECTRONS": {"diagonalization": "cg"},
 "SYSTEM": {"nbnd": 8,
 "ecutwfc": 15.0,
 "celldm(1)": 7.5,
 "ibrav": 2,
 "nat": 1,
 "ntyp": 1}
}

	Return type:	dictionary

	Raises:	aiida.common.exceptions.ParsingError – if there are issues
parsing the input.

	
aiida.tools.codespecific.quantumespresso.pwinputparser.str2val(valstr)[source]

	Return a python value by converting valstr according to f90 syntax.

	Parameters:	valstr (str) – String representation of the variable to be converted.
(e.g. ‘.true.’)

	Returns:	A python variable corresponding to valstr.

	Return type:	bool or float or int or str

	Raises:	ValueError: if a suitable conversion of valstr cannot be found.

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	AiiDA 0.7.0 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 aiida	

 	
 	
 aiida.backends.djsite.db.models	

 	
 	
 aiida.backends.querybuild.querybuilder_base	

 	
 	
 aiida.cmdline	

 	
 	
 aiida.cmdline.baseclass	

 	
 	
 aiida.cmdline.commands.daemon	

 	
 	
 aiida.cmdline.commands.data	

 	
 	
 aiida.cmdline.verdilib	

 	
 	
 aiida.common	

 	
 	
 aiida.common.datastructures	

 	
 	
 aiida.common.exceptions	

 	
 	
 aiida.common.extendeddicts	

 	
 	
 aiida.common.folders	

 	
 	
 aiida.common.pluginloader	

 	
 	
 aiida.common.utils	

 	
 	
 aiida.daemon.execmanager	

 	
 	
 aiida.orm.calculation.inline	

 	
 	
 aiida.orm.calculation.job.quantumespresso.helpers	

 	
 	
 aiida.orm.calculation.job.quantumespresso.pw	

 	
 	
 aiida.orm.calculation.job.quantumespresso.pwimmigrant	

 	
 	
 aiida.orm.calculation.job.simpleplugins.templatereplacer	

 	
 	
 aiida.orm.data	

 	
 	
 aiida.orm.data.array	

 	
 	
 aiida.orm.data.array.kpoints	

 	
 	
 aiida.orm.data.array.trajectory	

 	
 	
 aiida.orm.data.cif	

 	
 	
 aiida.orm.data.folder	

 	
 	
 aiida.orm.data.parameter	

 	
 	
 aiida.orm.data.remote	

 	
 	
 aiida.orm.data.singlefile	

 	
 	
 aiida.orm.data.structure	

 	
 	
 aiida.orm.data.upf	

 	
 	
 aiida.orm.implementation.general.calculation	

 	
 	
 aiida.orm.implementation.general.calculation.job	

 	
 	
 aiida.orm.implementation.general.code	

 	
 	
 aiida.orm.implementation.general.computer	

 	
 	
 aiida.orm.implementation.general.node	

 	
 	
 aiida.orm.implementation.general.workflow	

 	
 	
 aiida.orm.querytool	

 	
 	
 aiida.orm.utils	

 	
 	
 aiida.parsers.plugins.quantumespresso	

 	
 	
 aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp	

 	
 	
 aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw	

 	
 	
 aiida.parsers.plugins.quantumespresso.basicpw	

 	
 	
 aiida.parsers.plugins.quantumespresso.constants	

 	
 	
 aiida.parsers.plugins.quantumespresso.cp	

 	
 	
 aiida.scheduler.__init__	

 	
 	
 aiida.scheduler.datastructures	

 	
 	
 aiida.tools.codespecific.quantumespresso.pwinputparser	

 	
 	
 aiida.tools.dbexporters.tcod	

 	
 	
 aiida.tools.dbexporters.tcod_plugins	

 	
 	
 aiida.tools.dbexporters.tcod_plugins.cp	

 	
 	
 aiida.tools.dbexporters.tcod_plugins.nwcpymatgen	

 	
 	
 aiida.tools.dbexporters.tcod_plugins.pw	

 	
 	
 aiida.tools.dbimporters	

 	
 	
 aiida.tools.dbimporters.baseclasses	

 	
 	
 aiida.tools.dbimporters.plugins.cod	

 	
 	
 aiida.tools.dbimporters.plugins.icsd	

 	
 	
 aiida.tools.dbimporters.plugins.mpod	

 	
 	
 aiida.tools.dbimporters.plugins.nninc	

 	
 	
 aiida.tools.dbimporters.plugins.oqmd	

 	
 	
 aiida.tools.dbimporters.plugins.pcod	

 	
 	
 aiida.tools.dbimporters.plugins.tcod	

 	
 	
 aiida.transport.__init__	

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	AiiDA 0.7.0 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	

 	__enter__() (aiida.transport.__init__.Transport method)

 	__exit__() (aiida.transport.__init__.Transport method)

 	

 	__init__() (aiida.cmdline.commands.daemon.Daemon method)

 	

 	(aiida.cmdline.commands.data.Data method)

 	(aiida.orm.data.structure.Kind method)

 	(aiida.orm.data.structure.Site method)

 	(aiida.orm.implementation.general.calculation.job.CalculationResultManager method)

 	(aiida.orm.implementation.general.node.AbstractNode method)

 	(aiida.orm.implementation.general.node.AttributeManager method)

 	(aiida.orm.implementation.general.node.NodeInputManager method)

 	(aiida.orm.implementation.general.node.NodeOutputManager method)

 	(aiida.tools.codespecific.quantumespresso.pwinputparser.PwInputFile method)

 	__iter__() (aiida.tools.dbimporters.baseclasses.DbSearchResults method)

A

 	

 	abspath (aiida.common.folders.Folder attribute)

 	AbstractCalculation (class in aiida.orm.implementation.general.calculation)

 	AbstractCode (class in aiida.orm.implementation.general.code)

 	AbstractComputer (class in aiida.orm.implementation.general.computer)

 	AbstractJobCalculation (class in aiida.orm.implementation.general.calculation.job)

 	AbstractNode (class in aiida.orm.implementation.general.node)

 	AbstractQueryBuilder (class in aiida.backends.querybuild.querybuilder_base)

 	AbstractWorkflow (class in aiida.orm.implementation.general.workflow)

 	accepts_default_mpiprocs_per_machine() (aiida.scheduler.datastructures.JobResource class method)

 	

 	(aiida.scheduler.datastructures.NodeNumberJobResource class method)

 	(aiida.scheduler.datastructures.ParEnvJobResource class method)

 	add_attribute() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	add_attributes() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	add_comment() (aiida.orm.implementation.general.node.AbstractNode method)

 	add_filter() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	add_from_logrecord() (aiida.backends.djsite.db.models.DbLog class method)

 	add_link_from() (aiida.orm.implementation.general.calculation.AbstractCalculation method)

 	

 	(aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	(aiida.orm.implementation.general.node.AbstractNode method)

 	add_path() (aiida.orm.data.remote.RemoteData method)

 	

 	(aiida.orm.data.singlefile.SinglefileData method)

 	(aiida.orm.implementation.general.node.AbstractNode method)

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	add_projection() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	add_result() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	add_results() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	aiida.backends.djsite.db.models (module)

 	aiida.backends.querybuild.querybuilder_base (module)

 	aiida.cmdline (module)

 	aiida.cmdline.baseclass (module)

 	aiida.cmdline.commands.daemon (module)

 	aiida.cmdline.commands.data (module)

 	aiida.cmdline.verdilib (module)

 	aiida.common (module)

 	aiida.common.datastructures (module)

 	aiida.common.exceptions (module)

 	aiida.common.extendeddicts (module)

 	aiida.common.folders (module)

 	aiida.common.pluginloader (module)

 	aiida.common.utils (module)

 	aiida.daemon.execmanager (module)

 	aiida.orm.calculation.inline (module)

 	aiida.orm.calculation.job.quantumespresso.helpers (module)

 	aiida.orm.calculation.job.quantumespresso.pw (module)

 	aiida.orm.calculation.job.quantumespresso.pwimmigrant (module)

 	aiida.orm.calculation.job.simpleplugins.templatereplacer (module)

 	aiida.orm.data (module)

 	aiida.orm.data.array (module)

 	aiida.orm.data.array.kpoints (module)

 	aiida.orm.data.array.trajectory (module)

 	aiida.orm.data.cif (module)

 	aiida.orm.data.folder (module)

 	aiida.orm.data.parameter (module)

 	aiida.orm.data.remote (module)

 	aiida.orm.data.singlefile (module)

 	aiida.orm.data.structure (module)

 	aiida.orm.data.upf (module)

 	aiida.orm.implementation.general.calculation (module)

 	aiida.orm.implementation.general.calculation.job (module)

 	aiida.orm.implementation.general.code (module)

 	

 	aiida.orm.implementation.general.computer (module)

 	aiida.orm.implementation.general.node (module)

 	aiida.orm.implementation.general.workflow (module)

 	aiida.orm.querytool (module)

 	aiida.orm.utils (module)

 	aiida.parsers.plugins.quantumespresso (module)

 	aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp (module)

 	aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw (module)

 	aiida.parsers.plugins.quantumespresso.basicpw (module)

 	aiida.parsers.plugins.quantumespresso.constants (module)

 	aiida.parsers.plugins.quantumespresso.cp (module)

 	aiida.scheduler.__init__ (module)

 	aiida.scheduler.datastructures (module)

 	aiida.tools.codespecific.quantumespresso.pwinputparser (module)

 	aiida.tools.dbexporters.tcod (module)

 	aiida.tools.dbexporters.tcod_plugins (module)

 	aiida.tools.dbexporters.tcod_plugins.cp (module)

 	aiida.tools.dbexporters.tcod_plugins.nwcpymatgen (module)

 	aiida.tools.dbexporters.tcod_plugins.pw (module)

 	aiida.tools.dbimporters (module)

 	aiida.tools.dbimporters.baseclasses (module)

 	aiida.tools.dbimporters.plugins.cod (module)

 	aiida.tools.dbimporters.plugins.icsd (module)

 	aiida.tools.dbimporters.plugins.mpod (module)

 	aiida.tools.dbimporters.plugins.nninc (module)

 	aiida.tools.dbimporters.plugins.oqmd (module)

 	aiida.tools.dbimporters.plugins.pcod (module)

 	aiida.tools.dbimporters.plugins.tcod (module)

 	aiida.transport.__init__ (module)

 	AiidaException

 	all() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	append() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	append_atom() (aiida.orm.data.structure.StructureData method)

 	append_kind() (aiida.orm.data.structure.StructureData method)

 	append_list_cmdline_arguments() (aiida.cmdline.commands.data.Listable method)

 	append_site() (aiida.orm.data.structure.StructureData method)

 	append_to_report() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	are_dir_trees_equal() (in module aiida.common.utils)

 	ArrayCounter (class in aiida.common.utils)

 	ArrayData (class in aiida.orm.data.array)

 	arraynames() (aiida.orm.data.array.ArrayData method)

 	ase (aiida.orm.data.cif.CifData attribute)

 	ase_refine_cell() (in module aiida.orm.data.structure)

 	ask_question() (in module aiida.common.utils)

 	at() (aiida.tools.dbimporters.baseclasses.DbSearchResults method)

 	

 	(aiida.tools.dbimporters.plugins.icsd.IcsdSearchResults method)

 	attach_calculation() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	attach_workflow() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	AttributeDict (class in aiida.common.extendeddicts)

 	AttributeManager (class in aiida.orm.implementation.general.node)

 	attributes (aiida.backends.djsite.db.models.DbNode attribute)

 	attrs() (aiida.orm.implementation.general.node.AbstractNode method)

 	AuthenticationError

B

 	

 	BaseFactory() (in module aiida.common.pluginloader)

 	BaseTcodtranslator (class in aiida.tools.dbexporters.tcod_plugins)

 	

 	BasicpwParser (class in aiida.parsers.plugins.quantumespresso.basicpw)

C

 	

 	calc_cell_volume() (in module aiida.orm.data.structure)

 	CalcInfo (class in aiida.common.datastructures)

 	CalculationFactory() (in module aiida.orm.utils)

 	CalculationResultManager (class in aiida.orm.implementation.general.calculation.job)

 	can_run_on() (aiida.orm.implementation.general.code.AbstractCode method)

 	cell (aiida.orm.data.array.kpoints.KpointsData attribute)

 	

 	(aiida.orm.data.structure.StructureData attribute)

 	cell_angles (aiida.orm.data.structure.StructureData attribute)

 	cell_lengths (aiida.orm.data.structure.StructureData attribute)

 	cell_volume() (in module aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw)

 	chdir() (aiida.transport.__init__.Transport method)

 	children() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	chmod() (aiida.transport.__init__.Transport method)

 	chown() (aiida.transport.__init__.Transport method)

 	cif (aiida.tools.dbimporters.baseclasses.CifEntry attribute)

 	

 	(aiida.tools.dbimporters.plugins.icsd.IcsdEntry attribute)

 	cif_encode_contents() (in module aiida.tools.dbexporters.tcod)

 	cif_from_ase() (in module aiida.orm.data.cif)

 	CifData (class in aiida.orm.data.cif)

 	CifEntry (class in aiida.tools.dbimporters.baseclasses)

 	CifFileErrorExp

 	classproperty (class in aiida.common.utils)

 	clear_internal_cache() (aiida.orm.data.array.ArrayData method)

 	clear_kinds() (aiida.orm.data.structure.StructureData method)

 	clear_report() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	clear_sites() (aiida.orm.data.structure.StructureData method)

 	close() (aiida.transport.__init__.Transport method)

 	CodDbImporter (class in aiida.tools.dbimporters.plugins.cod)

 	CodeInfo (class in aiida.common.datastructures)

 	CodEntry (class in aiida.tools.dbimporters.plugins.cod)

 	CodSearchResults (class in aiida.tools.dbimporters.plugins.cod)

 	combomethod (class in aiida.common.utils)

 	

 	compare_with() (aiida.orm.data.structure.Kind method)

 	complete() (aiida.cmdline.baseclass.VerdiCommand method)

 	

 	(aiida.cmdline.verdilib.Install method)

 	Completion (class in aiida.cmdline.verdilib)

 	CompletionCommand (class in aiida.cmdline.verdilib)

 	ConfigurationError

 	configure_user() (aiida.cmdline.commands.daemon.Daemon method)

 	ContentNotExistent

 	contents (aiida.tools.dbimporters.baseclasses.DbEntry attribute)

 	conv_to_fortran() (in module aiida.common.utils)

 	convert() (aiida.orm.data.Data method)

 	convert_list_to_matrix() (in module aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw)

 	convert_qe2aiida_structure() (in module aiida.parsers.plugins.quantumespresso)

 	convert_qe_time_to_sec() (in module aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw)

 	copy() (aiida.common.extendeddicts.AttributeDict method)

 	

 	(aiida.orm.implementation.general.computer.AbstractComputer method)

 	(aiida.orm.implementation.general.node.AbstractNode method)

 	(aiida.transport.__init__.Transport method)

 	copy_from_remote_to_remote() (aiida.transport.__init__.Transport method)

 	

 	(in module aiida.transport.__init__)

 	copyfile() (aiida.transport.__init__.Transport method)

 	copytree() (aiida.transport.__init__.Transport method)

 	correct_cif() (in module aiida.tools.dbimporters.plugins.icsd)

 	count() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	CpParser (class in aiida.parsers.plugins.quantumespresso.cp)

 	CpTcodtranslator (class in aiida.tools.dbexporters.tcod_plugins.cp)

 	create() (aiida.common.folders.Folder method)

 	create_display_name() (in module aiida.common.utils)

 	create_file_from_filelike() (aiida.common.folders.Folder method)

 	create_input_nodes() (aiida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation method)

 	create_job_resource() (aiida.scheduler.__init__.Scheduler class method)

 	create_symlink() (aiida.common.folders.Folder method)

 	create_value() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass class method)

 	ctime (aiida.orm.implementation.general.node.AbstractNode attribute)

 	current_folder (aiida.orm.implementation.general.workflow.AbstractWorkflow attribute)

D

 	

 	Daemon (class in aiida.cmdline.commands.daemon)

 	daemon_logshow() (aiida.cmdline.commands.daemon.Daemon method)

 	daemon_restart() (aiida.cmdline.commands.daemon.Daemon method)

 	daemon_start() (aiida.cmdline.commands.daemon.Daemon method)

 	daemon_status() (aiida.cmdline.commands.daemon.Daemon method)

 	daemon_stop() (aiida.cmdline.commands.daemon.Daemon method)

 	Data (class in aiida.cmdline.commands.data)

 	

 	(class in aiida.orm.data)

 	DataFactory() (in module aiida.orm.utils)

 	DbAttribute (class in aiida.backends.djsite.db.models)

 	DbAttributeBaseClass (class in aiida.backends.djsite.db.models)

 	DbAuthInfo (class in aiida.backends.djsite.db.models)

 	DbCalcState (class in aiida.backends.djsite.db.models)

 	DbComment (class in aiida.backends.djsite.db.models)

 	DbComputer (class in aiida.backends.djsite.db.models)

 	DbContentError

 	DbEntry (class in aiida.tools.dbimporters.baseclasses)

 	DbExtra (class in aiida.backends.djsite.db.models)

 	DbGroup (class in aiida.backends.djsite.db.models)

 	DbImporter (class in aiida.tools.dbimporters.baseclasses)

 	DbImporterFactory() (in module aiida.tools.dbimporters)

 	DbLink (class in aiida.backends.djsite.db.models)

 	DbLock (class in aiida.backends.djsite.db.models)

 	DbLog (class in aiida.backends.djsite.db.models)

 	DbMultipleValueAttributeBaseClass (class in aiida.backends.djsite.db.models)

 	dbnode (aiida.orm.implementation.general.node.AbstractNode attribute)

 	DbNode (class in aiida.backends.djsite.db.models)

 	DbPath (class in aiida.backends.djsite.db.models)

 	DbSearchResults (class in aiida.tools.dbimporters.baseclasses)

 	

 	DbSearchResults.DbSearchResultsIterator (class in aiida.tools.dbimporters.baseclasses)

 	DbSetting (class in aiida.backends.djsite.db.models)

 	DbUser (class in aiida.backends.djsite.db.models)

 	DbWorkflow (class in aiida.backends.djsite.db.models)

 	DbWorkflowData (class in aiida.backends.djsite.db.models)

 	dbworkflowinstance (aiida.orm.implementation.general.workflow.AbstractWorkflow attribute)

 	DbWorkflowStep (class in aiida.backends.djsite.db.models)

 	decode_textfield() (in module aiida.tools.dbexporters.tcod)

 	decode_textfield_base64() (in module aiida.tools.dbexporters.tcod)

 	decode_textfield_gzip_base64() (in module aiida.tools.dbexporters.tcod)

 	decode_textfield_ncr() (in module aiida.tools.dbexporters.tcod)

 	decode_textfield_quoted_printable() (in module aiida.tools.dbexporters.tcod)

 	DefaultFieldsAttributeDict (class in aiida.common.extendeddicts)

 	defaultkeys() (aiida.common.extendeddicts.DefaultFieldsAttributeDict method)

 	del_extra() (aiida.orm.implementation.general.node.AbstractNode method)

 	del_file() (aiida.orm.data.singlefile.SinglefileData method)

 	del_value() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass class method)

 	del_value_for_node() (aiida.backends.djsite.db.models.DbAttributeBaseClass class method)

 	delete_array() (aiida.orm.data.array.ArrayData method)

 	delete_code() (in module aiida.orm.implementation.general.code)

 	deposit() (aiida.cmdline.commands.data.Depositable method)

 	

 	(in module aiida.tools.dbexporters.tcod)

 	Depositable (class in aiida.cmdline.commands.data)

 	deposition_cmdline_parameters() (in module aiida.tools.dbexporters.tcod)

 	description (aiida.orm.implementation.general.node.AbstractNode attribute)

 	

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow attribute)

 	deserialize_attributes() (in module aiida.backends.djsite.db.models)

 	dict (aiida.orm.data.parameter.ParameterData attribute)

 	dict() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	distinct() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

E

 	

 	encode_textfield_base64() (in module aiida.tools.dbexporters.tcod)

 	encode_textfield_gzip_base64() (in module aiida.tools.dbexporters.tcod)

 	encode_textfield_ncr() (in module aiida.tools.dbexporters.tcod)

 	encode_textfield_quoted_printable() (in module aiida.tools.dbexporters.tcod)

 	erase() (aiida.common.folders.Folder method)

 	escape_for_bash() (in module aiida.common.utils)

 	except_if_input_to() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	exec_command_wait() (aiida.transport.__init__.Transport method)

 	exec_from_cmdline() (in module aiida.cmdline.verdilib)

 	existing_plugins() (in module aiida.common.pluginloader)

 	exists() (aiida.common.folders.Folder method)

 	exit() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	

 	expand() (aiida.backends.djsite.db.models.DbPath method)

 	export() (aiida.cmdline.commands.data.Exportable method)

 	

 	(aiida.orm.data.Data method)

 	export_cif() (in module aiida.tools.dbexporters.tcod)

 	export_cifnode() (in module aiida.tools.dbexporters.tcod)

 	export_shard_uuid() (in module aiida.common.utils)

 	export_values() (in module aiida.tools.dbexporters.tcod)

 	Exportable (class in aiida.cmdline.commands.data)

 	extend_with_cmdline_parameters() (in module aiida.tools.dbexporters.tcod)

 	extrakeys() (aiida.common.extendeddicts.DefaultFieldsAttributeDict method)

 	extras (aiida.backends.djsite.db.models.DbNode attribute)

 	extras() (aiida.orm.implementation.general.node.AbstractNode method)

F

 	

 	FailedError

 	FeatureDisabled

 	FeatureNotAvailable

 	fetch_all() (aiida.tools.dbimporters.baseclasses.DbSearchResults method)

 	FileAttribute (class in aiida.transport.__init__)

 	filename (aiida.orm.data.singlefile.SinglefileData attribute)

 	first() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	FixedFieldsAttributeDict (class in aiida.common.extendeddicts)

 	

 	flatten_list() (in module aiida.common.utils)

 	folder (aiida.orm.implementation.general.node.AbstractNode attribute)

 	Folder (class in aiida.common.folders)

 	folder_limit (aiida.common.folders.Folder attribute)

 	FolderData (class in aiida.orm.data.folder)

 	from_md5() (aiida.orm.data.cif.CifData class method)

 	

 	(aiida.orm.data.upf.UpfData class method)

 	from_type_to_pluginclassname() (in module aiida.common.pluginloader)

 	full_text_info (aiida.orm.implementation.general.code.AbstractCode attribute)

 	

 	(aiida.orm.implementation.general.computer.AbstractComputer attribute)

G

 	

 	generate_md5() (aiida.orm.data.cif.CifData method)

 	get() (aiida.orm.implementation.general.code.AbstractCode class method)

 	

 	(aiida.orm.implementation.general.computer.AbstractComputer class method)

 	(aiida.transport.__init__.Transport method)

 	get_abs_path() (aiida.common.folders.Folder method)

 	

 	(aiida.orm.implementation.general.node.AbstractNode method)

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_aiida_class() (aiida.backends.djsite.db.models.DbNode method)

 	

 	(aiida.backends.djsite.db.models.DbWorkflow method)

 	get_aiida_structure() (aiida.tools.dbimporters.baseclasses.CifEntry method)

 	

 	(aiida.tools.dbimporters.plugins.icsd.IcsdEntry method)

 	get_alias() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	get_aliases() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	get_all_calcs() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_all_values_for_node() (aiida.backends.djsite.db.models.DbAttributeBaseClass class method)

 	get_all_values_for_nodepk() (aiida.backends.djsite.db.models.DbAttributeBaseClass class method)

 	get_append_text() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	

 	(aiida.orm.implementation.general.code.AbstractCode method)

 	get_array() (aiida.orm.data.array.ArrayData method)

 	get_arraynames() (aiida.orm.data.array.ArrayData method)

 	get_ase() (aiida.orm.data.cif.CifData method)

 	

 	(aiida.orm.data.structure.Site method)

 	(aiida.orm.data.structure.StructureData method)

 	get_ase_structure() (aiida.tools.dbimporters.baseclasses.CifEntry method)

 	

 	(aiida.tools.dbimporters.plugins.icsd.IcsdEntry method)

 	get_atom_site_residual_force_Cartesian_x() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_atom_site_residual_force_Cartesian_y() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_atom_site_residual_force_Cartesian_z() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_atom_type_basisset() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator class method)

 	get_atom_type_symbol() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator class method)

 	get_atom_type_valence_configuration() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator class method)

 	get_attr() (aiida.orm.implementation.general.node.AbstractNode method)

 	get_attribute() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	

 	(aiida.transport.__init__.Transport method)

 	get_attributes() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_attrs() (aiida.orm.implementation.general.node.AbstractNode method)

 	get_BZ_integration_grid_shift_X() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_BZ_integration_grid_shift_Y() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_BZ_integration_grid_shift_Z() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_BZ_integration_grid_X() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_BZ_integration_grid_Y() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_BZ_integration_grid_Z() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_cell_volume() (aiida.orm.data.structure.StructureData method)

 	get_cells() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	get_cif_node() (aiida.tools.dbimporters.baseclasses.CifEntry method)

 	

 	(aiida.tools.dbimporters.plugins.icsd.IcsdEntry method)

 	get_class_string() (in module aiida.common.utils)

 	get_class_typestring() (in module aiida.common.pluginloader)

 	get_code() (aiida.orm.implementation.general.calculation.AbstractCalculation method)

 	get_column_names() (aiida.cmdline.commands.data.Listable method)

 	get_command_name() (aiida.cmdline.baseclass.VerdiCommand class method)

 	get_command_suggestion() (in module aiida.cmdline.verdilib)

 	get_comments() (aiida.orm.implementation.general.node.AbstractNode method)

 	get_composition() (aiida.orm.data.structure.StructureData method)

 	get_computation_wallclock_time() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.cp.CpTcodtranslator class method)

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_computer() (aiida.orm.implementation.general.node.AbstractNode method)

 	get_configured_user_email() (in module aiida.common.utils)

 	get_content_list() (aiida.common.folders.Folder method)

 	get_corrected_cif() (aiida.tools.dbimporters.plugins.icsd.IcsdEntry method)

 	get_custom_scheduler_commands() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_daemon_pid() (aiida.cmdline.commands.daemon.Daemon method)

 	get_dbauthinfo() (aiida.orm.implementation.general.computer.AbstractComputer method)

 	get_dbcomputer() (aiida.backends.djsite.db.models.DbComputer class method)

 	get_default_fields() (aiida.common.extendeddicts.DefaultFieldsAttributeDict class method)

 	get_default_mpiprocs_per_machine() (aiida.orm.implementation.general.computer.AbstractComputer method)

 	get_deposit_plugins() (aiida.cmdline.commands.data.Depositable method)

 	get_detailed_jobinfo() (aiida.scheduler.__init__.Scheduler method)

 	get_dict() (aiida.orm.data.parameter.ParameterData method)

 	get_environment_variables() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_ewald_energy() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_exchange_correlation_energy() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_execname() (aiida.orm.implementation.general.code.AbstractCode method)

 	get_export_plugins() (aiida.cmdline.commands.data.Exportable method)

 	get_extra() (aiida.orm.implementation.general.node.AbstractNode method)

 	get_extras() (aiida.orm.implementation.general.node.AbstractNode method)

 	get_extremas_from_positions() (in module aiida.common.utils)

 	get_fermi_energy() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_file_abs_path() (aiida.orm.data.singlefile.SinglefileData method)

 	get_file_content() (aiida.orm.data.folder.FolderData method)

 	get_folder_list() (aiida.orm.implementation.general.node.AbstractNode method)

 	

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_formula() (aiida.orm.data.structure.StructureData method)

 	

 	(in module aiida.orm.data.structure)

 	get_formula_from_symbol_list() (in module aiida.orm.data.structure)

 	get_formula_group() (in module aiida.orm.data.structure)

 	get_formulae() (aiida.orm.data.cif.CifData method)

 	get_fortfloat() (in module aiida.common.utils)

 	get_from_string() (aiida.orm.implementation.general.code.AbstractCode class method)

 	get_full_command_name() (aiida.cmdline.baseclass.VerdiCommand method)

 	

 	(aiida.cmdline.baseclass.VerdiCommandWithSubcommands method)

 	get_hartree_energy() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_import_plugins() (aiida.cmdline.commands.data.Importable method)

 	get_import_sys_environment() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_index_from_stepid() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	get_input_plugin_name() (aiida.orm.implementation.general.code.AbstractCode method)

 	get_inputs() (aiida.orm.implementation.general.node.AbstractNode method)

 	get_inputs_dict() (aiida.orm.implementation.general.node.AbstractNode method)

 	get_integration_Methfessel_Paxton_order() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_integration_smearing_method() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_integration_smearing_method_other() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_job_id() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_json_compatible_queryhelp() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	get_kind() (aiida.orm.data.structure.StructureData method)

 	get_kind_names() (aiida.orm.data.structure.StructureData method)

 	get_kinetic_energy_cutoff_charge_density() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_kinetic_energy_cutoff_EEX() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_kinetic_energy_cutoff_wavefunctions() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_kpoints() (aiida.orm.data.array.kpoints.KpointsData method)

 	get_kpoints_mesh() (aiida.orm.data.array.kpoints.KpointsData method)

 	get_kpointsdata() (aiida.tools.codespecific.quantumespresso.pwinputparser.PwInputFile method)

 	get_linkname() (aiida.orm.implementation.general.calculation.AbstractCalculation method)

 	get_linkname_out_kpoints() (aiida.parsers.plugins.quantumespresso.basicpw.BasicpwParser method)

 	get_linkname_outarray() (aiida.parsers.plugins.quantumespresso.basicpw.BasicpwParser method)

 	get_linkname_outstructure() (aiida.parsers.plugins.quantumespresso.basicpw.BasicpwParser method)

 	get_linkname_outtrajectory() (aiida.parsers.plugins.quantumespresso.basicpw.BasicpwParser method)

 	get_linkname_trajectory() (aiida.parsers.plugins.quantumespresso.cp.CpParser method)

 	get_listparams() (in module aiida.cmdline.verdilib)

 	get_max_memory_kb() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_max_wallclock_seconds() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	

 	get_mode() (aiida.transport.__init__.Transport method)

 	get_mpirun_command() (aiida.orm.implementation.general.computer.AbstractComputer method)

 	get_mpirun_extra_params() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_new_uuid() (in module aiida.common.utils)

 	get_number_of_electrons() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.cp.CpTcodtranslator class method)

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_object_from_string() (in module aiida.common.utils)

 	get_one_electron_energy() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_or_create() (aiida.orm.data.cif.CifData class method)

 	

 	(aiida.orm.data.upf.UpfData class method)

 	get_outputs() (aiida.orm.implementation.general.node.AbstractNode method)

 	get_outputs_dict() (aiida.orm.implementation.general.node.AbstractNode method)

 	get_parameter() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_parameters() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_parsed_cif() (aiida.tools.dbimporters.baseclasses.CifEntry method)

 	get_parser_name() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_parser_settings_key() (aiida.parsers.plugins.quantumespresso.basicpw.BasicpwParser method)

 	get_parserclass() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_positions() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	get_prepend_text() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	

 	(aiida.orm.implementation.general.code.AbstractCode method)

 	get_priority() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_pseudos_from_structure() (in module aiida.orm.data.upf)

 	get_pymatgen() (aiida.orm.data.structure.StructureData method)

 	get_pymatgen_molecule() (aiida.orm.data.structure.StructureData method)

 	get_pymatgen_structure() (aiida.orm.data.structure.StructureData method)

 	get_pymatgen_version() (in module aiida.orm.data.structure)

 	get_query() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	get_query_dict() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass class method)

 	get_query_type_string() (in module aiida.common.pluginloader)

 	get_queue_name() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_raw() (aiida.orm.data.structure.Kind method)

 	

 	(aiida.orm.data.structure.Site method)

 	get_raw_cif() (aiida.tools.dbimporters.baseclasses.CifEntry method)

 	get_report() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_repository_folder() (in module aiida.common.utils)

 	get_resources() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_result() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_results() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_results_dict() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	get_retrieved_node() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_scheduler_error() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_scheduler_output() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_scheduler_state() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_shape() (aiida.orm.data.array.ArrayData method)

 	get_short_doc() (aiida.scheduler.__init__.Scheduler class method)

 	

 	(aiida.transport.__init__.Transport class method)

 	get_show_plugins() (aiida.cmdline.commands.data.Visualizable method)

 	get_simple_name() (aiida.backends.djsite.db.models.DbNode method)

 	get_site_kindnames() (aiida.orm.data.structure.StructureData method)

 	get_software_executable_path() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	get_software_package() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.cp.CpTcodtranslator class method)

 	(aiida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator class method)

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_software_package_compilation_timestamp() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator class method)

 	get_software_package_version() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.nwcpymatgen.NwcpymatgenTcodtranslator class method)

 	get_spacegroup_numbers() (aiida.orm.data.cif.CifData method)

 	get_state() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_step() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_step_calculations() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_step_data() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	get_step_index() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	get_step_structure() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	get_step_workflows() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_stepids() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	get_steps() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_structuredata() (aiida.tools.codespecific.quantumespresso.pwinputparser.PwInputFile method)

 	get_structuredata_from_qeinput() (in module aiida.orm.data.structure)

 	get_subclass_from_dbnode() (aiida.orm.implementation.general.workflow.AbstractWorkflow class method)

 	get_subclass_from_pk() (aiida.orm.implementation.general.node.AbstractNode class method)

 	

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow class method)

 	get_subclass_from_uuid() (aiida.orm.implementation.general.node.AbstractNode class method)

 	

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow class method)

 	get_subfolder() (aiida.common.folders.Folder method)

 	get_submit_script() (aiida.scheduler.__init__.Scheduler method)

 	get_suggestion() (in module aiida.common.utils)

 	get_supported_keywords() (aiida.tools.dbimporters.baseclasses.DbImporter method)

 	

 	(aiida.tools.dbimporters.plugins.cod.CodDbImporter method)

 	(aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter method)

 	(aiida.tools.dbimporters.plugins.mpod.MpodDbImporter method)

 	(aiida.tools.dbimporters.plugins.nninc.NnincDbImporter method)

 	(aiida.tools.dbimporters.plugins.oqmd.OqmdDbImporter method)

 	get_symbols() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	get_symbols_set() (aiida.orm.data.structure.StructureData method)

 	get_symbols_string() (aiida.orm.data.structure.Kind method)

 	

 	(in module aiida.orm.data.structure)

 	get_temp_folder() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	get_times() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	get_topdir() (aiida.common.folders.RepositoryFolder method)

 	get_tot_num_mpiprocs() (aiida.scheduler.datastructures.JobResource method)

 	

 	(aiida.scheduler.datastructures.NodeNumberJobResource method)

 	(aiida.scheduler.datastructures.ParEnvJobResource method)

 	get_total_energy() (aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator class method)

 	

 	(aiida.tools.dbexporters.tcod_plugins.pw.PwTcodtranslator class method)

 	get_transport() (aiida.backends.djsite.db.models.DbAuthInfo method)

 	get_unique_filename() (in module aiida.common.utils)

 	get_upf_family_names() (aiida.orm.data.upf.UpfData method)

 	get_upf_group() (aiida.orm.data.upf.UpfData class method)

 	get_upf_groups() (aiida.orm.data.upf.UpfData class method)

 	get_upf_node() (aiida.tools.dbimporters.baseclasses.UpfEntry method)

 	get_user() (aiida.orm.implementation.general.node.AbstractNode method)

 	get_valid_auth_params() (aiida.transport.__init__.Transport class method)

 	get_valid_fields() (aiida.common.extendeddicts.FixedFieldsAttributeDict class method)

 	get_valid_keys() (aiida.scheduler.datastructures.JobResource class method)

 	

 	(aiida.scheduler.datastructures.NodeNumberJobResource class method)

 	get_valid_pbc() (in module aiida.orm.data.structure)

 	get_valid_transports() (aiida.transport.__init__.Transport class method)

 	get_value_for_node() (aiida.backends.djsite.db.models.DbAttributeBaseClass class method)

 	get_velocities() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	get_withmpi() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	get_workflow_info() (in module aiida.orm.implementation.general.workflow)

 	getcwd() (aiida.transport.__init__.Transport method)

 	getfile() (aiida.transport.__init__.Transport method)

 	getJobs() (aiida.scheduler.__init__.Scheduler method)

 	gettree() (aiida.transport.__init__.Transport method)

 	getvalue() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass method)

 	glob() (aiida.transport.__init__.Transport method)

 	gotocomputer_command() (aiida.transport.__init__.Transport method)

 	group_symbols() (in module aiida.orm.data.structure)

 	grouper() (in module aiida.common.utils)

 	gunzip_string() (in module aiida.common.utils)

 	gzip_string() (in module aiida.common.utils)

H

 	

 	has_ase() (in module aiida.orm.data.structure)

 	has_attached_hydrogens() (aiida.orm.data.cif.CifData method)

 	has_children (aiida.orm.implementation.general.node.AbstractNode attribute)

 	has_failed() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	has_finished_ok() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	has_key() (aiida.backends.djsite.db.models.DbAttributeBaseClass class method)

 	has_parents (aiida.orm.implementation.general.node.AbstractNode attribute)

 	

 	has_partial_occupancies() (aiida.orm.data.cif.CifData method)

 	has_pycifrw() (in module aiida.orm.data.cif)

 	has_pymatgen() (in module aiida.orm.data.structure)

 	has_pyspglib() (in module aiida.orm.data.structure)

 	has_step() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	has_vacancies() (aiida.orm.data.structure.Kind method)

 	

 	(aiida.orm.data.structure.StructureData method)

 	(in module aiida.orm.data.structure)

 	Help (class in aiida.cmdline.verdilib)

I

 	

 	IcsdDbImporter (class in aiida.tools.dbimporters.plugins.icsd)

 	IcsdEntry (class in aiida.tools.dbimporters.plugins.icsd)

 	IcsdSearchResults (class in aiida.tools.dbimporters.plugins.icsd)

 	id (aiida.orm.implementation.general.computer.AbstractComputer attribute)

 	

 	(aiida.orm.implementation.general.node.AbstractNode attribute)

 	iglob() (aiida.transport.__init__.Transport method)

 	Importable (class in aiida.cmdline.commands.data)

 	importfile() (aiida.orm.data.Data method)

 	importstring() (aiida.orm.data.Data method)

 	info() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	inject_query() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	inp (aiida.orm.implementation.general.node.AbstractNode attribute)

 	input_helper() (aiida.orm.calculation.job.quantumespresso.pw.PwCalculation class method)

 	inputs() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	InputValidationError

 	insert_path() (aiida.common.folders.Folder method)

 	Install (class in aiida.cmdline.verdilib)

 	InternalError

 	InvalidOperation

 	

 	is_alloy() (aiida.orm.data.structure.Kind method)

 	

 	(aiida.orm.data.structure.StructureData method)

 	is_ase_atoms() (in module aiida.orm.data.structure)

 	is_daemon_user() (in module aiida.cmdline.commands.daemon)

 	is_empty() (aiida.orm.data.remote.RemoteData method)

 	is_local() (aiida.orm.implementation.general.code.AbstractCode method)

 	is_new() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	is_running() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	is_subworkflow() (aiida.backends.djsite.db.models.DbWorkflow method)

 	

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	is_user_configured() (aiida.orm.implementation.general.computer.AbstractComputer method)

 	is_user_enabled() (aiida.orm.implementation.general.computer.AbstractComputer method)

 	is_valid_symbol() (in module aiida.orm.data.structure)

 	isdir() (aiida.common.folders.Folder method)

 	

 	(aiida.transport.__init__.Transport method)

 	isfile() (aiida.common.folders.Folder method)

 	

 	(aiida.transport.__init__.Transport method)

 	iterall() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	iterarrays() (aiida.orm.data.array.ArrayData method)

 	iterattrs() (aiida.orm.implementation.general.node.AbstractNode method)

 	iterdict() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	iterextras() (aiida.orm.implementation.general.node.AbstractNode method)

J

 	

 	JobInfo (class in aiida.scheduler.datastructures)

 	JobResource (class in aiida.scheduler.datastructures)

 	

 	JobTemplate (class in aiida.scheduler.datastructures)

K

 	

 	keys() (aiida.orm.data.parameter.ParameterData method)

 	kill() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	(aiida.scheduler.__init__.Scheduler method)

 	kill_all() (in module aiida.orm.implementation.general.workflow)

 	kill_daemon() (aiida.cmdline.commands.daemon.Daemon method)

 	kill_from_pk() (in module aiida.orm.implementation.general.workflow)

 	

 	kill_step_calculations() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	Kind (class in aiida.orm.data.structure)

 	kind_name (aiida.orm.data.structure.Site attribute)

 	kinds (aiida.orm.data.structure.StructureData attribute)

 	KpointsData (class in aiida.orm.data.array.kpoints)

L

 	

 	label (aiida.orm.implementation.general.node.AbstractNode attribute)

 	

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow attribute)

 	labels (aiida.orm.data.array.kpoints.KpointsData attribute)

 	LicensingException

 	limit() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	list() (aiida.cmdline.commands.data.Listable method)

 	list_all_node_elements() (aiida.backends.djsite.db.models.DbAttributeBaseClass class method)

 	list_for_plugin() (aiida.orm.implementation.general.code.AbstractCode class method)

 	list_names() (aiida.orm.implementation.general.computer.AbstractComputer class method)

 	Listable (class in aiida.cmdline.commands.data)

 	

 	listdir() (aiida.transport.__init__.Transport method)

 	ListParams (class in aiida.cmdline.verdilib)

 	load_node() (in module aiida.orm.utils)

 	load_plugin() (in module aiida.common.pluginloader)

 	load_workflow() (in module aiida.orm.utils)

 	LockPresent

 	logger (aiida.orm.implementation.general.calculation.AbstractCalculation attribute)

 	

 	(aiida.orm.implementation.general.node.AbstractNode attribute)

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow attribute)

 	(aiida.scheduler.__init__.Scheduler attribute)

 	(aiida.transport.__init__.Transport attribute)

 	long_field_length() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass method)

M

 	

 	MachineInfo (class in aiida.scheduler.datastructures)

 	makedirs() (aiida.transport.__init__.Transport method)

 	mass (aiida.orm.data.structure.Kind attribute)

 	md5_file() (in module aiida.common.utils)

 	MissingPluginError

 	mkdir() (aiida.transport.__init__.Transport method)

 	mode_dir (aiida.common.folders.Folder attribute)

 	

 	mode_file (aiida.common.folders.Folder attribute)

 	ModificationNotAllowed

 	MpodDbImporter (class in aiida.tools.dbimporters.plugins.mpod)

 	MpodEntry (class in aiida.tools.dbimporters.plugins.mpod)

 	MpodSearchResults (class in aiida.tools.dbimporters.plugins.mpod)

 	mtime (aiida.orm.implementation.general.node.AbstractNode attribute)

 	MultipleObjectsError

N

 	

 	name (aiida.orm.data.structure.Kind attribute)

 	new_calc() (aiida.orm.implementation.general.code.AbstractCode method)

 	next() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	

 	(aiida.tools.dbimporters.baseclasses.DbSearchResults method)

 	(aiida.tools.dbimporters.plugins.icsd.IcsdSearchResults method)

 	NnincDbImporter (class in aiida.tools.dbimporters.plugins.nninc)

 	NnincEntry (class in aiida.tools.dbimporters.plugins.nninc)

 	NnincSearchResults (class in aiida.tools.dbimporters.plugins.nninc)

 	NodeInputManager (class in aiida.orm.implementation.general.node)

 	NodeNumberJobResource (class in aiida.scheduler.datastructures)

 	

 	NodeOutputManager (class in aiida.orm.implementation.general.node)

 	NoResultsWebExp

 	normalize() (aiida.transport.__init__.Transport method)

 	NotExistent

 	numsites (aiida.orm.data.array.trajectory.TrajectoryData attribute)

 	numsteps (aiida.orm.data.array.trajectory.TrajectoryData attribute)

 	NwcpymatgenTcodtranslator (class in aiida.tools.dbexporters.tcod_plugins.nwcpymatgen)

O

 	

 	offset() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	open() (aiida.common.folders.Folder method)

 	

 	(aiida.transport.__init__.Transport method)

 	optional_inline() (in module aiida.orm.calculation.inline)

 	OqmdDbImporter (class in aiida.tools.dbimporters.plugins.oqmd)

 	OqmdEntry (class in aiida.tools.dbimporters.plugins.oqmd)

 	

 	OqmdSearchResults (class in aiida.tools.dbimporters.plugins.oqmd)

 	order_by() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	out (aiida.orm.implementation.general.node.AbstractNode attribute)

 	outputs() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

P

 	

 	ParameterData (class in aiida.orm.data.parameter)

 	parents() (aiida.backends.querybuild.querybuilder_base.AbstractQueryBuilder method)

 	ParEnvJobResource (class in aiida.scheduler.datastructures)

 	parse_atomic_positions() (in module aiida.tools.codespecific.quantumespresso.pwinputparser)

 	parse_atomic_species() (in module aiida.tools.codespecific.quantumespresso.pwinputparser)

 	parse_cell_parameters() (in module aiida.tools.codespecific.quantumespresso.pwinputparser)

 	parse_cp_text_output() (in module aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp)

 	parse_cp_traj_stanzas() (in module aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp)

 	parse_cp_xml_counter_output() (in module aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp)

 	parse_cp_xml_output() (in module aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp)

 	parse_formula() (in module aiida.orm.data.cif)

 	parse_k_points() (in module aiida.tools.codespecific.quantumespresso.pwinputparser)

 	parse_namelists() (in module aiida.tools.codespecific.quantumespresso.pwinputparser)

 	parse_profile() (in module aiida.cmdline.verdilib)

 	parse_pw_text_output() (in module aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw)

 	parse_pw_xml_output() (in module aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw)

 	parse_QE_errors() (in module aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw)

 	parse_raw_output() (in module aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw)

 	parse_upf() (in module aiida.orm.data.upf)

 	parse_with_retrieved() (aiida.parsers.plugins.quantumespresso.basicpw.BasicpwParser method)

 	

 	(aiida.parsers.plugins.quantumespresso.cp.CpParser method)

 	ParsingError

 	

 	path_exists() (aiida.transport.__init__.Transport method)

 	pbc (aiida.orm.data.array.kpoints.KpointsData attribute)

 	

 	(aiida.orm.data.structure.StructureData attribute)

 	PcodDbImporter (class in aiida.tools.dbimporters.plugins.pcod)

 	PcodEntry (class in aiida.tools.dbimporters.plugins.pcod)

 	PcodSearchResults (class in aiida.tools.dbimporters.plugins.pcod)

 	pk (aiida.orm.implementation.general.computer.AbstractComputer attribute)

 	

 	(aiida.orm.implementation.general.node.AbstractNode attribute)

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow attribute)

 	PluginInternalError

 	position (aiida.orm.data.structure.Site attribute)

 	prepare_for_retrieval_and_parsing() (aiida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation method)

 	ProfileConfigurationError

 	ProfileParsingException

 	put() (aiida.transport.__init__.Transport method)

 	putfile() (aiida.transport.__init__.Transport method)

 	puttree() (aiida.transport.__init__.Transport method)

 	pw_input_helper() (in module aiida.orm.calculation.job.quantumespresso.helpers)

 	PwCalculation (class in aiida.orm.calculation.job.quantumespresso.pw)

 	PwimmigrantCalculation (class in aiida.orm.calculation.job.quantumespresso.pwimmigrant)

 	PwInputFile (class in aiida.tools.codespecific.quantumespresso.pwinputparser)

 	PwTcodtranslator (class in aiida.tools.dbexporters.tcod_plugins.pw)

 	pycifrw_from_cif() (in module aiida.orm.data.cif)

Q

 	

 	QEInputValidationError

 	query() (aiida.cmdline.commands.data.Listable method)

 	

 	(aiida.orm.implementation.general.node.AbstractNode class method)

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow class method)

 	(aiida.tools.dbimporters.baseclasses.DbImporter method)

 	(aiida.tools.dbimporters.plugins.cod.CodDbImporter method)

 	(aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter method)

 	(aiida.tools.dbimporters.plugins.mpod.MpodDbImporter method)

 	(aiida.tools.dbimporters.plugins.nninc.NnincDbImporter method)

 	(aiida.tools.dbimporters.plugins.oqmd.OqmdDbImporter method)

 	(aiida.tools.dbimporters.plugins.pcod.PcodDbImporter method)

 	(aiida.tools.dbimporters.plugins.tcod.TcodDbImporter method)

 	query_db_version() (aiida.tools.dbimporters.plugins.icsd.IcsdSearchResults method)

 	query_get() (aiida.tools.dbimporters.plugins.mpod.MpodDbImporter method)

 	

 	(aiida.tools.dbimporters.plugins.nninc.NnincDbImporter method)

 	(aiida.tools.dbimporters.plugins.oqmd.OqmdDbImporter method)

 	query_group() (aiida.cmdline.commands.data.Listable method)

 	query_group_qb() (aiida.cmdline.commands.data.Listable method)

 	query_page() (aiida.tools.dbimporters.plugins.icsd.IcsdSearchResults method)

 	

 	query_past_days() (aiida.cmdline.commands.data.Listable method)

 	query_past_days_qb() (aiida.cmdline.commands.data.Listable method)

 	query_sql() (aiida.tools.dbimporters.plugins.cod.CodDbImporter method)

 	

 	(aiida.tools.dbimporters.plugins.pcod.PcodDbImporter method)

 	query_string() (in module aiida.common.utils)

 	query_yes_no() (in module aiida.common.utils)

 	querybuild() (aiida.orm.implementation.general.node.AbstractNode method)

R

 	

 	read_cif() (aiida.orm.data.cif.CifData static method)

 	RemoteData (class in aiida.orm.data.remote)

 	RemoteOperationError

 	remove() (aiida.transport.__init__.Transport method)

 	remove_path() (aiida.common.folders.Folder method)

 	

 	(aiida.orm.implementation.general.node.AbstractNode method)

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	rename() (aiida.transport.__init__.Transport method)

 	replace_with_folder() (aiida.common.folders.Folder method)

 	

 	(aiida.orm.data.folder.FolderData method)

 	repo_folder (aiida.orm.implementation.general.workflow.AbstractWorkflow attribute)

 	RepositoryFolder (class in aiida.common.folders)

 	res (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation attribute)

 	

 	reset_cell() (aiida.orm.data.structure.StructureData method)

 	reset_mass() (aiida.orm.data.structure.Kind method)

 	reset_sites_positions() (aiida.orm.data.structure.StructureData method)

 	retrieve_computed_for_authinfo() (in module aiida.daemon.execmanager)

 	retrieve_jobs() (in module aiida.daemon.execmanager)

 	rmdir() (aiida.transport.__init__.Transport method)

 	rmtree() (aiida.transport.__init__.Transport method)

 	Run (class in aiida.cmdline.verdilib)

 	run() (aiida.cmdline.baseclass.VerdiCommand method)

 	

 	(aiida.cmdline.verdilib.CompletionCommand method)

 	Runserver (class in aiida.cmdline.verdilib)

S

 	

 	SandboxFolder (class in aiida.common.folders)

 	Scheduler (class in aiida.scheduler.__init__)

 	SchedulerFactory() (in module aiida.scheduler.__init__)

 	section (aiida.common.folders.RepositoryFolder attribute)

 	set() (aiida.orm.implementation.general.node.AbstractNode method)

 	set_append_text() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	

 	(aiida.orm.implementation.general.code.AbstractCode method)

 	set_array() (aiida.orm.data.array.ArrayData method)

 	set_ase() (aiida.orm.data.structure.StructureData method)

 	set_automatic_kind_name() (aiida.orm.data.structure.Kind method)

 	set_cell() (aiida.orm.data.array.kpoints.KpointsData method)

 	set_cell_from_structure() (aiida.orm.data.array.kpoints.KpointsData method)

 	set_computer() (aiida.orm.implementation.general.node.AbstractNode method)

 	set_custom_scheduler_commands() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	set_default_mpiprocs_per_machine() (aiida.orm.implementation.general.computer.AbstractComputer method)

 	set_dict() (aiida.orm.data.parameter.ParameterData method)

 	set_environment_variables() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	set_extra() (aiida.orm.implementation.general.node.AbstractNode method)

 	set_extras() (aiida.orm.implementation.general.node.AbstractNode method)

 	set_file() (aiida.orm.data.cif.CifData method)

 	

 	(aiida.orm.data.singlefile.SinglefileData method)

 	(aiida.orm.data.upf.UpfData method)

 	set_files() (aiida.orm.implementation.general.code.AbstractCode method)

 	set_import_sys_environment() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	set_input_file_name() (aiida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation method)

 	set_input_plugin_name() (aiida.orm.implementation.general.code.AbstractCode method)

 	set_kpoints() (aiida.orm.data.array.kpoints.KpointsData method)

 	set_kpoints_mesh() (aiida.orm.data.array.kpoints.KpointsData method)

 	set_kpoints_mesh_from_density() (aiida.orm.data.array.kpoints.KpointsData method)

 	set_local_executable() (aiida.orm.implementation.general.code.AbstractCode method)

 	set_max_memory_kb() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	set_max_wallclock_seconds() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	set_mpirun_command() (aiida.orm.implementation.general.computer.AbstractComputer method)

 	set_mpirun_extra_params() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	set_output_file_name() (aiida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation method)

 	set_output_subfolder() (aiida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation method)

 	set_params() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	set_parser_name() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	set_prefix() (aiida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation method)

 	set_prepend_text() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	

 	(aiida.orm.implementation.general.code.AbstractCode method)

 	set_priority() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	set_pymatgen() (aiida.orm.data.structure.StructureData method)

 	set_pymatgen_molecule() (aiida.orm.data.structure.StructureData method)

 	set_pymatgen_structure() (aiida.orm.data.structure.StructureData method)

 	set_queue_name() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	set_remote_computer_exec() (aiida.orm.implementation.general.code.AbstractCode method)

 	

 	set_remote_workdir() (aiida.orm.calculation.job.quantumespresso.pwimmigrant.PwimmigrantCalculation method)

 	set_resources() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	set_source() (aiida.orm.data.Data method)

 	set_state() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	set_structurelist() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	set_symbols_and_weights() (aiida.orm.data.structure.Kind method)

 	set_trajectory() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	set_transport() (aiida.scheduler.__init__.Scheduler method)

 	set_value() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass class method)

 	set_value_for_node() (aiida.backends.djsite.db.models.DbAttributeBaseClass class method)

 	set_withmpi() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	setup_db() (aiida.tools.dbimporters.baseclasses.DbImporter method)

 	

 	(aiida.tools.dbimporters.plugins.cod.CodDbImporter method)

 	(aiida.tools.dbimporters.plugins.icsd.IcsdDbImporter method)

 	(aiida.tools.dbimporters.plugins.mpod.MpodDbImporter method)

 	(aiida.tools.dbimporters.plugins.nninc.NnincDbImporter method)

 	(aiida.tools.dbimporters.plugins.oqmd.OqmdDbImporter method)

 	sha1_file() (in module aiida.common.utils)

 	show() (aiida.cmdline.commands.data.Visualizable method)

 	SinglefileData (class in aiida.orm.data.singlefile)

 	Site (class in aiida.orm.data.structure)

 	sites (aiida.orm.data.structure.StructureData attribute)

 	sleep() (aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	sort_states() (in module aiida.common.datastructures)

 	source (aiida.orm.data.Data attribute)

 	step() (aiida.orm.implementation.general.workflow.AbstractWorkflow class method)

 	step_to_structure() (aiida.orm.data.array.trajectory.TrajectoryData method)

 	store() (aiida.orm.data.cif.CifData method)

 	

 	(aiida.orm.data.upf.UpfData method)

 	(aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	(aiida.orm.implementation.general.computer.AbstractComputer method)

 	(aiida.orm.implementation.general.node.AbstractNode method)

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow method)

 	store_all() (aiida.orm.implementation.general.node.AbstractNode method)

 	str2val() (in module aiida.tools.codespecific.quantumespresso.pwinputparser)

 	str_timedelta() (in module aiida.common.utils)

 	StructureData (class in aiida.orm.data.structure)

 	subfolder (aiida.common.folders.RepositoryFolder attribute)

 	submit() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	submit_calc() (in module aiida.daemon.execmanager)

 	submit_from_script() (aiida.scheduler.__init__.Scheduler method)

 	submit_jobs() (in module aiida.daemon.execmanager)

 	submit_jobs_with_authinfo() (in module aiida.daemon.execmanager)

 	submit_test() (aiida.orm.implementation.general.calculation.job.AbstractJobCalculation method)

 	subspecifier_pk (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass attribute)

 	subspecifiers_dict (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass attribute)

 	symbol (aiida.orm.data.structure.Kind attribute)

 	symbols (aiida.orm.data.structure.Kind attribute)

 	symlink() (aiida.transport.__init__.Transport method)

 	symop_fract_from_ortho() (in module aiida.orm.data.structure)

 	symop_ortho_from_fract() (in module aiida.orm.data.structure)

 	symop_string_from_symop_matrix_tr() (in module aiida.orm.data.cif)

T

 	

 	TcodDbImporter (class in aiida.tools.dbimporters.plugins.tcod)

 	TcodEntry (class in aiida.tools.dbimporters.plugins.tcod)

 	TcodSearchResults (class in aiida.tools.dbimporters.plugins.tcod)

 	TemplatereplacerCalculation (class in aiida.orm.calculation.job.simpleplugins.templatereplacer)

 	TrajectoryData (class in aiida.orm.data.array.trajectory)

 	

 	translate_calculation_specific_values() (in module aiida.tools.dbexporters.tcod)

 	transport (aiida.scheduler.__init__.Scheduler attribute)

 	Transport (class in aiida.transport.__init__)

 	TransportFactory() (in module aiida.transport.__init__)

 	TransportInternalError

U

 	

 	UniquenessError

 	update_dict() (aiida.orm.data.parameter.ParameterData method)

 	update_environment() (in module aiida.cmdline.verdilib)

 	update_jobs() (in module aiida.daemon.execmanager)

 	update_running_calcs_status() (in module aiida.daemon.execmanager)

 	

 	UpfData (class in aiida.orm.data.upf)

 	UpfEntry (class in aiida.tools.dbimporters.baseclasses)

 	upload_upf_family() (in module aiida.orm.data.upf)

 	uuid (aiida.common.folders.RepositoryFolder attribute)

 	

 	(aiida.orm.implementation.general.computer.AbstractComputer attribute)

 	(aiida.orm.implementation.general.node.AbstractNode attribute)

 	(aiida.orm.implementation.general.workflow.AbstractWorkflow attribute)

V

 	

 	validate() (aiida.common.extendeddicts.DefaultFieldsAttributeDict method)

 	

 	(aiida.orm.implementation.general.computer.AbstractComputer method)

 	validate_key() (aiida.backends.djsite.db.models.DbMultipleValueAttributeBaseClass class method)

 	validate_list_of_string_tuples() (in module aiida.common.utils)

 	validate_symbols_tuple() (in module aiida.orm.data.structure)

 	validate_weights_tuple() (in module aiida.orm.data.structure)

 	

 	ValidationError

 	values (aiida.orm.data.cif.CifData attribute)

 	VerdiCommand (class in aiida.cmdline.baseclass)

 	VerdiCommandWithSubcommands (class in aiida.cmdline.baseclass)

 	Visualizable (class in aiida.cmdline.commands.data)

W

 	

 	weights (aiida.orm.data.structure.Kind attribute)

 	whoami() (aiida.transport.__init__.Transport method)

 	WorkflowFactory() (in module aiida.orm.utils)

 	

 	WorkflowInputValidationError

 	WorkflowKillError

 	WorkflowUnkillable

X

 	

 	xyz_parser_iterator() (in module aiida.common.utils)

 Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

 _modules/aiida/common/pluginloader.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.common.pluginloader

-*- coding: utf-8 -*-
import importlib

import aiida.common
from aiida.common.exceptions import MissingPluginError

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

logger = aiida.common.aiidalogger.getChild('pluginloader')

[docs]def from_type_to_pluginclassname(typestr):
 """
 Return the string to pass to the load_plugin function, starting from
 the 'type' field of a Node.
 """
 # Fix for base class
 from aiida.common.exceptions import DbContentError
 if typestr == "":
 typestr = "node.Node."
 if not typestr.endswith("."):
 raise DbContentError("The type name '{}' is not valid!".format(
 typestr))
 return typestr[:-1] # Strip final dot

[docs]def get_query_type_string(plugin_type_string):
 """
 Receives a plugin_type_string, an attribute of subclasses of Node.
 Checks whether it is a valid type_string and manipulates the string
 to return a string that in a query returns all instances of a class and
 all instances of subclasses.

 :param str plugin_type_string: The plugin_type_string

 :returns: the query_type_string

 """
 from aiida.common.exceptions import DbContentError, InputValidationError
 if not isinstance(plugin_type_string, basestring):
 raise InputValidationError("You have to pass as argument")
 # First case, an empty string for Node:
 if plugin_type_string == '':
 query_type_string = ''
 # Anything else should have baseclass.Class., so at least 2 dots
 # and end with a dot:
 elif not(plugin_type_string.endswith('.')) or plugin_type_string.count('.') == 1:
 raise DbContentError(
 "The type name '{}' is not valid!".format(plugin_type_string)
)
 else:
 query_type_string = '{}.'.format('.'.join(plugin_type_string.split('.')[:-2]))
 return query_type_string

[docs]def get_class_typestring(type_string):
 """
 Given the type string, return three strings: the first one is
 one of the first-level classes that the Node can be:
 "node", "calculation", "code", "data".
 The second string is the one that can be passed to the DataFactory or
 CalculationFactory (or an empty string for nodes and codes);
 the third one is the name of the python class that would be loaded.
 """
 from aiida.common.exceptions import DbContentError

 if type_string == "":
 return ("node", "")
 else:
 pieces = type_string.split('.')
 if pieces[-1]:
 raise DbContentError("The type string does not end with a dot")
 if len(pieces) < 3:
 raise DbContentError("Not enough parts in the type string")
 return pieces[0], ".".join(pieces[1:-2]), pieces[-2]

def _existing_plugins_with_module(base_class, plugins_module_path,
 pkgname, basename, max_depth, suffix=None):
 """
 Recursive function to return the existing plugins within a given module.

 :param base_class: Identify all subclasses of the base_class
 :param plugins_module_path: The path to the folder with the plugins
 :param pkgname: The name of the package in which you want to search
 :param basename: The basename of the plugin (sub)class. See also documentation
 of ``find_module``.
 :param max_depth: Maximum depth (of nested modules) to be used when
 looking for plugins
 :param suffix: The suffix that is appended to the basename when looking
 for the (sub)class name. If not provided (or None), use the base
 class name.
 :return: a list of valid strings that can be used using a Factory or with
 load_plugin.
 """
 import pkgutil
 import os

 if max_depth == 0:
 return []
 else:
 retlist = _find_module(base_class, pkgname, basename, suffix)

 for _, name, ismod in pkgutil.walk_packages([plugins_module_path]):
 if ismod:
 retlist += _existing_plugins_with_module(
 base_class, os.path.join(plugins_module_path, name),
 "{}.{}".format(pkgname, name),
 "{}.{}".format(basename, name) if basename else name,
 max_depth - 1, suffix=suffix)

 # This has to be done anyway, for classes in the __init__ file.
 this_pkgname = "{}.{}".format(pkgname, name)
 this_basename = "{}.{}".format(basename, name) if basename else name

 retlist += _find_module(base_class, this_pkgname, this_basename, suffix)

 return list(set(retlist))

def _find_module(base_class, pkgname, this_basename, suffix=None):
 """
 Given a base class object, looks for its subclasses inside the package
 with name pkgname (must be importable), and prepends to the class name
 the string 'this_basename'.

 If the name of the class complies with the syntax
 AaaBbb
 where Aaa is the capitalized name of the containing module (aaa), and
 Bbb is base_class.__name__, then only 'aaa' is returned instead of
 'aaa.AaaBbb', to have a shorter name that is anyway accepted by the *Factory
 functions. If suffix is provided, this is used for comparison (the 'Bbb'
 string) rather than the base class name)

 :param base_class: Identify all subclasses of the base_class
 :param pkgname: The name of the package in which you want to search
 :param basename: The basename of the plugin (sub)class. See also documentation
 of ``find_module``.
 :param suffix: The suffix that is appended to the basename when looking
 for the (sub)class name. If not provided (or None), use the base
 class name.
 :return: a list of valid strings, acceptable by the *Factory functions.
 Does not return the class itself.
 """
 import inspect

 retlist = []

 # print ' '*(5-max_depth), '>', pkgname
 #print ' '*(5-max_depth), ' ', this_basename

 pkg = importlib.import_module(pkgname)
 for k, v in pkg.__dict__.iteritems():
 if (inspect.isclass(v) and # A class
 v != base_class and # Not the class itself
 issubclass(v, base_class) and # a proper subclass
 pkgname == v.__module__): # We are importing it from its
 # module: avoid to import it
 # from another module, if it
 # was simply imported there
 # Try to return the shorter name if the subclass name
 # has the correct pattern, as expected by the Factory
 # functions
 if suffix is None:
 actual_suffix = base_class.__name__
 else:
 actual_suffix = suffix

 if k == "{}{}".format(
 pkgname.rpartition('.')[2].capitalize(),
 actual_suffix):
 retlist.append(this_basename)
 else:
 retlist.append(
 ("{}.{}".format(this_basename, k) if this_basename
 else k))
 #print ' '*(5-max_depth), ' ->', "{}.{}".format(this_basename, k)
 return retlist

[docs]def existing_plugins(base_class, plugins_module_name, max_depth=5, suffix=None):
 """
 Return a list of strings of valid plugins.

 :param base_class: Identify all subclasses of the base_class
 :param plugins_module_name: a string with the full module name separated
 with dots that points to the folder with plugins.
 It must be importable by python.
 :param max_depth: Maximum depth (of nested modules) to be used when
 looking for plugins
 :param suffix: The suffix that is appended to the basename when looking
 for the (sub)class name. If not provided (or None), use the base
 class name.
 :return: a list of valid strings that can be used using a Factory or with
 load_plugin.
 """
 try:
 pluginmod = importlib.import_module(plugins_module_name)
 except ImportError:
 raise MissingPluginError("Unable to load the plugin module {}".format(
 plugins_module_name))

 return _existing_plugins_with_module(base_class,
 pluginmod.__path__[0],
 plugins_module_name,
 "",
 max_depth, suffix)

[docs]def load_plugin(base_class, plugins_module, plugin_type):
 """
 Load a specific plugin for the given base class.

 This is general and works for any plugin used in AiiDA.

 NOTE: actually, now plugins_module and plugin_type are joined with a dot,
 and the plugin is retrieved splitting using the last dot of the resulting
 string.
 TODO: understand if it is probably better to join the two parameters above
 to a single one.

 Args:
 base_class
 the abstract base class of the plugin.
 plugins_module
 a string with the full module name separated with dots
 that points to the folder with plugins. It must be importable by python.
 plugin_type
 the name of the plugin.

 Return:
 the class of the required plugin.

 Raise:
 MissingPluginError if the plugin cannot be loaded

 Example:
 plugin_class = load_plugin(
 aiida.transport.Transport,'aiida.transport.plugins','ssh.SshTransport')

 and plugin_class will be the class 'aiida.transport.plugins.ssh.SshTransport'
 """

 module_name = ".".join([plugins_module, plugin_type])
 real_plugin_module, plugin_name = module_name.rsplit('.', 1)

 try:
 pluginmod = importlib.import_module(real_plugin_module)
 except ImportError:
 raise MissingPluginError("Unable to load the plugin module {}".format(
 real_plugin_module))

 try:
 pluginclass = pluginmod.__dict__[plugin_name]
 except KeyError:
 raise MissingPluginError("Unable to load the class {} within {}".format(
 plugin_name, real_plugin_module))

 try:
 if issubclass(pluginclass, base_class):
 return pluginclass
 else:
 # Quick way of going into the except case
 err_msg = "{} is not a subclass of {}".format(
 module_name, base_class.__name__)
 raise MissingPluginError(err_msg)
 except TypeError:
 # This happens when we pass a non-class to issubclass;
 err_msg = "{} is not a class".format(
 module_name)
 raise MissingPluginError(err_msg)

[docs]def BaseFactory(module, base_class, base_modname, suffix=None):
 """
 Return a given subclass of Calculation, loading the correct plugin.

 :example: If `module='quantumespresso.pw'`, `base_class=JobCalculation`,
 `base_modname = 'aiida.orm.calculation.job'`, and `suffix='Calculation'`,
 the code will first look for a pw subclass of JobCalculation
 inside the quantumespresso module. Lacking such a class, it will try to look
 for a 'PwCalculation' inside the quantumespresso.pw module.
 In the latter case, the plugin class must have a specific name and be
 located in a specific file:
 if for instance plugin_name == 'ssh' and base_class.__name__ == 'Transport',
 then there must be a class named 'SshTransport' which is a subclass of base_class
 in a file 'ssh.py' in the plugins_module folder.
 To create the class name to look for, the code will attach the string
 passed in the base_modname (after the last dot) and the suffix parameter,
 if passed, with the proper CamelCase capitalization. If suffix is not
 passed, the default suffix that is used is the base_class class name.

 :param module: a string with the module of the plugin to load, e.g.
 'quantumespresso.pw'.
 :param base_class: a base class from which the returned class should inherit.
 e.g.: JobCalculation
 :param base_modname: a basic module name, under which the module should be
 found. E.g., 'aiida.orm.calculation.job'.
 :param suffix: If specified, the suffix that the class name will have.
 By default, use the name of the base_class.
 """
 try:
 return load_plugin(base_class, base_modname, module)
 except MissingPluginError as e1:
 # Automatically add subclass name and try again
 if suffix is None:
 actual_suffix = base_class.__name__
 else:
 actual_suffix = suffix
 mname = module.rpartition('.')[2].capitalize() + actual_suffix
 new_module = module + '.' + mname
 try:
 return load_plugin(base_class, base_modname, new_module)
 except MissingPluginError as e2:
 err_msg = ("Neither {} or {} could be loaded from {}. "
 "Error messages were: '{}', '{}'").format(
 module, new_module, base_modname, e1, e2)
 raise MissingPluginError(err_msg)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/common/extendeddicts.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.common.extendeddicts

-*- coding: utf-8 -*-
from aiida.common.exceptions import ValidationError
import collections
from aiida.common.lang import override

TODO: see if we want to have a function to rebuild a nested dictionary as
a nested AttributeDict object when deserializing with json.
(now it deserialized to a standard dictionary; comparison of
AttributeDict == dict works fine, though.
Note also that when pickling, instead, the structure is well preserved)

Note that for instance putting this code in __getattr__ doesn't work:
everytime I try to write on a.b.c I am actually writing on a copy
return AttributeDict(item) if type(item) == dict else item

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

class Enumerate(frozenset):
 def __getattr__(self, name):
 if name in self:
 return name.decode("utf-8")
 raise AttributeError("No attribute '{}' in Enumerate '{}'".format(
 name, self.__class__.__name__))

 def __setattr__(self, name, value):
 raise AttributeError("Cannot set attribute in Enumerate '{}'".format(
 self.__class__.__name__))

 def __delattr__(self, name):
 raise AttributeError("Cannot delete attribute in Enumerate '{}'".format(
 self.__class__.__name__))

[docs]class AttributeDict(dict):
 """
 This class internally stores values in a dictionary, but exposes
 the keys also as attributes, i.e. asking for attrdict.key
 will return the value of attrdict['key'] and so on.

 Raises an AttributeError if the key does not exist, when called as an attribute,
 while the usual KeyError if the key does not exist and the dictionary syntax is
 used.
 """

 def __init__(self, init=None):
 """
 Possibly set the initial values of the dictionary from an external dictionary
 init. Note that the attribute-calling syntax will work only 1 level deep.
 """
 if init is None:
 init = {}
 super(AttributeDict, self).__init__(init)

 def __repr__(self):
 """
 Representation of the object.
 """
 return "%s(%s)" % (self.__class__.__name__, dict.__repr__(self))

 def __getattr__(self, attr):
 """
 Read a key as an attribute. Raise AttributeError on missing key.
 Called only for attributes that do not exist.
 """
 try:
 return self[attr]
 except KeyError:
 errmsg = "'{}' object has no attribute '{}'".format(
 self.__class__.__name__, attr)
 raise AttributeError(errmsg)

 def __setattr__(self, attr, value):
 """
 Set a key as an attribute.
 """
 try:
 self[attr] = value
 except KeyError:
 raise AttributeError(
 "AttributeError: '{}' is not a valid attribute of the object "
 "'{}'".format(attr, self.__class__.__name__))

 def __delattr__(self, attr):
 """
 Delete a key as an attribute. Raise AttributeError on missing key.
 """
 try:
 del self[attr]
 except KeyError:
 errmsg = "'{}' object has no attribute '{}'".format(
 self.__class__.__name__, attr)
 raise AttributeError(errmsg)

[docs] def copy(self):
 """
 Shallow copy.
 """
 return self.__class__(self)

 def __deepcopy__(self, memo=None):
 """
 Support deepcopy.
 """
 from copy import deepcopy

 if memo is None:
 memo = {}
 retval = deepcopy(dict(self))
 return self.__class__(retval)

 def __getstate__(self):
 """
 Needed for pickling this class.
 """
 return self.__dict__.copy()

 def __setstate__(self, dict):
 """
 Needed for pickling this class.
 """
 self.__dict__.update(dict)

 def __dir__(self):
 return self.keys()

[docs]class FixedFieldsAttributeDict(AttributeDict):
 """
 A dictionary with access to the keys as attributes, and with filtering
 of valid attributes.
 This is only the base class, without valid attributes;
 use a derived class to do the actual work.
 E.g.::

 class TestExample(FixedFieldsAttributeDict):
 _valid_fields = ('a','b','c')
 """
 _valid_fields = tuple()

 def __init__(self, init=None):
 if init is None:
 init = {}

 for key in init:
 if key not in self._valid_fields:
 errmsg = "'{}' is not a valid key for object '{}'".format(
 key, self.__class__.__name__)
 raise KeyError(errmsg)
 super(FixedFieldsAttributeDict, self).__init__(init)

 def __setitem__(self, item, value):
 """
 Set a key as an attribute.
 """
 if item not in self._valid_fields:
 errmsg = "'{}' is not a valid key for object '{}'".format(
 item, self.__class__.__name__)
 raise KeyError(errmsg)
 super(FixedFieldsAttributeDict, self).__setitem__(item, value)

 def __setattr__(self, attr, value):
 """
 Overridden to allow direct access to fields with underscore.
 """
 if attr.startswith('_'):
 object.__setattr__(self, attr, value)
 else:
 super(FixedFieldsAttributeDict, self).__setattr__(attr, value)

 @classmethod
[docs] def get_valid_fields(cls):
 """
 Return the list of valid fields.
 """
 return cls._valid_fields

 def __dir__(self):
 return list(self._valid_fields)

[docs]class DefaultFieldsAttributeDict(AttributeDict):
 """
 A dictionary with access to the keys as attributes, and with an
 internal value storing the 'default' keys to be distinguished
 from extra fields.

 Extra methods defaultkeys() and extrakeys() divide the set returned by
 keys() in default keys (i.e. those defined at definition time)
 and other keys.
 There is also a method get_default_fields() to return the internal list.

 Moreover, for undefined default keys, it returns None instead of raising a
 KeyError/AttributeError exception.

 Remember to define the _default_fields in a subclass!
 E.g.::

 class TestExample(DefaultFieldsAttributeDict):
 _default_fields = ('a','b','c')

 When the validate() method is called, it calls in turn all validate_KEY
 methods, where KEY is one of the default keys.
 If the method is not present, the field is considered to be always valid.
 Each validate_KEY method should accept a single argument 'value' that will
 contain the value to be checked.

 It raises a ValidationError if any of the validate_KEY
 function raises an exception, otherwise it simply returns.
 NOTE: the validate_ functions are called also for unset fields, so if the
 field can be empty on validation, you have to start your validation
 function with something similar to::

 if value is None:
 return

 .. todo::
 Decide behavior if I set to None a field.
 Current behavior, if
 ``a`` is an instance and 'def_field' one of the default fields, that is
 undefined, we get:

 * ``a.get('def_field')``: None
 * ``a.get('def_field','whatever')``: 'whatever'
 * Note that ``a.defaultkeys()`` does NOT contain 'def_field'

 if we do ``a.def_field = None``, then the behavior becomes

 * ``a.get('def_field')``: None
 * ``a.get('def_field','whatever')``: None
 * Note that ``a.defaultkeys()`` DOES contain 'def_field'

 See if we want that setting a default field to None means deleting it.
 """
 _default_fields = tuple()

[docs] def validate(self):
 """
 Validate the keys, if any ``validate_*`` method is available.
 """
 for key in self.get_default_fields():
 # I get the attribute starting with validate_ and containing the name of the key
 # I set a dummy function if there is no validate_KEY function defined
 validator = getattr(self, 'validate_{}'.format(key), lambda value: None)
 if callable(validator):
 try:
 validator(self[key])
 except Exception as e:
 raise ValidationError("Invalid value for key '{}' [{}]: {}".format(
 key, e.__class__.__name__, e.message))

 def __setattr__(self, attr, value):
 """
 Overridden to allow direct access to fields with underscore.
 """
 if attr.startswith('_'):
 object.__setattr__(self, attr, value)
 else:
 super(DefaultFieldsAttributeDict, self).__setattr__(attr, value)

 def __getitem__(self, key):
 """
 Return None instead of raising an exception if the key does not exist
 but is in the list of default fields.
 """
 try:
 return super(DefaultFieldsAttributeDict, self).__getitem__(key)
 except KeyError:
 if key in self._default_fields:
 return None
 else:
 raise

 @classmethod
[docs] def get_default_fields(cls):
 """
 Return the list of default fields, either defined in the instance or not.
 """
 return list(cls._default_fields)

[docs] def defaultkeys(self):
 """
 Return the default keys defined in the instance.
 """
 return [_ for _ in self.keys() if _ in self._default_fields]

[docs] def extrakeys(self):
 """
 Return the extra keys defined in the instance.
 """
 return [_ for _ in self.keys() if _ not in self._default_fields]

class FixedDict(collections.MutableMapping, object):
 def __init__(self, valid_keys):
 class M(object):
 pass

 self._m = M()
 self._m.values = {}
 self._m.valid_keys = valid_keys

 # Methods from MutableMapping ##########################
 @override
 def __dir__(self):
 return self._m.valid_keys

 @override
 def __getitem__(self, key):
 return self._m.values.__getitem__(key)

 @override
 def __setitem__(self, key, value):
 if key not in self._m.valid_keys:
 raise AttributeError("Invalid attribute: {}".format(key))
 return self._m.values.__setitem__(key, value)

 @override
 def __delitem__(self, key):
 assert key in self._m.values,\
 "Cannot delete an item that has not been set."
 return self._m.values.__delitem__(key)

 @override
 def __iter__(self):
 return self._m.values.__iter__()

 @override
 def __len__(self):
 return self._m.values.__len__()
 ##

 def __getattr__(self, item):
 if item == '_m':
 return super(FixedDict, self).__getattr__(item)
 try:
 return self.__getitem__(item)
 except KeyError:
 raise AttributeError("AttributeError: '{}'".format(item))

 def __setattr__(self, key, value):
 if key == '_m':
 return super(FixedDict, self).__setattr__(key, value)
 return self.__setitem__(key, value)

 def __delattr__(self, item):
 return self.__delitem__(item)

class _WithDefaults(object):
 def __init__(self, defaults):
 self._m._defaults = {}
 if defaults:
 self._m._defaults.update(defaults)

 def get_default(self, key):
 return self._m._defaults[key]

 @property
 def defaults(self):
 return self._m._defaults

class DefaultsDict(collections.MutableMapping):
 def __init__(self, valid_keys, defaults=None):
 self._set_internal('_valid_keys', valid_keys)
 self._set_internal('_user_supplied', {})

 if defaults is None:
 defaults = {}
 for key in defaults:
 assert key in valid_keys
 self._set_internal('_defaults', defaults)

 def __dir__(self):
 return self._get_internal('_valid_keys')

 def __getitem__(self, item):
 return self._get_internal('_user_supplied')[item]

 def __setitem__(self, key, value):
 if key not in self._get_internal('_valid_keys'):
 raise KeyError("KeyError: '{}'".format(key))
 self._get_internal('_user_supplied')[key] = value

 def __iter__(self):
 self._get_internal('_user_supplied').__iter__()

 def __len__(self):
 return len(self._get_internal('_user_supplied'))

 def __delitem__(self, key):
 del self._get_internal('_user_supplied')[key]

 def __getattr__(self, item):
 try:
 return self._user_supplied[item]
 except KeyError:
 try:
 self._defaults[item]
 except KeyError:
 raise AttributeError("AttributeError: '{}'".format(item))

 def __setattr__(self, key, value):
 try:
 self.__setitem__(key, value)
 except KeyError:
 raise AttributeError("AttributeError: '{}'".format(key))

 def __delattr__(self, key):
 try:
 self.__delitem__(key)
 except KeyError:
 raise AttributeError("AttributeError: '{}'".format(key))

 def _get_internal(self, item):
 return super(DefaultsDict, self).__getattribute__(item)

 def _set_internal(self, key, value):
 return super(DefaultsDict, self).__setattr__(key, value)

 def _set_value(self, key, value):
 self._get_internal('_user_supplied')[key] = value

 @property
 def defaults(self):
 return self._get_internal('_defaults')

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/parsers/plugins/quantumespresso/basic_raw_parser_cp.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.parsers.plugins.quantumespresso »

 Source code for aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp

-*- coding: utf-8 -*-
from aiida.parsers.plugins.quantumespresso import QEOutputParsingError
from xml.dom.minidom import parseString
from aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw import (read_xml_card,
 parse_xml_child_integer, parse_xml_child_bool,
 parse_xml_child_str, parse_xml_child_float,
 parse_xml_child_attribute_str, xml_card_cell,
 xml_card_ions,
)

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]def parse_cp_traj_stanzas(num_elements, splitlines, prepend_name, rescale=1.):
 """
 num_elements: Number of lines (with three elements) between lines with two only
 elements (containing step number and time in ps).
 num_elements is 3 for cell, and the number of atoms for coordinates and positions.

 splitlines: a list of lines of the file, already split in pieces using string.split

 prepend_name: a string to be prepended to the name of keys returned
 in the return dictionary.

 rescale: the values in each stanza are multiplied by this factor, for units conversion
 """
 steps = []
 times = []
 stanzas = []
 this_stanza = []
 start_stanza = False
 linenum = -1
 try:
 for linenum, l in enumerate(splitlines):
 if len(l) == 2:
 steps.append(int(l[0]))
 times.append(float(l[1]))
 start_stanza = True
 if len(this_stanza) != 0:
 raise ValueError("Wrong position of short line.")
 elif len(l) == 3:
 if len(this_stanza) == 0 and not start_stanza:
 raise ValueError("Wrong position of long line.")
 start_stanza = False
 this_stanza.append([float(l[0]) * rescale, float(l[1]) * rescale, float(l[2]) * rescale])
 if len(this_stanza) == num_elements:
 stanzas.append(this_stanza)
 this_stanza = []
 else:
 raise ValueError("Wrong line length ({})".format(len(l)))
 if len(this_stanza) != 0:
 raise ValueError("Wrong length of last block ({} lines instead of 0)."
 .format(len(this_stanza)))
 if len(steps) != len(stanzas):
 raise ValueError("Length mismatch between number of steps and number of defined stanzas.")
 return {
 '{}_steps'.format(prepend_name): steps,
 '{}_times'.format(prepend_name): times,
 '{}_data'.format(prepend_name): stanzas,
 }
 except Exception as e:
 e.message = "At line {}: {}".format(linenum + 1, e.message)
 raise e

[docs]def parse_cp_text_output(data, xml_data):
 """
 data must be a list of strings, one for each lines, as returned by readlines().
 On output, a dictionary with parsed values
 """
 # TODO: uniform readlines() and read() usage for passing input to the parser

 parsed_data = {}
 parsed_data['warnings'] = []

 for count, line in enumerate(data):

 if 'warning' in line.lower():
 parsed_data['warnings'].append(line)
 elif 'bananas' in line:
 parsed_data['warnings'].append('Bananas from the ortho.')

 for count, line in enumerate(reversed(data)):
 if 'nfi' in line and 'ekinc' in line and 'econs' in line:
 this_line = data[len(data) - count]
 try:
 parsed_data['ekinc'] = [float(this_line.split()[1])]
 except ValueError:
 pass
 try:
 parsed_data['temph'] = [float(this_line.split()[2])]
 except ValueError:
 pass
 try:
 parsed_data['tempp'] = [float(this_line.split()[3])]
 except ValueError:
 pass
 try:
 parsed_data['etot'] = [float(this_line.split()[4])]
 except ValueError:
 pass
 try:
 parsed_data['enthal'] = [float(this_line.split()[5])]
 except ValueError:
 pass
 try:
 parsed_data['econs'] = [float(this_line.split()[6])]
 except ValueError:
 pass
 try:
 parsed_data['econt'] = [float(this_line.split()[7])]
 except ValueError:
 pass
 try:
 parsed_data['vnhh'] = [float(this_line.split()[8])]
 except (ValueError, IndexError):
 pass
 try:
 parsed_data['xnhh0'] = [float(this_line.split()[9])]
 except (ValueError, IndexError):
 pass
 try:
 parsed_data['vnhp'] = [float(this_line.split()[10])]
 except (ValueError, IndexError):
 pass
 try:
 parsed_data['xnhp0'] = [float(this_line.split()[11])]
 except (ValueError, IndexError):
 pass

 return parsed_data

[docs]def parse_cp_xml_counter_output(data):
 """
 Parse xml file print_counter.xml
 data must be a single string, as returned by file.read() (notice the
 difference with parse_text_output!)
 On output, a dictionary with parsed values.
 """
 dom = parseString(data)
 parsed_data = {}
 cardname = 'LAST_SUCCESSFUL_PRINTOUT'

 card1 = [_ for _ in dom.childNodes if _.nodeName == 'PRINT_COUNTER'][0]
 card2 = [_ for _ in card1.childNodes if _.nodeName == 'LAST_SUCCESSFUL_PRINTOUT'][0]

 tagname = 'STEP'
 parsed_data[cardname.lower().replace('-', '_')] = parse_xml_child_integer(tagname, card2)

 return parsed_data

def parse_cp_raw_output(out_file, xml_file=None, xml_counter_file=None):
 parser_version = '0.1'
 parser_info = {}
 parser_info['parser_warnings'] = []
 parser_info['parser_info'] = 'AiiDA QE Parser v{}'.format(parser_version)

 # analyze the xml
 if xml_file is not None:
 try:
 with open(xml_file, 'r') as f:
 xml_lines = f.read()
 except IOError:
 raise QEOutputParsingError("Failed to open xml file: %s."
 .format(xml_file))
 # TODO: this function should probably be the same of pw.
 # after all, the parser was fault-tolerant
 xml_data = parse_cp_xml_output(xml_lines)
 else:
 parser_info['parser_warnings'].append('Skipping the parsing of the xml file.')
 xml_data = {}

 # analyze the counter file, which keeps info on the steps
 if xml_counter_file is not None:
 try:
 with open(xml_counter_file, 'r') as f:
 xml_counter_lines = f.read()
 except IOError:
 raise QEOutputParsingError("Failed to open xml counter file: %s."
 .format(xml_file))
 xml_counter_data = parse_cp_xml_counter_output(xml_counter_lines)
 else:
 xml_counter_data = {}

 # analyze the standard output
 try:
 with open(out_file, 'r') as f:
 out_lines = f.readlines()
 except IOError:
 raise QEOutputParsingError("Failed to open output file: %s." % out_file)

 # understand if the job ended smoothly
 job_successful = False
 for line in reversed(out_lines):
 if 'JOB DONE' in line:
 job_successful = True
 break

 out_data = parse_cp_text_output(out_lines, xml_data)

 for key in out_data.keys():
 if key in xml_data.keys():
 raise AssertionError('%s found in both dictionaries' % key)
 if key in xml_counter_data.keys():
 raise AssertionError('%s found in both dictionaries' % key)
 # out_data keys take precedence and overwrite xml_data keys,
 # if the same key name is shared by both (but this should not happen!)
 final_data = dict(xml_data.items() + out_data.items() + xml_counter_data.items())

 # TODO: parse the trajectory and save them in a reasonable format

 return final_data, job_successful

TODO: the xml has a lot in common with pw, maybe I should avoid duplication of code
or maybe should I wait for the new version of data-file.xml ?
[docs]def parse_cp_xml_output(data):
 """
 Parse xml data
 data must be a single string, as returned by file.read() (notice the
 difference with parse_text_output!)
 On output, a dictionary with parsed values.
 Democratically, we have decided to use picoseconds as units of time, eV for energies, Angstrom for lengths.
 """
 import copy

 dom = parseString(data)

 parsed_data = {}

 # CARD STATUS

 cardname = 'STATUS'
 target_tags = read_xml_card(dom, cardname)

 tagname = 'STEP'
 attrname = 'ITERATION'
 parsed_data[(tagname + '_' + attrname).lower()] = int(parse_xml_child_attribute_str(tagname, attrname, target_tags))

 tagname = 'TIME'
 attrname = 'UNITS'
 value = parse_xml_child_float(tagname, target_tags)
 units = parse_xml_child_attribute_str(tagname, attrname, target_tags)
 if units not in ['pico-seconds']:
 raise QEOutputParsingError("Units {} are not supported by parser".format(units))
 parsed_data[tagname.lower()] = value

 tagname = 'TITLE'
 parsed_data[tagname.lower()] = parse_xml_child_str(tagname, target_tags)

 # CARD CELL
 parsed_data, lattice_vectors, volume = copy.deepcopy(xml_card_cell(parsed_data, dom))

 # CARD IONS
 parsed_data = copy.deepcopy(xml_card_ions(parsed_data, dom, lattice_vectors, volume))

 # CARD TIMESTEPS

 cardname = 'TIMESTEPS'
 target_tags = read_xml_card(dom, cardname)

 for tagname in ['STEP0', 'STEPM']:
 try:
 tag = target_tags.getElementsByTagName(tagname)[0]

 try:
 second_tagname = 'ACCUMULATORS'
 second_tag = tag.getElementsByTagName(second_tagname)[0]
 data = second_tag.childNodes[0].data.rstrip().split() # list of floats
 parsed_data[second_tagname.replace('-', '_').lower()] = [float(i) for i in data]
 except:
 pass

 second_tagname = 'IONS_POSITIONS'
 second_tag = tag.getElementsByTagName(second_tagname)[0]
 third_tagname = 'stau'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 list_data = third_tag.childNodes[0].data.rstrip().split()
 list_data = [float(i) for i in list_data]
 # convert to matrix
 val = []
 mat = []
 for i, data in enumerate(list_data):
 val.append(data)
 if (i + 1) % 3 == 0:
 mat.append(val)
 val = []
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = mat
 third_tagname = 'svel'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 list_data = third_tag.childNodes[0].data.rstrip().split()
 list_data = [float(i) for i in list_data]
 # convert to matrix
 val = []
 mat = []
 for i, data in enumerate(list_data):
 val.append(data)
 if (i + 1) % 3 == 0:
 mat.append(val)
 val = []
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = mat
 try:
 third_tagname = 'taui'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 list_data = third_tag.childNodes[0].data.rstrip().split()
 list_data = [float(i) for i in list_data]
 # convert to matrix
 val = []
 mat = []
 for i, data in enumerate(list_data):
 val.append(data)
 if (i + 1) % 3 == 0:
 mat.append(val)
 val = []
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = mat
 except:
 pass

 try:
 third_tagname = 'cdmi'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 list_data = third_tag.childNodes[0].data.rstrip().split()
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = [float(i) for i in
 list_data]
 except:
 pass

 try:
 third_tagname = 'force'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 list_data = third_tag.childNodes[0].data.rstrip().split()
 list_data = [float(i) for i in list_data]
 # convert to matrix
 val = []
 mat = []
 for i, data in enumerate(list_data):
 val.append(data)
 if (i + 1) % 3 == 0:
 mat.append(val)
 val = []
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = mat
 except:
 pass

 second_tagname = 'IONS_NOSE'
 second_tag = tag.getElementsByTagName(second_tagname)[0]
 third_tagname = 'nhpcl'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = float(
 third_tag.childNodes[0].data)
 third_tagname = 'nhpdim'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = float(
 third_tag.childNodes[0].data)
 third_tagname = 'xnhp'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = float(
 third_tag.childNodes[0].data)
 try:
 third_tagname = 'vnhp'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = float(
 third_tag.childNodes[0].data)
 except:
 pass

 try:
 second_tagname = 'ekincm'
 second_tag = tag.getElementsByTagName(second_tagname)[0]
 parsed_data[second_tagname.replace('-', '_').lower()] = float(second_tag.childNodes[0].data)
 except:
 pass

 second_tagname = 'ELECTRONS_NOSE'
 second_tag = tag.getElementsByTagName(second_tagname)[0]
 try:
 third_tagname = 'xnhe'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = float(
 third_tag.childNodes[0].data)
 except:
 pass
 try:
 third_tagname = 'vnhe'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = float(
 third_tag.childNodes[0].data)
 except:
 pass

 second_tagname = 'CELL_PARAMETERS'
 second_tag = tag.getElementsByTagName(second_tagname)[0]
 try:
 third_tagname = 'ht'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 list_data = third_tag.childNodes[0].data.rstrip().split()
 list_data = [float(i) for i in list_data]
 # convert to matrix
 val = []
 mat = []
 for i, data in enumerate(list_data):
 val.append(data)
 if (i + 1) % 3 == 0:
 mat.append(val)
 val = []
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = mat
 except:
 pass
 try:
 third_tagname = 'htvel'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 list_data = third_tag.childNodes[0].data.rstrip().split()
 list_data = [float(i) for i in list_data]
 # convert to matrix
 val = []
 mat = []
 for i, data in enumerate(list_data):
 val.append(data)
 if (i + 1) % 3 == 0:
 mat.append(val)
 val = []
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = mat
 except:
 pass
 try:
 third_tagname = 'gvel'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 list_data = third_tag.childNodes[0].data.rstrip().split()
 list_data = [float(i) for i in list_data]
 # convert to matrix
 val = []
 mat = []
 for i, data in enumerate(list_data):
 val.append(data)
 if (i + 1) % 3 == 0:
 mat.append(val)
 val = []
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = mat
 except:
 pass

 second_tagname = 'CELL_NOSE'
 second_tag = tag.getElementsByTagName(second_tagname)[0]
 try:
 third_tagname = 'xnhh'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 list_data = third_tag.childNodes[0].data.rstrip().split()
 list_data = [float(i) for i in list_data]

 # convert to matrix
 val = []
 mat = []
 for i, data in enumerate(list_data):
 val.append(data)
 if (i + 1) % 3 == 0:
 mat.append(val)
 val = []
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = mat
 except:
 pass
 try:
 third_tagname = 'vnhh'
 third_tag = second_tag.getElementsByTagName(third_tagname)[0]
 list_data = third_tag.childNodes[0].data.rstrip().split()
 list_data = [float(i) for i in list_data]
 # convert to matrix
 val = []
 mat = []
 for i, data in enumerate(list_data):
 val.append(data)
 if (i + 1) % 3 == 0:
 mat.append(val)
 val = []
 parsed_data[(second_tagname + '_' + third_tagname).replace('-', '_').lower()] = mat
 except:
 pass
 except:
 raise QEOutputParsingError('Error parsing CARD {}'.format(cardname))

 # CARD BAND_STRUCTURE_INFO

 cardname = 'BAND_STRUCTURE_INFO'
 target_tags = read_xml_card(dom, cardname)

 tagname = 'NUMBER_OF_ATOMIC_WFC'
 parsed_data[tagname.lower().replace('-', '_')] = parse_xml_child_integer(tagname, target_tags)

 tagname = 'NUMBER_OF_ELECTRONS'
 parsed_data[tagname.lower().replace('-', '_')] = int(parse_xml_child_float(tagname, target_tags))

 tagname = 'NUMBER_OF_BANDS'
 parsed_data[tagname.lower().replace('-', '_')] = parse_xml_child_integer(tagname, target_tags)

 tagname = 'NUMBER_OF_SPIN_COMPONENTS'
 parsed_data[tagname.lower().replace('-', '_')] = parse_xml_child_integer(tagname, target_tags)

 return parsed_data

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/transport/__init__.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.transport.__init__

-*- coding: utf-8 -*-
import aiida.common
from aiida.common.exceptions import InternalError
from aiida.common.extendeddicts import FixedFieldsAttributeDict

import os, re, fnmatch, sys # for glob commands

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. and 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012, 2013, 2014 Python Software Foundation. All rights reserved."
__license__ = "MIT license, and Python license, see LICENSE.txt file"
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

magic_check = re.compile('[*?[]')

[docs]def TransportFactory(module):
 """
 Used to return a suitable Transport subclass.

 :param str module: name of the module containing the Transport subclass
 :return: the transport subclass located in module 'module'
 """
 from aiida.common.pluginloader import BaseFactory

 return BaseFactory(module, Transport, "aiida.transport.plugins")

[docs]class FileAttribute(FixedFieldsAttributeDict):
 """
 A class, resembling a dictionary, to describe the attributes of a file,
 that is returned by get_attribute().
 Possible keys: st_size, st_uid, st_gid, st_mode, st_atime, st_mtime
 """
 _valid_fields = (
 'st_size',
 'st_uid',
 'st_gid',
 'st_mode',
 'st_atime',
 'st_mtime',
)

[docs]class TransportInternalError(InternalError):
 """
 Raised if there is a transport error that is raised to an internal error (e.g.
 a transport method called without opening the channel first).
 """
 pass

[docs]def copy_from_remote_to_remote(transportsource,transportdestination,
 remotesource,remotedestination,**kwargs):
 """
 Copy files or folders from a remote computer to another remote computer.

 :param transportsource: transport to be used for the source computer
 :param transportdestination: transport to be used for the destination computer
 :param str remotesource: path to the remote source directory / file
 :param str remotedestination: path to the remote destination directory / file
 :param kwargs: keyword parameters passed to the final put,
 except for 'dereference' that is passed to the initial get

 .. note:: it uses the method transportsource.copy_from_remote_to_remote
 """
 transportsource.copy_from_remote_to_remote(transportdestination,
 remotesource,remotedestination,
 **kwargs)

[docs]class Transport(object):
 """
 Abstract class for a generic transport (ssh, local, ...)
 Contains the set of minimal methods
 """
 # To be defined in the subclass
 # See the ssh or local plugin to see the format
 _valid_auth_params = None

 def __init__(self, *args, **kwargs):
 """
 __init__ method of the Transport base class.
 """
 self._logger = aiida.common.aiidalogger.getChild('transport').getChild(
 self.__class__.__name__)

 self._logger_extra = None

[docs] def __enter__(self):
 """
 For transports that require opening a connection, opens
 all required channels (used in 'with' statements)
 """
 self.open()
 return self

[docs] def __exit__(self, type, value, traceback):
 """
 Closes connections, if needed (used in 'with' statements).
 """
 self.close()

[docs] def open(self):
 """
 Opens a local transport channel
 """
 raise NotImplementedError

[docs] def close(self):
 """
 Closes the local transport channel
 """
 raise NotImplementedError

 def __repr__(self):
 return '<{}: {}>'.format(self.__class__.__name__, str(self))

 # redefine this in each subclass
 def __str__(self):
 return "[Transport class or subclass]"

 def _set_logger_extra(self, logger_extra):
 """
 Pass the data that should be passed automatically to self.logger
 as 'extra' keyword. This is typically useful if you pass data
 obtained using get_dblogger_extra in aiida.backends.djsite.utils, to automatically
 log also to the DbLog table.

 :param logger_extra: data that you want to pass as extra to the
 self.logger. To write to DbLog, it should be created by the
 aiida.backends.djsite.utils.get_dblogger_extra function. Pass None if you
 do not want to have extras passed.
 """
 self._logger_extra = logger_extra

 @classmethod
[docs] def get_short_doc(self):
 """
 Return the first non-empty line of the class docstring, if available
 """
 # Remove empty lines
 docstring = self.__doc__
 if not docstring:
 return "No documentation available"

 doclines = [i for i in docstring.splitlines() if i.strip()]
 if doclines:
 return doclines[0].strip()
 else:
 return "No documentation available"

 @classmethod
[docs] def get_valid_transports(cls):
 """
 :return: a list of existing plugin names
 """
 from aiida.common.pluginloader import existing_plugins

 return existing_plugins(Transport, "aiida.transport.plugins")

 @classmethod
[docs] def get_valid_auth_params(cls):
 """
 Return the internal list of valid auth_params
 """
 if cls._valid_auth_params is None:
 raise NotImplementedError
 else:
 return cls._valid_auth_params

 @property
 def logger(self):
 """
 Return the internal logger.
 If you have set extra parameters using _set_logger_extra(), a
 suitable LoggerAdapter instance is created, bringing with itself
 also the extras.
 """
 try:
 import logging
 from aiida.utils.logger import get_dblogger_extra

 if self._logger_extra is not None:
 return logging.LoggerAdapter(logger=self._logger,
 extra=self._logger_extra)
 else:
 return self._logger
 except AttributeError:
 raise InternalError("No self._logger configured for {}!")

[docs] def chdir(self, path):
 """
 Change directory to 'path'

 :param str path: path to change working directory into.
 :raises: IOError, if the requested path does not exist
 :rtype: string
 """
 # #TODO: understand if we want this behavior: this is emulated
 # by paramiko, and we should emulate it also for the local
 # transport, since we do not want a global chdir for the whole
 # code (the same holds for get_pwd).
 # However, it could be useful to execute by default the
 # codes from that specific directory.

 raise NotImplementedError

[docs] def chmod(self, path, mode):
 """
 Change permissions of a path.

 :param str path: path to file
 :param int mode: new permissions
 """
 raise NotImplementedError

[docs] def chown(self, path, uid, gid):
 """
 Change the owner (uid) and group (gid) of a file.
 As with python's os.chown function, you must pass both arguments,
 so if you only want to change one, use stat first to retrieve the
 current owner and group.

 :param str path: path to the file to change the owner and group of
 :param int uid: new owner's uid
 :param int gid: new group id
 """
 raise NotImplementedError

[docs] def copy(self, remotesource, remotedestination, *args, **kwargs):
 """
 Copy a file or a directory from remote source to remote destination
 (On the same remote machine)

 :param str remotesource: path of the remote source directory / file
 :param str remotedestination: path of the remote destination directory / file

 :raises: IOError, if one of src or dst does not exist
 """
 raise NotImplementedError

[docs] def copyfile(self, remotesource, remotedestination, *args, **kwargs):
 """
 Copy a file from remote source to remote destination
 (On the same remote machine)

 :param str remotesource: path of the remote source directory / file
 :param str remotedestination: path of the remote destination directory / file

 :raises IOError: if one of src or dst does not exist
 """
 raise NotImplementedError

[docs] def copytree(self, remotesource, remotedestination, *args, **kwargs):
 """
 Copy a folder from remote source to remote destination
 (On the same remote machine)

 :param str remotesource: path of the remote source directory / file
 :param str remotedestination: path of the remote destination directory / file

 :raise IOError: if one of src or dst does not exist
 """
 raise NotImplementedError

[docs] def copy_from_remote_to_remote(self,transportdestination,
 remotesource,remotedestination,**kwargs):
 """
 Copy files or folders from a remote computer to another remote computer.

 :param transportdestination: transport to be used for the destination computer
 :param str remotesource: path to the remote source directory / file
 :param str remotedestination: path to the remote destination directory / file
 :param kwargs: keyword parameters passed to the call to transportdestination.put,
 except for 'dereference' that is passed to self.get

 .. note:: the keyword 'dereference' SHOULD be set to False for the
 final put (onto the destination), while it can be set to the
 value given in kwargs for the get from the source. In that
 way, a symbolic link would never be followed in the final
 copy to the remote destination. That way we could avoid getting
 unknown (potentially malicious) files into the destination computer.
 HOWEVER, since dereference=False is currently NOT
 supported by all plugins, we still force it to True for the final put.

 .. note:: the supported keys in kwargs are callback, dereference,
 overwrite and ignore_nonexisting.
 """
 from aiida.common.folders import SandboxFolder

 kwargs_get = {'callback': None,
 'dereference': kwargs.pop('dereference',True),
 'overwrite': True,
 'ignore_nonexisting': False,
 }
 # TODO: dereference should be set to False in the following, as soon as
 # dereference=False is supported by all transport plugins
 kwargs_put = {'callback': kwargs.pop('callback',None),
 'dereference': True,
 'overwrite': kwargs.pop('overwrite',True),
 'ignore_nonexisting': kwargs.pop('ignore_nonexisting',False),
 }

 if kwargs:
 self.logger.error("Unknown parameters passed to copy_from_remote_to_remote")

 with SandboxFolder() as sandbox:
 self.get(remotesource, sandbox.abspath, **kwargs_get)
 # Then we scan the full sandbox directory with get_content_list,
 # because copying directly from sandbox.abspath would not work
 # to copy a single file into another single file, and copying
 # from sandbox.get_abs_path('*') would not work for files
 # beginning with a dot ('.').
 for filename in sandbox.get_content_list():
 transportdestination.put(os.path.join(sandbox.abspath,filename),
 remotedestination,**kwargs_put)

 def _exec_command_internal(self, command, **kwargs):
 """
 Execute the command on the shell, similarly to os.system.

 Enforce the execution to be run from the cwd (as given by
 self.getcwd), if this is not None.

 If possible, use the higher-level
 exec_command_wait function.

 :param str command: execute the command given as a string
 :return: stdin, stdout, stderr and the session, when this exists \
 (can be None).
 """
 raise NotImplementedError

[docs] def exec_command_wait(self, command, **kwargs):
 """
 Execute the command on the shell, waits for it to finish,
 and return the retcode, the stdout and the stderr.

 Enforce the execution to be run from the pwd (as given by
 self.getcwd), if this is not None.

 :param str command: execute the command given as a string
 :return: a list: the retcode (int), stdout (str) and stderr (str).
 """
 raise NotImplementedError

[docs] def get(self, remotepath, localpath, *args, **kwargs):
 """
 Retrieve a file or folder from remote source to local destination
 dst must be an absolute path (src not necessarily)

 :param remotepath: (str) remote_folder_path
 :param localpath: (str) local_folder_path
 """
 raise NotImplementedError

[docs] def getfile(self, remotepath, localpath, *args, **kwargs):
 """
 Retrieve a file from remote source to local destination
 dst must be an absolute path (src not necessarily)

 :param str remotepath: remote_folder_path
 :param str localpath: local_folder_path
 """
 raise NotImplementedError

[docs] def gettree(self, remotepath, localpath, *args, **kwargs):
 """
 Retrieve a folder recursively from remote source to local destination
 dst must be an absolute path (src not necessarily)

 :param str remotepath: remote_folder_path
 :param str localpath: local_folder_path
 """
 raise NotImplementedError

[docs] def getcwd(self):
 """
 Get working directory

 :return: a string identifying the current working directory
 """
 raise NotImplementedError

[docs] def get_attribute(self, path):
 """
 Return an object FixedFieldsAttributeDict for file in a given path,
 as defined in aiida.common.extendeddicts
 Each attribute object consists in a dictionary with the following keys:

 * st_size: size of files, in bytes

 * st_uid: user id of owner

 * st_gid: group id of owner

 * st_mode: protection bits

 * st_atime: time of most recent access

 * st_mtime: time of most recent modification

 :param str path: path to file
 :return: object FixedFieldsAttributeDict
 """
 raise NotImplementedError

[docs] def get_mode(self, path):
 """
 Return the portion of the file's mode that can be set by chmod().

 :param str path: path to file
 :return: the portion of the file's mode that can be set by chmod()
 """
 import stat

 return stat.S_IMODE(self.get_attribute(path).st_mode)

[docs] def isdir(self, path):
 """
 True if path is an existing directory.

 :param str path: path to directory
 :return: boolean
 """
 raise NotImplementedError

[docs] def isfile(self, path):
 """
 Return True if path is an existing file.

 :param str path: path to file
 :return: boolean
 """
 raise NotImplementedError

[docs] def listdir(self, path='.', pattern=None):
 """
 Return a list of the names of the entries in the given path.
 The list is in arbitrary order. It does not include the special
 entries '.' and '..' even if they are present in the directory.

 :param str path: path to list (default to '.')
 :param str pattern: if used, listdir returns a list of files matching
 filters in Unix style. Unix only.
 :return: a list of strings
 """
 raise NotImplementedError

[docs] def makedirs(self, path, ignore_existing=False):
 """
 Super-mkdir; create a leaf directory and all intermediate ones.
 Works like mkdir, except that any intermediate path segment (not
 just the rightmost) will be created if it does not exist.

 :param str path: directory to create
 :param bool ignore_existing: if set to true, it doesn't give any error
 if the leaf directory does already exist

 :raises: OSError, if directory at path already exists
 """
 raise NotImplementedError

[docs] def mkdir(self, path, ignore_existing=False):
 """
 Create a folder (directory) named path.

 :param str path: name of the folder to create
 :param bool ignore_existing: if True, does not give any error if the
 directory already exists

 :raises: OSError, if directory at path already exists
 """
 raise NotImplementedError

[docs] def normalize(self, path='.'):
 """
 Return the normalized path (on the server) of a given path.
 This can be used to quickly resolve symbolic links or determine
 what the server is considering to be the "current folder".

 :param str path: path to be normalized

 :raise IOError: if the path can't be resolved on the server
 """
 raise NotImplementedError

[docs] def put(self, localpath, remotepath, *args, **kwargs):
 """
 Put a file or a directory from local src to remote dst.
 src must be an absolute path (dst not necessarily))
 Redirects to putfile and puttree.

 :param str localpath: absolute path to local source
 :param str remotepath: path to remote destination
 """
 raise NotImplementedError

[docs] def putfile(self, localpath, remotepath, *args, **kwargs):
 """
 Put a file from local src to remote dst.
 src must be an absolute path (dst not necessarily))

 :param str localpath: absolute path to local file
 :param str remotepath: path to remote file
 """
 raise NotImplementedError

[docs] def puttree(self, localpath, remotepath, *args, **kwargs):
 """
 Put a folder recursively from local src to remote dst.
 src must be an absolute path (dst not necessarily))

 :param str localpath: absolute path to local folder
 :param str remotepath: path to remote folder
 """
 raise NotImplementedError

[docs] def remove(self, path):
 """
 Remove the file at the given path. This only works on files;
 for removing folders (directories), use rmdir.

 :param str path: path to file to remove

 :raise IOError: if the path is a directory
 """
 raise NotImplementedError

[docs] def rename(self, oldpath, newpath):
 """
 Rename a file or folder from oldpath to newpath.

 :param str oldpath: existing name of the file or folder
 :param str newpath: new name for the file or folder

 :raises IOError: if oldpath/newpath is not found
 :raises ValueError: if oldpath/newpath is not a valid string
 """
 raise NotImplementedError

[docs] def rmdir(self, path):
 """
 Remove the folder named path.
 This works only for empty folders. For recursive remove, use rmtree.

 :param str path: absolute path to the folder to remove
 """
 raise NotImplementedError

[docs] def rmtree(self, path):
 """
 Remove recursively the content at path

 :param str path: absolute path to remove
 """
 raise NotImplementedError

[docs] def gotocomputer_command(self, remotedir):
 """
 Return a string to be run using os.system in order to connect
 via the transport to the remote directory.

 Expected behaviors:

 * A new bash session is opened

 * A reasonable error message is produced if the folder does not exist

 :param str remotedir: the full path of the remote directory
 """
 raise NotImplementedError

[docs] def symlink(self, remotesource, remotedestination):
 """
 Create a symbolic link between the remote source and the remote
 destination.

 :param remotesource: remote source
 :param remotedestination: remote destination
 """
 raise NotImplementedError

[docs] def whoami(self):
 """
 Get the remote username

 :return: list of username (str),
 retval (int),
 stderr (str)
 """
 # TODO : add tests for this method

 command = 'whoami'
 retval, username, stderr = self.exec_command_wait(command)
 if retval == 0:
 if stderr.strip():
 self.logger.warning("There was nonempty stderr in the whoami "
 "command: {}".format(stderr))
 return username.strip()
 else:
 self.logger.error("Problem executing whoami. Exit code: {}, stdout: '{}', "
 "stderr: '{}'".format(retval, username, stderr))
 raise IOError("Error while executing whoami. Exit code: {}".format(retval))

[docs] def path_exists(self, path):
 """
 Returns True if path exists, False otherwise.
 """
 raise NotImplementedError

 # The following definitions are almost copied and pasted
 # from the python module glob.
[docs] def glob(self, pathname):
 """Return a list of paths matching a pathname pattern.

 The pattern may contain simple shell-style wildcards a la fnmatch.
 """
 return list(self.iglob(pathname))

[docs] def iglob(self, pathname):
 """Return an iterator which yields the paths matching a pathname pattern.

 The pattern may contain simple shell-style wildcards a la fnmatch.

 """
 if not self.has_magic(pathname):
 # if os.path.lexists(pathname): # ORIGINAL
 # our implementation
 if self.path_exists(pathname):
 yield pathname
 return
 dirname, basename = os.path.split(pathname)
 if not dirname:
 # for name in self.glob1(os.curdir, basename): # ORIGINAL
 for name in self.glob1(self.getcwd(), basename):
 yield name
 return
 if self.has_magic(dirname):
 dirs = self.iglob(dirname)
 else:
 dirs = [dirname]
 if self.has_magic(basename):
 glob_in_dir = self.glob1
 else:
 glob_in_dir = self.glob0
 for dirname in dirs:
 for name in glob_in_dir(dirname, basename):
 yield os.path.join(dirname, name)

 # These 2 helper functions non-recursively glob inside a literal directory.
 # They return a list of basenames. `glob1` accepts a pattern while `glob0`
 # takes a literal basename (so it only has to check for its existence).

 def glob1(self, dirname, pattern):
 if not dirname:
 # dirname = os.curdir # ORIGINAL
 dirname = self.getcwd()
 if isinstance(pattern, unicode) and not isinstance(dirname, unicode):
 dirname = unicode(dirname, sys.getfilesystemencoding() or
 sys.getdefaultencoding())
 try:
 # names = os.listdir(dirname)
 #print dirname
 names = self.listdir(dirname)
 except os.error:
 return []
 except IOError:
 return []
 if pattern[0] != '.':
 names = filter(lambda x: x[0] != '.', names)
 return fnmatch.filter(names, pattern)

 def glob0(self, dirname, basename):
 if basename == '':
 # `os.path.split()` returns an empty basename for paths ending with a
 # directory separator. 'q*x/' should match only directories.
 # if os.path.isdir(dirname):
 if self.isdir(dirname):
 return [basename]
 else:
 # if os.path.lexists(os.path.join(dirname, basename)):
 if self.path_exists(os.path.join(dirname, basename)):
 return [basename]
 return []

 def has_magic(self, s):
 return magic_check.search(s) is not None

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/ajax-loader.gif

_modules/aiida/common/datastructures.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.common.datastructures

-*- coding: utf-8 -*-
"""
This module defines the main data structures used by the Calculation.
"""
from aiida.common.extendeddicts import DefaultFieldsAttributeDict, Enumerate

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

class CalcState(Enumerate):
 pass

_sorted_datastates = (
 'NEW', # just created
 'TOSUBMIT', # used by the executionmanager to submit new calculations scheduled to be submitted
 'SUBMITTING', # being submitted to cluster
 'WITHSCHEDULER', # on the scheduler (on any unfinished status:
 # QUEUED, QUEUED_HELD, SUSPENDED, RUNNING)
 'COMPUTED', # Calculation finished on scheduler, not yet retrieved
 # (both DONE and FAILED)
 'RETRIEVING', # while retrieving data
 'PARSING', # while parsing data
 'FINISHED', # Final state of the calculation: data retrieved and eventually parsed
 'SUBMISSIONFAILED', # error occurred during submission phase
 'RETRIEVALFAILED', # error occurred during retrieval phase
 'PARSINGFAILED', # error occurred during parsing phase due to a problem in the parse
 'FAILED', # The parser recognized the calculation as failed
 'IMPORTED', # The calculation was imported from another DB
)

The order of states is not random: is the order of precedence.
However, this is never used at the moment in the code.
calc_states = CalcState(_sorted_datastates)

[docs]def sort_states(list_states):
 """
 Given a list of state names, return a sorted list of states (the first
 is the most recent) sorted according to their logical appearance in
 the DB (i.e., NEW before of SUBMITTING before of FINISHED).

 .. note:: The order of the internal variable _sorted_datastates is
 used.

 :param list_states: a list (or tuple) of state strings.

 :return: a sorted list of the given data states.

 :raise ValueError: if any of the given states is not a valid state.
 """
 datastates_order_dict = {state: idx for idx, state in enumerate(
 _sorted_datastates)}

 try:
 list_to_sort = [(datastates_order_dict[st], st)
 for st in list_states]
 except KeyError as e:
 raise ValueError("At least one of the provided states is not "
 "valid ({})".format(e.message))

 # In-place sort
 list_to_sort.sort()

 return [_[1] for _ in list_to_sort[::-1]]

[docs]class CalcInfo(DefaultFieldsAttributeDict):
 """
 This object will store the data returned by the calculation plugin and to be
 passed to the ExecManager
 """
 # Note: some of the variables might have never been used in AiiDA
 # one might want to clean all this stuff in a future revision
 # Note: probably some of the fields below are not used anymore inside
 # calcinfo, but are rather directly set from calculation attributes to
 # the JobInfo to be passed to the ExecManager
 # (see, for instance, 'queue_name').

 _default_fields = (
 'job_environment', # TODO UNDERSTAND THIS!
 'email',
 'email_on_started',
 'email_on_terminated',
 'uuid',
 'prepend_text',
 'append_text',
'cmdline_params', # as a list of strings. These 5 variables are now in CalcInfo
'stdin_name',
'stdout_name',
'stderr_name',
'join_files',
 # 'queue_name', This is not used in CalcInfo, it is automatically set from
 # calculation attributes to JobInfo
 'num_machines',
 'num_mpiprocs_per_machine',
 'priority',
 'max_wallclock_seconds',
 'max_memory_kb',
 'rerunnable',
 'retrieve_list', # a list of files or patterns to retrieve, with two
 # possible formats: ['remotepath', # just the name of the file to retrieve. Will be put in '.' of the repositorym with name os.path.split(item)[1]
 # ['remotepath','localpath',depth]]
 # second format will copy the remotepath file/folder to localpath.
 # if remotepath is a file/folder, localpath will be its local name
 # if remotepath has file patterns, localpath should only be '.'
 # depth is an integer to decide the localname: will be os.path.join(localpath, filename)
 # where filename takes remotepath.split() and joins the last #depth elements
 # use the second option if you are using file patterns (*,[0-9],...)
 # ALL PATHS ARE RELATIVE!
 'local_copy_list', # a list of length-two tuples with (localabspath, relativedestpath)
 'remote_copy_list', # a list of length-three tuples with (remotemachinename, remoteabspath, relativedestpath)
 'remote_symlink_list',
 # a list of length-three tuples with (remotemachinename, remoteabspath, relativedestpath)
 'retrieve_singlefile_list', # a list of files, that will be retrieved
 # from cluster and saved in SinglefileData nodes
 # in the following format:
 # ["linkname_from calc to singlefile","subclass of singlefile","filename"]
 # filename remote = filename local
 'codes_info', # a list of dictionaries used to pass the info of the execution of a code.
 'codes_run_mode', # a string used to specify the order in which multi codes can be executed
)

class CodeRunmode(Enumerate):
 pass

these are the possible ways to execute more than one code in the same scheduling job
if parallel, the codes will be executed as something like:
code1.x &
code2.x &
wait
if serial, it will be:
code1.x
code2.x
code_run_modes = CodeRunmode(('PARALLEL',
 'SERIAL'))

[docs]class CodeInfo(DefaultFieldsAttributeDict):
 """
 This attribute-dictionary contains the information needed to execute a code.
 Possible attributes are:

 * ``cmdline_params``: a list of strings, containing parameters to be written on
 the command line right after the call to the code, as for example::

 code.x cmdline_params[0] cmdline_params[1] ... < stdin > stdout

 * ``stdin_name``: (optional) the name of the standard input file. Note, it is
 only possible to use the stdin with the syntax::

 code.x < stdin_name

 If no stdin_name is specified, the string "< stdin_name" will not be
 passed to the code.
 Note: it is not possible to substitute/remove the '<' if stdin_name is specified;
 if that is needed, avoid stdin_name and use instead the cmdline_params to
 specify a suitable syntax.
 * ``stdout_name``: (optional) the name of the standard output file. Note, it is
 only possible to pass output to stdout_name with the syntax::

 code.x ... > stdout_name

 If no stdout_name is specified, the string "> stdout_name" will not be
 passed to the code.
 Note: it is not possible to substitute/remove the '>' if stdout_name is specified;
 if that is needed, avoid stdout_name and use instead the cmdline_params to
 specify a suitable syntax.
 * ``stderr_name``: (optional) a string, the name of the error file of the code.
 * ``join_files``: (optional) if True, redirects the error to the output file.
 If join_files=True, the code will be called as::

 code.x ... > stdout_name 2>&1

 otherwise, if join_files=False and stderr is passed::

 code.x ... > stdout_name 2> stderr_name

 * ``withmpi``: if True, executes the code with mpirun (or another MPI installed
 on the remote computer)
 * ``code_uuid``: the uuid of the code associated to the CodeInfo
 """
 _default_fields = ('cmdline_params', # as a list of strings
 'stdin_name',
 'stdout_name',
 'stderr_name',
 'join_files',
 'withmpi',
 'code_uuid'
)

class WorkflowState(Enumerate):
 pass

wf_states = WorkflowState((
 'CREATED',
 'INITIALIZED',
 'RUNNING',
 'FINISHED',
 'SLEEP',
 'ERROR'
))

class WorkflowDataType(Enumerate):
 pass

wf_data_types = WorkflowDataType((
 'PARAMETER',
 'RESULT',
 'ATTRIBUTE',
))

class WorkflowDataValueType(Enumerate):
 pass

wf_data_value_types = WorkflowDataValueType((
 'NONE',
 'JSON',
 'AIIDA',
))

wf_start_call = "start"
wf_exit_call = "exit"
wf_default_call = "none"

TODO Improve/implement this!
class DynResourcesInfo(AttributeDict):
"""
This object will contain a list of 'dynamical' resources to be
passed from the code plugin to the ExecManager, containing
things like
* resources in the permanent repository, that will be simply
linked locally (but copied remotely on the remote computer)
to avoid a waste of permanent repository space
* remote resources to be directly copied over only remotely
"""
pass

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_images/math/e9b81c76d902da9ee42a65fb7230a9afe81d30bf.png
$iotal

_static/up.png

_modules/aiida/common/utils.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.common.utils

-*- coding: utf-8 -*-
import datetime
import filecmp
import functools
import os.path
import string
import sys

from dateutil.parser import parse

from aiida.common.exceptions import ConfigurationError

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class classproperty(object):
 """
 A class that, when used as a decorator, works as if the
 two decorators @property and @classmethod where applied together
 (i.e., the object works as a property, both for the Class and for any
 of its instance; and is called with the class cls rather than with the
 instance as its first argument).
 """

 def __init__(self, getter):
 self.getter = getter

 def __get__(self, instance, owner):
 return self.getter(owner)

[docs]def get_configured_user_email():
 """
 Return the email (that is used as the username) configured during the
 first verdi install.
 """
 from aiida.common.exceptions import ConfigurationError
 from aiida.common.setup import get_profile_config, DEFAULT_USER_CONFIG_FIELD
 from aiida.backends import settings

 try:
 profile_conf = get_profile_config(settings.AIIDADB_PROFILE,
 set_test_location=False)
 email = profile_conf[DEFAULT_USER_CONFIG_FIELD]
 # I do not catch the error in case of missing configuration, because
 # it is already a ConfigurationError
 except KeyError:
 raise ConfigurationError("No 'default_user' key found in the "
 "AiiDA configuration file".format(
 DEFAULT_USER_CONFIG_FIELD))
 return email

[docs]def get_new_uuid():
 """
 Return a new UUID (typically to be used for new nodes).
 It uses the UUID version specified in
 aiida.backends.settings.AIIDANODES_UUID_VERSION
 """
 from aiida.backends.settings import AIIDANODES_UUID_VERSION
 import uuid

 if AIIDANODES_UUID_VERSION != 4:
 raise NotImplementedError("Only version 4 of UUID supported currently")

 the_uuid = uuid.uuid4()
 return unicode(the_uuid)

To speed up the process (os.path.abspath calls are slow)
_repository_folder_cache = {}

[docs]def get_repository_folder(subfolder=None):
 """
 Return the top folder of the local repository.
 """
 try:
 return _repository_folder_cache[subfolder]
 except KeyError:
 try:
 from aiida.settings import REPOSITORY_PATH

 if not os.path.isdir(REPOSITORY_PATH):
 raise ImportError
 except ImportError:
 raise ConfigurationError(
 "The REPOSITORY_PATH variable is not set correctly.")
 if subfolder is None:
 retval = os.path.abspath(REPOSITORY_PATH)
 elif subfolder == "sandbox":
 retval = os.path.abspath(os.path.join(REPOSITORY_PATH, 'sandbox'))
 elif subfolder == "repository":
 retval = os.path.abspath(
 os.path.join(REPOSITORY_PATH, 'repository'))
 else:
 raise ValueError("Invalid 'subfolder' passed to "
 "get_repository_folder: {}".format(subfolder))
 _repository_folder_cache[subfolder] = retval
 return retval

[docs]def escape_for_bash(str_to_escape):
 """
 This function takes any string and escapes it in a way that
 bash will interpret it as a single string.

 Explanation:

 At the end, in the return statement, the string is put within single
 quotes. Therefore, the only thing that I have to escape in bash is the
 single quote character. To do this, I substitute every single
 quote ' with '"'"' which means:

 First single quote: exit from the enclosing single quotes

 Second, third and fourth character: "'" is a single quote character,
 escaped by double quotes

 Last single quote: reopen the single quote to continue the string

 Finally, note that for python I have to enclose the string '"'"'
 within triple quotes to make it work, getting finally: the complicated
 string found below.
 """
 escaped_quotes = str_to_escape.replace("'", """'"'"'""")
 return "'{}'".format(escaped_quotes)

[docs]def get_suggestion(provided_string, allowed_strings):
 """
 Given a string and a list of allowed_strings, it returns a string to print
 on screen, with sensible text depending on whether no suggestion is found,
 or one or more than one suggestions are found.

 Args:
 provided_string: the string to compare
 allowed_strings: a list of valid strings

 Returns:
 A string to print on output, to suggest to the user a possible valid
 value.
 """
 import difflib

 similar_kws = difflib.get_close_matches(provided_string,
 allowed_strings)
 if len(similar_kws) == 1:
 return "(Maybe you wanted to specify {0}?)".format(similar_kws[0])
 elif len(similar_kws) > 1:
 return "(Maybe you wanted to specify one of these: {0}?)".format(
 string.join(similar_kws, ', '))
 else:
 return "(No similar keywords found...)"

[docs]def validate_list_of_string_tuples(val, tuple_length):
 """
 Check that:

 1. ``val`` is a list or tuple
 2. each element of the list:

 a. is a list or tuple
 b. is of length equal to the parameter tuple_length
 c. each of the two elements is a string

 Return if valid, raise ValidationError if invalid
 """
 from aiida.common.exceptions import ValidationError

 err_msg = ("the value must be a list (or tuple) "
 "of length-N list (or tuples), whose elements are strings; "
 "N={}".format(tuple_length))
 if not isinstance(val, (list, tuple)):
 raise ValidationError(err_msg)
 for f in val:
 if (not isinstance(f, (list, tuple)) or
 len(f) != tuple_length or
 not all(isinstance(s, basestring) for s in f)):
 raise ValidationError(err_msg)

 return True

[docs]def conv_to_fortran(val):
 """
 :param val: the value to be read and converted to a Fortran-friendly string.
 """
 # Note that bool should come before integer, because a boolean matches also
 # isinstance(...,int)
 if (isinstance(val, bool)):
 if val:
 val_str = '.true.'
 else:
 val_str = '.false.'
 elif (isinstance(val, (int, long))):
 val_str = "{:d}".format(val)
 elif (isinstance(val, float)):
 val_str = ("{:18.10e}".format(val)).replace('e', 'd')
 elif (isinstance(val, basestring)):
 val_str = "'{!s}'".format(val)
 else:
 raise ValueError("Invalid value passed, accepts only bools, ints, "
 "floats and strings")

 return val_str

[docs]def get_unique_filename(filename, list_of_filenames):
 """
 Return a unique filename that can be added to the list_of_filenames.

 If filename is not in list_of_filenames, it simply returns the filename
 string itself. Otherwise, it appends a integer number to the filename
 (before the extension) until it finds a unique filename.

 :param filename: the filename to add
 :param list_of_filenames: the list of filenames to which filename
 should be added, without name duplicates

 :returns: Either filename or its modification, with a number appended
 between the name and the extension.
 """
 if filename not in list_of_filenames:
 return filename

 basename, ext = os.path.splitext(filename)

 # Not optimized, but for the moment this should be fast enough
 append_int = 1
 while True:
 new_filename = "{:s}-{:d}{:s}".format(basename, append_int, ext)
 if new_filename not in list_of_filenames:
 break
 append_int += 1
 return new_filename

[docs]def md5_file(filename, block_size_factor=128):
 """
 Open a file and return its md5sum (hexdigested).

 :param filename: the filename of the file for which we want the md5sum
 :param block_size_factor: the file is read at chunks of size
 ``block_size_factor * md5.block_size``,
 where ``md5.block_size`` is the block_size used internally by the
 hashlib module.

 :returns: a string with the hexdigest md5.

 :raises: No checks are done on the file, so if it doesn't exists it may
 raise IOError.
 """
 import hashlib

 md5 = hashlib.md5()
 with open(filename, 'rb') as f:
 # I read 128 bytes at a time until it returns the empty string b''
 for chunk in iter(
 lambda: f.read(block_size_factor * md5.block_size), b''):
 md5.update(chunk)
 return md5.hexdigest()

[docs]def sha1_file(filename, block_size_factor=128):
 """
 Open a file and return its sha1sum (hexdigested).

 :param filename: the filename of the file for which we want the sha1sum
 :param block_size_factor: the file is read at chunks of size
 ``block_size_factor * sha1.block_size``,
 where ``sha1.block_size`` is the block_size used internally by the
 hashlib module.

 :returns: a string with the hexdigest sha1.

 :raises: No checks are done on the file, so if it doesn't exists it may
 raise IOError.
 """
 import hashlib

 sha1 = hashlib.sha1()
 with open(filename, 'rb') as f:
 # I read 128 bytes at a time until it returns the empty string b''
 for chunk in iter(
 lambda: f.read(block_size_factor * sha1.block_size), b''):
 sha1.update(chunk)
 return sha1.hexdigest()

[docs]def str_timedelta(dt, max_num_fields=3, short=False, negative_to_zero=False):
 """
 Given a dt in seconds, return it in a HH:MM:SS format.

 :param dt: a TimeDelta object
 :param max_num_fields: maximum number of non-zero fields to show
 (for instance if the number of days is non-zero, shows only
 days, hours and minutes, but not seconds)
 :param short: if False, print always ``max_num_fields`` fields, even
 if they are zero. If True, do not print the first fields, if they
 are zero.
 :param negative_to_zero: if True, set dt = 0 if dt < 0.
 """
 if max_num_fields <= 0:
 raise ValueError("max_num_fields must be > 0")

 s = dt.total_seconds() # Important to get more than 1 day, and for
 # negative values. dt.seconds would give
 # wrong results in these cases, see
 # http://docs.python.org/2/library/datetime.html
 s = int(s)

 if negative_to_zero:
 if s < 0:
 s = 0

 negative = (s < 0)
 s = abs(s)

 negative_string = " in the future" if negative else " ago"

 # For the moment stay away from months and years, difficult to get
 days, remainder = divmod(s, 3600 * 24)
 hours, remainder = divmod(remainder, 3600)
 minutes, seconds = divmod(remainder, 60)

 all_fields = [(days, 'D'), (hours, 'h'), (minutes, 'm'), (seconds, 's')]
 fields = []
 start_insert = False
 counter = 0
 for idx, f in enumerate(all_fields):
 if f[0] != 0:
 start_insert = True
 if (len(all_fields) - idx) <= max_num_fields:
 start_insert = True
 if start_insert:
 if counter >= max_num_fields:
 break
 fields.append(f)
 counter += 1

 if short:
 while len(fields) > 1: # at least one element has to remain
 if fields[0][0] != 0:
 break
 fields.pop(0) # remove first element

 # Join the fields
 raw_string = ":".join(["{:02d}{}".format(*f) for f in fields])

 if raw_string.startswith('0'):
 raw_string = raw_string[1:]

 # Return the resulting string, appending a suitable string if the time
 # is negative
 return "{}{}".format(raw_string, negative_string)

[docs]def create_display_name(field):
 """
 Given a string, creates the suitable "default" display name: replace
 underscores with spaces, and capitalize each word.

 :return: the converted string
 """
 return ' '.join(_.capitalize() for _ in field.split('_'))

[docs]def get_class_string(obj):
 """
 Return the string identifying the class of the object (module + object name,
 joined by dots).

 It works both for classes and for class instances.
 """
 import inspect

 if inspect.isclass(obj):
 return "{}.{}".format(
 obj.__module__,
 obj.__name__)
 else:
 return "{}.{}".format(
 obj.__module__,
 obj.__class__.__name__)

[docs]def get_object_from_string(string):
 """
 Given a string identifying an object (as returned by the get_class_string
 method) load and return the actual object.
 """
 import importlib

 the_module, _, the_name = string.rpartition('.')

 return getattr(importlib.import_module(the_module), the_name)

[docs]def export_shard_uuid(uuid):
 """
 Sharding of the UUID for the import/export
 """
 return os.path.join(uuid[:2], uuid[2:4], uuid[4:])

[docs]def grouper(n, iterable):
 """
 Given an iterable, returns an iterable that returns tuples of groups of
 elements from iterable of length n, except the last one that has the
 required length to exaust iterable (i.e., there is no filling applied).

 :param n: length of each tuple (except the last one,that will have length
 <= n
 :param iterable: the iterable to divide in groups
 """
 import itertools

 it = iter(iterable)
 while True:
 chunk = tuple(itertools.islice(it, n))
 if not chunk:
 return
 yield chunk

[docs]def gzip_string(string):
 """
 Gzip string contents.

 :param string: a string
 :return: a gzipped string
 """
 import tempfile, gzip

 with tempfile.NamedTemporaryFile() as f:
 g = gzip.open(f.name, 'wb')
 g.write(string)
 g.close()
 return f.read()

[docs]def gunzip_string(string):
 """
 Gunzip string contents.

 :param string: a gzipped string
 :return: a string
 """
 import tempfile, gzip

 with tempfile.NamedTemporaryFile() as f:
 f.write(string)
 f.flush()
 g = gzip.open(f.name, 'rb')
 return g.read()

[docs]def xyz_parser_iterator(string):
 """
 Yields a tuple `(natoms, comment, atomiter)`for each frame
 in a XYZ file where `atomiter` is an iterator yielding a
 nested tuple `(symbol, (x, y, z))` for each entry.

 :param string: a string containing XYZ-structured text
 """

 class BlockIterator(object):
 """
 An iterator for wrapping the iterator returned by `match.finditer`
 to extract the required fields directly from the match object
 """

 def __init__(self, it, natoms):
 self._it = it
 self._natoms = natoms
 self._catom = 0

 def __iter__(self):
 return self

 def __next__(self):
 try:
 match = self._it.next()
 except StopIteration:
 # if we reached the number of atoms declared, everything is well
 # and we re-raise the StopIteration exception
 if self._catom == self._natoms:
 raise
 else:
 # otherwise we got too less entries
 raise TypeError("Number of atom entries ({}) is smaller "
 "than the number of atoms ({})".format(
 self._catom, self._natoms))

 self._catom += 1

 if self._catom > self._natoms:
 raise TypeError("Number of atom entries ({}) is larger "
 "than the number of atoms ({})".format(
 self._catom, self._natoms))

 return (
 match.group('sym'),
 (
 float(match.group('x')),
 float(match.group('y')),
 float(match.group('z'))
))

 def next(self):
 """
 The iterator method expected by python 2.x,
 implemented as python 3.x style method.
 """
 return self.__next__()

 import re

 pos_regex = re.compile(r"""
^ # Linestart
[\t]* # Optional white space
(?P<sym>[A-Za-z]+[A-Za-z0-9]*)\s+ # get the symbol
(?P<x> [\-|\+]? (\d*[\.]\d+ | \d+[\.]?\d*) ([E | e][+|-]?\d+)?) [\t]+ # Get x
(?P<y> [\-|\+]? (\d*[\.]\d+ | \d+[\.]?\d*) ([E | e][+|-]?\d+)?) [\t]+ # Get y
(?P<z> [\-|\+]? (\d*[\.]\d+ | \d+[\.]?\d*) ([E | e][+|-]?\d+)?) # Get z
""", re.X | re.M)
 pos_block_regex = re.compile(r"""
 # First line contains an integer
 # and only an integer: the number of atoms
^[\t]* (?P<natoms> [0-9]+) [\t]*[\n] # End first line
(?P<comment>.*) [\n] # The second line is a comment
(?P<positions> # This is the block of positions
 (
 (
 \s* # White space in front of the element spec is ok
 (
 [A-Za-z]+[A-Za-z0-9]* # Element spec
 (
 \s+ # White space in front of the number
 [\- | \+]? # Plus or minus in front of the number (optional)
 (\d* # optional decimal in the beginning .0001 is ok, for example
 [\.] # There has to be a dot followed by
 \d+) # at least one decimal
 | # OR
 (\d+ # at least one decimal, followed by
 [\.]? # an optional dot
 \d*) # followed by optional decimals
 ([E | e][+|-]?\d+)? # optional exponents E+03, e-05
){3} # I expect three float values
 |
 \# # If a line is commented out, that is also ok
)
 .* # I do not care what is after the comment or the position spec
 | # OR
 \s* # A line only containing white space
)
 [\n] # line break at the end
)+
) # A positions block should be one or more lines
 """, re.X | re.M)

 for block in pos_block_regex.finditer(string):
 natoms = int(block.group('natoms'))
 yield (
 natoms,
 block.group('comment'),
 BlockIterator(
 pos_regex.finditer(block.group('positions')),
 natoms)
)

class EmptyContextManager(object):
 def __enter__(self):
 pass

 def __exit__(self, exc_type, exc_value, traceback):
 pass

[docs]def get_extremas_from_positions(positions):
 """
 returns the minimum and maximum value for each dimension in the positions given
 """
 return zip(*[(min(values), max(values)) for values in zip(*positions)])

[docs]def get_fortfloat(key, txt, be_case_sensitive=True):
 """
 Matches a fortran compatible specification of a float behind a defined key in a string.
 :param key: The key to look for
 :param txt: The string where to search for the key
 :param be_case_sensitive: An optional boolean whether to search case-sensitive, defaults to ``True``

 If abc is a key, and f is a float, number, than this regex
 will match t and return f in the following cases:

 * charsbefore, abc = f, charsafter
 * charsbefore
 abc = f
 charsafter
 * charsbefore, abc = f
 charsafter

 and vice-versa.
 If no float is matched, returns None

 Exampes of matchable floats are:

 * 0.1d2
 * 0.D-3
 * .2e1
 * -0.23
 * 23.
 * 232
 """
 import re
 pattern = """
 [\n,] # key - value pair can be prepended by comma or start
 [\t]* # in a new line and some optional white space
 {} # the key goes here
 [\t]* # Optional white space between key and equal sign
 = # Equals, you can put [=:,] if you want more specifiers
 [\t]* # optional white space between specifier and float
 (?P<float> # Universal float pattern
 (\d*[\.]\d+ | \d+[\.]?\d*)
 ([E | D | e | d] [+|-]? \d+)?
)
 [\t]*[,\n,#] # Can be followed by comma, end of line, or a comment
 """.format(key)
 REKEYS = re.X | re.M if be_case_sensitive else re.X | re.M | re.I
 match = re.search(
 pattern,
 txt,
 REKEYS)
 if not match:
 return None
 else:
 return float(match.group('float').replace('d', 'e').replace('D', 'e'))

[docs]def ask_question(question, reply_type, allow_none_as_answer):
 """
 This method asks a specific question, tries to parse the given reply
 and then it verifies the parsed answer.
 :param question: The question to be asked.
 :param reply_type: The type of the expected answer (int, datetime etc). It
 is needed for the parsing of the answer.
 :param allow_none_as_answer: Allow empty answers?
 :return: The parsed reply.
 """
 final_answer = None

 while True:
 answer = query_string(question, "")

 # If the reply is empty
 if not answer:
 if not allow_none_as_answer:
 continue
 # Otherwise, try to parse it
 else:
 try:
 if reply_type == int:
 final_answer = int(answer)
 elif reply_type == float:
 final_answer = float(answer)
 elif reply_type == datetime.datetime:
 final_answer = parse(answer)
 else:
 raise ValueError
 # If it is not parsable...
 except ValueError:
 sys.stdout.write("The given value could not be parsed. " +
 "Type expected: {}\n".format(reply_type))
 # If the timestamp could not have been parsed,
 # ask again the same question.
 continue

 if query_yes_no("{} was parsed. Is it correct?"
 .format(final_answer), default="yes"):
 break
 return final_answer

[docs]def query_yes_no(question, default="yes"):
 """Ask a yes/no question via raw_input() and return their answer.

 "question" is a string that is presented to the user.
 "default" is the presumed answer if the user just hits <Enter>.
 It must be "yes" (the default), "no" or None (meaning
 an answer is required of the user).

 The "answer" return value is True for "yes" or False for "no".
 """
 valid = {"yes": True, "y": True, "ye": True,
 "no": False, "n": False}
 if default is None:
 prompt = " [y/n] "
 elif default == "yes":
 prompt = " [Y/n] "
 elif default == "no":
 prompt = " [y/N] "
 else:
 raise ValueError("invalid default answer: '%s'" % default)

 while True:
 choice = raw_input(question + prompt).lower()
 if default is not None and not choice:
 return valid[default]
 elif choice in valid:
 return valid[choice]
 else:
 sys.stdout.write("Please respond with 'yes' or 'no' "
 "(or 'y' or 'n').\n")

[docs]def query_string(question, default):
 """
 Asks a question (with the option to have a default, predefined answer,
 and depending on the default answer and the answer of the user the
 following options are available:
 - If the user replies (with a non empty answer), then his answer is
 returned.
 - If the default answer is None then the user has to reply with a non-empty
 answer.
 - If the default answer is not None, then it is returned if the user gives
 an empty answer. In the case of empty default answer and empty reply from
 the user, None is returned.
 :param question: The question that we want to ask the user.
 :param default: The default answer (if there is any) to the question asked.
 :return: The returned reply.
 """

 if default is None or not default:
 prompt = ""
 else:
 prompt = " [{}]".format(default)

 while True:
 reply = raw_input(question + prompt)
 if default is not None and not reply:
 # If the default answer is an empty string.
 if not default:
 return None
 else:
 return default
 elif reply:
 return reply
 else:
 sys.stdout.write("Please provide a non empty answer.\n")

[docs]def flatten_list(value):
 """
 Flattens a list or a tuple
 In [2]: flatten_list([[[[[4],3]],[3],['a',[3]]]])
 Out[2]: [4, 3, 3, 'a', 3]

 :param value: A value, whether iterable or not
 :returns: a list of nesting level 1
 """

 if isinstance(value, (list, tuple)):
 return_list = []
 [[return_list.append(i) for i in flatten_list(item)] for item in value]
 return return_list
 return [value]

[docs]class combomethod(object):
 """
 A decorator that wraps a function that can be both a classmethod or
 instancemethod and behaves accordingly::

 class A():

 @combomethod
 def do(self, **kwargs):
 isclass = kwargs.get('isclass')
 if isclass:
 print "I am a class", self
 else:
 print "I am an instance", self

 A.do()
 A().do()

 >>> I am a class __main__.A
 >>> I am an instance <__main__.A instance at 0x7f2efb116e60>

 Attention: For ease of handling, pass keyword **isclass**
 equal to True if this was called as a classmethod and False if this
 was called as an instance.
 The argument self is therefore ambiguous!
 """

 def __init__(self, method):
 self.method = method

 def __get__(self, obj=None, objtype=None):
 @functools.wraps(self.method)
 def _wrapper(*args, **kwargs):
 kwargs.pop('isclass', None)
 if obj is not None:
 return self.method(obj, *args, isclass=False, **kwargs)
 return self.method(objtype, *args, isclass=True, **kwargs)

 return _wrapper

[docs]class ArrayCounter(object):
 """
 A counter & a method that increments it and returns its value.
 It is used in various tests.
 """
 seq = None

 def __init__(self):
 self.seq = -1

 def array_counter(self):
 self.seq += 1
 return self.seq

[docs]def are_dir_trees_equal(dir1, dir2):
 """
 Compare two directories recursively. Files in each directory are
 assumed to be equal if their names and contents are equal.

 @param dir1: First directory path
 @param dir2: Second directory path

 @return: True if the directory trees are the same and
 there were no errors while accessing the directories or files,
 False otherwise.
 """
 dirs_cmp = filecmp.dircmp(dir1, dir2)
 if (len(dirs_cmp.left_only) > 0 or len(dirs_cmp.right_only) > 0 or
 len(dirs_cmp.funny_files) > 0):
 return False
 (_, mismatch, errors) = filecmp.cmpfiles(
 dir1, dir2, dirs_cmp.common_files, shallow=False)
 if len(mismatch) > 0 or len(errors) > 0:
 return False
 for common_dir in dirs_cmp.common_dirs:
 new_dir1 = os.path.join(dir1, common_dir)
 new_dir2 = os.path.join(dir2, common_dir)
 if not are_dir_trees_equal(new_dir1, new_dir2):
 return False
 return True

def indent(txt, spaces=4):
 return "\n".join(" "*spaces + ln for ln in txt.splitlines())

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_static/comment.png

_images/math/2f50fe0b2ca7d7b99756137b15642f568c191e30.png

_static/plus.png

_images/math/f23489e3317aac5e93f5eda897cb1852adc52825.png
S¥Y¥X1nXXa

_static/down.png

_images/math/eed469e070d4f4a58fcb82b5fc0d23a6a90e4638.png
b;| /distance

_static/comment-close.png

_images/math/de2cc0a1f0cfae14aa0c882c3070eccd1ae51702.png
S¥Y 3% 3

_images/math/b43b552ebb0ae7fb292387114fca14d318370c3d.png
;|

_images/math/9570fefe745eeeb3fb70f10bf7a441868fbe1cdd.png
g X3

_images/math/7113fdcc46a36d61bfa9b9963b66a0bc149671c0.png

_images/math/d423a09e967dce7a9cc7196a20387a6f9747737a.png

_images/math/b27531ad28bf9d357be110202a7fd1d93ba43244.png
11 X 3

_modules/aiida/parsers/plugins/quantumespresso/cp.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.parsers.plugins.quantumespresso »

 Source code for aiida.parsers.plugins.quantumespresso.cp

-*- coding: utf-8 -*-
from aiida.orm.calculation.job.quantumespresso.cp import CpCalculation
from aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp import (
 QEOutputParsingError, parse_cp_traj_stanzas, parse_cp_raw_output)
from aiida.parsers.plugins.quantumespresso.constants import (bohr_to_ang,
 timeau_to_sec, hartree_to_ev)
from aiida.orm.data.parameter import ParameterData
from aiida.orm.data.structure import StructureData
from aiida.orm.data.folder import FolderData
from aiida.parsers.parser import Parser
from aiida.common.datastructures import calc_states
from aiida.orm.data.array.trajectory import TrajectoryData
import numpy

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class CpParser(Parser):
 """
 This class is the implementation of the Parser class for Cp.
 """

 def __init__(self, calc):
 """
 Initialize the instance of CpParser

 :param calculation: calculation object.
 """
 # check for valid input
 if not isinstance(calc, CpCalculation):
 raise QEOutputParsingError("Input calc must be a CpCalculation")

 super(CpParser, self).__init__(calc)

[docs] def parse_with_retrieved(self, retrieved):
 """
 Receives in input a dictionary of retrieved nodes.
 Does all the logic here.
 """
 from aiida.common.exceptions import InvalidOperation
 import os, copy
 import numpy # TrajectoryData also uses numpy arrays

 successful = True

 # check if I'm not to overwrite anything
 state = self._calc.get_state()
 if state != calc_states.PARSING:
 raise InvalidOperation("Calculation not in {} state"
 .format(calc_states.PARSING))

 # get the input structure
 input_structure = self._calc.inp.structure

 # load the input dictionary
 # TODO: pass this input_dict to the parser. It might need it.
 input_dict = self._calc.inp.parameters.get_dict()

 # Check that the retrieved folder is there
 try:
 out_folder = retrieved[self._calc._get_linkname_retrieved()]
 except KeyError:
 self.logger.error("No retrieved folder found")
 return False, ()

 # check what is inside the folder
 list_of_files = out_folder.get_folder_list()
 # at least the stdout should exist
 if not self._calc._OUTPUT_FILE_NAME in list_of_files:
 successful = False
 new_nodes_tuple = ()
 self.logger.error("Standard output not found")
 return successful, new_nodes_tuple

 # if there is something more, I note it down, so to call the raw parser
 # with the right options
 # look for xml
 out_file = out_folder.get_abs_path(self._calc._OUTPUT_FILE_NAME)

 xml_file = None
 if self._calc._DATAFILE_XML_BASENAME in list_of_files:
 xml_file = out_folder.get_abs_path(self._calc._DATAFILE_XML_BASENAME)

 xml_counter_file = None
 if self._calc._FILE_XML_PRINT_COUNTER in list_of_files:
 xml_counter_file = out_folder.get_abs_path(
 self._calc._FILE_XML_PRINT_COUNTER)

 parsing_args = [out_file, xml_file, xml_counter_file]

 # call the raw parsing function
 out_dict, raw_successful = parse_cp_raw_output(*parsing_args)

 successful = True if raw_successful else False

 # parse the trajectory. Units in Angstrom, picoseconds and eV.
 # append everthing in the temporary dictionary raw_trajectory
 expected_configs = None
 raw_trajectory = {}
 evp_keys = ['electronic_kinetic_energy', 'cell_temperature', 'ionic_temperature',
 'scf_total_energy', 'enthalpy', 'enthalpy_plus_kinetic',
 'energy_constant_motion', 'volume', 'pressure']
 pos_vel_keys = ['cells', 'positions', 'times', 'velocities']
 # set a default null values

 # Now prepare the reordering, as filex in the xml are ordered
 reordering = self._generate_sites_ordering(out_dict['species'],
 out_dict['atoms'])

 # =============== POSITIONS trajectory ============================
 try:
 with open(out_folder.get_abs_path(
 '{}.pos'.format(self._calc._PREFIX))) as posfile:
 pos_data = [l.split() for l in posfile]
 # POSITIONS stored in angstrom
 traj_data = parse_cp_traj_stanzas(num_elements=out_dict['number_of_atoms'],
 splitlines=pos_data,
 prepend_name='positions_traj',
 rescale=bohr_to_ang)

 # here initialize the dictionary. If the parsing of positions fails, though, I don't have anything
 # out of the CP dynamics. Therefore, the calculation status is set to FAILED.
 raw_trajectory['positions_ordered'] = self._get_reordered_array(traj_data['positions_traj_data'],
 reordering)
 raw_trajectory['times'] = numpy.array(traj_data['positions_traj_times'])
 except IOError:
 out_dict['warnings'].append("Unable to open the POS file... skipping.")
 successful = False
 except Exception as e:
 out_dict['warnings'].append("Error parsing POS file ({}). Skipping file."
 .format(e.message))
 successful = False

 # =============== CELL trajectory ============================
 try:
 with open(os.path.join(out_folder.get_abs_path('.'),
 '{}.cel'.format(self._calc._PREFIX))) as celfile:
 cel_data = [l.split() for l in celfile]
 traj_data = parse_cp_traj_stanzas(num_elements=3,
 splitlines=cel_data,
 prepend_name='cell_traj',
 rescale=bohr_to_ang)
 raw_trajectory['cells'] = numpy.array(traj_data['cell_traj_data'])
 except IOError:
 out_dict['warnings'].append("Unable to open the CEL file... skipping.")
 except Exception as e:
 out_dict['warnings'].append("Error parsing CEL file ({}). Skipping file."
 .format(e.message))

 # =============== VELOCITIES trajectory ============================
 try:
 with open(os.path.join(out_folder.get_abs_path('.'),
 '{}.vel'.format(self._calc._PREFIX))) as velfile:
 vel_data = [l.split() for l in velfile]
 traj_data = parse_cp_traj_stanzas(num_elements=out_dict['number_of_atoms'],
 splitlines=vel_data,
 prepend_name='velocities_traj',
 rescale=bohr_to_ang / timeau_to_sec * 10 ** 12) # velocities in ang/ps,
 raw_trajectory['velocities_ordered'] = self._get_reordered_array(traj_data['velocities_traj_data'],
 reordering)
 except IOError:
 out_dict['warnings'].append("Unable to open the VEL file... skipping.")
 except Exception as e:
 out_dict['warnings'].append("Error parsing VEL file ({}). Skipping file."
 .format(e.message))

 # =============== EVP trajectory ============================
 try:
 matrix = numpy.genfromtxt(os.path.join(out_folder.get_abs_path('.'),
 '{}.evp'.format(self._calc._PREFIX)))
 # there might be a different format if the matrix has one row only
 try:
 matrix.shape[1]
 except IndexError:
 matrix = numpy.array(numpy.matrix(matrix))

 raw_trajectory['steps'] = numpy.array(matrix[:, 0], dtype=int)
 raw_trajectory['electronic_kinetic_energy'] = matrix[:, 1] * hartree_to_ev # EKINC, eV
 raw_trajectory['cell_temperature'] = matrix[:, 2] # TEMPH, K
 raw_trajectory['ionic_temperature'] = matrix[:, 3] # TEMPP, K
 raw_trajectory['scf_total_energy'] = matrix[:, 4] * hartree_to_ev # ETOT, eV
 raw_trajectory['enthalpy'] = matrix[:, 5] * hartree_to_ev # ENTHAL, eV
 raw_trajectory['enthalpy_plus_kinetic'] = matrix[:, 6] * hartree_to_ev # ECONS, eV
 raw_trajectory['energy_constant_motion'] = matrix[:, 7] * hartree_to_ev # ECONT, eV
 raw_trajectory['volume'] = matrix[:, 8] * (bohr_to_ang ** 3) # volume, angstrom^3
 raw_trajectory['pressure'] = matrix[:, 9] # out_press, GPa
 except Exception as e:
 out_dict['warnings'].append("Error parsing EVP file ({}). Skipping file.".format(e.message))
 except IOError:
 out_dict['warnings'].append("Unable to open the EVP file... skipping.")

 # get the symbols from the input
 # TODO: I should have kinds in TrajectoryData
 raw_trajectory['symbols'] = numpy.array([str(i.kind_name) for i in input_structure.sites])

 traj = TrajectoryData()
 traj.set_trajectory(stepids=raw_trajectory['steps'],
 cells=raw_trajectory['cells'],
 symbols=raw_trajectory['symbols'],
 positions=raw_trajectory['positions_ordered'],
 times=raw_trajectory['times'],
 velocities=raw_trajectory['velocities_ordered'],
)

 for this_name in evp_keys:
 traj.set_array(this_name, raw_trajectory[this_name])
 new_nodes_list = [(self.get_linkname_trajectory(), traj)]

 # convert the dictionary into an AiiDA object
 output_params = ParameterData(dict=out_dict)
 # save it into db
 new_nodes_list.append((self.get_linkname_outparams(), output_params))

 return successful, new_nodes_list

[docs] def get_linkname_trajectory(self):
 """
 Returns the name of the link to the output_structure (None if not present)
 """
 return 'output_trajectory'

 def _generate_sites_ordering(self, raw_species, raw_atoms):
 """
 take the positions of xml and from file.pos of the LAST step and compare them
 """
 # Examples in the comments are for species [Ba, O, Ti]
 # and atoms [Ba, Ti, O, O, O]

 # Dictionary to associate the species name to the idx
 # Example: {'Ba': 1, 'O': 2, 'Ti': 3}
 species_dict = {name: idx for idx, name in zip(raw_species['index'],
 raw_species['type'])}
 # List of the indices of the specie associated to each atom,
 # in the order specified in input
 # Example: (1,3,2,2,2)
 atoms_species_idx = [species_dict[a[0]] for a in raw_atoms]
 # I also attach the current position; important to convert to a list
 # Otherwise the iterator can be looped on only once!
 # Example: ((0,1),(1,3),(2,2),(3,2),(4,2))
 ref_atom_list = list(enumerate(atoms_species_idx))
 new_order_tmp = []
 # I reorder the atoms, first by specie, then in their order
 # This is the order used in output by CP!!
 # Example: ((0,1),(2,2),(3,2),(4,2),(1,3))
 for specie_idx in sorted(raw_species['index']):
 for elem in ref_atom_list:
 if elem[1] == specie_idx:
 new_order_tmp.append(elem)
 # This is the new order that is printed in CP:
 # e.g. reordering[2] is the index of the atom, in the input
 # list of atoms, that is printed in position 2 (0-based, so the
 # third atom) in the CP output files.
 # Example: [0,2,3,4,1]
 reordering = [_[0] for _ in new_order_tmp]
 # I now need the inverse reordering, to put back in place
 # from the output ordering to the input one!
 # Example: [0,4,1,2,3]
 # Because in the final list (Ba, O, O, O, Ti)
 # the first atom Ba in the input is atom 0 in the CP output (the first),
 # the second atom Ti in the input is atom 4 (the fifth) in the CP output,
 # and so on
 sorted_indexed_reordering = sorted([(_[1], _[0]) for _ in
 enumerate(reordering)])
 reordering_inverse = [_[1] for _ in sorted_indexed_reordering]
 return reordering_inverse

 def _get_reordered_list(self, origlist, reordering):
 """
 Given a list to reorder, a list of integer positions with the new
 order, return the reordered list.
 """
 return [origlist[e] for e in reordering]

 def _get_reordered_array(self, input, reordering):
 return numpy.array([self._get_reordered_list(i, reordering) for i in input])

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/parsers/plugins/quantumespresso/basic_raw_parser_pw.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.parsers.plugins.quantumespresso »

 Source code for aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw

-*- coding: utf-8 -*-
"""
A collection of function that are used to parse the output of Quantum Espresso PW.
The function that needs to be called from outside is parse_raw_output().
The functions mostly work without aiida specific functionalities.
The parsing will try to convert whatever it can in some dictionary, which
by operative decision doesn't have much structure encoded, [the values are simple]
"""
import xml.dom.minidom
import os
import string
from aiida.parsers.plugins.quantumespresso.constants import ry_to_ev, hartree_to_ev, bohr_to_ang, ry_si, bohr_si
from aiida.parsers.plugins.quantumespresso import QEOutputParsingError

TODO: it could be possible to use info of the input file to parse output.
but atm the output has all the informations needed for the parsing.

parameter that will be used later for comparisons

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

lattice_tolerance = 1.e-5

default_energy_units = 'eV'
units_suffix = '_units'
k_points_default_units = '2 pi / Angstrom'
default_length_units = 'Angstrom'
default_dipole_units = 'Debye'
default_magnetization_units = 'Bohrmag / cell'
default_force_units = 'ev / angstrom'
default_stress_units = 'GPascal'
default_polarization_units = 'C / m^2'

[docs]def parse_raw_output(out_file, input_dict, parser_opts=None, xml_file=None, dir_with_bands=None):
 """
 Parses the output of a calculation
 Receives in input the paths to the output file and the xml file.

 :param out_file: path to pw std output
 :param input_dict: not used
 :param parser_opts: not used
 :param dir_with_bands: path to directory with all k-points (Kxxxxx) folders
 :param xml_file: path to QE data-file.xml

 :returns out_dict: a dictionary with parsed data
 :return successful: a boolean that is False in case of failed calculations

 :raises QEOutputParsingError: for errors in the parsing,
 :raises AssertionError: if two keys in the parsed dicts are found to be qual

 3 different keys to check in output: parser_warnings, xml_warnings and warnings.
 On an upper level, these flags MUST be checked.
 The first two are expected to be empty unless QE failures or unfinished jobs.
 """
 import copy
 # TODO: a lot of ifs could be cleaned out

 # TODO: input_dict should be used as well

 job_successful = True

 parser_version = '0.1'
 parser_info = {}
 parser_info['parser_warnings'] = []
 parser_info['parser_info'] = 'AiiDA QE Basic Parser v{}'.format(parser_version)

 # if xml_file is not given in input, skip its parsing
 if xml_file is not None:
 try:
 with open(xml_file, 'r') as f:
 xml_lines = f.read() # Note: read() and not readlines()
 except IOError:
 raise QEOutputParsingError("Failed to open xml file: {}.".format(xml_file))

 xml_data, structure_data = parse_pw_xml_output(xml_lines, dir_with_bands)
 # Note the xml file should always be consistent.
 else:
 parser_info['parser_warnings'].append('Skipping the parsing of the xml file.')
 xml_data = {}
 bands_data = {}
 structure_data = {}

 # load QE out file
 try:
 with open(out_file, 'r') as f:
 out_lines = f.read()
 except IOError: # non existing output file -> job crashed
 raise QEOutputParsingError("Failed to open output file: {}.".format(out_file))

 if not out_lines: # there is an output file, but it's empty -> crash
 job_successful = False

 # check if the job has finished (that doesn't mean without errors)
 finished_run = False
 for line in out_lines.split('\n')[::-1]:
 if 'JOB DONE' in line:
 finished_run = True
 break
 if not finished_run: # error if the job has not finished
 warning = 'QE pw run did not reach the end of the execution.'
 parser_info['parser_warnings'].append(warning)
 job_successful = False

 # parse
 try:
 out_data, trajectory_data, critical_messages = parse_pw_text_output(out_lines, xml_data, structure_data,
 input_dict)
 except QEOutputParsingError:
 if not finished_run: # I try to parse it as much as possible
 parser_info['parser_warnings'].append('Error while parsing the output file')
 out_data = {}
 trajectory_data = {}
 critical_messages = []
 else: # if it was finished and I got error, it's a mistake of the parser
 raise QEOutputParsingError('Error while parsing QE output')

 # I add in the out_data all the last elements of trajectory_data values.
 # Safe for some large arrays, that I will likely never query.
 skip_keys = ['forces', 'lattice_vectors_relax',
 'atomic_positions_relax', 'atomic_species_name']
 tmp_trajectory_data = copy.copy(trajectory_data)
 for x in tmp_trajectory_data.iteritems():
 if x[0] in skip_keys:
 continue
 out_data[x[0]] = x[1][-1]
 if len(x[1]) == 1: # delete eventual keys that are not arrays (scf cycles)
 trajectory_data.pop(x[0])
 # note: if an array is empty, there will be KeyError
 for key in ['k_points', 'k_points_weights']:
 try:
 trajectory_data[key] = xml_data.pop(key)
 except KeyError:
 pass
 # As the k points are an array that is rather large, and again it's not something I'm going to parse likely
 # since it's an info mainly contained in the input file, I move it to the trajectory data

 # if there is a severe error, the calculation is FAILED
 if any([x in out_data['warnings'] for x in critical_messages]):
 job_successful = False

 for key in out_data.keys():
 if key in xml_data.keys():
 if key == 'fermi_energy' or key == 'fermi_energy_units': # an exception for the (only?) key that may be found on both
 del out_data[key]
 else:
 raise AssertionError('{} found in both dictionaries, '
 'values: {} vs. {}'.format(
 key, out_data[key], xml_data[key])) # this shouldn't happen!
 # out_data keys take precedence and overwrite xml_data keys,
 # if the same key name is shared by both
 # dictionaries (but this should not happen!)
 parameter_data = dict(xml_data.items() + out_data.items() + parser_info.items())

 # return various data.
 # parameter data will be mapped in ParameterData
 # trajectory_data in ArrayData
 # structure_data in a Structure
 # bands_data should probably be merged in ArrayData
 return parameter_data, trajectory_data, structure_data, job_successful

[docs]def cell_volume(a1, a2, a3):
 """
 returns the volume of the primitive cell: \|a1.(a2xa3)\|
 """
 a_mid_0 = a2[1] * a3[2] - a2[2] * a3[1]
 a_mid_1 = a2[2] * a3[0] - a2[0] * a3[2]
 a_mid_2 = a2[0] * a3[1] - a2[1] * a3[0]
 return abs(float(a1[0] * a_mid_0 + a1[1] * a_mid_1 + a1[2] * a_mid_2))

In the following, some functions that helps the parsing of
the xml file of QE v5.0.x (version below not tested)
def read_xml_card(dom, cardname):
 try:
 root_node = [_ for _ in dom.childNodes if
 isinstance(_, xml.dom.minidom.Element)
 and _.nodeName == "Root"][0]
 the_card = [_ for _ in root_node.childNodes if _.nodeName == cardname][0]
 # the_card = dom.getElementsByTagName(cardname)[0]
 return the_card
 except Exception as e:
 print e
 raise QEOutputParsingError('Error parsing tag {}'.format(cardname))

def parse_xml_child_integer(tagname, target_tags):
 try:
 # a=target_tags.getElementsByTagName(tagname)[0]
 a = [_ for _ in target_tags.childNodes if _.nodeName == tagname][0]
 b = a.childNodes[0]
 return int(b.data)
 except Exception:
 raise QEOutputParsingError('Error parsing tag {} inside {}'
 .format(tagname, target_tags.tagName))

def parse_xml_child_float(tagname, target_tags):
 try:
 # a=target_tags.getElementsByTagName(tagname)[0]
 a = [_ for _ in target_tags.childNodes if _.nodeName == tagname][0]
 b = a.childNodes[0]
 return float(b.data)
 except Exception:
 raise QEOutputParsingError('Error parsing tag {} inside {}' \
 .format(tagname, target_tags.tagName))

def parse_xml_child_bool(tagname, target_tags):
 try:
 # a=target_tags.getElementsByTagName(tagname)[0]
 a = [_ for _ in target_tags.childNodes if _.nodeName == tagname][0]
 b = a.childNodes[0]
 return str2bool(b.data)
 except Exception:
 raise QEOutputParsingError('Error parsing tag {} inside {}' \
 .format(tagname, target_tags.tagName))

def str2bool(string):
 try:
 false_items = ["f", "0", "false", "no"]
 true_items = ["t", "1", "true", "yes"]
 string = str(string.lower().strip())
 if string in false_items:
 return False
 if string in true_items:
 return True
 else:
 raise QEOutputParsingError('Error converting string '
 '{} to boolean value.'.format(string))
 except Exception:
 raise QEOutputParsingError('Error converting string to boolean.')

def parse_xml_child_str(tagname, target_tags):
 try:
 # a=target_tags.getElementsByTagName(tagname)[0]
 a = [_ for _ in target_tags.childNodes if _.nodeName == tagname][0]
 b = a.childNodes[0]
 return str(b.data).rstrip().replace('\n', '')
 except Exception:
 raise QEOutputParsingError('Error parsing tag {} inside {}' \
 .format(tagname, target_tags.tagName))

def parse_xml_child_attribute_str(tagname, attributename, target_tags):
 try:
 # a=target_tags.getElementsByTagName(tagname)[0]
 a = [_ for _ in target_tags.childNodes if _.nodeName == tagname][0]
 value = str(a.getAttribute(attributename))
 return value.rstrip().replace('\n', '').lower()
 except Exception:
 raise QEOutputParsingError('Error parsing attribute {}, tag {} inside {}'
 .format(attributename, tagname, target_tags.tagName))

def parse_xml_child_attribute_int(tagname, attributename, target_tags):
 try:
 # a=target_tags.getElementsByTagName(tagname)[0]
 a = [_ for _ in target_tags.childNodes if _.nodeName == tagname][0]
 value = int(a.getAttribute(attributename))
 return value
 except Exception:
 raise QEOutputParsingError('Error parsing attribute {}, tag {} inside {}'
 .format(attributename, tagname, target_tags.tagName))

def grep_energy_from_line(line):
 try:
 return float(line.split('=')[1].split('Ry')[0]) * ry_to_ev
 except Exception:
 raise QEOutputParsingError('Error while parsing energy')

[docs]def convert_qe_time_to_sec(timestr):
 """
 Given the walltime string of Quantum Espresso, converts it in a number of
 seconds (float).
 """
 rest = timestr.strip()

 if 'd' in rest:
 days, rest = rest.split('d')
 else:
 days = '0'

 if 'h' in rest:
 hours, rest = rest.split('h')
 else:
 hours = '0'

 if 'm' in rest:
 minutes, rest = rest.split('m')
 else:
 minutes = '0'

 if 's' in rest:
 seconds, rest = rest.split('s')
 else:
 seconds = '0.'

 if rest.strip():
 raise ValueError("Something remained at the end of the string '{}': '{}'"
 .format(timestr, rest))

 num_seconds = (
 float(seconds) + float(minutes) * 60. +
 float(hours) * 3600. + float(days) * 86400.)

 return num_seconds

[docs]def convert_list_to_matrix(in_matrix, n_rows, n_columns):
 """
 converts a list into a list of lists (a matrix like) with n_rows and n_columns
 """
 return [in_matrix[j:j + n_rows] for j in range(0, n_rows * n_columns, n_rows)]

def xml_card_cell(parsed_data, dom):
 # CARD CELL of QE output

 cardname = 'CELL'
 target_tags = read_xml_card(dom, cardname)

 for tagname in ['NON-PERIODIC_CELL_CORRECTION', 'BRAVAIS_LATTICE']:
 parsed_data[tagname.replace('-', '_').lower()] = parse_xml_child_str(tagname, target_tags)

 tagname = 'LATTICE_PARAMETER'
 value = parse_xml_child_float(tagname, target_tags)
 parsed_data[tagname.replace('-', '_').lower() + '_xml'] = value
 attrname = 'UNITS'
 metric = parse_xml_child_attribute_str(tagname, attrname, target_tags)
 if metric not in ['bohr', 'angstrom']:
 raise QEOutputParsingError('Error parsing attribute {}, tag {} inside {}, units not found'
 .format(attrname, tagname, target_tags.tagName))
 if metric == 'bohr':
 value *= bohr_to_ang
 parsed_data[tagname.replace('-', '_').lower()] = value

 tagname = 'CELL_DIMENSIONS'
 try:
 #a=target_tags.getElementsByTagName(tagname)[0]
 a = [_ for _ in target_tags.childNodes if _.nodeName == tagname][0]
 b = a.childNodes[0]
 c = b.data.replace('\n', '').split()
 value = [float(i) for i in c]
 parsed_data[tagname.replace('-', '_').lower()] = value
 except Exception:
 raise QEOutputParsingError('Error parsing tag {} inside {}.'.format(tagname, target_tags.tagName))

 tagname = 'DIRECT_LATTICE_VECTORS'
 lattice_vectors = []
 try:
 second_tagname = 'UNITS_FOR_DIRECT_LATTICE_VECTORS'
 #a=target_tags.getElementsByTagName(tagname)[0]
 a = [_ for _ in target_tags.childNodes if _.nodeName == tagname][0]
 b = a.getElementsByTagName('UNITS_FOR_DIRECT_LATTICE_VECTORS')[0]
 value = str(b.getAttribute('UNITS')).lower()
 parsed_data[second_tagname.replace('-', '_').lower()] = value

 metric = value
 if metric not in ['bohr', 'angstroms']: # REMEMBER TO CHECK THE UNITS AT THE END OF THE FUNCTION
 raise QEOutputParsingError('Error parsing tag {} inside {}: units not supported: {}'
 .format(tagname, target_tags.tagName, metric))

 lattice_vectors = []
 for second_tagname in ['a1', 'a2', 'a3']:
 #b = a.getElementsByTagName(second_tagname)[0]
 b = [_ for _ in a.childNodes if _.nodeName == second_tagname][0]
 c = b.childNodes[0]
 d = c.data.replace('\n', '').split()
 value = [float(i) for i in d]
 if metric == 'bohr':
 value = [bohr_to_ang * float(s) for s in value]
 lattice_vectors.append(value)

 volume = cell_volume(lattice_vectors[0], lattice_vectors[1], lattice_vectors[2])

 except Exception:
 raise QEOutputParsingError('Error parsing tag {} inside {} inside {}.'
 .format(tagname, target_tags.tagName, cardname))
 # NOTE: lattice_vectors will be saved later together with card IONS.atom

 tagname = 'RECIPROCAL_LATTICE_VECTORS'
 try:
 #a = target_tags.getElementsByTagName(tagname)[0]
 a = [_ for _ in target_tags.childNodes if _.nodeName == tagname][0]

 second_tagname = 'UNITS_FOR_RECIPROCAL_LATTICE_VECTORS'
 b = a.getElementsByTagName(second_tagname)[0]
 value = str(b.getAttribute('UNITS')).lower()
 parsed_data[second_tagname.replace('-', '_').lower()] = value

 metric = value
 # NOTE: output is given in 2 pi / a [ang ^ -1]
 if metric not in ['2 pi / a']:
 raise QEOutputParsingError('Error parsing tag {} inside {}: units {} not supported'
 .format(tagname, target_tags.tagName, metric))

 # reciprocal_lattice_vectors
 this_matrix = []
 for second_tagname in ['b1', 'b2', 'b3']:
 b = a.getElementsByTagName(second_tagname)[0]
 c = b.childNodes[0]
 d = c.data.replace('\n', '').split()
 value = [float(i) for i in d]
 if metric == '2 pi / a':
 value = [float(s) / parsed_data['lattice_parameter'] for s in value]
 this_matrix.append(value)
 parsed_data['reciprocal_lattice_vectors'] = this_matrix

 except Exception:
 raise QEOutputParsingError('Error parsing tag {} inside {}.'
 .format(tagname, target_tags.tagName))
 return parsed_data, lattice_vectors, volume

def xml_card_ions(parsed_data, dom, lattice_vectors, volume):
 cardname = 'IONS'
 target_tags = read_xml_card(dom, cardname)

 for tagname in ['NUMBER_OF_ATOMS', 'NUMBER_OF_SPECIES']:
 parsed_data[tagname.lower()] = parse_xml_child_integer(tagname, target_tags)

 tagname = 'UNITS_FOR_ATOMIC_MASSES'
 attrname = 'UNITS'
 parsed_data[tagname.lower()] = parse_xml_child_attribute_str(tagname, attrname, target_tags)

 try:
 parsed_data['species'] = {}
 parsed_data['species']['index'] = []
 parsed_data['species']['type'] = []
 parsed_data['species']['mass'] = []
 parsed_data['species']['pseudo'] = []
 for i in range(parsed_data['number_of_species']):
 tagname = 'SPECIE.' + str(i + 1)
 parsed_data['species']['index'].append(i + 1)

 # a=target_tags.getElementsByTagName(tagname)[0]
 a = [_ for _ in target_tags.childNodes if _.nodeName == tagname][0]

 tagname2 = 'ATOM_TYPE'
 parsed_data['species']['type'].append(parse_xml_child_str(tagname2, a))

 tagname2 = 'MASS'
 parsed_data['species']['mass'].append(parse_xml_child_float(tagname2, a))

 tagname2 = 'PSEUDO'
 parsed_data['species']['pseudo'].append(parse_xml_child_str(tagname2, a))

 tagname = 'UNITS_FOR_ATOMIC_POSITIONS'
 attrname = 'UNITS'
 parsed_data[tagname.lower()] = parse_xml_child_attribute_str(tagname, attrname, target_tags)
 except:
 raise QEOutputParsingError('Error parsing tag SPECIE.# inside %s.' % (target_tags.tagName))
 # TODO convert the units
 # if parsed_data['units_for_atomic_positions'] not in ['alat','bohr','angstrom']:

 try:
 atomlist = []
 atoms_index_list = []
 atoms_if_pos_list = []
 tagslist = []
 for i in range(parsed_data['number_of_atoms']):
 tagname = 'ATOM.' + str(i + 1)
 # USELESS AT THE MOMENT, I DON'T SAVE IT
 # parsed_data['atoms']['list_index']=i
 # a=target_tags.getElementsByTagName(tagname)[0]
 a = [_ for _ in target_tags.childNodes if _.nodeName == tagname][0]
 tagname2 = 'INDEX'
 b = int(a.getAttribute(tagname2))
 atoms_index_list.append(b)
 tagname2 = 'SPECIES'

 chem_symbol = str(a.getAttribute(tagname2)).rstrip().replace("\n", "")
 # I check if it is a subspecie
 chem_symbol_digits = "".join([i for i in chem_symbol if i in string.digits])
 try:
 tagslist.append(int(chem_symbol_digits))
 except ValueError:
 # If I can't parse the digit, it is probably not there: I add a None to the tagslist
 tagslist.append(None)
 # I remove the symbols
 chem_symbol = chem_symbol.translate(None, string.digits)

 tagname2 = 'tau'
 b = a.getAttribute(tagname2)
 tau = [float(s) for s in b.rstrip().replace("\n", "").split()]
 metric = parsed_data['units_for_atomic_positions']
 if metric not in ['alat', 'bohr', 'angstrom']: # REMEMBER TO CONVERT AT THE END
 raise QEOutputParsingError('Error parsing tag %s inside %s' % (tagname, target_tags.tagName))
 if metric == 'alat':
 tau = [parsed_data['lattice_parameter_xml'] * float(s) for s in tau]
 elif metric == 'bohr':
 tau = [bohr_to_ang * float(s) for s in tau]
 atomlist.append([chem_symbol, tau])
 tagname2 = 'if_pos'
 b = a.getAttribute(tagname2)
 if_pos = [int(s) for s in b.rstrip().replace("\n", "").split()]
 atoms_if_pos_list.append(if_pos)
 parsed_data['atoms'] = atomlist
 parsed_data['atoms_index_list'] = atoms_index_list
 parsed_data['atoms_if_pos_list'] = atoms_if_pos_list
 cell = {}
 cell['lattice_vectors'] = lattice_vectors
 cell['volume'] = volume
 cell['atoms'] = atomlist
 cell['tagslist'] = tagslist
 parsed_data['cell'] = cell
 except Exception:
 raise QEOutputParsingError('Error parsing tag ATOM.# inside %s.' % (target_tags.tagName))
 # saving data together with cell parameters. Did so for better compatibility with ASE.

 # correct some units that have been converted in
 parsed_data['atomic_positions' + units_suffix] = default_length_units
 parsed_data['direct_lattice_vectors' + units_suffix] = default_length_units

 return parsed_data

[docs]def parse_pw_xml_output(data, dir_with_bands=None):
 """
 Parse the xml data of QE v5.0.x
 Input data must be a single string, as returned by file.read()
 Returns a dictionary with parsed values
 """
 import copy
 from xml.parsers.expat import ExpatError
 # NOTE : I often assume that if the xml file has been written, it has no
 # internal errors.
 try:
 dom = xml.dom.minidom.parseString(data)
 except ExpatError:
 return {'xml_warnings': "Error in XML parseString: bad format"}, {}, {}

 parsed_data = {}

 parsed_data['xml_warnings'] = []

 structure_dict = {}
 # CARD CELL
 structure_dict, lattice_vectors, volume = copy.deepcopy(xml_card_cell(structure_dict, dom))

 # CARD IONS
 structure_dict = copy.deepcopy(xml_card_ions(structure_dict, dom, lattice_vectors, volume))

 # fermi energy

 cardname = 'BAND_STRUCTURE_INFO'
 target_tags = read_xml_card(dom, cardname)

 tagname = 'FERMI_ENERGY'
 parsed_data[tagname.replace('-', '_').lower()] = \
 parse_xml_child_float(tagname, target_tags) * hartree_to_ev
 parsed_data[tagname.lower() + units_suffix] = default_energy_units

 return parsed_data, structure_dict

[docs]def parse_pw_text_output(data, xml_data=None, structure_data=None, input_dict=None):
 """
 Parses the text output of QE-PWscf.

 :param data: a string, the file as read by read()
 :param xml_data: the dictionary with the keys read from xml.
 :param structure_data: dictionary, coming from the xml, with info on the structure

 :return parsed_data: dictionary with key values, referring to quantities
 at the last scf step.
 :return trajectory_data: key,values referring to intermediate scf steps,
 as in the case of vc-relax. Empty dictionary if no
 value is present.
 :return critical_messages: a list with critical messages. If any is found in
 parsed_data['warnings'], the calculation is FAILED!
 """

 parsed_data = {}
 parsed_data['warnings'] = []
 vdw_correction = False
 trajectory_data = {}

 # critical warnings: if any is found, the calculation status is FAILED
 critical_warnings = {
 'The maximum number of steps has been reached.': "The maximum step of the ionic/electronic relaxation has been reached.",
 'convergence NOT achieved after': "The scf cycle did not reach convergence.",
 # 'eigenvalues not converged':None, # special treatment
 'iterations completed, stopping': 'Maximum number of iterations reached in Wentzcovitch Damped Dynamics.',
 'Maximum CPU time exceeded': 'Maximum CPU time exceeded',
 '%%%%%%%%%%%%%%': None,
 }

 minor_warnings = {'Warning:': None,
 'DEPRECATED:': None,
 'incommensurate with FFT grid': 'The FFT is incommensurate: some symmetries may be lost.',
 'SCF correction compared to forces is too large, reduce conv_thr': "Forces are inaccurate (SCF correction is large): reduce conv_thr.",
 }

 all_warnings = dict(critical_warnings.items() + minor_warnings.items())

 # Find some useful quantities.
 try:
 for line in data.split('\n'):
 if 'lattice parameter (alat)' in line:
 alat = float(line.split('=')[1].split('a.u')[0])
 elif 'number of atoms/cell' in line:
 nat = int(line.split('=')[1])
 elif 'number of atomic types' in line:
 ntyp = int(line.split('=')[1])
 elif 'unit-cell volume' in line:
 volume = float(line.split('=')[1].split('(a.u.)^3')[0])
 elif 'number of Kohn-Sham states' in line:
 nbnd = int(line.split('=')[1])
 break
 alat *= bohr_to_ang
 volume *= bohr_to_ang ** 3
 parsed_data['number_of_bands'] = nbnd
 except NameError: # nat or other variables where not found, and thus not initialized
 # try to get some error message
 for count, line in enumerate(data.split('\n')):
 if any(i in line for i in all_warnings):
 messages = [all_warnings[i] if all_warnings[i] is not None
 else line for i in all_warnings.keys()
 if i in line]

 if '%%%%%%%%%%%%%%' in line:
 messages = parse_QE_errors(data.split('\n'), count,
 parsed_data['warnings'])

 # if it found something, add to log
 if len(messages) > 0:
 parsed_data['warnings'].extend(messages)

 if len(parsed_data['warnings']) > 0:
 return parsed_data, trajectory_data, critical_warnings.values()
 else:
 # did not find any error message -> raise an Error and do not
 # return anything
 raise QEOutputParsingError("Parser can't load basic info.")

 # Save these two quantities in the parsed_data, because they will be
 # useful for queries (maybe), and structure_data will not be stored as a ParameterData
 parsed_data['number_of_atoms'] = nat
 parsed_data['number_of_species'] = ntyp
 parsed_data['volume'] = volume

 c_bands_error = False

 # now grep quantities that can be considered isolated informations.
 for count, line in enumerate(data.split('\n')):

 # special parsing of c_bands error
 if 'c_bands' in line and 'eigenvalues not converged' in line:
 c_bands_error = True
 elif "iteration #" in line and c_bands_error:
 # if there is another iteration, c_bands is not necessarily a problem
 # I put a warning only if c_bands error appears in the last iteration
 c_bands_error = False

 # Parsing of errors
 elif any(i in line for i in all_warnings):
 message = [all_warnings[i] for i in all_warnings.keys() if i in line][0]
 if message is None:
 message = line

 # if the run is a molecular dynamics, I ignore that I reached the
 # last iteration step.
 if ('The maximum number of steps has been reached.' in line and
 'md' in input_dict['CONTROL']['calculation']):
 message = None

 if 'iterations completed, stopping' in line:
 value = message
 message = None
 if 'Wentzcovitch Damped Dynamics:' in line:
 dynamic_iterations = int(line.split()[3])
 if max_dynamic_iterations == dynamic_iterations:
 message = value

 if '%%%%%%%%%%%%%%' in line:
 message = None
 messages = parse_QE_errors(data.split('\n'), count, parsed_data['warnings'])

 # if it found something, add to log
 try:
 parsed_data['warnings'].extend(messages)
 except UnboundLocalError:
 pass
 if message is not None:
 parsed_data['warnings'].append(message)

 if c_bands_error:
 parsed_data['warnings'].append("c_bands: at least 1 eigenvalues not converged")

 # I split the output text in the atomic SCF calculations.
 # the initial part should be things already contained in the xml.
 # (cell, initial positions, kpoints, ...) and I skip them.
 # In case, parse for them before this point.
 # Put everything in a trajectory_data dictionary
 relax_steps = data.split('Self-consistent Calculation')[1:]
 relax_steps = [i.split('\n') for i in relax_steps]

 # now I create a bunch of arrays for every step.
 for data_step in relax_steps:
 for count, line in enumerate(data_step):

 # NOTE: in the above, the chemical symbols are not those of AiiDA
 # since the AiiDA structure is different. So, I assume now that the
 # order of atoms is the same of the input atomic structure.

 # Computed dipole correction in slab geometries.
 # save dipole in debye units, only at last iteration of scf cycle

 # grep energy and eventually, magnetization
 if '!' in line:
 try:
 for key in ['energy', 'energy_accuracy']:
 if key not in trajectory_data:
 trajectory_data[key] = []

 En = float(line.split('=')[1].split('Ry')[0]) * ry_to_ev
 E_acc = float(data_step[count + 2].split('<')[1].split('Ry')[0]) * ry_to_ev

 for key, value in [['energy', En], ['energy_accuracy', E_acc]]:
 trajectory_data[key].append(value)
 parsed_data[key + units_suffix] = default_energy_units
 except Exception:
 parsed_data['warnings'].append('Error while parsing the energy')

 elif 'the Fermi energy is' in line:
 try:
 value = line.split('is')[1].split('ev')[0]
 try:
 trajectory_data['fermi_energy'].append(value)
 except KeyError:
 trajectory_data['fermi_energy'] = [value]
 parsed_data['fermi_energy' + units_suffix] = default_energy_units
 except Exception:
 parsed_data['warnings'].append('Error while parsing Fermi energy from the output file.')

 elif 'Forces acting on atoms (Ry/au):' in line:
 try:
 forces = []
 j = 0
 while True:
 j += 1
 line2 = data_step[count + j]
 if 'atom ' in line2:
 line2 = line2.split('=')[1].split()
 # CONVERT FORCES IN eV/Ang
 vec = [float(s) * ry_to_ev / \
 bohr_to_ang for s in line2]
 forces.append(vec)
 if len(forces) == nat:
 break
 try:
 trajectory_data['forces'].append(forces)
 except KeyError:
 trajectory_data['forces'] = [forces]
 parsed_data['forces' + units_suffix] = default_force_units
 except Exception:
 parsed_data['warnings'].append('Error while parsing forces.')

 # TODO: adding the parsing support for the decomposition of the forces

 elif 'Total force =' in line:
 try: # note that I can't check the units: not written in output!
 value = float(line.split('=')[1].split('Total')[0]) * ry_to_ev / bohr_to_ang
 try:
 trajectory_data['total_force'].append(value)
 except KeyError:
 trajectory_data['total_force'] = [value]
 parsed_data['total_force' + units_suffix] = default_force_units
 except Exception:
 parsed_data['warnings'].append('Error while parsing total force.')

 elif 'entering subroutine stress ...' in line:
 try:
 stress = []
 for k in range(10):
 if "P=" in data_step[count + k + 1]:
 count2 = count + k + 1
 if '(Ry/bohr**3)' not in data_step[count2]:
 raise QEOutputParsingError('Error while parsing stress: unexpected units.')
 for k in range(3):
 line2 = data_step[count2 + k + 1].split()
 vec = [float(s) * 10 ** (-9) * ry_si / (bohr_si) ** 3 for s in line2[0:3]]
 stress.append(vec)
 try:
 trajectory_data['stress'].append(stress)
 except KeyError:
 trajectory_data['stress'] = [stress]
 parsed_data['stress' + units_suffix] = default_stress_units
 except Exception:
 parsed_data['warnings'].append('Error while parsing stress tensor.')

 return parsed_data, trajectory_data, critical_warnings.values()

[docs]def parse_QE_errors(lines, count, warnings):
 """
 Parse QE errors messages (those appearing between some lines with
 ``'%%%%%%%%'``)

 :param lines: list of strings, the output text file as read by readlines()
 or as obtained by data.split('\\n') when data is the text file read by read()
 :param count: the line at which we identified some ``'%%%%%%%%'``
 :param warnings: the warnings already parsed in the file
 :return messages: a list of QE error messages
 """

 # find the indices of the lines with problems
 found_endpoint = False
 init_problem = count
 for count2, line2 in enumerate(lines[count + 1:]):
 end_problem = count + count2 + 1
 if "%%%%%%%%%%%%" in line2:
 found_endpoint = True
 break
 messages = []
 if found_endpoint:
 # build a dictionary with the lines
 prob_list = lines[init_problem:end_problem + 1]
 irred_list = list(set(prob_list))
 for v in prob_list:
 if (len(v) > 0 and (v in irred_list and v not in warnings)):
 messages.append(irred_list.pop(irred_list.index(v)))

 return messages

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/parsers/plugins/quantumespresso.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.parsers.plugins.quantumespresso

-*- coding: utf-8 -*-
from aiida.parsers.exceptions import OutputParsingError

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

class QEOutputParsingError(OutputParsingError):
 pass
 # def __init__(self,message):
 # wrappedmessage = "Error parsing Quantum Espresso PW output: " + message
 # super(QEOutputParsingError,self).__init__(wrappedmessage)
 # self.message = wrappedmessage
 # self.module = "qe-pw"

[docs]def convert_qe2aiida_structure(output_dict, input_structure=None):
 """
 Receives the dictionary cell parsed from quantum espresso
 Convert it into an AiiDA structure object
 """
 from aiida.orm import DataFactory

 StructureData = DataFactory('structure')

 cell_dict = output_dict['cell']

 # If I don't have any help, I will set up the cell as it is in QE
 if not input_structure:

 s = StructureData(cell=cell_dict['lattice_vectors'])
 for atom in cell_dict['atoms']:
 s.append_atom(position=tuple(atom[1]), symbols=[atom[0]])

 else:

 s = input_structure.copy()
 s.reset_cell(cell_dict['lattice_vectors'])
 new_pos = [i[1] for i in cell_dict['atoms']]
 s.reset_sites_positions(new_pos)

 return s

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/parsers/plugins/quantumespresso/basicpw.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.parsers.plugins.quantumespresso »

 Source code for aiida.parsers.plugins.quantumespresso.basicpw

-*- coding: utf-8 -*-
from aiida.orm.calculation.job.quantumespresso.pw import PwCalculation
from aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw import (
 parse_raw_output, QEOutputParsingError)
from aiida.orm.data.parameter import ParameterData
from aiida.orm.data.folder import FolderData
from aiida.parsers.parser import Parser # , ParserParamManager
from aiida.parsers.plugins.quantumespresso import convert_qe2aiida_structure
from aiida.common.datastructures import calc_states
from aiida.common.exceptions import UniquenessError
from aiida.orm.data.array import ArrayData
from aiida.orm.data.array.kpoints import KpointsData

TODO: I don't like the generic class always returning a name for the link to the output structure

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class BasicpwParser(Parser):
 """
 This class is the implementation of the Parser class for PWscf.
 """

 _setting_key = 'parser_options'

 def __init__(self, calc):
 """
 Initialize the instance of PwParser
 """
 # check for valid input
 if not isinstance(calc, PwCalculation):
 raise QEOutputParsingError("Input calc must be a PwCalculation")

 super(BasicpwParser, self).__init__(calc)

[docs] def parse_with_retrieved(self, retrieved):
 """
 Receives in input a dictionary of retrieved nodes.
 Does all the logic here.
 """
 from aiida.common.exceptions import InvalidOperation
 import os
 import glob

 successful = True

 # check if I'm not to overwrite anything
 #state = self._calc.get_state()
 #if state != calc_states.PARSING:
 # raise InvalidOperation("Calculation not in {} state"
 # .format(calc_states.PARSING))

 # retrieve the input parameter
 calc_input = self._calc.inp.parameters

 # look for eventual flags of the parser
 try:
 parser_opts = self._calc.inp.settings.get_dict()[self.get_parser_settings_key()]
 except (AttributeError, KeyError):
 parser_opts = {}

 # load the input dictionary
 # TODO: pass this input_dict to the parser. It might need it.
 input_dict = self._calc.inp.parameters.get_dict()

 # Check that the retrieved folder is there
 try:
 out_folder = retrieved[self._calc._get_linkname_retrieved()]
 except KeyError:
 self.logger.error("No retrieved folder found")
 return False, ()

 # check what is inside the folder
 list_of_files = out_folder.get_folder_list()
 # at least the stdout should exist
 if not self._calc._OUTPUT_FILE_NAME in list_of_files:
 self.logger.error("Standard output not found")
 successful = False
 return successful, ()
 # if there is something more, I note it down, so to call the raw parser
 # with the right options
 # look for xml
 has_xml = False
 if self._calc._DATAFILE_XML_BASENAME in list_of_files:
 has_xml = True
 # look for bands
 has_bands = False
 if glob.glob(os.path.join(out_folder.get_abs_path('.'),
 'K*[0-9]')):
 # Note: assuming format of kpoints subfolder is K*[0-9]
 has_bands = True
 # TODO: maybe it can be more general than bands only?
 out_file = os.path.join(out_folder.get_abs_path('.'),
 self._calc._OUTPUT_FILE_NAME)
 xml_file = os.path.join(out_folder.get_abs_path('.'),
 self._calc._DATAFILE_XML_BASENAME)
 dir_with_bands = out_folder.get_abs_path('.')

 # call the raw parsing function
 parsing_args = [out_file, input_dict, parser_opts]
 if has_xml:
 parsing_args.append(xml_file)
 if has_bands:
 if not has_xml:
 self.logger.warning("Cannot parse bands if xml file not "
 "found")
 else:
 parsing_args.append(dir_with_bands)

 out_dict, trajectory_data, structure_data, raw_successful = parse_raw_output(*parsing_args)

 # if calculation was not considered failed already, use the new value
 successful = raw_successful if successful else successful

 new_nodes_list = []

 # I eventually save the new structure. structure_data is unnecessary after this
 in_struc = self._calc.get_inputs_dict()['structure']
 type_calc = input_dict['CONTROL']['calculation']
 struc = in_struc
 if type_calc in ['relax', 'vc-relax', 'md', 'vc-md']:
 if 'cell' in structure_data.keys():
 struc = convert_qe2aiida_structure(structure_data, input_structure=in_struc)
 new_nodes_list.append((self.get_linkname_outstructure(), struc))

 k_points_list = trajectory_data.pop('k_points', None)
 k_points_weights_list = trajectory_data.pop('k_points_weights', None)

 if k_points_list is not None:

 # build the kpoints object
 if out_dict['k_points_units'] not in ['2 pi / Angstrom']:
 raise QEOutputParsingError('Error in kpoints units (should be cartesian)')
 # converting bands into a BandsData object (including the kpoints)

 kpoints_from_output = KpointsData()
 kpoints_from_output.set_cell_from_structure(struc)
 kpoints_from_output.set_kpoints(k_points_list, cartesian=True,
 weights=k_points_weights_list)
 kpoints_from_input = self._calc.inp.kpoints
 try:
 kpoints_from_input.get_kpoints()
 except AttributeError:
 new_nodes_list += [(self.get_linkname_out_kpoints(), kpoints_from_output)]

 # convert the dictionary into an AiiDA object
 output_params = ParameterData(dict=out_dict)
 # return it to the execmanager
 new_nodes_list.append((self.get_linkname_outparams(), output_params))

 if trajectory_data:
 import numpy
 from aiida.orm.data.array.trajectory import TrajectoryData
 from aiida.orm.data.array import ArrayData

 try:
 positions = numpy.array(trajectory_data.pop('atomic_positions_relax'))
 try:
 cells = numpy.array(trajectory_data.pop('lattice_vectors_relax'))
 # if KeyError, the MD was at fixed cell
 except KeyError:
 cells = numpy.array([in_struc.cell] * len(positions))

 symbols = numpy.array([str(i.kind_name) for i in in_struc.sites])
 stepids = numpy.arange(len(positions)) # a growing integer per step
 # I will insert time parsing when they fix their issues about time
 # printing (logic is broken if restart is on)

 traj = TrajectoryData()
 traj.set_trajectory(stepids=stepids,
 cells=cells,
 symbols=symbols,
 positions=positions,
)
 for x in trajectory_data.iteritems():
 traj.set_array(x[0], numpy.array(x[1]))
 # return it to the execmanager
 new_nodes_list.append((self.get_linkname_outtrajectory(), traj))

 except KeyError: # forces in scf calculation (when outputed)
 arraydata = ArrayData()
 for x in trajectory_data.iteritems():
 arraydata.set_array(x[0], numpy.array(x[1]))
 # return it to the execmanager
 new_nodes_list.append((self.get_linkname_outarray(), arraydata))

 return successful, new_nodes_list

[docs] def get_parser_settings_key(self):
 """
 Return the name of the key to be used in the calculation settings, that
 contains the dictionary with the parser_options
 """
 return 'parser_options'

[docs] def get_linkname_outstructure(self):
 """
 Returns the name of the link to the output_structure
 Node exists if positions or cell changed.
 """
 return 'output_structure'

[docs] def get_linkname_outtrajectory(self):
 """
 Returns the name of the link to the output_trajectory.
 Node exists in case of calculation='md', 'vc-md', 'relax', 'vc-relax'
 """
 return 'output_trajectory'

[docs] def get_linkname_outarray(self):
 """
 Returns the name of the link to the output_array
 Node may exist in case of calculation='scf'
 """
 return 'output_array'

[docs] def get_linkname_out_kpoints(self):
 """
 Returns the name of the link to the output_kpoints
 Node exists if cell has changed and no bands are stored.
 """
 return 'output_kpoints'

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_static/file.png

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_images/AiiDA_transparent_logo.png

_modules/aiida/cmdline/commands/daemon.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.cmdline.commands.daemon

-*- coding: utf-8 -*-
import sys
import os
import subprocess

from aiida.cmdline.baseclass import VerdiCommandWithSubcommands

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

from aiida.backends.utils import is_dbenv_loaded

[docs]def is_daemon_user():
 """
 Return True if the user is the current daemon user, False otherwise.
 """
 from aiida.backends.utils import get_daemon_user
 from aiida.common.utils import get_configured_user_email

 daemon_user = get_daemon_user()
 this_user = get_configured_user_email()

 return daemon_user == this_user

[docs]class Daemon(VerdiCommandWithSubcommands):
 """
 Manage the AiiDA daemon

 This command allows to interact with the AiiDA daemon.
 Valid subcommands are:

 * start: start the daemon

 * stop: restart the daemon

 * restart: restart the aiida daemon, waiting for it to cleanly exit\
 before restarting it.

 * status: inquire the status of the Daemon.

 * logshow: show the log in a continuous fashion, similar to the 'tail -f' \
 command. Press CTRL+C to exit.
 """

[docs] def __init__(self):
 """
 A dictionary with valid commands and functions to be called:
 start, stop, status and restart.
 """
 from aiida.common import setup

 self.valid_subcommands = {
 'start': (self.daemon_start, self.complete_none),
 'stop': (self.daemon_stop, self.complete_none),
 'status': (self.daemon_status, self.complete_none),
 'logshow': (self.daemon_logshow, self.complete_none),
 'restart': (self.daemon_restart, self.complete_none),
 'configureuser': (self.configure_user, self.complete_none),
 }

 self.conffile_full_path = os.path.expanduser(os.path.join(
 setup.AIIDA_CONFIG_FOLDER,
 setup.DAEMON_SUBDIR,
 setup.DAEMON_CONF_FILE
))

 def _get_pid_full_path(self):
 """
 Return the full path of the supervisord.pid file.
 """
 from aiida.common import setup

 return os.path.normpath(os.path.expanduser(
 os.path.join(setup.AIIDA_CONFIG_FOLDER,
 setup.DAEMON_SUBDIR, "supervisord.pid")))

 def _get_sock_full_path(self):
 """
 Return the full path of the supervisord.sock file.
 """
 from aiida.common import setup

 return os.path.normpath(os.path.expanduser(
 os.path.join(setup.AIIDA_CONFIG_FOLDER,
 setup.DAEMON_SUBDIR, "supervisord.sock")))

[docs] def get_daemon_pid(self):
 """
 Return the daemon pid, as read from the supervisord.pid file.
 Return None if no pid is found (or the pid is not valid).
 """
 if (os.path.isfile(self._get_pid_full_path())):
 try:
 return int(open(self._get_pid_full_path(), 'r').read().strip())
 except (ValueError, IOError):
 return None
 else:
 return None

[docs] def daemon_start(self, *args):
 """
 Start the daemon
 """
 if not is_dbenv_loaded():
 from aiida.backends.utils import load_dbenv
 load_dbenv(process='daemon')

 if args:
 print >> sys.stderr, (
 "No arguments allowed for the '{}' command.".format(
 self.get_full_command_name()))
 sys.exit(1)

 from aiida.backends.settings import BACKEND
 from aiida.backends.profile import BACKEND_DJANGO, BACKEND_SQLA
 from aiida.backends.utils import get_daemon_user
 from aiida.common.utils import get_configured_user_email

 daemon_user = get_daemon_user()
 this_user = get_configured_user_email()

 if daemon_user != this_user:
 print "You are not the daemon user! I will not start the daemon."
 print "(The daemon user is '{}', you are '{}')".format(
 daemon_user, this_user)
 print ""
 print "** FOR ADVANCED USERS ONLY: **"
 print "To change the current default user, use 'verdi install --only-config'"
 print "To change the daemon user, use 'verdi daemon configureuser'"

 sys.exit(1)

 pid = self.get_daemon_pid()

 if pid is not None:
 print "Daemon already running, try asking for its status"
 return

 print "Clearing all locks ..."
 from aiida.orm.lock import LockManager

 LockManager().clear_all()

 print "Starting AiiDA Daemon ..."
 process = subprocess.Popen(
 "supervisord -c {}".format(self.conffile_full_path),
 shell=True, stdout=subprocess.PIPE)
 process.wait()
 if (process.returncode == 0):
 print "Daemon started"

[docs] def kill_daemon(self):
 """
 This is the actual call that kills the daemon.

 There are some print statements inside, but no sys.exit, so it is
 safe to be called from other parts of the code.
 """
 from signal import SIGTERM
 import errno

 pid = self.get_daemon_pid()
 if pid is None:
 print "Daemon not running (cannot find the PID for it)"
 return

 print "Shutting down AiiDA Daemon ({})...".format(pid)
 try:
 os.kill(pid, SIGTERM)
 except OSError as e:
 if e.errno == errno.ESRCH: # No such process
 print ("The process {} was not found! "
 "Assuming it was already stopped.".format(pid))
 print "Cleaning the .pid and .sock files..."
 self._clean_sock_files()
 else:
 raise

[docs] def daemon_stop(self, *args, **kwargs):
 """
 Stop the daemon.

 :param wait_for_death: If True, also verifies that the process was already
 killed. It attempts at most ``max_retries`` times, with ``sleep_between_retries``
 seconds between one attempt and the following one (both variables are
 for the time being hardcoded in the function).

 :return: None if ``wait_for_death`` is False. True/False if the process was
 actually dead or after all the retries it was still alive.
 """
 if args:
 print >> sys.stderr, (
 "No arguments allowed for the '{}' command.".format(
 self.get_full_command_name()))
 sys.exit(1)
 wait_for_death = kwargs.get('wait_for_death', True)

 import time

 max_retries = 20
 sleep_between_retries = 3

 # Note: NO check here on the daemon user: allow the daemon to be shut
 # down if it was inadvertently left active and the setting was changed.
 self.kill_daemon()

 dead = None
 if wait_for_death:
 dead = False
 for _ in range(max_retries):
 pid = self.get_daemon_pid()
 if pid is None:
 dead = True
 print "AiiDA Daemon shut down correctly."
 break
 else:
 print "Waiting for the AiiDA Daemon to shut down..."
 # Wait two seconds between retries
 time.sleep(sleep_between_retries)
 if not dead:
 print ("Unable to stop (the daemon took too much time to "
 "shut down).")
 print ("Probably, it is in the middle of a long operation.")
 print ("The shut down signal was sent, anyway, so it should "
 "shut down soon.")

 return dead

[docs] def daemon_status(self, *args):
 """
 Print the status of the daemon
 """
 if not is_dbenv_loaded():
 from aiida.backends.utils import load_dbenv
 load_dbenv(process='daemon')

 if args:
 print >> sys.stderr, (
 "No arguments allowed for the '{}' command.".format(
 self.get_full_command_name()))
 sys.exit(1)

 import supervisor
 import supervisor.supervisorctl
 import xmlrpclib

 from aiida.utils import timezone

 from aiida.daemon.timestamps import get_most_recent_daemon_timestamp
 from aiida.common.utils import str_timedelta
 from pytz import UTC

 most_recent_timestamp = get_most_recent_daemon_timestamp()

 if most_recent_timestamp is not None:
 timestamp_delta = (timezone.datetime.now(tz=UTC) -
 most_recent_timestamp)
 print ("# Most recent daemon timestamp:{}".format(
 str_timedelta(timestamp_delta)))
 else:
 print ("# Most recent daemon timestamp: [Never]")

 pid = self.get_daemon_pid()
 if pid is None:
 print "Daemon not running (cannot find the PID for it)"
 return

 c = supervisor.supervisorctl.ClientOptions()
 s = c.read_config(self.conffile_full_path)
 proxy = xmlrpclib.ServerProxy('http://127.0.0.1',
 transport=supervisor.xmlrpc.SupervisorTransport(
 s.username, s.password, s.serverurl))
 try:
 running_processes = proxy.supervisor.getAllProcessInfo()
 except xmlrpclib.Fault as e:
 if e.faultString == "SHUTDOWN_STATE":
 print "The daemon is shutting down..."
 return
 else:
 raise
 except Exception as e:
 import socket
 if isinstance(e, socket.error):
 print "Could not reach the daemon, I got a socket.error: "
 print " -> [Errno {}] {}".format(e.errno, e.strerror)
 else:
 print "Could not reach the daemon, I got a {}: {}".format(
 e.__class__.__name__, e.message)
 print "You can try to stop the daemon and start it again."
 return

 if running_processes:
 print "## Found {} process{} running:".format(len(running_processes), '' if len(running_processes)==1 else 'es')
 for process in running_processes:
 print " * {:<22} {:<10} {}".format(
 "{}[{}]".format(process['group'], process['name']),
 process['statename'], process['description'])
 else:
 print "I was able to connect to the daemon, but I did not find any process..."

[docs] def daemon_logshow(self, *args):
 """
 Show the log of the daemon, press CTRL+C to quit.
 """
 if not is_dbenv_loaded():
 from aiida.backends.utils import load_dbenv
 load_dbenv(process='daemon')

 if args:
 print >> sys.stderr, (
 "No arguments allowed for the '{}' command.".format(
 self.get_full_command_name()))
 sys.exit(1)

 pid = self.get_daemon_pid()
 if (pid == None):
 print "Daemon not running (cannot find the PID for it)"
 return

 try:
 process = subprocess.Popen(
 "supervisorctl -c {} tail -f aiida-daemon".format(
 self.conffile_full_path),
 shell=True) # , stdout=subprocess.PIPE)
 process.wait()
 except KeyboardInterrupt:
 # exit on CTRL+C
 process.kill()

[docs] def daemon_restart(self, *args):
 """
 Restart the daemon. Before restarting, wait for the daemon to really
 shut down.
 """
 if not is_dbenv_loaded():
 from aiida.backends.utils import load_dbenv
 load_dbenv(process='daemon')

 if args:
 print >> sys.stderr, (
 "No arguments allowed for the '{}' command.".format(
 self.get_full_command_name()))
 sys.exit(1)

 from aiida.backends.utils import get_daemon_user
 from aiida.common.utils import get_configured_user_email

 daemon_user = get_daemon_user()
 this_user = get_configured_user_email()

 if daemon_user != this_user:
 print "You are not the daemon user! I will not restart the daemon."
 print "(The daemon user is '{}', you are '{}')".format(
 daemon_user, this_user)

 sys.exit(1)

 pid = self.get_daemon_pid()

 dead = True

 if pid is not None:
 dead = self.daemon_stop(wait_for_death=True)

 if not dead:
 print "Check the status and, when the daemon will be down, "
 print "you can restart it using:"
 print " verdi daemon start"
 else:
 self.daemon_start()

[docs] def configure_user(self, *args):
 """
 Configure the user that can run the daemon.
 """
 if not is_dbenv_loaded():
 from aiida.backends.utils import load_dbenv
 load_dbenv(process='daemon')

 if args:
 print >> sys.stderr, (
 "No arguments allowed for the '{}' command.".format(
 self.get_full_command_name()))
 sys.exit(1)

 from aiida.utils import timezone
 from aiida.backends.utils import get_daemon_user, set_daemon_user
 from aiida.common.utils import (get_configured_user_email,
 query_yes_no, query_string)
 from aiida.daemon.timestamps import get_most_recent_daemon_timestamp
 from aiida.common.utils import str_timedelta
 from aiida.orm.user import User

 old_daemon_user = get_daemon_user()
 this_user = get_configured_user_email()

 print("> Current default user: {}".format(this_user))
 print("> Currently configured user who can run the daemon: {}".format(
 old_daemon_user))
 if old_daemon_user == this_user:
 print(" (therefore, at the moment you are the user who can run "
 "the daemon)")
 pid = self.get_daemon_pid()
 if pid is not None:
 print("The daemon is running! I will not proceed.")
 sys.exit(1)
 else:
 print(" (therefore, you cannot run the daemon, at the moment)")

 most_recent_timestamp = get_most_recent_daemon_timestamp()

 print "*" * 76
 print "* {:72s} *".format("WARNING! Change this setting only if you "
 "are sure of what you are doing.")
 print "* {:72s} *".format("Moreover, make sure that the "
 "daemon is stopped.")

 if most_recent_timestamp is not None:
 timestamp_delta = timezone.now() - most_recent_timestamp
 last_check_string = (
 "[The most recent timestamp from the daemon was {}]"
 .format(str_timedelta(timestamp_delta)))
 print "* {:72s} *".format(last_check_string)

 print "*" * 76

 answer = query_yes_no("Are you really sure that you want to change "
 "the daemon user?", default="no")
 if not answer:
 sys.exit(0)

 print ""
 print "Enter below the email of the new user who can run the daemon."
 new_daemon_user_email = query_string("New daemon user: ", None)

 found_users = User.search_for_users(email=new_daemon_user_email)
 if len(found_users) == 0:
 print("ERROR! The user you specified ({}) does "
 "not exist in the database!!".format(new_daemon_user_email))
 print("The available users are {}".format(
 [_.email for _ in User.search_for_users()]))
 sys.exit(1)

 set_daemon_user(new_daemon_user_email)

 print "The new user that can run the daemon is now {} {}.".format(
 found_users[0].first_name, found_users[0].last_name)

 def _clean_sock_files(self):
 """
 Tries to remove the supervisord.pid and .sock files from the .aiida/daemon
 subfolder. This is typically needed when the computer is restarted with
 the daemon still on.
 """
 import errno

 try:
 os.remove(self._get_sock_full_path())
 except OSError as e:
 # Ignore if errno = errno.ENOENT (2): no file found
 if e.errno != errno.ENOENT: # No such file
 raise

 try:
 os.remove(self._get_pid_full_path())
 except OSError as e:
 # Ignore if errno = errno.ENOENT (2): no file found
 if e.errno != errno.ENOENT: # No such file
 raise

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/utils.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.orm.utils

-*- coding: utf-8 -*-
from aiida.common.pluginloader import BaseFactory

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]def CalculationFactory(module, from_abstract=False):
 """
 Return a suitable JobCalculation subclass.

 :param module: a valid string recognized as a Calculation plugin
 :param from_abstract: A boolean. If False (default), actually look only
 to subclasses to JobCalculation, not to the base Calculation class.
 If True, check for valid strings for plugins of the Calculation base class.
 """
 from aiida.orm.calculation import Calculation
 from aiida.orm.calculation.job import JobCalculation

 if from_abstract:
 return BaseFactory(module, Calculation, "aiida.orm.calculation")
 else:
 return BaseFactory(module, JobCalculation, "aiida.orm.calculation.job",
 suffix="Calculation")

[docs]def DataFactory(module):
 """
 Return a suitable Data subclass.
 """
 from aiida.orm.data import Data

 return BaseFactory(module, Data, "aiida.orm.data")

[docs]def WorkflowFactory(module):
 """
 Return a suitable Workflow subclass.
 """
 from aiida.orm.workflow import Workflow

 return BaseFactory(module, Workflow, "aiida.workflows")

[docs]def load_node(node_id=None, pk=None, uuid=None, parent_class=None):
 """
 Return an AiiDA node given PK or UUID.

 :param node_id: PK (integer) or UUID (string) or a node
 :param pk: PK of a node
 :param uuid: UUID of a node
 :param parent_class: if specified, checks whether the node loaded is a
 subclass of parent_class
 :return: an AiiDA node
 :raise ValueError: if none or more than one of parameters is supplied
 or type of node_id is neither string nor integer.
 :raise NotExistent: if the parent_class is specified
 and no matching Node is found.
 """
 from aiida.common.exceptions import NotExistent
 # This must be done inside here, because at import time the profile
 # must have been already loaded. If you put it at the module level,
 # the implementation is frozen to the default one at import time.
 from aiida.orm.implementation import Node

 if int(node_id is None) + int(pk is None) + int(uuid is None) == 3:
 raise ValueError("one of the parameters 'node_id', 'pk' and 'uuid' "
 "has to be supplied")
 if int(node_id is None) + int(pk is None) + int(uuid is None) < 2:
 raise ValueError("only one of parameters 'node_id', 'pk' and 'uuid' "
 "has to be supplied")
 loaded_node = None
 if node_id is not None:
 if isinstance(node_id, str) or isinstance(node_id, unicode):
 loaded_node = Node.get_subclass_from_uuid(node_id)
 elif isinstance(node_id, int):
 loaded_node = Node.get_subclass_from_pk(node_id)
 else:
 raise ValueError("'node_id' has to be either string, unicode or "
 "integer, {} given".format(type(node_id)))
 if loaded_node is None:
 if pk is not None:
 loaded_node = Node.get_subclass_from_pk(pk)
 else:
 loaded_node = Node.get_subclass_from_uuid(uuid)

 if parent_class is not None:
 if not issubclass(parent_class, Node):
 raise ValueError("parent_class must be a subclass of Node")
 if not isinstance(loaded_node, parent_class):
 raise NotExistent('No node found as '
 'subclass of {}'.format(parent_class))

 return loaded_node

[docs]def load_workflow(wf_id=None, pk=None, uuid=None):
 """
 Return an AiiDA workflow given PK or UUID.

 :param wf_id: PK (integer) or UUID (string) or a workflow
 :param pk: PK of a workflow
 :param uuid: UUID of a workflow
 :return: an AiiDA workflow
 :raises: ValueError if none or more than one of parameters is supplied
 or type of wf_id is neither string nor integer
 """
 # This must be done inside here, because at import time the profile
 # must have been already loaded. If you put it at the module level,
 # the implementation is frozen to the default one at import time.
 from aiida.orm.implementation import Workflow

 if int(wf_id is None) + int(pk is None) + int(uuid is None) == 3:
 raise ValueError("one of the parameters 'wf_id', 'pk' and 'uuid' "
 "has to be supplied")
 if int(wf_id is None) + int(pk is None) + int(uuid is None) < 2:
 raise ValueError("only one of parameters 'wf_id', 'pk' and 'uuid' "
 "has to be supplied")
 if wf_id is not None:
 if isinstance(wf_id, str) or isinstance(wf_id, unicode):
 return Workflow.get_subclass_from_uuid(wf_id)
 elif isinstance(wf_id, int):
 return Workflow.get_subclass_from_pk(wf_id)
 else:
 raise ValueError("'wf_id' has to be either string, unicode or "
 "integer, {} given".format(type(wf_id)))
 if pk is not None:
 return Workflow.get_subclass_from_pk(pk)
 else:
 return Workflow.get_subclass_from_uuid(uuid)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/cmdline/commands/data.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.cmdline.commands.data

-*- coding: utf-8 -*-
import sys

from aiida.backends.utils import load_dbenv, is_dbenv_loaded
from aiida.cmdline import delayed_load_node as load_node
from aiida.cmdline.baseclass import (
 VerdiCommandRouter, VerdiCommandWithSubcommands)
from aiida.cmdline.commands.node import _Label, _Description
from aiida.common.exceptions import MultipleObjectsError

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class Data(VerdiCommandRouter):
 """
 Setup and manage data specific types

 There is a list of subcommands for managing specific types of data.
 For instance, 'data upf' manages pseudopotentials in the UPF format.
 """

[docs] def __init__(self):
 """
 A dictionary with valid commands and functions to be called.
 """
 ## Add here the classes to be supported.
 self.routed_subcommands = {
 'upf': _Upf,
 'structure': _Structure,
 'bands': _Bands,
 'cif': _Cif,
 'trajectory': _Trajectory,
 'parameter': _Parameter,
 'array': _Array,
 'label': _Label,
 'description': _Description,
 }

[docs]class Listable(object):
 """
 Provides shell completion for listable data nodes.

 .. note:: classes, inheriting Listable, MUST define value for property
 :py:class:`dataclass` (preferably in :py:class:`__init__`), which
 has to point to correct *Data class.
 """

[docs] def list(self, *args):
 """
 List all instances of given data class.

 :param args: a list of command line arguments.
 """
 import argparse

 parser = argparse.ArgumentParser(
 prog=self.get_full_command_name(),
 description='List {} objects.'.format(self.dataclass.__name__))

 self.append_list_cmdline_arguments(parser)

 parser.add_argument('--vseparator', default="\t",
 help="specify vertical separator for fields. "
 "Default '\\t'.",
 type=str, action='store')
 parser.add_argument('--header', default=True,
 help="print a header with column names. "
 "Default option.",
 dest="header", action='store_true')
 parser.add_argument('--no-header', '-H',
 help="do not print a header with column names.",
 dest="header", action='store_false')

 args = list(args)
 parsed_args = parser.parse_args(args)

 entry_list = self.query(parsed_args)

 vsep = parsed_args.vseparator
 if entry_list:
 to_print = ""
 if parsed_args.header:
 to_print += vsep.join(self.get_column_names()) + "\n"
 for entry in sorted(entry_list, key=lambda x: int(x[0])):
 to_print += vsep.join(entry) + "\n"
 sys.stdout.write(to_print)

[docs] def query(self, args):
 """
 Perform the query and return information for the list.

 :param args: a namespace with parsed command line parameters.
 :return: table (list of lists) with information, describing nodes.
 Each row describes a single hit.
 """
 if not is_dbenv_loaded():
 load_dbenv()
 from django.db.models import Q
 from aiida.backends.utils import get_automatic_user

 q_object = None
 if args.all_users is False:
 q_object = Q(user=get_automatic_user())
 else:
 q_object = Q()

 self.query_past_days(q_object, args)
 self.query_group(q_object, args)

 object_list = self.dataclass.query(q_object).distinct().order_by('ctime')

 entry_list = []
 for obj in object_list:
 entry_list.append([str(obj.pk)])
 return entry_list

[docs] def query_past_days_qb(self, filters, args):
 """
 Subselect to filter data nodes by their age.

 :param filters: the filters to be enriched.
 :param args: a namespace with parsed command line parameters.
 """
 from aiida.utils import timezone
 import datetime
 if args.past_days is not None:
 now = timezone.now()
 n_days_ago = now - datetime.timedelta(days=args.past_days)
 filters.update({"ctime": {'>=': n_days_ago}})
 return filters

[docs] def query_past_days(self, q_object, args):
 """
 Subselect to filter data nodes by their age.

 :param q_object: a query object
 :param args: a namespace with parsed command line parameters.
 """
 from aiida.utils import timezone
 from django.db.models import Q
 import datetime
 if args.past_days is not None:
 now = timezone.now()
 n_days_ago = now - datetime.timedelta(days=args.past_days)
 q_object.add(Q(ctime__gte=n_days_ago), Q.AND)

[docs] def query_group_qb(self, filters, args):
 """
 Subselect to filter data nodes by their group.

 :param q_object: a query object
 :param args: a namespace with parsed command line parameters.
 """
 if args.group_name is not None:
 filters.update({"name": {"in": args.group_name}})
 if args.group_pk is not None:
 filters.update({"id": {"in": args.group_pk}})

[docs] def query_group(self, q_object, args):
 """
 Subselect to filter data nodes by their group.

 :param q_object: a query object
 :param args: a namespace with parsed command line parameters.
 """
 from django.db.models import Q
 if args.group_name is not None:
 q_object.add(Q(dbgroups__name__in=args.group_name), Q.AND)
 if args.group_pk is not None:
 q_object.add(Q(dbgroups__pk__in=args.group_pk), Q.AND)

[docs] def append_list_cmdline_arguments(self, parser):
 """
 Append additional command line parameters, that are later parsed and
 used in the query construction.

 :param parser: instance of argparse.ArgumentParser
 """
 parser.add_argument('-p', '--past-days', metavar='N',
 help="add a filter to show only objects created in the past N days",
 type=int, action='store')
 parser.add_argument('-g', '--group-name', metavar='N', nargs="+", default=None,
 help="add a filter to show only objects belonging to groups",
 type=str, action='store')
 parser.add_argument('-G', '--group-pk', metavar='N', nargs="+", default=None,
 help="add a filter to show only objects belonging to groups",
 type=int, action='store')
 parser.add_argument('-A', '--all-users', action='store_true', default=False,
 help="show groups for all users, rather than only for the"
 "current user")

[docs] def get_column_names(self):
 """
 Return the list with column names.

 .. note:: neither the number nor correspondence of column names and
 actual columns in the output from the :py:class:`query` are checked.
 """
 return ["ID"]

[docs]class Visualizable(object):
 """
 Provides shell completion for visualizable data nodes.

 .. note:: classes, inheriting Visualizable, MUST NOT contain
 attributes, starting with ``_show_``, which are not plugins for
 visualization.

 In order to specify a default visualization format, one has to override
 :py:class:`_default_show_format` property (preferably in
 :py:class:`__init__`), setting it to the name of default visualization tool.
 """
 show_prefix = '_show_'
 show_parameters_postfix = '_parameters'

[docs] def get_show_plugins(self):
 """
 Get the list of all implemented plugins for visualizing the structure.
 """
 method_names = dir(self) # get list of class methods names
 valid_formats = [i[len(self.show_prefix):] for i in method_names
 if i.startswith(self.show_prefix) and \
 not i.endswith(self.show_parameters_postfix)] # filter

 return {k: getattr(self, self.show_prefix + k) for k in valid_formats}

[docs] def show(self, *args):
 """
 Show the data node with a visualization program.
 """
 # DEVELOPER NOTE: to add a new plugin, just add a _show_xxx() method.
 import argparse, os

 parser = argparse.ArgumentParser(
 prog=self.get_full_command_name(),
 description='Visualize data object.')
 parser.add_argument('data_id', type=int, default=None, nargs="+",
 help="ID of the data object to be visualized.")

 default_format = None
 try:
 default_format = self._default_show_format
 except AttributeError:
 if len(self.get_show_plugins().keys()) == 1:
 default_format = self.get_show_plugins().keys()[0]
 else:
 default_format = None

 parser.add_argument('--format', '-f', type=str, default=default_format,
 help="Type of the visualization format/tool.",
 choices=self.get_show_plugins().keys())

 # Augmenting the command line parameters with ones, that are used by
 # individual plugins
 for cmd in dir(self):
 if not cmd.startswith(self.show_prefix) or \
 not cmd.endswith(self.show_parameters_postfix):
 continue
 getattr(self, cmd)(parser)

 args = list(args)
 parsed_args = vars(parser.parse_args(args))

 data_id = parsed_args.pop('data_id')
 format = parsed_args.pop('format')

 # Removing the keys, whose values are None
 for key in parsed_args.keys():
 if parsed_args[key] is None:
 parsed_args.pop(key)

 if format is None:
 print >> sys.stderr, (
 "Default format is not defined, please specify.\n"
 "Valid formats are:")
 for i in self.get_show_plugins().keys():
 print >> sys.stderr, " {}".format(i)
 sys.exit(1)

 # I can give in input the whole path to executable
 code_name = os.path.split(format)[-1]

 try:
 func = self.get_show_plugins()[code_name]
 except KeyError:
 print >> sys.stderr, "Not implemented; implemented plugins are:"
 print >> sys.stderr, "{}.".format(
 ",".join(self.get_show_plugins()))
 sys.exit(1)

 if not is_dbenv_loaded():
 load_dbenv()

 n_list = [load_node(id) for id in data_id]

 for n in n_list:
 try:
 if not isinstance(n, self.dataclass):
 print >> sys.stderr, ("Node {} is of class {} instead "
 "of {}".format(n, type(n), self.dataclass))
 sys.exit(1)
 except AttributeError:
 pass

 try:
 func(format, n_list, **parsed_args)
 except MultipleObjectsError:
 print >> sys.stderr, (
 "Visualization of multiple objects is not implemented "
 "for '{}'".format(format))
 sys.exit(1)

[docs]class Exportable(object):
 """
 Provides shell completion for exportable data nodes.

 .. note:: classes, inheriting Exportable, MUST NOT contain attributes,
 starting with ``_export_``, which are not plugins for exporting.
 """
 export_prefix = '_export_'
 export_parameters_postfix = '_parameters'

[docs] def get_export_plugins(self):
 """
 Get the list of all implemented exporters for data class.
 """
 method_names = dir(self) # get list of class methods names
 valid_formats = [i[len(self.export_prefix):] for i in method_names
 if i.startswith(self.export_prefix) and \
 not i.endswith(self.export_parameters_postfix)] # filter

 return {k: getattr(self, self.export_prefix + k) for k in valid_formats}

[docs] def export(self, *args):
 """
 Export the data node to a given format.
 """
 # DEVELOPER NOTE: to add a new plugin, just add a _export_xxx() method.
 import argparse

 parser = argparse.ArgumentParser(
 prog=self.get_full_command_name(),
 description='Export data object.')
 parser.add_argument('data_id', type=int, default=None,
 help="ID of the data object to be visualized.")

 default_format = None
 try:
 default_format = self._default_export_format
 except AttributeError:
 if len(self.get_export_plugins().keys()) == 1:
 default_format = self.get_export_plugins().keys()[0]
 else:
 default_format = None

 parser.add_argument('--format', '-f', type=str, default=default_format,
 help="Type of the exported file.",
 choices=self.get_export_plugins().keys())

 # Augmenting the command line parameters with ones, that are used by
 # individual plugins
 for cmd in dir(self):
 if not cmd.startswith(self.export_prefix) or \
 not cmd.endswith(self.export_parameters_postfix):
 continue
 getattr(self, cmd)(parser)

 args = list(args)
 parsed_args = vars(parser.parse_args(args))

 format = parsed_args.pop('format')
 data_id = parsed_args.pop('data_id')

 # Removing the keys, whose values are None
 for key in parsed_args.keys():
 if parsed_args[key] is None:
 parsed_args.pop(key)

 if format is None:
 print >> sys.stderr, (
 "Default format is not defined, please specify.\n"
 "Valid formats are:")
 for i in self.get_export_plugins().keys():
 print >> sys.stderr, " {}".format(i)
 sys.exit(1)

 try:
 func = self.get_export_plugins()[format]
 except KeyError:
 print >> sys.stderr, "Not implemented; implemented plugins are:"
 print >> sys.stderr, "{}.".format(
 ",".join(self.get_export_plugins()))
 sys.exit(1)

 if not is_dbenv_loaded():
 load_dbenv()

 n = load_node(data_id)

 try:
 if not isinstance(n, self.dataclass):
 print >> sys.stderr, ("Node {} is of class {} instead "
 "of {}".format(n, type(n), self.dataclass))
 sys.exit(1)
 except AttributeError:
 pass

 func(n, **parsed_args)

[docs]class Importable(object):
 """
 Provides shell completion for importable data nodes.

 .. note:: classes, inheriting Importable, MUST NOT contain attributes,
 starting with ``_import_``, which are not plugins for importing.
 """
 import_prefix = '_import_'
 import_parameters_postfix = '_parameters'

[docs] def get_import_plugins(self):
 """
 Get the list of all implemented importers for data class.
 """
 method_names = dir(self) # get list of class methods names
 valid_formats = [i[len(self.import_prefix):] for i in method_names
 if i.startswith(self.import_prefix) and \
 not i.endswith(self.import_parameters_postfix)] # filter

 return {k: getattr(self, self.import_prefix + k) for k in valid_formats}

 def importfile(self, *args):
 import argparse, sys

 parser = argparse.ArgumentParser(
 prog=self.get_full_command_name(),
 description='Import data object.')
 parser.add_argument('--file', type=str, default=None,
 help="Path of the imported file. Reads from "
 "standard input if not specified.")

 default_format = None
 try:
 default_format = self._default_import_format
 except AttributeError:
 if len(self.get_import_plugins().keys()) == 1:
 default_format = self.get_import_plugins().keys()[0]
 else:
 default_format = None

 parser.add_argument('--format', '-f', type=str, default=default_format,
 help="Type of the imported file.",
 choices=self.get_import_plugins().keys())

 # Augmenting the command line parameters with ones, that are used by
 # individual plugins
 for cmd in dir(self):
 if not cmd.startswith(self.import_prefix) or \
 not cmd.endswith(self.import_parameters_postfix):
 continue
 getattr(self, cmd)(parser)

 args = list(args)
 parsed_args = vars(parser.parse_args(args))

 format = parsed_args.pop('format')
 filename = parsed_args.pop('file')

 if format is None:
 print >> sys.stderr, (
 "Default format is not defined, please specify.\n"
 "Valid formats are:")
 for i in self.get_import_plugins().keys():
 print >> sys.stderr, " {}".format(i)
 sys.exit(1)

 if not filename:
 filename = "/dev/stdin"

 try:
 func = self.get_import_plugins()[format]
 except KeyError:
 print >> sys.stderr, "Not implemented; implemented plugins are:"
 print >> sys.stderr, "{}.".format(
 ",".join(self.get_import_plugins()))
 sys.exit(1)

 if not is_dbenv_loaded():
 load_dbenv()

 func(filename, **parsed_args)

[docs]class Depositable(object):
 """
 Provides shell completion for depositable data nodes.

 .. note:: classes, inheriting Depositable, MUST NOT contain
 attributes, starting with ``_deposit_``, which are not plugins for
 depositing.
 """
 deposit_prefix = '_deposit_'
 deposit_parameters_postfix = '_parameters'

[docs] def get_deposit_plugins(self):
 """
 Get the list of all implemented deposition methods for data class.
 """
 method_names = dir(self) # get list of class methods names
 valid_formats = [i[len(self.deposit_prefix):] for i in method_names
 if i.startswith(self.deposit_prefix) and \
 not i.endswith(self.deposit_parameters_postfix)] # filter

 return {k: getattr(self,self.deposit_prefix + k) for k in valid_formats}

[docs] def deposit(self, *args):
 """
 Deposit the data node to a given database.

 :param args: a namespace with parsed command line parameters.
 """
 # DEVELOPER NOTE: to add a new plugin, just add a _deposit_xxx() method.
 import argparse
 parser = argparse.ArgumentParser(
 prog=self.get_full_command_name(),
 description='Deposit data object.')
 parser.add_argument('data_id', type=int, default=None,
 help="ID of the data object to be deposited.")

 default_database = None
 try:
 default_database = self._default_deposition_database
 except AttributeError:
 if len(self.get_deposit_plugins().keys()) == 1:
 default_database = self.get_deposit_plugins().keys()[0]
 else:
 default_database = None

 parser.add_argument('--database', '-d', type=str, default=default_database,
 help="Label of the database for deposition.",
 choices=self.get_deposit_plugins().keys())

 # Augmenting the command line parameters with ones, that are used by
 # individual plugins
 for cmd in dir(self):
 if not cmd.startswith(self.deposit_prefix) or \
 not cmd.endswith(self.deposit_parameters_postfix):
 continue
 getattr(self,cmd)(parser)

 args = list(args)
 parsed_args = vars(parser.parse_args(args))

 database = parsed_args.pop('database')
 data_id = parsed_args.pop('data_id')

 # Removing the keys, whose values are None
 for key in parsed_args.keys():
 if parsed_args[key] is None:
 parsed_args.pop(key)

 if database is None:
 print >> sys.stderr, (
 "Default database is not defined, please specify.\n"
 "Valid databases are:")
 for i in self.get_deposit_plugins().keys():
 print >> sys.stderr, " {}".format(i)
 sys.exit(1)

 try:
 func = self.get_deposit_plugins()[database]
 except KeyError:
 print >> sys.stderr, "Not implemented; implemented plugins are:"
 print >> sys.stderr, "{}.".format(
 ",".join(self.get_deposit_plugins()))
 sys.exit(1)

 if not is_dbenv_loaded():
 load_dbenv()

 n = load_node(data_id)

 try:
 if not isinstance(n,self.dataclass):
 print >> sys.stderr, ("Node {} is of class {} instead "
 "of {}".format(n,type(n),self.dataclass))
 sys.exit(1)
 except AttributeError:
 pass

 calc = func(n,**parsed_args)
 print calc

Note: this class should not be exposed directly in the main module,
otherwise it becomes a command of 'verdi'. Instead, we want it to be a
subcommand of verdi data.
class _Upf(VerdiCommandWithSubcommands, Importable):
 """
 Setup and manage upf to be used

 This command allows to list and configure upf.
 """

 def __init__(self):
 """
 A dictionary with valid commands and functions to be called.
 """
 if not is_dbenv_loaded():
 load_dbenv()
 from aiida.orm.data.upf import UpfData

 self.dataclass = UpfData
 self.valid_subcommands = {
 'uploadfamily': (self.uploadfamily, self.complete_auto),
 'listfamilies': (self.listfamilies, self.complete_none),
 'import': (self.importfile, self.complete_none),
 'exportfamily': (self.exportfamily, self.complete_auto)
 }

 def uploadfamily(self, *args):
 """
 Upload a new pseudopotential family.

 Returns the numbers of files found and the number of nodes uploaded.

 Call without parameters to get some help.
 """
 import os.path

 if not len(args) == 3 and not len(args) == 4:
 print >> sys.stderr, ("After 'upf uploadfamily' there should be three "
 "arguments:")
 print >> sys.stderr, ("folder, group_name, group_description "
 "[OPTIONAL: --stop-if-existing]\n")
 sys.exit(1)

 folder = os.path.abspath(args[0])
 group_name = args[1]
 group_description = args[2]
 stop_if_existing = False

 if len(args) == 4:
 if args[3] == "--stop-if-existing":
 stop_if_existing = True
 else:
 print >> sys.stderr, 'Unknown directive: ' + args[3]
 sys.exit(1)

 if (not os.path.isdir(folder)):
 print >> sys.stderr, 'Cannot find directory: ' + folder
 sys.exit(1)

 import aiida.orm.data.upf as upf

 files_found, files_uploaded = upf.upload_upf_family(folder, group_name,
 group_description, stop_if_existing)

 print "UPF files found: {}. New files uploaded: {}".format(files_found, files_uploaded)

 def listfamilies(self, *args):
 """
 Print on screen the list of upf families installed
 """
 # note that the following command requires that the upfdata has a
 # key called element. As such, it is not well separated.
 import argparse

 parser = argparse.ArgumentParser(
 prog=self.get_full_command_name(),
 description='List AiiDA upf families.')
 parser.add_argument('-e', '--element', nargs='+', type=str, default=None,
 help="Filter the families only to those containing "
 "a pseudo for each of the specified elements")
 parser.add_argument('-d', '--with-description',
 dest='with_description', action='store_true',
 help="Show also the description for the UPF family")
 parser.set_defaults(with_description=False)

 args = list(args)
 parsed_args = parser.parse_args(args)

 from aiida.orm import DataFactory
 from aiida.orm.data.upf import UPFGROUP_TYPE

 UpfData = DataFactory('upf')
 from aiida.orm.querybuilder import QueryBuilder
 from aiida.orm.group import Group
 qb = QueryBuilder()
 qb.append(UpfData)
 if parsed_args.element is not None:
 qb.add_filter(UpfData, {'attributes.element': {'in': parsed_args.element}})
 qb.append(
 Group,
 group_of=UpfData,
 project=["name", "description"],
 filters={"type": {'==': UPFGROUP_TYPE}}
)

 qb.distinct()
 if qb.count() > 0:
 for res in qb.dict():
 group_name = res.get("group").get("name")
 group_desc = res.get("group").get("description")
 qb = QueryBuilder()
 qb.append(
 Group,
 filters={"name": {'like': group_name}}
)
 qb.append(
 UpfData,
 project=["id"],
 member_of=Group
)

 if parsed_args.with_description:
 description_string = ": {}".format(group_desc)
 else:
 description_string = ""

 print "* {} [{} pseudos]{}".format(group_name, qb.count(),
 description_string)

 else:
 print "No valid UPF pseudopotential family found."

 def exportfamily(self, *args):
 """
 Export a pseudopotential family into a folder.
 Call without parameters to get some help.
 """
 import os
 from aiida.common.exceptions import NotExistent
 from aiida.orm import DataFactory

 if not len(args) == 2:
 print >> sys.stderr, ("After 'upf export' there should be two "
 "arguments:")
 print >> sys.stderr, ("folder, upf_family_name\n")
 sys.exit(1)

 folder = os.path.abspath(args[0])
 group_name = args[1]

 UpfData = DataFactory('upf')
 try:
 group = UpfData.get_upf_group(group_name)
 except NotExistent:
 print >> sys.stderr, ("upf family {} not found".format(group_name))

 for u in group.nodes:
 dest_path = os.path.join(folder,u.filename)
 if not os.path.isfile(dest_path):
 with open(dest_path,'w') as dest:
 with u._get_folder_pathsubfolder.open(u.filename) as source:
 dest.write(source.read())
 else:
 print >> sys.stdout, ("File {} is already present in the "
 "destination folder".format(u.filename))

 def _import_upf(self, filename, **kwargs):
 """
 Importer from UPF.
 """
 try:
 node, _ = self.dataclass.get_or_create(filename)
 print node
 except ValueError as e:
 print e

class _Bands(VerdiCommandWithSubcommands, Listable, Visualizable, Exportable):
 """
 Manipulation on the bands
 """

 def __init__(self):
 """
 A dictionary with valid commands and functions to be called.
 """
 if not is_dbenv_loaded():
 load_dbenv()
 from aiida.orm.data.array.bands import BandsData

 self.dataclass = BandsData
 self.valid_subcommands = {
 'show': (self.show, self.complete_none),
 'list': (self.list, self.complete_none),
 'export': (self.export, self.complete_none),
 }

 def query(self, args):
 """
 Perform the query and return information for the list.

 :param args: a namespace with parsed command line parameters.
 :return: table (list of lists) with information, describing nodes.
 Each row describes a single hit.
 """
 if not is_dbenv_loaded():
 load_dbenv()

 from aiida.orm.querybuilder import QueryBuilder
 from aiida.backends.utils import get_automatic_user
 from aiida.orm.implementation import User
 from aiida.orm.implementation import Group
 from aiida.orm.data.structure import (get_formula, get_symbols_string)
 from aiida.orm.data.array.bands import BandsData
 from aiida.orm.data.structure import StructureData

 qb = QueryBuilder()
 if args.all_users is False:
 au = get_automatic_user()
 user = User(dbuser=au)
 qb.append(User, tag="creator", filters={"email": user.email})
 else:
 qb.append(User, tag="creator")

 bdata_filters = {}
 self.query_past_days_qb(bdata_filters, args)
 qb.append(BandsData, tag="bdata", created_by="creator",
 filters=bdata_filters,
 project=["id", "label", "ctime"]
)

 group_filters = {}
 self.query_group_qb(group_filters, args)
 if group_filters:
 qb.append(Group, tag="group", filters=group_filters,
 group_of="bdata")

 qb.append(StructureData, tag="sdata", ancestor_of="bdata",
 # We don't care about the creator of StructureData
 project=["id", "attributes.kinds", "attributes.sites"])

 qb.order_by({StructureData: {'ctime': 'desc'}})

 list_data = qb.distinct()

 entry_list = []
 already_visited_bdata = set()
 if list_data.count() > 0:
 for [bid, blabel, bdate, sid, akinds, asites] in list_data.iterall():

 # We process only one StructureData per BandsData.
 # We want to process the closest StructureData to
 # every BandsData.
 # We hope that the StructureData with the latest
 # creation time is the closest one.
 # This will be updated when the QueryBuilder supports
 # order_by by the distance of two nodes.
 if already_visited_bdata.__contains__(bid):
 continue
 already_visited_bdata.add(bid)

 if args.element is not None:
 all_symbols = [_["symbols"][0] for _ in akinds]
 if not any([s in args.element for s in all_symbols]
):
 continue

 if args.element_only is not None:
 all_symbols = [_["symbols"][0] for _ in akinds]
 if not all(
 [s in all_symbols for s in args.element_only]
):
 continue

 # We want only the StructureData that have attributes
 if akinds is None or asites is None:
 continue

 symbol_dict = {}
 for k in akinds:
 symbols = k['symbols']
 weights = k['weights']
 symbol_dict[k['name']] = get_symbols_string(symbols,
 weights)

 try:
 symbol_list = []
 for s in asites:
 symbol_list.append(symbol_dict[s['kind_name']])
 formula = get_formula(symbol_list,
 mode=args.formulamode)
 # If for some reason there is no kind with the name
 # referenced by the site
 except KeyError:
 formula = "<<UNKNOWN>>"
 entry_list.append([str(bid), str(formula),
 bdate.strftime('%d %b %Y'), blabel])

 return entry_list

 def append_list_cmdline_arguments(self, parser):
 """
 Append additional command line parameters, that are later parsed and
 used in the query construction.

 :param parser: instance of argparse.ArgumentParser
 """
 parser.add_argument('-e', '--element', nargs='+', type=str, default=None,
 help="Print all bandsdatas from structures "
 "containing desired elements")
 parser.add_argument('-eo', '--element-only', nargs='+', type=str, default=None,
 help="Print all bandsdatas from structures "
 "containing only the selected elements")
 parser.add_argument('-f', '--formulamode', metavar='FORMULA_MODE',
 type=str, default='hill',
 help="Formula printing mode (hill, hill_compact,"
 " reduce, group, count, or count_compact)"
 " (if None, does not print the formula)",
 action='store')
 parser.add_argument('-p', '--past-days', metavar='N',
 help="Add a filter to show only bandsdatas created in the past N days",
 type=int, action='store')
 parser.add_argument('-g', '--group-name', metavar='N', nargs="+", default=None,
 help="add a filter to show only objects belonging to groups",
 type=str, action='store')
 parser.add_argument('-G', '--group-pk', metavar='N', nargs="+", default=None,
 help="add a filter to show only objects belonging to groups",
 type=int, action='store')
 parser.add_argument('-A', '--all-users', action='store_true', default=False,
 help="show groups for all users, rather than only for the"
 "current user")

 def get_column_names(self):
 """
 Return the list with column names.

 :note: neither the number nor correspondence of column names and
 actual columns in the output from the query() are checked.
 """
 return ["ID", "formula", "ctime", "label"]

 def _export_xmgrace(self, node):
 """
 Export a .agr file, to be visualized with the XMGrace plotting software.
 """
 agrtext = node._exportstring('agr')
 print agrtext

 def _export_dat_multicolumn(self, node):
 """
 Export a .dat file with one line per kpoint, with multiple energy values
 on the same line separated by spaces.
 """
 agrtext = node._exportstring('dat_1')
 print agrtext

 def _export_dat_blocks(self, node):
 """
 Export a .dat file with one line per datapoint (kpt, energy),
 with multiple bands separated in stanzas (i.e. having at least an empty
 newline inbetween).
 """
 agrtext = node._exportstring('dat_2')
 print agrtext

 def _show_xmgrace(self, exec_name, list_bands):
 """
 Plugin for show the bands with the XMGrace plotting software.
 """
 import tempfile, subprocess, numpy
 from aiida.orm.data.array.bands import max_num_agr_colors

 list_files = []
 current_band_number = 0
 for iband, bands in enumerate(list_bands):
 # extract number of bands
 nbnds = bands.get_bands().shape[1]
 text = bands._exportstring('agr', setnumber_offset=current_band_number,
 color_number=numpy.mod(iband + 1, max_num_agr_colors))
 # write a tempfile
 f = tempfile.NamedTemporaryFile(suffix='.agr')
 f.write(text)
 f.flush()
 list_files.append(f)
 # update the number of bands already plotted
 current_band_number += nbnds

 try:
 subprocess.check_output([exec_name] + [f.name for f in list_files])
 _ = [f.close() for f in list_files]
 except subprocess.CalledProcessError:
 # The program died: just print a message
 print "Note: the call to {} ended with an error.".format(
 exec_name)
 _ = [f.close() for f in list_files]
 except OSError as e:
 _ = [f.close() for f in list_files]
 if e.errno == 2:
 print ("No executable '{}' found. Add to the path, "
 "or try with an absolute path.".format(
 exec_name))
 sys.exit(1)
 else:
 raise

class _Structure(VerdiCommandWithSubcommands,
 Listable,
 Visualizable,
 Exportable,
 Importable,
 Depositable):
 """
 Visualize AiIDA structures
 """

 def __init__(self):
 """
 A dictionary with valid commands and functions to be called.
 """
 if not is_dbenv_loaded():
 load_dbenv()
 from aiida.orm.data.structure import StructureData

 self.dataclass = StructureData
 self.valid_subcommands = {
 'show': (self.show, self.complete_none),
 'list': (self.list, self.complete_none),
 'export': (self.export, self.complete_none),
 'deposit': (self.deposit, self.complete_none),
 'import': (self.importfile, self.complete_none),
 }

 def query(self, args):
 """
 Perform the query
 """
 if not is_dbenv_loaded():
 load_dbenv()

 from aiida.orm.querybuilder import QueryBuilder
 from aiida.orm.data.structure import StructureData
 from aiida.backends.utils import get_automatic_user
 from aiida.orm.implementation import User
 from aiida.orm.implementation import Group
 from aiida.orm.data.structure import (get_formula, get_symbols_string)

 qb = QueryBuilder()
 if args.all_users is False:
 au = get_automatic_user()
 user = User(dbuser=au)
 qb.append(User, tag="creator", filters={"email": user.email})
 else:
 qb.append(User, tag="creator")

 st_data_filters = {}
 self.query_past_days_qb(st_data_filters, args)
 qb.append(StructureData, tag="struc", created_by="creator",
 filters=st_data_filters,
 project=["id", "label", "attributes.kinds",
 "attributes.sites"])

 group_filters = {}
 self.query_group_qb(group_filters, args)
 if group_filters:
 qb.append(Group, tag="group", filters=group_filters,
 group_of="struc")

 struc_list_data = qb.distinct()

 entry_list = []
 if struc_list_data.count() > 0:
 for [id, label, akinds, asites] in struc_list_data.iterall():

 # If symbols are defined there is a filtering of the structures
 # based on the element
 # When QueryBuilder will support this (attribute)s filtering,
 # it will be pushed in the query.
 if args.element is not None:
 all_symbols = [_["symbols"][0] for _ in akinds]
 if not any([s in args.element for s in all_symbols]
):
 continue

 if args.elementonly:
 print "Not implemented elementonly search"
 sys.exit(1)

 # We want only the StructureData that have attributes
 if akinds is None or asites is None:
 continue

 symbol_dict = {}
 for k in akinds:
 symbols = k['symbols']
 weights = k['weights']
 symbol_dict[k['name']] = get_symbols_string(symbols,
 weights)

 try:
 symbol_list = []
 for s in asites:
 symbol_list.append(symbol_dict[s['kind_name']])
 formula = get_formula(symbol_list,
 mode=args.formulamode)
 # If for some reason there is no kind with the name
 # referenced by the site
 except KeyError:
 formula = "<<UNKNOWN>>"
 entry_list.append([str(id), str(formula), label])

 return entry_list

 def append_list_cmdline_arguments(self, parser):
 parser.add_argument('-e', '--element', nargs='+', type=str, default=None,
 help="Print all structures containing desired elements")
 parser.add_argument('-eo', '--elementonly', action='store_true',
 help="If set, structures do not contain different "
 "elements (to be used with -e option)")
 parser.add_argument('-f', '--formulamode', metavar='FORMULA_MODE',
 type=str, default='hill',
 help="Formula printing mode (hill, hill_compact,"
 " reduce, group, count, or count_compact)"
 " (if None, does not print the formula)",
 action='store')
 parser.add_argument('-p', '--past-days', metavar='N',
 help="Add a filter to show only structures created in the past N days",
 type=int, action='store')
 parser.add_argument('-g', '--group-name', metavar='N', nargs="+", default=None,
 help="add a filter to show only objects belonging to groups",
 type=str, action='store')
 parser.add_argument('-G', '--group-pk', metavar='N', nargs="+", default=None,
 help="add a filter to show only objects belonging to groups",
 type=int, action='store')
 parser.add_argument('-A', '--all-users', action='store_true', default=False,
 help="show groups for all users, rather than only for the"
 "current user")

 def get_column_names(self):
 return ["ID", "formula", "label"]

 def _show_xcrysden(self, exec_name, structure_list):
 """
 Plugin for xcrysden
 """
 import tempfile, subprocess

 if len(structure_list) > 1:
 raise MultipleObjectsError("Visualization of multiple objects "
 "is not implemented")
 structure = structure_list[0]

 with tempfile.NamedTemporaryFile(suffix='.xsf') as f:
 f.write(structure._exportstring('xsf'))
 f.flush()

 try:
 subprocess.check_output([exec_name, '--xsf', f.name])
 except subprocess.CalledProcessError:
 # The program died: just print a message
 print "Note: the call to {} ended with an error.".format(
 exec_name)
 except OSError as e:
 if e.errno == 2:
 print ("No executable '{}' found. Add to the path, "
 "or try with an absolute path.".format(
 exec_name))
 sys.exit(1)
 else:
 raise

 def _show_ase(self,exec_name,structure_list):
 """
 Plugin to show the structure with the ASE visualizer
 """
 try:
 from ase.visualize import view
 for structure in structure_list:
 view(structure.get_ase())
 except ImportError:
 raise

 def _show_vmd(self, exec_name, structure_list):
 """
 Plugin for vmd
 """
 import tempfile, subprocess

 if len(structure_list) > 1:
 raise MultipleObjectsError("Visualization of multiple objects "
 "is not implemented")
 structure = structure_list[0]

 with tempfile.NamedTemporaryFile(suffix='.xsf') as f:
 f.write(structure._exportstring('xsf'))
 f.flush()

 try:
 subprocess.check_output([exec_name, f.name])
 except subprocess.CalledProcessError:
 # The program died: just print a message
 print "Note: the call to {} ended with an error.".format(
 exec_name)
 except OSError as e:
 if e.errno == 2:
 print ("No executable '{}' found. Add to the path, "
 "or try with an absolute path.".format(
 exec_name))
 sys.exit(1)
 else:
 raise

 def _show_jmol(self, exec_name, structure_list):
 """
 Plugin for jmol
 """
 import tempfile, subprocess

 with tempfile.NamedTemporaryFile() as f:
 for structure in structure_list:
 f.write(structure._exportstring('cif'))
 f.flush()

 try:
 subprocess.check_output([exec_name, f.name])
 except subprocess.CalledProcessError:
 # The program died: just print a message
 print "Note: the call to {} ended with an error.".format(
 exec_name)
 except OSError as e:
 if e.errno == 2:
 print ("No executable '{}' found. Add to the path, "
 "or try with an absolute path.".format(
 exec_name))
 sys.exit(1)
 else:
 raise

 def _export_tcod(self, node, parameter_data=None, **kwargs):
 """
 Plugin for TCOD
 """

 parameters = None
 if parameter_data is not None:
 from aiida.orm import DataFactory
 ParameterData = DataFactory('parameter')
 parameters = load_node(parameter_data, parent_class=ParameterData)
 print node._exportstring('tcod',parameters=parameters,**kwargs)

 def _export_tcod_parameters(self, parser, **kwargs):
 """
 Command line parameters for TCOD
 """
 from aiida.tools.dbexporters.tcod import extend_with_cmdline_parameters
 extend_with_cmdline_parameters(parser,self.dataclass.__name__)

 def _export_xsf(self, node, **kwargs):
 """
 Exporter to XSF.
 """
 print node._exportstring('xsf')

 def _export_cif(self, node, **kwargs):
 """
 Exporter to CIF.
 """
 print node._exportstring('cif')

 def _export_xyz(self, node):
 """
 Exporter to XYZ.
 """
 print node._exportstring('xyz')

 def _import_xyz_parameters(self, parser):
 """
 Adding some functionality to the parser to deal with importing files
 """
 # In order to deal with structures that do not have a cell defined:
 # We can increase the size of the cell from the minimal cell
 # The minimal cell is the cell the just accomodates the structure given,
 # defined by the minimum and maximum of position in each dimension
 parser.add_argument('--vacuum-factor', type=float, default=1.0,
 help = 'The factor by which the cell accomodating the structure should be increased, default: 1.0')
 #To that increased cell, we can also add a "safety margin"
 parser.add_argument('--vacuum-addition', type=float, default=10.0,
 help = 'The distance to add to the unit cell after vacuum-factor was applied to expand in each dimension, default: 10.0')
 parser.add_argument('--pbc', type=int, nargs = 3, default= [0,0,0],
 help = """
 Set periodic boundary conditions for each lattice direction,
 0 for no periodicity, any other integer for periodicity""")
 parser.add_argument('--view', action='store_true', default = False, help= 'View resulting structure using ASE')
 parser.add_argument('--dont-store', action='store_true', default = False, help= 'Do not store the structure')

 def _import_xyz(self, filename, **kwargs):
 """
 Imports an XYZ-file.
 """
 from os.path import abspath
 vacuum_addition = kwargs.pop('vacuum_addition')
 vacuum_factor = kwargs.pop('vacuum_factor')
 pbc = [bool(i) for i in kwargs.pop('pbc')]
 dont_store = kwargs.pop('dont_store')
 view_in_ase = kwargs.pop('view')

 print 'importing XYZ-structure from: \n {}'.format(abspath(filename))
 filepath = abspath(filename)
 with open(filepath) as f:
 xyz_txt = f.read()
 new_structure = self.dataclass()
 try:
 new_structure._parse_xyz(xyz_txt)
 new_structure._adjust_default_cell(vacuum_addition = vacuum_addition,
 vacuum_factor = vacuum_factor,
 pbc = pbc)

 if not dont_store:
 new_structure.store()
 if view_in_ase:
 from ase.visualize import view
 view(new_structure.get_ase())
 print (
 ' Succesfully imported structure {}, '
 '(PK = {})'.format(new_structure.get_formula(), new_structure.pk)
)

 except ValueError as e:
 print e

 def _import_pwi(self, filename, **kwargs):
 """
 Imports a structure from a quantumespresso input file.
 """
 from os.path import abspath
 from aiida.orm.data.structure import get_structuredata_from_qeinput
 dont_store = kwargs.pop('dont_store')
 view_in_ase = kwargs.pop('view')

 print 'importing structure from: \n {}'.format(abspath(filename))
 filepath = abspath(filename)

 try:
 new_structure = get_structuredata_from_qeinput(filepath=filepath)

 if not dont_store:
 new_structure.store()
 if view_in_ase:
 from ase.visualize import view
 view(new_structure.get_ase())
 print (
 ' Succesfully imported structure {}, '
 '(PK = {})'.format(new_structure.get_formula(), new_structure.pk)
)

 except ValueError as e:
 print e

 def _deposit_tcod(self, node, parameter_data=None, **kwargs):
 """
 Deposition plugin for TCOD.
 """
 from aiida.tools.dbexporters.tcod import deposit

 parameters = None
 if parameter_data is not None:
 from aiida.orm import DataFactory
 ParameterData = DataFactory('parameter')
 parameters = load_node(parameter_data, parent_class=ParameterData)
 return deposit(node,parameters=parameters,**kwargs)

 def _deposit_tcod_parameters(self,parser,**kwargs):
 """
 Command line parameters deposition plugin for TCOD.
 """
 from aiida.tools.dbexporters.tcod import (deposition_cmdline_parameters,
 extend_with_cmdline_parameters)
 deposition_cmdline_parameters(parser,self.dataclass.__name__)
 extend_with_cmdline_parameters(parser,self.dataclass.__name__)

class _Cif(VerdiCommandWithSubcommands,
 Listable, Visualizable, Exportable, Importable, Depositable):
 """
 Visualize CIF structures
 """

 def __init__(self):
 """
 A dictionary with valid commands and functions to be called.
 """
 if not is_dbenv_loaded():
 load_dbenv()
 from aiida.orm.data.cif import CifData

 self.dataclass = CifData
 self.valid_subcommands = {
 'show': (self.show, self.complete_none),
 'list': (self.list, self.complete_none),
 'export': (self.export, self.complete_none),
 'import': (self.importfile, self.complete_none),
 'deposit': (self.deposit, self.complete_none),
 }

 def _show_jmol(self, exec_name, structure_list):
 """
 Plugin for jmol
 """
 import tempfile, subprocess

 with tempfile.NamedTemporaryFile() as f:
 for structure in structure_list:
 f.write(structure._exportstring('cif'))
 f.flush()

 try:
 subprocess.check_output([exec_name, f.name])
 except subprocess.CalledProcessError:
 # The program died: just print a message
 print "Note: the call to {} ended with an error.".format(
 exec_name)
 except OSError as e:
 if e.errno == 2:
 print ("No executable '{}' found. Add to the path, "
 "or try with an absolute path.".format(
 exec_name))
 sys.exit(1)
 else:
 raise

 def query(self, args):
 """
 Perform the query and return information for the list.

 :param args: a namespace with parsed command line parameters.
 :return: table (list of lists) with information, describing nodes.
 Each row describes a single hit.
 """
 if not is_dbenv_loaded():
 load_dbenv()
 from django.db.models import Q
 from aiida.backends.utils import get_automatic_user

 q_object = None
 if args.all_users is False:
 q_object = Q(user=get_automatic_user())
 else:
 q_object = Q()

 self.query_past_days(q_object, args)
 self.query_group(q_object, args)

 object_list = self.dataclass.query(q_object).distinct().order_by('ctime')

 entry_list = []
 for obj in object_list:
 formulae = '?'
 try:
 formulae = ",".join(obj.get_attr('formulae'))
 except AttributeError:
 pass
 except TypeError:
 pass
 source_uri = '?'
 try:
 source_uri = obj.get_attr('source')['uri']
 except AttributeError:
 pass
 except KeyError:
 pass
 entry_list.append([str(obj.pk), formulae, source_uri])
 return entry_list

 def get_column_names(self):
 """
 Return the list with column names.

 :note: neither the number nor correspondence of column names and
 actual columns in the output from the query() are checked.
 """
 return ["ID", "formulae", "source_uri"]

 def _export_cif(self, node, **kwargs):
 """
 Exporter to CIF.
 """
 print node._exportstring('cif')

 def _export_tcod(self, node, parameter_data=None, **kwargs):
 """
 Plugin for TCOD
 """
 parameters = None
 if parameter_data is not None:
 from aiida.orm import DataFactory
 ParameterData = DataFactory('parameter')
 parameters = load_node(parameter_data, parent_class=ParameterData)
 print node._exportstring('tcod',parameters=parameters,**kwargs)

 def _export_tcod_parameters(self,parser,**kwargs):
 """
 Command line parameters for TCOD
 """
 from aiida.tools.dbexporters.tcod import extend_with_cmdline_parameters
 extend_with_cmdline_parameters(parser,self.dataclass.__name__)

 def _import_cif(self, filename, **kwargs):
 """
 Importer from CIF.
 """
 import os.path

 try:
 node, _ = self.dataclass.get_or_create(os.path.abspath(filename))
 print node
 except ValueError as e:
 print e

 def _deposit_tcod(self, node, parameter_data=None, **kwargs):
 """
 Deposition plugin for TCOD.
 """
 from aiida.tools.dbexporters.tcod import deposit

 parameters = None
 if parameter_data is not None:
 from aiida.orm import DataFactory
 ParameterData = DataFactory('parameter')
 parameters = load_node(parameter_data, parent_class=ParameterData)
 return deposit(node,parameters=parameters,**kwargs)

 def _deposit_tcod_parameters(self, parser, **kwargs):
 """
 Command line parameters deposition plugin for TCOD.
 """
 from aiida.tools.dbexporters.tcod import (deposition_cmdline_parameters,
 extend_with_cmdline_parameters)
 deposition_cmdline_parameters(parser,self.dataclass.__name__)
 extend_with_cmdline_parameters(parser,self.dataclass.__name__)

class _Trajectory(VerdiCommandWithSubcommands,
 Listable, Visualizable, Exportable, Depositable):
 """
 View and manipulate TrajectoryData instances.
 """

 def __init__(self):
 """
 A dictionary with valid commands and functions to be called.
 """
 if not is_dbenv_loaded():
 load_dbenv()
 from aiida.orm.data.array.trajectory import TrajectoryData

 self.dataclass = TrajectoryData
 self.valid_subcommands = {
 'show': (self.show, self.complete_none),
 'list': (self.list, self.complete_none),
 'export': (self.export, self.complete_none),
 'deposit': (self.deposit, self.complete_none),
 }

 def _show_jmol(self, exec_name, trajectory_list, **kwargs):
 """
 Plugin for jmol
 """
 import tempfile, subprocess

 with tempfile.NamedTemporaryFile() as f:
 for trajectory in trajectory_list:
 f.write(trajectory._exportstring('cif', **kwargs))
 f.flush()

 try:
 subprocess.check_output([exec_name, f.name])
 except subprocess.CalledProcessError:
 # The program died: just print a message
 print "Note: the call to {} ended with an error.".format(
 exec_name)
 except OSError as e:
 if e.errno == 2:
 print ("No executable '{}' found. Add to the path, "
 "or try with an absolute path.".format(
 exec_name))
 sys.exit(1)
 else:
 raise

 def _show_jmol_parameters(self, parser):
 """
 Describe command line parameters.
 """
 parser.add_argument('--step',
 help="ID of the trajectory step. If none is "
 "supplied, all steps are exported.",
 type=int, action='store')

 def _show_xcrysden(self, exec_name, trajectory_list, **kwargs):
 """
 Plugin for xcrysden
 """
 import tempfile, subprocess

 if len(trajectory_list) > 1:
 raise MultipleObjectsError("Visualization of multiple trajectories "
 "is not implemented")
 trajectory = trajectory_list[0]

 with tempfile.NamedTemporaryFile(suffix='.xsf') as f:
 f.write(trajectory._exportstring('xsf', **kwargs))
 f.flush()

 try:
 subprocess.check_output([exec_name, '--xsf',f.name])
 except subprocess.CalledProcessError:
 # The program died: just print a message
 print "Note: the call to {} ended with an error.".format(
 exec_name)
 except OSError as e:
 if e.errno == 2:
 print ("No executable '{}' found. Add to the path, "
 "or try with an absolute path.".format(
 exec_name))
 sys.exit(1)
 else:
 raise

 def _export_xsf(self, node, **kwargs):
 """
 Exporter to XSF.
 """
 print node._exportstring('xsf', **kwargs)

 def _export_tcod(self, node, parameter_data=None, **kwargs):
 """
 Plugin for TCOD
 """

 parameters = None
 if parameter_data is not None:
 from aiida.orm import DataFactory
 ParameterData = DataFactory('parameter')
 parameters = load_node(parameter_data, parent_class=ParameterData)
 print node._exportstring('tcod',
 parameters=parameters,
 **kwargs)

 def _export_tcod_parameters(self, parser, **kwargs):
 """
 Command line parameters for TCOD
 """
 from aiida.tools.dbexporters.tcod import extend_with_cmdline_parameters
 extend_with_cmdline_parameters(parser,self.dataclass.__name__)

 def _export_cif(self, node, **kwargs):
 """
 Exporter to CIF.
 """
 print node._exportstring('cif', **kwargs)

 def _export_cif_parameters(self, parser, **kwargs):
 """
 Describe command line parameters.
 """
 parser.add_argument('--step', dest='trajectory_index',
 help="ID of the trajectory step. If none is "
 "supplied, all steps are exported.",
 type=int, action='store')

 def _deposit_tcod(self, node, parameter_data=None, **kwargs):
 """
 Deposition plugin for TCOD.
 """
 from aiida.tools.dbexporters.tcod import deposit

 parameters = None
 if parameter_data is not None:
 from aiida.orm import DataFactory
 ParameterData = DataFactory('parameter')
 parameters = load_node(parameter_data, parent_class=ParameterData)
 return deposit(node,parameters=parameters,**kwargs)

 def _deposit_tcod_parameters(self, parser, **kwargs):
 """
 Command line parameters deposition plugin for TCOD.
 """
 from aiida.tools.dbexporters.tcod import (deposition_cmdline_parameters,
 extend_with_cmdline_parameters)
 deposition_cmdline_parameters(parser,self.dataclass.__name__)
 extend_with_cmdline_parameters(parser,self.dataclass.__name__)
 self._export_cif_parameters(parser)

class _Parameter(VerdiCommandWithSubcommands, Visualizable):
 """
 View and manipulate Parameter data classes.
 """

 def __init__(self):
 """
 A dictionary with valid commands and functions to be called.
 """
 if not is_dbenv_loaded():
 load_dbenv()
 from aiida.orm.data.parameter import ParameterData

 self.dataclass = ParameterData
 self._default_show_format = 'json_date'
 self.valid_subcommands = {
 'show': (self.show, self.complete_none),
 }

 def _show_json_date(self, exec_name, node_list):
 """
 Show contents of ParameterData nodes.
 """
 from aiida.cmdline import print_dictionary

 for node in node_list:
 the_dict = node.get_dict()
 print_dictionary(the_dict, 'json+date')

class _Array(VerdiCommandWithSubcommands, Visualizable):
 """
 View and manipulate Array data classes.
 """

 def __init__(self):
 """
 A dictionary with valid commands and functions to be called.
 """
 if not is_dbenv_loaded():
 load_dbenv()

 from aiida.orm.data.array import ArrayData

 self.dataclass = ArrayData
 self._default_show_format = 'json_date'
 self.valid_subcommands = {
 'show': (self.show, self.complete_none),
 }

 def _show_json_date(self, exec_name, node_list):
 """
 Show contents of ArrayData nodes.
 """
 from aiida.cmdline import print_dictionary

 for node in node_list:
 the_dict = {}
 for arrayname in node.arraynames():
 the_dict[arrayname] = node.get_array(arrayname).tolist()
 print_dictionary(the_dict, 'json+date')

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/implementation/general/node.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.orm.implementation.general.node

-*- coding: utf-8 -*-
from abc import ABCMeta, abstractmethod, abstractproperty

import os
import logging
import collections
from aiida.common.exceptions import (InternalError, ModificationNotAllowed,
 UniquenessError)
from aiida.common.folders import SandboxFolder
from aiida.common.utils import combomethod

from aiida.common.links import LinkType
from aiida.common.pluginloader import get_query_type_string

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

_NO_DEFAULT = tuple()

[docs]class AbstractNode(object):
 """
 Base class to map a node in the DB + its permanent repository counterpart.

 Stores attributes starting with an underscore.

 Caches files and attributes before the first save, and saves everything
 only on store(). After the call to store(), in general attributes cannot
 be changed, except for those listed in the self._updatable_attributes
 tuple (empty for this class, can be extended in a subclass).

 Only after storing (or upon loading from uuid) extras can be modified
 and in this case they are directly set on the db.

 In the plugin, also set the _plugin_type_string, to be set in the DB in
 the 'type' field.
 """

 class __metaclass__(ABCMeta):
 """
 Some python black magic to set correctly the logger also in subclasses.
 """

 def __new__(cls, name, bases, attrs):

 newcls = ABCMeta.__new__(cls, name, bases, attrs)
 newcls._logger = logging.getLogger(
 '{:s}.{:s}'.format(attrs['__module__'], name))

 # Note: the reverse logic (from type_string to name that can
 # be passed to the plugin loader) is implemented in
 # aiida.common.pluginloader.
 prefix = "aiida.orm."
 if attrs['__module__'].startswith(prefix):
 # Strip aiida.orm.
 # Append a dot at the end, always
 newcls._plugin_type_string = "{}.{}.".format(
 attrs['__module__'][len(prefix):], name)

 # Make sure the pugin implementation match the import name.
 # If you have implementation.django.calculation.job, we remove
 # the first part to only get calculation.job.
 if newcls._plugin_type_string.startswith('implementation.'):
 newcls._plugin_type_string = \
 '.'.join(newcls._plugin_type_string.split('.')[2:])
 if newcls._plugin_type_string == 'node.Node.':
 newcls._plugin_type_string = ''
 newcls._query_type_string = get_query_type_string(
 newcls._plugin_type_string
)
 else:
 raise InternalError("Class {} is not in a module under "
 "aiida.orm. (module is {})".format(
 name, attrs['__module__']))

 return newcls

 # Name to be used for the Repository section
 _section_name = 'node'

 # The name of the subfolder in which to put the files/directories
 # added with add_path
 _path_subfolder_name = 'path'

 # A list of tuples, saying which attributes cannot be set at the same time
 # See documentation in the set() method.
 _set_incompatibilities = []

 @property
 def logger(self):
 """
 Get the logger of the Node object.

 :return: Logger object
 """
 return self._logger

 @classmethod
 @abstractmethod
[docs] def get_subclass_from_uuid(cls, uuid):
 """
 Get a node object from the uuid, with the proper subclass of Node.
 (if Node(uuid=...) is called, only the Node class is loaded).

 :param uuid: a string with the uuid of the object to be loaded.
 :return: the object of the proper subclass.
 :raise: NotExistent: if there is no entry of the desired
 object kind with the given uuid.
 """
 pass

 @classmethod
 @abstractmethod
[docs] def get_subclass_from_pk(cls, pk):
 """
 Get a node object from the pk, with the proper subclass of Node.
 (integer primary key used in this database),
 but loading the proper subclass where appropriate.

 :param pk: a string with the pk of the object to be loaded.
 :return: the object of the proper subclass.
 :raise: NotExistent: if there is no entry of the desired
 object kind with the given pk.
 """
 pass

 @property
 def ctime(self):
 """
 Return the creation time of the node.
 """
 return self.dbnode.ctime

 @property
 def mtime(self):
 """
 Return the modification time of the node.
 """
 return self.dbnode.mtime

 @abstractmethod
 def __int__(self):
 """
 Convert the class to an integer. This is needed to allow querying
 with Django. Be careful, though, not to pass it to a wrong field!
 This only returns the local DB principal key (pk) value.

 :return: the integer pk of the node or None if not stored.
 """
 pass

 @abstractmethod
[docs] def __init__(self, **kwargs):
 """
 Initialize the object Node.

 :param optional uuid: if present, the Node with given uuid is
 loaded from the database.
 (It is not possible to assign a uuid to a new Node.)
 """
 self._to_be_stored = True
 # Empty cache of input links in any case
 self._inputlinks_cache = {}

 @property
 def is_stored(self):
 return not self._to_be_stored

 def __repr__(self):
 return '<{}: {}>'.format(self.__class__.__name__, str(self))

 def __str__(self):
 if not self.is_stored:
 return "uuid: {} (unstored)".format(self.uuid)
 else:
 return "uuid: {} (pk: {})".format(self.uuid, self.pk)

 def _init_internal_params(self):
 """
 Set here the default values for this class; this method
 is automatically called by the init.

 :note: if you inherit this function, ALWAYS remember to
 call super()._init_internal_params() as the first thing
 in your inherited function.
 """
 pass

 @property
 def _set_defaults(self):
 """
 Default values to set in the __init__, if no value is explicitly provided
 for the given key.
 It is a dictionary, with k=v; if the key k is not provided to the __init__,
 and a value is present here, this is set.
 """
 return {}

 @classmethod
 @abstractmethod
[docs] def query(cls, *args, **kwargs):
 """
 Map to the aiidaobjects manager of the DbNode, that returns
 Node objects (or their subclasses) instead of DbNode entities.

 # TODO: VERY IMPORTANT: the recognition of a subclass from the type
 # does not work if the modules defining the subclasses are not
 # put in subfolders.
 # In the future, fix it either to make a cache and to store the
 # full dependency tree, or save also the path.
 """
 pass

 def _set_with_defaults(self, **kwargs):
 """
 Calls the set() method, but also adds the class-defined default
 values (defined in the self._set_defaults attribute),
 if they are not provided by the user.

 :note: for the default values, also allow to define 'hidden' methods,
 meaning that if a default value has a key "_state", it will not call
 the function "set__state" but rather "_set_state".
 This is not allowed, instead, for the standard set() method.
 """
 self._set_internal(arguments=self._set_defaults, allow_hidden=True)

 # Pass everything to 'set'
 self.set(**kwargs)

[docs] def set(self, **kwargs):
 """
 For each k=v pair passed as kwargs, call the corresponding
 set_k(v) method (e.g., calling self.set(property=5, mass=2) will
 call self.set_property(5) and self.set_mass(2).
 Useful especially in the __init__.

 :note: it uses the _set_incompatibilities list of the class to check
 that we are not setting methods that cannot be set at the same time.
 _set_incompatibilities must be a list of tuples, and each tuple
 specifies the elements that cannot be set at the same time.
 For instance, if _set_incompatibilities = [('property', 'mass')],
 then the call self.set(property=5, mass=2) will raise a ValueError.
 If a tuple has more than two values, it raises ValueError if *all*
 keys are provided at the same time, but it does not give any error
 if at least one of the keys is not present.

 :note: If one element of _set_incompatibilities is a tuple with only
 one element, this element will not be settable using this function
 (and in particular,

 :raise ValueError: if the corresponding set_k method does not exist
 in self, or if the methods cannot be set at the same time.
 """
 self._set_internal(arguments=kwargs, allow_hidden=False)

 def _set_internal(self, arguments, allow_hidden=False):
 """
 Works as self.set(), but takes a dictionary as the 'arguments' variable,
 instead of reading it from the **kwargs; moreover, it allows to specify
 allow_hidden to True. In this case, if a a key starts with and
 underscore, as for instance "_state", it will not call
 the function "set__state" but rather "_set_state".
 """
 for incomp in self._set_incompatibilities:
 if all(k in arguments.keys() for k in incomp):
 if len(incomp) == 1:
 raise ValueError("Cannot set {} directly when creating "
 "the node or using the .set() method; "
 "use the specific method instead.".format(
 incomp[0]))
 else:
 raise ValueError("Cannot set {} at the same time".format(
 " and ".join(incomp)))

 for k, v in arguments.iteritems():
 try:
 if allow_hidden and k.startswith("_"):
 method = getattr(self, '_set_{}'.format(k[1:]))
 else:
 method = getattr(self, 'set_{}'.format(k))
 except AttributeError:
 raise ValueError("Unable to set '{0}', no set_{0} method "
 "found".format(k))
 if not isinstance(method, collections.Callable):
 raise ValueError("Unable to set '{0}', set_{0} is not "
 "callable!".format(k))
 method(v)

 @property
 def label(self):
 """
 Get the label of the node.

 :return: a string.
 """
 return self.dbnode.label

 @label.setter
 def label(self, label):
 """
 Set the label of the node.

 :param label: a string
 """
 self._update_db_label_field(label)

 @abstractmethod
 def _update_db_label_field(self, field_value):
 pass

 @property
 def description(self):
 """
 Get the description of the node.

 :return: a string
 """
 return self.dbnode.description

 @description.setter
 def description(self, desc):
 """
 Set the description of the node

 :param desc: a string
 """
 self._update_db_description_field(desc)

 @abstractmethod
 def _update_db_description_field(self, field_value):
 pass

 def _validate(self):
 """
 Check if the attributes and files retrieved from the DB are valid.
 Raise a ValidationError if something is wrong.

 Must be able to work even before storing: therefore, use the get_attr
 and similar methods that automatically read either from the DB or
 from the internal attribute cache.

 For the base class, this is always valid. Subclasses will
 reimplement this.
 In the subclass, always call the super()._validate() method first!
 """
 return True

[docs] def get_user(self):
 """
 Get the user.

 :return: a Django DbUser model object
 """
 return self.dbnode.user

 def _has_cached_links(self):
 """
 Return True if there is at least one cached (input) link, that is a
 link that is not stored yet in the database. False otherwise.
 """
 return len(self._inputlinks_cache) != 0

[docs] def add_link_from(self, src, label=None, link_type=LinkType.UNSPECIFIED):
 """
 Add a link to the current node from the 'src' node.
 Both nodes must be a Node instance (or a subclass of Node)
 :note: In subclasses, change only this. Moreover, remember to call
 the super() method in order to properly use the caching logic!

 :param src: the source object
 :param str label: the name of the label to set the link from src.
 Default = None.
 :param link_type: The type of link, must be one of the enum values
 from :class:`~aiida.common.links.LinkType`
 """
 assert src, "You must provide a valid Node to link"

 # Check that the label does not already exist

 # This can happen also if both nodes are stored, e.g. if one first
 # stores the output node and then the input node. Therefore I check
 # it here.
 if label in self._inputlinks_cache:
 raise UniquenessError("Input link with name '{}' already present "
 "in the internal cache".format(label))

 # See if I am pointing to already saved nodes and I am already
 # linking to a given node
 if src.uuid in [_[0].uuid for _ in self._inputlinks_cache.values()]:
 raise UniquenessError(
 "A link from node with UUID={} and "
 "the current node (UUID={}) already exists!".format(
 src.uuid, self.uuid))

 # Check if the source allows output links from this node
 # (will raise ValueError if this is not the case)
 src._linking_as_output(self, link_type)

 # If both are stored, write directly on the DB
 if self.is_stored and src.is_stored:
 self._add_dblink_from(src, label, link_type)
 else: # at least one is not stored: add to the internal cache
 self._add_cachelink_from(src, label, link_type)

 def _add_cachelink_from(self, src, label, link_type):
 """
 Add a link in the cache.
 """
 if label is None:
 raise ModificationNotAllowed(
 "Cannot store a link in the cache if "
 "no explicit label is provided. You can avoid "
 "to provide an input link name only if "
 "both nodes are already stored: in this case, "
 "the link will be directly stored in the DB "
 "and a default name will be provided")

 if label in self._inputlinks_cache:
 raise UniquenessError("Input link with name '{}' already present "
 "in the internal cache".format(label))

 self._inputlinks_cache[label] = (src, link_type)

 def _replace_link_from(self, src, label, link_type=LinkType.UNSPECIFIED):
 """
 Replace an input link with the given label, or simply creates it
 if it does not exist.
 :note: In subclasses, change only this. Moreover, remember to call
 the super() method in order to properly use the caching logic!

 :param src: the source object
 :param str label: the name of the label to set the link from src.
 """
 # If both are stored, write directly on the DB
 if self.is_stored and src.is_stored:
 self._replace_dblink_from(src, label, link_type)
 # If the link was in the local cache, remove it
 # (this could happen if I first store the output node, then
 # the input node.
 try:
 del self._inputlinks_cache[label]
 except KeyError:
 pass
 else: # at least one is not stored: set in the internal cache
 # See if I am pointing to already saved nodes and I am already
 # linking to a given node
 # It is similar to the 'add' method, but if I am replacing the
 # same node, I will not complain (k!=label)
 if src.uuid in [v[0].uuid for k, v in
 self._inputlinks_cache.iteritems() if k != label]:
 raise UniquenessError(
 "A link from node with UUID={} and "
 "the current node (UUID={}) already exists!".format(
 src.uuid, self.uuid))
 # I insert the link directly in the cache rather than calling
 # _add_cachelink_from because this latter performs an undesired check
 self._inputlinks_cache[label] = (src, link_type)

 # self._add_cachelink_from(src, label, link_type)

 def _remove_link_from(self, label):
 """
 Remove from the DB the input link with the given label.
 :note: In subclasses, change only this. Moreover, remember to call
 the super() method in order to properly use the caching logic!

 :note: No error is raised if the link does not exist.

 :param str label: the name of the label to set the link from src.
 :param link_type: The type of link, must be one of the enum values form
 :class:`~aiida.common.links.LinkType`
 """
 # Try to remove from the local cache, no problem if none is present
 try:
 del self._inputlinks_cache[label]
 except KeyError:
 pass

 # If both are stored, remove also from the DB
 if self.is_stored:
 self._remove_dblink_from(label)

 @abstractmethod
 def _replace_dblink_from(self, src, label, link_type):
 """
 Replace an input link with the given label and type, or simply creates
 it if it does not exist.

 :note: this function should not be called directly; it acts directly on
 the database.

 :param str src: the source object.
 :param str label: the label of the link from src to the current Node
 :param link_type: The type of link, must be one of the enum values form
 :class:`~aiida.common.links.LinkType`
 """
 pass

 @abstractmethod
 def _remove_dblink_from(self, label):
 """
 Remove from the DB the input link with the given label.

 :note: this function should not be called directly; it acts directly on
 the database.

 :note: No checks are done to verify that the link actually exists.

 :param str label: the label of the link from src to the current Node
 :param link_type: The type of link, must be one of the enum values form
 :class:`~aiida.common.links.LinkType`
 """
 pass

 @abstractmethod
 def _add_dblink_from(self, src, label=None, link_type=LinkType.UNSPECIFIED):
 """
 Add a link to the current node from the 'src' node.
 Both nodes must be a Node instance (or a subclass of Node)

 :note: this function should not be called directly; it acts directly on
 the database.

 :param src: the source object
 :param str label: the name of the label to set the link from src.
 Default = None.
 """
 pass

 def _linking_as_output(self, dest, link_type):
 """
 Raise a ValueError if a link from self to dest is not allowed.
 Implement in subclasses.

 :param dest: the destination output Node
 :return: a boolean (True)
 """
 return True

[docs] def get_inputs_dict(self, only_in_db=False, link_type=None):
 """
 Return a dictionary where the key is the label of the input link, and
 the value is the input node.

 :param only_in_db: If true only get stored links, not cached
 :param link_type: Only get inputs of this link type, if None then
 returns all inputs of all link types.
 :return: a dictionary {label:object}
 """
 return dict(
 self.get_inputs(
 also_labels=True, only_in_db=only_in_db, link_type=link_type))

[docs] def get_outputs_dict(self, link_type=None):
 """
 Return a dictionary where the key is the label of the output link, and
 the value is the input node.
 As some Nodes (Datas in particular) can have more than one output with
 the same label, all keys have the name of the link with appended the pk
 of the node in output.
 The key without pk appended corresponds to the oldest node.

 :return: a dictionary {linkname:object}
 """
 all_outputs = self.get_outputs(also_labels=True, link_type=link_type)

 all_linknames = [i[0] for i in all_outputs]
 linknames_set = list(set(all_linknames))

 # prepare a new output list
 new_outputs = {}
 # first add the defaults
 for irreducible_linkname in linknames_set:
 this_elements = [i[1] for i in all_outputs if i[0] == irreducible_linkname]
 # select the oldest element
 last_element = sorted(this_elements, key=lambda x: x.ctime)[0]
 # for this one add the default value
 new_outputs[irreducible_linkname] = last_element

 # now for everyone append the string with the pk
 for i in this_elements:
 new_outputs[irreducible_linkname + "_{}".format(i.pk)] = i

 return new_outputs

 @abstractmethod
[docs] def get_inputs(self, node_type=None, also_labels=False, only_in_db=False,
 link_type=None):
 """
 Return a list of nodes that enter (directly) in this node

 :param node_type: If specified, should be a class, and it filters only
 elements of that specific type (or a subclass of 'type')
 :param also_labels: If False (default) only return a list of input nodes.
 If True, return a list of tuples, where each tuple has the
 following format: ('label', Node), with 'label' the link label,
 and Node a Node instance or subclass
 :param only_in_db: Return only the inputs that are in the database,
 ignoring those that are in the local cache. Otherwise, return
 all links.
 :param link_type: Only get inputs of this link type, if None then
 returns all inputs of all link types.
 """
 pass

 @abstractmethod
[docs] def get_outputs(self, type=None, also_labels=False, link_type=None):
 """
 Return a list of nodes that exit (directly) from this node

 :param type: if specified, should be a class, and it filters only
 elements of that specific type (or a subclass of 'type')
 :param also_labels: if False (default) only return a list of input nodes.
 If True, return a list of tuples, where each tuple has the
 following format: ('label', Node), with 'label' the link label,
 and Node a Node instance or subclass
 """
 pass

[docs] def get_computer(self):
 """
 Get the computer associated to the node.

 :return: the Computer object or None.
 """
 from aiida.orm.computer import Computer
 if self.dbnode.dbcomputer is None:
 return None
 else:
 return Computer(dbcomputer=self.dbnode.dbcomputer)

 @abstractmethod
[docs] def set_computer(self, computer):
 """
 Set the computer to be used by the node.

 Note that the computer makes sense only for some nodes: Calculation,
 RemoteData, ...

 :param computer: the computer object
 """
 # TODO: probably this method should be in the base class, and
 # check for the type
 pass

 @abstractmethod
 def _set_attr(self, key, value):
 """
 Set a new attribute to the Node (in the DbAttribute table).

 :param str key: key name
 :param value: its value
 :raise ModificationNotAllowed: if such attribute cannot be added (e.g.
 because the node was already stored, and the attribute is not listed
 as updatable).

 :raise ValidationError: if the key is not valid (e.g. it contains the
 separator symbol).
 """
 pass

 @abstractmethod
 def _del_attr(self, key):
 """
 Delete an attribute.

 :param key: attribute to delete.
 :raise AttributeError: if key does not exist.
 :raise ModificationNotAllowed: if the Node was already stored.
 """
 pass

 def _del_all_attrs(self):
 """
 Delete all attributes associated to this node.

 :raise ModificationNotAllowed: if the Node was already stored.
 """
 # I have to convert the attrs in a list, because the list will change
 # while deleting elements
 for attr_name in list(self.attrs()):
 self._del_attr(attr_name)

 @abstractmethod
[docs] def get_attr(self, key, default=_NO_DEFAULT):
 """
 Get the attribute.

 :param key: name of the attribute
 :param optional default: if no attribute key is found, returns default

 :return: attribute value

 :raise AttributeError: If no attribute is found and there is no default
 """
 pass

 @abstractmethod
[docs] def set_extra(self, key, value, exclusive=False):
 """
 Immediately sets an extra of a calculation, in the DB!
 No .store() to be called. Can be used *only* after saving.

 :param string key: key name
 :param value: key value
 :param exclusive: (default=False).
 If exclusive is True, it raises a UniquenessError if an Extra with
 the same name already exists in the DB (useful e.g. to "lock" a
 node and avoid to run multiple times the same computation on it).

 :raise UniquenessError: if extra already exists and exclusive is True.
 """
 pass

[docs] def set_extras(self, the_dict):
 """
 Immediately sets several extras of a calculation, in the DB!
 No .store() to be called.
 Can be used *only* after saving.

 :param the_dict: a dictionary of key:value to be set as extras
 """

 try:
 for key, value in the_dict.iteritems():
 self.set_extra(key, value)
 except AttributeError:
 raise AttributeError("set_extras takes a dictionary as argument")

 @abstractmethod
[docs] def get_extra(self, key, *args):
 """
 Get the value of a extras, reading directly from the DB!
 Since extras can be added only after storing the node, this
 function is meaningful to be called only after the .store() method.

 :param str key: key name
 :param optional value: if no attribute key is found, returns value

 :return: the key value

 :raise ValueError: If more than two arguments are passed to get_extra
 """
 pass

 @abstractmethod
[docs] def get_extras(self):
 """
 Get the value of extras, reading directly from the DB!
 Since extras can be added only after storing the node, this
 function is meaningful to be called only after the .store() method.

 :return: the dictionary of extras ({} if no extras)
 """

 pass

 @abstractmethod
[docs] def del_extra(self, key):
 """
 Delete a extra, acting directly on the DB!
 The action is immediately performed on the DB.
 Since extras can be added only after storing the node, this
 function is meaningful to be called only after the .store() method.

 :param str key: key name
 :raise: AttributeError: if key starts with underscore
 :raise: ModificationNotAllowed: if the node is not stored yet
 """
 pass

 @abstractmethod
[docs] def extras(self):
 """
 Get the keys of the extras.

 :return: a list of strings
 """
 pass

 @abstractmethod
[docs] def iterextras(self):
 """
 Iterator over the extras, returning tuples (key, value)

 :todo: verify that I am not creating a list internally
 """
 pass

 @abstractmethod
[docs] def iterattrs(self):
 """
 Iterator over the attributes, returning tuples (key, value)

 :todo: optimize! At the moment, the call is very slow because it is
 also calling attr.getvalue() for each attribute, that has to
 perform complicated queries to rebuild the object.

 :param bool also_updatable: if False, does not iterate over
 attributes that are updatable
 """
 pass

 @abstractmethod
[docs] def get_attrs(self):
 """
 Return a dictionary with all attributes of this node.
 """
 pass

 @abstractmethod
[docs] def attrs(self):
 """
 Returns the keys of the attributes.

 :return: a list of strings
 """
 # Note: I "duplicate" the code from iterattrs, rather than
 # calling iterattrs from here, because iterattrs is slow on each call
 # since it has to call .getvalue(). To improve!
 pass

 @abstractmethod
[docs] def add_comment(self, content, user=None):
 """
 Add a new comment.

 :param content: string with comment
 """
 pass

 @abstractmethod
[docs] def get_comments(self, pk=None):
 """
 Return a sorted list of comment values, one for each comment associated
 to the node.

 :param pk: integer or list of integers. If it is specified, returns the
 comment values with desired pks. (pk refers to DbComment.pk)
 :return: the list of comments, sorted by pk; each element of the
 list is a dictionary, containing (pk, email, ctime, mtime, content)
 """
 pass

 @abstractmethod
 def _get_dbcomments(self, pk=None):
 """
 Return a sorted list of DbComment associated with the Node.
 :param pk: integer or list of integers. If it is specified, returns the
 comment values with desired pks. (pk refers to DbComment.pk)
 :return: the list of DbComment, sorted by pk.
 """
 pass

 @abstractmethod
 def _update_comment(self, new_field, comment_pk, user):
 """
 Function called by verdi comment update
 """
 pass

 @abstractmethod
 def _remove_comment(self, comment_pk, user):
 """
 Function called by verdi comment remove
 """
 pass

 @abstractmethod
 def _increment_version_number_db(self):
 """
 This function increments the version number in the DB.
 This should be called every time you need to increment the version
 (e.g. on adding a extra or attribute).

 :note: Do not manually increment the version number, because if
 two different threads are adding/changing an attribute concurrently,
 the version number would be incremented only once.
 """
 pass

 @abstractmethod
[docs] def copy(self):
 """
 Return a copy of the current object to work with, not stored yet.

 This is a completely new entry in the DB, with its own UUID.
 Works both on stored instances and with not-stored ones.

 Copies files and attributes, but not the extras.
 Does not store the Node to allow modification of attributes.

 :return: an object copy
 """
 pass

 @property
 @abstractmethod
 def uuid(self):
 """
 :return: a string with the uuid
 """
 pass

 @property
 @abstractmethod
 def pk(self):
 """
 :return: the principal key (the ID) as an integer, or None if the
 node was not stored yet
 """
 pass

 @property
 @abstractmethod
 def id(self):
 """
 :return: the principal key (the ID) as an integer, or None if the
 node was not stored yet
 """
 pass

 @property
 @abstractmethod
 def dbnode(self):
 """
 :return: the corresponding DbNode object.
 """
 # I also update the internal _dbnode variable, if it was saved
 # from aiida.backends.djsite.db.models import DbNode
 # if not self._to_be_stored:
 # self._dbnode = DbNode.objects.get(pk=self._dbnode.pk)
 pass

 @property
 def _repository_folder(self):
 """
 Get the permanent repository folder.
 Use preferentially the folder property.

 :return: the permanent RepositoryFolder object
 """
 return self._repo_folder

 @property
 def folder(self):
 """
 Get the folder associated with the node,
 whether it is in the temporary or the permanent repository.

 :return: the RepositoryFolder object.
 """
 if not self.is_stored:
 return self._get_temp_folder()
 else:
 return self._repository_folder

 @property
 def _get_folder_pathsubfolder(self):
 """
 Get the subfolder in the repository.

 :return: a Folder object.
 """
 return self.folder.get_subfolder(
 self._path_subfolder_name, reset_limit=True)

[docs] def get_folder_list(self, subfolder='.'):
 """
 Get the the list of files/directory in the repository of the object.

 :param str,optional subfolder: get the list of a subfolder
 :return: a list of strings.
 """
 return self._get_folder_pathsubfolder.get_subfolder(subfolder).get_content_list()

 def _get_temp_folder(self):
 """
 Get the folder of the Node in the temporary repository.

 :return: a SandboxFolder object mapping the node in the repository.
 """
 # I create the temp folder only at is first usage
 if self._temp_folder is None:
 self._temp_folder = SandboxFolder() # This is also created
 # Create the 'path' subfolder in the Sandbox
 self._get_folder_pathsubfolder.create()
 return self._temp_folder

[docs] def remove_path(self, path):
 """
 Remove a file or directory from the repository directory.
 Can be called only before storing.

 :param str path: relative path to file/directory.
 """
 if self.is_stored:
 raise ModificationNotAllowed(
 "Cannot delete a path after storing the node")

 if os.path.isabs(path):
 raise ValueError("The destination path in remove_path "
 "must be a relative path")
 self._get_folder_pathsubfolder.remove_path(path)

[docs] def add_path(self, src_abs, dst_path):
 """
 Copy a file or folder from a local file inside the repository directory.
 If there is a subpath, folders will be created.

 Copy to a cache directory if the entry has not been saved yet.

 :param str src_abs: the absolute path of the file to copy.
 :param str dst_filename: the (relative) path on which to copy.

 :todo: in the future, add an add_attachment() that has the same
 meaning of a extras file. Decide also how to store. If in two
 separate subfolders, remember to reset the limit.
 """
 if self.is_stored:
 raise ModificationNotAllowed(
 "Cannot insert a path after storing the node")

 if not os.path.isabs(src_abs):
 raise ValueError("The source path in add_path must be absolute")
 if os.path.isabs(dst_path):
 raise ValueError("The destination path in add_path must be a"
 "filename without any subfolder")
 self._get_folder_pathsubfolder.insert_path(src_abs, dst_path)

[docs] def get_abs_path(self, path=None, section=None):
 """
 Get the absolute path to the folder associated with the
 Node in the AiiDA repository.

 :param str path: the name of the subfolder inside the section. If None
 returns the abspath of the folder. Default = None.
 :param section: the name of the subfolder ('path' by default).
 :return: a string with the absolute path

 For the moment works only for one kind of files, 'path' (internal files)
 """
 if path is None:
 return self.folder.abspath
 if section is None:
 section = self._path_subfolder_name
 # TODO: For the moment works only for one kind of files,
 # 'path' (internal files)
 if os.path.isabs(path):
 raise ValueError("The path in get_abs_path must be relative")
 return self.folder.get_subfolder(section,
 reset_limit=True).get_abs_path(path, check_existence=True)

 @abstractmethod
[docs] def store_all(self, with_transaction=True):
 """
 Store the node, together with all input links, if cached, and also the
 linked nodes, if they were not stored yet.

 :parameter with_transaction: if False, no transaction is used. This
 is meant to be used ONLY if the outer calling function has already
 a transaction open!
 """
 pass

 @abstractmethod
 def _store_input_nodes(self):
 """
 Find all input nodes, and store them, checking that they do not
 have unstored inputs in turn.

 :note: this function stores all nodes without transactions; always
 call it from within a transaction!
 """
 pass

 @abstractmethod
 def _check_are_parents_stored(self):
 """
 Check if all parents are already stored, otherwise raise.

 :raise ModificationNotAllowed: if one of the input nodes in not already
 stored.
 """
 # Preliminary check to verify that inputs are stored already
 pass

 @abstractmethod
 def _store_cached_input_links(self, with_transaction=True):
 """
 Store all input links that are in the local cache, transferring them
 to the DB.

 :note: This can be called only if all parents are already stored.

 :note: Links are stored only after the input nodes are stored. Moreover,
 link storage is done in a transaction, and if one of the links
 cannot be stored, an exception is raised and *all* links will remain
 in the cache.

 :note: This function can be called only after the node is stored.
 After that, it can be called multiple times, and nothing will be
 executed if no links are still in the cache.

 :parameter with_transaction: if False, no transaction is used. This
 is meant to be used ONLY if the outer calling function has already
 a transaction open!
 """
 pass

 @abstractmethod
[docs] def store(self, with_transaction=True):
 """
 Store a new node in the DB, also saving its repository directory
 and attributes.

 After being called attributes cannot be
 changed anymore! Instead, extras can be changed only AFTER calling
 this store() function.

 :note: After successful storage, those links that are in the cache, and
 for which also the parent node is already stored, will be
 automatically stored. The others will remain unstored.

 :parameter with_transaction: if False, no transaction is used. This
 is meant to be used ONLY if the outer calling function has already
 a transaction open!
 """
 # TODO: This needs to be generalized, allowing for flexible methods
 # for storing data and its attributes.
 pass

 def __del__(self):
 """
 Called only upon real object destruction from memory
 I just try to remove junk, whenever possible; do not trust
 too much this function!
 """
 if getattr(self, '_temp_folder', None) is not None:
 self._temp_folder.erase()

 @property
 def out(self):
 """
 Traverse the graph of the database.
 Returns a databaseobject, linked to the current node, by means of the linkname.
 Example:
 B = A.out.results: Returns the object B, with link from A to B, with linkname parameters
 """
 return NodeOutputManager(self)

 @property
 def inp(self):
 """
 Traverse the graph of the database.
 Returns a databaseobject, linked to the current node, by means of the linkname.
 Example:
 B = A.inp.parameters: returns the object (B), with link from B to A, with linkname parameters
 C= A.inp: returns an InputManager, an object that is meant to be accessed as the previous example
 """
 return NodeInputManager(self)

 @abstractproperty
 def has_children(self):
 """
 Property to understand if children are attached to the node
 :return: a boolean
 """
 # use the transitive closure
 pass

 @abstractproperty
 def has_parents(self):
 """
 Property to understand if parents are attached to the node
 :return: a boolean
 """
 # use the transitive closure
 pass

 @combomethod
[docs] def querybuild(self_or_cls, **kwargs):
 """
 Instantiates and
 :returns: a QueryBuilder instance.

 The QueryBuilder's path has one vertice so far, namely this class.
 Additional parameters (e.g. filters or a label),
 can be passes as keyword arguments.

 :param label: Label to give
 :param filters: filters to apply
 :param project: projections

 This class is a comboclass (see :func:`~aiida.common.utils.combomethod`)
 therefore the method can be called as class or instance method.
 If called as an instance method, adds a filter on the id.
 """
 from aiida.orm.querybuilder import QueryBuilder
 from aiida.orm import Node as AiidaNode
 isclass = kwargs.pop('isclass')
 qb = QueryBuilder()
 if isclass:
 qb.append(self_or_cls, **kwargs)
 else:
 filters = kwargs.pop('filters', {})
 filters.update({'id': self_or_cls.pk})
 qb.append(self_or_cls.__class__, filters=filters, **kwargs)
 return qb

[docs]class NodeOutputManager(object):
 """
 To document
 """

[docs] def __init__(self, node):
 """
 :param node: the node object.
 """
 # Possibly add checks here
 self._node = node

 def __dir__(self):
 """
 Allow to list all valid output links
 """
 node_attributes = self._node.get_outputs_dict().keys()
 return sorted(set(list(dir(type(self))) + list(node_attributes)))

 def __iter__(self):
 node_attributes = self._node.get_outputs_dict().keys()
 for k in node_attributes:
 yield k

 def __getattr__(self, name):
 """
 :param name: name of the attribute to be asked to the parser results.
 """
 try:
 return self._node.get_outputs_dict()[name]
 except KeyError:
 raise AttributeError("Node {} does not have an output with link {}"
 .format(self._node.pk, name))

 def __getitem__(self, name):
 """
 interface to get to the parser results as a dictionary.

 :param name: name of the attribute to be asked to the parser results.
 """
 try:
 return self._node.get_outputs_dict()[name]
 except KeyError:
 raise KeyError("Node {} does not have an output with link {}"
 .format(self._node.pk, name))

[docs]class NodeInputManager(object):
 """
 To document
 """

[docs] def __init__(self, node):
 """
 :param node: the node object.
 """
 # Possibly add checks here
 self._node = node

 def __dir__(self):
 """
 Allow to list all valid input links
 """
 node_attributes = self._node.get_inputs_dict().keys()
 return sorted(set(list(dir(type(self))) + list(node_attributes)))

 def __iter__(self):
 node_attributes = self._node.get_inputs_dict().keys()
 for k in node_attributes:
 yield k

 def __getattr__(self, name):
 """
 :param name: name of the attribute to be asked to the parser results.
 """
 try:
 return self._node.get_inputs_dict()[name]
 except KeyError:
 raise AttributeError(
 "Node '{}' does not have an input with link '{}'"
 .format(self._node.pk, name))

 def __getitem__(self, name):
 """
 interface to get to the parser results as a dictionary.

 :param name: name of the attribute to be asked to the parser results.
 """
 try:
 return self._node.get_inputs_dict()[name]
 except KeyError:
 raise KeyError("Node '{}' does not have an input with link '{}'"
 .format(self._node.pk, name))

[docs]class AttributeManager(object):
 """
 An object used internally to return the attributes as a dictionary.

 :note: Important! It cannot be used to change variables, just to read
 them. To change values (of unstored nodes), use the proper Node methods.
 """

[docs] def __init__(self, node):
 """
 :param node: the node object.
 """
 # Possibly add checks here
 self._node = node

 def __dir__(self):
 """
 Allow to list the keys of the dictionary
 """
 return sorted(self._node.attrs())

 def __iter__(self):
 """
 Return the keys as an iterator
 """
 for k in self._node.attrs():
 yield k

 def _get_dict(self):
 """
 Return the internal dictionary
 """
 return dict(self._node.iterattrs())

 def __getattr__(self, name):
 """
 Interface to get to dictionary values, using the key as an attribute.

 :note: it works only for attributes that only contain letters, numbers
 and underscores, and do not start with a number.

 :param name: name of the key whose value is required.
 """
 return self._node.get_attr(name)

 def __getitem__(self, name):
 """
 Interface to get to dictionary values as a dictionary.

 :param name: name of the key whose value is required.
 """
 try:
 return self._node.get_attr(name)
 except AttributeError as e:
 raise KeyError(e.message)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/data.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.orm.data

-*- coding: utf-8 -*-
from aiida.orm.node import Node
from aiida.common.links import LinkType
from aiida.common.lang import override
from aiida.common.exceptions import ModificationNotAllowed

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class Data(Node):
 """
 This class is base class for all data objects.

 Specifications of the Data class:
 AiiDA Data objects are subclasses of Node and should have

 Multiple inheritance must be suppoted, i.e. Data should have methods for
 querying and be able to inherit other library objects such as ASE for
 structures.

 Architecture note:
 The code plugin is responsible for converting a raw data object produced by
 code to AiiDA standard object format. The data object then validates itself
 according to its method. This is done independently in order to allow
 cross-validation of plugins.
 """
 _source_attributes = ['db_name', 'db_uri', 'uri', 'id', 'version',
 'extras', 'source_md5', 'description', 'license']

 @property
 def source(self):
 """
 Gets the dictionary describing the source of Data object. Possible
 fields:

 * **db_name**: name of the source database.
 * **db_uri**: URI of the source database.
 * **uri**: URI of the object's source. Should be a permanent link.
 * **id**: object's source identifier in the source database.
 * **version**: version of the object's source.
 * **extras**: a dictionary with other fields for source description.
 * **source_md5**: MD5 checksum of object's source.
 * **description**: human-readable free form description of the
 object's source.
 * **license**: a string with a type of license.

 .. note:: some limitations for setting the data source exist, see
 :py:meth:`._validate`.

 :return: dictionary describing the source of Data object.
 """
 return self.get_attr('source', None)

 @source.setter
 def source(self, source):
 """
 Sets the dictionary describing the source of Data object.

 :raise KeyError: if dictionary contains unknown field.
 :raise ValueError: if supplied source description is not a
 dictionary.
 """
 if not isinstance(source, dict):
 raise ValueError("Source must be supplied as a dictionary")
 unknown_attrs = list(set(source.keys()) - set(self._source_attributes))
 if unknown_attrs:
 raise KeyError("Unknown source parameters: "
 "{}".format(", ".join(unknown_attrs)))

 self._set_attr('source', source)

[docs] def set_source(self, source):
 """
 Sets the dictionary describing the source of Data object.
 """
 self.source = source

 @override
 def _set_attr(self, key, value):
 """
 Set a new attribute to the Node (in the DbAttribute table).

 :param str key: key name
 :param value: its value
 :raise ModificationNotAllowed: if such attribute cannot be added (e.g.
 because the node was already stored)

 :raise ValidationError: if the key is not valid (e.g. it contains the
 separator symbol).
 """
 if self.is_stored:
 raise ModificationNotAllowed(
 "Cannot change the attributes of a stored data node.")
 super(Data, self)._set_attr(key, value)

 @override
 def _del_attr(self, key):
 """
 Delete an attribute.

 :param key: attribute to delete.
 :raise AttributeError: if key does not exist.
 :raise ModificationNotAllowed: if the Node was already stored.
 """
 if self.is_stored:
 raise ModificationNotAllowed(
 "Cannot delete the attributes of a stored data node.")
 super(Data, self)._del_attr(key)

 @override
 def add_link_from(self, src, label=None, link_type=LinkType.UNSPECIFIED):
 from aiida.orm.calculation import Calculation

 if link_type is LinkType.CREATE and \
 len(self.get_inputs(link_type=LinkType.CREATE)) > 0:
 raise ValueError("At most one CREATE node can enter a data node")

 if not isinstance(src, Calculation):
 raise ValueError(
 "Links entering a data object can only be of type calculation")

 return super(Data, self).add_link_from(src, label, link_type)

 @override
 def _linking_as_output(self, dest, link_type):
 """
 Raise a ValueError if a link from self to dest is not allowed.

 An output of a data can only be a calculation
 """
 from aiida.orm.calculation import Calculation
 if not isinstance(dest, Calculation):
 raise ValueError(
 "The output of a data node can only be a calculation")

 return super(Data, self)._linking_as_output(dest, link_type)

 @override
 def _exportstring(self, fileformat, **kwargs):
 """
 Converts a Data object to other text format.

 :param fileformat: a string (the extension) to describe the file format.
 :returns: a string with the structure description.
 """
 exporters = self._get_exporters()

 try:
 func = exporters[fileformat]
 except KeyError:
 if len(exporters.keys()) > 0:
 raise ValueError("The format {} is not implemented for {}. "
 "Currently implemented are: {}.".format(
 fileformat, self.__class__.__name__,
 ",".join(exporters.keys())))
 else:
 raise ValueError("The format {} is not implemented for {}. "
 "No formats are implemented yet.".format(
 fileformat, self.__class__.__name__))

 return func(**kwargs)

 @override
[docs] def export(self, fname, fileformat=None):
 """
 Save a Data object to a file.

 :param fname: string with file name. Can be an absolute or relative path.
 :param fileformat: kind of format to use for the export. If not present,
 it will try to use the extension of the file name.
 """
 if fileformat is None:
 fileformat = fname.split('.')[-1]
 filecontent = self._exportstring(fileformat)
 with open(fname, 'w') as f: # writes in cwd, if fname is not absolute
 f.write(filecontent)

 def _get_exporters(self):
 """
 Get all implemented export formats.
 The convention is to find all _prepare_... methods.
 Returns a list of strings.
 """
 # NOTE: To add support for a new format, write a new function called as
 # _prepare_"" with the name of the new format
 exporter_prefix = '_prepare_'
 method_names = dir(self) # get list of class methods names
 valid_format_names = [i[len(exporter_prefix):] for i in method_names
 if i.startswith(exporter_prefix)] # filter them
 valid_formats = {k: getattr(self, exporter_prefix + k)
 for k in valid_format_names}
 return valid_formats

[docs] def importstring(self, inputstring, fileformat, **kwargs):
 """
 Converts a Data object to other text format.

 :param fileformat: a string (the extension) to describe the file format.
 :returns: a string with the structure description.
 """
 importers = self._get_importers()

 try:
 func = importers[fileformat]
 except KeyError:
 if len(importers.keys()) > 0:
 raise ValueError("The format {} is not implemented for {}. "
 "Currently implemented are: {}.".format(
 fileformat, self.__class__.__name__,
 ",".join(importers.keys())))
 else:
 raise ValueError("The format {} is not implemented for {}. "
 "No formats are implemented yet.".format(
 fileformat, self.__class__.__name__))

 # func is bound to self by getattr in _get_importers()
 func(inputstring, **kwargs)

[docs] def importfile(self, fname, fileformat=None):
 """
 Populate a Data object from a file.

 :param fname: string with file name. Can be an absolute or relative path.
 :param fileformat: kind of format to use for the export. If not present,
 it will try to use the extension of the file name.
 """
 if fileformat is None:
 fileformat = fname.split('.')[-1]
 with open(fname, 'r') as f: # reads in cwd, if fname is not absolute
 self.importstring(f.read(), fileformat)

 def _get_importers(self):
 """
 Get all implemented import formats.
 The convention is to find all _parse_... methods.
 Returns a list of strings.
 """
 # NOTE: To add support for a new format, write a new function called as
 # _parse_"" with the name of the new format
 importer_prefix = '_parse_'
 method_names = dir(self) # get list of class methods names
 valid_format_names = [i[len(importer_prefix):] for i in method_names
 if i.startswith(importer_prefix)] # filter them
 valid_formats = {k: getattr(self, importer_prefix + k)
 for k in valid_format_names}
 return valid_formats

[docs] def convert(self, object_format=None, *args):
 """
 Convert the AiiDA StructureData into another python object

 :param object_format: Specify the output format
 """
 if object_format is None:
 raise ValueError("object_format must be provided")
 if not isinstance(object_format, basestring):
 raise ValueError('object_format should be a string')

 converters = self._get_converters()

 try:
 func = converters[object_format]
 except KeyError:
 if len(converters.keys()) > 0:
 raise ValueError(
 "The format {} is not implemented for {}. "
 "Currently implemented are: {}.".format(
 object_format, self.__class__.__name__,
 ",".join(converters.keys())))
 else:
 raise ValueError("The format {} is not implemented for {}. "
 "No formats are implemented yet.".format(
 object_format, self.__class__.__name__))

 return func(*args)

 def _get_converters(self):
 """
 Get all implemented converter formats.
 The convention is to find all _get_object_... methods.
 Returns a list of strings.
 """
 # NOTE: To add support for a new format, write a new function called as
 # _prepare_"" with the name of the new format
 exporter_prefix = '_get_object_'
 method_names = dir(self) # get list of class methods names
 valid_format_names = [i[len(exporter_prefix):] for i in method_names
 if i.startswith(exporter_prefix)] # filter them
 valid_formats = {k: getattr(self, exporter_prefix + k)
 for k in valid_format_names}
 return valid_formats

 def _validate(self):
 """
 Perform validation of the Data object.

 .. note:: validation of data source checks license and requires
 attribution to be provided in field 'description' of source in
 the case of any CC-BY* license. If such requirement is too
 strict, one can remove/comment it out.
 """

 super(Data, self)._validate()

 ## Validation of ``source`` is commented out due to Issue #9
 ## (https://bitbucket.org/epfl_theos/aiida_epfl/issues/9/)
 ##
 ## if self.source is not None and \
 ## self.source.get('license', None) and \
 ## self.source['license'].startswith('CC-BY') and \
 ## self.source.get('description', None) is None:
 ## raise ValidationError("License of the object ({}) requires "
 ## "attribution, while none is given in the "
 ## "description".format(self.source['license']))

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/backends/djsite/db/models.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.backends.djsite.db.models

-*- coding: utf-8 -*-
from django.db import models as m
from django_extensions.db.fields import UUIDField
from django.contrib.auth.models import (
 AbstractBaseUser, BaseUserManager, PermissionsMixin)
from django.utils.encoding import python_2_unicode_compatible
from django.core.exceptions import ObjectDoesNotExist
from django.db.models.query import QuerySet

from aiida.utils import timezone
from aiida.common.exceptions import (
 ConfigurationError, DbContentError, MissingPluginError)

from aiida.backends.settings import AIIDANODES_UUID_VERSION
from aiida.backends.djsite.settings.settings import AUTH_USER_MODEL
import aiida.backends.djsite.db.migrations as migrations

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

This variable identifies the schema version of this file.
Every time you change the schema below in *ANY* way, REMEMBER TO CHANGE
the version here in the migration file and update migrations/__init__.py.
See the documentation for how to do all this.
#
The version is checked at code load time to verify that the code schema
version and the DB schema version are the same. (The DB schema version
is stored in the DbSetting table and the check is done in the
load_dbenv() function).
SCHEMA_VERSION = migrations.current_schema_version()

class AiidaQuerySet(QuerySet):
 def iterator(self):
 for obj in super(AiidaQuerySet, self).iterator():
 yield obj.get_aiida_class()

class AiidaObjectManager(m.Manager):
 def get_query_set(self):
 return AiidaQuerySet(self.model, using=self._db)

class DbUserManager(BaseUserManager):
 def create_user(self, email, password=None, **extra_fields):
 """
 Creates and saves a User with the given email (that is the
 username) and password.
 """
 now = timezone.now()
 if not email:
 raise ValueError('The given email must be set')
 email = BaseUserManager.normalize_email(email)
 user = self.model(email=email,
 is_staff=False, is_active=True, is_superuser=False,
 last_login=now, date_joined=now, **extra_fields)

 user.set_password(password)
 user.save(using=self._db)
 return user

 def create_superuser(self, email, password, **extra_fields):
 u = self.create_user(email, password, **extra_fields)
 u.is_staff = True
 u.is_active = True
 u.is_superuser = True
 u.save(using=self._db)
 return u

[docs]class DbUser(AbstractBaseUser, PermissionsMixin):
 """
 This class replaces the default User class of Django
 """
 # Set unique email field
 email = m.EmailField(unique=True, db_index=True)
 first_name = m.CharField(max_length=254, blank=True)
 last_name = m.CharField(max_length=254, blank=True)
 institution = m.CharField(max_length=254, blank=True)

 is_staff = m.BooleanField(default=False,
 help_text='Designates whether the user can log into this admin '
 'site.')
 is_active = m.BooleanField(default=True,
 help_text='Designates whether this user should be treated as '
 'active. Unselect this instead of deleting accounts.')
 date_joined = m.DateTimeField(default=timezone.now)

 USERNAME_FIELD = 'email'
 REQUIRED_FIELDS = ['first_name', 'last_name', 'institution']

 objects = DbUserManager()

 def get_full_name(self):
 if self.first_name and self.last_name:
 return "{} {} ({})".format(self.first_name, self.last_name,
 self.email)
 elif self.first_name:
 return "{} ({})".format(self.first_name, self.email)
 elif self.last_name:
 return "{} ({})".format(self.last_name, self.email)
 else:
 return "{}".format(self.email)

 def get_short_name(self):
 return self.email

 def get_aiida_class(self):
 from aiida.orm.user import User
 return User(dbuser=self)

@python_2_unicode_compatible
[docs]class DbNode(m.Model):
 """
 Generic node: data or calculation or code.

 Nodes can be linked (DbLink table)
 Naming convention for Node relationships: A --> C --> B.

 * A is 'input' of C.
 * C is 'output' of A.
 * A is 'parent' of B,C
 * C,B are 'children' of A.

 :note: parents and children are stored in the DbPath table, the transitive
 closure table, automatically updated via DB triggers whenever a link is
 added to or removed from the DbLink table.

 Internal attributes, that define the node itself,
 are stored in the DbAttribute table; further user-defined attributes,
 called 'extra', are stored in the DbExtra table (same schema and methods
 of the DbAttribute table, but the code does not rely on the content of the
 table, therefore the user can use it at his will to tag or annotate nodes.

 :note: Attributes in the DbAttribute table have to be thought as belonging
 to the DbNode, (this is the reason for which there is no 'user' field
 in the DbAttribute field). Moreover, Attributes define uniquely the
 Node so should be immutable (except for the few ones defined in the
 _updatable_attributes attribute of the Node() class, that are updatable:
 these are Attributes that are set by AiiDA, so the user should not
 modify them, but can be changed (e.g., the append_text of a code, that
 can be redefined if the code has to be recompiled).
 """
 uuid = UUIDField(auto=True, version=AIIDANODES_UUID_VERSION)
 # in the form data.upffile., data.structure., calculation., code.quantumespresso.pw., ...
 # Note that there is always a final dot, to allow to do queries of the
 # type (type__startswith="calculation.") and avoid problems with classes
 # starting with the same string
 # max_length required for index by MySql
 type = m.CharField(max_length=255, db_index=True)
 label = m.CharField(max_length=255, db_index=True, blank=True)
 description = m.TextField(blank=True)
 # creation time
 ctime = m.DateTimeField(default=timezone.now, editable=False)
 mtime = m.DateTimeField(auto_now=True, editable=False)
 # Cannot delete a user if something is associated to it
 user = m.ForeignKey(AUTH_USER_MODEL, on_delete=m.PROTECT,
 related_name='dbnodes')

 # Direct links
 outputs = m.ManyToManyField('self', symmetrical=False,
 related_name='inputs', through='DbLink')
 # Transitive closure
 children = m.ManyToManyField('self', symmetrical=False,
 related_name='parents', through='DbPath')

 # Used only if dbnode is a calculation, or remotedata
 # Avoid that computers can be deleted if at least a node exists pointing
 # to it.
 dbcomputer = m.ForeignKey('DbComputer', null=True, on_delete=m.PROTECT,
 related_name='dbnodes')

 # Index that is incremented every time a modification is done on itself or on attributes.
 # Managed by the aiida.orm.Node class. Do not modify
 nodeversion = m.IntegerField(default=1, editable=False)

 # For the API: whether this node
 public = m.BooleanField(default=False)

 objects = m.Manager()
 # Return aiida Node instances or their subclasses instead of DbNode instances
 aiidaobjects = AiidaObjectManager()

[docs] def get_aiida_class(self):
 """
 Return the corresponding aiida instance of class aiida.orm.Node or a
 appropriate subclass.
 """
 from aiida.orm.node import Node
 from aiida.common.pluginloader import from_type_to_pluginclassname
 from aiida.common.pluginloader import load_plugin
 from aiida.common import aiidalogger

 try:
 pluginclassname = from_type_to_pluginclassname(self.type)
 except DbContentError:
 raise DbContentError("The type name of node with pk= {} is "
 "not valid: '{}'".format(self.pk, self.type))

 try:
 PluginClass = load_plugin(Node, 'aiida.orm', pluginclassname)
 except MissingPluginError:
 aiidalogger.error("Unable to find plugin for type '{}' (node= {}), "
 "will use base Node class".format(self.type, self.pk))
 PluginClass = Node

 return PluginClass(dbnode=self)

[docs] def get_simple_name(self, invalid_result=None):
 """
 Return a string with the last part of the type name.

 If the type is empty, use 'Node'.
 If the type is invalid, return the content of the input variable
 ``invalid_result``.

 :param invalid_result: The value to be returned if the node type is
 not recognized.
 """
 thistype = self.type
 # Fix for base class
 if thistype == "":
 thistype = "node.Node."
 if not thistype.endswith("."):
 return invalid_result
 else:
 thistype = thistype[:-1] # Strip final dot
 return thistype.rpartition('.')[2]

 @property
 def attributes(self):
 """
 Return all attributes of the given node as a single dictionary.
 """
 return DbAttribute.get_all_values_for_node(self)

 @property
 def extras(self):
 """
 Return all extras of the given node as a single dictionary.
 """
 return DbExtra.get_all_values_for_node(self)

 def __str__(self):
 simplename = self.get_simple_name(invalid_result="Unknown")
 # node pk + type
 if self.label:
 return "{} node [{}]: {}".format(simplename, self.pk, self.label)
 else:
 return "{} node [{}]".format(simplename, self.pk)

@python_2_unicode_compatible
[docs]class DbLink(m.Model):
 """
 Direct connection between two dbnodes. The label is identifying the
 link type.
 """
 # If I delete an output, delete also the link; if I delete an input, stop
 # NOTE: this will in most cases render a DbNode.objects.filter(...).delete()
 # call unusable because some nodes will be inputs; Nodes will have to
 # be deleted in the proper order (or links will need to be deleted first)
 input = m.ForeignKey('DbNode', related_name='output_links',
 on_delete=m.PROTECT)
 output = m.ForeignKey('DbNode', related_name='input_links',
 on_delete=m.CASCADE)
 # label for data input for calculation
 label = m.CharField(max_length=255, db_index=True, blank=False)
 type = m.CharField(max_length=255, db_index=True, blank=True)

 class Meta:
 # I cannot add twice the same link
 # I want unique labels among all inputs of a node
 # NOTE!
 # I cannot add ('input', 'label') because in general
 # if the input is a 'data' and I want to add it more than
 # once to different calculations, the different links must be
 # allowed to have the same name. For calculations, it is the
 # responsibility of the output plugin to avoid to have many
 # times the same name.
 #unique_together = ("output", "label")
 pass

 def __str__(self):
 return "{} ({}) --> {} ({})".format(
 self.input.get_simple_name(invalid_result="Unknown node"),
 self.input.pk,
 self.output.get_simple_name(invalid_result="Unknown node"),
 self.output.pk,)

@python_2_unicode_compatible
[docs]class DbPath(m.Model):
 """
 Transitive closure table for all dbnode paths.
 """
 parent = m.ForeignKey('DbNode', related_name='child_paths', editable=False)
 child = m.ForeignKey('DbNode', related_name='parent_paths', editable=False)
 depth = m.IntegerField(editable=False)

 # Used to delete or to expand the path
 entry_edge_id = m.IntegerField(null=True, editable=False)
 direct_edge_id = m.IntegerField(null=True, editable=False)
 exit_edge_id = m.IntegerField(null=True, editable=False)

 def __str__(self):
 return "{} ({}) ==[{}]==>> {} ({})".format(
 self.parent.get_simple_name(invalid_result="Unknown node"),
 self.parent.pk,
 self.depth,
 self.child.get_simple_name(invalid_result="Unknown node"),
 self.child.pk,)

[docs] def expand(self):
 """
 Method to expand a DbPath (recursive function), i.e., to get a list
 of all dbnodes that are traversed in the given path.

 :return: list of DbNode objects representing the expanded DbPath
 """

 if self.depth == 0:
 return [self.parent, self.child]
 else:
 path_entry = []
 path_direct = DbPath.objects.get(id=self.direct_edge_id).expand()
 path_exit = []
 # we prevent DbNode repetitions
 if self.entry_edge_id != self.direct_edge_id:
 path_entry = DbPath.objects.get(id=self.entry_edge_id).expand()[:-1]
 if self.exit_edge_id != self.direct_edge_id:
 path_exit = DbPath.objects.get(id=self.exit_edge_id).expand()[1:]

 return path_entry + path_direct + path_exit

attrdatatype_choice = (
 ('float', 'float'),
 ('int', 'int'),
 ('txt', 'txt'),
 ('bool', 'bool'),
 ('date', 'date'),
 ('json', 'json'),
 ('dict', 'dict'),
 ('list', 'list'),
 ('none', 'none'))

from aiida.common.exceptions import AiidaException

class DeserializationException(AiidaException):
 pass

def _deserialize_attribute(mainitem, subitems, sep, original_class=None,
 original_pk=None, lesserrors=False):
 """
 Deserialize a single attribute.

 :param mainitem: the main item (either the attribute itself for base
 types (None, string, ...) or the main item for lists and dicts.
 Must contain the 'key' key and also the following keys:
 datatype, tval, fval, ival, bval, dval.
 NOTE that a type check is not performed! tval is expected to be a string,
 dval a date, etc.
 :param subitems: must be a dictionary of dictionaries. In the top-level dictionary,
 the key must be the key of the attribute, stripped of all prefixes
 (i.e., if the mainitem has key 'a.b' and we pass subitems
 'a.b.0', 'a.b.1', 'a.b.1.c', their keys must be '0', '1', '1.c').
 It must be None if the value is not iterable (int, str,
 float, ...).
 It is an empty dictionary if there are no subitems.
 :param sep: a string, the separator between subfields (to separate the
 name of a dictionary from the keys it contains, for instance)
 :param original_class: if these elements come from a specific subclass
 of DbMultipleValueAttributeBaseClass, pass here the class (note: the class,
 not the instance!). This is used only in case the wrong number of elements
 is found in the raw data, to print a more meaningful message (if the class
 has a dbnode associated to it)
 :param original_pk: if the elements come from a specific subclass
 of DbMultipleValueAttributeBaseClass that has a dbnode associated to it,
 pass here the PK integer. This is used only in case the wrong number
 of elements is found in the raw data, to print a more meaningful message
 :param lesserrors: If set to True, in some cases where the content of the
 DB is not consistent but data is still recoverable,
 it will just log the message rather than raising
 an exception (e.g. if the number of elements of a dictionary is different
 from the number declared in the ival field).

 :return: the deserialized value
 :raise DeserializationError: if an error occurs
 """
 from aiida.utils.timezone import (
 is_naive, make_aware, get_current_timezone)
 import json

 from aiida.common import aiidalogger

 if mainitem['datatype'] == 'none':
 if subitems:
 raise DeserializationException("'{}' is of a base type, "
 "but has subitems!".format(mainitem.key))
 return None
 elif mainitem['datatype'] == 'bool':
 if subitems:
 raise DeserializationException("'{}' is of a base type, "
 "but has subitems!".format(mainitem.key))
 return mainitem['bval']
 elif mainitem['datatype'] == 'int':
 if subitems:
 raise DeserializationException("'{}' is of a base type, "
 "but has subitems!".format(mainitem.key))
 return mainitem['ival']
 elif mainitem['datatype'] == 'float':
 if subitems:
 raise DeserializationException("'{}' is of a base type, "
 "but has subitems!".format(mainitem.key))
 return mainitem['fval']
 elif mainitem['datatype'] == 'txt':
 if subitems:
 raise DeserializationException("'{}' is of a base type, "
 "but has subitems!".format(mainitem.key))
 return mainitem['tval']
 elif mainitem['datatype'] == 'date':
 if subitems:
 raise DeserializationException("'{}' is of a base type, "
 "but has subitems!".format(mainitem.key))
 if is_naive(mainitem['dval']):
 return make_aware(mainitem['dval'], get_current_timezone())
 else:
 return mainitem['dval']

 elif mainitem['datatype'] == 'list':
 # subitems contains all subitems, here I store only those of
 # deepness 1, i.e. if I have subitems '0', '1' and '1.c' I
 # store only '0' and '1'
 firstlevelsubdict = {k: v for k, v in subitems.iteritems()
 if sep not in k}

 # For checking, I verify the expected values
 expected_set = set(["{:d}".format(i)
 for i in range(mainitem['ival'])])
 received_set = set(firstlevelsubdict.keys())
 # If there are more entries than expected, but all expected
 # ones are there, I just issue an error but I do not stop.

 if not expected_set.issubset(received_set):
 if (original_class is not None and original_class._subspecifier_field_name is not None):
 subspecifier_string = "{}={} and ".format(
 original_class._subspecifier_field_name,
 original_pk)
 else:
 subspecifier_string = ""
 if original_class is None:
 sourcestr = "the data passed"
 else:
 sourcestr = original_class.__name__

 raise DeserializationException("Wrong list elements stored in {} for "
 "{}key='{}' ({} vs {})".format(
 sourcestr,
 subspecifier_string,
 mainitem['key'], expected_set, received_set))
 if expected_set != received_set:
 if (original_class is not None and
 original_class._subspecifier_field_name is not None):
 subspecifier_string = "{}={} and ".format(
 original_class._subspecifier_field_name,
 original_pk)
 else:
 subspecifier_string = ""
 if original_class is None:
 sourcestr = "the data passed"
 else:
 sourcestr = original_class.__name__

 msg = ("Wrong list elements stored in {} for "
 "{}key='{}' ({} vs {})".format(
 sourcestr,
 subspecifier_string,
 mainitem['key'], expected_set, received_set))
 if lesserrors:
 aiidalogger.error(msg)
 else:
 raise DeserializationException(msg)

 # I get the values in memory as a dictionary
 tempdict = {}
 for firstsubk, firstsubv in firstlevelsubdict.iteritems():
 # I call recursively the same function to get subitems
 newsubitems = {k[len(firstsubk) + len(sep):]: v
 for k, v in subitems.iteritems()
 if k.startswith(firstsubk + sep)}
 tempdict[firstsubk] = _deserialize_attribute(mainitem=firstsubv,
 subitems=newsubitems, sep=sep, original_class=original_class,
 original_pk=original_pk)

 # And then I put them in a list
 retlist = [tempdict["{:d}".format(i)] for i in range(mainitem['ival'])]
 return retlist
 elif mainitem['datatype'] == 'dict':
 # subitems contains all subitems, here I store only those of
 # deepness 1, i.e. if I have subitems '0', '1' and '1.c' I
 # store only '0' and '1'
 firstlevelsubdict = {k: v for k, v in subitems.iteritems()
 if sep not in k}

 if len(firstlevelsubdict) != mainitem['ival']:
 if (original_class is not None and
 original_class._subspecifier_field_name is not None):
 subspecifier_string = "{}={} and ".format(
 original_class._subspecifier_field_name,
 original_pk)
 else:
 subspecifier_string = ""
 if original_class is None:
 sourcestr = "the data passed"
 else:
 sourcestr = original_class.__name__

 msg = ("Wrong dict length stored in {} for "
 "{}key='{}' ({} vs {})".format(
 sourcestr,
 subspecifier_string,
 mainitem['key'], len(firstlevelsubdict),
 mainitem['ival']))
 if lesserrors:
 aiidalogger.error(msg)
 else:
 raise DeserializationException(msg)

 # I get the values in memory as a dictionary
 tempdict = {}
 for firstsubk, firstsubv in firstlevelsubdict.iteritems():
 # I call recursively the same function to get subitems
 newsubitems = {k[len(firstsubk) + len(sep):]: v
 for k, v in subitems.iteritems()
 if k.startswith(firstsubk + sep)}
 tempdict[firstsubk] = _deserialize_attribute(mainitem=firstsubv,
 subitems=newsubitems, sep=sep, original_class=original_class,
 original_pk=original_pk)

 return tempdict
 elif mainitem['datatype'] == 'json':
 try:
 return json.loads(mainitem['tval'])
 except ValueError:
 raise DeserializationException("Error in the content of the json field")
 else:
 raise DeserializationException("The type field '{}' is not recognized".format(
 mainitem['datatype']))

[docs]def deserialize_attributes(data, sep, original_class=None, original_pk=None):
 """
 Deserialize the attributes from the format internally stored in the DB
 to the actual format (dictionaries, lists, integers, ...

 :param data: must be a dictionary of dictionaries. In the top-level dictionary,
 the key must be the key of the attribute. The value must be a dictionary
 with the following keys: datatype, tval, fval, ival, bval, dval. Other
 keys are ignored.
 NOTE that a type check is not performed! tval is expected to be a string,
 dval a date, etc.
 :param sep: a string, the separator between subfields (to separate the
 name of a dictionary from the keys it contains, for instance)
 :param original_class: if these elements come from a specific subclass
 of DbMultipleValueAttributeBaseClass, pass here the class (note: the class,
 not the instance!). This is used only in case the wrong number of elements
 is found in the raw data, to print a more meaningful message (if the class
 has a dbnode associated to it)
 :param original_pk: if the elements come from a specific subclass
 of DbMultipleValueAttributeBaseClass that has a dbnode associated to it,
 pass here the PK integer. This is used only in case the wrong number
 of elements is found in the raw data, to print a more meaningful message

 :return: a dictionary, where for each entry the corresponding value is
 returned, deserialized back to lists, dictionaries, etc.
 Example: if ``data = {'a': {'datatype': "list", "ival": 2, ...},
 'a.0': {'datatype': "int", "ival": 2, ...},
 'a.1': {'datatype': "txt", "tval": "yy"}]``,
 it will return ``{"a": [2, "yy"]}``
 """
 from collections import defaultdict

 # I group results by zero-level entity
 found_mainitems = {}
 found_subitems = defaultdict(dict)
 for mainkey, descriptiondict in data.iteritems():
 prefix, thissep, postfix = mainkey.partition(sep)
 if thissep:
 found_subitems[prefix][postfix] = {k: v for k, v
 in descriptiondict.iteritems() if k != "key"}
 else:
 mainitem = descriptiondict.copy()
 mainitem['key'] = prefix
 found_mainitems[prefix] = mainitem

 # There can be mainitems without subitems, but there should not be subitems
 # without mainitmes.
 lone_subitems = set(found_subitems.keys()) - set(found_mainitems.keys())
 if lone_subitems:
 raise DeserializationException("Missing base keys for the following "
 "items: {}".format(",".join(lone_subitems)))

 # For each zero-level entity, I call the _deserialize_attribute function
 retval = {}
 for k, v in found_mainitems.iteritems():
 # Note: found_subitems[k] will return an empty dictionary it the
 # key does not exist, as it is a defaultdict
 retval[k] = _deserialize_attribute(mainitem=v,
 subitems=found_subitems[k], sep=sep, original_class=original_class,
 original_pk=original_pk)

 return retval

[docs]class DbMultipleValueAttributeBaseClass(m.Model):
 """
 Abstract base class for tables storing attribute + value data, of
 different data types (without any association to a Node).
 """
 from aiida.backends.djsite.utils import long_field_length

 key = m.CharField(max_length=long_field_length(), db_index=True, blank=False)
 datatype = m.CharField(max_length=10,
 default='none',
 choices=attrdatatype_choice, db_index=True)
 tval = m.TextField(default='', blank=True)
 fval = m.FloatField(default=None, null=True)
 ival = m.IntegerField(default=None, null=True)
 bval = m.NullBooleanField(default=None, null=True)
 dval = m.DateTimeField(default=None, null=True)

 # separator for subfields
 _sep = "."

 class Meta:
 abstract = True
 unique_together = (('key',),)

 # There are no subspecifiers. If instead you want to group attributes
 # (e.g. by node, as it is done in the DbAttributeBaseClass), specify here
 # the field name
 _subspecifier_field_name = None

 @property
 def subspecifiers_dict(self):
 """
 Return a dict to narrow down the query to only those matching also the
 subspecifier.
 """
 if self._subspecifier_field_name is None:
 return {}
 else:
 return {self._subspecifier_field_name:
 getattr(self, self._subspecifier_field_name)}

 @property
 def subspecifier_pk(self):
 """
 Return the subspecifier PK in the database (or None, if no
 subspecifier should be used)
 """
 if self._subspecifier_field_name is None:
 return None
 else:
 return getattr(self, self._subspecifier_field_name).pk

 @classmethod
[docs] def validate_key(cls, key):
 """
 Validate the key string to check if it is valid (e.g., if it does not
 contain the separator symbol.).

 :return: None if the key is valid
 :raise ValidationError: if the key is not valid
 """
 from aiida.common.exceptions import ValidationError

 if not isinstance(key, basestring):
 raise ValidationError("The key must be a string.")
 if not key:
 raise ValidationError("The key cannot be an empty string.")
 if cls._sep in key:
 raise ValidationError("The separator symbol '{}' cannot be present "
 "in the key of a {}.".format(
 cls._sep, cls.__name__))

 @classmethod
[docs] def set_value(cls, key, value, with_transaction=True,
 subspecifier_value=None, other_attribs={},
 stop_if_existing=False):
 """
 Set a new value in the DB, possibly associated to the given subspecifier.

 :note: This method also stored directly in the DB.

 :param key: a string with the key to create (must be a level-0
 attribute, that is it cannot contain the separator cls._sep).
 :param value: the value to store (a basic data type or a list or a dict)
 :param subspecifier_value: must be None if this class has no
 subspecifier set (e.g., the DbSetting class).
 Must be the value of the subspecifier (e.g., the dbnode) for classes
 that define it (e.g. DbAttribute and DbExtra)
 :param with_transaction: True if you want this function to be managed
 with transactions. Set to False if you already have a manual
 management of transactions in the block where you are calling this
 function (useful for speed improvements to avoid recursive
 transactions)
 :param other_attribs: a dictionary of other parameters, to store
 only on the level-zero attribute (e.g. for description in DbSetting).
 :param stop_if_existing: if True, it will stop with an
 UniquenessError exception if the new entry would violate an
 uniqueness constraint in the DB (same key, or same key+node,
 depending on the specific subclass). Otherwise, it will
 first delete the old value, if existent. The use with True is
 useful if you want to use a given attribute as a "locking" value,
 e.g. to avoid to perform an action twice on the same node.
 Note that, if you are using transactions, you may get the error
 only when the transaction is committed.
 """
 from django.db import transaction

 cls.validate_key(key)

 try:
 if with_transaction:
 sid = transaction.savepoint()

 # create_value returns a list of nodes to store
 to_store = cls.create_value(key, value,
 subspecifier_value=subspecifier_value,
 other_attribs=other_attribs)

 if to_store:
 if not stop_if_existing:
 # Delete the olf values if stop_if_existing is False,
 # otherwise don't delete them and hope they don't
 # exist. If they exist, I'll get an UniquenessError

 ## NOTE! Be careful in case the extra/attribute to
 ## store is not a simple attribute but a list or dict:
 ## like this, it should be ok because if we are
 ## overwriting an entry it will stop anyway to avoid
 ## to overwrite the main entry, but otherwise
 ## there is the risk that trailing pieces remain
 ## so in general it is good to recursively clean
 ## all sub-items.
 cls.del_value(key,
 subspecifier_value=subspecifier_value)
 cls.objects.bulk_create(to_store)

 if with_transaction:
 transaction.savepoint_commit(sid)
 except BaseException as e: # All exceptions including CTRL+C, ...
 from django.db.utils import IntegrityError
 from aiida.common.exceptions import UniquenessError

 if with_transaction:
 transaction.savepoint_rollback(sid)
 if isinstance(e, IntegrityError) and stop_if_existing:
 raise UniquenessError("Impossible to create the required "
 "entry "
 "in table '{}', "
 "another entry already exists and the creation would "
 "violate an uniqueness constraint.\nFurther details: "
 "{}".format(
 cls.__name__, e.message))
 raise

 @classmethod
[docs] def create_value(cls, key, value, subspecifier_value=None,
 other_attribs={}):
 """
 Create a new list of attributes, without storing them, associated
 with the current key/value pair (and to the given subspecifier,
 e.g. the DbNode for DbAttributes and DbExtras).

 :note: No hits are done on the DB, in particular no check is done
 on the existence of the given nodes.

 :param key: a string with the key to create (can contain the
 separator cls._sep if this is a sub-attribute: indeed, this
 function calls itself recursively)
 :param value: the value to store (a basic data type or a list or a dict)
 :param subspecifier_value: must be None if this class has no
 subspecifier set (e.g., the DbSetting class).
 Must be the value of the subspecifier (e.g., the dbnode) for classes
 that define it (e.g. DbAttribute and DbExtra)
 :param other_attribs: a dictionary of other parameters, to store
 only on the level-zero attribute (e.g. for description in DbSetting).

 :return: always a list of class instances; it is the user
 responsibility to store such entries (typically with a Django
 bulk_create() call).
 """
 import json
 import datetime
 from aiida.utils.timezone import is_naive, make_aware, get_current_timezone

 if cls._subspecifier_field_name is None:
 if subspecifier_value is not None:
 raise ValueError("You cannot specify a subspecifier value for "
 "class {} because it has no subspecifiers"
 "".format(cls.__name__))
 new_entry = cls(key=key, **other_attribs)
 else:
 if subspecifier_value is None:
 raise ValueError("You also have to specify a subspecifier value "
 "for class {} (the {})".format(cls.__name__,
 cls._subspecifier_field_name))
 further_params = other_attribs.copy()
 further_params.update({cls._subspecifier_field_name:
 subspecifier_value})
 new_entry = cls(key=key, **further_params)

 list_to_return = [new_entry]

 if value is None:
 new_entry.datatype = 'none'
 new_entry.bval = None
 new_entry.tval = ''
 new_entry.ival = None
 new_entry.fval = None
 new_entry.dval = None

 elif isinstance(value, bool):
 new_entry.datatype = 'bool'
 new_entry.bval = value
 new_entry.tval = ''
 new_entry.ival = None
 new_entry.fval = None
 new_entry.dval = None

 elif isinstance(value, (int, long)):
 new_entry.datatype = 'int'
 new_entry.ival = value
 new_entry.tval = ''
 new_entry.bval = None
 new_entry.fval = None
 new_entry.dval = None

 elif isinstance(value, float):
 new_entry.datatype = 'float'
 new_entry.fval = value
 new_entry.tval = ''
 new_entry.ival = None
 new_entry.bval = None
 new_entry.dval = None

 elif isinstance(value, basestring):
 new_entry.datatype = 'txt'
 new_entry.tval = value
 new_entry.bval = None
 new_entry.ival = None
 new_entry.fval = None
 new_entry.dval = None

 elif isinstance(value, datetime.datetime):

 # current timezone is taken from the settings file of django
 if is_naive(value):
 value_to_set = make_aware(value, get_current_timezone())
 else:
 value_to_set = value

 new_entry.datatype = 'date'
 # TODO: time-aware and time-naive datetime objects, see
 # https://docs.djangoproject.com/en/dev/topics/i18n/timezones/#naive-and-aware-datetime-objects
 new_entry.dval = value_to_set
 new_entry.tval = ''
 new_entry.bval = None
 new_entry.ival = None
 new_entry.fval = None

 elif isinstance(value, (list, tuple)):

 new_entry.datatype = 'list'
 new_entry.dval = None
 new_entry.tval = ''
 new_entry.bval = None
 new_entry.ival = len(value)
 new_entry.fval = None

 for i, subv in enumerate(value):
 # I do not need get_or_create here, because
 # above I deleted all children (and I
 # expect no concurrency)
 # NOTE: I do not pass other_attribs
 list_to_return.extend(cls.create_value(
 key=("{}{}{:d}".format(key, cls._sep, i)),
 value=subv,
 subspecifier_value=subspecifier_value))

 elif isinstance(value, dict):

 new_entry.datatype = 'dict'
 new_entry.dval = None
 new_entry.tval = ''
 new_entry.bval = None
 new_entry.ival = len(value)
 new_entry.fval = None

 for subk, subv in value.iteritems():
 cls.validate_key(subk)

 # I do not need get_or_create here, because
 # above I deleted all children (and I
 # expect no concurrency)
 # NOTE: I do not pass other_attribs
 list_to_return.extend(cls.create_value(
 key="{}{}{}".format(key, cls._sep, subk),
 value=subv,
 subspecifier_value=subspecifier_value))
 else:
 try:
 jsondata = json.dumps(value)
 except TypeError:
 raise ValueError("Unable to store the value: it must be "
 "either a basic datatype, or json-serializable")

 new_entry.datatype = 'json'
 new_entry.tval = jsondata
 new_entry.bval = None
 new_entry.ival = None
 new_entry.fval = None

 return list_to_return

 @classmethod
[docs] def get_query_dict(cls, value):
 """
 Return a dictionary that can be used in a django filter to query
 for a specific value. This takes care of checking the type of the
 input parameter 'value' and to convert it to the right query.

 :param value: The value that should be queried. Note: can only be
 base datatype, not a list or dict. For those, query directly for
 one of the sub-elements.

 :todo: see if we want to give the possibility to query for the existence
 of a (possibly empty) dictionary or list, of for their length.

 :note: this will of course not find a data if this was stored in the
 DB as a serialized JSON.

 :return: a dictionary to be used in the django .filter() method.
 For instance, if 'value' is a string, it will return the dictionary
 ``{'datatype': 'txt', 'tval': value}``.

 :raise: ValueError if value is not of a base datatype (string, integer,
 float, bool, None, or date)
 """
 import datetime
 from aiida.utils.timezone import (
 is_naive, make_aware, get_current_timezone)

 if value is None:
 return {'datatype': 'none'}
 elif isinstance(value, bool):
 return {'datatype': 'bool', 'bval': value}
 elif isinstance(value, (int, long)):
 return {'datatype': 'int', 'ival': value}
 elif isinstance(value, float):
 return {'datatype': 'float', 'fval': value}
 elif isinstance(value, basestring):
 return {'datatype': 'txt', 'tval': value}
 elif isinstance(value, datetime.datetime):
 # current timezone is taken from the settings file of django
 if is_naive(value):
 value_to_set = make_aware(value, get_current_timezone())
 else:
 value_to_set = value
 return {'datatype': 'date', 'dval': value_to_set}
 elif isinstance(value, list):
 raise ValueError("Lists are not supported for getting the "
 "query_dict")
 elif isinstance(value, dict):
 raise ValueError("Dicts are not supported for getting the "
 "query_dict")
 else:
 raise ValueError("Unsupported type for getting the "
 "query_dict, it is {}".format(str(type(value))))

[docs] def getvalue(self):
 """
 This can be called on a given row and will get the corresponding value,
 casting it correctly.
 """
 try:
 if self.datatype == 'list' or self.datatype == 'dict':
 prefix = "{}{}".format(self.key, self._sep)
 prefix_len = len(prefix)
 dballsubvalues = self.__class__.objects.filter(
 key__startswith=prefix,
 **self.subspecifiers_dict).values_list('key',
 'datatype', 'tval', 'fval',
 'ival', 'bval', 'dval')
 # Strip the FULL prefix and replace it with the simple
 # "attr" prefix
 data = {"attr.{}".format(_[0][prefix_len:]): {
 "datatype": _[1],
 "tval": _[2],
 "fval": _[3],
 "ival": _[4],
 "bval": _[5],
 "dval": _[6],
 } for _ in dballsubvalues
 }
 # for _ in dballsubvalues}
 # Append also the item itself
 data["attr"] = {
 # Replace the key (which may contain the separator) with the
 # simple "attr" key. In any case I do not need to return it!
 "key": "attr",
 "datatype": self.datatype,
 "tval": self.tval,
 "fval": self.fval,
 "ival": self.ival,
 "bval": self.bval,
 "dval": self.dval}
 return deserialize_attributes(data, sep=self._sep,
 original_class=self.__class__,
 original_pk=self.subspecifier_pk)['attr']
 else:
 data = {"attr": {
 # Replace the key (which may contain the separator) with the
 # simple "attr" key. In any case I do not need to return it!
 "key": "attr",
 "datatype": self.datatype,
 "tval": self.tval,
 "fval": self.fval,
 "ival": self.ival,
 "bval": self.bval,
 "dval": self.dval}}

 return deserialize_attributes(data, sep=self._sep,
 original_class=self.__class__,
 original_pk=self.subspecifier_pk)['attr']
 except DeserializationException as e:
 exc = DbContentError(e.message)
 exc.original_exception = e
 raise exc

 @classmethod
[docs] def del_value(cls, key, only_children=False, subspecifier_value=None):
 """
 Delete a value associated with the given key (if existing).

 :note: No exceptions are raised if no entry is found.

 :param key: the key to delete. Can contain the separator cls._sep if
 you want to delete a subkey.
 :param only_children: if True, delete only children and not the
 entry itself.
 :param subspecifier_value: must be None if this class has no
 subspecifier set (e.g., the DbSetting class).
 Must be the value of the subspecifier (e.g., the dbnode) for classes
 that define it (e.g. DbAttribute and DbExtra)
 """
 from django.db.models import Q

 if cls._subspecifier_field_name is None:
 if subspecifier_value is not None:
 raise ValueError("You cannot specify a subspecifier value for "
 "class {} because it has no subspecifiers"
 "".format(cls.__name__))
 subspecifiers_dict = {}
 else:
 if subspecifier_value is None:
 raise ValueError("You also have to specify a subspecifier value "
 "for class {} (the {})".format(cls.__name__,
 cls._subspecifier_field_name))
 subspecifiers_dict = {cls._subspecifier_field_name:
 subspecifier_value}

 query = Q(key__startswith="{parentkey}{sep}".format(
 parentkey=key, sep=cls._sep),
 **subspecifiers_dict)

 if not only_children:
 query.add(Q(key=key, **subspecifiers_dict), Q.OR)

 cls.objects.filter(query).delete()

@python_2_unicode_compatible
[docs]class DbAttributeBaseClass(DbMultipleValueAttributeBaseClass):
 """
 Abstract base class for tables storing element-attribute-value data.
 Element is the dbnode; attribute is the key name.
 Value is the specific value to store.

 This table had different SQL columns to store different types of data, and
 a datatype field to know the actual datatype.

 Moreover, this class unpacks dictionaries and lists when possible, so that
 it is possible to query inside recursive lists and dicts.
 """
 # In this way, the related name for the DbAttribute inherited class will be
 # 'dbattributes' and for 'dbextra' will be 'dbextras'
 # Moreover, automatically destroy attributes and extras if the parent
 # node is deleted
 dbnode = m.ForeignKey('DbNode', related_name='%(class)ss', on_delete=m.CASCADE)
 # max_length is required by MySql to have indexes and unique constraints

 _subspecifier_field_name = 'dbnode'

 class Meta:
 unique_together = (("dbnode", "key"))
 abstract = True

 @classmethod
[docs] def list_all_node_elements(cls, dbnode):
 """
 Return a django queryset with the attributes of the given node,
 only at deepness level zero (i.e., keys not containing the separator).
 """
 from django.db.models import Q

 # This node, and does not contain the separator
 # (=> show only level-zero entries)
 query = Q(dbnode=dbnode) & ~Q(key__contains=cls._sep)
 return cls.objects.filter(query)

 @classmethod
[docs] def get_value_for_node(cls, dbnode, key):
 """
 Get an attribute from the database for the given dbnode.

 :return: the value stored in the Db table, correctly converted
 to the right type.
 :raise AttributeError: if no key is found for the given dbnode
 """
 try:
 attr = cls.objects.get(dbnode=dbnode, key=key)
 except ObjectDoesNotExist:
 raise AttributeError("{} with key {} for node {} not found "
 "in db".format(cls.__name__, key, dbnode.pk))
 return attr.getvalue()

 @classmethod
[docs] def get_all_values_for_node(cls, dbnode):
 """
 Return a dictionary with all attributes for the given dbnode.

 :return: a dictionary where each key is a level-0 attribute
 stored in the Db table, correctly converted
 to the right type.
 """
 return cls.get_all_values_for_nodepk(dbnode.pk)

 @classmethod
[docs] def get_all_values_for_nodepk(cls, dbnodepk):
 """
 Return a dictionary with all attributes for the dbnode with given PK.

 :return: a dictionary where each key is a level-0 attribute
 stored in the Db table, correctly converted
 to the right type.
 """
 dballsubvalues = cls.objects.filter(dbnode__id=dbnodepk).values_list(
 'key', 'datatype', 'tval', 'fval',
 'ival', 'bval', 'dval')

 data = {_[0]: {
 "datatype": _[1],
 "tval": _[2],
 "fval": _[3],
 "ival": _[4],
 "bval": _[5],
 "dval": _[6],
 } for _ in dballsubvalues
 }
 try:
 return deserialize_attributes(data, sep=cls._sep,
 original_class=cls,
 original_pk=dbnodepk)
 except DeserializationException as e:
 exc = DbContentError(e.message)
 exc.original_exception = e
 raise exc

 @classmethod
 def reset_values_for_node(cls, dbnode, attributes, with_transaction=True,
 return_not_store=False):
 from django.db import transaction

 # cls.validate_key(key)

 nodes_to_store = []

 try:
 if with_transaction:
 sid = transaction.savepoint()

 if isinstance(dbnode, (int, long)):
 dbnode_node = DbNode(id=dbnode)
 else:
 dbnode_node = dbnode

 # create_value returns a list of nodes to store
 for k, v in attributes.iteritems():
 nodes_to_store.extend(
 cls.create_value(k, v,
 subspecifier_value=dbnode_node,
))

 if return_not_store:
 return nodes_to_store
 else:
 # Reset. For set, use also a filter for key__in=attributes.keys()
 cls.objects.filter(dbnode=dbnode_node).delete()

 if nodes_to_store:
 cls.objects.bulk_create(nodes_to_store)

 if with_transaction:
 transaction.savepoint_commit(sid)
 except:
 if with_transaction:
 transaction.savepoint_rollback(sid)
 raise

 @classmethod
[docs] def set_value_for_node(cls, dbnode, key, value, with_transaction=True,
 stop_if_existing=False):
 """
 This is the raw-level method that accesses the DB. No checks are done
 to prevent the user from (re)setting a valid key.
 To be used only internally.

 :todo: there may be some error on concurrent write;
 not checked in this unlucky case!

 :param dbnode: the dbnode for which the attribute should be stored;
 in an integer is passed, this is used as the PK of the dbnode,
 without any further check (for speed reasons)
 :param key: the key of the attribute to store; must be a level-zero
 attribute (i.e., no separators in the key)
 :param value: the value of the attribute to store
 :param with_transaction: if True (default), do this within a transaction,
 so that nothing gets stored if a subitem cannot be created.
 Otherwise, if this parameter is False, no transaction management
 is performed.
 :param stop_if_existing: if True, it will stop with an
 UniquenessError exception if the key already exists
 for the given node. Otherwise, it will
 first delete the old value, if existent. The use with True is
 useful if you want to use a given attribute as a "locking" value,
 e.g. to avoid to perform an action twice on the same node.
 Note that, if you are using transactions, you may get the error
 only when the transaction is committed.

 :raise ValueError: if the key contains the separator symbol used
 internally to unpack dictionaries and lists (defined in cls._sep).
 """
 if isinstance(dbnode, (int, long)):
 dbnode_node = DbNode(id=dbnode)
 else:
 dbnode_node = dbnode

 cls.set_value(key, value, with_transaction=with_transaction,
 subspecifier_value=dbnode_node,
 stop_if_existing=stop_if_existing)

 @classmethod
[docs] def del_value_for_node(cls, dbnode, key):
 """
 Delete an attribute from the database for the given dbnode.

 :note: no exception is raised if no attribute with the given key is
 found in the DB.

 :param dbnode: the dbnode for which you want to delete the key.
 :param key: the key to delete.
 """
 cls.del_value(key, subspecifier_value=dbnode)

 @classmethod
[docs] def has_key(cls, dbnode, key):
 """
 Return True if the given dbnode has an attribute with the given key,
 False otherwise.
 """
 return bool(cls.objects.filter(dbnode=dbnode, key=key))

 def __str__(self):
 return "[{} ({})].{} ({})".format(
 self.dbnode.get_simple_name(invalid_result="Unknown node"),
 self.dbnode.pk,
 self.key,
 self.datatype,)

@python_2_unicode_compatible
[docs]class DbSetting(DbMultipleValueAttributeBaseClass):
 """
 This will store generic settings that should be database-wide.
 """
 # I also add a description field for the variables
 description = m.TextField(blank=True)
 # Modification time of this attribute
 time = m.DateTimeField(auto_now=True, editable=False)

 def __str__(self):
 return "'{}'={}".format(self.key, self.getvalue())

[docs]class DbAttribute(DbAttributeBaseClass):
 """
 This table stores attributes that uniquely define the content of the
 node. Therefore, their modification corrupts the data.
 """
 pass

[docs]class DbExtra(DbAttributeBaseClass):
 """
 This table stores extra data, still in the key-value format,
 that the user can attach to a node.
 Therefore, their modification simply changes the user-defined data,
 but does not corrupt the node (it will still be loadable without errors).
 Could be useful to add "duplicate" information for easier querying, or
 for tagging nodes.
 """
 pass

[docs]class DbCalcState(m.Model):
 """
 Store the state of calculations.

 The advantage of a table (with uniqueness constraints) is that this
 disallows entering twice in the same state (e.g., retrieving twice).
 """
 from aiida.common.datastructures import calc_states
 # Delete states when deleting the calc, does not make sense to keep them
 dbnode = m.ForeignKey(DbNode, on_delete=m.CASCADE,
 related_name='dbstates')
 state = m.CharField(max_length=25,
 choices=tuple((_, _) for _ in calc_states),
 db_index=True)
 time = m.DateTimeField(default=timezone.now, editable=False)

 class Meta:
 unique_together = (("dbnode", "state"))

@python_2_unicode_compatible
[docs]class DbGroup(m.Model):
 """
 A group of nodes.

 Any group of nodes can be created, but some groups may have specific meaning
 if they satisfy specific rules (for instance, groups of UpdData objects are
 pseudopotential families - if no two pseudos are included for the same
 atomic element).
 """
 uuid = UUIDField(auto=True, version=AIIDANODES_UUID_VERSION)
 # max_length is required by MySql to have indexes and unique constraints
 name = m.CharField(max_length=255, db_index=True)
 # The type of group: a user group, a pseudopotential group,...
 # User groups have type equal to an empty string
 type = m.CharField(default="", max_length=255, db_index=True)
 dbnodes = m.ManyToManyField('DbNode', related_name='dbgroups')
 # Creation time
 time = m.DateTimeField(default=timezone.now, editable=False)
 description = m.TextField(blank=True)
 # The owner of the group, not of the calculations
 # On user deletion, remove his/her groups too (not the calcuations, only
 # the groups
 user = m.ForeignKey(AUTH_USER_MODEL, on_delete=m.CASCADE,
 related_name='dbgroups')

 class Meta:
 unique_together = (("name", "type"),)

 def __str__(self):
 if self.type:
 return '<DbGroup [type: {}] "{}">'.format(self.type, self.name)
 else:
 return '<DbGroup [user-defined] "{}">'.format(self.name)

@python_2_unicode_compatible
[docs]class DbComputer(m.Model):
 """
 Table of computers or clusters.

 Attributes:
 * name: A name to be used to refer to this computer. Must be unique.
 * hostname: Fully-qualified hostname of the host
 * transport_type: a string with a valid transport type

 Note: other things that may be set in the metadata:

 * mpirun command

 * num cores per node

 * max num cores

 * workdir: Full path of the aiida folder on the host. It can contain\
 the string {username} that will be substituted by the username\
 of the user on that machine.\
 The actual workdir is then obtained as\
 workdir.format(username=THE_ACTUAL_USERNAME)\
 Example: \
 workdir = "/scratch/{username}/aiida/"

 * allocate full node = True or False

 * ... (further limits per user etc.)

 """
 # TODO: understand if we want that this becomes simply another type of dbnode.

 uuid = UUIDField(auto=True, version=AIIDANODES_UUID_VERSION)
 name = m.CharField(max_length=255, unique=True, blank=False)
 hostname = m.CharField(max_length=255)
 description = m.TextField(blank=True)
 enabled = m.BooleanField(default=True)
 # TODO: next three fields should not be blank...
 transport_type = m.CharField(max_length=255)
 scheduler_type = m.CharField(max_length=255)
 transport_params = m.TextField(default="{}") # Will store a json
 metadata = m.TextField(default="{}") # Will store a json

 @classmethod
[docs] def get_dbcomputer(cls, computer):
 """
 Return a DbComputer from its name (or from another Computer or DbComputer instance)
 """
 from django.core.exceptions import ObjectDoesNotExist, MultipleObjectsReturned
 from aiida.common.exceptions import NotExistent
 from aiida.orm.computer import Computer

 if isinstance(computer, basestring):
 try:
 dbcomputer = DbComputer.objects.get(name=computer)
 except ObjectDoesNotExist:
 raise NotExistent("No computer found in the table of computers with "
 "the given name '{}'".format(computer))
 except MultipleObjectsReturned:
 raise DbContentError("There is more than one computer with name '{}', "
 "pass a Django Computer instance".format(computer))
 elif isinstance(computer, DbComputer):
 if computer.pk is None:
 raise ValueError("The computer instance you are passing has not been stored yet")
 dbcomputer = computer
 elif isinstance(computer, Computer):
 if computer.dbcomputer.pk is None:
 raise ValueError("The computer instance you are passing has not been stored yet")
 dbcomputer = computer.dbcomputer
 else:
 raise TypeError("Pass either a computer name, a DbComputer django instance or a Computer object")
 return dbcomputer

 def get_aiida_class(self):
 from aiida.orm.computer import Computer
 return Computer(dbcomputer=self)

 def get_workdir(self):
 import json

 try:
 metadata = json.loads(self.metadata)
 except ValueError:
 raise DbContentError(
 "Error while reading metadata for DbComputer {} ({})".format(
 self.name, self.hostname))

 try:
 return metadata['workdir']
 except KeyError:
 raise ConfigurationError('No workdir found for DbComputer {} '.format(
 self.name))

 def __str__(self):
 if self.enabled:
 return "{} ({})".format(self.name, self.hostname)
 else:
 return "{} ({}) [DISABLED]".format(self.name, self.hostname)

class RunningJob(m.Model):
calc = m.OneToOneField(DbNode,related_name='jobinfo') # OneToOneField implicitly sets unique=True
calc_state = m.CharField(max_length=64)
job_id = m.TextField(blank=True)
scheduler_state = m.CharField(max_length=64,blank=True)
Will store a json of the last JobInfo got from the scheduler
last_jobinfo = m.TextField(default='{}')

@python_2_unicode_compatible
[docs]class DbAuthInfo(m.Model):
 """
 Table that pairs aiida users and computers, with all required authentication
 information.
 """
 # Delete the DbAuthInfo if either the user or the computer are removed
 aiidauser = m.ForeignKey(AUTH_USER_MODEL, on_delete=m.CASCADE)
 dbcomputer = m.ForeignKey(DbComputer, on_delete=m.CASCADE)
 auth_params = m.TextField(default='{}') # Will store a json; contains mainly the remoteuser
 # and the private_key

 # The keys defined in the metadata of the DbAuthInfo will override the
 # keys with the same name defined in the DbComputer (using a dict.update()
 # call of python).
 metadata = m.TextField(default="{}") # Will store a json
 # Whether this computer is enabled (user-level enabling feature)
 enabled = m.BooleanField(default=True)

 class Meta:
 unique_together = (("aiidauser", "dbcomputer"),)

 def get_auth_params(self):
 import json

 try:
 return json.loads(self.auth_params)
 except ValueError:
 raise DbContentError(
 "Error while reading auth_params for authinfo, aiidauser={}, computer={}".format(
 self.aiidauser.email, self.dbcomputer.hostname))

 def set_auth_params(self, auth_params):
 import json

 # Raises ValueError if data is not JSON-serializable
 self.auth_params = json.dumps(auth_params)

 def get_workdir(self):
 import json

 try:
 metadata = json.loads(self.metadata)
 except ValueError:
 raise DbContentError(
 "Error while reading metadata for authinfo, aiidauser={}, computer={}".format(
 self.aiidauser.email, self.dbcomputer.hostname))

 try:
 return metadata['workdir']
 except KeyError:
 return self.dbcomputer.get_workdir()

 # a method of DbAuthInfo
[docs] def get_transport(self):
 """
 Given a computer and an aiida user (as entries of the DB) return a configured
 transport to connect to the computer.
 """
 from aiida.transport import TransportFactory
 from aiida.orm.computer import Computer

 try:
 ThisTransport = TransportFactory(self.dbcomputer.transport_type)
 except MissingPluginError as e:
 raise ConfigurationError('No transport found for {} [type {}], message: {}'.format(
 self.dbcomputer.hostname, self.dbcomputer.transport_type, e.message))

 params = dict(Computer(dbcomputer=self.dbcomputer).get_transport_params().items() +
 self.get_auth_params().items())
 return ThisTransport(machine=self.dbcomputer.hostname, **params)

 def __str__(self):
 if self.enabled:
 return "Authorization info for {} on {}".format(self.aiidauser.email, self.dbcomputer.name)
 else:
 return "Authorization info for {} on {} [DISABLED]".format(self.aiidauser.email, self.dbcomputer.name)

@python_2_unicode_compatible
[docs]class DbComment(m.Model):
 uuid = UUIDField(auto=True, version=AIIDANODES_UUID_VERSION)
 # Delete comments if the node is removed
 dbnode = m.ForeignKey(DbNode, related_name='dbcomments', on_delete=m.CASCADE)
 ctime = m.DateTimeField(default=timezone.now, editable=False)
 mtime = m.DateTimeField(auto_now=True, editable=False)
 # Delete the comments of a deleted user (TODO: check if this is a good policy)
 user = m.ForeignKey(AUTH_USER_MODEL, on_delete=m.CASCADE)
 content = m.TextField(blank=True)

 def __str__(self):
 return "DbComment for [{} {}] on {}".format(self.dbnode.get_simple_name(),
 self.dbnode.pk, timezone.localtime(self.ctime).strftime("%Y-%m-%d"))

@python_2_unicode_compatible
[docs]class DbLog(m.Model):
 # Creation time
 time = m.DateTimeField(default=timezone.now, editable=False)
 loggername = m.CharField(max_length=255, db_index=True)
 levelname = m.CharField(max_length=50, db_index=True)
 # A string to know what is the referred object (e.g. a Calculation,
 # or other)
 objname = m.CharField(max_length=255, blank=True, db_index=True)
 objpk = m.IntegerField(db_index=True, null=True) # It is not a ForeignKey
 # because it may be in different
 # tables
 message = m.TextField(blank=True)
 metadata = m.TextField(default="{}") # Will store a json

 def __str__(self):
 return "[Log: {} for {} {}] {}".format(self.levelname,
 self.objname, self.objpk, self.message)

 @classmethod
[docs] def add_from_logrecord(cls, record):
 """
 Add a new entry from a LogRecord (from the standard python
 logging facility). No exceptions are managed here.
 """
 import json

 objpk = record.__dict__.get('objpk', None)
 objname = record.__dict__.get('objname', None)

 # Filter: Do not store in DB if no objpk and objname is given
 if objpk is None or objname is None:
 return

 new_entry = cls(loggername=record.name,
 levelname=record.levelname,
 objname=objname,
 objpk=objpk,
 message=record.getMessage(),
 metadata=json.dumps(record.__dict__))
 new_entry.save()

[docs]class DbLock(m.Model):
 key = m.CharField(max_length=255, primary_key=True)
 creation = m.DateTimeField(default=timezone.now, editable=False)
 timeout = m.IntegerField(editable=False)
 owner = m.CharField(max_length=255, blank=False)

@python_2_unicode_compatible
[docs]class DbWorkflow(m.Model):
 from aiida.common.datastructures import wf_states

 uuid = UUIDField(auto=True, version=AIIDANODES_UUID_VERSION)
 ctime = m.DateTimeField(default=timezone.now, editable=False)
 mtime = m.DateTimeField(auto_now=True, editable=False)
 user = m.ForeignKey(AUTH_USER_MODEL, on_delete=m.PROTECT)
 label = m.CharField(max_length=255, db_index=True, blank=True)
 description = m.TextField(blank=True)
 # still to implement, similarly to the DbNode class
 nodeversion = m.IntegerField(default=1, editable=False)
 # to be implemented similarly to the DbNode class
 lastsyncedversion = m.IntegerField(default=0, editable=False)
 state = m.CharField(max_length=255, choices=zip(list(wf_states), list(wf_states)), default=wf_states.INITIALIZED)
 report = m.TextField(blank=True)
 # File variables, script is the complete dump of the workflow python script
 module = m.TextField(blank=False)
 module_class = m.TextField(blank=False)
 script_path = m.TextField(blank=False)
 script_md5 = m.CharField(max_length=255, blank=False)

 objects = m.Manager()
 # Return aiida Node instances or their subclasses instead of DbNode instances
 aiidaobjects = AiidaObjectManager()

[docs] def get_aiida_class(self):
 """
 Return the corresponding aiida instance of class aiida.worflow
 """
 from aiida.orm.workflow import Workflow

 return Workflow.get_subclass_from_dbnode(self)

 def set_state(self, _state):
 self.state = _state;
 self.save()

 def set_script_md5(self, _md5):

 self.script_md5 = _md5
 self.save()

 def add_data(self, dict, d_type):
 try:
 for k in dict.keys():
 p, create = self.data.get_or_create(name=k, data_type=d_type)
 p.set_value(dict[k])
 except Exception as e:
 raise

 def get_data(self, d_type):
 try:
 dict = {}
 for p in self.data.filter(parent=self, data_type=d_type):
 dict[p.name] = p.get_value()
 return dict
 except Exception as e:
 raise

 def add_parameters(self, dict, force=False):
 from aiida.common.datastructures import wf_states, wf_data_types

 if not self.state == wf_states.INITIALIZED and not force:
 raise ValueError("Cannot add initial parameters to an already initialized workflow")

 self.add_data(dict, wf_data_types.PARAMETER)

 def add_parameter(self, name, value):
 self.add_parameters({name: value})

 def get_parameters(self):
 from aiida.common.datastructures import wf_data_types

 return self.get_data(wf_data_types.PARAMETER)

 def get_parameter(self, name):
 res = self.get_parameters()
 if name in res:
 return res[name]
 else:
 raise ValueError("Error retrieving results: {0}".format(name))

 def add_results(self, dict):
 from aiida.common.datastructures import wf_data_types

 self.add_data(dict, wf_data_types.RESULT)

 def add_result(self, name, value):
 self.add_results({name: value})

 def get_results(self):
 from aiida.common.datastructures import wf_data_types

 return self.get_data(wf_data_types.RESULT)

 def get_result(self, name):
 res = self.get_results()
 if name in res:
 return res[name]
 else:
 raise ValueError("Error retrieving results: {0}".format(name))

 def add_attributes(self, dict):
 from aiida.common.datastructures import wf_data_types

 self.add_data(dict, wf_data_types.ATTRIBUTE)

 def add_attribute(self, name, value):
 self.add_attributes({name: value})

 def get_attributes(self):
 from aiida.common.datastructures import wf_data_types

 return self.get_data(wf_data_types.ATTRIBUTE)

 def get_attribute(self, name):
 res = self.get_attributes()
 if name in res:
 return res[name]
 else:
 raise ValueError("Error retrieving results: {0}".format(name))

 def clear_report(self):
 self.report = None
 self.save()

 def append_to_report(self, _text):
 from aiida.utils.timezone import utc
 import datetime

 now = datetime.datetime.utcnow().replace(tzinfo=utc)
 self.report += str(now) + "] " + _text + "\n";
 self.save()

 def get_calculations(self):
 from aiida.orm import JobCalculation

 return JobCalculation.query(workflow_step=self.steps)

 def get_sub_workflows(self):
 return DbWorkflow.objects.filter(parent_workflow_step=self.steps.all())

[docs] def is_subworkflow(self):
 """
 Return True if this is a subworkflow, False if it is a root workflow,
 launched by the user.
 """
 return len(self.parent_workflow_step.all()) > 0

 def finish(self):
 from aiida.common.datastructures import wf_states

 self.state = wf_states.FINISHED

 def __str__(self):
 simplename = self.module_class
 # node pk + type
 if self.label:
 return "{} workflow [{}]: {}".format(simplename, self.pk, self.label)
 else:
 return "{} workflow [{}]".format(simplename, self.pk)

@python_2_unicode_compatible
[docs]class DbWorkflowData(m.Model):
 from aiida.common.datastructures import wf_data_types, wf_data_value_types

 parent = m.ForeignKey(DbWorkflow, related_name='data')
 name = m.CharField(max_length=255, blank=False)
 time = m.DateTimeField(default=timezone.now, editable=False)
 data_type = m.CharField(max_length=255,
 blank=False, default=wf_data_types.PARAMETER)
 value_type = m.CharField(max_length=255, blank=False,
 default=wf_data_value_types.NONE)
 json_value = m.TextField(blank=True)
 aiida_obj = m.ForeignKey(DbNode, blank=True, null=True)

 class Meta:
 unique_together = (("parent", "name", "data_type"))

 def set_value(self, arg):
 from aiida.orm.node import Node
 from aiida.common.datastructures import wf_data_value_types
 import json

 try:
 if isinstance(arg, Node) or issubclass(arg.__class__, Node):
 if arg.pk is None:
 raise ValueError("Cannot add an unstored node as an attribute of a Workflow!")
 self.aiida_obj = arg.dbnode
 self.value_type = wf_data_value_types.AIIDA
 self.save()
 else:
 self.json_value = json.dumps(arg)
 self.value_type = wf_data_value_types.JSON
 self.save()
 except:
 raise ValueError("Cannot set the parameter {}".format(self.name))

 def get_value(self):
 import json
 from aiida.common.datastructures import wf_data_value_types

 if self.value_type == wf_data_value_types.JSON:
 return json.loads(self.json_value)
 elif self.value_type == wf_data_value_types.AIIDA:
 return self.aiida_obj.get_aiida_class()
 elif self.value_type == wf_data_value_types.NONE:
 return None
 else:
 raise ValueError("Cannot rebuild the parameter {}".format(self.name))

 def __str__(self):
 return "Data for workflow {} [{}]: {}".format(
 self.parent.module_class, self.parent.pk, self.name)

@python_2_unicode_compatible
[docs]class DbWorkflowStep(m.Model):
 from aiida.common.datastructures import wf_states, wf_default_call

 parent = m.ForeignKey(DbWorkflow, related_name='steps')
 name = m.CharField(max_length=255, blank=False)
 user = m.ForeignKey(AUTH_USER_MODEL, on_delete=m.PROTECT)
 time = m.DateTimeField(default=timezone.now, editable=False)
 nextcall = m.CharField(max_length=255, blank=False,
 default=wf_default_call)
 calculations = m.ManyToManyField(DbNode, symmetrical=False,
 related_name="workflow_step")
 sub_workflows = m.ManyToManyField(DbWorkflow, symmetrical=False,
 related_name="parent_workflow_step")
 state = m.CharField(max_length=255,
 choices=zip(list(wf_states), list(wf_states)),
 default=wf_states.CREATED)

 class Meta:
 unique_together = (("parent", "name"))

 def add_calculation(self, step_calculation):
 from aiida.orm import JobCalculation

 if (not isinstance(step_calculation, JobCalculation)):
 raise ValueError("Cannot add a non-Calculation object to a workflow step")

 try:
 self.calculations.add(step_calculation)
 except:
 raise ValueError("Error adding calculation to step")

 def get_calculations(self, state=None):
 from aiida.orm import JobCalculation

 if (state == None):
 return JobCalculation.query(workflow_step=self)
 else:
 return JobCalculation.query(workflow_step=self).filter(
 dbattributes__key="state", dbattributes__tval=state)

 def remove_calculations(self):
 self.calculations.all().delete()

 def add_sub_workflow(self, sub_wf):
 from aiida.orm.workflow import Workflow

 if (not issubclass(sub_wf.__class__, Workflow) and not isinstance(sub_wf, Workflow)):
 raise ValueError("Cannot add a workflow not of type Workflow")
 try:
 self.sub_workflows.add(sub_wf.dbworkflowinstance)
 except:
 raise ValueError("Error adding calculation to step")

 def get_sub_workflows(self):
 return self.sub_workflows(manager='aiidaobjects').all()

 def remove_sub_workflows(self):
 self.sub_workflows.all().delete()

 def is_finished(self):
 from aiida.common.datastructures import wf_states

 return self.state == wf_states.FINISHED

 def set_nextcall(self, _nextcall):
 self.nextcall = _nextcall
 self.save()

 def set_state(self, _state):
 self.state = _state;
 self.save()

 def reinitialize(self):
 from aiida.common.datastructures import wf_states

 self.set_state(wf_states.INITIALIZED)

 def finish(self):
 from aiida.common.datastructures import wf_states

 self.set_state(wf_states.FINISHED)

 def __str__(self):
 return "Step {} for workflow {} [{}]".format(self.name,
 self.parent.module_class, self.parent.pk)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/backends/djsite/utils.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.backends.djsite.utils

-*- coding: utf-8 -*-

import logging
import os

import django

from aiida.utils.logger import get_dblogger_extra

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

def load_dbenv(process=None, profile=None):
 """
 Load the database environment (Django) and perform some checks.

 :param process: the process that is calling this command ('verdi', or
 'daemon')
 :param profile: the string with the profile to use. If not specified,
 use the default one specified in the AiiDA configuration file.
 """
 _load_dbenv_noschemacheck(process, profile)
 # Check schema version and the existence of the needed tables
 check_schema_version()

def _load_dbenv_noschemacheck(process, profile):
 """
 Load the database environment (Django) WITHOUT CHECKING THE SCHEMA VERSION.
 :param process: the process that is calling this command ('verdi', or
 'daemon')
 :param profile: the string with the profile to use. If not specified,
 use the default one specified in the AiiDA configuration file.

 This should ONLY be used internally, inside load_dbenv, and for schema
 migrations. DO NOT USE OTHERWISE!
 """
 # This function does not use process and profile because they are read
 # from global variables (set before by load_profile) inside the
 # djsite.settings.settings module.
 os.environ['DJANGO_SETTINGS_MODULE'] = 'aiida.backends.djsite.settings.settings'
 django.setup()

class DBLogHandler(logging.Handler):
 def emit(self, record):
 from django.core.exceptions import ImproperlyConfigured

 try:
 from aiida.backends.djsite.db.models import DbLog

 DbLog.add_from_logrecord(record)

 except ImproperlyConfigured:
 # Probably, the logger was called without the
 # Django settings module loaded. Then,
 # This ignore should be a no-op.
 pass
 except Exception:
 # To avoid loops with the error handler, I just print.
 # Hopefully, though, this should not happen!
 import traceback

 traceback.print_exc()

def get_log_messages(obj):
 from aiida.backends.djsite.db.models import DbLog
 import json

 extra = get_dblogger_extra(obj)
 # convert to list, too
 log_messages = list(DbLog.objects.filter(**extra).order_by('time').values(
 'loggername', 'levelname', 'message', 'metadata', 'time'))

 # deserialize metadata
 for log in log_messages:
 log.update({'metadata': json.loads(log['metadata'])})

 return log_messages

def get_daemon_user():
 """
 Return the username (email) of the user that should run the daemon,
 or the default AiiDA user in case no explicit configuration is found
 in the DbSetting table.
 """
 from aiida.backends.djsite.globalsettings import get_global_setting
 from aiida.common.setup import DEFAULT_AIIDA_USER

 try:
 return get_global_setting('daemon|user')
 except KeyError:
 return DEFAULT_AIIDA_USER

def set_daemon_user(user_email):
 """
 Set the username (email) of the user that is allowed to run the daemon.
 """
 from aiida.backends.djsite.globalsettings import set_global_setting

 set_global_setting("daemon|user", user_email,
 description="The only user that is allowed to run the "
 "AiiDA daemon on this DB instance")

_aiida_autouser_cache = None

def get_automatic_user():
 """
 Return the default user for this installation of AiiDA.
 """
 global _aiida_autouser_cache

 if _aiida_autouser_cache is not None:
 return _aiida_autouser_cache

 from django.core.exceptions import ObjectDoesNotExist
 from aiida.backends.djsite.db.models import DbUser
 from aiida.common.exceptions import ConfigurationError
 from aiida.common.utils import get_configured_user_email

 email = get_configured_user_email()

 try:
 _aiida_autouser_cache = DbUser.objects.get(email=email)
 return _aiida_autouser_cache
 except ObjectDoesNotExist:
 raise ConfigurationError("No aiida user with email {}".format(
 email))

def long_field_length():
 """
 Return the length of "long" fields.
 This is used, for instance, for the 'key' field of attributes.
 This returns 1024 typically, but it returns 255 if the backend is mysql.

 :note: Call this function only AFTER having called load_dbenv!
 """
 # One should not load directly settings because there are checks inside
 # for the current profile. However, this function is going to be called
 # only after having loaded load_dbenv, so there should be no problem
 from django.conf import settings

 if 'mysql' in settings.DATABASES['default']['ENGINE']:
 return 255
 else:
 return 1024

def check_schema_version():
 """
 Check if the version stored in the database is the same of the version
 of the code.

 :note: if the DbSetting table does not exist, this function does not
 fail. The reason is to avoid to have problems before running the first
 migrate call.

 :note: if no version is found, the version is set to the version of the
 code. This is useful to have the code automatically set the DB version
 at the first code execution.

 :raise ConfigurationError: if the two schema versions do not match.
 Otherwise, just return.
 """
 import aiida.backends.djsite.db.models
 from aiida.backends.utils import (
 get_current_profile, set_db_schema_version, get_db_schema_version)
 from django.db import connection
 from aiida.common.exceptions import ConfigurationError

 # Do not do anything if the table does not exist yet
 if 'db_dbsetting' not in connection.introspection.table_names():
 return

 code_schema_version = aiida.backends.djsite.db.models.SCHEMA_VERSION
 db_schema_version = get_db_schema_version()

 if db_schema_version is None:
 # No code schema defined yet, I set it to the code version
 set_db_schema_version(code_schema_version)
 db_schema_version = get_db_schema_version()

 if code_schema_version != db_schema_version:
 raise ConfigurationError(
 "The code schema version is {}, but the version stored in the "
 "database (DbSetting table) is {}, stopping.\n"
 "To migrate to latest version, go to aiida.backends.djsite and "
 "run:\nverdi daemon stop\n python manage.py --aiida-profile={} migrate".
 format(code_schema_version, db_schema_version,
 get_current_profile())
)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/daemon/execmanager.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.daemon.execmanager

-*- coding: utf-8 -*-
"""
This file contains the main routines to submit, check and retrieve calculation
results. These are general and contain only the main logic; where appropriate,
the routines make reference to the suitable plugins for all
plugin-specific operations.
"""
from aiida.common.datastructures import calc_states
from aiida.scheduler.datastructures import job_states
from aiida.common.exceptions import (
 AuthenticationError,
 ConfigurationError,
 ModificationNotAllowed,
)
from aiida.common import aiidalogger
from aiida.common.links import LinkType
from aiida.orm import load_node

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

execlogger = aiidalogger.getChild('execmanager')

[docs]def update_running_calcs_status(authinfo):
 """
 Update the states of calculations in WITHSCHEDULER status belonging
 to user and machine as defined in the 'dbauthinfo' table.
 """
 from aiida.orm import JobCalculation, Computer
 from aiida.scheduler.datastructures import JobInfo
 from aiida.utils.logger import get_dblogger_extra

 if not authinfo.enabled:
 return

 execlogger.debug("Updating running calc status for user {} "
 "and machine {}".format(
 authinfo.aiidauser.email, authinfo.dbcomputer.name))

 # This returns an iterator over aiida JobCalculation objects
 calcs_to_inquire = list(JobCalculation._get_all_with_state(
 state=calc_states.WITHSCHEDULER,
 computer=authinfo.dbcomputer,
 user=authinfo.aiidauser)
)

 # NOTE: no further check is done that machine and
 # aiidauser are correct for each calc in calcs
 s = Computer(dbcomputer=authinfo.dbcomputer).get_scheduler()
 t = authinfo.get_transport()

 computed = []

 # I avoid to open an ssh connection if there are
 # no calcs with state WITHSCHEDULER
 if len(calcs_to_inquire):
 jobids_to_inquire = [str(c.get_job_id()) for c in calcs_to_inquire]

 # Open connection
 with t:
 s.set_transport(t)
 # TODO: Check if we are ok with filtering by job (to make this work,
 # I had to remove the check on the retval for getJobs,
 # because if the job has computed and is not in the output of
 # qstat, it gives a nonzero retval)

 # TODO: catch SchedulerError exception and do something
 # sensible (at least, skip this computer but continue with
 # following ones, and set a counter; set calculations to
 # UNKNOWN after a while?
 if s.get_feature('can_query_by_user'):
 found_jobs = s.getJobs(user="$USER", as_dict=True)
 else:
 found_jobs = s.getJobs(jobs=jobids_to_inquire, as_dict=True)

 # I update the status of jobs

 for c in calcs_to_inquire:
 try:
 logger_extra = get_dblogger_extra(c)
 t._set_logger_extra(logger_extra)

 jobid = c.get_job_id()
 if jobid is None:
 execlogger.error("JobCalculation {} is WITHSCHEDULER "
 "but no job id was found!".format(
 c.pk), extra=logger_extra)
 continue

 # I check if the calculation to be checked (c)
 # is in the output of qstat
 if jobid in found_jobs:
 # jobinfo: the information returned by
 # qstat for this job
 jobinfo = found_jobs[jobid]
 execlogger.debug("Inquirying calculation {} (jobid "
 "{}): it has job_state={}".format(
 c.pk, jobid, jobinfo.job_state), extra=logger_extra)
 # For the moment, FAILED is not defined
 if jobinfo.job_state in [job_states.DONE]: # , job_states.FAILED]:
 computed.append(c)
 try:
 c._set_state(calc_states.COMPUTED)
 except ModificationNotAllowed:
 # Someone already set it, just skip
 pass

 ## Do not set the WITHSCHEDULER state multiple times,
 ## this would raise a ModificationNotAllowed
 # else:
 # c._set_state(calc_states.WITHSCHEDULER)

 c._set_scheduler_state(jobinfo.job_state)

 c._set_last_jobinfo(jobinfo)
 else:
 execlogger.debug("Inquirying calculation {} (jobid "
 "{}): not found, assuming "
 "job_state={}".format(
 c.pk, jobid, job_states.DONE), extra=logger_extra)

 # calculation c is not found in the output of qstat
 computed.append(c)
 c._set_scheduler_state(job_states.DONE)
 except Exception as e:
 # TODO: implement a counter, after N retrials
 # set it to a status that
 # requires the user intervention
 execlogger.warning(
 "There was an exception for "
 "calculation {} ({}): {}".format(
 c.pk, e.__class__.__name__, e.message
), extra=logger_extra)
 continue

 for c in computed:
 try:
 logger_extra = get_dblogger_extra(c)
 try:
 detailed_jobinfo = s.get_detailed_jobinfo(
 jobid=c.get_job_id())
 except NotImplementedError:
 detailed_jobinfo = (
 u"AiiDA MESSAGE: This scheduler does not implement "
 u"the routine get_detailed_jobinfo to retrieve "
 u"the information on "
 u"a job after it has finished.")
 last_jobinfo = c._get_last_jobinfo()
 if last_jobinfo is None:
 last_jobinfo = JobInfo()
 last_jobinfo.job_id = c.get_job_id()
 last_jobinfo.job_state = job_states.DONE
 last_jobinfo.detailedJobinfo = detailed_jobinfo
 c._set_last_jobinfo(last_jobinfo)
 except Exception as e:
 execlogger.warning("There was an exception while "
 "retrieving the detailed jobinfo "
 "for calculation {} ({}): {}".format(
 c.pk, e.__class__.__name__, e.message),
 extra=logger_extra)
 continue
 finally:
 # Set the state to COMPUTED as the very last thing
 # of this routine; no further change should be done after
 # this, so that in general the retriever can just
 # poll for this state, if we want to.
 try:
 c._set_state(calc_states.COMPUTED)
 except ModificationNotAllowed:
 # Someone already set it, just skip
 pass

 return computed

[docs]def retrieve_jobs():
 from aiida.orm import JobCalculation, Computer
 from aiida.backends.utils import get_authinfo

 # I create a unique set of pairs (computer, aiidauser)
 computers_users_to_check = list(
 JobCalculation._get_all_with_state(
 state=calc_states.COMPUTED,
 only_computer_user_pairs=True,
 only_enabled=True)
)

 for computer, aiidauser in computers_users_to_check:
 execlogger.debug("({},{}) pair to check".format(
 aiidauser.email, computer.name))
 try:
 authinfo = get_authinfo(computer.dbcomputer, aiidauser._dbuser)
 retrieve_computed_for_authinfo(authinfo)
 except Exception as e:
 msg = ("Error while retrieving calculation status for "
 "aiidauser={} on computer={}, "
 "error type is {}, error message: {}".format(
 aiidauser.email,
 computer.name,
 e.__class__.__name__, e.message))
 execlogger.error(msg)
 # Continue with next computer
 continue

in daemon
[docs]def update_jobs():
 """
 calls an update for each set of pairs (machine, aiidauser)
 """
 from aiida.orm import JobCalculation, Computer, User
 from aiida.backends.utils import get_authinfo

 # I create a unique set of pairs (computer, aiidauser)
 computers_users_to_check = list(
 JobCalculation._get_all_with_state(
 state=calc_states.WITHSCHEDULER,
 only_computer_user_pairs=True,
 only_enabled=True
)
)

 for computer, aiidauser in computers_users_to_check:

 execlogger.debug("({},{}) pair to check".format(
 aiidauser.email, computer.name))

 try:
 authinfo = get_authinfo(computer.dbcomputer, aiidauser._dbuser)
 computed_calcs = update_running_calcs_status(authinfo)
 except Exception as e:
 msg = ("Error while updating calculation status "
 "for aiidauser={} on computer={}, "
 "error type is {}, error message: {}".format(
 aiidauser.email,
 computer.name,
 e.__class__.__name__, e.message))
 execlogger.error(msg)
 # Continue with next computer
 continue

[docs]def submit_jobs():
 """
 Submit all jobs in the TOSUBMIT state.
 """
 from aiida.orm import JobCalculation, Computer, User
 from aiida.utils.logger import get_dblogger_extra
 from aiida.backends.utils import get_authinfo

 computers_users_to_check = list(JobCalculation._get_all_with_state(
 state=calc_states.TOSUBMIT,
 only_computer_user_pairs=True,
 only_enabled=True
)
)

 for computer, aiidauser in computers_users_to_check:
 #~ user = User.search_for_users(id=dbuser_id)
 #~ computer = Computer.get(dbcomputer_id)
 execlogger.debug("({},{}) pair to submit".format(
 aiidauser.email, computer.name))

 try:
 try:
 authinfo = get_authinfo(computer.dbcomputer, aiidauser._dbuser)
 except AuthenticationError:
 # TODO!!
 # Put each calculation in the SUBMISSIONFAILED state because
 # I do not have AuthInfo to submit them
 calcs_to_inquire = JobCalculation._get_all_with_state(
 state=calc_states.TOSUBMIT,
 computer=computer, user=aiidauser)
 for calc in calcs_to_inquire:
 try:
 calc._set_state(calc_states.SUBMISSIONFAILED)
 except ModificationNotAllowed:
 # Someone already set it, just skip
 pass
 logger_extra = get_dblogger_extra(calc)
 execlogger.error("Submission of calc {} failed, "
 "computer pk= {} ({}) is not configured "
 "for aiidauser {}".format(
 calc.pk, computer.pk, computer.get_name(),
 aiidauser.email),
 extra=logger_extra)
 # Go to the next (dbcomputer,aiidauser) pair
 continue

 submitted_calcs = submit_jobs_with_authinfo(authinfo)
 except Exception as e:
 import traceback

 msg = ("Error while submitting jobs "
 "for aiidauser={} on computer={}, "
 "error type is {}, traceback: {}".format(
 aiidauser.email,
 computer.name,
 e.__class__.__name__, traceback.format_exc()))
 print msg
 execlogger.error(msg)
 # Continue with next computer
 continue

[docs]def submit_jobs_with_authinfo(authinfo):
 """
 Submit jobs in TOSUBMIT status belonging
 to user and machine as defined in the 'dbauthinfo' table.
 """
 from aiida.orm import JobCalculation
 from aiida.utils.logger import get_dblogger_extra

 if not authinfo.enabled:
 return

 execlogger.debug("Submitting jobs for user {} "
 "and machine {}".format(
 authinfo.aiidauser.email, authinfo.dbcomputer.name))

 # This returns an iterator over aiida JobCalculation objects
 calcs_to_inquire = list(JobCalculation._get_all_with_state(
 state=calc_states.TOSUBMIT,
 computer=authinfo.dbcomputer,
 user=authinfo.aiidauser))

 # I avoid to open an ssh connection if there are
 # no calcs with state WITHSCHEDULER
 if len(calcs_to_inquire):
 # Open connection
 try:
 # I do it here so that the transport is opened only once per computer
 with authinfo.get_transport() as t:
 for c in calcs_to_inquire:
 logger_extra = get_dblogger_extra(c)
 t._set_logger_extra(logger_extra)

 try:
 submit_calc(calc=c, authinfo=authinfo, transport=t)
 except Exception as e:
 # TODO: implement a counter, after N retrials
 # set it to a status that
 # requires the user intervention
 execlogger.warning("There was an exception for "
 "calculation {} ({}): {}".format(
 c.pk, e.__class__.__name__, e.message))
 # I just proceed to the next calculation
 continue
 # Catch exceptions also at this level (this happens only if there is
 # a problem opening the transport in the 'with t' statement,
 # because any other exception is caught and skipped above
 except Exception as e:
 import traceback
 from aiida.utils.logger import get_dblogger_extra

 for calc in calcs_to_inquire:
 logger_extra = get_dblogger_extra(calc)
 try:
 calc._set_state(calc_states.SUBMISSIONFAILED)
 except ModificationNotAllowed:
 # Someone already set it, just skip
 pass

 execlogger.error("Submission of calc {} failed, check also the "
 "log file! Traceback: {}".format(calc.pk,
 traceback.format_exc()),
 extra=logger_extra)
 raise

[docs]def submit_calc(calc, authinfo, transport=None):
 """
 Submit a calculation

 :note: if no transport is passed, a new transport is opened and then
 closed within this function. If you want to use an already opened
 transport, pass it as further parameter. In this case, the transport
 has to be already open, and must coincide with the transport of the
 the computer defined by the authinfo.

 :param calc: the calculation to submit
 (an instance of the aiida.orm.JobCalculation class)
 :param authinfo: the authinfo for this calculation.
 :param transport: if passed, must be an already opened transport. No checks
 are done on the consistency of the given transport with the transport
 of the computer defined in the authinfo.
 """
 from aiida.orm import Code, Computer
 from aiida.common.folders import SandboxFolder
 from aiida.common.exceptions import (
 InputValidationError)
 from aiida.orm.data.remote import RemoteData
 from aiida.utils.logger import get_dblogger_extra

 if not authinfo.enabled:
 return

 logger_extra = get_dblogger_extra(calc)

 if transport is None:
 t = authinfo.get_transport()
 must_open_t = True
 else:
 t = transport
 must_open_t = False

 t._set_logger_extra(logger_extra)

 if calc._has_cached_links():
 raise ValueError("Cannot submit calculation {} because it has "
 "cached input links! If you "
 "just want to test the submission, use the "
 "test_submit() method, otherwise store all links"
 "first".format(calc.pk))

 # Double check, in the case the calculation was 'killed' (and therefore
 # put in the 'FAILED' state) in the meantime
 # Do it as near as possible to the state change below (it would be
 # even better to do it with some sort of transaction)
 if calc.get_state() != calc_states.TOSUBMIT:
 raise ValueError("Can only submit calculations with state=TOSUBMIT! "
 "(state of calc {} is {} instead)".format(calc.pk,
 calc.get_state()))
 # I start to submit the calculation: I set the state
 try:
 calc._set_state(calc_states.SUBMITTING)
 except ModificationNotAllowed:
 raise ValueError("The calculation has already been submitted by "
 "someone else!")

 try:
 if must_open_t:
 t.open()

 s = Computer(dbcomputer=authinfo.dbcomputer).get_scheduler()
 s.set_transport(t)

 computer = calc.get_computer()

 with SandboxFolder() as folder:
 calcinfo, script_filename = calc._presubmit(
 folder, use_unstored_links=False)

 codes_info = calcinfo.codes_info
 input_codes = [load_node(_.code_uuid, parent_class=Code)
 for _ in codes_info]

 for code in input_codes:
 if not code.can_run_on(computer):
 raise InputValidationError(
 "The selected code {} for calculation "
 "{} cannot run on computer {}".
 format(code.pk, calc.pk, computer.name))

 # After this call, no modifications to the folder should be done
 calc._store_raw_input_folder(folder.abspath)

 # NOTE: some logic is partially replicated in the 'test_submit'
 # method of JobCalculation. If major logic changes are done
 # here, make sure to update also the test_submit routine
 remote_user = t.whoami()
 # TODO Doc: {username} field
 # TODO: if something is changed here, fix also 'verdi computer test'
 remote_working_directory = authinfo.get_workdir().format(
 username=remote_user)
 if not remote_working_directory.strip():
 raise ConfigurationError(
 "[submission of calc {}] "
 "No remote_working_directory configured for computer "
 "'{}'".format(calc.pk, computer.name))

 # If it already exists, no exception is raised
 try:
 t.chdir(remote_working_directory)
 except IOError:
 execlogger.debug(
 "[submission of calc {}] "
 "Unable to chdir in {}, trying to create it".
 format(calc.pk, remote_working_directory),
 extra=logger_extra)
 try:
 t.makedirs(remote_working_directory)
 t.chdir(remote_working_directory)
 except (IOError, OSError) as e:
 raise ConfigurationError(
 "[submission of calc {}] "
 "Unable to create the remote directory {} on "
 "computer '{}': {}".
 format(calc.pk, remote_working_directory, computer.name,
 e.message))
 # Store remotely with sharding (here is where we choose
 # the folder structure of remote jobs; then I store this
 # in the calculation properties using _set_remote_dir
 # and I do not have to know the logic, but I just need to
 # read the absolute path from the calculation properties.
 t.mkdir(calcinfo.uuid[:2], ignore_existing=True)
 t.chdir(calcinfo.uuid[:2])
 t.mkdir(calcinfo.uuid[2:4], ignore_existing=True)
 t.chdir(calcinfo.uuid[2:4])
 t.mkdir(calcinfo.uuid[4:])
 t.chdir(calcinfo.uuid[4:])
 workdir = t.getcwd()
 # I store the workdir of the calculation for later file
 # retrieval
 calc._set_remote_workdir(workdir)

 # I first create the code files, so that the code can put
 # default files to be overwritten by the plugin itself.
 # Still, beware! The code file itself could be overwritten...
 # But I checked for this earlier.
 for code in input_codes:
 if code.is_local():
 # Note: this will possibly overwrite files
 for f in code.get_folder_list():
 t.put(code.get_abs_path(f), f)
 t.chmod(code.get_local_executable(), 0755) # rwxr-xr-x

 # copy all files, recursively with folders
 for f in folder.get_content_list():
 execlogger.debug("[submission of calc {}] "
 "copying file/folder {}...".format(calc.pk, f),
 extra=logger_extra)
 t.put(folder.get_abs_path(f), f)

 # local_copy_list is a list of tuples,
 # each with (src_abs_path, dest_rel_path)
 # NOTE: validation of these lists are done
 # inside calc._presubmit()
 local_copy_list = calcinfo.local_copy_list
 remote_copy_list = calcinfo.remote_copy_list
 remote_symlink_list = calcinfo.remote_symlink_list

 if local_copy_list is not None:
 for src_abs_path, dest_rel_path in local_copy_list:
 execlogger.debug("[submission of calc {}] "
 "copying local file/folder to {}".format(
 calc.pk, dest_rel_path),
 extra=logger_extra)
 t.put(src_abs_path, dest_rel_path)

 if remote_copy_list is not None:
 for (remote_computer_uuid, remote_abs_path,
 dest_rel_path) in remote_copy_list:
 if remote_computer_uuid == computer.uuid:
 execlogger.debug("[submission of calc {}] "
 "copying {} remotely, directly on the machine "
 "{}".format(calc.pk, dest_rel_path, computer.name))
 try:
 t.copy(remote_abs_path, dest_rel_path)
 except (IOError, OSError):
 execlogger.warning("[submission of calc {}] "
 "Unable to copy remote resource from {} to {}! "
 "Stopping.".format(calc.pk,
 remote_abs_path, dest_rel_path),
 extra=logger_extra)
 raise
 else:
 # TODO: implement copy between two different
 # machines!
 raise NotImplementedError(
 "[presubmission of calc {}] "
 "Remote copy between two different machines is "
 "not implemented yet".format(calc.pk))

 if remote_symlink_list is not None:
 for (remote_computer_uuid, remote_abs_path,
 dest_rel_path) in remote_symlink_list:
 if remote_computer_uuid == computer.uuid:
 execlogger.debug("[submission of calc {}] "
 "copying {} remotely, directly on the machine "
 "{}".format(calc.pk, dest_rel_path, computer.name))
 try:
 t.symlink(remote_abs_path, dest_rel_path)
 except (IOError, OSError):
 execlogger.warning("[submission of calc {}] "
 "Unable to create remote symlink from {} to {}! "
 "Stopping.".format(calc.pk,
 remote_abs_path, dest_rel_path),
 extra=logger_extra)
 raise
 else:
 raise IOError("It is not possible to create a symlink "
 "between two different machines for "
 "calculation {}".format(calc.pk))

 remotedata = RemoteData(computer=computer,
 remote_path=workdir)
 remotedata.add_link_from(calc, label='remote_folder',
 link_type=LinkType.CREATE)
 remotedata.store()

 job_id = s.submit_from_script(t.getcwd(), script_filename)
 calc._set_job_id(job_id)
 # This should always be possible, because we should be
 # the only ones submitting this calculations,
 # so I do not check the ModificationNotAllowed
 calc._set_state(calc_states.WITHSCHEDULER)
 ## I do not set the state to queued; in this way, if the
 ## daemon is down, the user sees '(unknown)' as last state
 ## and understands that the daemon is not running.
 # if job_tmpl.submit_as_hold:
 # calc._set_scheduler_state(job_states.QUEUED_HELD)
 #else:
 # calc._set_scheduler_state(job_states.QUEUED)

 execlogger.debug("submitted calculation {} on {} with "
 "jobid {}".format(calc.pk, computer.name, job_id),
 extra=logger_extra)

 except Exception as e:
 import traceback

 try:
 calc._set_state(calc_states.SUBMISSIONFAILED)
 except ModificationNotAllowed:
 # Someone already set it, just skip
 pass

 execlogger.error("Submission of calc {} failed, check also the "
 "log file! Traceback: {}".format(calc.pk,
 traceback.format_exc()),
 extra=logger_extra)
 raise
 finally:
 # close the transport, but only if it was opened within this function
 if must_open_t:
 t.close()

[docs]def retrieve_computed_for_authinfo(authinfo):
 from aiida.orm import JobCalculation
 from aiida.common.folders import SandboxFolder
 from aiida.orm.data.folder import FolderData
 from aiida.utils.logger import get_dblogger_extra
 from aiida.orm import DataFactory

 import os

 if not authinfo.enabled:
 return

 calcs_to_retrieve = list(JobCalculation._get_all_with_state(
 state=calc_states.COMPUTED,
 computer=authinfo.dbcomputer,
 user=authinfo.aiidauser)
)
 retrieved = []

 # I avoid to open an ssh connection if there are no
 # calcs with state not COMPUTED
 if len(calcs_to_retrieve):

 # Open connection
 with authinfo.get_transport() as t:
 for calc in calcs_to_retrieve:
 logger_extra = get_dblogger_extra(calc)
 t._set_logger_extra(logger_extra)

 try:
 calc._set_state(calc_states.RETRIEVING)
 except ModificationNotAllowed:
 # Someone else has already started to retrieve it,
 # just log and continue
 execlogger.debug("Attempting to retrieve more than once "
 "calculation {}: skipping!".format(calc.pk),
 extra=logger_extra)
 continue # with the next calculation to retrieve
 try:
 execlogger.debug("Retrieving calc {}".format(calc.pk),
 extra=logger_extra)
 workdir = calc._get_remote_workdir()
 retrieve_list = calc._get_retrieve_list()
 retrieve_singlefile_list = calc._get_retrieve_singlefile_list()
 execlogger.debug("[retrieval of calc {}] "
 "chdir {}".format(calc.pk, workdir),
 extra=logger_extra)
 t.chdir(workdir)

 retrieved_files = FolderData()
 retrieved_files.add_link_from(
 calc, label=calc._get_linkname_retrieved(),
 link_type=LinkType.CREATE)

 # First, retrieve the files of folderdata
 with SandboxFolder() as folder:
 for item in retrieve_list:
 # I have two possibilities:
 # * item is a string
 # * or is a list
 # then I have other two possibilities:
 # * there are file patterns
 # * or not
 # First decide the name of the files
 if isinstance(item, list):
 tmp_rname, tmp_lname, depth = item
 # if there are more than one file I do something differently
 if t.has_magic(tmp_rname):
 remote_names = t.glob(tmp_rname)
 local_names = []
 for rem in remote_names:
 to_append = rem.split(os.path.sep)[-depth:] if depth > 0 else []
 local_names.append(os.path.sep.join([tmp_lname] + to_append))
 else:
 remote_names = [tmp_rname]
 to_append = remote_names.split(os.path.sep)[-depth:] if depth > 0 else []
 local_names = [os.path.sep.join([tmp_lname] + to_append)]
 if depth > 1: # create directories in the folder, if needed
 for this_local_file in local_names:
 new_folder = os.path.join(
 folder.abspath,
 os.path.split(this_local_file)[0])
 if not os.path.exists(new_folder):
 os.makedirs(new_folder)
 else: # it is a string
 if t.has_magic(item):
 remote_names = t.glob(item)
 local_names = [os.path.split(rem)[1] for rem in remote_names]
 else:
 remote_names = [item]
 local_names = [os.path.split(item)[1]]

 for rem, loc in zip(remote_names, local_names):
 execlogger.debug("[retrieval of calc {}] "
 "Trying to retrieve remote item '{}'".format(
 calc.pk, rem),
 extra=logger_extra)
 t.get(rem,
 os.path.join(folder.abspath, loc),
 ignore_nonexisting=True)

 # Here I retrieved everything;
 # now I store them inside the calculation
 retrieved_files.replace_with_folder(folder.abspath,
 overwrite=True)

 # Second, retrieve the singlefiles
 with SandboxFolder() as folder:
 singlefile_list = []
 for (linkname, subclassname, filename) in retrieve_singlefile_list:
 execlogger.debug("[retrieval of calc {}] Trying "
 "to retrieve remote singlefile '{}'".format(
 calc.pk, filename),
 extra=logger_extra)
 localfilename = os.path.join(
 folder.abspath, os.path.split(filename)[1])
 t.get(filename, localfilename,
 ignore_nonexisting=True)
 singlefile_list.append((linkname, subclassname,
 localfilename))

 # ignore files that have not been retrieved
 singlefile_list = [i for i in singlefile_list if
 os.path.exists(i[2])]

 # after retrieving from the cluster, I create the objects
 singlefiles = []
 for (linkname, subclassname, filename) in singlefile_list:
 SinglefileSubclass = DataFactory(subclassname)
 singlefile = SinglefileSubclass()
 singlefile.set_file(filename)
 singlefile.add_link_from(calc, label=linkname,
 link_type=LinkType.CREATE)
 singlefiles.append(singlefile)

 # Finally, store
 execlogger.debug("[retrieval of calc {}] "
 "Storing retrieved_files={}".format(
 calc.pk, retrieved_files.dbnode.pk),
 extra=logger_extra)
 retrieved_files.store()
 for fil in singlefiles:
 execlogger.debug("[retrieval of calc {}] "
 "Storing retrieved_singlefile={}".format(
 calc.pk, fil.dbnode.pk),
 extra=logger_extra)
 fil.store()

 # If I was the one retrieving, I should also be the only
 # one parsing! I do not check
 calc._set_state(calc_states.PARSING)

 Parser = calc.get_parserclass()
 # If no parser is set, the calculation is successful
 successful = True
 if Parser is not None:
 # TODO: parse here
 parser = Parser(calc)
 successful, new_nodes_tuple = parser.parse_from_calc()

 for label, n in new_nodes_tuple:
 n.add_link_from(calc, label=label,
 link_type=LinkType.CREATE)
 n.store()

 if successful:
 try:
 calc._set_state(calc_states.FINISHED)
 except ModificationNotAllowed:
 # I should have been the only one to set it, but
 # in order to avoid unuseful error messages, I
 # just ignore
 pass
 else:
 try:
 calc._set_state(calc_states.FAILED)
 except ModificationNotAllowed:
 # I should have been the only one to set it, but
 # in order to avoid unuseful error messages, I
 # just ignore
 pass
 execlogger.error("[parsing of calc {}] "
 "The parser returned an error, but it should have "
 "created an output node with some partial results "
 "and warnings. Check there for more information on "
 "the problem".format(calc.pk), extra=logger_extra)
 retrieved.append(calc)
 except Exception:
 import traceback

 tb = traceback.format_exc()
 newextradict = logger_extra.copy()
 newextradict['full_traceback'] = tb
 if calc.get_state() == calc_states.PARSING:
 execlogger.error("Error parsing calc {}. "
 "Traceback: {}".format(calc.pk, tb),
 extra=newextradict)
 # TODO: add a 'comment' to the calculation
 try:
 calc._set_state(calc_states.PARSINGFAILED)
 except ModificationNotAllowed:
 pass
 else:
 execlogger.error("Error retrieving calc {}. "
 "Traceback: {}".format(calc.pk, tb),
 extra=newextradict)
 try:
 calc._set_state(calc_states.RETRIEVALFAILED)
 except ModificationNotAllowed:
 pass
 raise

 return retrieved

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/backends/querybuild/querybuilder_base.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.backends.querybuild.querybuilder_base

-*- coding: utf-8 -*-

"""
The general functionalities that all querybuilders need to have
are found in this module.
:func:`AbstractQueryBuilder` is the abstract class for QueryBuilder classes.
Subclasses need to be written for *every* schema/backend implemented
in backends.

"""

import copy
import datetime
import warnings
from abc import abstractmethod, ABCMeta
from inspect import isclass as inspect_isclass
from sa_init import (
 aliased, and_, or_, not_, func as sa_func,
 InstrumentedAttribute, Cast
)
from aiida.common.exceptions import (
 InputValidationError, DbContentError, MissingPluginError
)
from aiida.common.utils import flatten_list
from aiida.common.hashing import make_hash

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__authors__ = "The AiiDA team."
__version__ = "0.7.0"

[docs]class AbstractQueryBuilder(object):
 """
 QueryBuilderBase is the base class for QueryBuilder classes,
 which are than adapted to the individual schema and ORM used.
 In here, general graph traversal functionalities are implemented,
 the specific type of node and link is dealt in subclasses.
 In order to load the correct subclass::

 from aiida.orm.querybuilder import QueryBuilder
 """

 __metaclass__ = ABCMeta

 _EDGE_TAG_DELIM = '--'
 _VALID_PROJECTION_KEYS = ('func', 'cast')

 def __init__(self, *args, **kwargs):

 # A list storing the path being traversed by the query
 self._path = []

 # The list of unique tags
 # self.tag_list = []# not needed any more

 # A list of unique aliases in same order as path
 self._aliased_path = []

 # A dictionary tag:alias of ormclass
 # redundant but makes life easier
 self._tag_to_alias_map = {}

 # A dictionary tag: filter specification for this alias
 self._filters = {}

 # A dictionary tag: projections for this alias
 self._projections = {}

 # A dictionary for classes passed to the tag given to them
 # Everything is specified with unique tags, which are strings.
 # But somebody might not care about giving tags, so to do
 # everything with classes one needs a map
 # qb = QueryBuilder(path = [PwCalculation])
 # qb.append(StructureData, input_of=PwCalculation

 # The cls_to_tag_map in this case would be:
 # {PwCalculation:'PwCalculation', StructureData:'StructureData'}

 self._cls_to_tag_map = {}

 self._hash = None

 self._injected = False
 if args:
 raise InputValidationError(
 "Arguments are not accepted\n"
 "when instantiating a QueryBuilder instance"
)

 path = kwargs.pop('path', [])
 if not isinstance(path, (tuple, list)):
 raise InputValidationError(
 "Path needs to be a tuple or a list"
)
 for path_spec in path:
 try:
 self.append(**path_spec)
 except TypeError as e:
 if isinstance(path_spec, basestring):
 # Maybe it is just a string,
 # I assume user means the type
 self.append(type=path_spec)
 else:
 # Or a class, let's try
 self.append(cls=path_spec)

 for key, val in kwargs.pop('project', {}).items():
 self.add_projection(key, val)

 for key, val in kwargs.pop('filters', {}).items():
 self.add_filter(key, val)

 self.limit(kwargs.pop('limit', None))

 self.offset(kwargs.pop('offset', None))

 self._order_by = {}
 order_spec = kwargs.pop('order_by', None)
 if order_spec:
 self.order_by(order_spec)

 if kwargs:
 valid_keys = [
 'path', 'filters', 'project', 'limit', 'order_by'
]
 raise InputValidationError(
 "Received additional keywords: {}"
 "\nwhich I cannot process"
 "\nValid keywords are: {}"
 "".format(kwargs.keys(), valid_keys)
)

 def __str__(self):
 from aiida.common.setup import get_profile_config
 from aiida.backends import settings
 from aiida.common.exceptions import ConfigurationError

 engine = get_profile_config(settings.AIIDADB_PROFILE)["AIIDADB_ENGINE"]

 if engine == "sqlite3":
 from sqlalchemy.dialects import sqlite as mydialect
 elif engine.startswith("mysql"):
 from sqlalchemy.dialects import mysql as mydialect
 elif engine.startswith("postgre"):
 from sqlalchemy.dialects import postgresql as mydialect
 else:
 raise ConfigurationError("Unknown DB engine: {}".format(
 engine))

 que = self.get_query()
 return str(que.statement.compile(
 compile_kwargs={"literal_binds": True},
 dialect=mydialect.dialect()
)
)

 def _get_ormclass(self, cls, ormclasstype):
 """
 Return the valid ormclass for the connections
 """
 # Checks whether valid cls and ormclasstype are done before

 # If it is a class:
 if cls:
 # Nodes:
 if issubclass(cls, self.Node):
 # If something pass an ormclass node
 # Users wouldn't do that, by why not...
 ormclasstype = self.AiidaNode._plugin_type_string
 query_type_string = self.AiidaNode._query_type_string
 ormclass = cls
 elif issubclass(cls, self.AiidaNode):
 ormclasstype = cls._plugin_type_string
 query_type_string = cls._query_type_string
 ormclass = self.Node
 # Groups:
 elif issubclass(cls, self.Group):
 ormclasstype = 'group'
 query_type_string = None
 ormclass = cls
 elif issubclass(cls, self.AiidaGroup):
 ormclasstype = 'group'
 query_type_string = None
 ormclass = self.Group
 # Computers:
 elif issubclass(cls, self.Computer):
 ormclasstype = 'computer'
 query_type_string = None
 ormclass = cls
 elif issubclass(cls, self.AiidaComputer):
 ormclasstype = 'computer'
 query_type_string = None
 ormclass = self.Computer

 # Users
 elif issubclass(cls, self.User):
 ormclasstype = 'user'
 query_type_string = None
 ormclass = cls
 elif issubclass(cls, self.AiidaUser):
 ormclasstype = 'user'
 query_type_string = None
 ormclass = self.User
 else:
 raise InputValidationError(
 "\n\n\n"
 "I do not know what to do with {}"
 "\n\n\n".format(cls)
)
 # If it is not a class
 else:
 if ormclasstype.lower() == 'group':
 ormclasstype = ormclasstype.lower()
 query_type_string = None
 ormclass = self.Group
 elif ormclasstype.lower() == 'computer':
 ormclasstype = ormclasstype.lower()
 query_type_string = None
 ormclass = self.Computer
 elif ormclasstype.lower() == 'user':
 ormclasstype = ormclasstype.lower()
 query_type_string = None
 ormclass = self.User
 else:
 # At this point, it has to be a node.
 # The only valid string at this point is a string
 # that matches exactly the _plugin_type_string
 # of a node class
 from aiida.common.pluginloader import (
 from_type_to_pluginclassname,
 load_plugin
)
 ormclass = self.Node
 try:
 pluginclassname = from_type_to_pluginclassname(ormclasstype)

 # I want to check at this point if that is a valid class,
 # so I use the load_plugin to load the plugin class
 # and use the classes _plugin_type_string attribute
 # In the future, assuming the user knows what he or she is doing
 # we could remove that check
 # The query_type_string we can get from
 # the aiida.common.pluginloader function get_query_type_string
 PluginClass = load_plugin(self.AiidaNode, 'aiida.orm', pluginclassname)
 except (DbContentError, MissingPluginError) as e:
 raise InputValidationError(
 "\nYou provide a vertice of the path with\n"
 "type={}\n"
 "But that string is not a valid type string\n"
 "Exception raise during check\n"
 "{}".format(ormclasstype, e)
)

 ormclasstype = PluginClass._plugin_type_string
 query_type_string = PluginClass._query_type_string

 return ormclass, ormclasstype, query_type_string

 def _get_autotag(self, ormclasstype):
 basetag = self._get_tag_from_type(ormclasstype)
 tags_used = self._tag_to_alias_map.keys()
 for i in range(1, 100):
 tag = '{}_{}'.format(basetag, i)
 if tag not in tags_used:
 return tag

 def _get_tag_from_type(self, ormclasstype):
 """
 Assign a tag to the given
 vertice of a path, based mainly on the type
 * data.structure.StructureData -> StructureData
 * data.structure.StructureData. -> StructureData
 * calculation.job.quantumespresso.pw.PwCalculation. -. PwCalculation
 * node.Node. -> Node
 * Node -> Node
 * computer -> computer
 """
 return ormclasstype.rstrip('.').split('.')[-1]

[docs] def append(self, cls=None, type=None, tag=None,
 autotag=False, filters=None, project=None, subclassing=True,
 edge_tag=None, edge_filters=None, edge_project=None, **kwargs
):
 """
 Any iterative procedure to build the path for a graph query
 needs to invoke this method to append to the path.

 :param cls: The Aiida-class (or backend-class) defining the appended vertice
 :param type: The type of the class, if cls is not given
 :param tag:
 A unique tag. If none is given, will take the classname.
 See keyword autotag to achieve unique tag.
 :param filters:
 Filters to apply for this vertice.
 See usage examples for details.
 :param autotag:
 Whether to search for a unique tag,
 (default **False**). If **True**, will find a unique tag.
 Cannot be set to **True** if tag is specified.
 :param subclassing:
 Whether to include subclasses of the given class
 (default **True**).
 E.g. Specifying JobCalculation will include PwCalculation

 A small usage example how this can be invoked::

 qb = QueryBuilder() # Instantiating empty querybuilder instance
 qb.append(cls=StructureData) # First item is StructureData node
 # The
 # next node in the path is a PwCalculation, with
 # the structure joined as an input
 qb.append(
 cls=PwCalculation,
 output_of=StructureData
)

 :returns: self
 """
 ######################## INPUT CHECKS ##########################
 # This function can be called by users, so I am checking the
 # input now.
 # First of all, let's make sure the specified
 # the class or the type (not both)
 if cls and type:
 raise InputValidationError(
 "\n\n\n"
 "You cannot specify both a \n"
 "class ({})\n"
 "and a type ({})\n\n"
 "".format(cls, type)
)

 if not (cls or type):
 raise InputValidationError(
 "\n\n"
 "You need to specify either a class or a type"
 "\n\n"
)

 # Let's check if it is a valid class or type
 if cls:
 if not inspect_isclass(cls):
 raise InputValidationError(
 "\n\n"
 "{} was passed with kw 'cls', but is not a class"
 "\n\n".format(cls)
)
 elif type:
 if not isinstance(type, basestring):
 raise InputValidationError(
 "\n\n\n"
 "{} was passed as type, but is not a string"
 "\n\n\n".format(type)
)

 if 'link_tag' in kwargs:
 raise DeprecationWarning("link_tag is deprecated, use edge_tag instead")
 ormclass, ormclasstype, query_type_string = self._get_ormclass(cls, type)
 ############################### TAG #################################
 # Let's get a tag
 user_defined_tag = False
 label = kwargs.pop('label', None)
 if label is not None:
 if tag is None:
 warnings.warn(
 "\nUse of the keyword 'label' will be deprecated soon\n"
 "Please use 'tag' instead\n",
 DeprecationWarning,
)
 tag = label
 else:
 raise InputValidationError("Both label and tag specified")

 if tag:
 if self._EDGE_TAG_DELIM in tag:
 raise InputValidationError(
 "tag cannot contain {}\n"
 "since this is used as a delimiter for links"
 "".format(self._EDGE_TAG_DELIM)
)
 tag = tag
 user_defined_tag = True
 elif autotag:
 tag = self._get_autotag(ormclasstype)
 else:
 tag = self._get_tag_from_type(ormclasstype)
 # Check if the tag is not yet used:
 if tag in self._tag_to_alias_map.keys():
 if user_defined_tag:
 raise InputValidationError(
 "\n"
 "This tag ({}) is already in use\n"
 "\n".format(tag)
)
 else:
 raise InputValidationError(
 "\n"
 "You did not specify a tag, so I am making one myself\n"
 "based on the class/type you gave me\n"
 "The tag that I made ({}) is already in use\n"
 "please specify a tag or set autotag to true"
 "".format(tag)
)

 ################ TAG MAPPING #################################
 # Let's fill the cls_to_tag_map so that one can specify
 # this vertice in a joining specification later
 # First this only makes sense if a class was specified:
 if cls:
 if cls in self._cls_to_tag_map.keys():
 # In this case, this class already stands for another
 # tag that was used before.
 # This means that the first tag will be the correct
 # one. This is dangerous and maybe should be avoided in
 # the future
 pass

 else:
 self._cls_to_tag_map[cls] = tag
 # TODO check with duplicate classes

 ######################## ALIASING ##############################
 alias = aliased(ormclass)
 self._aliased_path.append(alias)
 self._tag_to_alias_map[tag] = alias

 ################# FILTERS ######################################

 self._filters[tag] = {}

 # I have to add a filter on column type.
 # This so far only is necessary for AiidaNodes
 # GROUPS?
 if query_type_string is not None:
 self._add_type_filter(tag, query_type_string, subclassing)
 # The order has to be first _add_type_filter and then add_filter.
 # If the user adds a query on the type column, it overwrites what I did

 #if the user specified a filter, add it:
 if filters is not None:
 self.add_filter(tag, filters)

 ##################### PROJECTIONS ##############################
 self._projections[tag] = []

 if project is not None:
 self.add_projection(tag, project)

 ################## JOINING #####################################

 # Get the functions that are implemented:
 spec_to_function_map = self._get_function_map().keys()

 joining_keyword = kwargs.pop('joining_keyword', None)
 joining_value = kwargs.pop('joining_value', None)
 #~ reverse_linklabel = kwargs.pop('reverse_linklabel', None)

 for key, val in kwargs.items():
 if key not in spec_to_function_map:
 raise InputValidationError(
 "\n\n\n"
 "{} is not a valid keyword "
 "for joining specification\n"
 "Valid keywords are:\n"
 "{}\n\n\n".format(
 key,
 spec_to_function_map+[
 'cls', 'type', 'tag',
 'autotag', 'filters', 'project'
]
)
)
 elif joining_keyword:
 raise InputValidationError(
 "\n\n\n"
 "You already specified joining specification {}\n"
 "But you now also want to specify {}"
 "\n\n\n".format(joining_keyword, key)
)
 else:
 joining_keyword = key
 joining_value = self._get_tag_from_specification(val)
 # the default is that this vertice is 'output_of' the previous one
 if joining_keyword is None and len(self._path)>0:
 joining_keyword = 'output_of'
 joining_value = self._path[-1]['tag']

 if joining_keyword == 'direction':
 if not isinstance(joining_value, int):
 raise InputValidationError("direction=n expects n to be an integer")
 try:
 if joining_value < 0:
 joining_keyword = 'input_of'
 elif joining_value > 0:
 joining_keyword = 'output_of'
 else:
 raise InputValidationError("direction=0 is not valid")
 joining_value = self._path[-abs(joining_value)]['tag']
 except IndexError as e:
 raise InputValidationError(
 "You have specified a non-existent entity with\n"
 "direction={}\n"
 "{}\n".format(joining_value, e.message)
)

 ############################# EDGES #################################
 # See if this requires a link:
 aliased_edge = None
 if len(self._path) > 0:
 if joining_keyword in ('input_of', 'output_of'):
 aliased_edge = aliased(self.Link)
 elif joining_keyword in ('ancestor_of', 'descendant_of'):
 aliased_edge = aliased(self.Path)

 if aliased_edge is not None:

 # Ok, so here we are joining through a m2m relationship,
 # e.g. input or output.
 # This means that the user might want to query by that edge!

 if edge_tag is None:
 edge_destination_tag = self._get_tag_from_specification(joining_value)
 edge_tag = edge_destination_tag + self._EDGE_TAG_DELIM + tag
 else:
 if edge_tag in self._tag_to_alias_map.keys():
 raise InputValidationError(
 "The tag {} is already in use".format(edge_tag)
)

 self._tag_to_alias_map[edge_tag] = aliased_edge

 # Filters on links:
 self._filters[edge_tag] = {}
 if edge_filters is not None:
 self.add_filter(edge_tag, edge_filters)

 # Projections on links
 self._projections[edge_tag] = {}
 if edge_project is not None:
 self.add_projection(edge_tag, edge_project)

 ################### EXTENDING THE PATH #################################

 path_extension = dict(
 type=ormclasstype, tag=tag, joining_keyword=joining_keyword,
 joining_value=joining_value
)
 if aliased_edge is not None:
 path_extension.update(dict(edge_tag=edge_tag))
 #~ if reverse_linktag is not None:
 #~ path_extension.update(dict(reverse_linktag=reverse_linktag))

 self._path.append(path_extension)
 return self

[docs] def order_by(self, order_by):
 """
 Set the entity to order by

 :param order_by:
 This is a list of items, where each item is a dictionary specifies
 what to sort for an entity

 In each dictionary in that list, keys represent valid tags of
 entities (tables), and values are list of columns.

 Usage::

 #Sorting by id (ascending):
 qb = QueryBuilder()
 qb.append(Node, tag='node')
 qb.order_by({'node':['id']})

 # or
 #Sorting by id (ascending):
 qb = QueryBuilder()
 qb.append(Node, tag='node')
 qb.order_by({'node':[{'id':{'order':'asc'}}]})

 # for descending order:
 qb = QueryBuilder()
 qb.append(Node, tag='node')
 qb.order_by({'node':[{'id':{'order':'desc'}}]})

 # or (shorter)
 qb = QueryBuilder()
 qb.append(Node, tag='node')
 qb.order_by({'node':[{'id':'desc'}]})

 """

 self._order_by = []
 allowed_keys = ('cast', 'order')
 possible_orders = ('asc', 'desc')

 if not isinstance(order_by, (list, tuple)):
 order_by = [order_by]

 for order_spec in order_by:
 if not isinstance(order_spec, dict):
 raise InputValidationError(
 "Invalid input for order_by statement: {}\n"
 "I am expecting a dictionary ORMClass,"
 "[columns to sort]"
 "".format(order_spec)
)
 _order_spec = {}
 for tagspec,items_to_order_by in order_spec.items():
 if not isinstance(items_to_order_by, (tuple, list)):
 items_to_order_by = [items_to_order_by]
 tag = self._get_tag_from_specification(tagspec)
 _order_spec[tag] = []
 for item_to_order_by in items_to_order_by:
 if isinstance(item_to_order_by, basestring):
 item_to_order_by = {item_to_order_by:{}}
 elif isinstance(item_to_order_by, dict):
 pass
 else:
 raise InputValidationError(
 "Cannot deal with input to order_by {}\n"
 "of type{}"
 "\n".format(item_to_order_by, type(item_to_order_by))
)
 for entityname, orderspec in item_to_order_by.items():
 # if somebody specifies eg {'node':{'id':'asc'}}
 # tranform to {'node':{'id':{'order':'asc'}}}

 if isinstance(orderspec, basestring):
 this_order_spec = {'order':orderspec}
 elif isinstance(orderspec, dict):
 this_order_spec = orderspec
 else:
 raise InputValidationError(
 "I was expecting a string or a dictionary\n"
 "You provided {} {}\n"
 "".format(type(orderspec), orderspec)
)
 for key in this_order_spec.keys():
 if key not in allowed_keys:
 raise InputValidationError(
 "The allowed key for an order specification\n"
 "are {}\n"
 "{} is not valid\n"
 "".format(', '.join(allowed_keys), k)
)
 this_order_spec['order'] = this_order_spec.get('order', 'asc')
 if this_order_spec['order'] not in possible_orders:
 raise InputValidationError(
 "You gave {} as an order parameters,\n"
 "but it is not a valid order parameter\n"
 "Valid orders are: {}\n"
 "".format(this_order_spec['order'], possible_orders)
)
 item_to_order_by[entityname] = this_order_spec

 _order_spec[tag].append(item_to_order_by)

 self._order_by.append(_order_spec)
 return self

[docs] def add_filter(self, tagspec, filter_spec):
 """
 Adding a filter to my filters.

 :param tagspec:
 The tag, which has to exist already as a key
 in self._filters
 :param filter_spec:
 The specifications for the filter, has to be a dictionary
 """

 if not isinstance(filter_spec, dict):
 raise InputValidationError(
 "Filters have to be passed as dictionaries"
)

 tag = self._get_tag_from_specification(tagspec)
 self._filters[tag].update(filter_spec)

 def _add_type_filter(
 self, tagspec, query_type_string,
 ormclasstype, subclassing=True):
 """
 Add a filter on the type based on the query_type_string
 """
 tag = self._get_tag_from_specification(tagspec)

 if subclassing:
 node_type_flt = {'like':'{}%'.format(query_type_string)}
 else:
 node_type_flt = {'==':ormclasstype}

 self.add_filter(tagspec, {'type':node_type_flt})

[docs] def add_projection(self, tag_spec, projection_spec):
 """
 Adds a projection

 :param tag_spec: A valid specification for a tag
 :param projection_spec:
 The specification for the projection.
 A projection is a list of dictionaries, with each dictionary
 containing key-value pairs where the key is database entity
 (e.g. a column / an attribute) and the value is (optional)
 additional information on how to process this database entity.

 If the given *projection_spec* is not a list, it will be expanded to
 a list.
 If the listitems are not dictionaries, but strings (No additional
 processing of the projected results desired), they will be expanded to
 dictionaries.

 Usage::

 qb = QueryBuilder()
 qb.append(StructureData, tag='struc')

 # Will project the uuid and the kinds
 qb.add_projection('struc', ['uuid', 'attributes.kinds'])
 """
 tag = self._get_tag_from_specification(tag_spec)
 _projections = []
 if not isinstance(projection_spec, (list, tuple)):
 projection_spec = [projection_spec]
 for projection in projection_spec:
 if isinstance(projection, dict):
 _thisprojection = projection
 elif isinstance(projection, basestring):
 _thisprojection = {projection:{}}
 else:
 raise InputValidationError(
 "Cannot deal with projection specification {}\n"
 "".format(projection)
)
 for p,spec in _thisprojection.items():
 if not isinstance(spec, dict):
 raise InputValidationError(
 "\nThe value of a key-value pair in a projection\n"
 "has to be a dictionary\n"
 "You gave: {}\n"
 "".format(spec)
)

 for key, val in spec.items():
 if key not in self._VALID_PROJECTION_KEYS:
 raise InputValidationError(
 "{} is not a valid key {}".format(
 key, self._VALID_PROJECTION_KEYS)
)
 if not isinstance(val, basestring):
 raise InputValidationError(
 "{} has to be a string".format(val)
)
 _projections.append(_thisprojection)
 self._projections[tag] = _projections

 def _get_projectable_entity(self, alias, column_name, attrpath, **entityspec):

 if len(attrpath) or column_name in ('attributes', 'extras'):

 entity = self._get_projectable_attribute(
 alias, column_name, attrpath, **entityspec
)
 else:
 entity = self._get_column(column_name, alias)
 return entity

 def _add_to_projections(self, alias, projectable_entity_name, cast=None, func=None):
 """
 :param alias:
 A instance of *sqlalchemy.orm.util.AliasedClass*, alias for an ormclass
 :param projectable_entity_name:
 User specification of what to project.
 Appends to query's entities what the user wants to project
 (have returned by the query)

 """
 column_name = projectable_entity_name.split('.')[0]
 attr_key = projectable_entity_name.split('.')[1:]

 if column_name == '*':
 if func is not None:
 raise InputValidationError(
 "Very sorry, but functions on the aliased class\n"
 "(You specified '*')\n"
 "will not work!\n"
 "I suggest you apply functions on a column, e.g. ('id')\n"
)
 self._query = self._query.add_entity(alias)
 else:
 entity_to_project = self._get_projectable_entity(
 alias, column_name, attr_key,
 cast=cast
)
 if func is None:
 pass
 elif func == 'max':
 entity_to_project = sa_func.max(entity_to_project)
 elif func == 'min':
 entity_to_project = sa_func.max(entity_to_project)
 elif func == 'count':
 entity_to_project = sa_func.count(entity_to_project)
 else:
 raise InputValidationError(
 "\nInvalid function specification {}".format(func)
)
 self._query = self._query.add_columns(entity_to_project)

 def _build_projections(self, tag, items_to_project=None):

 if items_to_project is None:
 items_to_project = self._projections.get(tag, [])

 # Return here if there is nothing to project,
 # reduces number of key in return dictionary
 if not items_to_project:
 return

 alias = self._tag_to_alias_map[tag]

 self.tag_to_projected_entity_dict[tag] = {}

 for projectable_spec in items_to_project:
 for projectable_entity_name, extraspec in projectable_spec.items():
 if projectable_entity_name == '**':
 # Need to expand
 entity_names = [str(c).replace(alias.__table__.name+'.','') for c in alias.__table__.columns]
 #~ for s in ('attributes', 'extras'):
 #~ try:
 #~ entity_names.remove(s)
 #~ except ValueError:
 #~ pass
 else:
 entity_names = [projectable_entity_name]
 for entity_name in entity_names:
 self._add_to_projections(
 alias, entity_name, **extraspec
)

 self.tag_to_projected_entity_dict[tag][
 entity_name
] = self.nr_of_projections
 self.nr_of_projections += 1

 def _get_tag_from_specification(self, specification):
 if isinstance(specification, basestring):
 if specification in self._tag_to_alias_map.keys():
 tag = specification
 else:
 raise InputValidationError(
 "tag {} is not among my known tags\n"
 " My tags are: {}"
 "\n\n".format(
 specification, self._tag_to_alias_map.keys()
)
)
 else:
 if specification in self._cls_to_tag_map.keys():
 tag = self._cls_to_tag_map[specification]
 else:
 raise InputValidationError(
 "\nYou specified as a class for which I have to find a tag\n"
 "The classes that I can do this for are:{}\n"
 "The tags I have are: {}\n"
 "\n".format(
 specification, self._cls_to_tag_map.keys(),
 self._tag_to_alias_map.keys()
)
)
 return tag

[docs] def limit(self, limit):
 """
 Set the limit (nr of rows to return)

 :param int limit: integers of nr of rows to return
 """

 if limit is not None:
 if not isinstance(limit, int):
 raise InputValidationError("limit has to be an integer")
 self._limit = limit
 return self

[docs] def offset(self, offset):
 """
 Set the offset. If offset is set, that many rows are skipped before returning.
 offset = 0 is the same as omitting setting the offset.
 If both offset and limit appear,
 then *offset* rows are skipped before starting to count the *limit* rows
 that are returned.

 :param int offset: integers of nr of rows to skip
 """
 if offset is not None:
 if not isinstance(offset, int):
 raise InputValidationError(
 "offset has to be an integer"
)
 self._offset = offset
 return self

 @staticmethod
 @abstractmethod
 def _get_session():
 pass

 @staticmethod
 def _get_filter_expr_from_column(operator, value, column):

 if not isinstance(column, (Cast, InstrumentedAttribute)):
 raise TypeError(
 'column ({}) {} is not a valid column'.format(
 type(column), column
)
)
 database_entity = column
 if operator == '==':
 expr = database_entity == value
 elif operator == '>':
 expr = database_entity > value
 elif operator == '<':
 expr = database_entity < value
 elif operator == '>=':
 expr = database_entity >= value
 elif operator == '<=':
 expr = database_entity <= value
 elif operator == 'like':
 expr = database_entity.like(value)
 elif operator == 'ilike':
 expr = database_entity.ilike(value)
 elif operator == 'in':
 expr = database_entity.in_(value)
 else:
 raise InputValidationError(
 'Unknown operator {} for filters on columns'.format(operator)
)
 return expr

 @classmethod
 def _get_filter_expr(
 cls, operator, value, attr_key, is_attribute,
 alias=None, column=None, column_name=None
):
 """
 Applies a filter on the alias given.
 Expects the alias of the ORM-class on which to filter, and filter_spec.
 Filter_spec contains the specification on the filter.
 Expects:

 :param operator: The operator to apply, see below for further details
 :param value:
 The value for the right side of the expression,
 the value you want to compare with.

 :param path: The path leading to the value

 :param attr_key: Boolean, whether the value is in a json-column,
 or in an attribute like table.

 Implemented and valid operators:

 * for any type:
 * == (compare single value, eg: '==':5.0)
 * in (compare whether in list, eg: 'in':[5, 6, 34]
 * for floats and integers:
 * >
 * <
 * <=
 * >=
 * for strings:
 * like (case - sensitive), for example
 'like':'node.calc.%' will match node.calc.relax and
 node.calc.RELAX and node.calc. but
 not node.CALC.relax
 * ilike (case - unsensitive)
 will also match node.CaLc.relax in the above example

 .. note::
 The character % is a reserved special character in SQL,
 and acts as a wildcard. If you specifically
 want to capture a ``%`` in the string, use: ``_%``

 * for arrays and dictionaries (only for the
 SQLAlchemy implementation):

 * contains: pass a list with all the items that
 the array should contain, or that should be among
 the keys, eg: 'contains': ['N', 'H'])
 * has_key: pass an element that the list has to contain
 or that has to be a key, eg: 'has_key':'N')

 * for arrays only (SQLAlchemy version):
 * of_length
 * longer
 * shorter

 All the above filters invoke a negation of the
 expression if preceded by **~**::

 # first example:
 filter_spec = {
 'name' : {
 '~in':[
 'halle',
 'lujah'
]
 } # Name not 'halle' or 'lujah'
 }

 # second example:
 filter_spec = {
 'id' : {
 '~==': 2
 }
 } # id is not 2
 """

 expr = None
 if operator.startswith('~'):
 negation = True
 operator = operator.lstrip('~')
 elif operator.startswith('!'):
 negation = True
 operator = operator.lstrip('!')
 else:
 negation = False
 if operator in ('longer', 'shorter', 'of_length'):
 if not isinstance(value, int):
 raise InputValidationError(
 "You have to give an integer when comparing to a length"
)
 elif operator in ('like', 'ilike'):
 if not isinstance(value, basestring):
 raise InputValidationError(
 "Value for operator {} has to be a string (you gave {})"
 "".format(operator, value)
)

 elif operator == 'in':
 value_type_set = set([type(i) for i in value])
 if len(value_type_set) > 1:
 raise InputValidationError(
 '{} contains more than one type'.format(value)
)
 elif len(value_type_set) == 0:
 raise InputValidationError(
 '{} contains is an empty list'.format(value)
)
 elif operator in ('and', 'or'):
 expressions_for_this_path = []
 for filter_operation_dict in value:
 for newoperator, newvalue in filter_operation_dict.items():
 expressions_for_this_path.append(
 cls._get_filter_expr(
 newoperator, newvalue,
 attr_key=attr_key, is_attribute=is_attribute,
 alias=alias, column=column,
 column_name=column_name
)
)
 if operator == 'and':
 expr = and_(*expressions_for_this_path)
 elif operator == 'or':
 expr = or_(*expressions_for_this_path)

 if expr is None:
 if is_attribute:
 expr = cls._get_filter_expr_from_attributes(
 operator, value, attr_key,
 column=column, column_name=column_name, alias=alias
)
 else:
 if column is None:
 if (alias is None) and (column_name is None):
 raise Exception(
 "I need to get the column but do not know \n"
 "the alias and the column name"
)
 column = cls._get_column(column_name, alias)
 expr = cls._get_filter_expr_from_column(operator, value, column)
 if negation:
 return not_(expr)
 return expr

 def _build_filters(self, alias, filter_spec):
 """
 Recurse through the filter specification and apply filter operations.

 :param alias: The alias of the ORM class the filter will be applied on
 :param filter_spec: the specification as given by the queryhelp

 :returns: an instance of *sqlalchemy.sql.elements.BinaryExpression*.
 """
 expressions = []
 for path_spec, filter_operation_dict in filter_spec.items():
 if path_spec in ('and', 'or', '~or', '~and', '!and', '!or'):
 subexpressions = [
 self._build_filters(alias, sub_filter_spec)
 for sub_filter_spec in filter_operation_dict
]
 if path_spec == 'and':
 expressions.append(and_(*subexpressions))
 elif path_spec == 'or':
 expressions.append(or_(*subexpressions))
 elif path_spec in ('~and', '!and'):
 expressions.append(not_(and_(*subexpressions)))
 elif path_spec in ('~or', '!or'):
 expressions.append(not_(or_(*subexpressions)))
 else:
 column_name = path_spec.split('.')[0]

 attr_key = path_spec.split('.')[1:]
 is_attribute = (
 attr_key or
 column_name in ('attributes', 'extras')
)
 try:
 column = self._get_column(column_name, alias)
 except InputValidationError as e:
 if is_attribute:
 column = None
 else:
 raise e
 #~ is_attribute = bool(attr_key)
 if not isinstance(filter_operation_dict, dict):
 filter_operation_dict = {'==':filter_operation_dict}
 [
 expressions.append(
 self._get_filter_expr(
 operator, value, attr_key,
 is_attribute=is_attribute,
 column=column, column_name=column_name,
 alias=alias
)
)
 for operator, value
 in filter_operation_dict.items()
]
 return and_(*expressions)

 #~ @abstractmethod
 #~ def _build_filters(self, alias, filter_spec):
 #~ pass
 @staticmethod
 def _check_dbentities(entities_cls_joined, entities_cls_to_join, relationship):
 """
 :param list entities_cls_joined:
 A list (tuple) of the aliased class passed as joined_entity and
 the ormclass that was expected
 :param list entities_cls_joined:
 A list (tuple) of the aliased class passed as entity_to_join and
 the ormclass that was expected
 :param str relationship:
 The relationship between the two entities to make the Exception
 comprehensible
 """
 for entity, cls in (entities_cls_joined, entities_cls_to_join):

 if not issubclass(entity._sa_class_manager.class_, cls):
 raise InputValidationError(
 "\nYou are attempting to join {} as '{}' of {}\n"
 "This failed because you passed:\n"
 " - {} as entity joined (expected {})\n"
 " - {} as entity to join (expected {})\n"
 "\n".format(
 entities_cls_joined[0],
 relationship,
 entities_cls_to_join[0],
 entities_cls_joined[0]._sa_class_manager.class_,
 entities_cls_joined[1],
 entities_cls_to_join[0]._sa_class_manager.class_,
 entities_cls_to_join[1],
)
)

 def _join_slaves(self, joined_entity, entity_to_join):
 raise NotImplementedError(
 "Master - slave relationships are not implemented"
)
 #~ call = aliased(Call)
 #~ self._query = self._query.join(call, call.caller_id == joined_entity.id)
 #~ self._query = self._query.join(
 #~ entity_to_join,
 #~ call.called_id == entity_to_join.id
 #~)

 def _join_masters(self, joined_entity, entity_to_join):
 raise NotImplementedError(
 "Master - slave relationships are not implemented"
)
 #~ call = aliased(Call)
 #~ self._query = self._query.join(call, call.called_id == joined_entity.id)
 #~ self._query = self._query.join(
 #~ entity_to_join,
 #~ call.caller_id == entity_to_join.id
 #~)

 def _join_outputs(self, joined_entity, entity_to_join, aliased_edge):
 """
 :param joined_entity: The (aliased) ORMclass that is an input
 :param entity_to_join: The (aliased) ORMClass that is an output.

 joined_entity and **entity_to_join** are joined with a link
 from **joined_entity** as input to **enitity_to_join** as output
 (**enitity_to_join** is an *output_of* **joined_entity**)
 """
 self._check_dbentities(
 (joined_entity, self.Node),
 (entity_to_join, self.Node),
 'output_of'
)
 self._query = self._query.join(
 aliased_edge,
 aliased_edge.input_id == joined_entity.id
).join(
 entity_to_join,
 aliased_edge.output_id == entity_to_join.id
)

 def _join_inputs(self, joined_entity, entity_to_join, aliased_edge):
 """
 :param joined_entity: The (aliased) ORMclass that is an output
 :param entity_to_join: The (aliased) ORMClass that is an input.

 joined_entity and **entity_to_join** are joined with a link
 from **joined_entity** as output to **enitity_to_join** as input
 (**enitity_to_join** is an *input_of* **joined_entity**)
 """
 self._check_dbentities(
 (joined_entity, self.Node),
 (entity_to_join, self.Node),
 'input_of'
)
 self._query = self._query.join(
 aliased_edge,
 aliased_edge.output_id == joined_entity.id
).join(
 entity_to_join,
 aliased_edge.input_id == entity_to_join.id
)

 def _join_descendants(self, joined_entity, entity_to_join, aliased_path):
 """
 :param joined_entity: The (aliased) ORMclass that is an ancestor
 :param entity_to_join: The (aliased) ORMClass that is a descendant.
 :param aliased_path: An aliased instance of DbPath

 joined_entity and **entity_to_join** are
 joined via the DbPath table.
 from **joined_entity** as parent to **enitity_to_join** as child
 (**enitity_to_join** is a *descendant_of* **joined_entity**)
 """
 self._check_dbentities(
 (joined_entity, self.Node),
 (entity_to_join, self.Node),
 'descendant_of'
)

 self._query = self._query.join(
 aliased_path,
 aliased_path.parent_id == joined_entity.id
).join(
 entity_to_join,
 aliased_path.child_id == entity_to_join.id
)

 def _join_ancestors(self, joined_entity, entity_to_join, aliased_path):
 """
 :param joined_entity: The (aliased) ORMclass that is a descendant
 :param entity_to_join: The (aliased) ORMClass that is an ancestor.
 :param aliased_path: An aliased instance of DbPath

 joined_entity and **entity_to_join**
 are joined via the DbPath table.
 from **joined_entity** as child to **enitity_to_join** as parent
 (**enitity_to_join** is an *ancestor_of* **joined_entity**)
 """
 self._check_dbentities(
 (joined_entity, self.Node),
 (entity_to_join, self.Node),
 'ancestor_of'
)
 #~ aliased_path = aliased(self.Path)
 self._query = self._query.join(
 aliased_path,
 aliased_path.child_id == joined_entity.id
).join(
 entity_to_join,
 aliased_path.parent_id == entity_to_join.id
)
 def _join_group_members(self, joined_entity, entity_to_join):
 """
 :param joined_entity:
 The (aliased) ORMclass that is
 a group in the database
 :param entity_to_join:
 The (aliased) ORMClass that is a node and member of the group

 joined_entity and **entity_to_join**
 are joined via the table_groups_nodes table.
 from **joined_entity** as group to **enitity_to_join** as node.
 (**enitity_to_join** is an *member_of* **joined_entity**)
 """
 self._check_dbentities(
 (joined_entity, self.Group),
 (entity_to_join, self.Node),
 'member_of'
)
 aliased_group_nodes = aliased(self.table_groups_nodes)
 self._query = self._query.join(
 aliased_group_nodes,
 aliased_group_nodes.c.dbgroup_id == joined_entity.id
).join(
 entity_to_join,
 entity_to_join.id == aliased_group_nodes.c.dbnode_id
)
 def _join_groups(self, joined_entity, entity_to_join):
 """
 :param joined_entity: The (aliased) node in the database
 :param entity_to_join: The (aliased) Group

 joined_entity and **entity_to_join** are
 joined via the table_groups_nodes table.
 from **joined_entity** as node to **enitity_to_join** as group.
 (**enitity_to_join** is an *group_of* **joined_entity**)
 """
 self._check_dbentities(
 (joined_entity, self.Node),
 (entity_to_join, self.Group),
 'group_of'
)
 aliased_group_nodes = aliased(self.table_groups_nodes)
 self._query = self._query.join(
 aliased_group_nodes,
 aliased_group_nodes.c.dbnode_id == joined_entity.id
).join(
 entity_to_join,
 entity_to_join.id == aliased_group_nodes.c.dbgroup_id
)
 def _join_creator_of(self, joined_entity, entity_to_join):
 """
 :param joined_entity: the aliased node
 :param entity_to_join: the aliased user to join to that node
 """
 self._check_dbentities(
 (joined_entity, self.Node),
 (entity_to_join, self.User),
 'creator_of'
)
 self._query = self._query.join(
 entity_to_join,
 entity_to_join.id == joined_entity.user_id
)
 def _join_created_by(self, joined_entity, entity_to_join):
 """
 :param joined_entity: the aliased user you want to join to
 :param entity_to_join: the (aliased) node or group in the DB to join with
 """
 self._check_dbentities(
 (joined_entity, self.User),
 (entity_to_join, self.Node),
 'created_by'
)
 self._query = self._query.join(
 entity_to_join,
 entity_to_join.user_id == joined_entity.id
)

 def _join_to_computer_used(self, joined_entity, entity_to_join):
 """
 :param joined_entity: the (aliased) computer entity
 :param entity_to_join: the (aliased) node entity

 """
 self._check_dbentities(
 (joined_entity, self.Computer),
 (entity_to_join, self.Node),
 'has_computer'
)
 self._query = self._query.join(
 entity_to_join,
 entity_to_join.dbcomputer_id == joined_entity.id
)

 def _join_computer(self, joined_entity, entity_to_join):
 """
 :param joined_entity: An entity that can use a computer (eg a node)
 :param entity_to_join: aliased dbcomputer entity

 """
 self._check_dbentities(
 (joined_entity, self.Node),
 (entity_to_join, self.Computer),
 'computer_of'
)
 self._query = self._query.join(
 entity_to_join,
 joined_entity.dbcomputer_id == entity_to_join.id
)

 def _get_function_map(self):
 d = {
 'input_of' : self._join_inputs,
 'output_of' : self._join_outputs,
 'slave_of' : self._join_slaves, # not implemented
 'master_of' : self._join_masters,# not implemented
 'ancestor_of': self._join_ancestors,
 'descendant_of': self._join_descendants,
 'direction' : None,
 'group_of' : self._join_groups,
 'member_of' : self._join_group_members,
 'has_computer':self._join_to_computer_used,
 'computer_of':self._join_computer,
 'created_by' : self._join_created_by,
 'creator_of' : self._join_creator_of,
 }
 return d
 def _get_connecting_node(
 self, index,
 joining_keyword=None, joining_value=None, **kwargs
):
 """
 :param querydict:
 A dictionary specifying how the current node
 is linked to other nodes.
 :param index: Index of this node within the path specification

 Valid (currently implemented) keys are:

 * *input_of*
 * *output_of*
 * *descendant_of*
 * *ancestor_of*
 * *direction*
 * *group_of*
 * *member_of*
 * *has_computer*
 * *computer_of*
 * *created_by*
 * *creator_of*

 Future:

 * *master_of*
 * *slave_of*
 """

 if joining_keyword == 'direction':
 if joining_value > 0:
 returnval = self._aliased_path[index-joining_value], self._join_outputs
 elif joining_value < 0:
 returnval = self._aliased_path[index+joining_value], self._join_inputs
 else:
 raise Exception("Direction 0 is not valid")
 else:
 func = self._get_function_map()[joining_keyword]

 if isinstance(joining_value, int):
 returnval = (self._aliased_path[joining_value], func)
 elif isinstance(joining_value, str):
 try:
 returnval = self._tag_to_alias_map[
 self._get_tag_from_specification(joining_value)
], func
 except KeyError:
 raise InputValidationError(
 'Key {} is unknown to the types I know about:\n'
 '{}'.format(val, self._tag_to_alias_map.keys())
)
 return returnval

 def _get_json_compatible(self, inp):
 """

 :param inp:
 The input value that will be converted.
 Recurses into each value if **inp** is an iterable.
 """
 print inp
 if isinstance(inp, dict):
 for key, val in inp.items():
 inp[
 self._get_json_compatible(key)
] = self._get_json_compatible(inp.pop(key))
 elif isinstance(inp, (list, tuple)):
 inp = [self._get_json_compatible(val) for val in inp]
 elif inspect_isclass(inp):
 if issubclass(inp, self.AiidaNode):
 return '.'.join(
 inp._plugin_type_string.strip('.').split('.')[:-1]
)
 elif issubclass(inp, self.AiidaGroup):
 return 'group'
 else:
 raise InputValidationError
 else:
 try:
 inp = replacement_dict.get(inp, inp)
 except Exception as e:
 raise Exception("""
 Exception thrown: {}\n
 while replacing {}""".format(e, inp))
 return inp

[docs] def get_json_compatible_queryhelp(self):
 """
 Makes the queryhelp a json - compatible dictionary.
 In this way,the queryhelp can be stored in a node
 in the database and retrieved or shared.

 :returns: the json-compatible queryhelp

 All classes defined in the input are
 converted to strings specifying the type,
 for example:
 """
 from copy import deepcopy

 return deepcopy({
 'path' : self._path,
 'filters' : self._filters,
 'project' : self._projections,
 'order_by' : self._order_by,
 'limit' : self._limit,
 'offset' : self._offset,
 })

 #~ self._get_json_compatible()

 @staticmethod
 def _get_column(colname, alias):
 """
 Return the column for the projection, if the column name is specified.
 """

 if colname not in alias._sa_class_manager.mapper.c.keys():
 raise InputValidationError(
 "\n{} is not a column of {}\n".format(colname, alias)
)
 return getattr(alias, colname)

 def _build_order(self, alias, entitytag, entityspec):

 column_name = entitytag.split('.')[0]
 attrpath = entitytag.split('.')[1:]
 if attrpath and 'cast' not in entityspec.keys():
 raise InputValidationError(
 "\n\n"
 "In order to project ({}), I have to cast the the values,\n"
 "but you have not specified the datatype to cast to\n"
 "You can do this with keyword 'cast'\n"
 "".format(entitytag)
)

 entity = self._get_projectable_entity(alias, column_name, attrpath, **entityspec)
 order = entityspec.get('order', 'asc')
 if order == 'desc':
 entity = entity.desc()
 self._query = self._query.order_by(entity)

 def _build(self):
 """
 build the query and return a sqlalchemy.Query instance
 """

 # self.tags_location_dict is a dictionary that
 # maps the tag to its index in the list
 # this is basically the mapping between the count
 # of nodes traversed
 # and the tag used for that node
 self.tags_location_dict = {
 path['tag']:index
 for index, path
 in enumerate(self._path)
 }

 #Starting the query by receiving a session
 # Every subclass needs to have _get_session and give me the
 # right session
 firstalias = self._tag_to_alias_map[self._path[0]['tag']]
 self._query = self._get_session().query(firstalias)

 ######################### JOINS ################################

 for index, verticespec in enumerate(self._path[1:], start=1):
 alias = self._tag_to_alias_map[verticespec['tag']]
 #looping through the queryhelp
 #~ if index:
 #There is nothing to join if that is the first table
 toconnectwith, connection_func = self._get_connecting_node(
 index, **verticespec
)
 edge_tag = verticespec.get('edge_tag', None)
 if edge_tag is None:
 connection_func(toconnectwith, alias)
 else:
 aliased_edge = self._tag_to_alias_map[edge_tag]
 connection_func(toconnectwith, alias, aliased_edge)

 ######################### FILTERS ##############################

 for tag, filter_specs in self._filters.items():
 try:
 alias = self._tag_to_alias_map[tag]
 except KeyError:
 # TODO Check KeyError before?
 raise InputValidationError(
 ' You looked for tag {} among the alias list\n'
 'The tags I know are:\n{}'
 ''.format(tag, self._tag_to_alias_map.keys())
)
 self._query = self._query.filter(
 self._build_filters(alias, filter_specs)
)

 ######################### PROJECTIONS ##########################
 # first clear the entities in the case the first item in the
 # path was not meant to be projected
 # attribute of Query instance storing entities to project:

 # Will be later set to this list:
 entities = []
 # Mapping between enitites and the tag used/ given by user:
 self.tag_to_projected_entity_dict = {}

 self.nr_of_projections = 0

 if not any(self._projections.values()):
 # If user has not set projection,
 # I will simply project the last item specified!
 # Don't change, path traversal querying
 # relies on this behavior!
 self._build_projections(self._path[-1]['tag'], items_to_project=[{'*':{}}])
 else:
 for vertice in self._path:
 self._build_projections(vertice['tag'])

 ##################### LINK-PROJECTIONS #########################

 for vertice in self._path:
 edge_tag = vertice.get('edge_tag', None)
 if edge_tag is not None:
 self._build_projections(edge_tag)

 #~ linktag = vertice.get('reverse_linktag', None)
 #~ if linktag is not None:
 #~ self._build_projections(linktag)

 ######################### ORDER ################################
 for order_spec in self._order_by:
 for tag, entities in order_spec.items():
 alias = self._tag_to_alias_map[tag]
 for entitydict in entities:
 for entitytag, entityspec in entitydict.items():
 self._build_order(alias, entitytag, entityspec)

 ######################### LIMIT ################################
 if self._limit is not None:
 self._query = self._query.limit(self._limit)

 ######################## OFFSET ################################
 if self._offset is not None:
 self._query = self._query.offset(self._offset)

 ################ LAST BUT NOT LEAST ############################
 #pop the entity that I added to start the query
 self._query._entities.pop(0)

 # Make a list that helps the projection postprocessing
 self._attrkeys_as_in_sql_result = {
 index_in_sql_result:attrkey
 for tag, projected_entities_dict
 in self.tag_to_projected_entity_dict.items()
 for attrkey, index_in_sql_result
 in projected_entities_dict.items()
 }

 if self.nr_of_projections > len(self._attrkeys_as_in_sql_result):
 raise InputValidationError(
 "\nYou are projecting the same key\n"
 "multiple times within the same node"
)
 ######################### DONE #################################

 return self._query

[docs] def except_if_input_to(self, calc_class):
 """
 Makes counterquery based on the own path, only selecting
 entries that have been input to *calc_class*

 :param calc_class: The calculation class to check against

 :returns: self
 """
 def build_counterquery(calc_class):
 if issubclass(calc_class, self.Node):
 orm_calc_class = calc_class
 type_spec = None
 elif issubclass(calc_class, self.AiidaNode):
 orm_calc_class = self.Node
 type_spec = calc_class._plugin_type_string
 else:
 raise Exception(
 'You have given me {}\n'
 'of type {}\n'
 "and I don't know what to do with that"
 ''.format(calc_class, type(calc_class))
)

 input_alias_list = []
 for node in self._path:
 tag = node['tag']
 requested_cols = [
 key

 for item in self._projections[tag]
 for key in item.keys()
]
 if '*' in requested_cols:
 input_alias_list.append(aliased(self._tag_to_alias_map[tag]))

 counterquery = self._get_session().query(orm_calc_class)
 if type_spec:
 counterquery = counterquery.filter(orm_calc_class.type == type_spec)
 for alias in input_alias_list:

 link = aliased(self.Link)
 counterquery = counterquery.join(
 link,
 orm_calc_class.id == link.output_id
).join(
 alias,
 alias.id == link.input_id)
 counterquery = counterquery.add_entity(alias)
 counterquery._entities.pop(0)
 return counterquery
 self._query = self.get_query()
 self._query = self._query.except_(build_counterquery(calc_class))
 return self

[docs] def get_aliases(self):
 """
 :returns: the list of aliases
 """
 return self._aliased_path

[docs] def get_alias(self, tag):
 """
 In order to continue a query by the user, this utility function
 returns the aliased ormclasses.

 :param tag: The tag for a vertice in the path
 :returns: the alias given for that vertice
 """
 tag = self._get_tag_from_specification(tag)
 return self._tag_to_alias_map[tag]

[docs] def get_query(self):
 """

 Checks if the query instance is still valid by hashing the queryhelp.
 If not invokes :func:`QueryBuilderBase._build`.

 :returns: an instance of sqlalchemy.orm.Query

 """
 # Need_to_build is True by default.
 # It describes whether the current query
 # which is an attribute _query of this instance is still valid
 # The queryhelp_hash is used to determine
 # whether the query is still valid

 queryhelp_hash = make_hash(self.get_json_compatible_queryhelp())
 # if self._hash (which is None if this function has not been invoked
 # and is a string (hash) if it has) is the same as the queryhelp
 # I can use the query again:
 # If the query was injected I never build:
 if self._injected:
 need_to_build = False
 elif self._hash == queryhelp_hash:
 need_to_build = False
 else:
 need_to_build = True

 if need_to_build:
 query = self._build()
 self._hash = queryhelp_hash
 else:
 try:
 query = self._query
 except AttributeError:
 warnings.warn(
 "AttributeError thrown even though I should\n"
 "have _query as an attribute"
)
 query = self._build()
 self._hash = queryhelp_hash
 return query

[docs] def inject_query(self, query):
 """
 Manipulate the query an inject it back.
 This can be done to add custom filters using SQLA.
 :param query: A sqlalchemy.orm.Query instance
 """
 from sqlalchemy.orm import Query
 if not isinstance(query, Query):
 raise InputValidationError(
 "{} must be a subclass of {}".format(
 query, Query
)
)
 self._query = query
 self._injected = True

[docs] def distinct(self):
 """
 Asks for distinct rows.
 Does not execute the query!
 If you want a distinct query::

 qb = QueryBuilder(**queryhelp)
 qb.distinct().all() # or
 qb.distinct().get_results_dict()

 :returns: self
 """
 self._query = self.get_query().distinct()
 return self

 def _yield_per(self, batch_size):
 """
 :param count: Number of rows to yield per step

 Yields *count* rows at a time

 :returns: a generator
 """
 return self.get_query().yield_per(batch_size)

 def _all(self):
 return self.get_query().all()

 def _first(self):
 """
 Executes query in the backend asking for one instance.

 :returns: One row of aiida results
 """
 return self.get_query().first()

[docs] def first(self):
 """
 Executes query asking for one instance.
 Use as follows::

 qb = QueryBuilder(**queryhelp)
 qb.first()

 :returns:
 One row of results as a list, order as given by
 order of vertices in path and projections for vertice
 """
 resultrow = self._first()
 try:
 returnval = [
 self._get_aiida_res(self._attrkeys_as_in_sql_result[colindex], rowitem)
 for colindex, rowitem
 in enumerate(resultrow)
]
 except TypeError:
 if resultrow is None:
 returnval = None
 elif len(self._attrkeys_as_in_sql_result) > 1:
 raise Exception(
 "I have not received an iterable\n"
 "but the number of projections is > 1"
)
 # It still returns a list!
 else:
 returnval = [self._get_aiida_res(self._attrkeys_as_in_sql_result[0], resultrow)]
 return returnval

[docs] def count(self):
 """
 Counts the number of rows returned by the backend.

 :returns: the number of rows as an integer
 """
 que = self.get_query()
 return que.count()

[docs] def iterall(self, batch_size=100):
 """
 Same as :func:`QueryBuilderBase.all`, but returns a generator.
 Be aware that this is only safe if no commit will take place during this
 transaction. You might also want to read the SQLAlchemy documentation on
 http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query.yield_per

 :param int batch_size:
 The size of the batches to ask the backend to batch results in subcollections.
 You can optimize the speed of the query by tuning this parameter.

 :returns: a generator of lists
 """

 if batch_size is not None:
 results = self._yield_per(batch_size)
 else:
 results = self._all()
 try:
 for resultrow in results:
 yield [
 self._get_aiida_res(self._attrkeys_as_in_sql_result[colindex], rowitem)
 for colindex, rowitem
 in enumerate(resultrow)
]
 except TypeError:
 # resultrow not an iterable:
 # Checked, result that raises exception is included
 if len(self._attrkeys_as_in_sql_result) > 1:
 raise Exception(
 "I have not received an iterable\n"
 "but the number of projections is > 1"
)
 for rowitem in results:
 yield [self._get_aiida_res(self._attrkeys_as_in_sql_result[0], rowitem)]

[docs] def all(self, batch_size=None):
 """
 Executes the full query with the order of the rows as returned by the backend.
 the order inside each row is given by the order of the vertices in the path
 and the order of the projections for each vertice in the path.

 :param int batch_size:
 The size of the batches to ask the backend to batch results in subcollections.
 You can optimize the speed of the query by tuning this parameter.
 Leave the default (*None*) if speed is not critical or if you don't know
 what you're doing!

 :returns: a list of lists of all projected entities.
 """

 return list(self.iterall(batch_size=batch_size))

[docs] def dict(self, batch_size=None):
 """
 Executes the full query with the order of the rows as returned by the backend.
 the order inside each row is given by the order of the vertices in the path
 and the order of the projections for each vertice in the path.

 :param int batch_size:
 The size of the batches to ask the backend to batch results in subcollections.
 You can optimize the speed of the query by tuning this parameter.
 Leave the default (*None*) if speed is not critical or if you don't know
 what you're doing!

 :returns:
 a list of dictionaries of all projected entities.
 Each dictionary consists of key value pairs, where the key is the tag
 of the vertice and the value a dictionary of key-value pairs where key
 is the entity description (a column name or attribute path)
 and the value the value in the DB.

 Usage::

 qb = QueryBuilder()
 qb.append(
 StructureData,
 tag='structure',
 filters={'uuid':{'==':myuuid}},
)
 qb.append(
 Node,
 descendant_of='structure',
 project=['type', 'id'], # returns type (string) and id (string)
 tag='descendant'
)

 # Return the dictionaries:
 print "qb.iterdict()"
 for d in qb.iterdict():
 print '>>>', d

 results in the following output::

 qb.iterdict()
 >>> {'descendant': {
 'type': u'calculation.job.quantumespresso.pw.PwCalculation.',
 'id': 7716}
 }
 >>> {'descendant': {
 'type': u'data.remote.RemoteData.',
 'id': 8510}
 }

 """
 return list(self.iterdict(batch_size=batch_size))

[docs] def iterdict(self, batch_size=100):
 """
 Same as :func:`QueryBuilderBase.dict`, but returns a generator.
 Be aware that this is only safe if no commit will take place during this
 transaction. You might also want to read the SQLAlchemy documentation on
 http://docs.sqlalchemy.org/en/latest/orm/query.html#sqlalchemy.orm.query.Query.yield_per

 :param int batch_size:
 The size of the batches to ask the backend to batch results in subcollections.
 You can optimize the speed of the query by tuning this parameter.

 :returns: a generator of dictionaries
 """

 if batch_size is not None:
 results = self._yield_per(batch_size=batch_size)
 else:
 results = self._all()
 try:
 for this_result in results:
 yield {
 tag:{
 attrkey:self._get_aiida_res(
 attrkey, this_result[index_in_sql_result]
)
 for attrkey, index_in_sql_result
 in projected_entities_dict.items()
 }
 for tag, projected_entities_dict
 in self.tag_to_projected_entity_dict.items()
 }
 except TypeError:
 # resultrow not an iterable:
 # Checked, result that raises exception is included
 if len(self._attrkeys_as_in_sql_result) > 1:
 raise Exception(
 "I have not received an iterable\n"
 "but the number of projections is > 1"
)

 for this_result in results:
 yield {
 tag:{
 attrkey : self._get_aiida_res(attrkey, this_result)
 for attrkey, position in projected_entities_dict.items()
 }
 for tag, projected_entities_dict in self.tag_to_projected_entity_dict.items()
 }

[docs] def get_results_dict(self):
 """
 Deprecated, use :func:`QueryBuilderBase.dict` or
 :func:`QueryBuilderBase.iterdict` instead
 """
 warnings.warn(
 "get_results_dict will be deprecated in the future"
 "User iterdict for generator or dict for list",
 DeprecationWarning
)

 return self.iterdict()

 @abstractmethod
 def _get_aiida_res(self, key, res):
 """
 Some instance returned by ORM (django or SA) need to be converted
 to Aiida instances (eg nodes)

 :param key: the key that this entry would be returned with
 :param res: the result returned by the query

 :returns: an aiida-compatible instance
 """
 pass

[docs] def inputs(self, **kwargs):
 """
 Join to inputs of previous vertice in path.

 :returns: self
 """
 join_to = self._path[-1]['tag']
 cls = kwargs.pop('cls', self.AiidaNode)
 self.append(cls=cls, input_of=join_to, autotag=True, **kwargs)
 return self

[docs] def outputs(self, **kwargs):
 """
 Join to outputs of previous vertice in path.

 :returns: self
 """
 join_to = self._path[-1]['tag']
 cls = kwargs.pop('cls', self.AiidaNode)
 self.append(cls=cls, output_of=join_to, autotag=True, **kwargs)
 return self

[docs] def children(self, **kwargs):
 """
 Join to children/descendants of previous vertice in path.

 :returns: self
 """
 join_to = self._path[-1]['tag']
 cls = kwargs.pop('cls', self.AiidaNode)
 self.append(cls=cls, descendant_of=join_to, autotag=True, **kwargs)
 return self

[docs] def parents(self, **kwargs):
 """
 Join to parents/ancestors of previous vertice in path.

 :returns: self
 """
 join_to = self._path[-1]['tag']
 cls = kwargs.pop('cls', self.AiidaNode)
 self.append(cls=cls, ancestor_of=join_to, autotag=True, **kwargs)
 return self

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/cmdline/verdilib.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.cmdline.verdilib

-*- coding: utf-8 -*-
"""
Command line commands for the main executable 'verdi' of aiida

If you want to define a new command line parameter, just define a new
class inheriting from VerdiCommand, and define a run(self,*args) method
accepting a variable-length number of parameters args
(the command-line parameters), which will be invoked when
this executable is called as
verdi NAME

Don't forget to add the docstring to the class: the first line will be the
short description, the following ones the long description.
"""
import sys
import os
import contextlib

import aiida
from aiida.common.exceptions import (
 AiidaException, ConfigurationError, ProfileConfigurationError)
from aiida.cmdline.baseclass import VerdiCommand, VerdiCommandRouter
from aiida.cmdline import pass_to_django_manage
from aiida.backends import settings as settings_profile

Import here from other files; once imported, it will be found and
used as a command-line parameter
from aiida.cmdline.commands.user import User
from aiida.cmdline.commands.calculation import Calculation
from aiida.cmdline.commands.code import Code
from aiida.cmdline.commands.computer import Computer
from aiida.cmdline.commands.daemon import Daemon
from aiida.cmdline.commands.data import Data
from aiida.cmdline.commands.devel import Devel
from aiida.cmdline.commands.exportfile import Export
from aiida.cmdline.commands.group import Group
from aiida.cmdline.commands.graph import Graph
from aiida.cmdline.commands.importfile import Import
from aiida.cmdline.commands.node import Node
from aiida.cmdline.commands.profile import Profile
from aiida.cmdline.commands.workflow import Workflow
from aiida.cmdline.commands.workflow2 import Workflow2
from aiida.cmdline.commands.comment import Comment
from aiida.cmdline.commands.shell import Shell
from aiida.cmdline import execname

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class ProfileParsingException(AiidaException):
 """
 Exception raised when parsing the profile command line option, if only
 -p is provided, and no profile is specified
 """

 def __init__(self, *args, **kwargs):
 self.minus_p_provided = kwargs.pop('minus_p_provided', False)

 super(ProfileParsingException, self).__init__(*args, **kwargs)

[docs]def parse_profile(argv, merge_equal=False):
 """
 Parse the argv to see if a profile has been specified, return it with the
 command position shift (index where the commands start)

 :param merge_equal: if True, merge things like
 ('verdi', '--profile', '=', 'x', 'y') to ('verdi', '--profile=x', 'y')
 but then return the correct index for the original array.

 :raise ProfileParsingException: if there is only 'verdi' specified, or
 if only 'verdi -p' (in these cases, one has respectively
 exception.minus_p_provided equal to False or True)
 """
 if merge_equal:
 if len(argv) >= 3:
 if argv[1] == '--profile' and argv[2] == '=':
 internal_argv = [argv[0], "".join(argv[1:4])] + list(argv[4:])
 shift = 2
 else:
 internal_argv = list(argv)
 shift = 0
 else:
 internal_argv = list(argv)
 shift = 0
 else:
 internal_argv = list(argv)
 shift = 0

 profile = None # Use default profile if nothing is specified
 command_position = 1 # If there is no profile option
 try:
 profile_switch = internal_argv[1]
 except IndexError:
 raise ProfileParsingException(minus_p_provided=False)
 long_profile_prefix = '--profile='
 if profile_switch == '-p':
 try:
 profile = internal_argv[2]
 except IndexError:
 raise ProfileParsingException(minus_p_provided=True)
 command_position = 3
 elif profile_switch.startswith(long_profile_prefix):
 profile = profile_switch[len(long_profile_prefix):]
 command_position = 2
 else:
 # No profile switch, continue using argv[1] as the command name
 pass

 return profile, command_position + shift

@contextlib.contextmanager
[docs]def update_environment(new_argv):
 """
 Used as a context manager, changes sys.argv with the
 new_argv argument, and restores it upon exit.
 """
 import sys

 _argv = sys.argv[:]
 sys.argv = new_argv[:]
 yield

 # Restore old parameters when exiting from the context manager
 sys.argv = _argv

##
HERE STARTS THE COMMAND FUNCTION LIST
##

[docs]class CompletionCommand(VerdiCommand):
 """
 Return the bash completion function to put in ~/.bashrc

 This command prints on screen the function to be inserted in
 your .bashrc command. You can copy and paste the output, or simply
 add
 eval "`verdi completioncommand`"
 to your .bashrc, *AFTER* having added the aiida/bin directory to the path.
 """

[docs] def run(self, *args):
 """
 I put the documentation here, and I don't print it, so we
 don't clutter too much the .bashrc.

 * "${THE_WORDS[@]}" (with the @) puts each element as a different
 parameter; note that the variable expansion etc. is performed

 * I add a 'x' at the end and then remove it; in this way, $() will
 not remove trailing spaces

 * If the completion command did not print anything, we use
 the default bash completion for filenames

 * If instead the code prints something empty, thanks to the workaround
 above $OUTPUT is not empty, so we do go the the 'else' case
 and then, no substitution is suggested.
 """

 print r"""
function _aiida_verdi_completion
{
 OUTPUT=$($1 completion "$COMP_CWORD" "${COMP_WORDS[@]}" ; echo 'x')
 OUTPUT=${OUTPUT%x}
 if [-z "$OUTPUT"]
 then
 # Only newline is a valid separator
 local IFS=$'\n'

 COMPREPLY=($(compgen -o default -- "${COMP_WORDS[COMP_CWORD]}"))
 # Add either a slash or a space, depending on whether it is a folder
 # or a file. printf %q escapes the filename if there are spaces.
 for ((i=0; i < ${#COMPREPLY[@]}; i++)); do
 [-d "${COMPREPLY[$i]}"] && \
 COMPREPLY[$i]=$(printf %q%s "${COMPREPLY[$i]}" "/") || \
 COMPREPLY[$i]=$(printf %q%s "${COMPREPLY[$i]}" " ")
 done

 else
 COMPREPLY=($(compgen -W "$OUTPUT" -- "${COMP_WORDS[COMP_CWORD]}"))
 # Always add a space after each command
 for ((i=0; i < ${#COMPREPLY[@]}; i++)); do
 COMPREPLY[$i]="${COMPREPLY[$i]} "
 done
 fi
}
complete -o nospace -F _aiida_verdi_completion verdi
"""

 def complete(self, subargs_idx, subargs):
 # disable further completion
 print ""

[docs]class Completion(VerdiCommand):
 """
 Manage bash completion

 Return a list of available commands, separated by spaces.
 Calls the correct function of the command if the TAB has been
 pressed after the first command.

 Returning without printing will use the default bash completion.
 """

 # TODO: manage completion at a deeper level

 def run(self, *args):
 try:
 cword = int(args[0])
 if cword <= 0:
 cword = 1
 except IndexError:
 cword = 1
 except ValueError:
 return

 try:
 profile, command_position = parse_profile(args[1:],
 merge_equal=True)
 except ProfileParsingException as e:
 cword_offset = 0
 else:
 cword_offset = command_position - 1

 if cword == 1 + cword_offset:
 print " ".join(sorted(short_doc.keys()))
 return
 else:
 try:
 # args[0] is cword;
 # args[1] is the executable (verdi)
 # args[2] is the command for verdi
 # args[3:] are the following subargs
 command = args[2 + cword_offset]
 except IndexError:
 return
 try:
 CommandClass = list_commands[command]
 except KeyError:
 return
 CommandClass().complete(subargs_idx=cword - 2 - cword_offset,
 subargs=args[3 + cword_offset:])

[docs]class ListParams(VerdiCommand):
 """
 List available commands

 List available commands and their short description.
 For the long description, use the 'help' command.
 """

 def run(self, *args):
 print get_listparams()

[docs]class Help(VerdiCommand):
 """
 Describe a specific command

 Pass a further argument to get a description of a given command.
 """

 def run(self, *args):
 try:
 command = args[0]
 except IndexError:
 print get_listparams()
 print ""
 print (
 "Before each command you can specify the AiiDA profile to use,"
 " with 'verdi -p <profile> <command>' or "
 "'verdi --profile=<profile> <command>'")
 print ""
 print ("Use '{} help <command>' for more information "
 "on a specific command.".format(execname))
 sys.exit(1)

 if command in short_doc:
 print "Description for '%s %s'" % (execname, command)
 print ""
 print "**", short_doc[command]
 if command in long_doc:
 print long_doc[command]
 else:
 print >> sys.stderr, (
 "{}: '{}' is not a valid command. "
 "See '{} help' for more help.".format(
 execname, command, execname))
 get_command_suggestion(command)
 sys.exit(1)

 def complete(self, subargs_idx, subargs):
 if subargs_idx == 0:
 print " ".join(sorted(short_doc.keys()))
 else:
 print ""

[docs]class Install(VerdiCommand):
 """
 Install/setup aiida for the current user

 This command creates the ~/.aiida folder in the home directory
 of the user, interactively asks for the database settings and
 the repository location, does a setup of the daemon and runs
 a migrate command to create/setup the database.
 """

 def run(self, *args):
 from aiida.common.setup import (create_base_dirs, create_configuration,
 set_default_profile, DEFAULT_UMASK)
 from aiida.backends.profile import BACKEND_SQLA, BACKEND_DJANGO
 from aiida.backends.utils import set_backend_type, get_backend_type
 from aiida.common.exceptions import InvalidOperation

 cmdline_args = list(args)

 only_user_config = False
 try:
 cmdline_args.remove('--only-config')
 only_user_config = True
 except ValueError:
 # Parameter not provided
 pass

 if cmdline_args:
 print >> sys.stderr, "Unknown parameters on the command line: "
 print >> sys.stderr, ", ".join(cmdline_args)
 sys.exit(1)

 # create the directories to store the configuration files
 create_base_dirs()
 # gprofile = 'default' if profile is None else profile
 gprofile = 'default' if settings_profile.AIIDADB_PROFILE is None \
 else settings_profile.AIIDADB_PROFILE

 created_conf = None
 # ask and store the configuration of the DB
 try:
 created_conf = create_configuration(profile=gprofile)
 except ValueError as e:
 print >> sys.stderr, "Error during configuration: {}".format(
 e.message)
 sys.exit(1)

 # set default DB profiles
 set_default_profile('verdi', gprofile, force_rewrite=False)
 set_default_profile('daemon', gprofile, force_rewrite=False)

 if only_user_config:
 print ("Only user configuration requested, "
 "skipping the migrate command")
 else:
 print "Executing now a migrate command..."

 backend_choice = created_conf['AIIDADB_BACKEND']
 if backend_choice == BACKEND_DJANGO:
 print("...for Django backend")
 # The correct profile is selected within load_dbenv.
 # Setting os.umask here since sqlite database gets created in
 # this step.
 old_umask = os.umask(DEFAULT_UMASK)

 # This check should be done more properly
 # try:
 # backend_type = get_backend_type()
 # except KeyError:
 # backend_type = None
 #
 # if backend_type is not None and backend_type != BACKEND_DJANGO:
 # raise InvalidOperation("An already existing database found"
 # "and a different than the selected"
 # "backend was used for its "
 # "management.")

 try:
 pass_to_django_manage([execname, 'migrate'],
 profile=gprofile)
 finally:
 os.umask(old_umask)

 set_backend_type(BACKEND_DJANGO)

 elif backend_choice == BACKEND_SQLA:
 print("...for SQLAlchemy backend")
 from aiida.backends.sqlalchemy.models.base import Base
 from aiida.backends.sqlalchemy.utils import (get_engine,
 install_tc)
 from aiida.common.setup import get_profile_config
 from aiida import is_dbenv_loaded, load_dbenv

 if not is_dbenv_loaded():
 load_dbenv()

 # This check should be done more properly
 # try:
 # backend_type = get_backend_type()
 # except KeyError:
 # backend_type = None
 #
 # if backend_type is not None and backend_type != BACKEND_SQLA:
 # raise InvalidOperation("An already existing database found"
 # "and a different than the selected"
 # "backend was used for its "
 # "management.")

 # Those import are necessary for SQLAlchemy to correctly create
 # the needed database tables.
 from aiida.backends.sqlalchemy.models.authinfo import (
 DbAuthInfo)
 from aiida.backends.sqlalchemy.models.comment import DbComment
 from aiida.backends.sqlalchemy.models.computer import (
 DbComputer)
 from aiida.backends.sqlalchemy.models.group import (
 DbGroup, table_groups_nodes)
 from aiida.backends.sqlalchemy.models.lock import DbLock
 from aiida.backends.sqlalchemy.models.log import DbLog
 from aiida.backends.sqlalchemy.models.node import (
 DbLink, DbNode, DbPath, DbCalcState)
 from aiida.backends.sqlalchemy.models.user import DbUser
 from aiida.backends.sqlalchemy.models.workflow import (
 DbWorkflow, DbWorkflowData, DbWorkflowStep)
 from aiida.backends.sqlalchemy.models.settings import DbSetting

 connection = get_engine(get_profile_config(gprofile))
 Base.metadata.create_all(connection)
 install_tc(connection)

 set_backend_type(BACKEND_SQLA)

 else:
 raise InvalidOperation("Not supported backend selected.")

 print "Database was created successfully"

 # I create here the default user
 print "Loading new environment..."
 if only_user_config:
 from aiida.backends.utils import load_dbenv, is_dbenv_loaded
 # db environment has not been loaded in this case
 if not is_dbenv_loaded():
 load_dbenv()

 from aiida.common.setup import DEFAULT_AIIDA_USER
 from aiida.orm.user import User as AiiDAUser

 if not AiiDAUser.search_for_users(email=DEFAULT_AIIDA_USER):
 print "Installing default AiiDA user..."
 nuser = AiiDAUser(email=DEFAULT_AIIDA_USER)
 nuser.first_name = "AiiDA"
 nuser.last_name = "Daemon"
 nuser.is_staff = True
 nuser.is_active = True
 nuser.is_superuser = True
 nuser.force_save()

 from aiida.common.utils import get_configured_user_email
 email = get_configured_user_email()
 print "Starting user configuration for {}...".format(email)
 if email == DEFAULT_AIIDA_USER:
 print "You set up AiiDA using the default Daemon email ({}),".format(
 email)
 print "therefore no further user configuration will be asked."
 else:
 # Ask to configure the new user
 User().user_configure(email)

 print "Install finished."

[docs] def complete(self, subargs_idx, subargs):
 """
 No completion after 'verdi install'.
 """
 print ""

[docs]class Runserver(VerdiCommand):
 """
 Run the AiiDA webserver on localhost

 This command runs the webserver on the default port. Further command line
 options are passed to the Django manage runserver command
 """

 def run(self, *args):
 pass_to_django_manage([execname, 'runserver'] + list(args))

[docs]class Run(VerdiCommand):
 """
 Execute an AiiDA script
 """

 def run(self, *args):
 from aiida.backends.utils import load_dbenv,is_dbenv_loaded

 if not is_dbenv_loaded():
 load_dbenv()
 import argparse
 from aiida.cmdline.commands.shell import default_modules_list
 import aiida.orm.autogroup
 from aiida.orm.autogroup import Autogroup

 parser = argparse.ArgumentParser(
 prog=self.get_full_command_name(),
 description='Execute an AiiDA script.')
 parser.add_argument('-g', '--group', type=bool, default=True,
 help='Enables the autogrouping, default = True')
 parser.add_argument('-n', '--groupname', type=str, default=None,
 help='Specify the name of the auto group')
 # parser.add_argument('-o','--grouponly', type=str, nargs='+', default=['all'],
 # help='Limit the grouping to specific classes (by default, all classes are grouped')
 parser.add_argument('-e', '--exclude', type=str, nargs='+', default=[],
 help=('Autogroup only specific calculation classes.'
 " Select them by their module name.")
)
 parser.add_argument('-E', '--excludesubclasses', type=str, nargs='+',
 default=[],
 help=('Autogroup only specific calculation classes.'
 " Select them by their module name.")
)
 parser.add_argument('-i', '--include', type=str, nargs='+',
 default=['all'],
 help=('Autogroup only specific data classes.'
 " Select them by their module name.")
)
 parser.add_argument('-I', '--includesubclasses', type=str, nargs='+',
 default=[],
 help=('Autogroup only specific code classes.'
 " Select them by their module name.")
)
 parser.add_argument('scriptname', metavar='ScriptName', type=str,
 help='The name of the script you want to execute')
 parser.add_argument('new_args', metavar='ARGS',
 nargs=argparse.REMAINDER, type=str,
 help='Further parameters to pass to the script')
 parsed_args = parser.parse_args(args)

 # Prepare the environment for the script to be run
 globals_dict = {
 '__builtins__': globals()['__builtins__'],
 '__name__': '__main__',
 '__file__': parsed_args.scriptname,
 '__doc__': None,
 '__package__': None}

 ## dynamically load modules (the same of verdi shell) - but in
 ## globals_dict, not in the current environment
 for app_mod, model_name, alias in default_modules_list:
 globals_dict["{}".format(alias)] = getattr(
 __import__(app_mod, {}, {}, model_name), model_name)

 if parsed_args.group:
 automatic_group_name = parsed_args.groupname
 if automatic_group_name is None:
 import datetime

 now = datetime.datetime.now()
 automatic_group_name = "Verdi autogroup on " + now.strftime(
 "%Y-%m-%d %H:%M:%S")

 aiida_verdilib_autogroup = Autogroup()
 aiida_verdilib_autogroup.set_exclude(parsed_args.exclude)
 aiida_verdilib_autogroup.set_include(parsed_args.include)
 aiida_verdilib_autogroup.set_exclude_with_subclasses(
 parsed_args.excludesubclasses)
 aiida_verdilib_autogroup.set_include_with_subclasses(
 parsed_args.includesubclasses)
 aiida_verdilib_autogroup.set_group_name(automatic_group_name)
 ## Note: this is also set in the exec environment!
 ## This is the intended behavior
 aiida.orm.autogroup.current_autogroup = aiida_verdilib_autogroup

 try:
 f = open(parsed_args.scriptname)
 except IOError:
 print >> sys.stderr, "{}: Unable to load file '{}'".format(
 self.get_full_command_name(), parsed_args.scriptname)
 sys.exit(1)
 else:
 try:
 # Must add also argv[0]
 new_argv = [parsed_args.scriptname] + parsed_args.new_args
 with update_environment(new_argv=new_argv):
 # Add local folder to sys.path
 sys.path.insert(0, os.path.abspath(os.curdir))
 # Pass only globals_dict
 exec (f, globals_dict)
 # print sys.argv
 except SystemExit as e:
 ## Script called sys.exit()
 # print sys.argv, "(sys.exit {})".format(e.message)

 ## Note: remember to re-raise, the exception to have
 ## the error code properly returned at the end!
 raise
 finally:
 f.close()

##
HERE ENDS THE COMMAND FUNCTION LIST
##
From here on: utility functions

[docs]def get_listparams():
 """
 Return a string with the list of parameters, to be printed

 The advantage of this function is that the calling routine can
 choose to print it on stdout or stderr, depending on the needs.
 """
 max_length = max(len(i) for i in short_doc.keys())

 name_desc = [(cmd.ljust(max_length + 2), desc.strip())
 for cmd, desc in short_doc.iteritems()]

 name_desc = sorted(name_desc)

 return ("List of the most relevant available commands:" + os.linesep +
 os.linesep.join([" * {} {}".format(name, desc)
 for name, desc in name_desc]))

[docs]def get_command_suggestion(command):
 """
 A function that prints on stderr a list of similar commands
 """
 import difflib

 similar_cmds = difflib.get_close_matches(command, short_doc.keys())
 if similar_cmds:
 print >> sys.stderr, ""
 print >> sys.stderr, "Did you mean this?"
 print >> sys.stderr, "\n".join([" {}".format(i)
 for i in similar_cmds])

def print_usage(execname):
 print >> sys.stderr, ("Usage: {} [--profile=PROFILENAME|-p PROFILENAME] "
 "COMMAND [<args>]".format(execname))
 print >> sys.stderr, ""
 print >> sys.stderr, get_listparams()
 print >> sys.stderr, "See '{} help' for more help.".format(execname)

[docs]def exec_from_cmdline(argv):
 """
 The main function to be called. Pass as parameter the sys.argv.
 """
 ### This piece of code takes care of creating a list of valid
 ### commands and of their docstrings for dynamic management of
 ### the code.
 ### It defines a few global variables

 global execname
 global list_commands
 global short_doc
 global long_doc

 # import itself
 from aiida.cmdline import verdilib
 import inspect

 # List of command names that should be hidden or not completed.
 hidden_commands = ['completion', 'completioncommand', 'listparams']

 # Retrieve the list of commands
 verdilib_namespace = verdilib.__dict__

 list_commands = {v.get_command_name(): v for v in
 verdilib_namespace.itervalues()
 if inspect.isclass(v) and not v == VerdiCommand and
 issubclass(v, VerdiCommand)
 and not v.__name__.startswith('_')
 and not v._abstract}

 # Retrieve the list of docstrings, managing correctly the
 # case of empty docstrings. Each value is a list of lines
 raw_docstrings = {k: (v.__doc__ if v.__doc__ else "").splitlines()
 for k, v in list_commands.iteritems()}

 short_doc = {}
 long_doc = {}
 for k, v in raw_docstrings.iteritems():
 if k in hidden_commands:
 continue
 lines = [l.strip() for l in v]
 empty_lines = [bool(l) for l in lines]
 try:
 first_idx = empty_lines.index(True) # The first non-empty line
 except ValueError:
 # All False
 short_doc[k] = "No description available"
 long_doc[k] = ""
 continue
 short_doc[k] = lines[first_idx]
 long_doc[k] = os.linesep.join(lines[first_idx + 1:])

 execname = os.path.basename(argv[0])

 try:
 profile, command_position = parse_profile(argv)
 except ProfileParsingException as e:
 print_usage(execname)
 sys.exit(1)

 # We now set the internal variable, if needed
 if profile is not None:
 settings_profile.AIIDADB_PROFILE = profile
 # I set the process to verdi
 settings_profile.CURRENT_AIIDADB_PROCESS = "verdi"

 # Finally, we parse the commands and their options
 try:
 command = argv[command_position]
 except IndexError:
 print_usage(execname)
 sys.exit(1)

 try:
 if command in list_commands:
 CommandClass = list_commands[command]()
 CommandClass.run(*argv[command_position + 1:])
 else:
 print >> sys.stderr, ("{}: '{}' is not a valid command. "
 "See '{} help' for more help.".format(
 execname, command, execname))
 get_command_suggestion(command)
 sys.exit(1)
 except ProfileConfigurationError as e:
 print >> sys.stderr, "The profile specified is not valid!"
 print >> sys.stderr, e.message
 sys.exit(1)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/cmdline/baseclass.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.cmdline.baseclass

-*- coding: utf-8 -*-

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class VerdiCommand(object):
 """
 This command has no documentation yet.
 """

 class __metaclass__(type):
 """
 Some python black magic to set correctly the logger also in subclasses.
 """

 def __new__(cls, name, bases, attrs):
 newcls = type.__new__(cls, name, bases, attrs)

 # If the '_abstract' attribute is not explicitly defined in the
 # given class, set it to False.
 if '_abstract' not in attrs:
 newcls._abstract = False

 return newcls

 # This is an abstract class
 _abstract = True

 # To be defined if you want that the name is not generated by the class
 # name, but from a given string
 _custom_command_name = None

[docs] def get_full_command_name(self, with_exec_name=True):
 """
 Return the current command name. Also tries to get the subcommand name.

 :param with_exec_name: if True, return the full string, including the
 executable name ('verdi'). If False, omit it.
 """
 from aiida.cmdline import execname

 subcommand_str = ""

 if with_exec_name:
 exec_name_part = "{} ".format(execname)
 else:
 exec_name_part = ""
 return "{}{}".format(exec_name_part, self.get_command_name())

 @classmethod
[docs] def get_command_name(cls):
 """
 Return the name of the verdi command associated to this
 class. By default, the lower-case version of the class name.
 """
 if cls._custom_command_name is None:
 return cls.__name__.lower()
 else:
 return cls._custom_command_name

[docs] def run(self, *args):
 """
 Method executed when the command is called from the command line.
 """
 import sys

 print >> sys.stderr, "This command has not been implemented yet"

[docs] def complete(self, subargs_idx, subargs):
 """
 Method called when the user asks for the bash completion.
 Print a list of valid keywords.
 Returning without printing will use standard bash completion.

 :param subargs_idx: the index of the subargs where the TAB key was pressed\
 (0 is the first element of subargs)
 :param subargs: a list of subarguments to this command
 """
 return

class VerdiCommandRouter(VerdiCommand):
 _abstract = True

 # Empty valid subcommands to start with;
 # These should be a dictionary with 'key' the name to type on the
 # command line, and value a VerdiCommand class to call when that subcommand
 # is invoked.
 routed_subcommands = {}

 def no_subcommand(self, *args):
 import sys

 if self.routed_subcommands:
 print >> sys.stderr, ("You have to pass a valid subcommand to "
 "{}.\nValid subcommands are:".format(
 self.get_full_command_name()))
 print >> sys.stderr, "\n".join(" {}".format(sc)
 for sc in self.routed_subcommands)
 else:
 print >> sys.stderr, ("There are no valid subcommand to "
 "{}.".format(self.get_full_command_name()))
 sys.exit(1)

 def invalid_subcommand(self, *args):
 import sys

 if self.routed_subcommands:
 print >> sys.stderr, ("You passed an invalid subcommand to '{}'.\n"
 "Valid subcommands are:".format(
 self.get_full_command_name()))
 print >> sys.stderr, "\n".join(" {}".format(sc)
 for sc in self.routed_subcommands)
 else:
 print >> sys.stderr, ("There are no valid subcommand to "
 "{}.".format(self.get_full_command_name()))
 sys.exit(1)

 def run(self, *args):
 try:
 the_class = self.routed_subcommands[args[0]]
 the_class._custom_command_name = "{} {}".format(
 self.get_full_command_name(with_exec_name=False), args[0])
 function_to_call = the_class().run
 except IndexError:
 function_to_call = self.no_subcommand
 except KeyError:
 function_to_call = self.invalid_subcommand

 function_to_call(*args[1:])

 def complete(self, subargs_idx, subargs):
 if subargs_idx == 0:
 print "\n".join(self.routed_subcommands.keys())
 elif subargs_idx >= 1:
 try:
 first_subarg = subargs[0]
 except IndexError:
 first_subarg = ''

 try:
 complete_function = self.routed_subcommands[
 first_subarg]().complete
 except KeyError:
 print ""
 return
 complete_function(subargs_idx - 1, subargs[1:])

[docs]class VerdiCommandWithSubcommands(VerdiCommand):
 """
 Used for commands with subcommands. Just define, in the __init__,
 the self.valid_subcommands dictionary, in the format::

 self.valid_subcommands = {
 'uploadfamily': (self.uploadfamily, self.complete_auto),
 'listfamilies': (self.listfamilies, self.complete_none),
 }

 where the key is the subcommand name to give on the command line, and
 the value is a tuple of length 2, the first is the function to call on
 execution, the second is the function to call on complete.

 This class already defined the complete_auto and complete_none commands,
 that respectively call the default bash completion for filenames/folders,
 or do not give any completion suggestion.
 Other functions can of course be defined.

 .. todo:: Improve the docstrings for commands with subcommands.
 """
 _abstract = True

 valid_subcommands = {}

 def run(self, *args):
 try:
 function_to_call = self.valid_subcommands[args[0]][0]
 except IndexError:
 function_to_call = self.no_subcommand
 except KeyError:
 function_to_call = self.invalid_subcommand

 function_to_call(*args[1:])

 def complete(self, subargs_idx, subargs):
 if subargs_idx == 0:
 print "\n".join(self.valid_subcommands.keys())
 elif subargs_idx >= 1:
 try:
 first_subarg = subargs[0]
 except IndexError:
 first_subarg = ''
 try:
 complete_function = self.valid_subcommands[first_subarg][1]
 except KeyError:
 print ""
 return
 complete_data = complete_function(subargs_idx - 1, subargs[1:])
 if complete_data is not None:
 print complete_data

 def complete_none(self, subargs_idx, subargs):
 return ""

 def complete_auto(self, subargs_idx, subargs):
 return None

 def no_subcommand(self, *args):
 import sys

 if self.valid_subcommands:
 print >> sys.stderr, ("You have to pass a valid subcommand to "
 "'{}'.\nValid subcommands are:".format(
 self.get_full_command_name()))
 print >> sys.stderr, "\n".join(" {}".format(sc)
 for sc in self.valid_subcommands)
 else:
 print >> sys.stderr, ("There are no valid subcommands to "
 "'{}'.".format(self.get_full_command_name()))
 sys.exit(1)

 def invalid_subcommand(self, *args):
 import sys

 if self.valid_subcommands:
 print >> sys.stderr, ("You passed an invalid subcommand to '{}'.\n"
 "Valid subcommands are:".format(
 self.get_full_command_name()))
 print >> sys.stderr, "\n".join(" {}".format(sc)
 for sc in self.valid_subcommands)
 else:
 print >> sys.stderr, ("There are no valid subcommands to "
 "'{}'.".format(self.get_full_command_name()))

 sys.exit(1)

[docs] def get_full_command_name(self, *args, **kwargs):
 """
 Return the current command name. Also tries to get the subcommand name.

 Also tries to see if the caller function was one specific submethod.

 :param with_exec_name: if True, return the full string, including the
 executable name ('verdi'). If False, omit it.
 """
 import inspect

 from aiida.cmdline import execname

 subcommand_str = ""

 try:
 # [0]: this function;
 # [1]: function that directly called this function
 # So I go in order from the function that called to the above
 # function, etc. until I find it, if I can
 found = False
 for caller_function in inspect.stack()[1:]:
 if found == True:
 break
 for k, v in self.valid_subcommands.iteritems():
 if v[0].__name__ == caller_function[3]:
 subcommand_str = " {}".format(k)
 found = True
 break
 except (KeyError, AttributeError, IndexError):
 # Some of this info could not be retrived, do not set
 # the subcommand name
 pass

 return "{}{}".format(
 super(VerdiCommandWithSubcommands, self).get_full_command_name(
 *args, **kwargs),
 subcommand_str)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/common/exceptions.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.common.exceptions

-*- coding: utf-8 -*-

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class AiidaException(Exception):
 """
 Base class for all AiiDA exceptions.

 Each module will have its own subclass, inherited from this
 (e.g. ExecManagerException, TransportException, ...)
 """
 pass

[docs]class NotExistent(AiidaException):
 """
 Raised when the required entity does not exist.
 """
 pass

[docs]class MultipleObjectsError(AiidaException):
 """
 Raised when more than one entity is found in the DB, but only one was
 expected.
 """
 pass

[docs]class RemoteOperationError(AiidaException):
 """
 Raised when an error in a remote operation occurs, as in a failed kill()
 of a scheduler job.
 """
 pass

[docs]class ContentNotExistent(NotExistent):
 """
 Raised when trying to access an attribute, a key or a file in the result
 nodes that is not present
 """
 pass

[docs]class FailedError(AiidaException):
 """
 Raised when accessing a calculation that is in the FAILED status
 """
 pass

[docs]class ModificationNotAllowed(AiidaException):
 """
 Raised when the user tries to modify a field, object, property, ... that should not
 be modified.
 """
 pass

[docs]class UniquenessError(AiidaException):
 """
 Raised when the user tries to violate a uniqueness constraint (on the
 DB, for instance).
 """
 pass

[docs]class MissingPluginError(AiidaException):
 """
 Raised when the user tries to use a plugin that is not available or does not exist.
 """
 pass

[docs]class InvalidOperation(AiidaException):
 """
 The allowed operation is not valid (e.g., when trying to add a non-internal attribute
 before saving the entry), or deleting an entry that is protected (e.g.,
 because it is referenced by foreign keys)
 """
 pass

[docs]class ParsingError(AiidaException):
 """
 Generic error raised when there is a parsing error
 """
 pass

[docs]class InternalError(AiidaException):
 """
 Error raised when there is an internal error of AiiDA.
 """
 pass

[docs]class PluginInternalError(InternalError):
 """
 Error raised when there is an internal error which is due to a plugin
 and not to the AiiDA infrastructure.
 """
 pass

[docs]class ValidationError(AiidaException):
 """
 Error raised when there is an error during the validation phase
 of a property.
 """
 pass

[docs]class ConfigurationError(AiidaException):
 """
 Error raised when there is a configuration error in AiiDA.
 """
 pass

[docs]class ProfileConfigurationError(ConfigurationError):
 """
 Configuration error raised when a wrong/inexistent profile is requested.
 """
 pass

[docs]class DbContentError(AiidaException):
 """
 Raised when the content of the DB is not valid.
 This should never happen if the user does not play directly
 with the DB.
 """
 pass

[docs]class AuthenticationError(AiidaException):
 """
 Raised when a user tries to access a resource for which it is
 not authenticated, e.g. an aiidauser tries to access a computer
 for which there is no entry in the AuthInfo table.
 """
 pass

[docs]class InputValidationError(ValidationError):
 """
 The input data for a calculation did not validate (e.g., missing
 required input data, wrong data, ...)
 """
 pass

[docs]class WorkflowInputValidationError(ValidationError):
 """
 The input data for a workflow did not validate (e.g., missing
 required input data, wrong data, ...)
 """
 pass

[docs]class FeatureNotAvailable(AiidaException):
 """
 Raised when a feature is requested from a plugin, that is not available.
 """
 pass

[docs]class FeatureDisabled(AiidaException):
 """
 Raised when a feature is requested, but the user has chosen to disable
 it (e.g., for submissions on disabled computers).
 """
 pass

[docs]class LockPresent(AiidaException):
 """
 Raised when a lock is requested, but cannot be acquired.
 """
 pass

[docs]class LicensingException(AiidaException):
 """
 Raised when requirements for data licensing are not met.
 """
 pass

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/common/folders.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.common.folders

-*- coding: utf-8 -*-
import os
import shutil
import fnmatch
import tempfile

from aiida.common.utils import get_repository_folder

If True, tries to make everything (dirs, files) group-writable.
Otherwise, tries to make everything only readable and writable by the user.
TODO: put it in a global variable, and check if it really works!

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

group_writable = True

_valid_sections = ['node', 'workflow']

[docs]class Folder(object):
 """
 A class to manage generic folders, avoiding to get out of
 specific given folder borders.

 .. todo::
 fix this, os.path.commonprefix of /a/b/c and /a/b2/c will give
 a/b, check if this is wanted or if we want to put trailing slashes.
 (or if we want to use os.path.relpath and check for a string starting
 with os.pardir?)

 .. todo::
 rethink whether the folder_limit option is still useful. If not, remove
 it alltogether (it was a nice feature, but unfortunately all the calls
 to os.path.abspath or normpath are quite slow).
 """

 def __init__(self, abspath, folder_limit=None):
 abspath = os.path.abspath(abspath)
 if folder_limit is None:
 folder_limit = abspath
 else:
 folder_limit = os.path.abspath(folder_limit)

 # check that it is a subfolder
 if not os.path.commonprefix([abspath,
 folder_limit]) == folder_limit:
 raise ValueError(
 "The absolute path for this folder is not within the "
 "folder_limit. abspath={}, folder_limit={}.".format(
 abspath, folder_limit))

 self._abspath = abspath
 self._folder_limit = folder_limit

 @property
 def mode_dir(self):
 """
 Return the mode with which the folders should be created
 """
 if group_writable:
 return 0o770
 else:
 return 0o700

 @property
 def mode_file(self):
 """
 Return the mode with which the files should be created
 """
 if group_writable:
 return 0o660
 else:
 return 0o600

[docs] def get_subfolder(self, subfolder, create=False, reset_limit=False):
 """
 Return a Folder object pointing to a subfolder.

 :param subfolder: a string with the relative path of the subfolder,
 relative to the absolute path of this object. Note that
 this may also contain '..' parts,
 as far as this does not go beyond the folder_limit.
 :param create: if True, the new subfolder is created, if it does not exist.
 :param reset_limit: when doing ``b = a.get_subfolder('xxx', reset_limit=False)``,
 the limit of b will be the same limit of a.
 if True, the limit will be set to the boundaries of folder b.

 :Returns: a Folder object pointing to the subfolder.
 """
 dest_abs_dir = os.path.abspath(os.path.join(
 self.abspath, unicode(subfolder)))

 if reset_limit:
 # Create a new Folder object, with a limit to itself (cannot go
 # back to this folder)
 folder_limit = None
 else:
 # Create a new Folder object, with the same limit of the parent
 folder_limit = self.folder_limit

 new_folder = Folder(abspath=dest_abs_dir,
 folder_limit=folder_limit)

 if create:
 new_folder.create()

 return new_folder

[docs] def get_content_list(self, pattern='*', only_paths=True):
 """
 Return a list of files (and subfolders) in the folder,
 matching a given pattern.

 Example: If you want to exclude files starting with a dot, you can
 call this method with ``pattern='[!.]*'``

 :param pattern: a pattern for the file/folder names, using Unix filename
 pattern matching (see Python standard module fnmatch).
 By default, pattern is '*', matching all files and folders.
 :param only_paths: if False (default), return pairs (name, is_file).
 if True, return only a flat list.

 :Returns:
 a list of tuples of two elements, the first is the file name and
 the second is True if the element is a file, False if it is a
 directory.
 """
 file_list = [fname for fname in os.listdir(self.abspath)
 if fnmatch.fnmatch(fname, pattern)]

 if only_paths:
 return file_list
 else:
 return [(fname, not os.path.isdir(os.path.join(self.abspath, fname)))
 for fname in file_list]

[docs] def create_symlink(self, src, name):
 """
 Create a symlink inside the folder to the location 'src'.

 :param src: the location to which the symlink must point. Can be
 either a relative or an absolute path. Should, however,
 be relative to work properly also when the repository is
 moved!
 :param name: the filename of the symlink to be created.
 """
 dest_abs_path = self.get_abs_path(name)
 os.symlink(src, dest_abs_path)

 # For symlinks, permissions should not be set

[docs] def insert_path(self, src, dest_name=None, overwrite=True):
 """
 Copy a file to the folder.

 :param src: the source filename to copy
 :param dest_name: if None, the same basename of src is used. Otherwise,
 the destination filename will have this file name.
 :param overwrite: if ``False``, raises an error on existing destination;
 otherwise, delete it first.
 """
 if dest_name is None:
 filename = unicode(os.path.basename(src))
 else:
 filename = unicode(dest_name)

 if not isinstance(src, unicode):
 src = unicode(src)

 # I get the full path of the filename, checking also that I don't
 # go beyond the folder limits
 dest_abs_path = self.get_abs_path(filename)

 if not os.path.isabs(src):
 raise ValueError("src must be an absolute path in insert_file")

 # In this way, the destination is always correct (i.e., if I copy to a
 # folder, I point to the correct location inside it)
 if os.path.isdir(dest_abs_path):
 dest_abs_path = os.path.join(dest_abs_path, os.path.basename(src))

 if os.path.isfile(src):
 if os.path.exists(dest_abs_path):
 if overwrite:
 if os.path.isdir(dest_abs_path):
 shutil.rmtree(dest_abs_path)
 else:
 os.remove(dest_abs_path)
 # This automatically overwrites files
 shutil.copyfile(src, dest_abs_path)
 else:
 raise IOError("destination already exists: {}".format(
 os.path.join(dest_abs_path)))
 else:
 shutil.copyfile(src, dest_abs_path)
 elif os.path.isdir(src):
 if os.path.exists(dest_abs_path):
 if overwrite:
 if os.path.isdir(dest_abs_path):
 shutil.rmtree(dest_abs_path)
 else:
 os.remove(dest_abs_path)
 # This automatically overwrites files
 shutil.copytree(src, dest_abs_path)
 else:
 raise IOError("destination already exists: {}".format(
 os.path.join(dest_abs_path)))
 else:
 shutil.copytree(src, dest_abs_path)
 else:
 raise ValueError("insert_path can only insert files or paths, not symlinks or the like")

 return dest_abs_path

[docs] def create_file_from_filelike(self, src_filelike, dest_name):
 """
 Create a file from a file-like object.

 :note: if the current file position in src_filelike is not 0,
 only the contents from the current file position to the end of the
 file will be copied in the new file.

 :param src_filelike: the file-like object (e.g., if you have
 a string called s, you can pass ``StringIO.StringIO(s)``)
 :param dest_name: the destination filename will have this file name.
 """
 filename = unicode(dest_name)

 # I get the full path of the filename, checking also that I don't
 # go beyond the folder limits
 dest_abs_path = self.get_abs_path(filename)

 with open(dest_abs_path, 'w') as f:
 shutil.copyfileobj(src_filelike, f)

 # Set the mode
 os.chmod(dest_abs_path, self.mode_file)

 return dest_abs_path

[docs] def remove_path(self, filename):
 """
 Remove a file or folder from the folder.

 :param filename: the relative path name to remove
 """
 # I get the full path of the filename, checking also that I don't
 # go beyond the folder limits
 dest_abs_path = self.get_abs_path(filename, check_existence=True)

 if os.path.isdir(dest_abs_path):
 shutil.rmtree(dest_abs_path)
 else:
 os.remove(dest_abs_path)

[docs] def get_abs_path(self, relpath, check_existence=False):
 """
 Return an absolute path for a file or folder in this folder.

 The advantage of using this method is that it checks that filename
 is a valid filename within this folder,
 and not something e.g. containing slashes.

 :param filename: The file or directory.
 :param check_existence: if False, just return the file path.
 Otherwise, also check if the file or directory actually exists.
 Raise OSError if it does not.
 """
 if os.path.isabs(relpath):
 raise ValueError("relpath must be a relative path")
 dest_abs_path = os.path.join(self.abspath, relpath)

 if not os.path.commonprefix([dest_abs_path, self.folder_limit]) == self.folder_limit:
 errstr = "You didn't specify a valid filename: {}".format(relpath)
 raise ValueError(errstr)

 if check_existence:
 if not os.path.exists(dest_abs_path):
 raise OSError("{} does not exist within the folder {}".format(
 relpath, self.abspath))

 return dest_abs_path

[docs] def open(self, name, mode='r'):
 """
 Open a file in the current folder and return the corresponding
 file object.
 """
 return open(self.get_abs_path(name), mode)

 @property
 def abspath(self):
 """
 The absolute path of the folder.
 """
 return self._abspath

 @property
 def folder_limit(self):
 """
 The folder limit that cannot be crossed when creating files and folders.
 """
 return self._folder_limit

[docs] def exists(self):
 """
 Return True if the folder exists, False otherwise.
 """
 return os.path.exists(self.abspath)

[docs] def isfile(self, relpath):
 """
 Return True if 'relpath' exists inside the folder and is a file,
 False otherwise.
 """
 return os.path.isfile(os.path.join(self.abspath, relpath))

[docs] def isdir(self, relpath):
 """
 Return True if 'relpath' exists inside the folder and is a directory,
 False otherwise.
 """
 return os.path.isdir(os.path.join(self.abspath, relpath))

[docs] def erase(self, create_empty_folder=False):
 """
 Erases the folder. Should be called only in very specific cases,
 in general folder should not be erased!

 Doesn't complain if the folder does not exist.

 :param create_empty_folder: if True, after erasing, creates an empty dir.
 """
 if self.exists():
 shutil.rmtree(self.abspath)

 if create_empty_folder:
 self.create()

[docs] def create(self):
 """
 Creates the folder, if it does not exist on the disk yet.

 It will also create top directories, if absent.

 It is always safe to call it, it will do nothing if the folder
 already exists.
 """
 if not self.exists():
 os.makedirs(self.abspath, mode=self.mode_dir)

[docs] def replace_with_folder(self, srcdir, move=False, overwrite=False):
 """
 This routine copies or moves the source folder 'srcdir' to the local
 folder pointed by this Folder object.

 :param srcdir: the source folder on the disk; this must be a string with
 an absolute path
 :param move: if True, the srcdir is moved to the repository. Otherwise, it
 is only copied.
 :param overwrite: if True, the folder will be erased first.
 if False, a IOError is raised if the folder already exists.
 Whatever the value of this flag, parent directories will be
 created, if needed.

 :Raises:
 OSError or IOError: in case of problems accessing or writing
 the files.
 :Raises:
 ValueError: if the section is not recognized.
 """
 if not os.path.isabs(srcdir):
 raise ValueError('srcdir must be an absolute path')
 if overwrite:
 self.erase()
 elif self.exists():
 raise IOError("Location {} already exists, and overwrite is set to "
 "False".format(self.abspath))

 # Create parent dir, if needed, with the right mode
 pardir = os.path.dirname(self.abspath)
 if not os.path.exists(pardir):
 os.makedirs(pardir, mode=self.mode_dir)

 if move:
 shutil.move(srcdir, self.abspath)
 else:
 shutil.copytree(srcdir, self.abspath)

 # Set the mode also for the current dir, recursively
 for dirpath, dirnames, filenames in os.walk(self.abspath,
 followlinks=False):
 # dirpath should already be absolute, because I am passing
 # an absolute path to os.walk
 os.chmod(dirpath, self.mode_dir)
 for f in filenames:
 # do not change permissions of symlinks (this would
 # actually change permissions of the linked file/dir)
 # Toc check whether this is a big speed loss
 full_file_path = os.path.join(dirpath, f)
 if not os.path.islink(full_file_path):
 os.chmod(full_file_path, self.mode_file)

[docs]class SandboxFolder(Folder):
 """
 A class to manage the creation and management of a sandbox folder.

 Note: this class must be used within a context manager, i.e.:

 with SandboxFolder as f:
 ## do something with f

 In this way, the sandbox folder is removed from disk
 (if it wasn't removed already) when exiting the 'with' block.

 .. todo:: Implement check of whether the folder has been removed.
 """

 def __init__(self):
 """
 Initializes the object by creating a new temporary folder in the
 sandbox.
 """
 # First check if the sandbox folder already exists
 sandbox = get_repository_folder('sandbox')
 if not os.path.exists(sandbox):
 os.makedirs(sandbox)

 abspath = tempfile.mkdtemp(dir=sandbox)
 super(SandboxFolder, self).__init__(abspath=abspath)

 def __enter__(self):
 """
 Called when entering in the with statement
 """
 return self

 def __exit__(self, exc_type, exc_value, traceback):
 """
 In exit, I remove the sandbox folder from disk, if it still exists
 """
 self.erase()

[docs]class RepositoryFolder(Folder):
 """
 A class to manage the local AiiDA repository folders.
 """

 def __init__(self, section, uuid, subfolder=os.curdir):
 """
 Initializes the object by pointing it to a folder in the repository.

 Pass the uuid as a string.
 """
 if section not in _valid_sections:
 retstr = ("Repository section '{}' not allowed. "
 "Valid sections are: {}".format(
 section, ",".join(_valid_sections)))
 raise ValueError(retstr)
 self._section = section
 self._uuid = uuid

 # If you want to change the sharding scheme, this is the only place
 # where changes should be needed FOR NODES AND WORKFLOWS
 # Of course, remember to migrate data!
 # We set a sharding of level 2+2
 # Note that a similar sharding should probably has to be done
 # independently for calculations sent to remote computers in the
 # execmanager.
 # Note: I don't do any os.path.abspath (that internally calls
 # normpath, that may be slow): this is done abywat by the super
 # class.
 entity_dir = os.path.join(
 get_repository_folder('repository'), unicode(section),
 unicode(uuid)[:2], unicode(uuid)[2:4], unicode(uuid)[4:])
 dest = os.path.join(entity_dir, unicode(subfolder))

 # Internal variable of this class
 self._subfolder = subfolder

 # This will also do checks on the folder limits
 super(RepositoryFolder, self).__init__(
 abspath=dest, folder_limit=entity_dir)

 @property
 def section(self):
 """
 The section to which this folder belongs.
 """
 return self._section

 @property
 def uuid(self):
 """
 The uuid to which this folder belongs.
 """
 return self._uuid

 @property
 def subfolder(self):
 """
 The subfolder within the section/uuid folder.
 """
 return self._subfolder

[docs] def get_topdir(self):
 """
 Returns the top directory, i.e., the section/uuid folder object.
 """
 return RepositoryFolder(self.section, self.uuid)

 # NOTE! The get_subfolder method will return a Folder object, and not a RepositoryFolder object

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/scheduler/datastructures.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.scheduler.datastructures

-*- coding: utf-8 -*-
"""
This module defines the main data structures used by the Scheduler.

In particular, there is the definition of possible job states (job_states),
the data structure to be filled for job submission (JobTemplate), and
the data structure that is returned when querying for jobs in the scheduler
(JobInfo).
"""
from __future__ import division
from aiida.common.extendeddicts import (
 DefaultFieldsAttributeDict, Enumerate)

from aiida.common import aiidalogger

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

scheduler_logger = aiidalogger.getChild('scheduler')

class JobState(Enumerate):
 pass

This is the list of possible job states
Note on names: Jobs are the entities on a
scheduler; Calcs are the calculations in
the AiiDA database (whose list of possible
statuses is defined in aida.common.datastructures
with the calc_states Enumerate).
NOTE: for the moment, I don't define FAILED
(I put everything in DONE)
job_states = JobState((
 'UNDETERMINED',
 'QUEUED',
 'QUEUED_HELD',
 'RUNNING',
 'SUSPENDED',
 'DONE',
))

[docs]class JobResource(DefaultFieldsAttributeDict):
 """
 A class to store the job resources. It must be inherited and redefined by the specific
 plugin, that should contain a _job_resource_class attribute pointing to the correct
 JobResource subclass.

 It should at least define the get_tot_num_mpiprocs() method, plus an __init__ to accept
 its set of variables.

 Typical attributes are:

 * ``num_machines``
 * ``num_mpiprocs_per_machine``

 or (e.g. for SGE)

 * ``tot_num_mpiprocs``
 * ``parallel_env``

 The __init__ should take care of checking the values.
 The init should raise only ValueError or TypeError on invalid parameters.
 """
 _default_fields = tuple()

 @classmethod
[docs] def accepts_default_mpiprocs_per_machine(cls):
 """
 Return True if this JobResource accepts a 'default_mpiprocs_per_machine'
 key, False otherwise.

 Should be implemented in each subclass.
 """
 raise NotImplementedError

 @classmethod
[docs] def get_valid_keys(cls):
 """
 Return a list of valid keys to be passed to the __init__
 """
 return list(cls._default_fields)

[docs] def get_tot_num_mpiprocs(self):
 """
 Return the total number of cpus of this job resource.
 """
 raise NotImplementedError

[docs]class NodeNumberJobResource(JobResource):
 """
 An implementation of JobResource for schedulers that support
 the specification of a number of nodes and a number of cpus per node
 """
 _default_fields = (
 'num_machines',
 'num_mpiprocs_per_machine',
 'num_cores_per_machine',
 'num_cores_per_mpiproc',
)

 @classmethod
[docs] def get_valid_keys(cls):
 """
 Return a list of valid keys to be passed to the __init__
 """
 return super(NodeNumberJobResource, cls).get_valid_keys() + [
 "tot_num_mpiprocs", "default_mpiprocs_per_machine"]

 @classmethod
[docs] def accepts_default_mpiprocs_per_machine(cls):
 """
 Return True if this JobResource accepts a 'default_mpiprocs_per_machine'
 key, False otherwise.
 """
 return True

 def __init__(self, **kwargs):
 """
 Initialize the job resources from the passed arguments (the valid keys can be
 obtained with the function self.get_valid_keys()).

 Should raise only ValueError or TypeError on invalid parameters.
 """
 try:
 num_machines = int(kwargs.pop('num_machines'))
 except KeyError:
 num_machines = None
 except ValueError:
 raise ValueError("num_machines must an integer")

 try:
 default_mpiprocs_per_machine = kwargs.pop('default_mpiprocs_per_machine')
 if default_mpiprocs_per_machine is not None:
 default_mpiprocs_per_machine = int(default_mpiprocs_per_machine)
 except KeyError:
 default_mpiprocs_per_machine = None
 except ValueError:
 raise ValueError("default_mpiprocs_per_machine must an integer")

 try:
 num_mpiprocs_per_machine = int(kwargs.pop('num_mpiprocs_per_machine'))
 except KeyError:
 num_mpiprocs_per_machine = None
 except ValueError:
 raise ValueError("num_mpiprocs_per_machine must an integer")

 try:
 tot_num_mpiprocs = int(kwargs.pop('tot_num_mpiprocs'))
 except KeyError:
 tot_num_mpiprocs = None
 except ValueError:
 raise ValueError("tot_num_mpiprocs must an integer")

 try:
 self.num_cores_per_machine = int(kwargs.pop('num_cores_per_machine'))
 except KeyError:
 self.num_cores_per_machine = None
 except ValueError:
 raise ValueError("num_cores_per_machine must an integer")

 try:
 self.num_cores_per_mpiproc = int(kwargs.pop('num_cores_per_mpiproc'))
 except KeyError:
 self.num_cores_per_mpiproc = None
 except ValueError:
 raise ValueError("num_cores_per_mpiproc must an integer")

 if kwargs:
 raise TypeError("The following parameters were not recognized for "
 "the JobResource: {}".format(kwargs.keys()))

 if num_machines is None:
 # Use default value, if not provided
 if num_mpiprocs_per_machine is None:
 num_mpiprocs_per_machine = default_mpiprocs_per_machine

 if num_mpiprocs_per_machine is None or tot_num_mpiprocs is None:
 raise TypeError("At least two among num_machines, "
 "num_mpiprocs_per_machine or tot_num_mpiprocs must be specified")
 else:
 # To avoid divisions by zero
 if num_mpiprocs_per_machine <= 0:
 raise ValueError("num_mpiprocs_per_machine must be >= 1")
 num_machines = tot_num_mpiprocs // num_mpiprocs_per_machine
 else:
 if tot_num_mpiprocs is None:
 # Only set the default value if tot_num_mpiprocs is not provided.
 # Otherwise, it means that the user provided both
 # num_machines and tot_num_mpiprocs, and we have to ignore
 # the default value of tot_num_mpiprocs
 if num_mpiprocs_per_machine is None:
 num_mpiprocs_per_machine = default_mpiprocs_per_machine

 if num_mpiprocs_per_machine is None:
 if tot_num_mpiprocs is None:
 raise TypeError("At least two among num_machines, "
 "num_mpiprocs_per_machine or tot_num_mpiprocs must be specified")
 else:
 # To avoid divisions by zero
 if num_machines <= 0:
 raise ValueError("num_machines must be >= 1")
 num_mpiprocs_per_machine = tot_num_mpiprocs // num_machines

 self.num_machines = num_machines
 self.num_mpiprocs_per_machine = num_mpiprocs_per_machine

 if tot_num_mpiprocs is not None:
 if tot_num_mpiprocs != self.num_mpiprocs_per_machine * self.num_machines:
 raise ValueError("tot_num_mpiprocs must be equal to "
 "num_mpiprocs_per_machine * num_machines, and in particular it "
 "should be a multiple of num_mpiprocs_per_machine and/or "
 "num_machines")

 if self.num_mpiprocs_per_machine <= 0:
 raise ValueError("num_mpiprocs_per_machine must be >= 1")
 if self.num_machines <= 0:
 raise ValueError("num_machine must be >= 1")

[docs] def get_tot_num_mpiprocs(self):
 """
 Return the total number of cpus of this job resource.
 """
 return self.num_machines * self.num_mpiprocs_per_machine

[docs]class ParEnvJobResource(JobResource):
 """
 An implementation of JobResource for schedulers that support
 the specification of a parallel environment (a string) + the total number of nodes
 """
 _default_fields = (
 'parallel_env',
 'tot_num_mpiprocs',
 'default_mpiprocs_per_machine',
)

 def __init__(self, **kwargs):
 """
 Initialize the job resources from the passed arguments (the valid keys can be
 obtained with the function self.get_valid_keys()).

 :raise ValueError: on invalid parameters.
 :raise TypeError: on invalid parameters.
 :raise ConfigurationError: if default_mpiprocs_per_machine was set for this
 computer, since ParEnvJobResource cannot accept this parameter.
 """
 from aiida.common.exceptions import ConfigurationError

 try:
 self.parallel_env = str(kwargs.pop('parallel_env'))
 except (KeyError, TypeError, ValueError):
 raise TypeError("'parallel_env' must be specified and must be a string")

 try:
 self.tot_num_mpiprocs = int(kwargs.pop('tot_num_mpiprocs'))
 except (KeyError, ValueError):
 raise TypeError("tot_num_mpiprocs must be specified and must be an integer")

 default_mpiprocs_per_machine = kwargs.pop('default_mpiprocs_per_machine', None)
 if default_mpiprocs_per_machine is not None:
 raise ConfigurationError("default_mpiprocs_per_machine cannot be set "
 "for schedulers that use ParEnvJobResource")

 if self.tot_num_mpiprocs <= 0:
 raise ValueError("tot_num_mpiprocs must be >= 1")

[docs] def get_tot_num_mpiprocs(self):
 """
 Return the total number of cpus of this job resource.
 """
 return self.tot_num_mpiprocs

 @classmethod
[docs] def accepts_default_mpiprocs_per_machine(cls):
 """
 Return True if this JobResource accepts a 'default_mpiprocs_per_machine'
 key, False otherwise.
 """
 return False

[docs]class JobTemplate(DefaultFieldsAttributeDict):
 """
 A template for submitting jobs. This contains all required information
 to create the job header.

 The required fields are: working_directory, job_name, num_machines,
 num_mpiprocs_per_machine, argv.

 Fields:

 * ``submit_as_hold``: if set, the job will be in a 'hold' status right
 after the submission
 * ``rerunnable``: if the job is rerunnable (boolean)
 * ``job_environment``: a dictionary with environment variables to set
 before the execution of the code.
 * ``working_directory``: the working directory for this job. During
 submission, the transport will first do a 'chdir' to this directory,
 and then possibly set a scheduler parameter, if this is supported
 by the scheduler.
 * ``email``: an email address for sending emails on job events.
 * ``email_on_started``: if True, ask the scheduler to send an email when the
 job starts.
 * ``email_on_terminated``: if True, ask the scheduler to send an email when
 the job ends. This should also send emails on job failure, when
 possible.
 * ``job_name``: the name of this job. The actual name of the job can be
 different from the one specified here, e.g. if there are unsupported
 characters, or the name is too long.
 * ``sched_output_path``: a (relative) file name for the stdout of this job
 * ``sched_error_path``: a (relative) file name for the stdout of this job
 * ``sched_join_files``: if True, write both stdout and stderr on the same
 file (the one specified for stdout)
 * ``queue_name``: the name of the scheduler queue (sometimes also called
 partition), on which the job will be submitted.
 * ``job_resource``: a suitable :py:class:`JobResource`
 subclass with information on how many
 nodes and cpus it should use. It must be an instance of the
 :py:attr:`aiida.scheduler.Scheduler._job_resource_class` class.
 Use the Scheduler.create_job_resource method to create it.
 * ``num_machines``: how many machines (or nodes) should be used
 * ``num_mpiprocs_per_machine``: how many MPI procs should be used on each
 machine (or node).
 * ``priority``: a priority for this job. Should be in the format accepted
 by the specific scheduler.
 * ``max_memory_kb``: The maximum amount of memory the job is allowed
 to allocate ON EACH NODE, in kilobytes
 * ``max_wallclock_seconds``: The maximum wall clock time that all processes
 of a job are allowed to exist, in seconds
 * ``custom_scheduler_commands``: a string that will be inserted right
 after the last scheduler command, and before any other non-scheduler
 command; useful if some specific flag needs to be added and is not
 supported by the plugin
 * ``prepend_text``: a (possibly multi-line) string to be inserted
 in the scheduler script before the main execution line
 * ``append_text``: a (possibly multi-line) string to be inserted
 in the scheduler script after the main execution line
 * ``import_sys_environment``: import the system environment variables
 * ``codes_info``: a list of aiida.common.datastructures.CalcInfo objects.
 Each contains the information necessary to run a single code. At the
 moment, it can contain:

 * ``cmdline_parameters``: a list of strings with the command line arguments
 of the program to run. This is the main program to be executed.
 NOTE: The first one is the executable name.
 For MPI runs, this will probably be "mpirun" or a similar program;
 this has to be chosen at a upper level.
 * ``stdin_name``: the (relative) file name to be used as stdin for the
 program specified with argv.
 * ``stdout_name``: the (relative) file name to be used as stdout for the
 program specified with argv.
 * ``stderr_name``: the (relative) file name to be used as stderr for the
 program specified with argv.
 * ``join_files``: if True, stderr is redirected on the same file
 specified for stdout.

 * ``codes_run_mode``: sets the run_mode with which the (multiple) codes
 have to be executed. For example, parallel execution::

 mpirun -np 8 a.x &
 mpirun -np 8 b.x &
 wait

 The serial execution would be without the &'s.
 Values are given by aiida.common.datastructures.code_run_modes.
 """
 # #TODO: validation key? also call the validate function in the proper
 # place then.

 _default_fields = (
 'submit_as_hold',
 'rerunnable',
 'job_environment',
 'working_directory',
 'email',
 'email_on_started',
 'email_on_terminated',
 'job_name',
 'sched_output_path',
 'sched_error_path',
 'sched_join_files',
 'queue_name',
 'job_resource',
 # 'num_machines',
 # 'num_mpiprocs_per_machine',
 'priority',
 'max_memory_kb',
 'max_wallclock_seconds',
 'custom_scheduler_commands',
 'prepend_text',
 'append_text',
 'import_sys_environment',
'stderr_name', # this 5 5keys have been moved to codes_info
'join_files',
'argv',
'stdin_name',
'stdout_name',
 'codes_run_mode',
 'codes_info',
)

[docs]class MachineInfo(DefaultFieldsAttributeDict):
 """
 Similarly to what is defined in the DRMAA v.2 as SlotInfo; this identifies
 each machine (also called 'node' on some schedulers)
 on which a job is running, and how many CPUs are being used. (Some of them
 could be undefined)

 * ``name``: name of the machine
 * ``num_cpus``: number of cores used by the job on this machine
 * ``num_mpiprocs``: number of MPI processes used by the job on this machine
 """
 _default_fields = (
 'name',
 'num_mpiprocs',
 'num_cpus',
)

[docs]class JobInfo(DefaultFieldsAttributeDict):
 """
 Contains properties for a job in the queue.
 Most of the fields are taken from DRMAA v.2.

 Note that default fields may be undefined. This
 is an expected behavior and the application must cope with this
 case. An example for instance is the exit_status for jobs that have
 not finished yet; or features not supported by the given scheduler.

 Fields:

 * ``job_id``: the job ID on the scheduler
 * ``title``: the job title, as known by the scheduler
 * ``exit_status``: the exit status of the job as reported by the operating
 system on the execution host
 * ``terminating_signal``: the UNIX signal that was responsible for the end
 of the job.
 * ``annotation``: human-readable description of the reason for the job
 being in the current state or substate.
 * ``job_state``: the job state (one of those defined in
 :py:attr:`aiida.scheduler.datastructures.job_states`)
 * ``job_substate``: a string with the implementation-specific sub-state
 * ``allocated_machines``: a list of machines used for the current job.
 This is a list of :py:class:`MachineInfo` objects.
 * ``job_owner``: the job owner as reported by the scheduler
 * ``num_mpiprocs``: the *total* number of requested MPI procs
 * ``num_cpus``: the *total* number of requested CPUs (cores) [may be undefined]
 * ``num_machines``: the number of machines (i.e., nodes), required by the
 job. If ``allocated_machines`` is not None, this number must be equal to
 ``len(allocated_machines)``. Otherwise, for schedulers not supporting
 the retrieval of the full list of allocated machines, this
 attribute can be used to know at least the number of machines.
 * ``queue_name``: The name of the queue in which the job is queued or
 running.
 * ``wallclock_time_seconds``: the accumulated wallclock time, in seconds
 * ``requested_wallclock_time_seconds``: the requested wallclock time,
 in seconds
 * ``cpu_time``: the accumulated cpu time, in seconds
 * ``submission_time``: the absolute time at which the job was submitted,
 of type datetime.datetime
 * ``dispatch_time``: the absolute time at which the job first entered the
 'started' state, of type datetime.datetime
 * ``finish_time``: the absolute time at which the job first entered the
 'finished' state, of type datetime.datetime
 """
 _default_fields = (
 'job_id',
 'title',
 'exit_status',
 'terminating_signal',
 'annotation',
 'job_state',
 'job_substate',
 'allocated_machines',
 'job_owner',
 'num_mpiprocs',
 'num_cpus',
 'num_machines',
 'queue_name',
 'wallclock_time_seconds',
 'requested_wallclock_time_seconds',
 'cpu_time',
 'submission_time',
 'dispatch_time',
 'finish_time'
)

 # If some fields require special serializers, specify them here.
 # You then need to define also the respective _serialize_FIELDTYPE and
 # _deserialize_FIELDTYPE methods
 _special_serializers = {
 'submission_time': 'date',
 'dispatch_time': 'date',
 'finish_time': 'date',
 }

 def _serialize_date(self, v):
 import datetime
 import pytz

 if v is None:
 return v

 if not isinstance(v, datetime.datetime):
 raise TypeError("Invalid type for the date, should be a datetime")

 # is_naive check from django.utils.timezone
 if v.tzinfo is None or v.tzinfo.utcoffset(v) is None:
 # TODO: FIX TIMEZONE
 scheduler_logger.debug("Datetime to serialize in JobInfo is naive, "
 "this should be fixed!")
 #v = v.replace(tzinfo = pytz.utc)
 return {'date': v.strftime(
 '%Y-%m-%dT%H:%M:%S.%f'), 'timezone': None}
 else:
 return {'date': v.astimezone(pytz.utc).strftime(
 '%Y-%m-%dT%H:%M:%S.%f'), 'timezone': 'UTC'}

 def _deserialize_date(self, v):
 import datetime
 import pytz

 if v is None:
 return v

 if v['timezone'] is None:
 # naive date
 return datetime.datetime.strptime(v['date'],
 '%Y-%m-%dT%H:%M:%S.%f')
 elif v['timezone'] == 'UTC':
 return datetime.datetime.strptime(v['date'],
 '%Y-%m-%dT%H:%M:%S.%f').replace(
 tzinfo=pytz.utc)
 else:
 # Try your best
 return datetime.datetime.strptime(v['date'],
 '%Y-%m-%dT%H:%M:%S.%f').replace(
 tzinfo=pytz.timezone(v['timezone']))

 def serialize_field(self, value, field_type):
 if field_type is None:
 return value

 serializer_method = getattr(self, "_serialize_{}".format(field_type))

 return serializer_method(value)

 def deserialize_field(self, value, field_type):
 if field_type is None:
 return value

 deserializer_method = getattr(self, "_deserialize_{}".format(field_type))

 return deserializer_method(value)

 def serialize(self):
 import json

 ser_data = {k: self.serialize_field(
 v, self._special_serializers.get(k, None))
 for k, v in self.iteritems()}

 return json.dumps(ser_data)

 def load_from_serialized(self, data):
 import json

 deser_data = json.loads(data)

 for k, v in deser_data.iteritems():
 self[k] = self.deserialize_field(
 v, self._special_serializers.get(k, None))

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/scheduler/__init__.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.scheduler.__init__

-*- coding: utf-8 -*-

from abc import ABCMeta, abstractmethod
import aiida.common
from aiida.common.utils import escape_for_bash
from aiida.common.exceptions import AiidaException
from aiida.scheduler.datastructures import JobTemplate

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]def SchedulerFactory(module):
 """
 Used to load a suitable Scheduler subclass.

 :param str module: a string with the module name
 :return: the scheduler subclass contained in module 'module'
 """
 from aiida.common.pluginloader import BaseFactory

 return BaseFactory(module, Scheduler, "aiida.scheduler.plugins")

class SchedulerError(AiidaException):
 pass

class SchedulerParsingError(SchedulerError):
 pass

[docs]class Scheduler(object):
 """
 Base class for all schedulers.
 """
 __metaclass__ = ABCMeta
 _logger = aiida.common.aiidalogger.getChild('scheduler')

 # A list of features
 # Features that should be defined in the plugins:
 # 'can_query_by_user': True if I can pass the 'user' argument to
 # get_joblist_command (and in this case, no 'jobs' should be given).
 # Otherwise, if False, a list of jobs is passed, and no 'user' is given.
 _features = {}

 # The class to be used for the job resource.
 _job_resource_class = None

 def __init__(self):
 self._transport = None

[docs] def set_transport(self, transport):
 """
 Set the transport to be used to query the machine or to submit scripts.
 This class assumes that the transport is open and active.
 """
 self._transport = transport

 @classmethod
 def get_valid_schedulers(cls):
 from aiida.common.pluginloader import existing_plugins

 return existing_plugins(Scheduler, "aiida.scheduler.plugins")

 @classmethod
[docs] def get_short_doc(cls):
 """
 Return the first non-empty line of the class docstring, if available
 """
 # Remove empty lines
 docstring = cls.__doc__
 if not docstring:
 return "No documentation available"

 doclines = [i for i in docstring.splitlines() if i.strip()]
 if doclines:
 return doclines[0].strip()
 else:
 return "No documentation available"

 def get_feature(self, feature_name):
 try:
 return self._features[feature_name]
 except KeyError:
 raise NotImplementedError(
 "Feature {} not implemented for this scheduler".format(
 feature_name))

 @property
 def logger(self):
 """
 Return the internal logger.
 """
 try:
 return self._logger
 except AttributeError:
 from aiida.common.exceptions import InternalError

 raise InternalError("No self._logger configured for {}!")

 @classmethod
[docs] def create_job_resource(cls, **kwargs):
 """
 Create a suitable job resource from the kwargs specified
 """
 if cls._job_resource_class is None:
 raise NotImplementedError
 else:
 return cls._job_resource_class(**kwargs)

[docs] def get_submit_script(self, job_tmpl):
 """
 Return the submit script as a string.
 :parameter job_tmpl: a aiida.scheduler.datastrutures.JobTemplate object.

 The plugin returns something like

 #!/bin/bash <- this shebang line could be configurable in the future
 scheduler_dependent stuff to choose numnodes, numcores, walltime, ...
 prepend_computer [also from calcinfo, joined with the following?]
 prepend_code [from calcinfo]
 output of _get_script_main_content
 postpend_code
 postpend_computer
 """
 # TODO: understand if, in the future, we want to pass more
 # than one calculation, e.g. for job arrays.
 # and from scheduler_requirements e.g. for OpenMP? or maybe
 # TODO: in the future: environment_variables [from calcinfo, possibly,
 # and from scheduler_requirements e.g. for OpenMP? or maybe
 # the openmp part is better managed in the scheduler_dependent
 # part above since it will be machine-dependent]

 from aiida.common.exceptions import InternalError

 if not isinstance(job_tmpl, JobTemplate):
 raise InternalError("job_tmpl should be of type JobTemplate")

 empty_line = ""

 shebang = "#!/bin/bash"

 # I fill the list with the lines, and finally join them and return
 script_lines = []
 script_lines.append(shebang)
 script_lines.append(empty_line)

 script_lines.append(self._get_submit_script_header(job_tmpl))
 script_lines.append(empty_line)

 if job_tmpl.prepend_text:
 script_lines.append(job_tmpl.prepend_text)
 script_lines.append(empty_line)

 script_lines.append(self._get_run_line(job_tmpl.codes_info,
 job_tmpl.codes_run_mode))
 script_lines.append(empty_line)

 if job_tmpl.append_text:
 script_lines.append(job_tmpl.append_text)
 script_lines.append(empty_line)

 return "\n".join(script_lines)

 @abstractmethod
 def _get_submit_script_header(self, job_tmpl):
 """
 Return the submit script header, using the parameters from the
 job_tmpl.

 :param job_tmpl: a JobTemplate instance with relevant parameters set.
 """
 raise NotImplementedError

 def _get_run_line(self, codes_info, codes_run_mode):
 """
 Return a string with the line to execute a specific code with
 specific arguments.

 :parameter codes_info: a list of aiida.common.datastructures.CodeInfo
 objects. Each contains the information needed to run the code. I.e.
 cmdline_params, stdin_name, stdout_name, stderr_name, join_files.
 See the documentation of JobTemplate and CodeInfo
 :parameter codes_run_mode: contains the information on how to launch the
 multiple codes. As described in aiida.common.datastructures.code_run_modes

 argv: an array with the executable and the command line arguments.
 The first argument is the executable. This should contain
 everything, including the mpirun command etc.
 stdin_name: the filename to be used as stdin, relative to the
 working dir, or None if no stdin redirection is required.
 stdout_name: the filename to be used to store the standard output,
 relative to the working dir,
 or None if no stdout redirection is required.
 stderr_name: the filename to be used to store the standard error,
 relative to the working dir,
 or None if no stderr redirection is required.
 join_files: if True, stderr is redirected to stdout; the value of
 stderr_name is ignored.

 Return a string with the following format:
 [executable] [args] {[< stdin]} {[< stdout]} {[2>&1 | 2> stderr]}
 """
 from aiida.common.datastructures import code_run_modes

 list_of_runlines = []

 for code_info in codes_info:
 command_to_exec_list = []
 for arg in code_info.cmdline_params:
 command_to_exec_list.append(escape_for_bash(arg))
 command_to_exec = " ".join(command_to_exec_list)

 stdin_str = "< {}".format(
 escape_for_bash(code_info.stdin_name)) if code_info.stdin_name else ""
 stdout_str = "> {}".format(
 escape_for_bash(code_info.stdout_name)) if code_info.stdout_name else ""

 join_files = code_info.join_files
 if join_files:
 stderr_str = "2>&1"
 else:
 stderr_str = "2> {}".format(
 escape_for_bash(code_info.stderr_name)) if code_info.stderr_name else ""

 output_string = ("{} {} {} {}".format(
 command_to_exec,
 stdin_str, stdout_str, stderr_str))

 list_of_runlines.append(output_string)

 self.logger.debug('_get_run_line output: {}'.format(list_of_runlines))
 if codes_run_mode == code_run_modes.PARALLEL:
 list_of_runlines.append('wait\n')
 return " &\n\n".join(list_of_runlines)
 elif codes_run_mode == code_run_modes.SERIAL:
 return "\n\n".join(list_of_runlines)
 else:
 raise NotImplementedError('Unrecognized code run mode')

 @abstractmethod
 def _get_joblist_command(self, jobs=None, user=None):
 """
 Return the qstat (or equivalent) command to run with the required
 command-line parameters to get the most complete description possible;
 also specifies the output format of qsub to be the one to be used
 by the parse_queue_output method.

 Must be implemented in the plugin.

 :param jobs: either None to get a list of all jobs in the machine,
 or a list of jobs.
 :param user: either None, or a string with the username (to show only
 jobs of the specific user).

 Note: typically one can pass only either jobs or user, depending on the
 specific plugin. The choice can be done according to the value
 returned by self.get_feature('can_query_by_user')
 """
 raise NotImplementedError

 def _get_detailed_jobinfo_command(self, jobid):
 """
 Return the command to run to get the detailed information on a job.
 This is typically called after the job has finished, to retrieve
 the most detailed information possible about the job. This is done
 because most schedulers just make finished jobs disappear from the
 'qstat' command, and instead sometimes it is useful to know some
 more detailed information about the job exit status, etc.

 """
 raise NotImplementedError

[docs] def get_detailed_jobinfo(self, jobid):
 """
 Return a string with the output of the detailed_jobinfo command.

 At the moment, the output text is just retrieved
 and stored for logging purposes, but no parsing is performed.
 """
 # TODO: Parsing?

 command = self._get_detailed_jobinfo_command(jobid=jobid)
 retval, stdout, stderr = self.transport.exec_command_wait(
 command)

 return u"""Detailed jobinfo obtained with command '{}'
Return Code: {}

stdout:
{}
stderr:
{}
""".format(command, retval, stdout, stderr)

 @abstractmethod
 def _parse_joblist_output(self, retval, stdout, stderr):
 """
 Parse the joblist output ('qstat'), as returned by executing the
 command returned by _get_joblist_command method.

 To be implemented by the plugin.

 Return a list of JobInfo objects, one of each job,
 each with at least its default params implemented.
 """
 raise NotImplementedError

[docs] def getJobs(self, jobs=None, user=None, as_dict=False):
 """
 Get the list of jobs and return it.

 Typically, this function does not need to be modified by the plugins.

 :param list jobs: a list of jobs to check; only these are checked
 :param str user: a string with a user: only jobs of this user are checked
 :param list as_dict: if False (default), a list of JobInfo objects is
 returned. If True, a dictionary is returned, having as key the
 job_id and as value the JobInfo object.

 Note: typically, only either jobs or user can be specified. See also
 comments in _get_joblist_command.
 """
 retval, stdout, stderr = self.transport.exec_command_wait(
 self._get_joblist_command(jobs=jobs, user=user))

 joblist = self._parse_joblist_output(retval, stdout, stderr)
 if as_dict:
 jobdict = {j.job_id: j for j in joblist}
 if None in jobdict:
 raise SchedulerError("Found at least one job without jobid")
 return jobdict
 else:
 return joblist

 @property
 def transport(self):
 """
 Return the transport set for this scheduler.
 """
 if self._transport is None:
 raise SchedulerError("Use the set_transport function to set the "
 "transport for the scheduler first.")
 else:
 return self._transport

 @abstractmethod
 def _get_submit_command(self, submit_script):
 """
 Return the string to execute to submit a given script.
 To be implemented by the plugin.

 :param str submit_script: the path of the submit script relative to the
 working directory.
 IMPORTANT: submit_script should be already escaped.
 :return: the string to execute to submit a given script.
 """
 raise NotImplementedError

 @abstractmethod
 def _parse_submit_output(self, retval, stdout, stderr):
 """
 Parse the output of the submit command, as returned by executing the
 command returned by _get_submit_command command.

 To be implemented by the plugin.

 :return: a string with the JobID.
 """
 raise NotImplementedError

[docs] def submit_from_script(self, working_directory, submit_script):
 """
 Goes in the working directory and submits the submit_script.

 Return a string with the JobID in a valid format to be used for
 querying.

 Typically, this function does not need to be modified by the plugins.
 """

 self.transport.chdir(working_directory)
 retval, stdout, stderr = self.transport.exec_command_wait(
 self._get_submit_command(escape_for_bash(submit_script)))
 return self._parse_submit_output(retval, stdout, stderr)

[docs] def kill(self, jobid):
 """
 Kill a remote job, and try to parse the output message of the scheduler
 to check if the scheduler accepted the command.

 ..note:: On some schedulers, even if the command is accepted, it may
 take some seconds for the job to actually disappear from the queue.

 :param str jobid: the job id to be killed

 :return: True if everything seems ok, False otherwise.
 """
 retval, stdout, stderr = self.transport.exec_command_wait(
 self._get_kill_command(jobid))
 return self._parse_kill_output(retval, stdout, stderr)

 def _get_kill_command(self, jobid):
 """
 Return the command to kill the job with specified jobid.

 To be implemented by the plugin.
 """
 raise NotImplementedError

 def _parse_kill_output(self, retval, stdout, stderr):
 """
 Parse the output of the kill command.

 To be implemented by the plugin.

 :return: True if everything seems ok, False otherwise.
 """
 raise NotImplementedError

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/abc.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for abc

Copyright 2007 Google, Inc. All Rights Reserved.
Licensed to PSF under a Contributor Agreement.

"""Abstract Base Classes (ABCs) according to PEP 3119."""

import types

from _weakrefset import WeakSet

Instance of old-style class
class _C: pass
_InstanceType = type(_C())

def abstractmethod(funcobj):
 """A decorator indicating abstract methods.

 Requires that the metaclass is ABCMeta or derived from it. A
 class that has a metaclass derived from ABCMeta cannot be
 instantiated unless all of its abstract methods are overridden.
 The abstract methods can be called using any of the normal
 'super' call mechanisms.

 Usage:

 class C:
 __metaclass__ = ABCMeta
 @abstractmethod
 def my_abstract_method(self, ...):
 ...
 """
 funcobj.__isabstractmethod__ = True
 return funcobj

class abstractproperty(property):
 """A decorator indicating abstract properties.

 Requires that the metaclass is ABCMeta or derived from it. A
 class that has a metaclass derived from ABCMeta cannot be
 instantiated unless all of its abstract properties are overridden.
 The abstract properties can be called using any of the normal
 'super' call mechanisms.

 Usage:

 class C:
 __metaclass__ = ABCMeta
 @abstractproperty
 def my_abstract_property(self):
 ...

 This defines a read-only property; you can also define a read-write
 abstract property using the 'long' form of property declaration:

 class C:
 __metaclass__ = ABCMeta
 def getx(self): ...
 def setx(self, value): ...
 x = abstractproperty(getx, setx)
 """
 __isabstractmethod__ = True

class ABCMeta(type):

 """Metaclass for defining Abstract Base Classes (ABCs).

 Use this metaclass to create an ABC. An ABC can be subclassed
 directly, and then acts as a mix-in class. You can also register
 unrelated concrete classes (even built-in classes) and unrelated
 ABCs as 'virtual subclasses' -- these and their descendants will
 be considered subclasses of the registering ABC by the built-in
 issubclass() function, but the registering ABC won't show up in
 their MRO (Method Resolution Order) nor will method
 implementations defined by the registering ABC be callable (not
 even via super()).

 """

 # A global counter that is incremented each time a class is
 # registered as a virtual subclass of anything. It forces the
 # negative cache to be cleared before its next use.
 _abc_invalidation_counter = 0

 def __new__(mcls, name, bases, namespace):
 cls = super(ABCMeta, mcls).__new__(mcls, name, bases, namespace)
 # Compute set of abstract method names
 abstracts = set(name
 for name, value in namespace.items()
 if getattr(value, "__isabstractmethod__", False))
 for base in bases:
 for name in getattr(base, "__abstractmethods__", set()):
 value = getattr(cls, name, None)
 if getattr(value, "__isabstractmethod__", False):
 abstracts.add(name)
 cls.__abstractmethods__ = frozenset(abstracts)
 # Set up inheritance registry
 cls._abc_registry = WeakSet()
 cls._abc_cache = WeakSet()
 cls._abc_negative_cache = WeakSet()
 cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
 return cls

 def register(cls, subclass):
 """Register a virtual subclass of an ABC."""
 if not isinstance(subclass, (type, types.ClassType)):
 raise TypeError("Can only register classes")
 if issubclass(subclass, cls):
 return # Already a subclass
 # Subtle: test for cycles *after* testing for "already a subclass";
 # this means we allow X.register(X) and interpret it as a no-op.
 if issubclass(cls, subclass):
 # This would create a cycle, which is bad for the algorithm below
 raise RuntimeError("Refusing to create an inheritance cycle")
 cls._abc_registry.add(subclass)
 ABCMeta._abc_invalidation_counter += 1 # Invalidate negative cache

 def _dump_registry(cls, file=None):
 """Debug helper to print the ABC registry."""
 print >> file, "Class: %s.%s" % (cls.__module__, cls.__name__)
 print >> file, "Inv.counter: %s" % ABCMeta._abc_invalidation_counter
 for name in sorted(cls.__dict__.keys()):
 if name.startswith("_abc_"):
 value = getattr(cls, name)
 print >> file, "%s: %r" % (name, value)

 def __instancecheck__(cls, instance):
 """Override for isinstance(instance, cls)."""
 # Inline the cache checking when it's simple.
 subclass = getattr(instance, '__class__', None)
 if subclass is not None and subclass in cls._abc_cache:
 return True
 subtype = type(instance)
 # Old-style instances
 if subtype is _InstanceType:
 subtype = subclass
 if subtype is subclass or subclass is None:
 if (cls._abc_negative_cache_version ==
 ABCMeta._abc_invalidation_counter and
 subtype in cls._abc_negative_cache):
 return False
 # Fall back to the subclass check.
 return cls.__subclasscheck__(subtype)
 return (cls.__subclasscheck__(subclass) or
 cls.__subclasscheck__(subtype))

 def __subclasscheck__(cls, subclass):
 """Override for issubclass(subclass, cls)."""
 # Check cache
 if subclass in cls._abc_cache:
 return True
 # Check negative cache; may have to invalidate
 if cls._abc_negative_cache_version < ABCMeta._abc_invalidation_counter:
 # Invalidate the negative cache
 cls._abc_negative_cache = WeakSet()
 cls._abc_negative_cache_version = ABCMeta._abc_invalidation_counter
 elif subclass in cls._abc_negative_cache:
 return False
 # Check the subclass hook
 ok = cls.__subclasshook__(subclass)
 if ok is not NotImplemented:
 assert isinstance(ok, bool)
 if ok:
 cls._abc_cache.add(subclass)
 else:
 cls._abc_negative_cache.add(subclass)
 return ok
 # Check if it's a direct subclass
 if cls in getattr(subclass, '__mro__', ()):
 cls._abc_cache.add(subclass)
 return True
 # Check if it's a subclass of a registered class (recursive)
 for rcls in cls._abc_registry:
 if issubclass(subclass, rcls):
 cls._abc_cache.add(subclass)
 return True
 # Check if it's a subclass of a subclass (recursive)
 for scls in cls.__subclasses__():
 if issubclass(subclass, scls):
 cls._abc_cache.add(subclass)
 return True
 # No dice; update negative cache
 cls._abc_negative_cache.add(subclass)
 return False

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbimporters.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.tools.dbimporters

-*- coding: utf-8 -*-

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]def DbImporterFactory(pluginname):
 """
 This function loads the correct DbImporter plugin class
 """
 from aiida.common.pluginloader import BaseFactory
 from aiida.tools.dbimporters.baseclasses import DbImporter

 return BaseFactory(pluginname, DbImporter, "aiida.tools.dbimporters.plugins")

 raise NotImplementedError

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 All modules for which code is available

		abc

		aiida.backends.djsite.db.models

		aiida.backends.djsite.utils

		aiida.backends.querybuild.querybuilder_base

		aiida.cmdline.baseclass

		aiida.cmdline.commands.daemon

		aiida.cmdline.commands.data

		aiida.cmdline.verdilib

		aiida.common.datastructures

		aiida.common.exceptions

		aiida.common.extendeddicts

		aiida.common.folders

		aiida.common.pluginloader

		aiida.common.utils

		aiida.daemon.execmanager

		aiida.orm.calculation.inline

		aiida.orm.calculation.job.quantumespresso.helpers

		aiida.orm.calculation.job.quantumespresso.pw

		aiida.orm.calculation.job.quantumespresso.pwimmigrant

		aiida.orm.calculation.job.simpleplugins.templatereplacer

		aiida.orm.data

		aiida.orm.data.array

		aiida.orm.data.array.kpoints

		aiida.orm.data.array.trajectory

		aiida.orm.data.cif

		aiida.orm.data.folder

		aiida.orm.data.parameter

		aiida.orm.data.remote

		aiida.orm.data.singlefile

		aiida.orm.data.structure

		aiida.orm.data.upf

		aiida.orm.implementation.general.calculation

		aiida.orm.implementation.general.calculation.job

		aiida.orm.implementation.general.code

		aiida.orm.implementation.general.computer

		aiida.orm.implementation.general.node

		aiida.orm.implementation.general.workflow

		aiida.orm.utils

		aiida.parsers.plugins.quantumespresso

		aiida.parsers.plugins.quantumespresso.basic_raw_parser_cp

		aiida.parsers.plugins.quantumespresso.basic_raw_parser_pw

		aiida.parsers.plugins.quantumespresso.basicpw

		aiida.parsers.plugins.quantumespresso.cp

		aiida.scheduler.__init__

		aiida.scheduler.datastructures

		aiida.tools.codespecific.quantumespresso.pwinputparser

		aiida.tools.dbexporters.tcod

		aiida.tools.dbexporters.tcod_plugins

		aiida.tools.dbexporters.tcod_plugins.cp

		aiida.tools.dbexporters.tcod_plugins.nwcpymatgen

		aiida.tools.dbexporters.tcod_plugins.pw

		aiida.tools.dbimporters

		aiida.tools.dbimporters.baseclasses

		aiida.tools.dbimporters.plugins.cod

		aiida.tools.dbimporters.plugins.icsd

		aiida.tools.dbimporters.plugins.mpod

		aiida.tools.dbimporters.plugins.nninc

		aiida.tools.dbimporters.plugins.oqmd

		aiida.tools.dbimporters.plugins.pcod

		aiida.tools.dbimporters.plugins.tcod

		aiida.transport.__init__

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbimporters/plugins/tcod.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.tools.dbimporters »

 Source code for aiida.tools.dbimporters.plugins.tcod

-*- coding: utf-8 -*-

from aiida.tools.dbimporters.plugins.cod import (CodDbImporter,
 CodSearchResults, CodEntry)

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class TcodDbImporter(CodDbImporter):
 """
 Database importer for Theoretical Crystallography Open Database.
 """

 def __init__(self, **kwargs):
 super(TcodDbImporter, self).__init__(**kwargs)
 self._db_parameters = {'host': 'www.crystallography.net',
 'user': 'cod_reader',
 'passwd': '',
 'db': 'tcod'}
 self.setup_db(**kwargs)

[docs] def query(self, **kwargs):
 """
 Performs a query on the TCOD database using ``keyword = value`` pairs,
 specified in ``kwargs``.

 :return: an instance of
 :py:class:`aiida.tools.dbimporters.plugins.tcod.TcodSearchResults`.
 """
 query_statement = self.query_sql(**kwargs)
 self._connect_db()
 results = []
 try:
 self._cursor.execute(query_statement)
 self._db.commit()
 for row in self._cursor.fetchall():
 results.append({'id': str(row[0]),
 'svnrevision': str(row[1])})
 finally:
 self._disconnect_db()

 return TcodSearchResults(results)

[docs]class TcodSearchResults(CodSearchResults):
 """
 Results of the search, performed on TCOD.
 """
 _base_url = "http://www.crystallography.net/tcod/"

 def __init__(self, results):
 super(TcodSearchResults, self).__init__(results)
 self._return_class = TcodEntry

[docs]class TcodEntry(CodEntry):
 """
 Represents an entry from TCOD.
 """
 _license = 'CC0'

 def __init__(self, uri,
 db_name='Theoretical Crystallography Open Database',
 db_uri='http://www.crystallography.net/tcod', **kwargs):
 """
 Creates an instance of
 :py:class:`aiida.tools.dbimporters.plugins.tcod.TcodEntry`, related
 to the supplied URI.
 """
 super(TcodEntry, self).__init__(db_name=db_name,
 db_uri=db_uri,
 uri=uri,
 **kwargs)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbimporters/plugins/icsd.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.tools.dbimporters »

 Source code for aiida.tools.dbimporters.plugins.icsd

-*- coding: utf-8 -*-

from aiida.tools.dbimporters.baseclasses import (DbImporter, DbSearchResults,
 CifEntry)

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

class IcsdImporterExp(Exception):
 pass

[docs]class CifFileErrorExp(IcsdImporterExp):
 """
 Raised when the author loop is missing in a CIF file.
 """
 pass

[docs]class NoResultsWebExp(IcsdImporterExp):
 """
 Raised when a webpage query returns no results.
 """
 pass

[docs]class IcsdDbImporter(DbImporter):
 """
 Importer for the Inorganic Crystal Structure Database, short ICSD, provided by
 FIZ Karlsruhe. It allows to run queries and analyse all the results.
 See the :ref:`DbImporter documentation and
 tutorial page <ICSD_importer_guide>` for more information.

 :param server: Server URL, the web page of the database. It is
 required in order to have access to the full database.
 I t should contain both the protocol and the domain name
 and end with a slash, as in::

 server = "http://ICSDSERVER.com/"

 :param urladd: part of URL which is added between query and and the server URL
 (default: ``index.php?``). only needed for web page query
 :param querydb: boolean, decides whether the mysql database is queried
 (default: True).
 If False, the query results are obtained through the web page
 query, which is
 restricted to a maximum of 1000 results per query.
 :param dl_db: icsd comes with a full (default: ``icsd``) and a demo
 database (``icsdd``).
 This parameter allows the user to switch to the demo database
 for testing purposes, if the access rights to the full database
 are not granted.
 :param host: MySQL database host. If the MySQL database is hosted on
 a different machine, use "127.0.0.1" as host, and open
 a SSH tunnel to the host using::

 ssh -L 3306:localhost:3306 username@hostname.com

 or (if e.g. you get an URLError with Errno 111 (Connection refused)
 upon querying)::

 ssh -L 3306:localhost:3306 -L 8010:localhost:80 username@hostname.com

 :param user: mysql database username (default: dba)
 :param passwd: mysql database password (default: sql)
 :param db: name of the database (default: icsd)
 :param port: Port to access the mysql database (default: 3306)
 """

 length_precision = 0.001
 angle_precision = 0.001
 volume_precision = 0.001
 temperature_precision = 0.001
 density_precision = 0.001
 pressure_precision = 1

 def __init__(self, **kwargs):

 self.db_parameters = {"server": "",
 "urladd": "index.php?",
 "querydb": True,
 "dl_db": "icsd",
 "host": "",
 "user": "dba",
 "passwd": "sql",
 "db": "icsd",
 "port": "3306",
 }
 self.setup_db(**kwargs)

 # for mysql db query
 def _int_clause(self, key, alias, values):
 """
 Return SQL query predicate for querying integer fields
 :param key: Database keyword
 :param alias: Query parameter name
 :param values: Corresponding values from query
 :return: SQL query predicate
 """
 for e in values:
 if not isinstance(e, (int, long)) and not isinstance(e, basestring):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only integers and strings are accepted")
 return key + " IN (" + ", ".join(map(lambda i: str(int(i)),
 values)) + ")"

 def _str_exact_clause(self, key, alias, values):
 """
 Return SQL query predicate for querying string fields.
 """
 for e in values:
 if not isinstance(e, (int, long)) and not isinstance(e, basestring):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only integers and strings are accepted")
 return key + \
 " IN (" + ", ".join(map(lambda f: "'" + str(f) + "'", \
 values)) + ")"

 def _formula_clause(self, key, alias, values):
 """
 Return SQL query predicate for querying formula fields.
 """
 for e in values:
 if not isinstance(e, basestring):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only strings are accepted")
 return self.str_exact_clause(key, \
 alias, \
 map(lambda f: "- " + str(f) + " -", \
 values))

 def _str_fuzzy_clause(self, key, alias, values):
 """
 Return SQL query predicate for fuzzy querying of string fields.
 """
 for e in values:
 if not isinstance(e, (int, long)) and not isinstance(e, basestring):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only integers and strings are accepted")
 return " OR ".join(map(lambda s: key + \
 " LIKE '%" + str(s) + "%'", values))

 def _composition_clause(self, key, alias, values):
 """
 Return SQL query predicate for querying elements in formula fields.
 """
 for e in values:
 if not isinstance(e, basestring):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only strings are accepted")
 return " AND ".join(map(lambda e: "STRUCT_FORM REGEXP ' " + \
 e + "[0-9]'", \
 values))

 def _double_clause(self, key, alias, values, precision):
 """
 Return SQL query predicate for querying double-valued fields.
 """
 for e in values:
 if not isinstance(e, (int, long)) and not isinstance(e, float):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only integers and floats are accepted")
 return " OR ".join(map(lambda d: key + \
 " BETWEEN " + \
 str(d - precision) + " AND " + \
 str(d + precision), \
 values))

 def _crystal_system_clause(self, key, alias, values):
 """
 Return SQL query predicate for querying crystal_system.
 """
 valid_systems = {
 "cubic": "CU",
 "hexagonal": "HE",
 "monoclinic": "MO",
 "orthorhombic": "OR",
 "tetragonal": "TE",
 "trigonal": "TG",
 "triclinic": "TC"
 } # from icsd accepted crystal systems

 for e in values:
 if not isinstance(e, (int, long)) and not isinstance(e, basestring):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only strings are accepted")
 return key + \
 " IN (" + ", ".join(map(lambda f: "'" + valid_systems[f.lower()] + "'", \
 values)) + ")"

 def _length_clause(self, key, alias, values):
 """
 Return SQL query predicate for querying lattice vector lengths.
 """
 return self.double_clause(key, alias, values, self.length_precision)

 def _density_clause(self, key, alias, values):
 """
 Return SQL query predicate for querying density.
 """
 return self.double_clause(key, alias, values, self.density_precision)

 def _angle_clause(self, key, alias, values):
 """
 Return SQL query predicate for querying lattice angles.
 """
 return self.double_clause(key, alias, values, self.angle_precision)

 def _volume_clause(self, key, alias, values):
 """
 Return SQL query predicate for querying unit cell volume.
 """
 return self.double_clause(key, alias, values, self.volume_precision)

 def _temperature_clause(self, key, alias, values):
 """
 Return SQL query predicate for querying temperature.
 """
 return self.double_clause(key, alias, values, self.temperature_precision)

 def _pressure_clause(self, key, alias, values):
 """
 Return SQL query predicate for querying pressure.
 """
 return self.double_clause(key, alias, values, self.pressure_precision)

 # for the web query
 def _parse_all(k, v):
 """
 Convert numbers, strings, lists into strings.
 :param k: query parameter
 :param v: corresponding values
 :return retval: string
 """
 if type(v) is list:
 retval = ' '.join(v)
 elif type(v) is int:
 retval = str(v)
 elif type(v) is str:
 retval = v
 return retval

 def _parse_number(k, v):
 """
 Convert int into string.
 :param k: query parameter
 :param v: corresponding values
 :return retval: string
 """
 if type(v) is int:
 retval = str(v)
 elif type(v) is str:
 retval = v
 return retval

 def _parse_mineral(k, v):
 """
 Convert mineral_name and chemical_name into right format.
 :param k: query parameter
 :param v: corresponding values
 :return retval: string
 """
 if k == "mineral_name":
 retval = "M=" + v
 elif k == "chemical_name":
 retval = "C=" + v
 return retval

 def _parse_volume(k, v):
 """
 Convert volume, cell parameter and angle queries into right format.
 :param k: query parameter
 :param v: corresponding values
 :return retval: string
 """
 if k == "volume":
 return "v=" + v
 elif k == "a":
 return "a=" + v
 elif k == "b":
 return "b=" + v
 elif k == "c":
 return "c=" + v
 elif k == "alpha":
 return "al=" + v
 elif k == "beta":
 return "be=" + v
 elif k == "gamma":
 return "ga=" + v

 def _parse_system(k, v):
 """
 Return crystal system in the right format.
 :param k: query parameter
 :param v: corresponding values
 :return retval: string
 """
 valid_systems = {
 "cubic": "CU",
 "hexagonal": "HE",
 "monoclinic": "MO",
 "orthorhombic": "OR",
 "tetragonal": "TE",
 "trigonal": "TG",
 "triclinic": "TC"
 }

 return valid_systems[v.lower()]

 # mysql database - query parameter (alias) : [mysql keyword (key), function to call]
 keywords_db = {'id': ['COLL_CODE', _int_clause],
 'element': ['STRUCT_FORM;', _composition_clause],
 'number_of_elements': ['EL_COUNT', _int_clause],
 'chemical_name': ['CHEM_NAME', _str_fuzzy_clause],
 'formula': ['SUM_FORM', _formula_clause],
 'volume': ['C_VOL', _volume_clause],
 'spacegroup': ['SGR', _str_exact_clause],
 'a': ['A_LEN', _length_clause],
 'b': ['B_LEN', _length_clause],
 'c': ['C_LEN', _length_clause],
 'alpha': ['ALPHA', _angle_clause],
 'beta': ['BETA', _angle_clause],
 'gamma': ['GAMMA', _angle_clause],
 'density': ['DENSITY_CALC', _density_clause],
 'wyckoff': ['WYCK', _str_exact_clause],
 'molar_mass': ['MOL_MASS', _density_clause],
 'pdf_num': ['PDF_NUM', _str_exact_clause],
 'z': ['Z', _int_clause],
 'measurement_temp': ['TEMPERATURE', _temperature_clause],
 'authors': ['AUTHORS_TEXT', _str_fuzzy_clause],
 'journal': ['journal', _str_fuzzy_clause],
 'title': ['AU_TITLE', _str_fuzzy_clause],
 'year': ['MPY', _int_clause],
 'crystal_system': ['CRYST_SYS_CODE', _crystal_system_clause],
 }
 # keywords accepted for the web page query
 keywords = {"id": ("authors", _parse_all),
 "authors": ("authors", _parse_all),
 "element": ("elements", _parse_all),
 "number_of_elements": ("elementc", _parse_all),
 "mineral_name": ("mineral", _parse_mineral),
 "chemical_name": ("mineral", _parse_mineral),
 "formula": ("formula", _parse_all),
 "volume": ("volume", _parse_volume),
 "a": ("volume", _parse_volume),
 "b": ("volume", _parse_volume),
 "c": ("volume", _parse_volume),
 "alpha": ("volume", _parse_volume),
 "beta": ("volume", _parse_volume),
 "gamma": ("volume", _parse_volume),
 "spacegroup": ("spaceg", _parse_all),
 "journal": ("journal", _parse_all),
 "title": ("title", _parse_all),
 "year": ("year", _parse_all),
 "crystal_system": ("system", _parse_system),
 }

[docs] def query(self, **kwargs):
 """
 Depending on the db_parameters, the mysql database or the web page are queried.
 Valid parameters are found using IcsdDbImporter.get_supported_keywords().

 :param kwargs: A list of ''keyword = [values]'' pairs.
 """

 if self.db_parameters["querydb"]:
 return self._query_sql_db(**kwargs)
 else:
 return self._queryweb(**kwargs)

 def _query_sql_db(self, **kwargs):
 """
 Perform a query on Icsd mysql database using ``keyword = value`` pairs,
 specified in ``kwargs``. Returns an instance of IcsdSearchResults.
 :param kwargs: A list of ``keyword = [values]`` pairs
 :return: IcsdSearchResults
 """

 sql_where_query = [] # second part of sql query

 for k, v in kwargs.iteritems():
 if not isinstance(v, list):
 v = [v]
 sql_where_query.append("({})".format(self.keywords_db[k][1](self,
 self.keywords_db[k][0],
 k, v)))
 if "crystal_system" in kwargs.keys(): # to query another table than the main one, add LEFT JOIN in front of WHERE
 sql_query = "LEFT JOIN space_group ON space_group.sgr=icsd.sgr LEFT "\
 "JOIN space_group_number ON "\
 "space_group_number.sgr_num=space_group.sgr_num "\
 + "WHERE" + " AND ".join(sql_where_query)
 else:
 sql_query = "WHERE" + " AND ".join(sql_where_query)

 return IcsdSearchResults(query=sql_query, db_parameters=self.db_parameters)

 def _queryweb(self, **kwargs):
 """
 Perform a query on the Icsd web database using ``keyword = value`` pairs,
 specified in ``kwargs``. Returns an instance of IcsdSearchResults.
 :note: Web search has a maximum result number fixed at 1000.
 :param kwargs: A list of ``keyword = [values]`` pairs
 :return: IcsdSearchResults
 """
 import urllib

 self.actual_args = {
 "action": "Search",
 "nb_rows": "100", # max is 100
 "order_by": "yearDesc",
 "authors": "",
 "volume": "",
 "mineral": ""
 }

 for k, v in kwargs.iteritems():
 try:
 realname = self.keywords[k][0]
 newv = self.keywords[k][1](k, v)
 # Because different keys correspond to the same search field.
 if realname in ["authors", "volume", "mineral"]:
 self.actual_args[realname] = self.actual_args[realname] + newv + " "
 else:
 self.actual_args[realname] = newv
 except KeyError as e:
 raise TypeError("ICSDImporter got an unexpected keyword argument '{}'".format(e.message))

 url_values = urllib.urlencode(self.actual_args)
 query_url = self.db_parameters["urladd"] + url_values

 return IcsdSearchResults(query=query_url, db_parameters=self.db_parameters)

[docs] def setup_db(self, **kwargs):
 """
 Change the database connection details.
 At least the host server has to be defined.

 :param kwargs: db_parameters for the mysql database connection
 (host, user, passwd, db, port)
 """
 for key in self.db_parameters.keys():
 if key in kwargs.keys():
 self.db_parameters[key] = kwargs[key]

[docs] def get_supported_keywords(self):
 """
 :return: List of all supported query keywords.
 """
 if self.db_parameters["querydb"]:
 return self.keywords_db.keys()
 else:
 return self.keywords.keys()

[docs]class IcsdSearchResults(DbSearchResults):
 """
 Result manager for the query performed on ICSD.

 :param query: mysql query or webpage query
 :param db_parameters: database parameter setup during the
 initialisation of the IcsdDbImporter.
 """
 cif_url = "/index.php?format=cif&action=Export&id%5B%5D={}"
 db_name = "Icsd"

 def __init__(self, query, db_parameters):

 self.db = None
 self.cursor = None
 self.db_parameters = db_parameters
 self.query = query
 self.number_of_results = None
 self.results = []
 self.cif_numbers = []
 self.entries = {}
 self.page = 1
 self.position = 0
 self.db_version = None
 self.sql_select_query = "SELECT SQL_CALC_FOUND_ROWS icsd.IDNUM, icsd.COLL_CODE, icsd.STRUCT_FORM "
 self.sql_from_query = "FROM icsd "

 if self.db_parameters["querydb"]:
 self.query_db_version()
 self.query_page()

[docs] def next(self):
 """
 Return next result as IcsdEntry.
 """
 if self.number_of_results > self.position:
 self.position = self.position + 1
 return self.at(self.position - 1)
 else:
 self.position = 0
 raise StopIteration()

[docs] def at(self, position):
 """
 Return ``position``-th result as IcsdEntry.
 """

 if position < 0 or position >= self.number_of_results:
 raise IndexError("index out of bounds")
 while position + 1 >= len(self.results) and len(self.results) < self.number_of_results:
 self.page = self.page + 1
 self.query_page()

 if position not in self.entries:
 if self.db_parameters["querydb"]:
 self.entries[position] = IcsdEntry(self.db_parameters["server"] +
 self.db_parameters["dl_db"] + self.cif_url.format(
 self.results[position]),
 db_name=self.db_name, id=self.cif_numbers[position],
 version = self.db_version,
 extras={'idnum': self.results[position]})
 else:
 self.entries[position] = IcsdEntry(self.db_parameters["server"] +
 self.db_parameters["dl_db"] + self.cif_url.format(
 self.results[position]),
 db_name=self.db_name, extras={'idnum': self.results[position]})
 return self.entries[position]

[docs] def query_db_version(self):
 """
 Query the version of the icsd database (last row of RELEASE_TAGS).
 """
 results = []
 if self.db_parameters["querydb"]:

 sql_select_query = "SELECT RELEASE_TAG "
 sql_from_query = "FROM icsd.icsd_database_information "

 self._connect_db()
 query_statement = "{}{}".format(sql_select_query, sql_from_query)
 self.cursor.execute(query_statement)
 self.db.commit()

 for row in self.cursor.fetchall():
 results.append(str(row[0]))

 self._disconnect_db()
 try:
 self.db_version = results[-1]
 except IndexError:
 raise IcsdImporterExp("Database version not found")

 else:
 raise NotImplementedError("Cannot query the database version with "
 "a web query.")

[docs] def query_page(self):
 """
 Query the mysql or web page database, depending on the db_parameters.
 Store the number_of_results, cif file number and the corresponding icsd number.

 :note: Icsd uses its own number system, different from the CIF
 file numbers.
 """
 if self.db_parameters["querydb"]:

 self._connect_db()
 query_statement = "{}{}{} LIMIT {}, 100".format(self.sql_select_query,
 self.sql_from_query,
 self.query,
 (self.page-1)*100)
 self.cursor.execute(query_statement)
 self.db.commit()

 for row in self.cursor.fetchall():
 self.results.append(str(row[0]))
 self.cif_numbers.append(str(row[1]))

 if self.number_of_results is None:
 self.cursor.execute("SELECT FOUND_ROWS()")
 self.number_of_results = int(self.cursor.fetchone()[0])

 self._disconnect_db()

 else:
 import urllib2
 from bs4 import BeautifulSoup
 import re

 self.html = urllib2.urlopen(self.db_parameters["server"] +
 self.db_parameters["db"] + "/" +
 self.query.format(str(self.page))).read()

 self.soup = BeautifulSoup(self.html)

 try:

 if self.number_of_results is None:
 self.number_of_results = int(re.findall(r'\d+',
 str(self.soup.find_all("i")[-1]))[0])
 except IndexError:
 raise NoResultsWebExp

 for i in self.soup.find_all('input', type="checkbox"):
 self.results.append(i['id'])

 def _connect_db(self):
 """
 Connect to the MySQL database for performing searches.
 """
 try:
 import MySQLdb
 except ImportError:
 import pymysql as MySQLdb

 self.db = MySQLdb.connect(host=self.db_parameters['host'],
 user=self.db_parameters['user'],
 passwd=self.db_parameters['passwd'],
 db=self.db_parameters['db'],
 port=int(self.db_parameters['port'])
)
 self.cursor = self.db.cursor()

 def _disconnect_db(self):
 """
 Close connection to the MySQL database.
 """
 self.db.close()

[docs]class IcsdEntry(CifEntry):
 """
 Represent an entry from Icsd.

 :note:
 - Before July 2nd 2015, source['id'] contained icsd.IDNUM (internal
 icsd id number) and source['extras']['cif_nr'] the cif number
 (icsd.COLL_CODE).
 - After July 2nd 2015, source['id'] has been replaced by the cif
 number and source['extras']['idnum'] is icsd.IDNUM .
 """
 _license = 'ICSD'

 def __init__(self, uri, **kwargs):
 """
 Create an instance of IcsdEntry, related to the supplied URI.
 """
 super(IcsdEntry, self).__init__(**kwargs)
 self.source = {
 'db_name': kwargs.get('db_name','Icsd'),
 'db_uri': None, # Server ?
 'id': kwargs.get('id',None),
 'version': kwargs.get('version',None),
 'uri': uri,
 'extras': {'idnum': kwargs.get('extras',{}).get('idnum',None)},
 'license': self._license,
 }
 self._cif = None

 @property
 def cif(self):
 """
 :return: cif file of Icsd entry.
 """
 if self._cif is None:
 import urllib2

 self._cif = urllib2.urlopen(self.source["uri"]).read()
 return self._cif

[docs] def get_cif_node(self):
 """
 Create a CIF node, that can be used in AiiDA workflow.

 :return: :py:class:`aiida.orm.data.cif.CifData` object
 """
 from aiida.orm.data.cif import CifData
 import tempfile

 with tempfile.NamedTemporaryFile() as f:
 f.write(self.cif)
 f.flush()
 return CifData(file=f.name, source=self.source)

[docs] def get_corrected_cif(self):
 """
 Add quotes to the lines in the author loop if missing.

 :note: ase raises an AssertionError if the quotes in the
 author loop are missing.
 """
 return correct_cif(self.cif)

[docs] def get_ase_structure(self):
 """
 :return: ASE structure corresponding to the cif file.
 """
 from aiida.orm.data.cif import CifData
 import StringIO

 return CifData.read_cif(StringIO.StringIO(self.get_corrected_cif()))

[docs] def get_aiida_structure(self):
 """
 :return: AiiDA structure corresponding to the CIF file.
 """
 from aiida.orm import DataFactory

 S = DataFactory("structure")
 aiida_structure = S(ase=self.get_ase_structure())
 return aiida_structure

[docs]def correct_cif(cif):
 """
 Correct the format of the CIF files.
 At the moment, it only fixes missing quotes in the authors field
 (``ase.read.io`` only works if the author names are quoted,
 if not an AssertionError is raised).

 :param cif: A string containing the content of the CIF file.
 :return: a string containing the corrected CIF file.
 """
 # Do more checks to be sure it's working in everycase
 # -> no _publ_author_name, several lines, correct input
 lines = cif.split('\n')

 try:
 author_index = lines.index('_publ_author_name')
 except ValueError:
 raise CifFileErrorExp('_publ_author_name line missing in cif file')
 else:
 inc = 1
 while True:
 words = lines[author_index + inc].split()
 #in case loop is finished -> return cif lines.
 #use regular expressions ?
 if len(words) == 0 or words[0] == "loop_" or words[0][0] == '_':
 return '\n'.join(lines)
 elif ((words[0][0] == "'" and words[-1][-1] == "'")
 or (words[0][0] == '"' and words[-1][-1] == '"')):
 # if quotes are already there, check next line
 inc = inc + 1
 else:
 lines[author_index + inc] = "'" + lines[author_index + inc] + "'"
 inc = inc + 1

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbimporters/baseclasses.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.tools.dbimporters »

 Source code for aiida.tools.dbimporters.baseclasses

-*- coding: utf-8 -*-

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

from aiida.orm.calculation.inline import optional_inline

[docs]class DbImporter(object):
 """
 Base class for database importers.
 """

[docs] def query(self, **kwargs):
 """
 Method to query the database.

 :param id: database-specific entry identificator
 :param element: element name from periodic table of elements
 :param number_of_elements: number of different elements
 :param mineral_name: name of mineral
 :param chemical_name: chemical name of substance
 :param formula: chemical formula
 :param volume: volume of the unit cell in cubic angstroms
 :param spacegroup: symmetry space group symbol in Hermann-Mauguin
 notation
 :param spacegroup_hall: symmetry space group symbol in Hall
 notation
 :param a: length of lattice vector in angstroms
 :param b: length of lattice vector in angstroms
 :param c: length of lattice vector in angstroms
 :param alpha: angles between lattice vectors in degrees
 :param beta: angles between lattice vectors in degrees
 :param gamma: angles between lattice vectors in degrees
 :param z: number of the formula units in the unit cell
 :param measurement_temp: temperature in kelvins at which the
 unit-cell parameters were measured
 :param measurement_pressure: pressure in kPa at which the
 unit-cell parameters were measured
 :param diffraction_temp: mean temperature in kelvins at which
 the intensities were measured
 :param diffraction_pressure: mean pressure in kPa at which the
 intensities were measured
 :param authors: authors of the publication
 :param journal: name of the journal
 :param title: title of the publication
 :param year: year of the publication
 :param journal_volume: journal volume of the publication
 :param journal_issue: journal issue of the publication
 :param first_page: first page of the publication
 :param last_page: last page of the publication
 :param doi: digital object identifyer (DOI), refering to the
 publication

 :raises NotImplementedError: if search using given keyword is not
 implemented.
 """
 raise NotImplementedError("not implemented in base class")

[docs] def setup_db(self, **kwargs):
 """
 Sets the database parameters. The method should reconnect to the
 database using updated parameters, if already connected.
 """
 raise NotImplementedError("not implemented in base class")

[docs] def get_supported_keywords(self):
 """
 Returns the list of all supported query keywords.

 :return: list of strings
 """
 raise NotImplementedError("not implemented in base class")

[docs]class DbSearchResults(object):
 """
 Base class for database results.

 All classes, inheriting this one and overriding ``at()``, are able to
 benefit from having functions ``__iter__``, ``__len__`` and
 ``__getitem__``.
 """

 def __init__(self, results):
 self._results = results
 self._entries = {}

[docs] class DbSearchResultsIterator(object):
 """
 Iterator for search results
 """

 def __init__(self, results, increment=1):
 self._results = results
 self._position = 0
 self._increment = increment

 def next(self):
 pos = self._position
 if pos >= 0 and pos < len(self._results):
 self._position = self._position + self._increment
 return self._results[pos]
 else:
 raise StopIteration()

[docs] def __iter__(self):
 """
 Instances of
 :py:class:`aiida.tools.dbimporters.baseclasses.DbSearchResults` can
 be used as iterators.
 """
 return self.DbSearchResultsIterator(self)

 def __len__(self):
 return len(self.results)

 def __getitem__(self, key):
 return self.at(key)

[docs] def fetch_all(self):
 """
 Returns all query results as an array of
 :py:class:`aiida.tools.dbimporters.baseclasses.DbEntry`.
 """
 results = []
 for entry in self:
 results.append(entry)
 return results

[docs] def next(self):
 """
 Returns the next result of the query (instance of
 :py:class:`aiida.tools.dbimporters.baseclasses.DbEntry`).

 :raise StopIteration: when the end of result array is reached.
 """
 raise NotImplementedError("not implemented in base class")

[docs] def at(self, position):
 """
 Returns ``position``-th result as
 :py:class:`aiida.tools.dbimporters.baseclasses.DbEntry`.

 :param position: zero-based index of a result.

 :raise IndexError: if ``position`` is out of bounds.
 """
 if position < 0 | position >= len(self._results):
 raise IndexError("index out of bounds")
 if position not in self._entries:
 source_dict = self._get_source_dict(self._results[position])
 url = self._get_url(self._results[position])
 self._entries[position] = self._return_class(url, **source_dict)
 return self._entries[position]

 def _get_source_dict(self, result_dict):
 """
 Returns a dictionary, which is passed as kwargs to the created
 DbEntry instance, describing the source of the entry.

 :param result_dict: dictionary, describing an entry in the results.
 """
 raise NotImplementedError("not implemented in base class")

 def _get_url(self, result_dict):
 """
 Returns an URL of an entry CIF file.

 :param result_dict: dictionary, describing an entry in the results.
 """
 raise NotImplementedError("not implemented in base class")

[docs]class DbEntry(object):
 """
 Represents an entry from external database.
 """
 _license = None

 def __init__(self, db_name=None, db_uri=None, id=None,
 version=None, extras={}, uri=None):
 """
 Sets the basic parameters for the database entry:

 :param db_name: name of the source database
 :param db_uri: URI of the source database
 :param id: structure identifyer in the database
 :param version: version of the database
 :param extras: a dictionary with some extra parameters
 (e.g. database ID number)
 :param uri: URI of the structure (should be permanent)
 """
 self.source = {
 'db_name': db_name,
 'db_uri': db_uri,
 'id': id,
 'version': version,
 'extras': extras,
 'uri': uri,
 'source_md5': None,
 'license': self._license,
 }
 self._contents = None

 def __repr__(self):
 return "{}({})".format(self.__class__.__name__,
 ",".join(["{}={}".format(k, '"{}"'.format(v)
 if issubclass(v.__class__, basestring)
 else v)
 for k, v in self.source.iteritems()]))

 @property
 def contents(self):
 """
 Returns raw contents of a file as string.
 """
 if self._contents is None:
 import urllib2
 from hashlib import md5

 self._contents = urllib2.urlopen(self.source['uri']).read()
 self.source['source_md5'] = md5(self._contents).hexdigest()
 return self._contents

 @contents.setter
 def contents(self, contents):
 """
 Sets raw contents of a file as string.
 """
 from hashlib import md5
 self._contents = contents
 self.source['source_md5'] = md5(self._contents).hexdigest()

[docs]class CifEntry(DbEntry):
 """
 Represents an entry from the structure database (COD, ICSD, ...).
 """

 @property
 def cif(self):
 """
 Returns raw contents of a CIF file as string.
 """
 return self.contents

 @cif.setter
 def cif(self, cif):
 """
 Sets raw contents of a CIF file as string.
 """
 self.contents = cif

[docs] def get_raw_cif(self):
 """
 Returns raw contents of a CIF file as string.

 :return: contents of a file as string
 """
 return self.cif

[docs] def get_ase_structure(self):
 """
 Returns ASE representation of the CIF.

 .. note:: To be removed, as it is duplicated in
 :py:class:`aiida.orm.data.cif.CifData`.
 """
 import StringIO
 from aiida.orm.data.cif import CifData
 return CifData.read_cif(StringIO.StringIO(self.cif))

[docs] def get_cif_node(self, store=False):
 """

 Creates a CIF node, that can be used in AiiDA workflow.

 :return: :py:class:`aiida.orm.data.cif.CifData` object
 """
 from aiida.common.utils import md5_file
 from aiida.orm.data.cif import CifData
 import tempfile

 cifnode = None

 with tempfile.NamedTemporaryFile() as f:
 f.write(self.cif)
 f.flush()
 cifnode = CifData(file=f.name, source=self.source)

 # Maintaining backwards-compatibility. Parameter 'store' should
 # be removed in the future, as the new node can be stored later.
 if store:
 cifnode.store()

 return cifnode

[docs] def get_aiida_structure(self):
 """
 :return: AiiDA structure corresponding to the CIF file.
 """
 from aiida.orm import DataFactory

 S = DataFactory("structure")
 aiida_structure = S(ase=self.get_ase_structure())
 return aiida_structure

[docs] def get_parsed_cif(self):
 """
 Returns data structure, representing the CIF file. Can be created
 using PyCIFRW or any other open-source parser.

 :return: list of lists
 """
 raise NotImplementedError("not implemented in base class")

[docs]class UpfEntry(DbEntry):
 """
 Represents an entry from the pseudopotential database.
 """

[docs] def get_upf_node(self, store=False):
 """
 Creates an UPF node, that can be used in AiiDA workflow.

 :return: :py:class:`aiida.orm.data.upf.UpfData` object
 """
 from aiida.common.utils import md5_file
 from aiida.orm.data.upf import UpfData
 import tempfile

 upfnode = None

 # Prefixing with an ID in order to start file name with the name
 # of the described element.
 with tempfile.NamedTemporaryFile(prefix=self.source['id']) as f:
 f.write(self.contents)
 f.flush()
 upfnode = UpfData(file=f.name, source=self.source)

 # Maintaining backwards-compatibility. Parameter 'store' should
 # be removed in the future, as the new node can be stored later.
 if store:
 upfnode.store()

 return upfnode

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbimporters/plugins/cod.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.tools.dbimporters »

 Source code for aiida.tools.dbimporters.plugins.cod

-*- coding: utf-8 -*-

from aiida.tools.dbimporters.baseclasses import (DbImporter, DbSearchResults,
 CifEntry)

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class CodDbImporter(DbImporter):
 """
 Database importer for Crystallography Open Database.
 """

 def _int_clause(self, key, alias, values):
 """
 Returns SQL query predicate for querying integer fields.
 """
 for e in values:
 if not isinstance(e, int) and not isinstance(e, basestring):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only integers and strings are accepted")
 return key + " IN (" + ", ".join(map(lambda i: str(int(i)),
 values)) + ")"

 def _str_exact_clause(self, key, alias, values):
 """
 Returns SQL query predicate for querying string fields.
 """
 clause_parts = []
 for e in values:
 if not isinstance(e, int) and not isinstance(e, basestring):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only integers and strings are accepted")
 if isinstance(e, int):
 e = str(e)
 clause_parts.append("'" + e + "'")
 return key + " IN (" + ", ".join(clause_parts) + ")"

 def _str_exact_or_none_clause(self, key, alias, values):
 """
 Returns SQL query predicate for querying string fields, allowing
 to use Python's "None" in addition.
 """
 if None in values:
 values_now = []
 for e in values:
 if e is not None:
 values_now.append(e)
 if len(values_now):
 clause = self._str_exact_clause(key, alias, values_now)
 return "{} OR {} IS NULL".format(clause, key)
 else:
 return "{} IS NULL".format(key)
 else:
 return self._str_exact_clause(key, alias, values)

 def _formula_clause(self, key, alias, values):
 """
 Returns SQL query predicate for querying formula fields.
 """
 for e in values:
 if not isinstance(e, str):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only strings are accepted")
 return self._str_exact_clause(key, \
 alias, \
 map(lambda f: "- " + str(f) + " -", \
 values))

 def _str_fuzzy_clause(self, key, alias, values):
 """
 Returns SQL query predicate for fuzzy querying of string fields.
 """
 clause_parts = []
 for e in values:
 if not isinstance(e, int) and not isinstance(e, basestring):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only integers and strings are accepted")
 if isinstance(e, int):
 e = str(e)
 clause_parts.append(key + " LIKE '%" + e + "%'")
 return " OR ".join(clause_parts)

 def _composition_clause(self, key, alias, values):
 """
 Returns SQL query predicate for querying elements in formula fields.
 """
 clause_parts = []
 for e in values:
 if not isinstance(e, basestring):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only strings are accepted")
 clause_parts.append("formula REGEXP ' " + e + "[0-9]'")
 return " AND ".join(clause_parts)

 def _double_clause(self, key, alias, values, precision):
 """
 Returns SQL query predicate for querying double-valued fields.
 """
 for e in values:
 if not isinstance(e, int) and not isinstance(e, float):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only integers and floats are accepted")
 return " OR ".join(map(lambda d: key + \
 " BETWEEN " + \
 str(d - precision) + " AND " + \
 str(d + precision), \
 values))

 length_precision = 0.001
 angle_precision = 0.001
 volume_precision = 0.001
 temperature_precision = 0.001
 pressure_precision = 1

 def _length_clause(self, key, alias, values):
 """
 Returns SQL query predicate for querying lattice vector lengths.
 """
 return self._double_clause(key, alias, values, self.length_precision)

 def _angle_clause(self, key, alias, values):
 """
 Returns SQL query predicate for querying lattice angles.
 """
 return self._double_clause(key, alias, values, self.angle_precision)

 def _volume_clause(self, key, alias, values):
 """
 Returns SQL query predicate for querying unit cell volume.
 """
 return self._double_clause(key, alias, values, self.volume_precision)

 def _temperature_clause(self, key, alias, values):
 """
 Returns SQL query predicate for querying temperature.
 """
 return self._double_clause(key, alias, values, self.temperature_precision)

 def _pressure_clause(self, key, alias, values):
 """
 Returns SQL query predicate for querying pressure.
 """
 return self._double_clause(key, alias, values, self.pressure_precision)

 _keywords = {'id': ['file', _int_clause],
 'element': ['element', _composition_clause],
 'number_of_elements': ['nel', _int_clause],
 'mineral_name': ['mineral', _str_fuzzy_clause],
 'chemical_name': ['chemname', _str_fuzzy_clause],
 'formula': ['formula', _formula_clause],
 'volume': ['vol', _volume_clause],
 'spacegroup': ['sg', _str_exact_clause],
 'spacegroup_hall': ['sgHall', _str_exact_clause],
 'a': ['a', _length_clause],
 'b': ['b', _length_clause],
 'c': ['c', _length_clause],
 'alpha': ['alpha', _angle_clause],
 'beta': ['beta', _angle_clause],
 'gamma': ['gamma', _angle_clause],
 'z': ['Z', _int_clause],
 'measurement_temp': ['celltemp', _temperature_clause],
 'diffraction_temp': ['diffrtemp', _temperature_clause],
 'measurement_pressure':
 ['cellpressure', _pressure_clause],
 'diffraction_pressure':
 ['diffrpressure', _pressure_clause],
 'authors': ['authors', _str_fuzzy_clause],
 'journal': ['journal', _str_fuzzy_clause],
 'title': ['title', _str_fuzzy_clause],
 'year': ['year', _int_clause],
 'journal_volume': ['volume', _int_clause],
 'journal_issue': ['issue', _str_exact_clause],
 'first_page': ['firstpage', _str_exact_clause],
 'last_page': ['lastpage', _str_exact_clause],
 'doi': ['doi', _str_exact_clause],
 'determination_method': ['method', _str_exact_or_none_clause]}

 def __init__(self, **kwargs):
 self._db = None
 self._cursor = None
 self._db_parameters = {'host': 'www.crystallography.net',
 'user': 'cod_reader',
 'passwd': '',
 'db': 'cod'}
 self.setup_db(**kwargs)

[docs] def query_sql(self, **kwargs):
 """
 Forms a SQL query for querying the COD database using
 ``keyword = value`` pairs, specified in ``kwargs``.

 :return: string containing a SQL statement.
 """
 sql_parts = ["(status IS NULL OR status != 'retracted')"]
 for key in self._keywords.keys():
 if key in kwargs.keys():
 values = kwargs.pop(key)
 if not isinstance(values, list):
 values = [values]
 sql_parts.append(\
 "(" + self._keywords[key][1](self, \
 self._keywords[key][0], \
 key, \
 values) + \
 ")")
 if len(kwargs.keys()) > 0:
 raise NotImplementedError(\
 "search keyword(s) '" + \
 "', '".join(kwargs.keys()) + "' " + \
 "is(are) not implemented for COD")
 return "SELECT file, svnrevision FROM data WHERE " + \
 " AND ".join(sql_parts)

[docs] def query(self, **kwargs):
 """
 Performs a query on the COD database using ``keyword = value`` pairs,
 specified in ``kwargs``.

 :return: an instance of
 :py:class:`aiida.tools.dbimporters.plugins.cod.CodSearchResults`.
 """
 query_statement = self.query_sql(**kwargs)
 self._connect_db()
 results = []
 try:
 self._cursor.execute(query_statement)
 self._db.commit()
 for row in self._cursor.fetchall():
 results.append({'id': str(row[0]),
 'svnrevision': str(row[1])})
 finally:
 self._disconnect_db()

 return CodSearchResults(results)

[docs] def setup_db(self, **kwargs):
 """
 Changes the database connection details.
 """
 for key in self._db_parameters.keys():
 if key in kwargs.keys():
 self._db_parameters[key] = kwargs.pop(key)
 if len(kwargs.keys()) > 0:
 raise NotImplementedError(\
 "unknown database connection parameter(s): '" + \
 "', '".join(kwargs.keys()) + \
 "', available parameters: '" + \
 "', '".join(self._db_parameters.keys()) + "'")

[docs] def get_supported_keywords(self):
 """
 Returns the list of all supported query keywords.

 :return: list of strings
 """
 return self._keywords.keys()

 def _connect_db(self):
 """
 Connects to the MySQL database for performing searches.
 """
 try:
 import MySQLdb
 except ImportError:
 import pymysql as MySQLdb

 self._db = MySQLdb.connect(host=self._db_parameters['host'],
 user=self._db_parameters['user'],
 passwd=self._db_parameters['passwd'],
 db=self._db_parameters['db'])
 self._cursor = self._db.cursor()

 def _disconnect_db(self):
 """
 Closes connection to the MySQL database.
 """
 self._db.close()

[docs]class CodSearchResults(DbSearchResults):
 """
 Results of the search, performed on COD.
 """
 _base_url = "http://www.crystallography.net/cod/"

 def __init__(self, results):
 super(CodSearchResults, self).__init__(results)
 self._return_class = CodEntry

 def __len__(self):
 return len(self._results)

 def _get_source_dict(self, result_dict):
 """
 Returns a dictionary, which is passed as kwargs to the created
 DbEntry instance, describing the source of the entry.

 :param result_dict: dictionary, describing an entry in the results.
 """
 source_dict = {'id': result_dict['id']}
 if 'svnrevision' in result_dict and \
 result_dict['svnrevision'] is not None:
 source_dict['version'] = result_dict['svnrevision']
 return source_dict

 def _get_url(self, result_dict):
 """
 Returns an URL of an entry CIF file.

 :param result_dict: dictionary, describing an entry in the results.
 """
 url = self._base_url + result_dict['id'] + ".cif"
 if 'svnrevision' in result_dict and \
 result_dict['svnrevision'] is not None:
 return "{}@{}".format(url, result_dict['svnrevision'])
 else:
 return url

[docs]class CodEntry(CifEntry):
 """
 Represents an entry from COD.
 """
 _license = 'CC0'

 def __init__(self, uri, db_name='Crystallography Open Database',
 db_uri='http://www.crystallography.net', **kwargs):
 """
 Creates an instance of
 :py:class:`aiida.tools.dbimporters.plugins.cod.CodEntry`, related
 to the supplied URI.
 """
 super(CodEntry, self).__init__(db_name=db_name, db_uri=db_uri,
 uri=uri, **kwargs)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/calculation/inline.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.orm.calculation.inline

-*- coding: utf-8 -*-

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

from aiida.orm.implementation.calculation import InlineCalculation, make_inline

[docs]def optional_inline(func):
 """
 optional_inline wrapper/decorator takes a function, which can be called
 either as wrapped in InlineCalculation or a simple function, depending
 on 'store' keyworded argument (True stands for InlineCalculation, False
 for simple function). The wrapped function has to adhere to the
 requirements by make_inline wrapper/decorator.

 Usage example::

 @optional_inline
 def copy_inline(source=None):
 return {'copy': source.copy()}

 Function ``copy_inline`` will be wrapped in InlineCalculation when
 invoked in following way::

 copy_inline(source=node,store=True)

 while it will be called as a simple function when invoked::

 copy_inline(source=node)

 In any way the ``copy_inline`` will return the same results.
 """

 def wrapped_function(*args, **kwargs):
 """
 This wrapper function is the actual function that is called.
 """
 store = kwargs.pop('store', False)

 if store:
 return make_inline(func)(*args, **kwargs)[1]
 else:
 return func(*args, **kwargs)

 return wrapped_function

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/calculation/job/quantumespresso/pwimmigrant.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.orm.calculation.job.quantumespresso.pwimmigrant

-*- coding: utf-8 -*-
"""
Plugin to immigrate a Quantum Espresso pw.x job that was not run using AiiDa.
"""
TODO: Document the current limitations (e.g. ibrav == 0)
import os
from copy import deepcopy
from aiida.orm.calculation.job.quantumespresso.pw import PwCalculation
from aiida.orm.calculation.job import _input_subfolder
from aiida.orm.data.remote import RemoteData
from aiida.orm.data.parameter import ParameterData
from aiida.orm.data.upf import UpfData
from aiida.common.folders import SandboxFolder
from aiida.common.datastructures import calc_states
from aiida.common.exceptions import (FeatureNotAvailable, InvalidOperation,
 InputValidationError)
from aiida.common.links import LinkType
from aiida.tools.codespecific.quantumespresso import pwinputparser

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class PwimmigrantCalculation(PwCalculation):
 """
 Create a PwCalculation object that can be used to import old jobs.

 This is a sublass of aiida.orm.calculation.quantumespresso.PwCalculation
 with slight modifications to some of the class variables and additional
 methods that

 a. parse the job's input file to create the calculation's input
 nodes that would exist if the calculation were submitted using AiiDa,
 b. bypass the functions of the daemon, and prepare the node's attributes
 such that all the processes (copying of the files to the repository,
 results parsing, ect.) can be performed

 .. note:: The keyword arguments of PwCalculation are also available.

 :param remote_workdir: Absolute path to the directory where the job was run.
 The transport of the computer you link ask input to the calculation is
 the transport that will be used to retrieve the calculation's files.
 Therefore, ``remote_workdir`` should be the absolute path to the job's
 directory on that computer.
 :type remote_workdir: str

 :param input_file_name: The file name of the job's input file.
 :type input_file_name: str

 :param output_file_name: The file name of the job's output file (i.e. the
 file containing the stdout of QE).
 :type output_file_name: str
 """

 def _init_internal_params(self):

 super(PwimmigrantCalculation, self)._init_internal_params()

[docs] def create_input_nodes(self, open_transport, input_file_name=None,
 output_file_name=None, remote_workdir=None):
 """
 Create calculation input nodes based on the job's files.

 :param open_transport: An open instance of the transport class of the
 calculation's computer. See the tutorial for more information.
 :type open_transport: aiida.transport.plugins.local.LocalTransport
 | aiida.transport.plugins.ssh.SshTransport

 This method parses the files in the job's remote working directory to
 create the input nodes that would exist if the calculation were
 submitted using AiiDa. These nodes are

 * a ``'parameters'`` ParameterData node, based on the namelists and
 their variable-value pairs;
 * a ``'kpoints'`` KpointsData node, based on the *K_POINTS* card;
 * a ``'structure'`` StructureData node, based on the
 ATOMIC_POSITIONS and *CELL_PARAMETERS* cards;
 * one ``'pseudo_X'`` UpfData node for the pseudopotential used for
 the atomic species with name ``X``, as specified in the
 ATOMIC_SPECIES card;
 * a ``'settings'`` ParameterData node, if there are any fixed
 coordinates, or if the gamma kpoint is used;

 and can be retrieved as a dictionary using the ``get_inputs_dict()``
 method. *These input links are cached-links; nothing is stored by this
 method (including the calculation node itself).*

 .. note:: QE stores the calculation's pseudopotential files in the
 ``<outdir>/<prefix>.save/`` subfolder of the job's working
 directory, where ``outdir`` and ``prefix`` are QE *CONTROL*
 variables (see
 `pw input file description <http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html>`_).
 This method uses these files to either get--if the a node already
 exists for the pseudo--or create a UpfData node for each
 pseudopotential.

 Keyword arguments

 .. note:: These keyword arguments can also be set when instantiating the
 class or using the ``set_`` methods (e.g. ``set_remote_workdir``).
 Offering to set them here simply offers the user an additional
 place to set their values. *Only the values that have not yet been
 set need to be specified.*

 :param input_file_name: The file name of the job's input file.
 :type input_file_name: str

 :param output_file_name: The file name of the job's output file (i.e.
 the file containing the stdout of QE).
 :type output_file_name: str

 :param remote_workdir: Absolute path to the directory where the job
 was run. The transport of the computer you link ask input to the
 calculation is the transport that will be used to retrieve the
 calculation's files. Therefore, ``remote_workdir`` should be the
 absolute path to the job's directory on that computer.
 :type remote_workdir: str

 :raises aiida.common.exceptions.InputValidationError: if
 ``open_transport`` is a different type of transport than the
 computer's.
 :raises aiida.common.exceptions.InvalidOperation: if
 ``open_transport`` is not open.
 :raises aiida.common.exceptions.InputValidationError: if
 ``remote_workdir``, ``input_file_name``, and/or ``output_file_name``
 are not set prior to or during the call of this method.
 :raises aiida.common.exceptions.FeatureNotAvailable: if the input file
 uses anything other than ``ibrav = 0``, which is not currently
 implimented in aiida.
 :raises aiida.common.exceptions.ParsingError: if there are issues
 parsing the input file.
 :raises IOError: if there are issues reading the input file.
 """
 import re
 # Make sure the remote workdir and input + output file names were
 # provided either before or during the call to this method. If they
 # were just provided during this method call, store the values.
 if remote_workdir is not None:
 self.set_remote_workdir(remote_workdir)
 elif self.get_attr('remote_workdir', None) is None:
 raise InputValidationError(
 'The remote working directory has not been specified.\n'
 'Please specify it using one of the following...\n '
 '(a) pass as a keyword argument to create_input_nodes\n'
 ' [create_input_nodes(remote_workdir=your_remote_workdir)]\n'
 '(b) pass as a keyword argument when instantiating\n '
 ' [calc = PwCalculationImport(remote_workdir='
 'your_remote_workdir)]\n'
 '(c) use the set_remote_workdir method\n'
 ' [calc.set_remote_workdir(your_remote_workdir)]'
)
 if input_file_name is not None:
 self._INPUT_FILE_NAME = input_file_name
 elif self._INPUT_FILE_NAME is None:
 raise InputValidationError(
 'The input file_name has not been specified.\n'
 'Please specify it using one of the following...\n '
 '(a) pass as a keyword argument to create_input_nodes\n'
 ' [create_input_nodes(input_file_name=your_file_name)]\n'
 '(b) pass as a keyword argument when instantiating\n '
 ' [calc = PwCalculationImport(input_file_name='
 'your_file_name)]\n'
 '(c) use the set_input_file_name method\n'
 ' [calc.set_input_file_name(your_file_name)]'
)
 if output_file_name is not None:
 self._OUTPUT_FILE_NAME = output_file_name
 elif self._OUTPUT_FILE_NAME is None:
 raise InputValidationError(
 'The input file_name has not been specified.\n'
 'Please specify it using one of the following...\n '
 '(a) pass as a keyword argument to create_input_nodes\n'
 ' [create_input_nodes(output_file_name=your_file_name)]\n'
 '(b) pass as a keyword argument when instantiating\n '
 ' [calc = PwCalculationImport(output_file_name='
 'your_file_name)]\n'
 '(c) use the set_output_file_name method\n'
 ' [calc.set_output_file_name(your_file_name)]'
)

 # Check that open_transport is the correct transport type.
 if type(open_transport) is not self.get_computer().get_transport_class():
 raise InputValidationError(
 "The transport passed as the `open_transport` parameter is "
 "not the same transport type linked to the computer. Please "
 "obtain the correct transport class using the "
 "`get_transport_class` method of the calculation's computer. "
 "See the tutorial for more information."
)

 # Check that open_transport is actually open.
 if not open_transport._is_open:
 raise InvalidOperation(
 "The transport passed as the `open_transport` parameter is "
 "not open. Please execute the open the transport using it's "
 "`open` method, or execute the call to this method within a "
 "`with` statement context guard. See the tutorial for more "
 "information."
)

 # Copy the input file and psuedo files to a temp folder for parsing.
 with SandboxFolder() as folder:

 # Copy the input file to the temp folder.
 remote_path = os.path.join(self._get_remote_workdir(),
 self._INPUT_FILE_NAME)
 open_transport.get(remote_path, folder.abspath)

 # Parse the input file.
 local_path = os.path.join(folder.abspath, self._INPUT_FILE_NAME)
 with open(local_path) as fin:
 pwinputfile = pwinputparser.PwInputFile(fin)

 # Determine PREFIX, if it hasn't already been set by the user.
 if self._PREFIX is None:
 control_dict = pwinputfile.namelists['CONTROL']
 # If prefix is not set in input file, use the default,
 # 'pwscf'.
 self._PREFIX = control_dict.get('prefix', 'pwscf')

 # Determine _OUTPUT_SUBFOLDER, if it hasn't already been set by
 # the user.
 # TODO: Prompt user before using the environment variable???
 if self._OUTPUT_SUBFOLDER is None:
 # See if it's specified in the CONTROL namelist.
 control_dict = pwinputfile.namelists['CONTROL']
 self._OUTPUT_SUBFOLDER = control_dict.get('outdir', None)
 if self._OUTPUT_SUBFOLDER is None:
 # See if the $ESPRESSO_TMPDIR is set.
 envar = open_transport.exec_command_wait(
 'echo $ESPRESSO_TMPDIR'
)[1]
 if len(envar.strip()) > 0:
 self._OUTPUT_SUBFOLDER = envar.strip()
 else:
 # Use the default dir--the dir job was submitted in.
 self._OUTPUT_SUBFOLDER = self._get_remote_workdir()

 # Copy the pseudo files to the temp folder.
 for fnm in pwinputfile.atomic_species['pseudo_file_names']:
 remote_path = os.path.join(self._get_remote_workdir(),
 self._OUTPUT_SUBFOLDER,
 '{}.save/'.format(self._PREFIX),
 fnm)
 open_transport.get(remote_path, folder.abspath)

 # Make sure that ibrav = 0, since aiida doesn't support anything
 # else.
 if pwinputfile.namelists['SYSTEM']['ibrav'] != 0:
 raise FeatureNotAvailable(
 'Found ibrav !=0 while parsing the input file. '
 'Currently, AiiDa only supports ibrav = 0.'
)

 # Create ParameterData node based on the namelist and link as input.

 # First, strip the namelist items that aiida doesn't allow or sets
 # later.
 # NOTE: ibrav = 0 is checked above.
 # NOTE: If any of the position or cell units are in alat or crystal
 # units, that will be taken care of by the input parsing tools, and
 # we are safe to fake that they were never there in the first place.
 parameters_dict = deepcopy(pwinputfile.namelists)
 for namelist, blocked_key in self._blocked_keywords:
 keys = parameters_dict[namelist].keys()
 for this_key in parameters_dict[namelist].keys():
 # take into account that celldm and celldm(*) must be blocked
 if re.sub("[(0-9)]", "", this_key) == blocked_key:
 parameters_dict[namelist].pop(this_key, None)

 parameters = ParameterData(dict=parameters_dict)
 self.use_parameters(parameters)

 # Initialize the dictionary for settings parameter data for possible
 # use later for gamma kpoint and fixed coordinates.
 settings_dict = {}

 # Create a KpointsData node based on the K_POINTS card block
 # and link as input.
 kpointsdata = pwinputfile.get_kpointsdata()
 self.use_kpoints(kpointsdata)
 # If only the gamma kpoint is used, add to the settings dictionary.
 if pwinputfile.k_points['type'] == 'gamma':
 settings_dict['gamma_only'] = True

 # Create a StructureData node based on the ATOMIC_POSITIONS,
 # CELL_PARAMETERS, and ATOMIC_SPECIES card blocks, and link as
 # input.
 structuredata = pwinputfile.get_structuredata()
 self.use_structure(structuredata)

 # Get or create a UpfData node for the pseudopotentials used for
 # the calculation.
 names = pwinputfile.atomic_species['names']
 pseudo_file_names = pwinputfile.atomic_species['pseudo_file_names']
 for name, fnm in zip(names, pseudo_file_names):
 local_path = os.path.join(folder.abspath, fnm)
 pseudo, created = UpfData.get_or_create(local_path)
 self.use_pseudo(pseudo, kind=name)

 # If there are any fixed coordinates (i.e. force modification
 # present in the input file, create a ParameterData node for these
 # special settings.
 fixed_coords = pwinputfile.atomic_positions['fixed_coords']
 # NOTE: any() only works for 1-dimensional lists.
 if any((any(fc_xyz) for fc_xyz in fixed_coords)):
 settings_dict['FIXED_COORDS'] = fixed_coords

 # If the settings_dict has been filled in, create a ParameterData
 # node from it and link as input.
 if settings_dict:
 self.use_settings(ParameterData(dict=settings_dict))

 self._set_attr('input_nodes_created', True)

 def _prepare_for_retrieval(self, open_transport):
 """
 Prepare the calculation for retrieval by daemon.

 :param open_transport: An open instance of the transport class of the
 calculation's computer.
 :type open_transport: aiida.transport.plugins.local.LocalTransport
 | aiida.transport.plugins.ssh.SshTransport

 Here, we

 * manually set the files to retrieve
 * store the calculation and all it's input nodes
 * copy the input file to the calculation's raw_input_folder in the
 * store the remote_workdir as a RemoteData output node

 """

 # Manually set the files that will be copied to the repository and that
 # the parser will extract the results from. This would normally be
 # performed in self._prepare_for_submission prior to submission.
 self._set_attr('retrieve_list',
 [self._OUTPUT_FILE_NAME, self._DATAFILE_XML])
 self._set_attr('retrieve_singlefile_list', [])

 # Make sure the calculation and input links are stored.
 self.store_all()

 # Store the original input file in the calculation's repository folder.
 remote_path = os.path.join(self._get_remote_workdir(),
 self._INPUT_FILE_NAME)
 raw_input_folder = self.folder.get_subfolder(_input_subfolder,
 create=True)
 open_transport.get(remote_path, raw_input_folder.abspath)

 # Manually add the remote working directory as a RemoteData output
 # node.
 self._set_state(calc_states.SUBMITTING)
 remotedata = RemoteData(computer=self.get_computer(),
 remote_path=self._get_remote_workdir())
 remotedata.add_link_from(self, label='remote_folder',
 link_type=LinkType.CREATE)
 remotedata.store()

[docs] def prepare_for_retrieval_and_parsing(self, open_transport):
 """
 Tell the daemon that the calculation is computed and ready to be parsed.

 :param open_transport: An open instance of the transport class of the
 calculation's computer. See the tutorial for more information.
 :type open_transport: aiida.transport.plugins.local.LocalTransport
 | aiida.transport.plugins.ssh.SshTransport

 The next time the daemon updates the status of calculations, it will
 see this job is in the 'COMPUTED' state and will retrieve its output
 files and parse the results.

 If the daemon is not currently running, nothing will happen until it is
 started again.

 This method also stores the calculation and all input nodes. It also
 copies the original input file to the calculation's repository folder.

 :raises aiida.common.exceptions.InputValidationError: if
 ``open_transport`` is a different type of transport than the
 computer's.
 :raises aiida.common.exceptions.InvalidOperation: if
 ``open_transport`` is not open.
 """

 # Check that the create_input_nodes method has run successfully.
 if not self.get_attr('input_nodes_created', False):
 raise InvalidOperation(
 "You must run the create_input_nodes method before calling "
 "prepare_for_retrieval_and_parsing!"
)

 # Check that open_transport is the correct transport type.
 if type(open_transport) is not self.get_computer().get_transport_class():
 raise InputValidationError(
 "The transport passed as the `open_transport` parameter is "
 "not the same transport type linked to the computer. Please "
 "obtain the correct transport class using the "
 "`get_transport_class` method of the calculation's computer. "
 "See the tutorial for more information."
)

 # Check that open_transport is actually open.
 if not open_transport._is_open:
 raise InvalidOperation(
 "The transport passed as the `open_transport` parameter is "
 "not open. Please execute the open the transport using it's "
 "`open` method, or execute the call to this method within a "
 "`with` statement context guard. See the tutorial for more "
 "information."
)

 # Prepare the calculation for retrieval
 self._prepare_for_retrieval(open_transport)

 # Manually set the state of the calculation to "COMPUTED", so that it
 # will be retrieved and parsed the next time the daemon updates the
 # status of calculations.
 self._set_state(calc_states.COMPUTED)

[docs] def set_remote_workdir(self, remote_workdir):
 """
 Set the job's remote working directory.

 :param remote_workdir: Absolute path of the job's remote working
 directory.
 :type remote_workdir: str
 """
 # This is the functionality as self._set_remote_workir, but it bypasses
 # the need to have the calculation state set as SUBMITTING.
 self._set_attr('remote_workdir', remote_workdir)

[docs] def set_output_subfolder(self, output_subfolder):
 """
 Manually set the job's ``outdir`` variable (e.g. ``'./out/'``).

 .. note:: The outdir variable is normally set automatically by

 1. looking for the ``outdir`` ``CONTROL`` namelist variable
 2. looking for the ``$ESPRESSO_TMPDIR`` environment variable
 on the calculation's computer (using the transport)
 3. using the QE default, the calculation's ``remote_workdir``

 but this method is made available to the user, in the event that
 they wish to set it manually.

 :param output_subfolder: The job's outdir variable.
 :type output_subfolder: str
 """
 self._OUTPUT_SUBFOLDER = output_subfolder

[docs] def set_prefix(self, prefix):
 """
 Manually set the job's ``prefix`` variable (e.g. ``'pwscf'``).

 .. note:: The prefix variable is normally set automatically by

 1. looking for the ``prefix`` ``CONTROL`` namelist variable
 2. using the QE default, ``'pwscf'``

 but this method is made available to the user, in the event that
 they wish to set it manually.

 :param prefix: The job's prefix variable.
 :type prefix: str
 """
 self._PREFIX = prefix

[docs] def set_input_file_name(self, input_file_name):
 """
 Set the file name of the job's input file (e.g. ``'pw.in'``).

 :param input_file_name: The file name of the job's input file.
 :type input_file_name: str
 """
 self._INPUT_FILE_NAME = input_file_name

[docs] def set_output_file_name(self, output_file_name):
 """Set the file name of the job's output file (e.g. ``'pw.out'``).

 :param output_file_name: The file name of file containing the job's
 stdout.
 :type output_file_name: str
 """
 self._OUTPUT_FILE_NAME = output_file_name

 # These value are set as class attributes in the parent class,
 # BasePwInputGenerator, but they will be different for a job that wasn't
 # run using aiida, and they will likely vary from job to job. Therefore,
 # we override the parent class's attributes using properties, whose
 # setter methods store the values as db attributes, and whose getter
 # methods retrieve the stored values from the db.

 @property
 def _OUTPUT_SUBFOLDER(self):
 return self.get_attr('output_subfolder', None)

 @_OUTPUT_SUBFOLDER.setter
 def _OUTPUT_SUBFOLDER(self, value):
 self._set_attr('output_subfolder', value)

 @property
 def _PREFIX(self):
 return self.get_attr('prefix', None)

 @_PREFIX.setter
 def _PREFIX(self, value):
 self._set_attr('prefix', value)

 @property
 def _INPUT_FILE_NAME(self):
 return self.get_attr('input_file_name', None)

 @_INPUT_FILE_NAME.setter
 def _INPUT_FILE_NAME(self, value):
 self._set_attr('input_file_name', value)

 @property
 def _OUTPUT_FILE_NAME(self):
 return self.get_attr('output_file_name', None)

 @_OUTPUT_FILE_NAME.setter
 def _OUTPUT_FILE_NAME(self, value):
 self._set_attr('output_file_name', value)

 @property
 def _DATAFILE_XML(self):
 path = os.path.join(self._OUTPUT_SUBFOLDER,
 '{}.save'.format(self._PREFIX),
 self._DATAFILE_XML_BASENAME)
 return path

 @_DATAFILE_XML.setter
 def _DATAFILE_XML(self, value):
 # Don't store this value in the db, since it gets set to the Aiida
 # default in the parent class.
 pass

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/calculation/job/simpleplugins/templatereplacer.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.orm.calculation.job.simpleplugins.templatereplacer

-*- coding: utf-8 -*-
"""
This is a simple plugin that takes two node inputs, both of type ParameterData,
with the following labels: template and parameters.
You can also add other SinglefileData nodes as input, that will be copied according to
what is written in 'template' (see below).

* parameters: a set of parameters that will be used for substitution.

* template: can contain the following parameters:

 * input_file_template: a string with substitutions to be managed with the format()\
 function of python, i.e. if you want to substitute a variable called 'varname', you write\
 {varname} in the text. See http://www.python.org/dev/peps/pep-3101/ for more\
 details. The replaced file will be the input file.

 * input_file_name: a string with the file name for the input. If it is not provided, no\
 file will be created.

 * output_file_name: a string with the file name for the output. If it is not provided, no\
 redirection will be done and the output will go in the scheduler output file.

 * cmdline_params: a list of strings, to be passed as command line parameters.\
 Each one is substituted with the same rule of input_file_template. Optional

 * input_through_stdin: if True, the input file name is passed via stdin. Default is\
 False if missing.

 * files_to_copy: if defined, a list of tuple pairs, with format ('link_name', 'dest_rel_path');\
 for each tuple, an input link to this calculation is looked for, with link labeled 'link_label',\
 and with file type 'Singlefile', and the content is copied to a remote file named 'dest_rel_path'\
 Errors are raised in the input links are non-existent, or of the wrong type, or if there are \
 unused input files.

TODO: probably use Python's Template strings instead??
TODO: catch exceptions
"""
from aiida.orm.calculation.job import JobCalculation
from aiida.common.exceptions import InputValidationError
from aiida.common.datastructures import CalcInfo, CodeInfo

TODO: write a 'input_type_checker' routine to automatically check the existence
and type of inputs + default values etc.

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class TemplatereplacerCalculation(JobCalculation):
 """
 Simple stub of a plugin that can be used to replace some text in a given
 template. Can be used for many different codes, or as a starting point
 to develop a new plugin.
 """

 def _prepare_for_submission(self, tempfolder, inputdict):
 """
 This is the routine to be called when you want to create
 the input files and related stuff with a plugin.

 :param tempfolder: a aiida.common.folders.Folder subclass where
 the plugin should put all its files.
 :param inputdict: a dictionary with the input nodes, as they would
 be returned by get_inputs_dict (with the Code!)
 """
 import StringIO

 from aiida.orm.data.parameter import ParameterData
 from aiida.orm.data.singlefile import SinglefileData
 from aiida.orm.data.remote import RemoteData
 from aiida.common.utils import validate_list_of_string_tuples
 from aiida.common.exceptions import ValidationError

 parameters_node = inputdict.pop('parameters', None)
 if parameters_node is None:
 parameters = {}
 else:
 if not isinstance(parameters_node, ParameterData):
 raise InputValidationError("'parameters' data is not of type ParameterData")
 parameters = dict(parameters_node.iterattrs())

 template_node = inputdict.pop('template', None)
 if template_node is None:
 raise InputValidationError("No 'template' input data")
 if not isinstance(template_node, ParameterData):
 raise InputValidationError("'template' data is not of type ParameterData")
 template = dict(template_node.iterattrs())

 input_file_template = template.pop('input_file_template', "")
 input_file_name = template.pop('input_file_name', None)
 output_file_name = template.pop('output_file_name', None)
 cmdline_params_tmpl = template.pop('cmdline_params', [])
 input_through_stdin = template.pop('input_through_stdin', False)
 files_to_copy = template.pop('files_to_copy', [])

 if template:
 raise InputValidationError("The following keys could not be "
 "used in the template node: {}".format(
 template.keys()))

 try:
 validate_list_of_string_tuples(files_to_copy, tuple_length=2)
 except ValidationError as e:
 raise InputValidationError("invalid file_to_copy format: {}".format(e.message))

 local_copy_list = []
 remote_copy_list = []

 for link_name, dest_rel_path in files_to_copy:
 try:
 fileobj = inputdict.pop(link_name)
 except KeyError:
 raise InputValidationError("You are asking to copy a file link {}, "
 "but there is no input link with such a name".format(link_name))
 if isinstance(fileobj, SinglefileData):
 local_copy_list.append((fileobj.get_file_abs_path(), dest_rel_path))
 elif isinstance(fileobj, RemoteData): # can be a folder
 remote_copy_list.append(
 (fileobj.get_computer().uuid, fileobj.get_remote_path(), dest_rel_path)
)
 else:
 raise InputValidationError("If you ask to copy a file link {}, "
 "it must be either a SinglefileData or a RemoteData; it is instead of type {}".format(
 link_name, fileobj.__class__.__name__))

 code = inputdict.pop('code', None)
 if code is None:
 raise InputValidationError("No code in input")

 if len(inputdict) > 0:
 raise InputValidationError("The input nodes with the following labels could not be "
 "used by the templatereplacer plugin: {}".format(
 inputdict.keys()))

 if input_file_name is not None and not input_file_template:
 raise InputValidationError("If you give an input_file_name, you "
 "must also specify a input_file_template")

 if input_through_stdin and input_file_name is None:
 raise InputValidationError("If you ask for input_through_stdin you have to "
 "specify a input_file_name")

 input_file = StringIO.StringIO(input_file_template.format(**parameters))
 if input_file_name:
 tempfolder.create_file_from_filelike(input_file, input_file_name)
 else:
 if input_file_template:
 self.logger.warning("No input file name passed, but a input file template is present")

 cmdline_params = [i.format(**parameters) for i in cmdline_params_tmpl]

 calcinfo = CalcInfo()
 calcinfo.retrieve_list = []

 calcinfo.uuid = self.uuid
 calcinfo.local_copy_list = local_copy_list
 calcinfo.remote_copy_list = remote_copy_list

 codeinfo = CodeInfo()
 codeinfo.cmdline_params = cmdline_params
 if input_through_stdin is not None:
 codeinfo.stdin_name = input_file_name
 if output_file_name:
 codeinfo.stdout_name = output_file_name
 calcinfo.retrieve_list.append(output_file_name)
 codeinfo.code_uuid = code.uuid
 calcinfo.codes_info = [codeinfo]

 return calcinfo

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/calculation/job/quantumespresso/pw.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.orm.calculation.job.quantumespresso.pw

-*- coding: utf-8 -*-
"""
Plugin to create a Quantum Espresso pw.x file.
"""
TODO: COPY OUTDIR FROM PREVIOUS CALCULATION! Should be an input node of type
RemoteData (or maybe subclass it?).
TODO: tests!
TODO: DOC + implementation of SETTINGS
TODO: preexec, postexec
TODO: Check that no further parameters are passed in SETTINGS
TODO: many cards missing: check and implement
e.g.: ['CONSTRAINTS', 'OCCUPATIONS']
TODO: implement pre... and post... hooks to add arbitrary strings before
and after a namelist, and a 'final_string' (all optional); useful
for development when new cards are needed
TODO: all a lot of logger.debug stuff
import os

from aiida.orm.calculation.job import JobCalculation
from aiida.orm.calculation.job.quantumespresso import BasePwCpInputGenerator
from aiida.common.utils import classproperty
from aiida.orm.data.array.kpoints import KpointsData

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class PwCalculation(BasePwCpInputGenerator, JobCalculation):
 """
 Main DFT code (PWscf, pw.x) of the Quantum ESPRESSO distribution.
 For more information, refer to http://www.quantum-espresso.org/
 """
 # false due to PWscf bug, could be set to true on versions >= 5.1.0
 _default_symlink_usage = False

 def _init_internal_params(self):
 super(PwCalculation, self)._init_internal_params()

 self._DATAFILE_XML = os.path.join(
 BasePwCpInputGenerator._OUTPUT_SUBFOLDER,
 '{}.save'.format(BasePwCpInputGenerator._PREFIX),
 BasePwCpInputGenerator._DATAFILE_XML_BASENAME)

 # Default PW output parser provided by AiiDA
 self._default_parser = 'quantumespresso.basicpw'

 self._automatic_namelists = {
 'scf': ['CONTROL', 'SYSTEM', 'ELECTRONS'],
 'nscf': ['CONTROL', 'SYSTEM', 'ELECTRONS'],
 'bands': ['CONTROL', 'SYSTEM', 'ELECTRONS'],
 'relax': ['CONTROL', 'SYSTEM', 'ELECTRONS', 'IONS'],
 'md': ['CONTROL', 'SYSTEM', 'ELECTRONS', 'IONS'],
 'vc-md': ['CONTROL', 'SYSTEM', 'ELECTRONS', 'IONS', 'CELL'],
 'vc-relax': ['CONTROL', 'SYSTEM', 'ELECTRONS', 'IONS', 'CELL'],
 }

 # Keywords that cannot be set
 self._blocked_keywords = [('CONTROL', 'pseudo_dir'), # set later
 ('CONTROL', 'outdir'), # set later
 ('CONTROL', 'prefix'), # set later
 ('SYSTEM', 'ibrav'), # set later
 ('SYSTEM', 'celldm'),
 ('SYSTEM', 'nat'), # set later
 ('SYSTEM', 'ntyp'), # set later
 ('SYSTEM', 'a'), ('SYSTEM', 'b'),
 ('SYSTEM', 'c'),
 ('SYSTEM', 'cosab'), ('SYSTEM', 'cosac'),
 ('SYSTEM', 'cosbc'),
]

 self._use_kpoints = True

 # Default input and output files
 self._DEFAULT_INPUT_FILE = 'aiida.in'
 self._DEFAULT_OUTPUT_FILE = 'aiida.out'

 @classproperty
 def _use_methods(cls):
 """
 Extend the parent _use_methods with further keys.
 """
 retdict = JobCalculation._use_methods
 retdict.update(BasePwCpInputGenerator._baseclass_use_methods)

 retdict['kpoints'] = {
 'valid_types': KpointsData,
 'additional_parameter': None,
 'linkname': 'kpoints',
 'docstring': "Use the node defining the kpoint sampling to use",
 }

 return retdict

 @classmethod
[docs] def input_helper(cls, *args, **kwargs):
 """
 Validate if the keywords are valid Quantum ESPRESSO pw.x keywords, and
 also helps in preparing the input parameter dictionary in a
 'standardized' form (e.g., converts ints to floats when required,
 or if the flag flat_mode is specified, puts the keywords in the right
 namelists).

 This function calls
 :py:func:`aiida.orm.calculation.job.quantumespresso.helpers.pw_input_helper`,
 see its docstring for further information.
 """
 from . import helpers
 return helpers.pw_input_helper(*args, **kwargs)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/calculation/job/quantumespresso/helpers.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.orm.calculation.job.quantumespresso.helpers

-*- coding: utf-8 -*-
import xml.dom.minidom
import os
import difflib
import copy
from aiida.common.exceptions import InputValidationError, InternalError
Can also try to use LooseVersion instead, if more complicated things are
required, e.g. with strings. But be careful, check if the behavior in
this case is the intended one.
from distutils.version import StrictVersion

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__authors__ = "The AiiDA team."
__version__ = "0.7.0"

[docs]class QEInputValidationError(InputValidationError):
 """
 This class is the exception that is generated by the parser when it
 encounters an error while creating the input file of Quantum ESPRESSO.
 """
 pass

def _check_and_convert(kw,val,expected_type):
 """
 val: the value to be read and converted to a Fortran-friendly string.
 expected_type: a string with the expected type. Can be:
 INTEGER
 REAL
 CHARACTER
 LOGICAL
 """

 # Note that bool should come before integer, because a boolean matches also
 # isinstance(...,int)
 if expected_type.upper() == "LOGICAL":
 if isinstance(val,bool):
 outval = val
 else:
 raise TypeError(
 'Expected a boolean for keyword {}, found {} instead'.format(
 kw, type(val)))
 elif expected_type.upper() == "REAL":
 if isinstance(val,(int, long)):
 outval = float(val)
 elif isinstance(val, float):
 outval = val
 else:
 raise TypeError(
 'Expected a float for keyword {}, found {} instead'.format(
 kw, type(val)))
 elif expected_type.upper() == "INTEGER":
 if isinstance(val,(int, long)):
 outval = val
 else:
 raise TypeError(
 'Expected an integer for keyword {}, found {} instead'.format(
 kw, type(val)))
 elif expected_type.upper() == "CHARACTER":
 if isinstance(val,basestring):
 outval = val
 else:
 raise TypeError(
 'Expected a string for keyword {}, found {} instead'.format(
 kw, type(val)))
 else:
 raise InternalError('Unexpected type check for keyword {}: {})'.format(
 kw, expected_type.upper()))

 return outval

[docs]def pw_input_helper(input_params, structure,
 stop_at_first_error=False, flat_mode=False, version="5.4.0"):
 """
 Validate if the input dictionary for Quantum ESPRESSO is valid.
 Return the dictionary (possibly with small variations: e.g. convert
 integer to float where necessary, recreate the proper structure
 if flat_mode is True, ...) to use as input parameters (use_parameters)
 for the pw.x calculation.

 :param input_params: If flat_mode is True, pass a dictionary
 with 'key' = value; use the correct type
 (int, bool, ...) for value. If an array is required:

 * if its length is fixed: pass a list of the required length

 * if its length is 'ntyp': pass a dictionary, associating each
 specie to its value.

 * (other lengths are not supported)

 Example::

 {
 'calculation': 'vc-relax',
 'ecutwfc': 30.,
 'hubbard_u': {'O': 1},
 }

 If instead flat_mode is False, pass a dictionary in the format
 expected by AiiDA (keys are namelists, values are in the format
 specified above, i.e. key/value pairs for all keywords in the
 given namelist).
 Example::

 {
 'CONTROL': {
 'calculation': 'vc-relax'
 },
 'SYSTEM': {
 'hubbard_u': {'O': 1.0},
 'ecutwfc': 30.,
 },
 },

 :param structure: the StructureData object used as input for QE pw.x
 :param stop_at_first_error: if True, stops at the first error.
 Otherwise, when, possible, continue and give a global error for all
 the issues encountered.
 :param flat_mode: if True, instead of passing the dictionary of namelists,
 and inside the keywords, pass directly the keywords - this function
 will return the correct dictionary to pass to the PwCalculation,
 with the keywords arranged in the correct namelist.
 :param version: string with version number, used to find the correct XML
 file descriptor. If not specified, uses the most recent version
 available in the validator. It reads the definitions from the XML files
 in the same folder as this python module. If the version is not
 recognised, the Exception message will also suggest a close-by version.

 :raise QeInputValidationError: (subclass of InputValidationError) if
 the input is not considered valid.
 """
 errors_list = []

 # =========== LIST OF KNOWN NAMELISTS, CARDS, VARIABLES, ... ===============
 compulsory_namelists = ['CONTROL', 'SYSTEM', 'ELECTRONS']

 valid_calculations_and_opt_namelists = {
 'scf':[],
 'nscf':[],
 'bands':[],
 'relax':['IONS'],
 'md':['IONS'],
 'vc-relax':['IONS', 'CELL'],
 'vc-md': ['IONS', 'CELL'],
 }

 if not isinstance(input_params, dict):
 raise QEInputValidationError('input_params must be a dictionary')
 # So that if I modify input_params, nothing happens outside
 if flat_mode:
 input_params_internal = copy.deepcopy(input_params)
 else:
 input_params_internal = {}
 input_original_namelists = {}
 all_input_namelists = set()
 for nl, content in input_params.iteritems():
 if not isinstance(content, dict):
 raise QEInputValidationError(
 "The content associated to the namelist '{}' must be a "
 "dictionary".format(nl))
 all_input_namelists.add(nl)
 for k, v in content.iteritems():
 input_params_internal[k] = copy.deepcopy(v)
 if k in input_original_namelists:
 err_str = "The keyword '{}' was specified both in the "
 "namelist {} and {}.".format(k,
 input_original_namelists[k], nl)
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)
 input_original_namelists[k] = nl

 # List of the keywords that must not appear in the input
 # (e.g. because they are automatically filled in by the plugin)
 blocked_kws = [i.lower() for i in
 ["pseudo_dir",
 "outdir",
 "ibrav",
 "celldm",
 "nat",
 "ntyp",
 "prefix",
 "a", "b", "c", "cosab", "cosac", "cosbc",
]
]
 # TODO: possibly add here above also restart_mode?

 # List of the keywords that must ALWAYS appear in the input
 compulsory_kws = set([i.lower() for i in
 ["calculation",
 "ecutwfc",
]
])

 # ===================== PARSING OF THE XML DEFINITION FILE ===============
 module_dir = os.path.dirname(__file__)
 if module_dir == '':
 module_dir = os.curdir
 xml_path = os.path.join(module_dir,'INPUT_PW-{}.xml'.format(version))
 try:
 with open(xml_path,'r') as f:
 dom = xml.dom.minidom.parse(f)
 except IOError:
 prefix = 'INPUT_PW-'
 suffix = '.xml'
 versions = [fname[len(prefix):-len(suffix)] for fname
 in os.listdir(module_dir) if fname.startswith(prefix)
 and fname.endswith(suffix)]
 versions = sorted(versions, key=lambda x: StrictVersion(x))
 strictversions = versions + [version]
 strictversions = sorted(strictversions, key=lambda x: StrictVersion(x))
 pos = strictversions.index(version)
 if pos == 0:
 add_str = " (the version you specified is too old)"
 else:
 add_str = " (the older, closest version you can use is {})".format(
 strictversions[pos-1])
 raise QEInputValidationError(
 "Unknown Quantum Espresso version: {}. "
 "Available versions: {};{}".format(version, ", ".join(versions),
 add_str))

 # ========== List of known PW variables (from XML file) ===============
 known_kws = dom.getElementsByTagName('var')
 valid_kws = {}
 for kw in known_kws:
 if kw in valid_kws:
 raise InternalError("Something strange, I found more than one "
 "keyword '{}' in the XML description...".format(
 kw))

 valid_kws[kw.getAttribute('name').lower()] = {}
 parent = kw
 try:
 while True:
 parent = parent.parentNode
 if parent.tagName == 'namelist':
 valid_kws[kw.getAttribute('name').lower()]["namelist"] = \
 parent.getAttribute('name').upper()
 break
 except AttributeError:
 # There are also variables in cards instead of namelists:
 # I ignore them
 pass
 # raise QEInputValidationError("Unable to find namelist for "
 # "keyword %s." % kw.getAttribute('name'))
 expected_type = kw.getAttribute('type')
 # Fix for groups of variables
 if expected_type == '':
 if kw.parentNode.tagName == 'vargroup':
 expected_type = kw.parentNode.getAttribute('type')
 valid_kws[kw.getAttribute('name').lower()]['expected_type'] = \
 expected_type.upper()

 # ====== List of known PW 'dimensions' (arrays) (from XML file) ===========
 known_dims = dom.getElementsByTagName('dimension')
 valid_dims = {}
 for dim in known_dims:
 if dim in valid_dims:
 raise InternalError("Something strange, I found more than one "
 "keyword '{}' in the XML description...".format(dim))

 valid_dims[dim.getAttribute('name').lower()] = {}
 parent = dim
 try:
 while True:
 parent = parent.parentNode
 if parent.tagName == 'namelist':
 valid_dims[dim.getAttribute('name').lower()]["namelist"] = \
 parent.getAttribute('name').upper()
 break
 except AttributeError:
 # There are also variables in cards instead of namelists:
 # I ignore them
 pass
 # raise QEInputValidationError("Unable to find namelist "
 # "for keyword %s." % dim.getAttribute('name'))
 expected_type = dim.getAttribute('type')
 # Fix for groups of variables
 if expected_type == '':
 if dim.parentNode.tagName == 'vargroup':
 expected_type = dim.parentNode.getAttribute('type')
 valid_dims[dim.getAttribute('name').lower()]['expected_type'] = \
 expected_type.upper()
 # I assume start_val is always 1
 start_val = dim.getAttribute('start')
 if start_val != '1':
 raise InternalError(
 "Wrong start value '{}' in input array (dimension) {}".format(
 (start_val, dim.getAttribute('name'))))
 # I save the string as it is; somewhere else I will check for its value
 valid_dims[dim.getAttribute('name').lower()]['end_val'] = \
 dim.getAttribute('end')

 # Used to suggest valid keywords if an unknown one is found
 valid_invars_list = list(
 set([i.lower() for i in valid_dims.keys()] +
 [i.lower() for i in valid_kws.keys()]) - set(blocked_kws))

 # =================== Check for blocked keywords ===========================
 for kw in input_params_internal.keys():
 if kw in blocked_kws:
 err_str = "You should not provide explicitly keyword '{}'.".format(
 kw)
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)

 # from 5.0.2, this CANNOT be specified anymore!
 if StrictVersion(version) < StrictVersion('5.0.2'):
 # To be sure that things are read in angstrom - not possible in recent
 # versions
 input_params_internal['a'] = 1.

 # Get info on atomic species from the StructureData object
 atomic_species_list = [k.name for k in structure.kinds]

 try:
 calculation_type = input_params_internal['calculation']
 except KeyError:
 raise QEInputValidationError("Error, you need to specify at least the "
 "calculation type (among {})".format(
 ", ".join(valid_calculations_and_opt_namelists.keys())))

 try:
 opt_namelists = valid_calculations_and_opt_namelists[calculation_type]
 except KeyError:
 raise QEInputValidationError("Error, {} is not a valid value for "
 "the calculation type (valid values: {})".format(calculation_type,
 ", ".join(valid_calculations_and_opt_namelists.keys())))

 internal_dict = {i: {} for i in compulsory_namelists + opt_namelists}
 all_namelists = set(compulsory_namelists)
 for namelists in valid_calculations_and_opt_namelists.values():
 all_namelists.update(namelists)

 if not flat_mode:
 # Unexpected namelists specified by the user
 additional_namelists = sorted(all_input_namelists - set(all_namelists))
 if additional_namelists:
 err_str = "Error, the following namelists were specified but are " \
 "not expected: {}".format(
 ", ".join(additional_namelists))
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)

 # Empty list that contains the list of provided kws to check for
 # the compulsory ones at the end
 inserted_kws = []
 # I parse each element of the input dictionary
 for kw, value in input_params_internal.iteritems():
 #print kw, valid_kws[kw.lower()]
 kw = kw.lower()

 if kw in valid_kws:
 # It is a variable
 found_var = valid_kws[kw]
 namelist_name = found_var['namelist']
 if not flat_mode:
 input_namelist_name = input_original_namelists[kw]
 if namelist_name != input_namelist_name:
 err_str = \
 "Error, keyword '{}' specified in namelist '{}', " \
 "but it should be instead in '{}'".format(
 kw, input_namelist_name, namelist_name)
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)
 try:
 internal_dict[namelist_name][kw] = _check_and_convert(
 kw,value, found_var['expected_type'])
 except KeyError:
 if namelist_name in all_namelists:
 err_str = \
 "Error, namelist {} not valid for calculation type " \
 "{}".format(namelist_name, calculation_type)
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)
 else:
 err_str = "Error, unknown namelist " \
 "{}".format(namelist_name)
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)
 except TypeError as e:
 if stop_at_first_error:
 raise
 else:
 errors_list.append(e.message)

 elif kw in valid_dims:
 # It is an array
 found_var = valid_dims[kw]
 namelist_name = found_var['namelist']
 if not flat_mode:
 input_namelist_name = input_original_namelists[kw]
 if namelist_name != input_namelist_name:
 err_str = \
 "Error, keyword '{}' specified in namelist '{}', " \
 "but it should be instead in '{}'".format(
 kw, input_namelist_name, namelist_name)
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)
 ## I accept only ntyp or an integer as end_val
 if found_var['end_val'] == 'ntyp':
 if not isinstance(value,dict):
 err_str = \
 "Error, expecting a dictionary to associate each " \
 "specie to a value for keyword '{}'.".format(kw)
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)
 continue

 outdict = {}
 for kindname, found_item in value.iteritems():
 if kindname not in atomic_species_list:
 err_str = \
 "Error, '{}' is not a valid kind name.".format(kindname)
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)
 continue
 try:
 outdict[kindname] = _check_and_convert(kw,found_item,
 found_var['expected_type'])
 except TypeError:
 if stop_at_first_error:
 raise
 else:
 errors_list.append(e.message)

 try:
 internal_dict[namelist_name][kw] = outdict
 except KeyError:
 err_str = \
 "Error, unknown namelist {}".format(namelist_name)
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)
 continue
 else:
 try:
 end_value = int(found_var['end_val'])
 except ValueError:
 err_str = \
 "Error, invalid end value '{}' for keyword '{}'.".format(
 (found_var['end_val'], kw))
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)
 continue
 if not isinstance(value,list) or len(value) != end_value:
 err_str = \
 "Error, expecting a list of length {} for keyword " \
 "'{}'.".format(end_value, kw)
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)
 continue

 outlist = []
 for found_item in value:
 if found_item is None:
 # skip if the value is None (i.e., not provided)
 outlist.append(None)
 else:
 try:
 outlist.append(_check_and_convert(kw,found_item,
 found_var['expected_type']))
 except TypeError as e:
 if stop_at_first_error:
 raise
 else:
 errors_list.append(e.message)
 outlist.append(None)

 try:
 internal_dict[namelist_name][kw] = outlist
 except KeyError:
 err_str = \
 "Error, unknown namelist {}".format(namelist_name)
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)
 continue
 else:
 # Neither a variable nor an array
 err_str = "Problem parsing keyword {}. ".format(kw)
 similar_kws = difflib.get_close_matches(kw, valid_invars_list)
 if len(similar_kws)==1:
 err_str += "Maybe you wanted to specify {}?".format(
 similar_kws[0])
 elif len(similar_kws) > 1:
 err_str += "Maybe you wanted to specify one of these: " \
 "{}?".format(", ".join(similar_kws))
 else:
 err_str += "(No similar keywords found...)"
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)

 # Used to check if all compulsory variables are set
 inserted_kws += [kw]

 # ============== I check here compulsory variables ===========
 missing_kws = compulsory_kws - set(inserted_kws)
 if len(missing_kws) != 0:
 err_str = "Missing compulsory variables: {}.".format(
 ", ".join(missing_kws))
 if stop_at_first_error:
 raise QEInputValidationError(err_str)
 else:
 errors_list.append(err_str)

 if errors_list:
 raise QEInputValidationError(
 "Errors! {} issues found:\n* ".format(len(errors_list)) +
 "\n* ".join(errors_list))

 return internal_dict

if __name__ == "__main__":
 # An example of usage
 from aiida.orm import load_node
 structure = DataFactory('structure')(cell=[[1,0,0],[0,1,0],[0,0,1]])
 structure.append_atom(symbols='Si', position=[0,0,0])
 structure.append_atom(symbols='O', position=[0.5,0.5,0.5])

 try:
 print validate_pw_input({
 'calculation': 'vc-relax',
 'ecutwfc': 30.,
 'lda_plus_u': True,
 'lda_plus_u_kind': 2,
 'ion_temperature': 'a',
 # 'hubbard_u': [1, None],
 'hubbard_u': {'O': 1},
 },
 structure, flat_mode = True,
 version = '5.1')
 except QEInputValidationError as e:
 print "*"*72
 print "* ERROR !"
 print "*"*72
 print e.message

 try:
 print validate_pw_input(
 {
 'CONTROL': {
 'calculation': 'vc-relax'
 },
 'IONS': {
 'ion_temperature': 'a'
 },
 'CELL': {
 },
 'ELECTRONS': {
 },
 'SYSTEM': {
 'lda_plus_u_kind': 2,
 'ecutwfc': 30.0,
 'hubbard_u': {'O': 1.0},
 'lda_plus_u': True}
 },
 structure, flat_mode = False)
 except QEInputValidationError as e:
 print "*"*72
 print "* ERROR !"
 print "*"*72
 print e.message

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/data/array.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.orm.data »

 Source code for aiida.orm.data.array

-*- coding: utf-8 -*-
from aiida.orm import Data

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class ArrayData(Data):
 """
 Store a set of arrays on disk (rather than on the database) in an efficient
 way using numpy.save() (therefore, this class requires numpy to be
 installed).

 Each array is stored within the Node folder as a different .npy file.

 :note: Before storing, no caching is done: if you perform a
 :py:meth:`.get_array` call, the array will be re-read from disk.
 If instead the ArrayData node has already been stored,
 the array is cached in memory after the first read, and the cached array
 is used thereafter.
 If too much RAM memory is used, you can clear the
 cache with the :py:meth:`.clear_internal_cache` method.
 """
 array_prefix = "array|"

 def __init__(self, *args, **kwargs):
 super(ArrayData, self).__init__(*args, **kwargs)
 self._cached_arrays = {}

[docs] def delete_array(self, name):
 """
 Delete an array from the node. Can only be called before storing.

 :param name: The name of the array to delete from the node.
 """
 import numpy

 fname = '{}.npy'.format(name)
 if fname not in self.get_folder_list():
 raise KeyError(
 "Array with name '{}' not found in node pk= {}".format(
 name, self.pk))

 # remove both file and attribute
 self.remove_path(fname)
 try:
 self._del_attr("{}{}".format(self.array_prefix, name))
 except (KeyError, AttributeError):
 # Should not happen, but do not crash if for some reason the
 # property was not set.
 pass

[docs] def arraynames(self):
 """
 Return a list of all arrays stored in the node, listing the files (and
 not relying on the properties).

 .. deprecated:: 0.7
 Use :meth:`get_arraynames` instead.
 """
 import warnings

 warnings.warn("arraynames is deprecated, use get_arraynames instead",
 DeprecationWarning)
 return self.get_arraynames()

[docs] def get_arraynames(self):
 """
 Return a list of all arrays stored in the node, listing the files (and
 not relying on the properties).

 .. versionadded:: 0.7
 Renamed from arraynames
 """
 return self._arraynames_from_properties()

 def _arraynames_from_files(self):
 """
 Return a list of all arrays stored in the node, listing the files (and
 not relying on the properties).
 """
 return [i[:-4] for i in self.get_folder_list() if i.endswith('.npy')]

 def _arraynames_from_properties(self):
 """
 Return a list of all arrays stored in the node, listing the attributes
 starting with the correct prefix.
 """
 return [i[len(self.array_prefix):] for i in
 self.attrs() if i.startswith(self.array_prefix)]

[docs] def get_shape(self, name):
 """
 Return the shape of an array (read from the value cached in the
 properties for efficiency reasons).

 :param name: The name of the array.
 """
 return tuple(self.get_attr("{}{}".format(self.array_prefix, name)))

[docs] def iterarrays(self):
 """
 Iterator that returns tuples (name, array) for each array stored in the
 node.
 """
 for name in self.arraynames():
 yield (name, self.get_array(name))

[docs] def get_array(self, name):
 """
 Return an array stored in the node

 :param name: The name of the array to return.
 """
 import numpy

 # raw function used only internally
 def get_array_from_file(self, name):
 fname = '{}.npy'.format(name)
 if fname not in self.get_folder_list():
 raise KeyError(
 "Array with name '{}' not found in node pk= {}".format(
 name, self.pk))

 array = numpy.load(self.get_abs_path(fname))
 return array

 # Return with proper caching, but only after storing. Before, instead,
 # always re-read from disk
 if not self.is_stored:
 return get_array_from_file(self, name)
 else:
 if name not in self._cached_arrays:
 self._cached_arrays[name] = get_array_from_file(self, name)
 return self._cached_arrays[name]

[docs] def clear_internal_cache(self):
 """
 Clear the internal memory cache where the arrays are stored after being
 read from disk (used in order to reduce at minimum the readings from
 disk).
 This function is useful if you want to keep the node in memory, but you
 do not want to waste memory to cache the arrays in RAM.
 """
 self._cached_arrays = {}

[docs] def set_array(self, name, array):
 """
 Store a new numpy array inside the node. Possibly overwrite the array
 if it already existed.

 Internally, it stores a name.npy file in numpy format.

 :param name: The name of the array.
 :param array: The numpy array to store.
 """
 import re
 import tempfile

 import numpy

 if not (isinstance(array, numpy.ndarray)):
 raise TypeError("ArrayData can only store numpy arrays. Convert "
 "the object to an array first")

 # Check if the name is valid
 if not (name) or re.sub('[0-9a-zA-Z_]', '', name):
 raise ValueError("The name assigned to the array ({}) is not valid,"
 "it can only contain digits, letters or underscores")

 fname = "{}.npy".format(name)

 with tempfile.NamedTemporaryFile() as f:
 # Store in a temporary file, and then add to the node
 numpy.save(f, array)
 f.flush() # Important to flush here, otherwise the next copy command
 # will just copy an empty file
 self.add_path(f.name, fname)

 # Mainly for convenience, for querying purposes (both stores the fact
 # that there is an array with that name, and its shape)
 self._set_attr("{}{}".format(self.array_prefix, name),
 list(array.shape))

 def _validate(self):
 """
 Check if the list of .npy files stored inside the node and the
 list of properties match. Just a name check, no check on the size
 since this would require to reload all arrays and this may take time
 and memory.
 """
 from aiida.common.exceptions import ValidationError

 files = self._arraynames_from_files()
 properties = self._arraynames_from_properties()

 if set(files) != set(properties):
 raise ValidationError(
 "Mismatch of files and properties for ArrayData"
 " node (pk= {}): {} vs. {}".format(self.pk,
 files, properties))
 super(ArrayData, self)._validate()

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/data/cif.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.orm.data »

 Source code for aiida.orm.data.cif

-*- coding: utf-8 -*-
from aiida.orm.data.singlefile import SinglefileData
from aiida.orm.calculation.inline import optional_inline

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

ase_loops = {
 '_atom_site': [
 '_atom_site_label',
 '_atom_site_occupancy',
 '_atom_site_fract_x',
 '_atom_site_fract_y',
 '_atom_site_fract_z',
 '_atom_site_adp_type',
 '_atom_site_thermal_displace_type',
 '_atom_site_B_iso_or_equiv',
 '_atom_site_U_iso_or_equiv',
 '_atom_site_B_equiv_geom_mean',
 '_atom_site_U_equiv_geom_mean',
 '_atom_site_type_symbol',
]
}

symmetry_tags = [
 '_symmetry_equiv_pos_site_id',
 '_symmetry_equiv_pos_as_xyz',

 '_symmetry_Int_Tables_number',
 '_symmetry_space_group_name_H-M',
 '_symmetry_space_group_name_Hall',

 '_space_group_symop_id',
 '_space_group_symop_operation_xyz',
 '_space_group_symop_sg_id',

 '_space_group_id',
 '_space_group_IT_number',
 '_space_group_name_H-M_alt',
 '_space_group_name_Hall',
]

[docs]def has_pycifrw():
 """
 :return: True if the PyCifRW module can be imported, False otherwise.
 """
 try:
 import CifFile
 except ImportError:
 return False
 return True

[docs]def symop_string_from_symop_matrix_tr(matrix, tr=[0, 0, 0], eps=0):
 """
 Construct a CIF representation of symmetry operator plus translation.
 See International Tables for Crystallography Vol. A. (2002) for
 definition.

 :param matrix: 3x3 matrix, representing the symmetry operator
 :param tr: translation vector of length 3 (default [0, 0, 0])
 :param eps: epsilon parameter for fuzzy comparison x == 0
 :return: CIF representation of symmetry operator
 """
 import re
 axes = ["x", "y", "z"]
 parts = ["", "", ""]
 for i in range(0, 3):
 for j in range(0, 3):
 sign = None
 if matrix[i][j] > eps:
 sign = "+"
 elif matrix[i][j] < -eps:
 sign = "-"
 if sign:
 parts[i] = format("{}{}{}".format(parts[i],sign,axes[j]))
 if tr[i] < -eps or tr[i] > eps:
 sign = "+"
 if tr[i] < -eps:
 sign = "-"
 parts[i] = format("{}{}{}".format(parts[i],sign,abs(tr[i])))
 parts[i] = re.sub('^\+', '', parts[i])
 return ",".join(parts)

@optional_inline
def _get_aiida_structure_ase_inline(cif=None, parameters=None):
 """
 Creates :py:class:`aiida.orm.data.structure.StructureData` using ASE.

 .. note:: unable to correctly import structures of alloys.
 .. note:: requires ASE module.
 """
 from aiida.orm.data.structure import StructureData

 kwargs = {}
 if parameters is not None:
 kwargs = parameters.get_dict()
 return {'structure': StructureData(ase=cif.get_ase(**kwargs))}

@optional_inline
def _get_aiida_structure_pymatgen_inline(cif=None, parameters=None):
 """
 Creates :py:class:`aiida.orm.data.structure.StructureData` using
 pymatgen.

 .. note:: requires pymatgen module.
 """
 from pymatgen.io.cifio import CifParser
 from aiida.orm.data.structure import StructureData

 kwargs = {}
 if parameters is not None:
 kwargs = parameters.get_dict()
 kwargs['primitive'] = kwargs.pop('primitive_cell', False)
 parser = CifParser(cif.get_file_abs_path())
 try:
 struct = parser.get_structures(**kwargs)[0]
 return {'structure': StructureData(pymatgen_structure=struct)}
 except IndexError:
 raise ValueError("pymatgen failed to provide a structure from the cif file")

[docs]def cif_from_ase(ase, full_occupancies=False, add_fake_biso=False):
 """
 Construct a CIF datablock from the ASE structure. The code is taken
 from
 https://wiki.fysik.dtu.dk/ase/epydoc/ase.io.cif-pysrc.html#write_cif,
 as the original ASE code contains a bug in printing the
 Hermann-Mauguin symmetry space group symbol.

 :param ase: ASE "images"
 :return: array of CIF datablocks
 """
 from numpy import arccos, pi, dot
 from numpy.linalg import norm

 if not isinstance(ase, (list, tuple)):
 ase = [ase]

 datablocks = []
 for i, atoms in enumerate(ase):
 datablock = dict()

 cell = atoms.cell
 a = norm(cell[0])
 b = norm(cell[1])
 c = norm(cell[2])
 alpha = arccos(dot(cell[1], cell[2]) / (b * c)) * 180. / pi
 beta = arccos(dot(cell[0], cell[2]) / (a * c)) * 180. / pi
 gamma = arccos(dot(cell[0], cell[1]) / (a * b)) * 180. / pi

 datablock['_cell_length_a'] = str(a)
 datablock['_cell_length_b'] = str(b)
 datablock['_cell_length_c'] = str(c)
 datablock['_cell_angle_alpha'] = str(alpha)
 datablock['_cell_angle_beta'] = str(beta)
 datablock['_cell_angle_gamma'] = str(gamma)

 if atoms.pbc.all():
 datablock['_symmetry_space_group_name_H-M'] = 'P 1'
 datablock['_symmetry_int_tables_number'] = str(1)
 datablock['_symmetry_equiv_pos_as_xyz'] = ['x, y, z']

 datablock['_atom_site_label'] = []
 datablock['_atom_site_fract_x'] = []
 datablock['_atom_site_fract_y'] = []
 datablock['_atom_site_fract_z'] = []
 datablock['_atom_site_type_symbol'] = []

 if full_occupancies:
 datablock['_atom_site_occupancy'] = []
 if add_fake_biso:
 datablock['_atom_site_thermal_displace_type'] = []
 datablock['_atom_site_B_iso_or_equiv'] = []

 scaled = atoms.get_scaled_positions()
 no = {}
 for i, atom in enumerate(atoms):
 symbol = atom.symbol
 if symbol in no:
 no[symbol] += 1
 else:
 no[symbol] = 1
 datablock['_atom_site_label'].append(symbol + str(no[symbol]))
 datablock['_atom_site_fract_x'].append(str(scaled[i][0]))
 datablock['_atom_site_fract_y'].append(str(scaled[i][1]))
 datablock['_atom_site_fract_z'].append(str(scaled[i][2]))
 datablock['_atom_site_type_symbol'].append(symbol)

 if full_occupancies:
 datablock['_atom_site_occupancy'].append(str(1.0))
 if add_fake_biso:
 datablock['_atom_site_thermal_displace_type'].append('Biso')
 datablock['_atom_site_B_iso_or_equiv'].append(str(1.0))

 datablocks.append(datablock)
 return datablocks

[docs]def pycifrw_from_cif(datablocks, loops=dict(), names=None):
 """
 Constructs PyCifRW's CifFile from an array of CIF datablocks.

 :param datablocks: an array of CIF datablocks
 :param loops: optional list of lists of CIF tag loops.
 :param names: optional list of datablock names
 :return: CifFile
 """
 import CifFile

 cif = CifFile.CifFile()
 if names and len(names) < len(datablocks):
 raise ValueError("Not enough names supplied for "
 "datablocks: {} (names) < "
 "{} (datablocks)".format(len(names),
 len(datablocks)))
 for i,values in enumerate(datablocks):
 name = str(i)
 if names:
 name = names[i]
 cif.NewBlock(name)
 datablock = cif[name]
 for loopname in loops.keys():
 loopdata = ([[]], [[]])
 row_size = None
 for tag in loops[loopname]:
 if tag in values:
 tag_values = values.pop(tag)
 if not isinstance(tag_values, list):
 tag_values = [tag_values]
 if row_size is None:
 row_size = len(tag_values)
 elif row_size != len(tag_values):
 raise ValueError("Number of values for tag "
 "'{}' is different from "
 "the others in the same "
 "loop".format(tag))
 loopdata[0][0].append(tag)
 loopdata[1][0].append(tag_values)
 if row_size is not None and row_size > 0:
 datablock.AddCifItem(loopdata)
 for tag in sorted(values.keys()):
 datablock[tag] = values[tag]
 return cif

@optional_inline
def refine_inline(node):
 """
 Refine (reduce) the cell of :py:class:`aiida.orm.data.cif.CifData`,
 find and remove symmetrically equivalent atoms.

 :param node: a :py:class:`aiida.orm.data.cif.CifData` instance.
 :return: dict with :py:class:`aiida.orm.data.cif.CifData`

 .. note:: can be used as inline calculation.
 """
 from aiida.orm.data.structure import StructureData, ase_refine_cell

 if len(node.values.keys()) > 1:
 raise ValueError("CifData seems to contain more than one data "
 "block -- multiblock CIF files are not "
 "supported yet")

 name = node.values.keys()[0]

 original_atoms = node.get_ase(index=None)
 if len(original_atoms) > 1:
 raise ValueError("CifData seems to contain more than one crystal "
 "structure -- such refinement is not supported "
 "yet")

 original_atoms = original_atoms[0]

 refined_atoms, symmetry = ase_refine_cell(original_atoms)

 cif = CifData(ase=refined_atoms)
 cif.values.dictionary[name] = cif.values.dictionary.pop(str(0))

 # Remove all existing symmetry tags before overwriting:
 for tag in symmetry_tags:
 cif.values[name].RemoveCifItem(tag)

 cif.values[name]['_symmetry_space_group_name_H-M'] = symmetry['hm']
 cif.values[name]['_symmetry_space_group_name_Hall'] = symmetry['hall']
 cif.values[name]['_symmetry_Int_Tables_number'] = symmetry['tables']
 cif.values[name]['_symmetry_equiv_pos_as_xyz'] = \
 [symop_string_from_symop_matrix_tr(symmetry['rotations'][i],
 symmetry['translations'][i])
 for i in range(0, len(symmetry['rotations']))]

 # Summary formula has to be calculated from non-reduced set of atoms.
 cif.values[name]['_chemical_formula_sum'] = \
 StructureData(ase=original_atoms).get_formula(mode='hill',
 separator=' ')

 # If the number of reduced atoms multiplies the number of non-reduced
 # atoms, the new Z value can be calculated.
 if '_cell_formula_units_Z' in node.values[name].keys():
 old_Z = node.values[name]['_cell_formula_units_Z']
 if len(original_atoms) % len(refined_atoms):
 new_Z = old_Z * len(original_atoms) / len(refined_atoms)
 cif.values[name]['_cell_formula_units_Z'] = new_Z

 return {'cif': cif}

[docs]def parse_formula(formula):
 """
 Parses the Hill formulae, written with spaces for separators.
 """
 import re

 contents = {}
 for part in re.split('\s+', formula):
 m = re.match('(\D+)([\.\d]+)?', part)
 specie = m.group(1)
 quantity = m.group(2)
 if quantity is None:
 quantity = 1
 else:
 if re.match('^\d+$', quantity):
 quantity = int(quantity)
 else:
 quantity = float(quantity)
 contents[specie] = quantity
 return contents

[docs]class CifData(SinglefileData):
 """
 Wrapper for Crystallographic Interchange File (CIF)

 .. note:: the file (physical) is held as the authoritative source of
 information, so all conversions are done through the physical file:
 when setting ``ase`` or ``values``, a physical CIF file is generated
 first, the values are updated from the physical CIF file.
 """
 _set_incompatibilities = [("ase", "file"), ("ase", "values"),
 ("file", "values")]

 @classmethod
[docs] def from_md5(cls, md5):
 """
 Return a list of all CIF files that match a given MD5 hash.

 .. note:: the hash has to be stored in a ``_md5`` attribute,
 otherwise the CIF file will not be found.
 """
 queryset = cls.query(dbattributes__key='md5', dbattributes__tval=md5)
 return list(queryset)

 @classmethod
[docs] def get_or_create(cls, filename, use_first=False, store_cif=True):
 """
 Pass the same parameter of the init; if a file with the same md5
 is found, that CifData is returned.

 :param filename: an absolute filename on disk
 :param use_first: if False (default), raise an exception if more than \
 one CIF file is found.\
 If it is True, instead, use the first available CIF file.
 :param bool store_cif: If false, the CifData objects are not stored in
 the database. default=True.
 :return (cif, created): where cif is the CifData object, and create is either\
 True if the object was created, or False if the object was retrieved\
 from the DB.
 """
 import aiida.common.utils
 import os
 from aiida.common.exceptions import ParsingError

 if not os.path.abspath(filename):
 raise ValueError("filename must be an absolute path")
 md5 = aiida.common.utils.md5_file(filename)

 cifs = cls.from_md5(md5)
 if len(cifs) == 0:
 if store_cif:
 instance = cls(file=filename).store()
 return (instance, True)
 else:
 instance = cls(file=filename)
 return (instance, True)
 else:
 if len(cifs) > 1:
 if use_first:
 return (cifs[0], False)
 else:
 raise ValueError("More than one copy of a CIF file "
 "with the same MD5 has been found in "
 "the DB. pks={}".format(
 ",".join([str(i.pk) for i in cifs])))
 else:
 return (cifs[0], False)

 def _get_aiida_structure(self, converter='ase', store=False, **kwargs):
 """
 Creates :py:class:`aiida.orm.data.structure.StructureData`.

 :param converter: specify the converter. Default 'ase'.
 :param store: if True, intermediate calculation gets stored in the
 AiiDA database for record. Default False.
 :param primitive_cell: if True, primitive cell is returned,
 conventional cell if False. Default False.
 :return: :py:class:`aiida.orm.data.structure.StructureData` node.
 """
 from aiida.orm.data.parameter import ParameterData
 import cif # This same module

 param = ParameterData(dict=kwargs)
 try:
 conv_f = getattr(cif, '_get_aiida_structure_{}_inline'.format(converter))
 except AttributeError:
 raise ValueError("No such converter '{}' available".format(converter))
 ret_dict = conv_f(cif=self, parameters=param, store=store)
 return ret_dict['structure']

 @property
 def ase(self):
 """
 ASE object, representing the CIF.

 .. note:: requires ASE module.
 """
 if self._ase is None:
 self._ase = self.get_ase()
 return self._ase

 @staticmethod
[docs] def read_cif(fileobj, index=-1, **kwargs):
 """
 A wrapper method that simulates the behaviour of the older versions of
 the read_cif. It behaves similarly with the older and newer versions
 of ase.io.cif.read_cif.
 """
 import ase.io.cif
 return list(ase.io.cif.read_cif(
 fileobj, index=slice(None), **kwargs))[index]

[docs] def get_ase(self, **kwargs):
 """
 Returns ASE object, representing the CIF. This function differs
 from the property ``ase`` by the possibility to pass the keyworded
 arguments (kwargs) to ase.io.cif.read_cif().

 .. note:: requires ASE module.
 """
 if not kwargs and self._ase:
 return self.ase
 else:
 return CifData.read_cif(
 self._get_folder_pathsubfolder.open(self.filename), **kwargs)

 def set_ase(self, aseatoms):
 import tempfile
 cif = cif_from_ase(aseatoms)
 with tempfile.NamedTemporaryFile() as f:
 f.write(pycifrw_from_cif(cif, loops=ase_loops).WriteOut())
 f.flush()
 self.set_file(f.name)

 @ase.setter
 def ase(self, aseatoms):
 self.set_ase(aseatoms)

 @property
 def values(self):
 """
 PyCifRW structure, representing the CIF datablocks.

 .. note:: requires PyCifRW module.
 """
 if self._values is None:
 import CifFile
 self._values = CifFile.ReadCif(self.get_file_abs_path())
 return self._values

 def set_values(self, values):
 import tempfile
 with tempfile.NamedTemporaryFile() as f:
 f.write(values.WriteOut())
 f.flush()
 self.set_file(f.name)

 @values.setter
 def values(self, values):
 self.set_values(values)

 def __init__(self, **kwargs):
 """
 Initialises an instance of CifData.
 """
 super(CifData, self).__init__(**kwargs)
 self._values = None
 self._ase = None

[docs] def store(self, *args, **kwargs):
 """
 Store the node.
 """
 self._set_attr('md5', self.generate_md5())
 return super(CifData, self).store(*args, **kwargs)

[docs] def set_file(self, filename):
 """
 Set the file. If the source is set and the MD5 checksum of new file
 is different from the source, the source has to be deleted.
 """
 super(CifData, self).set_file(filename)
 md5sum = self.generate_md5()
 if isinstance(self.source, dict) and \
 self.source.get('source_md5', None) is not None and \
 self.source['source_md5'] != md5sum:
 self.source = {}
 self._set_attr('md5', md5sum)
 self._values = None
 self._ase = None
 self._set_attr('formulae', self.get_formulae())
 self._set_attr('spacegroup_numbers', self.get_spacegroup_numbers())

[docs] def get_formulae(self, mode='sum'):
 """
 Get the formula.
 """
 formula_tag = "_chemical_formula_{}".format(mode)
 formulae = []
 for datablock in self.values.keys():
 formula = None
 if formula_tag in self.values[datablock].keys():
 formula = self.values[datablock][formula_tag]
 formulae.append(formula)
 return formulae

[docs] def get_spacegroup_numbers(self):
 """
 Get the spacegroup international number.
 """
 spg_tags = ["_space_group.it_number", "_space_group_it_number",
 "_symmetry_int_tables_number"]
 spacegroup_numbers = []
 for datablock in self.values.keys():
 spacegroup_number = None
 correct_tags = [tag for tag in spg_tags
 if tag in self.values[datablock].keys()]
 if correct_tags:
 try:
 spacegroup_number = int(self.values[datablock][correct_tags[0]])
 except ValueError:
 pass
 spacegroup_numbers.append(spacegroup_number)
 return spacegroup_numbers

[docs] def has_partial_occupancies(self):
 """
 Check if there are float values in the atom occupancies.
 :return: True if there are partial occupancies, False
 otherwise.
 """
 # precision
 epsilon = 1e-6
 tag = "_atom_site_occupancy"
 partial_occupancies = False
 for datablock in self.values.keys():
 if tag in self.values[datablock].keys():
 for site in self.values[datablock][tag]:
 # find the float number in the string
 bracket = site.find('(')
 if bracket == -1:
 # no bracket found
 if abs(float(site)-1) > epsilon:
 partial_occupancies = True
 else:
 # bracket, cut string
 if abs(float(site[0:bracket])-1)> epsilon:
 partial_occupancies = True

 return partial_occupancies

[docs] def has_attached_hydrogens(self):
 """
 Check if there are hydrogens without coordinates, specified
 as attached to the atoms of the structure.
 :return: True if there are attached hydrogens, False otherwise.
 """
 tag = '_atom_site_attached_hydrogens'
 for datablock in self.values.keys():
 if tag in self.values[datablock].keys():
 for value in self.values[datablock][tag]:
 if value != '.' and value != '?' and value != '0':
 return True
 return False

[docs] def generate_md5(self):
 """
 Generate MD5 hash of the file's contents on-the-fly.
 """
 import aiida.common.utils
 from aiida.common.exceptions import ValidationError

 abspath = self.get_file_abs_path()
 if not abspath:
 raise ValidationError("No valid CIF was passed!")

 return aiida.common.utils.md5_file(abspath)

 def _prepare_cif(self):
 """
 Write the given CIF file to a string of format CIF.
 """
 # If values have been changed and node is not stored,
 # the file is updated.
 if self._values and not self.is_stored:
 self.values = self._values
 with self._get_folder_pathsubfolder.open(self.filename) as f:
 return f.read()

 def _prepare_tcod(self, **kwargs):
 """
 Write the given CIF to a string of format TCOD CIF.
 """
 from aiida.tools.dbexporters.tcod import export_cif
 return export_cif(self,**kwargs)

 def _get_object_ase(self):
 """
 Converts CifData to ase.Atoms

 :return: an ase.Atoms object
 """
 return self.ase

 def _get_object_pycifrw(self):
 """
 Converts CifData to PyCIFRW.CifFile

 :return: a PyCIFRW.CifFile object
 """
 return self.values

 def _validate(self):
 """
 Validate the structure.
 """
 from aiida.common.exceptions import ValidationError

 super(CifData, self)._validate()

 try:
 attr_md5 = self.get_attr('md5')
 except AttributeError:
 raise ValidationError("attribute 'md5' not set.")
 md5 = self.generate_md5()
 if attr_md5 != md5:
 raise ValidationError("Attribute 'md5' says '{}' but '{}' was "
 "parsed instead.".format(
 attr_md5, md5))

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/data/array/trajectory.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.orm.data »

 		aiida.orm.data.array »

 Source code for aiida.orm.data.array.trajectory

-*- coding: utf-8 -*-
from aiida.orm.data.array import ArrayData
from aiida.orm.calculation.inline import optional_inline

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

@optional_inline
def _get_aiida_structure_inline(trajectory=None, parameters=None):
 """
 Creates :py:class:`aiida.orm.data.structure.StructureData` using ASE.

 .. note:: requires ASE module.
 """
 from aiida.orm.data.structure import StructureData

 kwargs = {}
 if parameters is not None:
 kwargs = parameters.get_dict()
 if 'index' not in kwargs.keys() or kwargs['index'] is None:
 raise ValueError("Step index is not supplied for TrajectoryData")
 return {'structure': trajectory.get_step_structure(**kwargs)}

[docs]class TrajectoryData(ArrayData):
 """
 Stores a trajectory (a sequence of crystal structures with timestamps, and
 possibly with velocities).
 """

 def _internal_validate(self, stepids, cells, symbols, positions, times, velocities):
 """
 Internal function to validate the type and shape of the arrays. See
 the documentation of py:meth:`.set_trajectory` for a description of the
 valid shape and type of the parameters.
 """
 import numpy

 if not isinstance(stepids, numpy.ndarray) or stepids.dtype != int:
 raise TypeError("TrajectoryData.stepids must be a numpy array of integers")
 if not isinstance(cells, numpy.ndarray) or cells.dtype != float:
 raise TypeError("TrajectoryData.cells must be a numpy array of floats")
 if not isinstance(symbols, numpy.ndarray):
 raise TypeError("TrajectoryData.symbols must be a numpy array")
 if any([not isinstance(i, basestring) for i in symbols]):
 raise TypeError("TrajectoryData.symbols must be a numpy array of strings")
 if not isinstance(positions, numpy.ndarray) or positions.dtype != float:
 raise TypeError("TrajectoryData.positions must be a numpy array of floats")
 if times is not None:
 if not isinstance(times, numpy.ndarray) or times.dtype != float:
 raise TypeError("TrajectoryData.times must be a numpy array of floats")
 if velocities is not None:
 if not isinstance(velocities, numpy.ndarray) or velocities.dtype != float:
 raise TypeError("TrajectoryData.velocities must be a numpy array of floats, or None")

 numsteps = stepids.size
 if stepids.shape != (numsteps,):
 raise ValueError("TrajectoryData.stepids must be a 1d array")
 if cells.shape != (numsteps, 3, 3):
 raise ValueError("TrajectoryData.cells must have shape (s,3,3), "
 "with s=number of steps")
 numatoms = symbols.size
 if symbols.shape != (numatoms,):
 raise ValueError("TrajectoryData.symbols must be a 1d array")
 if positions.shape != (numsteps, numatoms, 3):
 raise ValueError("TrajectoryData.positions must have shape (s,n,3), "
 "with s=number of steps and n=number of symbols")
 if times is not None:
 if times.shape != (numsteps,):
 raise ValueError("TrajectoryData.times must have shape (s,), "
 "with s=number of steps")
 if velocities is not None:
 if velocities.shape != (numsteps, numatoms, 3):
 raise ValueError("TrajectoryData.velocities, if not None, must "
 "have shape (s,n,3), "
 "with s=number of steps and n=number of symbols")

[docs] def set_trajectory(self, stepids, cells, symbols, positions, times=None, velocities=None):
 r"""
 Store the whole trajectory, after checking that types and dimensions
 are correct.
 Velocities are optional, if they are not passed, nothing is stored.

 :param stepids: integer array with dimension ``s``, where ``s`` is the
 number of steps. Typically represents an internal counter
 within the code. For instance, if you want to store a
 trajectory with one step every 10, starting from step 65,
 the array will be ``[65,75,85,...]``.
 No checks are done on duplicate elements
 or on the ordering, but anyway this array should be
 sorted in ascending order, without duplicate elements.
 If your code does not provide an internal counter, just
 provide for instance ``arange(s)``.
 It is internally stored as an array named 'steps'.
 :param cells: float array with dimension :math:`s \times 3 \times 3`,
 where ``s`` is the
 length of the ``stepids`` array. Units are angstrom.
 In particular,
 ``cells[i,j,k]`` is the ``k``-th component of the ``j``-th
 cell vector at the time step with index ``i`` (identified
 by step number ``stepid[i]`` and with timestamp ``times[i]``).
 :param symbols: string array with dimension ``n``, where ``n`` is the
 number of atoms (i.e., sites) in the structure.
 The same array is used for each step. Normally, the string
 should be a valid chemical symbol, but actually any unique
 string works and can be used as the name of the atomic kind
 (see also the :py:meth:`.get_step_structure()` method).
 :param positions: float array with dimension :math:`s \times n \times 3`,
 where ``s`` is the
 length of the ``stepids`` array and ``n`` is the length
 of the ``symbols`` array. Units are angstrom.
 In particular,
 ``positions[i,j,k]`` is the ``k``-th component of the
 ``j``-th atom (or site) in the structure at the time step
 with index ``i`` (identified
 by step number ``step[i]`` and with timestamp ``times[i]``).
 :param times: if specified, float array with dimension ``s``, where
 ``s`` is the length of the ``stepids`` array. Contains the
 timestamp of each step in picoseconds (ps).
 :param velocities: if specified, must be a float array with the same
 dimensions of the ``positions`` array.
 The array contains the velocities in the atoms.

 .. todo :: Choose suitable units for velocities
 """
 self._internal_validate(stepids, cells, symbols, positions, times, velocities)
 self.set_array('steps', stepids)
 self.set_array('cells', cells)
 self.set_array('symbols', symbols)
 self.set_array('positions', positions)
 if times is not None:
 self.set_array('times', times)
 else:
 # Delete times array, if it was present
 try:
 self.delete_array('times')
 except KeyError:
 pass
 if velocities is not None:
 self.set_array('velocities', velocities)
 else:
 # Delete velocities array, if it was present
 try:
 self.delete_array('velocities')
 except KeyError:
 pass

[docs] def set_structurelist(self, structurelist):
 """
 Create trajectory from the list of
 :py:class:`aiida.orm.data.structure.StructureData` instances.

 :param structurelist: a list of
 :py:class:`aiida.orm.data.structure.StructureData` instances.

 :raises ValueError: if symbol lists of supplied structures are
 different
 """
 import numpy

 stepids = numpy.array(range(0, len(structurelist)))
 cells = numpy.array([x.cell for x in structurelist])
 symbols_first = [str(s.kind_name) for s in structurelist[0].sites]
 for symbols_now in [[str(s.kind_name) for s in structurelist[i].sites]
 for i in stepids]:
 if symbols_first != symbols_now:
 raise ValueError("Symbol lists have to be the same for "
 "all of the supplied structures")
 symbols = numpy.array(symbols_first)
 positions = numpy.array([[list(s.position) for s in x.sites] for x in structurelist])
 self.set_trajectory(stepids, cells, symbols, positions)

 def _validate(self):
 """
 Verify that the required arrays are present and that their type and
 dimension are correct.
 """
 # check dimensions, types
 from aiida.common.exceptions import ValidationError

 try:
 self._internal_validate(self.get_stepids(),
 self.get_cells(),
 self.get_symbols(), self.get_positions(),
 self.get_times(),
 self.get_velocities())
 # Should catch TypeErrors, ValueErrors, and KeyErrors for missing arrays
 except Exception as e:
 raise ValidationError("The TrajectoryData did not validate. "
 "Error: {} with message {}".format(
 type(e).__name__, e.message))

 @property
 def numsteps(self):
 """
 Return the number of stored steps, or zero if nothing has been stored yet.
 """
 try:
 return self.get_shape('steps')[0]
 except (AttributeError, KeyError, IndexError):
 return 0

 @property
 def numsites(self):
 """
 Return the number of stored sites, or zero if nothing has been stored yet.
 """
 try:
 return self.get_shape('symbols')[0]
 except (AttributeError, KeyError, IndexError):
 return 0

[docs] def get_steps(self):
 """
 .. deprecated:: 0.7
 Use :meth:`get_stepids` instead.
 """
 import warnings
 warnings.warn(
 "get_steps is deprecated, use get_stepids instead",
 DeprecationWarning)
 return self.get_stepids()

[docs] def get_stepids(self):
 """
 Return the array of steps, if it has already been set.

 .. versionadded:: 0.7
 Renamed from get_steps

 :raises KeyError: if the trajectory has not been set yet.
 """
 return self.get_array('steps')

[docs] def get_times(self):
 """
 Return the array of times (in ps), if it has already been set.

 :raises KeyError: if the trajectory has not been set yet.
 """
 try:
 return self.get_array('times')
 except (AttributeError, KeyError):
 return None

[docs] def get_cells(self):
 """
 Return the array of cells, if it has already been set.

 :raises KeyError: if the trajectory has not been set yet.
 """
 return self.get_array('cells')

[docs] def get_symbols(self):
 """
 Return the array of symbols, if it has already been set.

 :raises KeyError: if the trajectory has not been set yet.
 """
 return self.get_array('symbols')

[docs] def get_positions(self):
 """
 Return the array of positions, if it has already been set.

 :raises KeyError: if the trajectory has not been set yet.
 """
 return self.get_array('positions')

[docs] def get_velocities(self):
 """
 Return the array of velocities, if it has already been set.

 .. note :: This function (differently from all other ``get_*``
 functions, will not raise an exception if the velocities are not
 set, but rather return ``None`` (both if no trajectory was not set yet,
 and if it the trajectory was set but no velocities were specified).
 """
 try:
 return self.get_array('velocities')
 except (AttributeError, KeyError):
 return None

[docs] def get_step_index(self, step):
 """
 .. deprecated:: 0.7
 Use :meth:`get_index_from_stepid` instead.
 """
 import warnings
 warnings.warn(
 "get_step_index is deprecated, use get_index_from_stepid instead",
 DeprecationWarning)
 return self.get_index_from_stepid(stepid=step)

[docs] def get_index_from_stepid(self, stepid):
 """
 Given a value for the stepid (i.e., a value among those of the ``steps``
 array), return the array index of that stepid, that can be used in other
 methods such as :py:meth:`.get_step_data` or
 :py:meth:`.get_step_structure`.

 .. versionadded:: 0.7
 Renamed from get_step_index

 .. note:: Note that this function returns the first index found
 (i.e. if multiple steps are present with the same value,
 only the index of the first one is returned).

 :raises ValueError: if no step with the given value is found.
 """
 import numpy

 try:
 return numpy.where(self.get_stepids() == stepid)[0][0]
 except IndexError:
 raise ValueError("{} not among the stepids".format(stepid))

[docs] def get_step_data(self, index):
 r"""
 Return a tuple with all information concerning
 the stepid with given index (0 is the first step, 1 the second step
 and so on). If you know only the step value, use the
 :py:meth:`.get_index_from_stepid` method to get the
 corresponding index.

 If no velocities were specified, None is returned as the last element.

 :return: A tuple in the format
 ``(stepid, time, cell, symbols, positions, velocities)``,
 where ``stepid`` is an integer, ``time`` is a float, ``cell`` is a
 :math:`3 \times 3` matrix, ``symbols`` is an array of length ``n``,
 positions is a :math:`n \times 3` array, and velocities is either
 ``None`` or a :math:`n \times 3` array

 :param index: The index of the step that you want to retrieve, from
 0 to ``self.numsteps - 1``.
 :raises IndexError: if you require an index beyond the limits.
 :raises KeyError: if you did not store the trajectory yet.
 """
 if index >= self.numsteps:
 raise IndexError("You have only {} steps, but you are looking beyond"
 " (index={})".format(self.numsteps, index))

 vel = self.get_velocities()
 if vel is not None:
 vel = vel[index, :, :]
 time = self.get_times()
 if time is not None:
 time = time[index]
 return (self.get_stepids()[index], time, self.get_cells()[index, :, :],
 self.get_symbols(), self.get_positions()[index, :, :], vel)

[docs] def step_to_structure(self, index, custom_kinds=None):
 """
 .. deprecated:: 0.7
 Use :meth:`get_step_structure` instead.
 """
 import warnings
 warnings.warn(
 "step_to_structure is deprecated, use get_step_structure instead",
 DeprecationWarning)
 return self.get_step_structure(index=index, custom_kinds=custom_kinds)

[docs] def get_step_structure(self, index, custom_kinds=None):
 """
 Return an AiiDA :py:class:`aiida.orm.data.structure.StructureData` node
 (not stored yet!) with the coordinates of the given step, identified by
 its index. If you know only the step value, use the
 :py:meth:`.get_index_from_stepid` method to get the corresponding index.

 .. note:: The periodic boundary conditions are always set to True.

 .. versionadded:: 0.7
 Renamed from step_to_structure

 :param index: The index of the step that you want to retrieve, from
 0 to ``self.numsteps- 1``.
 :param custom_kinds: (Optional) If passed must be a list of
 :py:class:`aiida.orm.data.structure.Kind` objects. There must be one
 kind object for each different string in the ``symbols`` array, with
 ``kind.name`` set to this string.
 If this parameter is omitted, the automatic kind generation of AiiDA
 :py:class:`aiida.orm.data.structure.StructureData` nodes is used,
 meaning that the strings in the ``symbols`` array must be valid
 chemical symbols.
 """
 from aiida.orm.data.structure import StructureData, Kind, Site

 # ignore step, time, and velocities
 _, _, cell, symbols, positions, _ = self.get_step_data(index)

 if custom_kinds is not None:
 kind_names = []
 for k in custom_kinds:
 if not isinstance(k, Kind):
 raise TypeError("Each element of the custom_kinds list must "
 "be a aiida.orm.data.structure.Kind object")
 kind_names.append(k.name)
 if len(kind_names) != len(set(kind_names)):
 raise ValueError("Multiple kinds with the same name passed "
 "as custom_kinds")
 if set(kind_names) != set(symbols):
 raise ValueError("If you pass custom_kinds, you have to "
 "pass one Kind object for each symbol "
 "that is present in the trajectory. You "
 "passed {}, but the symbols are {}".format(
 sorted(kind_names), sorted(symbols)))

 struc = StructureData(cell=cell)
 if custom_kinds is not None:
 for k in custom_kinds:
 struc.append_kind(k)
 for s, p in zip(symbols, positions):
 struc.append_site(Site(kind_name=s, position=p))
 else:
 for s, p in zip(symbols, positions):
 # Automatic species generation
 struc.append_atom(symbols=s, position=p)

 return struc

 def _prepare_xsf(self,index=None):
 """
 Write the given trajectory to a string of format XSF (for XCrySDen).
 """
 from aiida.common.constants import elements
 _atomic_numbers = {data['symbol']: num for num, data in elements.iteritems()}

 indices = range(self.numsteps)
 if index is not None:
 indices = [index]
 return_string = "ANIMSTEPS {}\nCRYSTAL\n".format(len(indices))
 for idx in indices:
 return_string += "PRIMVEC {}\n".format(idx+1)
 structure = self.get_step_structure(index=idx)
 sites = structure.sites
 if structure.is_alloy() or structure.has_vacancies():
 raise NotImplementedError("XSF for alloys or systems with "
 "vacancies not implemented.")
 for cell_vector in structure.cell:
 return_string += " ".join(["%18.5f" % i for i in cell_vector])
 return_string += "\n"
 return_string += "PRIMCOORD {}\n".format(idx+1)
 return_string += "%d 1\n" % len(sites)
 for site in sites:
 # I checked above that it is not an alloy, therefore I take the
 # first symbol
 return_string += "%s " % _atomic_numbers[
 structure.get_kind(site.kind_name).symbols[0]]
 return_string += "%18.10f %18.10f %18.10f\n" % tuple(site.position)
 return return_string

 def _prepare_cif(self, index=None):
 """
 Write the given trajectory to a string of format CIF.
 """
 import CifFile
 from aiida.orm.data.cif \
 import ase_loops, cif_from_ase, pycifrw_from_cif

 cif = ""
 indices = range(self.numsteps)
 if index is not None:
 indices = [index]
 for idx in indices:
 structure = self.get_step_structure(idx)
 ciffile = pycifrw_from_cif(cif_from_ase(structure.get_ase()),
 ase_loops)
 cif = cif + ciffile.WriteOut()
 return cif

 def _prepare_tcod(self, **kwargs):
 """
 Write the given trajectory to a string of format TCOD CIF.
 """
 from aiida.tools.dbexporters.tcod import export_cif
 return export_cif(self,**kwargs)

 def _get_aiida_structure(self, store=False, **kwargs):
 """
 Creates :py:class:`aiida.orm.data.structure.StructureData`.

 :param converter: specify the converter. Default 'ase'.
 :param store: If True, intermediate calculation gets stored in the
 AiiDA database for record. Default False.
 :return: :py:class:`aiida.orm.data.structure.StructureData` node.
 """
 from aiida.orm.data.parameter import ParameterData

 param = ParameterData(dict=kwargs)

 ret_dict = _get_aiida_structure_inline(
 trajectory=self, parameters=param, store=store)
 return ret_dict['structure']

 def _get_cif(self, index=None, **kwargs):
 """
 Creates :py:class:`aiida.orm.data.cif.CifData`
 """
 struct = self._get_aiida_structure(index=index, **kwargs)
 cif = struct._get_cif(**kwargs)
 return cif

 def _parse_xyz_pos(self, inputstring):
 """
 Load positions from a XYZ file.

 .. note:: The steps and symbols must be set manually before calling this
 import function as a consistency measure. Even though the symbols
 and steps could be extracted from the XYZ file, the data present in
 the XYZ file may or may not be correct and the same logic would have
 to be present in the XYZ-velocities function. It was therefore
 decided not to implement it at all but require it to be set
 explicitly.

 .. usage::

 from aiida.orm.data.array.trajectory import TrajectoryData

 t = TrajectoryData()
 # get sites and number of timesteps
 t.set_array('steps', arange(ntimesteps))
 t.set_array('symbols', array([site.kind for site in s.sites]))
 t.importfile('some-calc/AIIDA-PROJECT-pos-1.xyz', 'xyz_pos')
 """

 from aiida.common.exceptions import ValidationError
 from aiida.common.utils import xyz_parser_iterator
 from numpy import array

 numsteps = self.numsteps
 if numsteps == 0:
 raise ValidationError("steps must be set before importing positional data")

 numsites = self.numsites
 if numsites == 0:
 raise ValidationError("symbols must be set before importing positional data")

 positions = array([
 [list(position) for _, position in atoms]
 for _, _, atoms in xyz_parser_iterator(inputstring)])

 if positions.shape != (numsteps, numsites, 3):
 raise ValueError("TrajectoryData.positions must have shape (s,n,3), "
 "with s=number of steps={} and "
 "n=number of symbols={}".format(numsteps, numsites))

 self.set_array('positions', positions)

 def _parse_xyz_vel(self, inputstring):
 """
 Load velocities from a XYZ file.

 .. note:: The steps and symbols must be set manually before calling this
 import function as a consistency measure. See also comment for
 :py:meth:`._import_xy_pos`
 """

 from aiida.common.exceptions import ValidationError
 from aiida.common.utils import xyz_parser_iterator
 from numpy import array

 numsteps = self.numsteps
 if numsteps == 0:
 raise ValidationError("steps must be set before importing positional data")

 numsites = self.numsites
 if numsites == 0:
 raise ValidationError("symbols must be set before importing positional data")

 velocities = array([
 [list(velocity) for _, velocity in atoms]
 for _, _, atoms in xyz_parser_iterator(inputstring)])

 if velocities.shape != (numsteps, numsites, 3):
 raise ValueError("TrajectoryData.positions must have shape (s,n,3), "
 "with s=number of steps={} and "
 "n=number of symbols={}".format(numsteps, numsites))

 self.set_array('velocities', velocities)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/data/array/kpoints.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.orm.data »

 		aiida.orm.data.array »

 Source code for aiida.orm.data.array.kpoints

-*- coding: utf-8 -*-
"""
This module defines the classes related to band structures or dispersions
in a Brillouin zone, and how to operate on them.
"""

from aiida.orm.data.array import ArrayData
import numpy

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class KpointsData(ArrayData):
 """
 Class to handle array of kpoints in the Brillouin zone. Provide methods to
 generate either user-defined k-points or path of k-points along symmetry
 lines.
 Internally, all k-points are defined in terms of crystal (fractional)
 coordinates.
 Cell and lattice vector coordinates are in Angstroms, reciprocal lattice
 vectors in Angstrom^-1 .
 :note: The methods setting and using the Bravais lattice info assume the
 PRIMITIVE unit cell is provided in input to the set_cell or
 set_cell_from_structure methods.
 """

 def __init__(self, *args, **kwargs):
 super(KpointsData, self).__init__(*args, **kwargs)
 try:
 self._load_cell_properties()
 except AttributeError:
 pass

 @property
 def cell(self):
 """
 The crystal unit cell. Rows are the crystal vectors in Angstroms.
 :return: a 3x3 numpy.array
 """
 return numpy.array(self.get_attr('cell'))

 @cell.setter
 def cell(self, value):
 """
 Set the crystal unit cell
 :param value: a 3x3 list/tuple/array of numbers (units = Angstroms).
 """
 self._set_cell(value)

 def _set_cell(self, value):
 """
 Validate if 'value' is a allowed crystal unit cell
 :param value: something compatible with a 3x3 tuple of floats
 """
 from aiida.common.exceptions import ModificationNotAllowed
 from aiida.orm.data.structure import _get_valid_cell

 if self.is_stored:
 raise ModificationNotAllowed(
 "KpointsData cannot be modified, it has already been stored")

 the_cell = _get_valid_cell(value)

 self._set_attr('cell', the_cell)

 @property
 def pbc(self):
 """
 The periodic boundary conditions along the vectors a1,a2,a3.

 :return: a tuple of three booleans, each one tells if there are periodic
 boundary conditions for the i-th real-space direction (i=1,2,3)
 """
 # return copy.deepcopy(self._pbc)
 return (
 self.get_attr('pbc1'), self.get_attr('pbc2'), self.get_attr('pbc3'))

 @pbc.setter
 def pbc(self, value):
 """
 Set the value of pbc, i.e. a tuple of three booleans, indicating if the
 cell is periodic in the 1,2,3 crystal direction
 """
 self._set_pbc(value)

 def _set_pbc(self, value):
 """
 validate the pbc, then store them
 """
 from aiida.common.exceptions import ModificationNotAllowed
 from aiida.orm.data.structure import get_valid_pbc

 if self.is_stored:
 raise ModificationNotAllowed(
 "The KpointsData object cannot be modified, it has already been stored")
 the_pbc = get_valid_pbc(value)
 self._set_attr('pbc1', the_pbc[0])
 self._set_attr('pbc2', the_pbc[1])
 self._set_attr('pbc3', the_pbc[2])

 @property
 def labels(self):
 """
 Labels associated with the list of kpoints.
 List of tuples with kpoint index and kpoint name: [(0,'G'),(13,'M'),...]
 """
 label_numbers = self.get_attr('label_numbers', None)
 labels = self.get_attr('labels', None)
 if labels is None or label_numbers is None:
 return None
 return zip(label_numbers, labels)

 @labels.setter
 def labels(self, value):
 self._set_labels(value)

 def _set_labels(self, value):
 """
 set label names. Must pass in input a list like: [[0,'X'],[34,'L'],...]
 """
 # check if kpoints were set
 try:
 self.get_kpoints()
 except AttributeError:
 raise AttributeError("Kpoints must be set before the labels")

 try:
 label_numbers = [int(i[0]) for i in value]
 except ValueError:
 raise ValueError("The input must contain an integer index, to map"
 " the labels into the kpoint list")
 labels = [str(i[1]) for i in value]

 if any([i > len(self.get_kpoints()) - 1 for i in label_numbers]):
 raise ValueError("Index of label exceeding the list of kpoints")

 self._set_attr('label_numbers', label_numbers)
 self._set_attr('labels', labels)

 # I commented this part, which atm I would leave it up to the user to set
 # new labels every time he modifies them. Anyway, labels should be set more
 # often by the set_path function
 # def append_label(self,value):
 # """
 # Add a label to the existing ones.
 # """
 # # get the list of existing labels
 # existing_labels = self.labels
 #
 # # validate the input
 # if value.__class__ is not list:
 # raise ValueError("Input must be a list of two values: index and label")
 #
 # if len(value)!=2:
 # raise ValueError("Input must be a list of length 2")
 #
 # try:
 # index = int(value[0])
 # except ValueError:
 # raise ValueError("First item must be an integer kpoint index")
 #
 # # append
 # label = str(value[1])
 # existing_labels.append([index,label])
 #
 # # sort
 # new_labels= sorted(existing_labels, key=lambda x:x[0])
 #
 # # overwrite the previous values
 # self.labels = new_labels
 #
 # def delete_label(self,index):
 # """
 # Delete the label at position 'index'. Works as the python command
 # del list[index]
 # """
 # index = int(index)
 # existing_labels = self.get_labels()
 # del existing_labels[index]
 # self.set_labels(existing_labels)

[docs] def set_cell_from_structure(self, structuredata):
 """
 Set a cell to be used for symmetry analysis from an AiiDA structure.
 Inherits both the cell and the pbc's.
 To set manually a cell, use "set_cell"

 :param structuredata: an instance of StructureData
 """
 from aiida.orm.data.structure import StructureData

 if not isinstance(structuredata, StructureData):
 raise ValueError("An instance of StructureData should be passed to "
 "the KpointsData, found instead {}"
 .format(structuredata.__class__))
 cell = structuredata.cell
 self.set_cell(cell, structuredata.pbc)

[docs] def set_cell(self, cell, pbc=None):
 """
 Set a cell to be used for symmetry analysis.
 To set a cell from an AiiDA structure, use "set_cell_from_structure".

 :param cell: 3x3 matrix of cell vectors. Orientation: each row
 represent a lattice vector. Units are Angstroms.
 :param pbc: list of 3 booleans, True if in the nth crystal direction the
 structure is periodic. Default = [True,True,True]
 """
 self.cell = cell
 if pbc is None:
 pbc = [True, True, True]
 self.pbc = pbc
 self._load_cell_properties()

 def _load_cell_properties(self):
 """
 A function executed by the __init__ or by set_cell.
 If a cell is set, properties like a1, a2, a3, cosalpha, reciprocal_cell are
 set as well, although they are not stored in the DB.
 :note: units are Angstrom for the cell parameters, 1/Angstrom for the
 reciprocal cell parameters.
 """
 # save a lot of variables that are used later, and just depend on the
 # cell
 the_cell = numpy.array(self.cell)
 reciprocal_cell = 2. * numpy.pi * numpy.linalg.inv(the_cell).transpose()
 self.reciprocal_cell = reciprocal_cell # units = 1/Angstrom
 self._a1 = numpy.array(the_cell[0, :]) # units = Angstrom
 self._a2 = numpy.array(the_cell[1, :]) # units = Angstrom
 self._a3 = numpy.array(the_cell[2, :]) # units = Angstrom
 self._a = numpy.linalg.norm(self._a1) # units = Angstrom
 self._b = numpy.linalg.norm(self._a2) # units = Angstrom
 self._c = numpy.linalg.norm(self._a3) # units = Angstrom
 self._b1 = reciprocal_cell[0, :] # units = 1/Angstrom
 self._b2 = reciprocal_cell[1, :] # units = 1/Angstrom
 self._b3 = reciprocal_cell[2, :] # units = 1/Angstrom
 self._cosalpha = numpy.dot(self._a2, self._a3) / self._b / self._c
 self._cosbeta = numpy.dot(self._a3, self._a1) / self._c / self._a
 self._cosgamma = numpy.dot(self._a1, self._a2) / self._a / self._b
 # Note: a,b,c,alpha,beta and gamma are referred to the input cell
 # not to the 'conventional' or rotated cell.

[docs] def set_kpoints_mesh(self, mesh, offset=[0., 0., 0.]):
 """
 Set KpointsData to represent a uniformily spaced mesh of kpoints in the
 Brillouin zone. This excludes the possibility of set/get kpoints

 :param mesh: a list of three integers, representing the size of the
 kpoint mesh along b1,b2,b3.
 :param (optional) offset: a list of three floats between 0 and 1.
 [0.,0.,0.] is Gamma centered mesh
 [0.5,0.5,0.5] is half shifted
 [1.,1.,1.] by periodicity should be equivalent to [0.,0.,0.]
 Default = [0.,0.,0.].
 """
 from aiida.common.exceptions import ModificationNotAllowed
 # validate
 try:
 the_mesh = tuple(int(i) for i in mesh)
 if len(the_mesh) != 3:
 raise ValueError
 except (IndexError, ValueError, TypeError):
 raise ValueError("The kpoint mesh must be a list of three integers")
 try:
 the_offset = tuple(float(i) for i in offset)
 if len(the_offset) != 3:
 raise ValueError
 except (IndexError, ValueError, TypeError):
 raise ValueError("The offset must be a list of three floats")
 # check that there is no list of kpoints saved already
 # I cannot have both of them at the same time
 try:
 _ = self.get_array('kpoints')
 raise ModificationNotAllowed("KpointsData has already a kpoint-"
 "list stored")
 except KeyError:
 pass

 # store
 self._set_attr('mesh', the_mesh)
 self._set_attr('offset', the_offset)

[docs] def get_kpoints_mesh(self, print_list=False):
 """
 Get the mesh of kpoints.

 :param print_list: default=False. If True, prints the mesh of kpoints as a list

 :raise AttributeError: if no mesh has been set
 :return mesh,offset: (if print_list=False) a list of 3 integers and a list of three
 floats 0<x<1, representing the mesh and the offset of kpoints
 :return kpoints: (if print_list = True) an explicit list of kpoints coordinates,
 similar to what returned by get_kpoints()
 """
 mesh = self.get_attr('mesh')
 offset = self.get_attr('offset')
 if not print_list:
 return mesh, offset
 else:
 kpoints = numpy.mgrid[0:mesh[0], 0:mesh[1], 0:mesh[2]]
 kpoints = kpoints.reshape(3, -1).T
 offset_kpoints = kpoints + numpy.array(offset)
 offset_kpoints[:, 0] /= mesh[0]
 offset_kpoints[:, 1] /= mesh[1]
 offset_kpoints[:, 2] /= mesh[2]
 return offset_kpoints

[docs] def set_kpoints_mesh_from_density(self, distance, offset=[0., 0., 0.],
 force_parity=False):
 """
 Set a kpoints mesh using a kpoints density, expressed as the maximum
 distance between adjacent points along a reciprocal axis

 :param distance: distance (in 1/Angstrom) between adjacent
 kpoints, i.e. the number of kpoints along each reciprocal
 axis i is :math:`|b_i|/distance`
 where :math:`|b_i|` is the norm of the reciprocal cell vector.
 :param (optional) offset: a list of three floats between 0 and 1.
 [0.,0.,0.] is Gamma centered mesh
 [0.5,0.5,0.5] is half shifted
 Default = [0.,0.,0.].
 :param (optional) force_parity: if True, force each integer in the mesh
 to be even (except for the non-periodic directions).

 :note: a cell should be defined first.
 :note: the number of kpoints along non-periodic axes is always 1.
 """
 try:
 rec_cell = self.reciprocal_cell
 except AttributeError:
 # rec_cell = numpy.eye(3)
 raise AttributeError("Cannot define a mesh from a density without "
 "having defined a cell")
 # I first round to the fifth digit |b|/distance (to avoid that e.g.
 # 3.00000001 becomes 4)
 kpointsmesh = [
 max(int(numpy.ceil(round(numpy.linalg.norm(b) / distance, 5))), 1)
 if pbc else 1 for pbc, b in zip(self.pbc, rec_cell)]
 if force_parity:
 kpointsmesh = [k + (k % 2) if pbc else 1
 for pbc, k in zip(self.pbc, kpointsmesh)]
 self.set_kpoints_mesh(kpointsmesh, offset=offset)

 @property
 def _dimension(self):
 """
 Dimensionality of the structure, found from its pbc (i.e. 1 if it's a 1D
 structure, 2 if its 2D, 3 if it's 3D ...).
 :return dimensionality: 0, 1, 2 or 3
 :note: will return 3 if pbc has not been set beforehand
 """
 try:
 return sum(self.pbc)
 except AttributeError:
 return 3

 def _validate_kpoints_weights(self, kpoints, weights):
 """
 Validate the list of kpoints and of weights before storage.
 Kpoints and weights must be convertible respectively to an array of
 N x dimension and N floats
 """
 kpoints = numpy.array(kpoints)

 if len(kpoints) == 0:
 if self._dimension == 0:
 # replace empty list by Gamma point
 kpoints = numpy.array([[0., 0., 0.]])
 else:
 raise ValueError(
 "empty kpoints list is valid only in zero dimension"
 "; instead here with have {} dimensions"
 "".format(self._dimension))

 if len(kpoints.shape) <= 1:
 # list of scalars is accepted only in the 0D and 1D cases
 if self._dimension <= 1:
 # replace by singletons
 kpoints = kpoints.reshape(kpoints.shape[0], 1)
 else:
 raise ValueError("kpoints must be a list of lists in {}D case"
 "".format(self._dimension))

 if kpoints.dtype != numpy.dtype(numpy.float):
 raise ValueError("kpoints must be an array of type floats. "
 "Found instead {}".format(kpoints.dtype))

 if kpoints.shape[1] < self._dimension:
 raise ValueError("In a system which has {0} dimensions, kpoint need"
 "more than {0} coordinates (found instead {1})"
 .format(self._dimension, kpoints.shape[1]))

 if weights is not None:
 weights = numpy.array(weights)
 if weights.shape[0] != kpoints.shape[0]:
 raise ValueError("Found {} weights but {} kpoints"
 .format(weights.shape[0], kpoints.shape[0]))
 if weights.dtype != numpy.dtype(numpy.float):
 raise ValueError("weights must be an array of type floats. "
 "Found instead {}".format(weights.dtype))

 return kpoints, weights

[docs] def set_kpoints(self, kpoints, cartesian=False, labels=None, weights=None,
 fill_values=0):
 """
 Set the list of kpoints. If a mesh has already been stored, raise a
 ModificationNotAllowed

 :param kpoints: a list of kpoints, each kpoint being a list of one, two
 or three coordinates, depending on self.pbc: if structure is 1D
 (only one True in self.pbc) one allows singletons or scalars for
 each k-point, if it's 2D it can be a length-2 list, and in all
 cases it can be a length-3 list.
 Examples:

 * [[0.,0.,0.],[0.1,0.1,0.1],...] for 1D, 2D or 3D
 * [[0.,0.],[0.1,0.1,],...] for 1D or 2D
 * [[0.],[0.1],...] for 1D
 * [0., 0.1, ...] for 1D (list of scalars)

 For 0D (all pbc are False), the list can be any of the above
 or empty - then only Gamma point is set.
 The value of k for the non-periodic dimension(s) is set by
 fill_values
 :param cartesian: if True, the coordinates given in input are treated
 as in cartesian units. If False, the coordinates are crystal,
 i.e. in units of b1,b2,b3. Default = False
 :param labels: optional, the list of labels to be set for some of the
 kpoints. See labels for more info
 :param weights: optional, a list of floats with the weight associated
 to the kpoint list
 :param fill_values: scalar to be set to all
 non-periodic dimensions (indicated by False in self.pbc), or list of
 values for each of the non-periodic dimensions.
 """
 from aiida.common.exceptions import ModificationNotAllowed

 # check that it is a 'dim'x #kpoints dimensional array
 the_kpoints, the_weights = self._validate_kpoints_weights(kpoints,
 weights)

 # if k-points have less than 3 coordinates (low dimensionality), fill
 # with constant values the non-periodic dimensions
 if the_kpoints.shape[1] < 3:
 if numpy.isscalar(fill_values):
 # replace scalar by a list of 3-the_kpoints.shape[1] identical
 # elements
 fill_values = [fill_values] * (3 - the_kpoints.shape[1])

 if len(fill_values) < 3 - the_kpoints.shape[1]:
 raise ValueError("fill_values should be either a scalar or a "
 "length-{} list".format(
 3 - the_kpoints.shape[1]))
 else:
 tmp_kpoints = numpy.zeros((the_kpoints.shape[0], 0))
 i_kpts = 0
 i_fill = 0
 for idim in range(3):
 # check periodic boundary condition of each of the 3 dimensions:
 # - if it's a periodic one, fill with the k-points values
 # defined in input
 # - if it's non-periodic, fill with one of the values in
 # fill_values
 if self.pbc[idim]:
 tmp_kpoints = numpy.hstack(
 (tmp_kpoints, the_kpoints[:, i_kpts].reshape((
 the_kpoints.shape[0], 1))))
 i_kpts += 1
 else:
 tmp_kpoints = numpy.hstack(
 (tmp_kpoints,numpy.ones(
 (the_kpoints.shape[0], 1)
) * fill_values[i_fill]))
 i_fill += 1
 the_kpoints = tmp_kpoints

 # change reference and always store in crystal coords
 if cartesian:
 the_kpoints = self._change_reference(the_kpoints,
 to_cartesian=False)

 # check that we did not saved a mesh already
 if self.get_attr('mesh', None) is not None:
 raise ModificationNotAllowed(
 "KpointsData has already a mesh stored")

 # store
 self.set_array('kpoints', the_kpoints)
 if the_weights is not None:
 self.set_array('weights', the_weights)
 if labels is not None:
 self.labels = labels

[docs] def get_kpoints(self, also_weights=False, cartesian=False):
 """
 Return the list of kpoints

 :param also_weights: if True, returns also the list of weights.
 Default = False
 :param cartesian: if True, returns points in cartesian coordinates,
 otherwise, returns in crystal coordinates. Default = False.
 """
 try:
 kpoints = numpy.array(self.get_array('kpoints'))
 except KeyError:
 raise AttributeError("Before the get, first set a list of kpoints")

 # try:
 # if not all(self.pbc):
 # for i in range(3):
 # if not self.pbc[i]:
 # kpoints[:,i] = 0.
 # except AttributeError:
 # # no pbc data found -> assume (True,True,True)
 # pass
 # note that this operation may lead to duplicates if the kpoints were
 # set thinking that everything is 3D.
 # Atm, it's up to the user to avoid duplication, if he cares.
 # in the future, add the bravais_lattice for 2d and 1d cases,
 # and do a set() on the kpoints lists (before storing)

 if cartesian:
 kpoints = self._change_reference(kpoints, to_cartesian=True)

 if also_weights:
 try:
 the_weights = self.get_array('weights')
 except KeyError:
 raise AttributeError('No weights were set')

 weights = numpy.array(the_weights)
 return kpoints, weights
 else:
 return kpoints

 def _change_reference(self, kpoints, to_cartesian=True):
 """
 Change reference system, from cartesian to crystal coordinates (units
 of b1,b2,b3) or viceversa.
 :param kpoints: a list of (3) point coordinates
 :return kpoints: a list of (3) point coordinates in the new reference
 """
 if not isinstance(kpoints, numpy.ndarray):
 raise ValueError("kpoints must be a numpy.array for method"
 "_change_reference()")

 try:
 rec_cell = self.reciprocal_cell
 except AttributeError:
 # rec_cell = numpy.eye(3)
 raise AttributeError(
 "Cannot use cartesian coordinates without having defined a cell")

 trec_cell = numpy.transpose(numpy.array(rec_cell))
 if to_cartesian:
 matrix = trec_cell
 else:
 matrix = numpy.linalg.inv(trec_cell)

 # note: kpoints is a list Nx3, matrix is 3x3.
 # hence, first transpose kpoints, then multiply, finally transpose it back
 return numpy.transpose(numpy.dot(matrix, numpy.transpose(kpoints)))

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbexporters/tcod_plugins.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.tools.dbexporters.tcod_plugins

-*- coding: utf-8 -*-

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class BaseTcodtranslator(object):
 """
 Base translator from calculation-specific input and output parameters
 to TCOD CIF dictionary tags.
 """
 _plugin_type_string = None

 @classmethod
[docs] def get_software_package(cls,calc,**kwargs):
 """
 Returns the package or program name that was used to produce
 the structure. Only package or program name should be used,
 e.g. 'VASP', 'psi3', 'Abinit', etc.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_software_package_version(cls,calc,**kwargs):
 """
 Returns software package version used to compute and produce
 the computed structure file. Only version designator should be
 used, e.g. '3.4.0', '2.1rc3'.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_software_package_compilation_timestamp(cls,calc,**kwargs):
 """
 Returns the timestamp of package/program compilation in ISO 8601
 format.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_software_executable_path(cls,calc,**kwargs):
 """
 Returns the file-system path to the executable that was run for
 this computation.
 """
 try:
 code = calc.inp.code
 if not code.is_local():
 return code.get_attr('remote_exec_path')
 except Exception:
 return None
 return None

 @classmethod
[docs] def get_total_energy(cls,calc,**kwargs):
 """
 Returns the total energy in eV.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_one_electron_energy(cls,calc,**kwargs):
 """
 Returns one electron energy in eV.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_exchange_correlation_energy(cls,calc,**kwargs):
 """
 Returns exchange correlation (XC) energy in eV.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_ewald_energy(cls,calc,**kwargs):
 """
 Returns Ewald energy in eV.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_hartree_energy(cls,calc,**kwargs):
 """
 Returns Hartree energy in eV.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_fermi_energy(cls,calc,**kwargs):
 """
 Returns Fermi energy in eV.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_number_of_electrons(cls,calc,**kwargs):
 """
 Returns the number of electrons.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_computation_wallclock_time(cls,calc,**kwargs):
 """
 Returns the computation wallclock time in seconds.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_atom_type_symbol(cls,calc,**kwargs):
 """
 Returns a list of atom types. Each atom site MUST occur only
 once in this list. List MUST be sorted.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_atom_type_valence_configuration(cls,calc,**kwargs):
 """
 Returns valence configuration of each atom type. The list order
 MUST be the same as of get_atom_type_symbol().
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_atom_type_basisset(cls,calc,**kwargs):
 """
 Returns a list of basisset names for each atom type. The list
 order MUST be the same as of get_atom_type_symbol().
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_atom_site_residual_force_Cartesian_x(cls,calc,**kwargs):
 """
 Returns a list of x components for Cartesian coordinates of
 residual force for atom. The list order MUST be the same as in
 the resulting structure.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_atom_site_residual_force_Cartesian_y(cls,calc,**kwargs):
 """
 Returns a list of y components for Cartesian coordinates of
 residual force for atom. The list order MUST be the same as in
 the resulting structure.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_atom_site_residual_force_Cartesian_z(cls,calc,**kwargs):
 """
 Returns a list of z components for Cartesian coordinates of
 residual force for atom. The list order MUST be the same as in
 the resulting structure.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_BZ_integration_grid_X(cls,calc,**kwargs):
 """
 Returns a number of points in the Brillouin zone along reciprocal
 lattice vector X.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_BZ_integration_grid_Y(cls,calc,**kwargs):
 """
 Returns a number of points in the Brillouin zone along reciprocal
 lattice vector Y.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_BZ_integration_grid_Z(cls,calc,**kwargs):
 """
 Returns a number of points in the Brillouin zone along reciprocal
 lattice vector Z.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_BZ_integration_grid_shift_X(cls,calc,**kwargs):
 """
 Returns the shift of the Brillouin zone points along reciprocal
 lattice vector X.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_BZ_integration_grid_shift_Y(cls,calc,**kwargs):
 """
 Returns the shift of the Brillouin zone points along reciprocal
 lattice vector Y.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_BZ_integration_grid_shift_Z(cls,calc,**kwargs):
 """
 Returns the shift of the Brillouin zone points along reciprocal
 lattice vector Z.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_integration_smearing_method(cls,calc,**kwargs):
 """
 Returns the smearing method name as string.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_integration_smearing_method_other(cls,calc,**kwargs):
 """
 Returns the smearing method name as string if the name is different
 from specified in cif_dft.dic.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_integration_Methfessel_Paxton_order(cls,calc,**kwargs):
 """
 Returns the order of Methfessel-Paxton approximation if used.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_kinetic_energy_cutoff_wavefunctions(cls,calc,**kwargs):
 """
 Returns kinetic energy cutoff for wavefunctions in eV.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_kinetic_energy_cutoff_charge_density(cls,calc,**kwargs):
 """
 Returns kinetic energy cutoff for charge density in eV.
 """
 raise NotImplementedError("not implemented in base class")

 @classmethod
[docs] def get_kinetic_energy_cutoff_EEX(cls,calc,**kwargs):
 """
 Returns kinetic energy cutoff for exact exchange (EEX)
 operator in eV.
 """
 raise NotImplementedError("not implemented in base class")

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbexporters/tcod_plugins/cp.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.tools.dbexporters.tcod_plugins »

 Source code for aiida.tools.dbexporters.tcod_plugins.cp

-*- coding: utf-8 -*-

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

from aiida.tools.dbexporters.tcod_plugins import BaseTcodtranslator

[docs]class CpTcodtranslator(BaseTcodtranslator):
 """
 Quantum ESPRESSO's CP-specific input and output parameter translator
 to TCOD CIF dictionary tags.
 """
 _plugin_type_string = "quantumespresso.cp.CpCalculation"

 @classmethod
[docs] def get_software_package(cls,calc,**kwargs):
 """
 Returns the package or program name that was used to produce
 the structure. Only package or program name should be used,
 e.g. 'VASP', 'psi3', 'Abinit', etc.
 """
 return 'Quantum ESPRESSO'

 @classmethod
[docs] def get_number_of_electrons(cls,calc,**kwargs):
 """
 Returns the number of electrons.
 """
 parameters = calc.out.output_parameters
 if 'number_of_electrons' not in parameters.attrs():
 return None
 return parameters.get_attr('number_of_electrons')

 @classmethod
[docs] def get_computation_wallclock_time(cls,calc,**kwargs):
 """
 Returns the computation wallclock time in seconds.
 """
 parameters = calc.out.output_parameters
 if 'wall_time_seconds' not in parameters.attrs():
 return None
 return parameters.get_attr('wall_time_seconds')

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbimporters/plugins/mpod.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.tools.dbimporters »

 Source code for aiida.tools.dbimporters.plugins.mpod

-*- coding: utf-8 -*-

from aiida.tools.dbimporters.baseclasses import (DbImporter, DbSearchResults,
 CifEntry)

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class MpodDbImporter(DbImporter):
 """
 Database importer for Material Properties Open Database.
 """

 def _str_clause(self, key, alias, values):
 """
 Returns part of HTTP GET query for querying string fields.
 """
 if not isinstance(values, basestring) and not isinstance(values, int):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only strings and integers are accepted")
 return "{}={}".format(key, values)

 _keywords = {'phase_name': ['phase_name', _str_clause],
 'formula': ['formula', _str_clause],
 'element': ['element', None],
 'cod_id': ['cod_code', _str_clause],
 'authors': ['publ_author', _str_clause]}

 def __init__(self, **kwargs):
 self._query_url = "http://mpod.cimav.edu.mx/data/search/"
 self.setup_db(**kwargs)

[docs] def query_get(self, **kwargs):
 """
 Forms a HTTP GET query for querying the MPOD database.
 May return more than one query in case an intersection is needed.

 :return: a list containing strings for HTTP GET statement.
 """
 if 'formula' in kwargs.keys() and 'element' in kwargs.keys():
 raise ValueError("can not query both formula and elements "
 "in MPOD")

 elements = []
 if 'element' in kwargs.keys():
 elements = kwargs.pop('element')
 if not isinstance(elements, list):
 elements = [elements]

 get_parts = []
 for key in self._keywords.keys():
 if key in kwargs.keys():
 values = kwargs.pop(key)
 get_parts.append(
 self._keywords[key][1](self,
 self._keywords[key][0],
 key,
 values))

 if kwargs.keys():
 raise NotImplementedError("search keyword(s) '"
 "', '".join(kwargs.keys()) + "' "
 "is(are) not implemented for MPOD")

 queries = []
 for e in elements:
 queries.append(self._query_url + '?' +
 "&".join(get_parts +
 [self._str_clause('formula', 'element', e)]))
 if not queries:
 queries.append(self._query_url + '?' + "&".join(get_parts))

 return queries

[docs] def query(self, **kwargs):
 """
 Performs a query on the MPOD database using ``keyword = value`` pairs,
 specified in ``kwargs``.

 :return: an instance of
 :py:class:`aiida.tools.dbimporters.plugins.mpod.MpodSearchResults`.
 """
 import urllib2
 import re

 query_statements = self.query_get(**kwargs)
 results = None
 for query in query_statements:
 response = urllib2.urlopen(query).read()
 this_results = re.findall("/datafiles/(\d+)\.mpod", response)
 if results is None:
 results = this_results
 else:
 results = filter(set(results).__contains__, this_results)

 return MpodSearchResults([{"id": x} for x in results])

[docs] def setup_db(self, query_url=None, **kwargs):
 """
 Changes the database connection details.
 """
 if query_url:
 self._query_url = query_url

 if kwargs.keys():
 raise NotImplementedError(\
 "unknown database connection parameter(s): '" + \
 "', '".join(kwargs.keys()) + \
 "', available parameters: 'query_url'")

[docs] def get_supported_keywords(self):
 """
 Returns the list of all supported query keywords.

 :return: list of strings
 """
 return self._keywords.keys()

[docs]class MpodSearchResults(DbSearchResults):
 """
 Results of the search, performed on MPOD.
 """
 _base_url = "http://mpod.cimav.edu.mx/datafiles/"

 def __init__(self, results):
 super(MpodSearchResults, self).__init__(results)
 self._return_class = MpodEntry

 def __len__(self):
 return len(self._results)

 def _get_source_dict(self, result_dict):
 """
 Returns a dictionary, which is passed as kwargs to the created
 DbEntry instance, describing the source of the entry.

 :param result_dict: dictionary, describing an entry in the results.
 """
 return {'id': result_dict['id']}

 def _get_url(self, result_dict):
 """
 Returns an URL of an entry CIF file.

 :param result_dict: dictionary, describing an entry in the results.
 """
 return self._base_url + result_dict['id'] + ".mpod"

[docs]class MpodEntry(CifEntry):
 """
 Represents an entry from MPOD.
 """

 def __init__(self, uri, **kwargs):
 """
 Creates an instance of
 :py:class:`aiida.tools.dbimporters.plugins.mpod.MpodEntry`, related
 to the supplied URI.
 """
 super(MpodEntry, self).__init__(db_name='Material Properties Open Database',
 db_uri='http://mpod.cimav.edu.mx',
 uri=uri,
 **kwargs)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbexporters/tcod.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.tools.dbexporters.tcod

-*- coding: utf-8 -*-

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

from aiida.orm import DataFactory
from aiida.orm.calculation.inline import optional_inline

aiida_executable_name = '_aiidasubmit.sh'
inline_executable_name = 'aiidainline.py'

tcod_loops = {
 '_tcod_file': [
 '_tcod_file_id',
 '_tcod_file_name',
 '_tcod_file_md5sum',
 '_tcod_file_sha1sum',
 '_tcod_file_URI',
 '_tcod_file_role',
 '_tcod_file_contents',
 '_tcod_file_content_encoding',
],
 '_tcod_computation': [
 '_tcod_computation_step',
 '_tcod_computation_command',
 '_tcod_computation_reference_uuid',
 '_tcod_computation_environment',
 '_tcod_computation_stdout',
 '_tcod_computation_stderr',
],
 '_tcod_content_encoding': [
 '_tcod_content_encoding_id',
 '_tcod_content_encoding_layer_id',
 '_tcod_content_encoding_layer_type',
],
 '_audit_conform': [
 '_audit_conform_dict_location',
 '_audit_conform_dict_name',
 '_audit_conform_dict_version',
],
 '_dft_atom_basisset': [
 '_atom_type_symbol',
 '_dft_atom_basisset',
 '_dft_atom_basisset_type',
 '_dft_atom_basisset_energy_conv',
 '_dft_atom_basisset_citation_id',
 '_dft_atom_type_valence_configuration',
],
 '_tcod_atom_site_resid_force_Cartn_': [
 '_tcod_atom_site_resid_force_Cartn_x',
 '_tcod_atom_site_resid_force_Cartn_y',
 '_tcod_atom_site_resid_force_Cartn_z',
],
}

conforming_dictionaries = [
 {
 'name': 'cif_tcod.dic',
 'version': '0.008',
 'url': 'http://www.crystallography.net/tcod/cif/dictionaries/cif_tcod.dic'
 },
 {
 'name': 'cif_dft.dic',
 'version': '0.008',
 'url': 'http://www.crystallography.net/tcod/cif/dictionaries/cif_dft.dic'
 }
]

default_options = {
 'code': 'cif_cod_deposit',
 'dump_aiida_database': True,
 'exclude_external_contents': False,
 'gzip': False,
 'gzip_threshold': 1024,
 'reduce_symmetry': True,
}

[docs]def cif_encode_contents(content, gzip=False, gzip_threshold=1024):
 """
 Encodes data for usage in CIF text field in a *best possible* way:
 binary data is encoded using Base64 encoding; text with non-ASCII
 symbols, too long lines or lines starting with semicolons (';')
 is encoded using Quoted-printable encoding.

 :param content: the content to be encoded
 :return content: encoded content
 :return encoding: a string specifying used encoding (None, 'base64',
 'ncr', 'quoted-printable', 'gzip+base64')
 """
 import re
 method = None
 if len(content) == 0:
 # content is empty
 method = None
 elif gzip and len(content) >= gzip_threshold:
 # content is larger than some arbitrary value and should be gzipped
 method = 'gzip+base64'
 elif float(len(re.findall('[^\x09\x0A\x0D\x20-\x7E]', content)))/len(content) > 0.25:
 # contents are assumed to be binary
 method = 'base64'
 elif re.search('^\s*data_',content) is not None or \
 re.search('\n\s*data_',content) is not None:
 # contents have CIF datablock header-like lines, that may be
 # dangerous when parsed with primitive parsers
 method = 'base64'
 elif re.search('.{2048}.',content) is not None:
 # lines are too long
 method = 'quoted-printable'
 elif len(re.findall('[^\x09\x0A\x0D\x20-\x7E]', content)) > 0:
 # contents have non-ASCII symbols
 method = 'quoted-printable'
 elif re.search('^;', content) is not None or re.search('\n;', content) is not None:
 # content has lines starting with semicolon (';')
 method = 'quoted-printable'
 elif re.search('\t', content) is not None:
 # content has TAB symbols, which may be lost during the
 # parsing of TCOD CIF file
 method = 'quoted-printable'
 elif content == '.' or content == '?':
 method = 'quoted-printable'
 else:
 method = None

 if method == 'base64':
 content = encode_textfield_base64(content)
 elif method == 'quoted-printable':
 content = encode_textfield_quoted_printable(content)
 elif method == 'ncr':
 content = encode_textfield_ncr(content)
 elif method == 'gzip+base64':
 content = encode_textfield_gzip_base64(content)

 return content, method

[docs]def encode_textfield_base64(content, foldwidth=76):
 """
 Encodes the contents for CIF textfield in Base64 using standard Python
 implementation (``base64.standard_b64encode()``).

 :param content: a string with contents
 :param foldwidth: maximum width of line (default is 76)
 :return: encoded string
 """
 import base64

 content = base64.standard_b64encode(content)
 content = "\n".join(list(content[i:i + foldwidth]
 for i in range(0, len(content), foldwidth)))
 return content

[docs]def decode_textfield_base64(content):
 """
 Decodes the contents for CIF textfield from Base64 using standard
 Python implementation (``base64.standard_b64decode()``)

 :param content: a string with contents
 :return: decoded string
 """
 import base64

 return base64.standard_b64decode(content)

[docs]def encode_textfield_quoted_printable(content):
 """
 Encodes the contents for CIF textfield in quoted-printable encoding.
 In addition to non-ASCII characters, that are encoded by Python
 function ``quopri.encodestring()``, following characters are encoded:

 * '``;``', if encountered on the beginning of the line;
 * '``\\t``'
 * '``.``' and '``?``', if comprise the entire textfield.

 :param content: a string with contents
 :return: encoded string
 """
 import re
 import quopri

 content = quopri.encodestring(content)

 def match2qp(m):
 prefix = ''
 postfix = ''
 if 'prefix' in m.groupdict().keys():
 prefix = m.group('prefix')
 if 'postfix' in m.groupdict().keys():
 postfix = m.group('postfix')
 h = hex(ord(m.group('chr')))[2:].upper()
 if len(h) == 1:
 h = "0{}".format(h)
 return "{}={}{}".format(prefix, h, postfix)

 content = re.sub('^(?P<chr>;)', match2qp, content)
 content = re.sub('(?P<chr>\t)', match2qp, content)
 content = re.sub('(?P<prefix>\n)(?P<chr>;)', match2qp, content)
 content = re.sub('^(?P<chr>[\.\?])$', match2qp, content)
 return content

[docs]def decode_textfield_quoted_printable(content):
 """
 Decodes the contents for CIF textfield from quoted-printable encoding.

 :param content: a string with contents
 :return: decoded string
 """
 import quopri

 return quopri.decodestring(content)

[docs]def encode_textfield_ncr(content):
 """
 Encodes the contents for CIF textfield in Numeric Character Reference.
 Encoded characters:

 * ``\\x09``, ``\\x0A``, ``\\x0D``, ``\\x20``--``\\x7E``;
 * '``;``', if encountered on the beginning of the line;
 * '``\\t``'
 * '``.``' and '``?``', if comprise the entire textfield.

 :param content: a string with contents
 :return: encoded string
 """
 import re

 def match2ncr(m):
 prefix = ''
 postfix = ''
 if 'prefix' in m.groupdict().keys():
 prefix = m.group('prefix')
 if 'postfix' in m.groupdict().keys():
 postfix = m.group('postfix')
 return prefix + '&#' + str(ord(m.group('chr'))) + ';' + postfix

 content = re.sub('(?P<chr>[&\t])', match2ncr, content)
 content = re.sub('(?P<chr>[^\x09\x0A\x0D\x20-\x7E])', match2ncr, content)
 content = re.sub('^(?P<chr>;)', match2ncr, content)
 content = re.sub('(?P<prefix>\n)(?P<chr>;)', match2ncr, content)
 content = re.sub('^(?P<chr>[\.\?])$', match2ncr, content)
 return content

[docs]def decode_textfield_ncr(content):
 """
 Decodes the contents for CIF textfield from Numeric Character Reference.

 :param content: a string with contents
 :return: decoded string
 """
 import re

 def match2str(m):
 return chr(int(m.group(1)))

 return re.sub('&#(\d+);', match2str, content)

[docs]def encode_textfield_gzip_base64(content, **kwargs):
 """
 Gzips the given string and encodes it in Base64.

 :param content: a string with contents
 :return: encoded string
 """
 from aiida.common.utils import gzip_string

 return encode_textfield_base64(gzip_string(content), **kwargs)

[docs]def decode_textfield_gzip_base64(content):
 """
 Decodes the contents for CIF textfield from Base64 and decompresses
 them with gzip.

 :param content: a string with contents
 :return: decoded string
 """
 from aiida.common.utils import gunzip_string

 return gunzip_string(decode_textfield_base64(content))

[docs]def decode_textfield(content,method):
 """
 Decodes the contents of encoded CIF textfield.

 :param content: the content to be decoded
 :param method: method, which was used for encoding the contents
 (None, 'base64', 'ncr', 'quoted-printable', 'gzip+base64')
 :return: decoded content
 :raises ValueError: if the encoding method is unknown
 """
 if method == 'base64':
 content = decode_textfield_base64(content)
 elif method == 'quoted-printable':
 content = decode_textfield_quoted_printable(content)
 elif method == 'ncr':
 content = decode_textfield_ncr(content)
 elif method == 'gzip+base64':
 content = decode_textfield_gzip_base64(content)
 elif method is not None:
 raise ValueError("Unknown content encoding: '{}'".format(method))

 return content

def _get_calculation(node):
 """
 Gets the parent (immediate) calculation, attached as the input of
 the node.

 :param node: an instance of subclass of :py:class:`aiida.orm.node.Node`
 :return: an instance of subclass of
 :py:class:`aiida.orm.calculation.Calculation`
 :raises MultipleObjectsError: if the node has more than one calculation
 attached.
 """
 from aiida.common.exceptions import MultipleObjectsError
 from aiida.orm.calculation import Calculation
 if len(node.get_inputs(node_type=Calculation)) == 1:
 return node.get_inputs(node_type=Calculation)[0]
 elif len(node.get_inputs(node_type=Calculation)) == 0:
 return None
 else:
 raise MultipleObjectsError("Node {} seems to have more than one "
 "parent (immediate) calculation -- "
 "exporter does not know which one of "
 "them produced the node".format(node))

def _assert_same_parents(a, b):
 """
 Checks whether two supplied nodes have the same immediate parent.
 Can be used to check whether two data nodes originate from the same
 calculation.

 :param a: an instance of subclass of :py:class:`aiida.orm.node.Node`
 :param b: an instance of subclass of :py:class:`aiida.orm.node.Node`

 :raises ValueError: if the condition is not met.
 """
 if a is None or b is None:
 return
 if _get_calculation(a) is None or _get_calculation(b) is None:
 raise ValueError("Either the exported node or parameters does "
 "not originate from a calculation -- this is "
 "not allowed, as the proper relation between "
 "these two objects can not be traced")
 if _get_calculation(a).pk != _get_calculation(b).pk:
 raise ValueError("Exported node and parameters must "
 "originate from the same calculation")

def _inline_to_standalone_script(calc):
 """
 Create executable Python script for execution of inline script.

 .. note:: the output bash script may not always be correct, since it
 is simply formed from:
 * contents of the file, which contains the original ``*_inline``
 function;
 * call of the original ``*_inline`` function with input nodes;
 * storing of the output nodes.
 Execution of generated bash script should result in
 ModificationNotAllowed exception, since the nodes, that are
 created by the ``*_inline`` function, are already stored.
 """
 input_dict = calc.get_inputs_dict()
 args = ["{}=load_node('{}')".format(x, input_dict[x].uuid)
 for x in input_dict.keys()]
 args_string = ",\n ".join(sorted(args))
 return """#!/usr/bin/env runaiida
-*- coding: utf-8 -*-
{}

for key, value in {}(
 {}
)[1].iteritems():
 value.store()
""".format(calc.get_attr('source_file').encode('utf-8'),
 calc.get_attr('function_name','f'),
 args_string)

def _collect_calculation_data(calc):
 """
 Recursively collects calculations from the tree, starting at given
 calculation.
 """
 from aiida.orm.data import Data
 from aiida.orm.calculation import Calculation
 from aiida.orm.calculation.job import JobCalculation
 from aiida.orm.calculation.inline import InlineCalculation
 import os
 calcs_now = []
 for d in calc.get_inputs(node_type=Data):
 for c in d.get_inputs(node_type=Calculation):
 calcs = _collect_calculation_data(c)
 calcs_now.extend(calcs)

 files_in = []
 files_out = []
 this_calc = {
 'uuid' : calc.uuid,
 'files': [],
 }

 if isinstance(calc, JobCalculation):
 retrieved_abspath = calc.get_retrieved_node().get_abs_path()
 files_in = _collect_files(calc._raw_input_folder.abspath)
 files_out = _collect_files(os.path.join(retrieved_abspath, 'path'))
 this_calc['env'] = calc.get_environment_variables()
 this_calc['stdout'] = calc.get_scheduler_output()
 this_calc['stderr'] = calc.get_scheduler_error()
 else:
 # Calculation is InlineCalculation
 import hashlib
 python_script = _inline_to_standalone_script(calc)
 files_in.append({
 'name' : inline_executable_name,
 'contents': python_script,
 'md5' : hashlib.md5(python_script).hexdigest(),
 'sha1' : hashlib.sha1(python_script).hexdigest(),
 'type' : 'file',
 })
 shell_script = '#!/bin/bash\n\nverdi run {}\n'.format(inline_executable_name)
 files_in.append({
 'name' : aiida_executable_name,
 'contents': shell_script,
 'md5' : hashlib.md5(shell_script).hexdigest(),
 'sha1' : hashlib.sha1(shell_script).hexdigest(),
 'type' : 'file',
 })

 for f in files_in:
 if os.path.basename(f['name']) == aiida_executable_name:
 f['role'] = 'script'
 else:
 f['role'] = 'input'
 this_calc['files'].append(f)

 for f in files_out:
 if os.path.basename(f['name']) != calc._SCHED_OUTPUT_FILE and \
 os.path.basename(f['name']) != calc._SCHED_ERROR_FILE:
 f['role'] = 'output'
 this_calc['files'].append(f)

 calcs_now.append(this_calc)
 return calcs_now

def _collect_files(base, path=''):
 """
 Recursively collects files from the tree, starting at a given path.
 """
 from aiida.common.folders import Folder
 from aiida.common.utils import md5_file,sha1_file
 import os
 if os.path.isdir(os.path.join(base,path)):
 folder = Folder(os.path.join(base,path))
 files_now = []
 if path != '':
 if not path.endswith(os.sep):
 path = "{}{}".format(path,os.sep)
 if path != '':
 files_now.append({
 'name': path,
 'type': 'folder',
 })
 for f in sorted(folder.get_content_list()):
 files = _collect_files(base,path=os.path.join(path,f))
 files_now.extend(files)
 return files_now
 else:
 with open(os.path.join(base,path)) as f:
 return [{
 'name': path,
 'contents': f.read(),
 'md5': md5_file(os.path.join(base,path)),
 'sha1': sha1_file(os.path.join(base,path)),
 'type': 'file',
 }]

[docs]def extend_with_cmdline_parameters(parser, expclass="Data"):
 """
 Provides descriptions of command line options, that are used to control
 the process of exporting data to TCOD CIF files.

 :param parser: an argparse.Parser instance
 :param expclass: name of the exported class to be shown in help string
 for the command line options

 .. note:: This method must not set any default values for command line
 options in order not to clash with any other data export plugins.
 """
 parser.add_argument('--reduce-symmetry', action='store_true',
 default=None,
 dest='reduce_symmetry',
 help="Perform symmetry reduction. "
 "Default option.")
 parser.add_argument('--no-reduce-symmetry',
 '--dont-reduce-symmetry',
 default=None,
 action='store_false',
 dest='reduce_symmetry',
 help="Do not perform symmetry reduction.")
 parser.add_argument('--parameter-data', type=int, default=None,
 help="ID of the ParameterData to be exported "
 "alongside the {} instance. "
 "By default, if {} originates from "
 "a calculation with single ParameterData "
 "in the output, aforementioned "
 "ParameterData is picked automatically. "
 "Instead, the option is used in the case "
 "the calculation produces more than a "
 "single instance of "
 "ParameterData.".format(expclass,expclass))
 parser.add_argument('--dump-aiida-database', action='store_true',
 default=None,
 dest='dump_aiida_database',
 help="Export AiiDA database to the CIF file. "
 "Default option.")
 parser.add_argument('--no-dump-aiida-database',
 '--dont-dump-aiida-database',
 default=None,
 action='store_false',
 dest='dump_aiida_database',
 help="Do not export AiiDA database to the CIF "
 "file.")
 parser.add_argument('--exclude-external-contents', action='store_true',
 default=None,
 dest='exclude_external_contents',
 help="Do not save contents for external "
 "resources if URIs are provided. "
 "Default option.")
 parser.add_argument('--no-exclude-external-contents',
 '--dont-exclude-external-contents',
 default=None,
 action='store_false',
 dest='exclude_external_contents',
 help="Save contents for external resources "
 "even if URIs are provided.")
 parser.add_argument('--gzip', action='store_true', dest='gzip',
 default=None,
 help="Gzip large files.")
 parser.add_argument('--no-gzip', '--dont-gzip', action='store_false',
 default=None,
 dest='gzip',
 help="Do not gzip any files. Default option.")
 parser.add_argument('--gzip-threshold', type=int,
 default=None,
 help="Specify the minimum size of exported "
 "file which should be gzipped. "
 "Default {}.".format(default_options['gzip_threshold']))

def _collect_tags(node, calc,parameters=None,
 dump_aiida_database=default_options['dump_aiida_database'],
 exclude_external_contents=default_options['exclude_external_contents'],
 gzip=default_options['gzip'],
 gzip_threshold=default_options['gzip_threshold']):
 """
 Retrieve metadata from attached calculation and pseudopotentials
 and prepare it to be saved in TCOD CIF.
 """
 import os, json
 tags = { '_audit_creation_method': "AiiDA version {}".format(__version__) }

 # Recording the dictionaries (if any)

 if len(conforming_dictionaries):
 for postfix in ['name', 'version', 'location']:
 key = '_audit_conform_dict_{}'.format(postfix)
 if key not in tags:
 tags[key] = []

 for dictionary in conforming_dictionaries:
 tags['_audit_conform_dict_name'].append(dictionary['name'])
 tags['_audit_conform_dict_version'].append(dictionary['version'])
 tags['_audit_conform_dict_location'].append(dictionary['url'])

 # Collecting metadata from input files:

 calc_data = []
 if calc is not None:
 calc_data = _collect_calculation_data(calc)

 for tag in tcod_loops['_tcod_computation'] + tcod_loops['_tcod_file']:
 tags[tag] = []

 export_files = []

 sn = 0
 fn = 0
 for step in calc_data:
 tags['_tcod_computation_step'].append(sn)
 tags['_tcod_computation_command'].append(
 'cd {}; ./{}'.format(sn,aiida_executable_name))
 tags['_tcod_computation_reference_uuid'].append(step['uuid'])
 if 'env' in step:
 tags['_tcod_computation_environment'].append(
 "\n".join(["%s=%s" % (key,step['env'][key]) for key in step['env']]))
 else:
 tags['_tcod_computation_environment'].append('')
 if 'stdout' in step and step['stdout'] is not None:
 if cif_encode_contents(step['stdout'])[1] is not None:
 raise ValueError("Standard output of computation step {} "
 "can not be stored in a CIF file: "
 "encoding is required, but not currently "
 "supported".format(sn))
 tags['_tcod_computation_stdout'].append(step['stdout'])
 else:
 tags['_tcod_computation_stdout'].append('')
 if 'stderr' in step and step['stderr'] is not None:
 if cif_encode_contents(step['stderr'])[1] is not None:
 raise ValueError("Standard error of computation step {} "
 "can not be stored in a CIF file: "
 "encoding is required, but not currently "
 "supported".format(sn))
 tags['_tcod_computation_stderr'].append(step['stderr'])
 else:
 tags['_tcod_computation_stderr'].append('')

 export_files.append({'name': "{}{}".format(sn, os.sep),
 'type': 'folder'})

 for f in step['files']:
 f['name'] = os.path.join(str(sn), f['name'])
 export_files.extend(step['files'])

 sn = sn + 1

 # Creating importable AiiDA database dump in CIF tags

 if dump_aiida_database and node.is_stored:
 import json
 from aiida.common.exceptions import LicensingException
 from aiida.common.folders import SandboxFolder
 from aiida.orm.importexport import export_tree

 with SandboxFolder() as folder:
 try:
 export_tree([node.dbnode], folder=folder, silent=True,
 allowed_licenses=['CC0'])
 except LicensingException as e:
 raise LicensingException(e.message + \
 ". Only CC0 license is accepted.")

 files = _collect_files(folder.abspath)
 with open(folder.get_abs_path('data.json')) as f:
 data = json.loads(f.read())
 md5_to_url = {}
 if exclude_external_contents:
 for pk in data['node_attributes']:
 n = data['node_attributes'][pk]
 if 'md5' in n.keys() and 'source' in n.keys() and \
 'uri' in n['source'].keys():
 md5_to_url[n['md5']] = n['source']['uri']

 for f in files:
 f['name'] = os.path.join('aiida',f['name'])
 if f['type'] == 'file' and f['md5'] in md5_to_url.keys():
 f['uri'] = md5_to_url[f['md5']]

 export_files.extend(files)

 # Describing seen files in _tcod_file_* loop

 encodings = list()

 fn = 0
 for f in export_files:
 # ID and name
 tags['_tcod_file_id'].append(fn)
 tags['_tcod_file_name'].append(f['name'])

 # Checksums
 md5sum = None
 sha1sum = None
 if f['type'] == 'file':
 md5sum = f['md5']
 sha1sum = f['sha1']
 else:
 md5sum = '.'
 sha1sum = '.'
 tags['_tcod_file_md5sum'].append(md5sum)
 tags['_tcod_file_sha1sum'].append(sha1sum)

 # Content, encoding and URI
 contents = '?'
 encoding = None
 if 'uri' in f.keys():
 contents = '.'
 tags['_tcod_file_URI'].append(f['uri'])
 else:
 tags['_tcod_file_URI'].append('?')
 if f['type'] == 'file':
 contents,encoding = \
 cif_encode_contents(f['contents'],
 gzip=gzip,
 gzip_threshold=gzip_threshold)
 else:
 contents = '.'

 if encoding is None:
 encoding = '.'
 elif encoding not in encodings:
 encodings.append(encoding)
 tags['_tcod_file_contents'].append(contents)
 tags['_tcod_file_content_encoding'].append(encoding)

 # Role
 role = '?'
 if 'role' in f.keys():
 role = f['role']
 tags['_tcod_file_role'].append(role)

 fn = fn + 1

 # Describing the encodings

 if encodings:
 for tag in tcod_loops['_tcod_content_encoding']:
 tags[tag] = []
 for encoding in encodings:
 layers = encoding.split('+')
 for i in range(0, len(layers)):
 tags['_tcod_content_encoding_id'].append(encoding)
 tags['_tcod_content_encoding_layer_id'].append(i+1)
 tags['_tcod_content_encoding_layer_type'].append(layers[i])

 # Describing Brillouin zone (if used)

 if calc is not None:
 from aiida.orm.data.array.kpoints import KpointsData
 kpoints_list = calc.get_inputs(KpointsData)
 # TODO: stop if more than one KpointsData is used?
 if len(kpoints_list) == 1:
 kpoints = kpoints_list[0]
 density, shift = kpoints.get_kpoints_mesh()
 tags['_dft_BZ_integration_grid_X'] = density[0]
 tags['_dft_BZ_integration_grid_Y'] = density[1]
 tags['_dft_BZ_integration_grid_Z'] = density[2]
 tags['_dft_BZ_integration_grid_shift_X'] = shift[0]
 tags['_dft_BZ_integration_grid_shift_Y'] = shift[1]
 tags['_dft_BZ_integration_grid_shift_Z'] = shift[2]

 # Collecting code-specific data

 from aiida.common.pluginloader import BaseFactory, existing_plugins
 from aiida.tools.dbexporters.tcod_plugins import BaseTcodtranslator

 plugin_path = "aiida.tools.dbexporters.tcod_plugins"
 plugins = list()

 if calc is not None:
 for plugin in existing_plugins(BaseTcodtranslator, plugin_path):
 cls = BaseFactory(plugin, BaseTcodtranslator, plugin_path)
 if calc._plugin_type_string.endswith(cls._plugin_type_string + '.'):
 plugins.append(cls)

 from aiida.common.exceptions import MultipleObjectsError

 if len(plugins) > 1:
 raise MultipleObjectsError("more than one plugin found for "
 "{}".calc._plugin_type_string)

 if len(plugins) == 1:
 plugin = plugins[0]
 translated_tags = translate_calculation_specific_values(calc,
 plugin)
 tags.update(translated_tags)

 return tags

@optional_inline
def add_metadata_inline(what, node=None, parameters=None, args=None):
 """
 Add metadata of original exported node to the produced TCOD CIF.

 :param what: an original exported node.
 :param node: a :py:class:`aiida.orm.data.cif.CifData` instance.
 :param parameters: a :py:class:`aiida.orm.data.parameter.ParameterData`
 instance, produced by the same calculation as the original exported
 node.
 :param args: a :py:class:`aiida.orm.data.parameter.ParameterData`
 instance, containing parameters for the control of metadata
 collection and inclusion in the produced
 :py:class:`aiida.orm.data.cif.CifData`.
 :return: dict with :py:class:`aiida.orm.data.cif.CifData`
 :raises ValueError: if tags present in
 ``args.get_dict()['additional_tags']`` are not valid CIF tags.

 .. note:: can be used as inline calculation.
 """
 from aiida.orm.data.cif import pycifrw_from_cif
 CifData = DataFactory('cif')

 if not node:
 node = what

 calc = _get_calculation(what)

 datablocks = []
 loops = {}
 dataname = node.values.keys()[0]
 datablock = dict()
 for tag in node.values[dataname].keys():
 datablock[tag] = node.values[dataname][tag]
 datablocks.append(datablock)
 for loop in node.values[dataname].loops:
 loops[loop.keys()[0]] = loop.keys()

 # Unpacking the kwargs from ParameterData
 kwargs = {}
 additional_tags = {}
 datablock_names = None
 if args:
 kwargs = args.get_dict()
 additional_tags = kwargs.pop('additional_tags',{})
 datablock_names = kwargs.pop('datablock_names',None)

 tags = _collect_tags(what, calc, parameters=parameters, **kwargs)
 loops.update(tcod_loops)

 for datablock in datablocks:
 for k,v in dict(tags.items() + additional_tags.items()).iteritems():
 if not k.startswith('_'):
 raise ValueError("Tag '{}' does not seem to start with "
 "an underscode ('_'): all CIF tags must "
 "start with underscores".format(k))
 datablock[k] = v

 values = pycifrw_from_cif(datablocks, loops, names=datablock_names)
 cif = CifData(values=values)

 return {'cif': cif}

[docs]def export_cif(what, **kwargs):
 """
 Exports given coordinate-containing *Data node to string of CIF
 format.

 :return: string with contents of CIF file.
 """
 cif = export_cifnode(what, **kwargs)
 return cif._exportstring('cif')

[docs]def export_values(what, **kwargs):
 """
 Exports given coordinate-containing *Data node to PyCIFRW CIF data
 structure.

 :return: CIF data structure.

 .. note:: Requires PyCIFRW.
 """
 cif = export_cifnode(what,**kwargs)
 return cif.values

[docs]def export_cifnode(what, parameters=None, trajectory_index=None,
 store=False,
 reduce_symmetry=default_options['reduce_symmetry'],
 **kwargs):
 """
 The main exporter function. Exports given coordinate-containing *Data
 node to :py:class:`aiida.orm.data.cif.CifData` node, ready to be
 exported to TCOD. All *Data types, having method ``_get_cif()``, are
 supported in addition to :py:class:`aiida.orm.data.cif.CifData`.

 :param what: data node to be exported.
 :param parameters: a :py:class:`aiida.orm.data.parameter.ParameterData`
 instance, produced by the same calculation as the original exported
 node.
 :param trajectory_index: a step to be converted and exported in case a
 :py:class:`aiida.orm.data.array.trajectory.TrajectoryData` is
 exported.
 :param store: boolean indicating whether to store intermediate nodes or
 not. Default False.
 :param dump_aiida_database: boolean indicating whether to include the
 dump of AiiDA database (containing only transitive closure of the
 exported node). Default True.
 :param exclude_external_contents: boolean indicating whether to exclude
 nodes from AiiDA database dump, that are taken from external
 repositores and have a URL link allowing to refetch their contents.
 Default False.
 :param gzip: boolean indicating whether to Gzip large CIF text fields.
 Default False.
 :param gzip_threshold: integer indicating the maximum size (in bytes) of
 uncompressed CIF text fields when the **gzip** option is in action.
 Default 1024.
 :return: a :py:class:`aiida.orm.data.cif.CifData` node.
 """
 from aiida.common.exceptions import MultipleObjectsError
 from aiida.orm.calculation.inline import make_inline
 CifData = DataFactory('cif')
 StructureData = DataFactory('structure')
 TrajectoryData = DataFactory('array.trajectory')
 ParameterData = DataFactory('parameter')

 calc = _get_calculation(what)

 if parameters is not None:
 if not isinstance(parameters, ParameterData):
 raise ValueError("Supplied parameters are not an "
 "instance of ParameterData")
 elif calc is not None:
 params = calc.get_outputs(type=ParameterData)
 if len(params) == 1:
 parameters = params[0]
 elif len(params) > 0:
 raise MultipleObjectsError("Calculation {} has more than "
 "one ParameterData output, please "
 "specify which one to use with "
 "an option parameters='' when "
 "calling export_cif()".format(calc))

 if parameters is not None:
 _assert_same_parents(what, parameters)

 node = what

 # Convert node to CifData (if required)

 if not isinstance(node, CifData) and getattr(node, '_get_cif'):
 function_args = { 'store': store }
 if trajectory_index is not None:
 function_args['index'] = trajectory_index
 node = node._get_cif(**function_args)

 if not isinstance(node,CifData):
 raise NotImplementedError("Exporter does not know how to "
 "export {}".format(type(node)))

 # Reduction of the symmetry

 if reduce_symmetry:
 from aiida.orm.data.cif import refine_inline
 ret_dict = refine_inline(node=node, store=store)
 node = ret_dict['cif']

 # Addition of the metadata

 args = ParameterData(dict=kwargs)
 function_args = { 'what': what, 'args': args, 'store': store }
 if node != what:
 function_args['node'] = node
 if parameters is not None:
 function_args['parameters'] = parameters
 ret_dict = add_metadata_inline(**function_args)

 return ret_dict['cif']

[docs]def deposit(what, type, author_name=None, author_email=None, url=None,
 title=None, username=None, password=False, user_email=None,
 code_label=default_options['code'], computer_name=None,
 replace=None, message=None, **kwargs):
 """
 Launches a
 :py:class:`aiida.orm.calculation.job.JobCalculation`
 to deposit data node to *COD-type database.

 :return: launched :py:class:`aiida.orm.calculation.job.JobCalculation`
 instance.
 :raises ValueError: if any of the required parameters are not given.
 """
 from aiida.common.setup import get_property

 if not what:
 raise ValueError("Node to be deposited is not supplied")
 if not type:
 raise ValueError("Deposition type is not supplied. Should be "
 "one of the following: 'published', "
 "'prepublication' or 'personal'")
 if not username:
 username = get_property('tcod.depositor_username')
 if not username:
 raise ValueError("Depositor username is not supplied")
 if not password:
 password = get_property('tcod.depositor_password')
 if not password:
 raise ValueError("Depositor password is not supplied")
 if not user_email:
 user_email = get_property('tcod.depositor_email')
 if not user_email:
 raise ValueError("Depositor email is not supplied")

 if type == 'published':
 pass
 elif type in ['prepublication','personal']:
 if not author_name:
 author_name = get_property('tcod.depositor_author_name')
 if not author_name:
 raise ValueError("Author name is not supplied")
 if not author_email:
 author_email = get_property('tcod.depositor_author_email')
 if not author_email:
 raise ValueError("Author email is not supplied")
 if not title:
 raise ValueError("Publication title is not supplied")
 else:
 raise ValueError("Unknown deposition type '{}' -- should be "
 "one of the following: 'published', "
 "'prepublication' or 'personal'".format(type))

 if replace:
 if str(int(replace)) != replace or int(replace) < 10000000 \
 or int(replace) > 99999999:
 raise ValueError("ID of the replaced structure ({}) does not "
 "seem to be valid TCOD ID: must be in "
 "range [10000000,99999999]".format(replace))
 elif message:
 raise ValueError("Message is given while the structure is not "
 "redeposited -- log message is relevant to "
 "redeposition only")

 kwargs['additional_tags'] = {}
 if title:
 kwargs['additional_tags']['_publ_section_title'] = title
 if author_name:
 kwargs['additional_tags']['_publ_author_name'] = author_name
 if replace:
 kwargs['additional_tags']['_cod_database_code'] = replace
 kwargs['datablock_names'] = [replace]

 cif = export_cifnode(what, store=True, **kwargs)

 from aiida.orm.code import Code
 from aiida.orm.computer import Computer
 from aiida.orm.data.parameter import ParameterData
 from aiida.common.exceptions import NotExistent

 code = Code.get_from_string(code_label)
 computer = None
 if computer_name:
 computer = Computer.get(computer_name)
 calc = code.new_calc(computer=computer)
 calc.set_resources({'num_machines': 1, 'num_mpiprocs_per_machine': 1})

 parameters = {
 'deposition-type': type,
 'username' : username,
 'user_email' : user_email,
 }
 if password:
 import getpass
 parameters['password'] = getpass.getpass("Password: ")
 if author_name:
 parameters['author_name'] = author_name
 if author_email:
 parameters['author_email'] = author_email
 if url:
 parameters['url'] = url
 if replace:
 parameters['replace'] = True
 if message:
 parameters['log-message'] = str(message)
 pd = ParameterData(dict=parameters)

 calc.use_cif(cif)
 calc.use_parameters(pd)

 calc.store_all()
 calc.submit()

 return calc

[docs]def deposition_cmdline_parameters(parser, expclass="Data"):
 """
 Provides descriptions of command line options, that are used to control
 the process of deposition to TCOD.

 :param parser: an argparse.Parser instance
 :param expclass: name of the exported class to be shown in help string
 for the command line options

 .. note:: This method must not set any default values for command line
 options in order not to clash with any other data deposition plugins.
 """
 parser.add_argument('--type', '--deposition-type', type=str,
 choices=['published','prepublication','personal'],
 help="Type of the deposition.")
 parser.add_argument('-u', '--username', type=str, default=None,
 dest='username',
 help="Depositor's username.")
 parser.add_argument('-p', '--password', action='store_true',
 dest='password', default=None,
 help="Depositor's password.")
 parser.add_argument('--user-email', type=str, default=None,
 help="Depositor's e-mail address.")
 parser.add_argument('--title', type=str, default=None,
 help="Title of the publication.")
 parser.add_argument('--author-name', type=str, default=None,
 help="Full name of the publication author.")
 parser.add_argument('--author-email', type=str, default=None,
 help="E-mail address of the publication author.")
 parser.add_argument('--url', type=str,
 help="URL of the deposition API.")
 parser.add_argument('--code', type=str, dest='code_label',
 default=None,
 help="Label of the code to be used for the "
 "deposition. Default: cif_cod_deposit.")
 parser.add_argument('--computer', type=str, dest='computer_name',
 help="Name of the computer to be used for "
 "deposition. Default computer is used if "
 "not specified.")
 parser.add_argument('--replace', type=str, dest='replace',
 help="ID of the structure to be redeposited "
 "(replaced), if any.")
 parser.add_argument('-m', '--message', type=str, dest='message',
 help="Description of the change (relevant for "
 "redepositions only.")

[docs]def translate_calculation_specific_values(calc, translator, **kwargs):
 """
 Translates calculation-specific values from
 :py:class:`aiida.orm.calculation.job.JobCalculation` subclass to
 appropriate TCOD CIF tags.

 :param calc: an instance of
 :py:class:`aiida.orm.calculation.job.JobCalculation` subclass.
 :param translator: class, derived from
 :py:class:`aiida.tools.dbexporters.tcod_plugins.BaseTcodtranslator`.
 :raises ValueError: if **translator** is not derived from proper class.
 """
 from aiida.tools.dbexporters.tcod_plugins import BaseTcodtranslator
 if not issubclass(translator, BaseTcodtranslator):
 raise ValueError("supplied translator is of class {}, while it "
 "must be derived from {} class".format(translator.__class__,
 BaseTcodtranslator.__class__))
 translation_map = {
 '_tcod_software_package': 'get_software_package',
 '_tcod_software_package_version': 'get_software_package_version',
 '_tcod_software_package_compilation_date': 'get_software_package_compilation_timestamp',
 '_tcod_software_executable_path': 'get_software_executable_path',

 '_tcod_total_energy': 'get_total_energy',
 '_dft_1e_energy': 'get_one_electron_energy',
 '_dft_correlation_energy': 'get_exchange_correlation_energy',
 '_dft_ewald_energy': 'get_ewald_energy',
 '_dft_hartree_energy': 'get_hartree_energy',
 '_dft_fermi_energy': 'get_fermi_energy',

 '_dft_cell_valence_electrons': 'get_number_of_electrons',
 '_tcod_computation_wallclock_time': 'get_computation_wallclock_time',
 '_atom_type_symbol': 'get_atom_type_symbol',
 '_dft_atom_type_valence_configuration': 'get_atom_type_valence_configuration',
 '_dft_atom_basisset': 'get_atom_type_basisset',

 '_dft_BZ_integration_smearing_method': 'get_integration_smearing_method',
 '_dft_BZ_integration_smearing_method_other': 'get_integration_smearing_method_other',
 '_dft_BZ_integration_MP_order': 'get_integration_Methfessel_Paxton_order',

 '_integration_grid_X': 'get_BZ_integration_grid_X',
 '_integration_grid_Y': 'get_BZ_integration_grid_Y',
 '_integration_grid_Z': 'get_BZ_integration_grid_Z',

 '_integration_grid_shift_X': 'get_BZ_integration_grid_shift_X',
 '_integration_grid_shift_Y': 'get_BZ_integration_grid_shift_Y',
 '_integration_grid_shift_Z': 'get_BZ_integration_grid_shift_Z',

 '_dft_kinetic_energy_cutoff_wavefunctions': 'get_kinetic_energy_cutoff_wavefunctions',
 '_dft_kinetic_energy_cutoff_charge_density': 'get_kinetic_energy_cutoff_charge_density',
 '_dft_kinetic_energy_cutoff_EEX': 'get_kinetic_energy_cutoff_EEX',

 ## Residual forces are no longer produced, as they should
 ## be in the same CIF loop with coordinates -- to be
 ## implemented later, since it's not yet clear how.
 # '_tcod_atom_site_resid_force_Cartn_x': 'get_atom_site_residual_force_Cartesian_x',
 # '_tcod_atom_site_resid_force_Cartn_y': 'get_atom_site_residual_force_Cartesian_y',
 # '_tcod_atom_site_resid_force_Cartn_z': 'get_atom_site_residual_force_Cartesian_z',
 }
 tags = dict()
 for tag, function in translation_map.iteritems():
 value = None
 try:
 value = getattr(translator, function)(calc, **kwargs)
 except NotImplementedError as e:
 pass
 if value is not None:
 tags[tag] = value

 return tags

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/codespecific/quantumespresso/pwinputparser.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.tools.codespecific.quantumespresso.pwinputparser

-*- coding: utf-8 -*-
"""
Tools for parsing QE PW input files and creating AiiDa Node objects based on
them.

TODO: Parse CONSTRAINTS, OCCUPATIONS, ATOMIC_FORCES once they are implemented
 in AiiDa
"""
import re
import os
import numpy as np
from aiida.parsers.plugins.quantumespresso.constants import bohr_to_ang
from aiida.common.exceptions import ParsingError
from aiida.orm.data.structure import StructureData, _valid_symbols
from aiida.orm.data.array.kpoints import KpointsData

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

RE_FLAGS = re.M | re.X | re.I

[docs]class PwInputFile(object):
 """
 Class used for parsing Quantum Espresso pw.x input files and using the info.

 :ivar namelists:
 A nested dictionary of the namelists and their key-value
 pairs. The namelists will always be upper-case keys, while the parameter
 keys will always be lower-case.

 For example: ::

 {"CONTROL": {"calculation": "bands",
 "prefix": "al",
 "pseudo_dir": "./pseudo",
 "outdir": "./out"},
 "ELECTRONS": {"diagonalization": "cg"},
 "SYSTEM": {"nbnd": 8,
 "ecutwfc": 15.0,
 "celldm(1)": 7.5,
 "ibrav": 2,
 "nat": 1,
 "ntyp": 1}
 }

 :ivar atomic_positions:
 A dictionary with

 * units: the units of the positions (always lower-case) or None
 * names: list of the atom names (e.g. ``'Si'``, ``'Si0'``,
 ``'Si_0'``)
 * positions: list of the [x, y, z] positions
 * fixed_coords: list of [x, y, z] (bools) of the force modifications
 (**Note:** True <--> Fixed, as defined in the
 ``BasePwCpInputGenerator._if_pos`` method)

 For example: ::

 {'units': 'bohr',
 'names': ['C', 'O'],
 'positions': [[0.0, 0.0, 0.0],
 [0.0, 0.0, 2.5]]
 'fixed_coords': [[False, False, False],
 [True, True, True]]}

 :ivar cell_parameters:
 A dictionary (if CELL_PARAMETERS is present; else: None) with

 * units: the units of the lattice vectors (always lower-case) or
 None
 * cell: 3x3 list with lattice vectors as rows

 For example: ::

 {'units': 'angstrom',
 'cell': [[16.9, 0.0, 0.0],
 [-2.6, 8.0, 0.0],
 [-2.6, -3.5, 7.2]]}

 :ivar k_points:
 A dictionary containing

 * type: the type of kpoints (always lower-case)
 * points: an Nx3 list of the kpoints (will not be present if type =
 'gamma' or type = 'automatic')
 * weights: a 1xN list of the kpoint weights (will not be present if
 type = 'gamma' or type = 'automatic')
 * mesh: a 1x3 list of the number of equally-spaced points in each
 direction of the Brillouin zone, as in Monkhorst-Pack grids (only
 present if type = 'automatic')
 * offset: a 1x3 list of the grid offsets in each direction of the
 Brillouin zone (only present if type = 'automatic')
 (**Note:** The offset value for each direction will be *one of*
 ``0.0`` [no offset] *or* ``0.5`` [offset by half a grid step].
 This differs from the Quantum Espresso convention, where an offset
 value of ``1`` corresponds to a half-grid-step offset, but adheres
 to the current AiiDa convention.

 Examples: ::

 {'type': 'crystal',
 'points': [[0.125, 0.125, 0.0],
 [0.125, 0.375, 0.0],
 [0.375, 0.375, 0.0]],
 'weights': [1.0, 2.0, 1.0]}

 {'type': 'automatic',
 'points': [8, 8, 8],
 'offset': [0.0, 0.5, 0.0]}

 {'type': 'gamma'}

 :ivar atomic_species:
 A dictionary with

 * names: list of the atom names (e.g. 'Si', 'Si0', 'Si_0') (case
 as-is)
 * masses: list of the masses of the atoms in 'names'
 * pseudo_file_names: list of the pseudopotential file names for the
 atoms in 'names' (case as-is)

 Example: ::

 {'names': ['Li', 'O', 'Al', 'Si'],
 'masses': [6.941, 15.9994, 26.98154, 28.0855],
 'pseudo_file_names': ['Li.pbe-sl-rrkjus_psl.1.0.0.UPF',
 'O.pbe-nl-rrkjus_psl.1.0.0.UPF',
 'Al.pbe-nl-rrkjus_psl.1.0.0.UPF',
 'Si3 28.0855 Si.pbe-nl-rrkjus_psl.1.0.0.UPF']

 """

[docs] def __init__(self, pwinput):
 """
 Parse inputs's namelist and cards to create attributes of the info.

 :param pwinput:
 Any one of the following

 * A string of the (existing) absolute path to the pwinput file.
 * A single string containing the pwinput file's text.
 * A list of strings, with the lines of the file as the elements.
 * A file object. (It will be opened, if it isn't already.)

 :raises IOError: if ``pwinput`` is a file and there is a problem reading
 the file.
 :raises TypeError: if ``pwinput`` is a list containing any non-string
 element(s).
 :raises aiida.common.exceptions.ParsingError: if there are issues
 parsing the pwinput.
 """
 # Get the text of the pwinput file as a single string.
 # File.
 if isinstance(pwinput, file):
 try:
 self.input_txt = pwinput.read()
 except IOError:
 raise IOError(
 'Unable to open the provided pwinput, {}'
 ''.format(file.name)
)
 # List.
 elif isinstance(pwinput, list):
 if all((issubclass(type(s), basestring) for s in pwinput)):
 self.input_txt = ''.join(pwinput)
 else:
 raise TypeError(
 'You provided a list to parse, but some elements were not '
 'strings. Each element should be a string containing a line'
 'of the pwinput file.')
 # Path or string of the text.
 elif issubclass(type(pwinput), basestring):
 if os.path.isfile(pwinput):
 if os.path.exists(pwinput) and os.path.isabs(pwinput):
 self.input_txt = open(pwinput).read()
 else:
 raise IOError(
 'Please provide the absolute path to an existing '
 'pwinput file.'
)
 else:
 self.input_txt = pwinput

 # Check that pwinput is not empty.
 if len(self.input_txt.strip()) == 0:
 raise ParsingError('The pwinput provided was empty!')

 # Parse the namelists.
 self.namelists = parse_namelists(self.input_txt)
 # Parse the ATOMIC_POSITIONS card.
 self.atomic_positions = parse_atomic_positions(self.input_txt)
 # Parse the CELL_PARAMETERS card.
 self.cell_parameters = parse_cell_parameters(self.input_txt)
 # Parse the K_POINTS card.
 self.k_points = parse_k_points(self.input_txt)
 # Parse the ATOMIC_SPECIES card.
 self.atomic_species = parse_atomic_species(self.input_txt)

[docs] def get_structuredata(self):
 """
 Return a StructureData object based on the data in the input file.

 This uses all of the data in the input file to do the necessary unit
 conversion, ect. and then creates an AiiDa StructureData object.

 All of the names corresponding of the Kind objects composing the
 StructureData object will match those found in the ATOMIC_SPECIES
 block, so the pseudopotentials can be linked to the calculation using
 the kind.name for each specific type of atom (in the event that you
 wish to use different pseudo's for two or more of the same atom).

 :return: StructureData object of the structure in the input file
 :rtype: aiida.orm.data.structure.StructureData
 :raises aiida.common.exceptions.ParsingError: if there are issues
 parsing the input.
 """
 # CELL_PARAMETERS are present.
 if self.cell_parameters is None:
 raise ParsingError(
 'CELL_PARAMETERS not found while parsing the input file. This '
 'card is needed for AiiDa.'
)

 # Figure out the factor needed to convert the lattice vectors
 # to Angstroms.
 # TODO: ***ASK GEORGE IF I SHOULD MULTIPLY OR DIVIDE BY ALAT***
 cell_units = self.cell_parameters.get('units')
 if (cell_units == 'alat') or (cell_units is None):
 # Try to determine the value of alat from the namelist.
 celldm1 = self.namelists['SYSTEM'].get('celldm(1)')
 a = self.namelists['SYSTEM'].get('a')
 # Only one of 'celldm(1)' or 'a' can be set.
 if (celldm1 is not None) and (a is not None):
 raise ParsingError(
 "Both 'celldm(1)' and 'a' were set in the input file."
)
 elif celldm1 is not None:
 cell_conv_factor = celldm1 * bohr_to_ang # celldm(1) in Bohr
 elif a is not None:
 cell_conv_factor = a # a is in Angstroms
 else:
 if cell_units is None:
 cell_conv_factor = bohr_to_ang # QE assumes Bohr
 else:
 raise ParsingError(
 "Unable to determine the units of the lattice vectors."
)
 elif cell_units == 'bohr':
 cell_conv_factor = bohr_to_ang
 elif cell_units == 'angstrom':
 cell_conv_factor = 1.0
 else:
 raise ParsingError(
 "Unable to determine the units of the lattice vectors."
)

 # Get the lattice vectors and convert them to units of Angstroms.
 cell = np.array(self.cell_parameters['cell']) * cell_conv_factor

 # Get the positions and convert them to [x, y, z] Angstrom vectors.
 pos_units = self.atomic_positions['units']
 positions = np.array(self.atomic_positions['positions'])
 if pos_units in (None, 'alat'): # QE assumes alat
 alat = np.linalg.norm(cell[0]) # Cell in Ang, so alat in Ang
 positions *= alat
 elif pos_units == 'bohr':
 positions = positions * bohr_to_ang
 elif pos_units == 'angstrom':
 pass
 elif pos_units == 'crystal':
 positions = np.dot(positions, cell) # rotate into [x y z] basis
 else:
 raise ParsingError(
 'Unable to determine to convert positions to [x y z] Angstrom.'
)

 # Get the atom names corresponding to positions.
 names = self.atomic_positions['names']

 # Create a dictionary that maps an atom name to it's mass.
 mass_dict = dict(zip(self.atomic_species['names'],
 self.atomic_species['masses']))

 # Use the names to figure out the atomic symbols.
 symbols = []
 for name in names:
 candiates = [s for s in _valid_symbols
 if name.lower().startswith(s.lower())]
 if len(candiates) == 0:
 raise ParsingError(
 'Unable to figure out the element represented by the '
 'label, {}, in the input file.'.format(name))
 # Choose the longest match, since, for example, S and Si match Si.
 symbols.append(max(candiates, key=lambda x: len(x)))

 # Now that we have the names and their corresponding symbol and mass, as
 # well as the positions and cell in units of Angstroms, we create the
 # StructureData object.
 structuredata = StructureData(cell=cell)
 for name, symbol, position in zip(names, symbols, positions):
 mass = mass_dict[name]
 structuredata.append_atom(name=name, symbols=symbol,
 position=position, mass=mass)
 return structuredata

[docs] def get_kpointsdata(self):
 """
 Return a KpointsData object based on the data in the input file.

 This uses all of the data in the input file to do the necessary unit
 conversion, ect. and then creates an AiiDa KpointsData object.

 Note: If the calculation uses only the gamma k-point (`if
 self.k_points['type'] == 'gamma'`), it is necessary to also attach a
 settings node to the calculation with `gamma_only = True`.

 :return: KpointsData object of the kpoints in the input file
 :rtype: aiida.orm.data.array.kpoints.KpointsData
 :raises aiida.common.exceptions.NotImplimentedError: if the kpoints are
 in a format not yet supported.
 """
 # Initialize the KpointsData node
 kpointsdata = KpointsData()
 # Get the structure using this class's method.
 structuredata = self.get_structuredata()
 # Set the structure information of the kpoints node.
 kpointsdata.set_cell_from_structure(structuredata)

 # Set the kpoints and weights, doing any necessary units conversion.
 if self.k_points['type'] == 'crystal': # relative to recip latt vecs
 kpointsdata.set_kpoints(self.k_points['points'],
 weights=self.k_points['weights'])
 elif self.k_points['type'] == 'tpiba': # cartesian; units of 2*pi/alat
 alat = np.linalg.norm(structuredata.cell[0]) # alat in Angstrom
 kpointsdata.set_kpoints(
 np.array(self.k_points['points']) * (2. * np.pi / alat),
 weights=self.k_points['weights'],
 cartesian=True
)
 elif self.k_points['type'] == 'automatic':
 kpointsdata.set_kpoints_mesh(self.k_points['points'],
 offset=self.k_points['offset'])
 elif self.k_points['type'] == 'gamma':
 kpointsdata.set_kpoints_mesh([1, 1, 1])
 else:
 raise NotImplementedError(
 'Support for creating KpointsData from input units of {} is'
 'not yet implemented'.format(self.k_points['type'])
)

 return kpointsdata

[docs]def str2val(valstr):
 """
 Return a python value by converting valstr according to f90 syntax.

 :param valstr: String representation of the variable to be converted.
 (e.g. '.true.')
 :type valstr: str
 :return: A python variable corresponding to valstr.
 :rtype: bool or float or int or str
 :raises: ValueError: if a suitable conversion of ``valstr`` cannot be found.
 """
 # Define regular expression for matching floats.
 float_re = re.compile(r"""
 [-+]? # optional sign
 (?: # either
 \d*[.]\d+ # 10.53 or .53
 | # or
 \d+[.]\d*) # 10.53 or 10.
 (?:[dEeE][-+]?[0-9]+)? # optional exponent
 """, re.X)
 # Strip any white space characters before analyzing.
 valstr = valstr.strip()
 # Define a tuple of regular expressions to match and their corresponding
 # conversion functions.
 re_fn_tuple = (
 (re.compile(r"[.](true|t)[.]", re.I), lambda s: True),
 (re.compile(r"[.](false|f)[.]", re.I), lambda s: False),
 (float_re, lambda s: float(s.replace('d', 'e').replace('D', 'E'))),
 (re.compile(r"[-+]?\d+$"), lambda s: int(s)),
 (re.compile(r"""['"].+['"]"""), lambda s: str(s.strip("\'\"")))
)
 # Convert valstr to a value.
 val = None
 for regex, conversion_fn in re_fn_tuple:
 # If valstr matches the regular expression, convert it with
 # conversion_fn.
 if regex.match(valstr):
 try:
 val = conversion_fn(valstr)
 except ValueError as error:
 print 'Error converting {} to a value'.format(repr(valstr))
 raise error
 if val is None:
 raise ValueError('Unable to convert {} to a python variable.\n'
 'NOTE: Support for algebraic expressions is not yet '
 'implemented.'.format(repr(valstr)))
 else:
 return val

[docs]def parse_namelists(txt):
 """
 Parse txt to extract a dictionary of the namelist info.

 :param txt: A single string containing the QE input text to be parsed.
 :type txt: str

 :returns:
 A nested dictionary of the namelists and their key-value pairs. The
 namelists will always be upper-case keys, while the parameter keys will
 always be lower-case.

 For example: ::

 {"CONTROL": {"calculation": "bands",
 "prefix": "al",
 "pseudo_dir": "./pseudo",
 "outdir": "./out"},
 "ELECTRONS": {"diagonalization": "cg"},
 "SYSTEM": {"nbnd": 8,
 "ecutwfc": 15.0,
 "celldm(1)": 7.5,
 "ibrav": 2,
 "nat": 1,
 "ntyp": 1}
 }

 :rtype: dictionary
 :raises aiida.common.exceptions.ParsingError: if there are issues
 parsing the input.
 """
 # TODO: Incorporate support for algebraic expressions?
 # Define the re to match a namelist and extract the info from it.
 namelist_re = re.compile(r"""
 ^ [\t]* &(\S+) [\t]* $\n # match line w/ nmlst tag; save nmlst name
 (
 [\S\s]*? # match any line non-greedily
) # save the group of text between nmlst
 ^ [\t]* / [\t]* $\n # match line w/ "/" as only non-whitespace char
 """, re.M | re.X)
 # Define the re to match and extract all of the key = val pairs inside
 # a block of namelist text.
 key_value_re = re.compile(r"""
 [\t]* (\S+?) [\t]* # match and store key
 = # equals sign separates key and value
 [\t]* (\S+?) [\t]* # match and store value
 [\n,] # return or comma separates "key = value" pairs
 """, re.M | re.X)
 # Scan through the namelists...
 params_dict = {}
 for nmlst, blockstr in namelist_re.findall(txt):
 # ...extract the key value pairs, storing them each in nmlst_dict,...
 nmlst_dict = {}
 for key, valstr in key_value_re.findall(blockstr):
 nmlst_dict[key.lower()] = str2val(valstr)
 # ...and, store nmlst_dict as a value in params_dict with the namelist
 # as the key.
 if len(nmlst_dict.keys()) > 0:
 params_dict[nmlst.upper()] = nmlst_dict
 if len(params_dict) == 0:
 raise ParsingError(
 'No data was found while parsing the namelist in the following '
 'text\n' + txt
)
 return params_dict

[docs]def parse_atomic_positions(txt):
 """
 Return a dictionary containing info from the ATOMIC_POSITIONS card block
 in txt.

 .. note:: If the units are unspecified, they will be returned as None.

 :param txt: A single string containing the QE input text to be parsed.
 :type txt: str

 :returns:
 A dictionary with

 * units: the units of the positions (always lower-case) or None
 * names: list of the atom names (e.g. ``'Si'``, ``'Si0'``,
 ``'Si_0'``)
 * positions: list of the [x, y, z] positions
 * fixed_coords: list of [x, y, z] (bools) of the force modifications
 (**Note:** True <--> Fixed, as defined in the
 ``BasePwCpInputGenerator._if_pos`` method)

 For example: ::

 {'units': 'bohr',
 'names': ['C', 'O'],
 'positions': [[0.0, 0.0, 0.0],
 [0.0, 0.0, 2.5]]
 'fixed_coords': [[False, False, False],
 [True, True, True]]}

 :rtype: dictionary
 :raises aiida.common.exceptions.ParsingError: if there are issues
 parsing the input.
 """
 # Define re for the card block.
 # NOTE: This will match card block lines w/ or w/out force modifications.
 atomic_positions_block_re = re.compile(r"""
 ^ [\t]* ATOMIC_POSITIONS [\t]*
 [{(]? [\t]* (?P<units>\S+?)? [\t]* [)}]? [\t]* $\n
 (?P<block>
 (?:
 ^ [\t]*
 (?:
 \S+ [\t]+ \S+ [\t]+ \S+ [\t]+ \S+
 (?:[\t]+ [{(]? [\t]* [01] [\t]+ [01] [\t]+ [01] [\t]* [)}]?)?
)
 [\t]* $\n?
)+
)
 """, RE_FLAGS)
 # Define re for atomic positions without force modifications.
 atomic_positions_re = re.compile(r"""
 ^ [\t]*
 (?P<name>\S+) [\t]+ (?P<x>\S+) [\t]+ (?P<y>\S+) [\t]+ (?P<z>\S+)
 [\t]* $\n?
 """, RE_FLAGS)
 # Define re for atomic positions with force modifications.
 atomic_positions_constraints_re = re.compile(r"""
 ^ [\t]*
 (?P<name>\S+) [\t]+ (?P<x>\S+) [\t]+ (?P<y>\S+) [\t]+ (?P<z>\S+)
 [\t]+ [{(]? [\t]* (?P<if_pos1>[01]) [\t]+ (?P<if_pos2>[01])
 [\t]+ (?P<if_pos3>[01]) [\t]* [)}]?
 [\t]* $\n?
 """, RE_FLAGS)
 # Find the card block and extract units and the lines of the block.
 match = atomic_positions_block_re.search(txt)
 if not match:
 raise ParsingError(
 'The ATOMIC_POSITIONS card block was not found in\n' + txt
)
 # Get the units. If they are not found, match.group('units') will be None.
 units = match.group('units')
 if units is not None:
 units = units.lower()
 # Get the string containing the lines of the block.
 if match.group('block') is None:
 raise ParsingError(
 'The ATOMIC_POSITIONS card block was parsed as empty in\n' + txt
)
 else:
 blockstr = match.group('block')

 # Define a small helper function to convert if_pos strings to bools that
 # correspond to the mapping of BasePwCpInputGenerator._if_pos method.
 def str01_to_bool(s):
 """
 Map strings '0', '1' strings to bools: '0' --> True; '1' --> False.

 While this is opposite to the QE standard, this mapping is what needs to
 be passed to aiida in a 'settings' ParameterData object.
 (See the _if_pos method of BasePwCpInputGenerator)
 """
 if s == '0':
 return True
 elif s == '1':
 return False
 else:
 raise ParsingError(
 'Unable to convert if_pos = {} to bool'.format(s)
)

 # Define a small helper function to convert strings of fortran-type floats.
 fortfloat = lambda s: float(s.replace('d', 'e').replace('D', 'E'))
 # Parse the lines of the card block, extracting an atom name, position
 # and fixed coordinates.
 names, positions, fixed_coords = [], [], []
 # First, try using the re for lines without force modifications. Set the
 # default force modification to the default (True) for each atom.
 for match in atomic_positions_re.finditer(blockstr):
 names.append(match.group('name'))
 positions.append(map(fortfloat, match.group('x', 'y', 'z')))
 fixed_coords.append(3 * [False]) # False <--> not fixed (the default)
 # Next, try using the re for lines with force modifications.
 for match in atomic_positions_constraints_re.finditer(blockstr):
 names.append(match.group('name'))
 positions.append(map(fortfloat, match.group('x', 'y', 'z')))
 if_pos123 = match.group('if_pos1', 'if_pos2', 'if_pos3')
 fixed_coords.append(map(str01_to_bool, if_pos123))
 # Check that the number of atomic positions parsed is equal to the number of
 # lines in blockstr
 n_lines = len(blockstr.rstrip().split('\n'))
 if len(names) != n_lines:
 raise ParsingError(
 'Only {} atomic positions were parsed from the {} lines of the '
 'ATOMIC_POSITIONS card block:\n{}'.format(len(names), n_lines,
 blockstr)
)
 info_dict = dict(units=units, names=names, positions=positions,
 fixed_coords=fixed_coords)
 return info_dict

[docs]def parse_cell_parameters(txt):
 """
 Return dict containing info from the CELL_PARAMETERS card block in txt.

 .. note:: This card is only needed if ibrav = 0. Therefore, if the card is
 not present, the function will return None and not raise an error.

 .. note:: If the units are unspecified, they will be returned as None. The
 units interpreted by QE depend on whether or not one of 'celldm(1)'
 or 'a' is set in &SYSTEM.

 :param txt: A single string containing the QE input text to be parsed.
 :type txt: str

 :returns:
 A dictionary (if CELL_PARAMETERS is present; else: None) with

 * units: the units of the lattice vectors (always lower-case) or
 None
 * cell: 3x3 list with lattice vectors as rows

 For example: ::

 {'units': 'angstrom',
 'cell': [[16.9, 0.0, 0.0],
 [-2.6, 8.0, 0.0],
 [-2.6, -3.5, 7.2]]}

 :rtype: dict or None
 :raises aiida.common.exceptions.ParsingError: if there are issues
 parsing the input.
 """
 # Define re for the card block.
 cell_parameters_block_re = re.compile(r"""
 ^ [\t]* CELL_PARAMETERS [\t]*
 [{(]? [\t]* (?P<units>\S+?)? [\t]* [)}]? [\t]* $\n
 (?P<block>
 (?:
 ^ [\t]* \S+ [\t]+ \S+ [\t]+ \S+ [\t]* $\n?
){3}
)
 """, RE_FLAGS)
 # Define re for the info contained in the block.
 atomic_species_re = re.compile(r"""
 ^ [\t]* (\S+) [\t]+ (\S+) [\t]+ (\S+) [\t]* $\n?
 """, RE_FLAGS)
 # Find the card block and extract units and the lines of the block.
 match = cell_parameters_block_re.search(txt)
 if not match:
 return None
 # Use specified units or None if not specified.
 units = match.group('units')
 if units is not None:
 units = units.lower()
 # Get the string containing the lines of the block.
 if match.group('block') is None:
 raise ParsingError(
 'The CELL_PARAMETER card block was parsed as empty in\n' + txt
)
 else:
 blockstr = match.group('block')
 # Define a small helper function to convert strings of fortran-type floats.
 fortfloat = lambda s: float(s.replace('d', 'e').replace('D', 'E'))
 # Now, extract the lattice vectors.
 lattice_vectors = []
 for match in atomic_species_re.finditer(blockstr):
 lattice_vectors.append(map(fortfloat, match.groups()))
 info_dict = dict(units=units, cell=lattice_vectors)
 return info_dict

[docs]def parse_k_points(txt):
 """
 Return a dictionary containing info from the K_POINTS card block in txt.

 .. note:: If the type of kpoints (where type = x in the card header,
 "K_POINTS x") is not present, type will be returned as 'tpiba', the
 QE default.

 :param txt: A single string containing the QE input text to be parsed.
 :type txt: str

 :returns:
 A dictionary containing

 * type: the type of kpoints (always lower-case)
 * points: an Nx3 list of the kpoints (will not be present if type =
 'gamma' or type = 'automatic')
 * weights: a 1xN list of the kpoint weights (will not be present if
 type = 'gamma' or type = 'automatic')
 * mesh: a 1x3 list of the number of equally-spaced points in each
 direction of the Brillouin zone, as in Monkhorst-Pack grids (only
 present if type = 'automatic')
 * offset: a 1x3 list of the grid offsets in each direction of the
 Brillouin zone (only present if type = 'automatic')
 (**Note:** The offset value for each direction will be *one of*
 ``0.0`` [no offset] *or* ``0.5`` [offset by half a grid step].
 This differs from the Quantum Espresso convention, where an offset
 value of ``1`` corresponds to a half-grid-step offset, but adheres
 to the current AiiDa convention.

 Examples: ::

 {'type': 'crystal',
 'points': [[0.125, 0.125, 0.0],
 [0.125, 0.375, 0.0],
 [0.375, 0.375, 0.0]],
 'weights': [1.0, 2.0, 1.0]}

 {'type': 'automatic',
 'points': [8, 8, 8],
 'offset': [0.0, 0.5, 0.0]}

 {'type': 'gamma'}

 :rtype: dictionary
 :raises aiida.common.exceptions.ParsingError: if there are issues
 parsing the input.
 """
 # Define re for the special-type card block.
 k_points_special_block_re = re.compile(r"""
 ^ [\t]* K_POINTS [\t]*
 [{(]? [\t]* (?P<type>\S+?)? [\t]* [)}]? [\t]* $\n
 ^ [\t]* \S+ [\t]* $\n # nks
 (?P<block>
 (?:
 ^ [\t]* \S+ [\t]+ \S+ [\t]+ \S+ [\t]+ \S+ [\t]* $\n?
)+
)
 """, RE_FLAGS)
 # Define re for the info contained in the special-type block.
 k_points_special_re = re.compile(r"""
 ^ [\t]* (\S+) [\t]+ (\S+) [\t]+ (\S+) [\t]+ (\S+) [\t]* $\n?
 """, RE_FLAGS)
 # Define re for the automatic-type card block and its line of info.
 k_points_automatic_block_re = re.compile(r"""
 ^ [\t]* K_POINTS [\t]* [{(]? [\t]* automatic [\t]* [)}]? [\t]* $\n
 ^ [\t]* (\S+) [\t]+ (\S+) [\t]+ (\S+) [\t]+ (\S+) [\t]+ (\S+)
 [\t]+ (\S+) [\t]* $\n?
 """, RE_FLAGS)
 # Define re for the gamma-type card block. (There is no block info.)
 k_points_gamma_block_re = re.compile(r"""
 ^ [\t]* K_POINTS [\t]* [{(]? [\t]* gamma [\t]* [)}]? [\t]* $\n
 """, RE_FLAGS)
 # Try finding the card block using all three types.
 info_dict = {}
 match = k_points_special_block_re.search(txt)
 if match:
 if match.group('type') is not None:
 info_dict['type'] = match.group('type').lower()
 else:
 info_dict['type'] = 'tpiba'
 blockstr = match.group('block')
 points = []
 weights = []
 for match in k_points_special_re.finditer(blockstr):
 points.append(map(float, match.group(1, 2, 3)))
 weights.append(float(match.group(4)))
 info_dict['points'] = points
 info_dict['weights'] = weights
 else:
 match = k_points_automatic_block_re.search(txt)
 if match:
 info_dict['type'] = 'automatic'
 info_dict['points'] = map(int, match.group(1, 2, 3))
 info_dict['offset'] = [0. if x == 0 else 0.5
 for x in map(int, match.group(4, 5, 6))]
 else:
 match = k_points_gamma_block_re.search(txt)
 if match:
 info_dict['type'] = 'gamma'
 else:
 raise ParsingError('K_POINTS card not found in\n' + txt)
 return info_dict

[docs]def parse_atomic_species(txt):
 """
 Return a dictionary containing info from the ATOMIC_SPECIES card block
 in txt.

 :param txt: A single string containing the QE input text to be parsed.
 :type txt: str

 :returns:
 A dictionary with

 * names: list of the atom names (e.g. 'Si', 'Si0', 'Si_0') (case
 as-is)
 * masses: list of the masses of the atoms in 'names'
 * pseudo_file_names: list of the pseudopotential file names for the
 atoms in 'names' (case as-is)

 Example: ::

 {'names': ['Li', 'O', 'Al', 'Si'],
 'masses': [6.941, 15.9994, 26.98154, 28.0855],
 'pseudo_file_names': ['Li.pbe-sl-rrkjus_psl.1.0.0.UPF',
 'O.pbe-nl-rrkjus_psl.1.0.0.UPF',
 'Al.pbe-nl-rrkjus_psl.1.0.0.UPF',
 'Si3 28.0855 Si.pbe-nl-rrkjus_psl.1.0.0.UPF']

 :rtype: dictionary
 :raises aiida.common.exceptions.ParsingError: if there are issues
 parsing the input.
 """
 # Define re for atomic species card block.
 atomic_species_block_re = re.compile(r"""
 ^ [\t]* ATOMIC_SPECIES [\t]* $\n
 (?P<block>
 (?:
 ^ [\t]* \S+ [\t]+ \S+ [\t]+ \S+ [\t]* $\n?
)+
)
 """, RE_FLAGS)
 # Define re for the info contained in the block.
 atomic_species_re = re.compile(r"""
 ^ [\t]* (?P<name>\S+) [\t]+ (?P<mass>\S+) [\t]+ (?P<pseudo>\S+)
 [\t]* $\n?
 """, RE_FLAGS)
 # Find the card block and extract units and the lines of the block.
 try:
 match = atomic_species_block_re.search(txt)
 except AttributeError:
 raise ParsingError(
 'The ATOMIC_SPECIES card block was not found in\n' + txt
)
 # Make sure the card block lines were extracted. If they were, store the
 # string of lines as blockstr.
 if match.group('block') is None:
 raise ParsingError(
 'The ATOMIC_POSITIONS card block was parse as empty in\n' + txt
)
 else:
 blockstr = match.group('block')
 # Define a small helper function to convert strings of fortran-type floats.
 fortfloat = lambda s: float(s.replace('d', 'e').replace('D', 'E'))
 # Now, extract the name, mass, and pseudopotential file name from each line
 # of the card block.
 names, masses, pseudo_fnms = [], [], []
 for match in atomic_species_re.finditer(blockstr):
 names.append(match.group('name'))
 masses.append(fortfloat(match.group('mass')))
 pseudo_fnms.append(match.group('pseudo'))
 info_dict = dict(names=names, masses=masses, pseudo_file_names=pseudo_fnms)
 return info_dict

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbexporters/tcod_plugins/nwcpymatgen.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.tools.dbexporters.tcod_plugins »

 Source code for aiida.tools.dbexporters.tcod_plugins.nwcpymatgen

-*- coding: utf-8 -*-

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

from aiida.tools.dbexporters.tcod_plugins import BaseTcodtranslator

[docs]class NwcpymatgenTcodtranslator(BaseTcodtranslator):
 """
 NWChem's input and output parameter translator to TCOD CIF dictionary
 tags.
 """
 _plugin_type_string = "nwchem.nwcpymatgen.NwcpymatgenCalculation"

 @classmethod
[docs] def get_software_package(cls,calc,**kwargs):
 """
 Returns the package or program name that was used to produce
 the structure. Only package or program name should be used,
 e.g. 'VASP', 'psi3', 'Abinit', etc.
 """
 return 'NWChem'

 @classmethod
[docs] def get_software_package_version(cls,calc,**kwargs):
 """
 Returns software package version used to compute and produce
 the computed structure file. Only version designator should be
 used, e.g. '3.4.0', '2.1rc3'.
 """
 try:
 return calc.out.job_info.get_dict()['nwchem branch']
 except Exception:
 return None

 @classmethod
[docs] def get_software_package_compilation_timestamp(cls,calc,**kwargs):
 """
 Returns the timestamp of package/program compilation in ISO 8601
 format.
 """
 from dateutil.parser import parse
 try:
 date = calc.out.job_info.get_dict()['compiled']
 return parse(date.replace('_', ' ')).isoformat()
 except Exception:
 return None

 @classmethod
[docs] def get_atom_type_symbol(cls,calc,**kwargs):
 """
 Returns a list of atom types. Each atom site MUST occur only
 once in this list. List MUST be sorted.
 """
 parameters = calc.out.output
 dictionary = parameters.get_dict()
 if 'basis_set' not in dictionary.keys():
 return None
 return sorted(dictionary['basis_set'].keys())

 @classmethod
[docs] def get_atom_type_basisset(cls,calc,**kwargs):
 """
 Returns a list of basisset names for each atom type. The list
 order MUST be the same as of get_atom_type_symbol().
 """
 parameters = calc.out.output
 dictionary = parameters.get_dict()
 if 'basis_set' not in dictionary.keys():
 return None
 return [dictionary['basis_set'][x]['description']
 for x in cls.get_atom_type_symbol(calc,**kwargs)]

 @classmethod
[docs] def get_atom_type_valence_configuration(cls,calc,**kwargs):
 """
 Returns valence configuration of each atom type. The list order
 MUST be the same as of get_atom_type_symbol().
 """
 parameters = calc.out.output
 dictionary = parameters.get_dict()
 if 'basis_set' not in dictionary.keys():
 return None
 return [dictionary['basis_set'][x]['types']
 for x in cls.get_atom_type_symbol(calc,**kwargs)]

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbexporters/tcod_plugins/pw.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.tools.dbexporters.tcod_plugins »

 Source code for aiida.tools.dbexporters.tcod_plugins.pw

-*- coding: utf-8 -*-

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

from aiida.tools.dbexporters.tcod_plugins import BaseTcodtranslator

[docs]class PwTcodtranslator(BaseTcodtranslator):
 """
 Quantum ESPRESSO's PW-specific input and output parameter translator
 to TCOD CIF dictionary tags.
 """
 _plugin_type_string = "quantumespresso.pw.PwCalculation"

 _smearing_aliases = {
 'gaussian': 'Gaussian',
 'gauss': 'Gaussian',
 'methfessel-paxton': 'Methfessel-Paxton',
 'm-p': 'Methfessel-Paxton',
 'mp': 'Methfessel-Paxton',
 'marzari-vanderbilt': 'Marzari-Vanderbilt',
 'cold': 'Marzari-Vanderbilt',
 'm-v': 'Marzari-Vanderbilt',
 'mv': 'Marzari-Vanderbilt',
 'fermi-dirac': 'Marzari-Vanderbilt',
 'f-d': 'Marzari-Vanderbilt',
 'fd': 'Marzari-Vanderbilt',
 }

 @classmethod
[docs] def get_software_package(cls,calc,**kwargs):
 """
 Returns the package or program name that was used to produce
 the structure. Only package or program name should be used,
 e.g. 'VASP', 'psi3', 'Abinit', etc.
 """
 return 'Quantum ESPRESSO'

 @classmethod
 def _get_pw_energy_value(cls,calc,energy_type,**kwargs):
 """
 Returns the energy of defined type in eV.
 """
 parameters = calc.out.output_parameters
 if energy_type not in parameters.attrs():
 return None
 if energy_type + '_units' not in parameters.attrs():
 raise ValueError("energy units for {} are "
 "unknown".format(energy_type))
 if parameters.get_attr(energy_type + '_units') != 'eV':
 raise ValueError("energy units for {} are {} "
 "instead of eV -- unit "
 "conversion is not possible "
 "yet".format(energy_type,
 parameters.get_attr(energy_type + '_units')))
 return parameters.get_attr(energy_type)

 @classmethod
 def _get_atom_site_residual_force_Cartesian(cls,calc,index,**kwargs):
 """
 Returns an array with residual force components along the Cartesian
 axes.
 """
 try:
 array = calc.out.output_array
 return [x[index] for x in array.get_array('forces').tolist()[-1]]
 except KeyError:
 return None

 @classmethod
 def _get_BZ_integration_grid(cls,calc,**kwargs):
 """
 Returns an array with Brillouin zone point counts along each
 vector of reciprocal lattice.
 """
 try:
 array,_ = calc.inp.kpoints.get_kpoints_mesh()
 return array
 except AttributeError:
 return None
 except KeyError:
 return None

 @classmethod
 def _get_BZ_integration_grid_shift(cls,calc,**kwargs):
 """
 Returns an array with Brillouin zone point shifts along each
 vector of reciprocal lattice.
 """
 try:
 _,array = calc.inp.kpoints.get_kpoints_mesh()
 return array
 except AttributeError:
 return None
 except KeyError:
 return None

 @classmethod
 def _get_raw_integration_smearing_method(cls,calc,**kwargs):
 """
 Returns the smearing method name as string, as specified in the
 input parameters (if specified). If not 'smearing' is not
 specified, but 'occupations' == 'smearing', string with default
 value 'gaussian' is returned, as specified in
 http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
 """
 parameters = calc.inp.parameters
 smearing = None
 try:
 smearing = parameters.get_dict()['SYSTEM']['smearing']
 except KeyError:
 pass
 if smearing is None:
 try:
 if parameters.get_dict()['SYSTEM']['occupations'] == 'smearing':
 smearing = 'gaussian'
 except KeyError as e:
 pass
 return smearing

 @classmethod
[docs] def get_total_energy(cls,calc,**kwargs):
 """
 Returns the total energy in eV.
 """
 return cls._get_pw_energy_value(calc,'energy')

 @classmethod
[docs] def get_one_electron_energy(cls,calc,**kwargs):
 """
 Returns one electron energy in eV.
 """
 return cls._get_pw_energy_value(calc,'energy_one_electron')

 @classmethod
[docs] def get_exchange_correlation_energy(cls,calc,**kwargs):
 """
 Returns exchange correlation (XC) energy in eV.
 """
 return cls._get_pw_energy_value(calc,'energy_xc')

 @classmethod
[docs] def get_ewald_energy(cls,calc,**kwargs):
 """
 Returns Ewald energy in eV.
 """
 return cls._get_pw_energy_value(calc,'energy_ewald')

 @classmethod
[docs] def get_hartree_energy(cls,calc,**kwargs):
 """
 Returns Hartree energy in eV.
 """
 return cls._get_pw_energy_value(calc,'energy_hartree')

 @classmethod
[docs] def get_fermi_energy(cls,calc,**kwargs):
 """
 Returns Fermi energy in eV.
 """
 return cls._get_pw_energy_value(calc,'fermi_energy')

 @classmethod
[docs] def get_number_of_electrons(cls,calc,**kwargs):
 """
 Returns the number of electrons.
 """
 parameters = calc.out.output_parameters
 if 'number_of_electrons' not in parameters.attrs():
 return None
 return parameters.get_attr('number_of_electrons')

 @classmethod
[docs] def get_computation_wallclock_time(cls,calc,**kwargs):
 """
 Returns the computation wallclock time in seconds.
 """
 parameters = calc.out.output_parameters
 if 'wall_time_seconds' not in parameters.attrs():
 return None
 return parameters.get_attr('wall_time_seconds')

 @classmethod
[docs] def get_atom_site_residual_force_Cartesian_x(cls,calc,**kwargs):
 """
 Returns a list of x components for Cartesian coordinates of
 residual force for atom. The list order MUST be the same as in
 the resulting structure.
 """
 return cls._get_atom_site_residual_force_Cartesian(calc,0)

 @classmethod
[docs] def get_atom_site_residual_force_Cartesian_y(cls,calc,**kwargs):
 """
 Returns a list of y components for Cartesian coordinates of
 residual force for atom. The list order MUST be the same as in
 the resulting structure.
 """
 return cls._get_atom_site_residual_force_Cartesian(calc,1)

 @classmethod
[docs] def get_atom_site_residual_force_Cartesian_z(cls,calc,**kwargs):
 """
 Returns a list of z components for Cartesian coordinates of
 residual force for atom. The list order MUST be the same as in
 the resulting structure.
 """
 return cls._get_atom_site_residual_force_Cartesian(calc,2)

 @classmethod
[docs] def get_BZ_integration_grid_X(cls,calc,**kwargs):
 """
 Returns a number of points in the Brillouin zone along reciprocal
 lattice vector X.
 """
 array = cls._get_BZ_integration_grid(calc,**kwargs)
 if array is not None:
 return array[0]
 else:
 return None

 @classmethod
[docs] def get_BZ_integration_grid_Y(cls,calc,**kwargs):
 """
 Returns a number of points in the Brillouin zone along reciprocal
 lattice vector Y.
 """
 array = cls._get_BZ_integration_grid(calc,**kwargs)
 if array is not None:
 return array[1]
 else:
 return None

 @classmethod
[docs] def get_BZ_integration_grid_Z(cls,calc,**kwargs):
 """
 Returns a number of points in the Brillouin zone along reciprocal
 lattice vector Z.
 """
 array = cls._get_BZ_integration_grid(calc,**kwargs)
 if array is not None:
 return array[2]
 else:
 return None

 @classmethod
[docs] def get_BZ_integration_grid_shift_X(cls,calc,**kwargs):
 """
 Returns the shift of the Brillouin zone points along reciprocal
 lattice vector X.
 """
 array = cls._get_BZ_integration_grid_shift(calc,**kwargs)
 if array is not None:
 return array[0]
 else:
 return None

 @classmethod
[docs] def get_BZ_integration_grid_shift_Y(cls,calc,**kwargs):
 """
 Returns the shift of the Brillouin zone points along reciprocal
 lattice vector Y.
 """
 array = cls._get_BZ_integration_grid_shift(calc,**kwargs)
 if array is not None:
 return array[1]
 else:
 return None

 @classmethod
[docs] def get_BZ_integration_grid_shift_Z(cls,calc,**kwargs):
 """
 Returns the shift of the Brillouin zone points along reciprocal
 lattice vector Z.
 """
 array = cls._get_BZ_integration_grid_shift(calc,**kwargs)
 if array is not None:
 return array[2]
 else:
 return None

 @classmethod
[docs] def get_integration_smearing_method(cls,calc,**kwargs):
 """
 Returns the smearing method name as string.
 """
 smearing = cls._get_raw_integration_smearing_method(calc,**kwargs)
 if smearing is None:
 return None
 elif smearing in cls._smearing_aliases:
 return cls._smearing_aliases[smearing]
 else:
 return 'other'

 @classmethod
[docs] def get_integration_smearing_method_other(cls,calc,**kwargs):
 """
 Returns the smearing method name as string if the name is different
 from specified in cif_dft.dic.
 """
 smearing = cls._get_raw_integration_smearing_method(calc,**kwargs)
 if smearing is None or smearing in cls._smearing_aliases:
 return None
 else:
 return smearing

 @classmethod
[docs] def get_integration_Methfessel_Paxton_order(cls,calc,**kwargs):
 """
 Returns the order of Methfessel-Paxton approximation if used.
 """
 if cls.get_integration_smearing_method(calc,**kwargs) == \
 'Methfessel-Paxton':
 return 1
 else:
 return None

 @classmethod
[docs] def get_kinetic_energy_cutoff_wavefunctions(cls,calc,**kwargs):
 """
 Returns kinetic energy cutoff for wavefunctions in eV.
 """
 from aiida.common.constants import ry_to_ev
 parameters = calc.inp.parameters
 ecutwfc = None
 try:
 ecutwfc = parameters.get_dict()['SYSTEM']['ecutwfc']
 except KeyError:
 pass
 if ecutwfc is None:
 return None
 else:
 return ecutwfc * ry_to_ev

 @classmethod
[docs] def get_kinetic_energy_cutoff_charge_density(cls,calc,**kwargs):
 """
 Returns kinetic energy cutoff for charge density in eV.

 .. note :: by default returns 4 * ecutwfc, as indicated in
 http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
 """
 from aiida.common.constants import ry_to_ev
 parameters = calc.inp.parameters
 try:
 return parameters.get_dict()['SYSTEM']['ecutrho'] * ry_to_ev
 except KeyError:
 pass
 ecutwfc = cls.get_kinetic_energy_cutoff_wavefunctions(calc)
 if ecutwfc is None:
 return None
 else:
 return 4 * ecutwfc

 @classmethod
[docs] def get_kinetic_energy_cutoff_EEX(cls,calc,**kwargs):
 """
 Returns kinetic energy cutoff for exact exchange (EEX)
 operator in eV.

 .. note :: by default returns ecutrho, as indicated in
 http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html
 """
 from aiida.common.constants import ry_to_ev
 parameters = calc.inp.parameters
 try:
 return parameters.get_dict()['SYSTEM']['ecutfock'] * ry_to_ev
 except KeyError:
 pass
 return cls.get_kinetic_energy_cutoff_charge_density(calc)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/data/folder.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.orm.data »

 Source code for aiida.orm.data.folder

-*- coding: utf-8 -*-
import os

from aiida.orm import Data
from aiida.common.exceptions import ModificationNotAllowed

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class FolderData(Data):
 """
 Stores a folder with subfolders and files.

 No special attributes are set.
 """

[docs] def replace_with_folder(self, folder, overwrite=True):
 """
 Replace the data with another folder, always copying and not moving the
 original files.

 Args:
 folder: the folder to copy from
 overwrite: if to overwrite the current content or not
 """

 if not os.path.isabs(folder):
 raise ValueError("folder must be an absolute path")

 # TODO: implement the logic on the folder? Or set a 'locked' flag on folders?

 if not self.is_stored:
 self._get_folder_pathsubfolder.replace_with_folder(folder, move=False, overwrite=overwrite)
 else:
 raise ModificationNotAllowed("You cannot change the files after the node has been stored")

[docs] def get_file_content(self, path):
 """
 Return the content of a path stored inside the folder as a string.

 :raise NotExistent: if the path does not exist.
 """
 from aiida.common.exceptions import NotExistent

 try:
 with open(self._get_folder_pathsubfolder.get_abs_path(
 path, check_existence=True)) as f:
 return f.read()
 except (OSError, IOError):
 raise NotExistent("Error reading the file '{}' inside node with "
 "pk= {}, it probably does not exist?".format(path, self.pk))

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/data/structure.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.orm.data »

 Source code for aiida.orm.data.structure

-*- coding: utf-8 -*-
"""
This module defines the classes for structures and all related
functions to operate on them.
"""

from aiida.orm import Data
from aiida.common.utils import classproperty, xyz_parser_iterator
from aiida.orm.calculation.inline import optional_inline
import itertools
import copy

Threshold used to check if the mass of two different Site objects is the same.

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

_mass_threshold = 1.e-3
Threshold to check if the sum is one or not
_sum_threshold = 1.e-6
Threshold used to check if the cell volume is not zero.
_volume_threshold = 1.e-6

Element table
from aiida.common.constants import elements

_valid_symbols = tuple(i['symbol'] for i in elements.values())
_atomic_masses = {el['symbol']: el['mass'] for el in elements.values()}
_atomic_numbers = {data['symbol']: num for num, data in elements.iteritems()}

def _get_valid_cell(inputcell):
 """
 Return the cell in a valid format from a generic input.

 :raise ValueError: whenever the format is not valid.
 """
 try:
 the_cell = tuple(tuple(float(c) for c in i) for i in inputcell)
 if len(the_cell) != 3:
 raise ValueError
 if any(len(i) != 3 for i in the_cell):
 raise ValueError
 except (IndexError, ValueError, TypeError):
 raise ValueError("Cell must be a list of three vectors, each "
 "defined as a list of three coordinates.")

 if abs(calc_cell_volume(the_cell)) < _volume_threshold:
 raise ValueError("The cell volume is zero. Invalid cell.")

 return the_cell

[docs]def get_valid_pbc(inputpbc):
 """
 Return a list of three booleans for the periodic boundary conditions,
 in a valid format from a generic input.

 :raise ValueError: if the format is not valid.
 """
 if isinstance(inputpbc, bool):
 the_pbc = (inputpbc, inputpbc, inputpbc)
 elif (hasattr(inputpbc, '__iter__')):
 # To manage numpy lists of bools, whose elements are of type numpy.bool_
 # and for which isinstance(i,bool) return False...
 if hasattr(inputpbc, 'tolist'):
 the_value = inputpbc.tolist()
 else:
 the_value = inputpbc
 if all(isinstance(i, bool) for i in the_value):
 if len(the_value) == 3:
 the_pbc = tuple(i for i in the_value)
 elif len(the_value) == 1:
 the_pbc = (the_value[0], the_value[0], the_value[0])
 else:
 raise ValueError("pbc length must be either one or three.")
 else:
 raise ValueError("pbc elements are not booleans.")
 else:
 raise ValueError("pbc must be a boolean or a list of three "
 "booleans.", inputpbc)

 return the_pbc

[docs]def has_ase():
 """
 :return: True if the ase module can be imported, False otherwise.
 """
 try:
 import ase
 except ImportError:
 return False
 return True

[docs]def has_pymatgen():
 """
 :return: True if the pymatgen module can be imported, False otherwise.
 """
 try:
 import pymatgen
 except ImportError:
 return False
 return True

[docs]def get_pymatgen_version():
 """
 :return: string with pymatgen version, None if can not import.
 """
 if not has_pymatgen():
 return None
 import pymatgen
 return pymatgen.__version__

[docs]def has_pyspglib():
 """
 :return: True if the pyspglib module can be imported, False otherwise.
 """
 try:
 import pyspglib
 except ImportError:
 return False
 return True

[docs]def calc_cell_volume(cell):
 """
 Calculates the volume of a cell given the three lattice vectors.

 It is calculated as cell[0] . (cell[1] x cell[2]), where . represents
 a dot product and x a cross product.

 :param cell: the cell vectors; the must be a 3x3 list of lists of floats,
 no other checks are done.

 :returns: the cell volume.
 """
 # returns the volume of the primitive cell: |a1.(a2xa3)|
 a1 = cell[0]
 a2 = cell[1]
 a3 = cell[2]
 a_mid_0 = a2[1] * a3[2] - a2[2] * a3[1]
 a_mid_1 = a2[2] * a3[0] - a2[0] * a3[2]
 a_mid_2 = a2[0] * a3[1] - a2[1] * a3[0]
 return abs(a1[0] * a_mid_0 + a1[1] * a_mid_1 + a1[2] * a_mid_2)

def _create_symbols_tuple(symbols):
 """
 Returns a tuple with the symbols provided. If a string is provided,
 this is converted to a tuple with one single element.
 """
 if isinstance(symbols, basestring):
 symbols_list = (symbols,)
 else:
 symbols_list = tuple(symbols)
 return symbols_list

def _create_weights_tuple(weights):
 """
 Returns a tuple with the weights provided. If a number is provided,
 this is converted to a tuple with one single element.
 If None is provided, this is converted to the tuple (1.,)
 """
 import numbers

 if weights is None:
 weights_tuple = (1.,)
 elif isinstance(weights, numbers.Number):
 weights_tuple = (weights,)
 else:
 weights_tuple = tuple(float(i) for i in weights)
 return weights_tuple

[docs]def validate_weights_tuple(weights_tuple, threshold):
 """
 Validates the weight of the atomic kinds.

 :raise: ValueError if the weights_tuple is not valid.

 :param weights_tuple: the tuple to validate. It must be a
 a tuple of floats (as created by :func:_create_weights_tuple).
 :param threshold: a float number used as a threshold to check that the sum
 of the weights is <= 1.

 If the sum is less than one, it means that there are vacancies.
 Each element of the list must be >= 0, and the sum must be <= 1.
 """
 w_sum = sum(weights_tuple)
 if (any(i < 0. for i in weights_tuple) or
 (w_sum - 1. > threshold)):
 raise ValueError("The weight list is not valid (each element "
 "must be positive, and the sum must be <= 1).")

[docs]def is_valid_symbol(symbol):
 """
 Validates the chemical symbol name.

 :return: True if the symbol is a valid chemical symbol (with correct
 capitalization), False otherwise.

 Recognized symbols are for elements from hydrogen (Z=1) to lawrencium
 (Z=103).
 """
 return symbol in _valid_symbols

[docs]def validate_symbols_tuple(symbols_tuple):
 """
 Used to validate whether the chemical species are valid.

 :param symbols_tuple: a tuple (or list) with the chemical symbols name.
 :raises: ValueError if any symbol in the tuple is not a valid chemical
 symbols (with correct capitalization).

 Refer also to the documentation of :func:is_valid_symbol
 """
 if len(symbols_tuple) == 0:
 valid = False
 else:
 valid = all(is_valid_symbol(sym) for sym in symbols_tuple)
 if not valid:
 raise ValueError("At least one element of the symbol list has "
 "not been recognized.")

[docs]def is_ase_atoms(ase_atoms):
 """
 Check if the ase_atoms parameter is actually a ase.Atoms object.

 :param ase_atoms: an object, expected to be an ase.Atoms.
 :return: a boolean.

 Requires the ability to import ase, by doing 'import ase'.
 """
 # TODO: Check if we want to try to import ase and do something
 # reasonable depending on whether ase is there or not.
 import ase

 return isinstance(ase_atoms, ase.Atoms)

[docs]def group_symbols(_list):
 """
 Group a list of symbols to a list containing the number of consecutive
 identical symbols, and the symbol itself.

 Examples:

 * ``['Ba','Ti','O','O','O','Ba']`` will return
 ``[[1,'Ba'],[1,'Ti'],[3,'O'],[1,'Ba']]``

 * ``[[[1,'Ba'],[1,'Ti']],[[1,'Ba'],[1,'Ti']]]`` will return
 ``[[2, [[1, 'Ba'], [1, 'Ti']]]]``

 :param _list: a list of elements representing a chemical formula
 :return: a list of length-2 lists of the form [multiplicity , element]
 """

 the_list = copy.deepcopy(_list)
 the_list.reverse()
 grouped_list = [[1, the_list.pop()]]
 while the_list:
 elem = the_list.pop()
 if elem == grouped_list[-1][1]:
 # same symbol is repeated
 grouped_list[-1][0] += 1
 else:
 grouped_list.append([1, elem])

 return grouped_list

[docs]def get_formula_from_symbol_list(_list, separator=""):
 """
 Return a string with the formula obtained from the list of symbols.
 Examples:
 * ``[[1,'Ba'],[1,'Ti'],[3,'O']]`` will return ``'BaTiO3'``
 * ``[[2, [[1, 'Ba'], [1, 'Ti']]]]`` will return ``'(BaTi)2'``

 :param _list: a list of symbols and multiplicities as obtained from
 the function group_symbols
 :param separator: a string used to concatenate symbols. Default empty.

 :return: a string
 """

 list_str = []
 for elem in _list:
 if elem[0] == 1:
 multiplicity_str = ''
 else:
 multiplicity_str = str(elem[0])

 if isinstance(elem[1], basestring):
 list_str.append("{}{}".format(elem[1], multiplicity_str))
 elif elem[0] > 1:
 list_str.append(
 "({}){}".format(get_formula_from_symbol_list(elem[1],
 separator=separator),
 multiplicity_str))
 else:
 list_str.append("{}{}".format(get_formula_from_symbol_list(elem[1],
 separator=separator),
 multiplicity_str))

 return separator.join(list_str)

[docs]def get_formula_group(symbol_list, separator=""):
 """
 Return a string with the chemical formula from a list of chemical symbols.
 The formula is written in a compact" way, i.e. trying to group as much as
 possible parts of the formula.

 .. note:: it works for instance very well if structure was obtained
 from an ASE supercell.

 Example of result:
 ``['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
 'Ba', 'Ti', 'Ti', 'O', 'O', 'O']`` will return ``'(BaTiO3)2BaTi2O3'``.

 :param symbol_list: list of symbols
 (e.g. ['Ba','Ti','O','O','O'])
 :param separator: a string used to concatenate symbols. Default empty.
 :returns: a string with the chemical formula for the given structure.
 """

 def group_together(_list, group_size, offset):
 """
 :param _list: a list
 :param group_size: size of the groups
 :param offset: beginning grouping after offset elements
 :return : a list of lists made of groups of size group_size
 obtained by grouping list elements together
 The first elements (up to _list[offset-1]) are not grouped
 example:
 ``group_together(['O','Ba','Ti','Ba','Ti'],2,1) =
 ['O',['Ba','Ti'],['Ba','Ti']]``
 """

 the_list = copy.deepcopy(_list)
 the_list.reverse()
 grouped_list = []
 for i in range(offset):
 grouped_list.append([the_list.pop()])

 while the_list:
 l = []
 for i in range(group_size):
 if the_list:
 l.append(the_list.pop())
 grouped_list.append(l)

 return grouped_list

 def cleanout_symbol_list(_list):
 """
 :param _list: a list of groups of symbols and multiplicities
 :return : a list where all groups with multiplicity 1 have
 been reduced to minimum
 example: ``[[1,[[1,'Ba']]]]`` will return ``[[1,'Ba']]``
 """
 the_list = []
 for elem in _list:
 if elem[0] == 1 and isinstance(elem[1], list):
 the_list.extend(elem[1])
 else:
 the_list.append(elem)

 return the_list

 def group_together_symbols(_list, group_size):
 """
 Successive application of group_together, group_symbols and
 cleanout_symbol_list, in order to group a symbol list, scanning all
 possible offsets, for a given group size
 :param _list: the symbol list (see function group_symbols)
 :param group_size: the size of the groups
 :return the_symbol_list: the new grouped symbol list
 :return has_grouped: True if we grouped something
 """
 the_symbol_list = copy.deepcopy(_list)
 has_grouped = False
 offset = 0
 while (not has_grouped) and (offset < group_size):
 grouped_list = group_together(the_symbol_list, group_size, offset)
 new_symbol_list = group_symbols(grouped_list)
 if (len(new_symbol_list) < len(grouped_list)):
 the_symbol_list = copy.deepcopy(new_symbol_list)
 the_symbol_list = cleanout_symbol_list(the_symbol_list)
 has_grouped = True
 # print get_formula_from_symbol_list(the_symbol_list)
 offset += 1

 return the_symbol_list, has_grouped

 def group_all_together_symbols(_list):
 """
 Successive application of the function group_together_symbols, to group
 a symbol list, scanning all possible offsets and group sizes
 :param _list: the symbol list (see function group_symbols)
 :return: the new grouped symbol list
 """
 has_finished = False
 group_size = 2
 n = len(_list)
 the_symbol_list = copy.deepcopy(_list)

 while (not has_finished) and (group_size <= n / 2):
 # try to group as much as possible by groups of size group_size
 the_symbol_list, has_grouped = group_together_symbols(
 the_symbol_list,
 group_size)
 has_finished = has_grouped
 group_size += 1
 # stop as soon as we managed to group something
 # or when the group_size is too big to get anything

 return the_symbol_list

 # initial grouping of the chemical symbols
 old_symbol_list = [-1]
 new_symbol_list = group_symbols(symbol_list)

 # successively apply the grouping procedure until the symbol list does not
 # change anymore
 while new_symbol_list != old_symbol_list:
 old_symbol_list = copy.deepcopy(new_symbol_list)
 new_symbol_list = group_all_together_symbols(old_symbol_list)

 return get_formula_from_symbol_list(new_symbol_list, separator=separator)

[docs]def get_formula(symbol_list, mode='hill', separator=""):
 """
 Return a string with the chemical formula.

 :param symbol_list: a list of symbols, e.g. ``['H','H','O']``
 :param mode: a string to specify how to generate the formula, can
 assume one of the following values:

 * 'hill' (default): count the number of atoms of each species,
 then use Hill notation, i.e. alphabetical order with C and H
 first if one or several C atom(s) is (are) present, e.g.
 ``['C','H','H','H','O','C','H','H','H']`` will return ``'C2H6O'``
 ``['S','O','O','H','O','H','O']`` will return ``'H2O4S'``
 From E. A. Hill, J. Am. Chem. Soc., 22 (8), pp 478–494 (1900)

 * 'hill_compact': same as hill but the number of atoms for each
 species is divided by the greatest common divisor of all of them, e.g.
 ``['C','H','H','H','O','C','H','H','H','O','O','O']``
 will return ``'CH3O2'``

 * 'reduce': group repeated symbols e.g.
 ``['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
 'Ba', 'Ti', 'Ti', 'O', 'O', 'O']`` will return ``'BaTiO3BaTiO3BaTi2O3'``

 * 'group': will try to group as much as possible parts of the formula
 e.g.
 ``['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
 'Ba', 'Ti', 'Ti', 'O', 'O', 'O']`` will return ``'(BaTiO3)2BaTi2O3'``

 * 'count': same as hill (i.e. one just counts the number
 of atoms of each species) without the re-ordering (take the
 order of the atomic sites), e.g.
 ``['Ba', 'Ti', 'O', 'O', 'O','Ba', 'Ti', 'O', 'O', 'O']``
 will return ``'Ba2Ti2O6'``

 * 'count_compact': same as count but the number of atoms
 for each species is divided by the greatest common divisor of
 all of them, e.g.
 ``['Ba', 'Ti', 'O', 'O', 'O','Ba', 'Ti', 'O', 'O', 'O']``
 will return ``'BaTiO3'``

 :param separator: a string used to concatenate symbols. Default empty.

 :return: a string with the formula

 .. note:: in modes reduce, group, count and count_compact, the
 initial order in which the atoms were appended by the user is
 used to group and/or order the symbols in the formula
 """

 if mode == 'group':
 return get_formula_group(symbol_list, separator=separator)

 # for hill and count cases, simply count the occurences of each
 # chemical symbol (with some re-ordering in hill)
 elif mode in ['hill', 'hill_compact']:
 symbol_set = set(symbol_list)
 first_symbols = []
 if 'C' in symbol_set:
 # remove C (and H if present) from list and put them at the
 # beginning
 symbol_set.remove('C')
 first_symbols.append('C')
 if 'H' in symbol_set:
 symbol_set.remove('H')
 first_symbols.append('H')
 ordered_symbol_set = first_symbols + list(sorted(symbol_set))
 the_symbol_list = [[symbol_list.count(elem), elem]
 for elem in ordered_symbol_set]

 elif mode in ['count', 'count_compact']:
 ordered_symbol_indexes = sorted([symbol_list.index(elem)
 for elem in set(symbol_list)])
 ordered_symbol_set = [symbol_list[i] for i in ordered_symbol_indexes]
 the_symbol_list = [[symbol_list.count(elem), elem]
 for elem in ordered_symbol_set]

 elif mode == 'reduce':
 the_symbol_list = group_symbols(symbol_list)

 else:
 raise ValueError('Mode should be hill, hill_compact, group, '
 'reduce, count or count_compact')

 if mode in ['hill_compact', 'count_compact']:

 def gcd_list(int_list):
 """
 Recursive function to get the greatest common divisor of
 a list of integers
 """
 from fractions import gcd
 if len(int_list) == 1:
 return int_list[0]
 elif len(int_list) == 2:
 return gcd(int_list[0], int_list[1])
 else:
 the_int_list = int_list[2:]
 the_int_list.append(gcd(int_list[0], int_list[1]))
 return gcd_list(the_int_list)

 the_gcd = gcd_list([e[0] for e in the_symbol_list])
 the_symbol_list = [[e[0] / the_gcd, e[1]] for e in the_symbol_list]

 return get_formula_from_symbol_list(the_symbol_list, separator=separator)

[docs]def get_symbols_string(symbols, weights):
 """
 Return a string that tries to match as good as possible the symbols
 and weights. If there is only one symbol (no alloy) with 100%
 occupancy, just returns the symbol name. Otherwise, groups the full
 string in curly brackets, and try to write also the composition
 (with 2 precision only).
 If (sum of weights<1), we indicate it with the X symbol followed
 by 1-sum(weights) (still with 2 digits precision, so it can be 0.00)

 :param symbols: the symbols as obtained from <kind>._symbols
 :param weights: the weights as obtained from <kind>._weights

 .. note:: Note the difference with respect to the symbols and the
 symbol properties!
 """
 if len(symbols) == 1 and weights[0] == 1.:
 return symbols[0]
 else:
 pieces = []
 for s, w in zip(symbols, weights):
 pieces.append("{}{:4.2f}".format(s, w))
 if has_vacancies(weights):
 pieces.append('X{:4.2f}'.format(1. - sum(weights)))
 return "{{{}}}".format("".join(sorted(pieces)))

[docs]def has_vacancies(weights):
 """
 Returns True if the sum of the weights is less than one.
 It uses the internal variable _sum_threshold as a threshold.
 :param weights: the weights
 :return: a boolean
 """
 w_sum = sum(weights)
 return not (1. - w_sum < _sum_threshold)

[docs]def symop_ortho_from_fract(cell):
 """
 Creates a matrix for conversion from orthogonal to fractional
 coordinates.

 Taken from
 svn://www.crystallography.net/cod-tools/trunk/lib/perl5/Fractional.pm,
 revision 850.

 :param cell: array of cell parameters (three lengths and three angles)
 """
 import math
 import numpy

 a, b, c, alpha, beta, gamma = cell
 alpha, beta, gamma = map(lambda x: math.pi * x / 180,
 alpha, beta, gamma)
 ca, cb, cg = map(math.cos, [alpha, beta, gamma])
 sg = math.sin(gamma)

 return numpy.array([
 [a, b * cg, c * cb],
 [0, b * sg, c * (ca - cb * cg) / sg],
 [0, 0,
 c * math.sqrt(sg * sg - ca * ca - cb * cb + 2 * ca * cb * cg) / sg]
])

[docs]def symop_fract_from_ortho(cell):
 """
 Creates a matrix for conversion from fractional to orthogonal
 coordinates.

 Taken from
 svn://www.crystallography.net/cod-tools/trunk/lib/perl5/Fractional.pm,
 revision 850.

 :param cell: array of cell parameters (three lengths and three angles)
 """
 import math
 import numpy

 a, b, c, alpha, beta, gamma = cell
 alpha, beta, gamma = map(lambda x: math.pi * x / 180,
 [alpha, beta, gamma])
 ca, cb, cg = map(math.cos, [alpha, beta, gamma])
 sg = math.sin(gamma)
 ctg = cg / sg
 D = math.sqrt(sg * sg - cb * cb - ca * ca + 2 * ca * cb * cg)

 return numpy.array([
 [1.0 / a, -(1.0 / a) * ctg, (ca * cg - cb) / (a * D)],
 [0, 1.0 / (b * sg), -(ca - cb * cg) / (b * D * sg)],
 [0, 0, sg / (c * D)],
])

[docs]def ase_refine_cell(aseatoms, **kwargs):
 """
 Detect the symmetry of the structure, remove symmetric atoms and
 refine unit cell.

 :param aseatoms: an ase.atoms.Atoms instance
 :param symprec: symmetry precision, used by pyspglib
 :return newase: refined cell with reduced set of atoms
 :return symmetry: a dictionary describing the symmetry space group
 """
 from pyspglib.spglib import refine_cell, get_symmetry_dataset
 from ase.atoms import Atoms
 cell, positions, numbers = refine_cell(aseatoms, **kwargs)

 refined_atoms = Atoms(numbers, scaled_positions=positions, cell=cell,
 pbc=True)

 sym_dataset = get_symmetry_dataset(refined_atoms, **kwargs)

 unique_numbers = []
 unique_positions = []

 for i in set(sym_dataset['equivalent_atoms']):
 unique_numbers.append(refined_atoms.numbers[i])
 unique_positions.append(refined_atoms.get_scaled_positions()[i])

 unique_atoms = Atoms(unique_numbers,
 scaled_positions=unique_positions,
 cell=cell, pbc=True)

 return unique_atoms, {'hm': sym_dataset['international'],
 'hall': sym_dataset['hall'],
 'tables': sym_dataset['number'],
 'rotations': sym_dataset['rotations'],
 'translations': sym_dataset['translations']}

@optional_inline
def _get_cif_ase_inline(struct=None, parameters=None):
 """
 Creates :py:class:`aiida.orm.data.cif.CifData` using ASE.

 .. note:: requires ASE module.
 """
 from aiida.orm.data.cif import CifData

 kwargs = {}
 if parameters is not None:
 kwargs = parameters.get_dict()
 cif = CifData(ase=struct.get_ase(**kwargs))
 formula = struct.get_formula(mode='hill', separator=' ')
 for i in cif.values.keys():
 cif.values[i]['_symmetry_space_group_name_H-M'] = 'P 1'
 cif.values[i]['_symmetry_space_group_name_Hall'] = 'P 1'
 cif.values[i]['_symmetry_Int_Tables_number'] = 1
 cif.values[i]['_cell_formula_units_Z'] = 1
 cif.values[i]['_chemical_formula_sum'] = formula
 return {'cif': cif}

[docs]class StructureData(Data):
 """
 This class contains the information about a given structure, i.e. a
 collection of sites together with a cell, the
 boundary conditions (whether they are periodic or not) and other
 related useful information.
 """
 _set_incompatibilities = [("ase", "cell"), ("ase", "pbc"),
 ("ase", "pymatgen"), ("ase", "pymatgen_molecule"),
 ("ase", "pymatgen_structure"),
 ("cell", "pymatgen"),
 ("cell", "pymatgen_molecule"),
 ("cell", "pymatgen_structure"),
 ("pbc", "pymatgen"), ("pbc", "pymatgen_molecule"),
 ("pbc", "pymatgen_structure"),
 ("pymatgen", "pymatgen_molecule"),
 ("pymatgen", "pymatgen_structure"),
 ("pymatgen_molecule", "pymatgen_structure")]

 @property
 def _set_defaults(self):
 parent_dict = super(StructureData, self)._set_defaults

 parent_dict.update({
 "pbc": [True, True, True],
 "cell": [[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]]
 })

 return parent_dict

[docs] def set_ase(self, aseatoms):
 """
 Load the structure from a ASE object
 """
 if is_ase_atoms(aseatoms):
 # Read the ase structure
 self.cell = aseatoms.cell
 self.pbc = aseatoms.pbc
 self.clear_kinds() # This also calls clear_sites
 for atom in aseatoms:
 self.append_atom(ase=atom)
 else:
 raise TypeError("The value is not an ase.Atoms object")

[docs] def set_pymatgen(self, obj, **kwargs):
 """
 Load the structure from a pymatgen object.

 .. note:: Requires the pymatgen module (version >= 3.0.13, usage
 of earlier versions may cause errors).
 """
 typestr = type(obj).__name__
 try:
 func = getattr(self, "set_pymatgen_{}".format(typestr.lower()))
 except AttributeError:
 raise AttributeError("Converter for '{}' to AiiDA structure "
 "does not exist".format(typestr))
 func(obj, **kwargs)

[docs] def set_pymatgen_molecule(self, mol, margin=5):
 """
 Load the structure from a pymatgen Molecule object.

 :param margin: the margin to be added in all directions of the
 bounding box of the molecule.

 .. note:: Requires the pymatgen module (version >= 3.0.13, usage
 of earlier versions may cause errors).
 """
 box = [max([x.coords.tolist()[0] for x in mol.sites]) -
 min([x.coords.tolist()[0] for x in mol.sites]) + 2 * margin,
 max([x.coords.tolist()[1] for x in mol.sites]) -
 min([x.coords.tolist()[1] for x in mol.sites]) + 2 * margin,
 max([x.coords.tolist()[2] for x in mol.sites]) -
 min([x.coords.tolist()[2] for x in mol.sites]) + 2 * margin]
 self.set_pymatgen_structure(mol.get_boxed_structure(*box))
 self.pbc = [False, False, False]

[docs] def set_pymatgen_structure(self, struct):
 """
 Load the structure from a pymatgen Structure object.

 .. note:: periodic boundary conditions are set to True in all
 three directions.
 .. note:: Requires the pymatgen module (version >= 3.0.13, usage
 of earlier versions may cause errors).
 """
 self.cell = struct.lattice.matrix.tolist()
 self.pbc = [True, True, True]
 self.clear_kinds()
 for site in struct.sites:
 self.append_atom(
 symbols=[x[0].symbol for x in site.species_and_occu.items()],
 weights=[x[1] for x in site.species_and_occu.items()],
 position=site.coords.tolist())

 def _validate(self):
 """
 Performs some standard validation tests.
 """

 from aiida.common.exceptions import ValidationError

 super(StructureData, self)._validate()

 try:
 _get_valid_cell(self.cell)
 except ValueError as e:
 raise ValidationError("Invalid cell: {}".format(e.message))

 try:
 get_valid_pbc(self.pbc)
 except ValueError as e:
 raise ValidationError(
 "Invalid periodic boundary conditions: {}".format(e.message))

 try:
 # This will try to create the kinds objects
 kinds = self.kinds
 except ValueError as e:
 raise ValidationError(
 "Unable to validate the kinds: {}".format(e.message))

 from collections import Counter

 counts = Counter([k.name for k in kinds])
 for c in counts:
 if counts[c] != 1:
 raise ValidationError("Kind with name '{}' appears {} times "
 "instead of only one".format(
 c, counts[c]))

 try:
 # This will try to create the sites objects
 sites = self.sites
 except ValueError as e:
 raise ValidationError(
 "Unable to validate the sites: {}".format(e.message))

 for site in sites:
 if site.kind_name not in [k.name for k in kinds]:
 raise ValidationError(
 "A site has kind {}, but no specie with that name exists"
 "".format(site.kind_name))

 kinds_without_sites = (
 set(k.name for k in kinds) - set(s.kind_name for s in sites))
 if kinds_without_sites:
 raise ValidationError("The following kinds are defined, but there "
 "are no sites with that kind: {}".format(
 list(kinds_without_sites)))

 def _prepare_xsf(self):
 """
 Write the given structure to a string of format XSF (for XCrySDen).
 """
 if self.is_alloy() or self.has_vacancies():
 raise NotImplementedError("XSF for alloys or systems with "
 "vacancies not implemented.")

 sites = self.sites

 return_string = "CRYSTAL\nPRIMVEC 1\n"
 for cell_vector in self.cell:
 return_string += " ".join(["%18.10f" % i for i in cell_vector])
 return_string += "\n"
 return_string += "PRIMCOORD 1\n"
 return_string += "%d 1\n" % len(sites)
 for site in sites:
 # I checked above that it is not an alloy, therefore I take the
 # first symbol
 return_string += "%s " % _atomic_numbers[
 self.get_kind(site.kind_name).symbols[0]]
 return_string += "%18.10f %18.10f %18.10f\n" % tuple(site.position)
 return return_string

 def _prepare_cif(self):
 """
 Write the given structure to a string of format CIF.
 """
 from aiida.orm.data.cif import CifData

 cif = CifData(ase=self.get_ase())
 return cif._prepare_cif()

 def _prepare_tcod(self, **kwargs):
 """
 Write the given structure to a string of format TCOD CIF.
 """
 from aiida.tools.dbexporters.tcod import export_cif
 return export_cif(self, **kwargs)

 def _prepare_xyz(self):
 """
 Write the given structure to a string of format XYZ.
 """
 from ase.io import write
 import tempfile

 with tempfile.NamedTemporaryFile() as f:
 write(f.name, self.get_ase(), format="xyz")
 f.flush()
 return f.read()

 def _parse_xyz(self, inputstring):
 """
 Read the structure from a string of format XYZ.
 """

 # idiom to get to the last block
 atoms = None
 for _, _, atoms in xyz_parser_iterator(inputstring):
 pass

 if atoms is None:
 raise TypeError("The data does not contain any XYZ data")

 self.clear_kinds()

 for sym, position in atoms:
 self.append_atom(symbols=sym, position=position)

 def _adjust_default_cell(self, vacuum_factor=1.0, vacuum_addition=10.0,
 pbc=(False, False, False)):
 """
 If the structure was imported from an xyz file, it lacks a defined cell,
 and the default cell is taken ([[1,0,0], [0,1,0], [0,0,1]]),
 leading to an unphysical definition of the structure.
 This method will adjust the cell
 """
 import numpy as np
 from ase.visualize import view
 from aiida.common.utils import get_extremas_from_positions

 # First, set PBC
 # All the checks are done in get_valid_pbc called by set_pbc, no need to check anything here
 self.set_pbc(pbc)

 # Calculating the minimal cell:
 positions = np.array([site.position for site in self.sites])
 position_min, position_max = get_extremas_from_positions(positions)

 # Translate the structure to the origin, such that the minimal values in each dimension
 # amount to (0,0,0)
 positions -= position_min
 for index, site in enumerate(self.get_attr('sites')):
 site['position'] = list(positions[index])

 # The orthorhombic cell that (just) accomodates the whole structure is now given by the
 # extremas of position in each dimension:
 minimal_orthorhombic_cell_dimensions = np.array(
 get_extremas_from_positions(positions)[1])
 minimal_orthorhombic_cell_dimensions = np.dot(vacuum_factor,
 minimal_orthorhombic_cell_dimensions)
 minimal_orthorhombic_cell_dimensions += vacuum_addition

 # Transform the vector (a, b, c) to [[a,0,0], [0,b,0], [0,0,c]]
 newcell = np.diag(minimal_orthorhombic_cell_dimensions)
 self.set_cell(newcell.tolist())

[docs] def get_symbols_set(self):
 """
 Return a set containing the names of all elements involved in
 this structure (i.e., for it joins the list of symbols for each
 kind k in the structure).

 :returns: a set of strings of element names.
 """
 return set(itertools.chain.from_iterable(
 kind.symbols for kind in self.kinds))

[docs] def get_formula(self, mode='hill', separator=""):
 """
 Return a string with the chemical formula.

 :param mode: a string to specify how to generate the formula, can
 assume one of the following values:

 * 'hill' (default): count the number of atoms of each species,
 then use Hill notation, i.e. alphabetical order with C and H
 first if one or several C atom(s) is (are) present, e.g.
 ``['C','H','H','H','O','C','H','H','H']`` will return ``'C2H6O'``
 ``['S','O','O','H','O','H','O']`` will return ``'H2O4S'``
 From E. A. Hill, J. Am. Chem. Soc., 22 (8), pp 478–494 (1900)

 * 'hill_compact': same as hill but the number of atoms for each
 species is divided by the greatest common divisor of all of them, e.g.
 ``['C','H','H','H','O','C','H','H','H','O','O','O']``
 will return ``'CH3O2'``

 * 'reduce': group repeated symbols e.g.
 ``['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
 'Ba', 'Ti', 'Ti', 'O', 'O', 'O']`` will return ``'BaTiO3BaTiO3BaTi2O3'``

 * 'group': will try to group as much as possible parts of the formula
 e.g.
 ``['Ba', 'Ti', 'O', 'O', 'O', 'Ba', 'Ti', 'O', 'O', 'O',
 'Ba', 'Ti', 'Ti', 'O', 'O', 'O']`` will return ``'(BaTiO3)2BaTi2O3'``

 * 'count': same as hill (i.e. one just counts the number
 of atoms of each species) without the re-ordering (take the
 order of the atomic sites), e.g.
 ``['Ba', 'Ti', 'O', 'O', 'O','Ba', 'Ti', 'O', 'O', 'O']``
 will return ``'Ba2Ti2O6'``

 * 'count_compact': same as count but the number of atoms
 for each species is divided by the greatest common divisor of
 all of them, e.g.
 ``['Ba', 'Ti', 'O', 'O', 'O','Ba', 'Ti', 'O', 'O', 'O']``
 will return ``'BaTiO3'``

 :param separator: a string used to concatenate symbols. Default empty.

 :return: a string with the formula

 .. note:: in modes reduce, group, count and count_compact, the
 initial order in which the atoms were appended by the user is
 used to group and/or order the symbols in the formula
 """

 symbol_list = [self.get_kind(s.kind_name).get_symbols_string()
 for s in self.sites]

 return get_formula(symbol_list, mode=mode, separator=separator)

[docs] def get_site_kindnames(self):
 """
 Return a list with length equal to the number of sites of this structure,
 where each element of the list is the kind name of the corresponding site.

 .. note:: This is NOT necessarily a list of chemical symbols! Use
 ``[self.get_kind(s.kind_name).get_symbols_string() for s in self.sites]``
 for chemical symbols

 :return: a list of strings
 """
 return [this_site.kind_name for this_site in self.sites]

[docs] def get_composition(self):
 """
 Returns the chemical composition of this structure as a dictionary,
 where each key is the kind symbol (e.g. H, Li, Ba),
 and each value is the number of occurences of that element in this
 structure. For BaZrO3 it would return {'Ba':1, 'Zr':1, 'O':3}.
 No reduction with smallest common divisor!

 :returns: a dictionary with the composition
 """
 symbols_list = [self.get_kind(s.kind_name).get_symbols_string()
 for s in self.sites]
 composition = {
 symbol: symbols_list.count(symbol)
 for symbol
 in set(symbols_list)
 }
 return composition

[docs] def get_ase(self):
 """
 Get the ASE object.
 Requires to be able to import ase.

 :return: an ASE object corresponding to this
 :py:class:`StructureData <aiida.orm.data.structure.StructureData>`
 object.

 .. note:: If any site is an alloy or has vacancies, a ValueError
 is raised (from the site.get_ase() routine).
 """
 return self._get_object_ase()

[docs] def get_pymatgen(self):
 """
 Get pymatgen object. Returns Structure for structures with
 periodic boundary conditions (in three dimensions) and Molecule
 otherwise.

 .. note:: Requires the pymatgen module (version >= 3.0.13, usage
 of earlier versions may cause errors).
 """
 return self._get_object_pymatgen()

[docs] def get_pymatgen_structure(self):
 """
 Get the pymatgen Structure object.

 .. note:: Requires the pymatgen module (version >= 3.0.13, usage
 of earlier versions may cause errors).

 :return: a pymatgen Structure object corresponding to this
 :py:class:`StructureData <aiida.orm.data.structure.StructureData>`
 object.
 :raise ValueError: if periodic boundary conditions do not hold
 in at least one dimension of real space.
 """
 return self._get_object_pymatgen_structure()

[docs] def get_pymatgen_molecule(self):
 """
 Get the pymatgen Molecule object.

 .. note:: Requires the pymatgen module (version >= 3.0.13, usage
 of earlier versions may cause errors).

 :return: a pymatgen Molecule object corresponding to this
 :py:class:`StructureData <aiida.orm.data.structure.StructureData>`
 object.
 """
 return self._get_object_pymatgen_molecule()

[docs] def append_kind(self, kind):
 """
 Append a kind to the
 :py:class:`StructureData <aiida.orm.data.structure.StructureData>`.
 It makes a copy of the kind.

 :param kind: the site to append, must be a Kind object.
 """
 from aiida.common.exceptions import ModificationNotAllowed

 if self.is_stored:
 raise ModificationNotAllowed(
 "The StructureData object cannot be modified, "
 "it has already been stored")

 new_kind = Kind(kind=kind) # So we make a copy

 if kind.name in [k.name for k in self.kinds]:
 raise ValueError("A kind with the same name ({}) already exists."
 "".format(kind.name))

 # If here, no exceptions have been raised, so I add the site.
 # I join two lists. Do not use .append, which would work in-place
 self._set_attr('kinds',
 self.get_attr('kinds', []) + [new_kind.get_raw()])
 # Note, this is a dict (with integer keys) so it allows for empty
 # spots!
 if not hasattr(self, '_internal_kind_tags'):
 self._internal_kind_tags = {}
 self._internal_kind_tags[len(
 self.get_attr('kinds')) - 1] = kind._internal_tag

[docs] def append_site(self, site):
 """
 Append a site to the
 :py:class:`StructureData <aiida.orm.data.structure.StructureData>`.
 It makes a copy of the site.

 :param site: the site to append. It must be a Site object.
 """
 from aiida.common.exceptions import ModificationNotAllowed

 if self.is_stored:
 raise ModificationNotAllowed(
 "The StructureData object cannot be modified, "
 "it has already been stored")

 new_site = Site(site=site) # So we make a copy

 if site.kind_name not in [k.name for k in self.kinds]:
 raise ValueError("No kind with name '{}', available kinds are: "
 "{}".format(site.kind_name,
 [k.name for k in self.kinds]))

 # If here, no exceptions have been raised, so I add the site.
 # I join two lists. Do not use .append, which would work in-place
 self._set_attr('sites',
 self.get_attr('sites', []) + [new_site.get_raw()])

[docs] def append_atom(self, **kwargs):
 """
 Append an atom to the Structure, taking care of creating the
 corresponding kind.

 :param ase: the ase Atom object from which we want to create a new atom
 (if present, this must be the only parameter)
 :param position: the position of the atom (three numbers in angstrom)
 :param ... symbols, weights, name: any further parameter is passed
 to the constructor of the Kind object. For the 'name' parameter,
 see the note below.

 .. note :: Note on the 'name' parameter (that is, the name of the kind):

 * if specified, no checks are done on existing species. Simply,
 a new kind with that name is created. If there is a name
 clash, a check is done: if the kinds are identical, no error
 is issued; otherwise, an error is issued because you are trying
 to store two different kinds with the same name.

 * if not specified, the name is automatically generated. Before
 adding the kind, a check is done. If other species with the
 same properties already exist, no new kinds are created, but
 the site is added to the existing (identical) kind.
 (Actually, the first kind that is encountered).
 Otherwise, the name is made unique first, by adding to the string
 containing the list of chemical symbols a number starting from 1,
 until an unique name is found

 .. note :: checks of equality of species are done using
 the :py:meth:`~Kind.compare_with` method.
 """
 aseatom = kwargs.pop('ase', None)
 if aseatom is not None:
 if kwargs:
 raise ValueError("If you pass 'ase' as a parameter to "
 "append_atom, you cannot pass any further"
 "parameter")
 position = aseatom.position
 kind = Kind(ase=aseatom)
 else:
 position = kwargs.pop('position', None)
 if position is None:
 raise ValueError("You have to specify the position of the "
 "new atom")
 # all remaining parameters
 kind = Kind(**kwargs)

 # I look for identical species only if the name is not specified
 _kinds = self.kinds

 if 'name' not in kwargs:
 # If the kind is identical to an existing one, I use the existing
 # one, otherwise I replace it
 exists_already = False
 for idx, existing_kind in enumerate(_kinds):
 try:
 existing_kind._internal_tag = self._internal_kind_tags[idx]
 except KeyError:
 # self._internal_kind_tags does not contain any info for
 # the kind in position idx: I don't have to add anything
 # then, and I continue
 pass
 if (kind.compare_with(existing_kind)[0]):
 kind = existing_kind
 exists_already = True
 break
 if not exists_already:
 # There is not an identical kind.
 # By default, the name of 'kind' just contains the elements.
 # I then check that the name of 'kind' does not already exist,
 # and if it exists I add a number (starting from 1) until I
 # find a non-used name.
 existing_names = [k.name for k in _kinds]
 simplename = kind.name
 counter = 1
 while kind.name in existing_names:
 kind.name = "{}{}".format(simplename, counter)
 counter += 1
 self.append_kind(kind)
 else: # 'name' was specified
 old_kind = None
 for existing_kind in _kinds:
 if existing_kind.name == kwargs['name']:
 old_kind = existing_kind
 break
 if old_kind is None:
 self.append_kind(kind)
 else:
 is_the_same, firstdiff = kind.compare_with(old_kind)
 if is_the_same:
 kind = old_kind
 else:
 raise ValueError("You are explicitly setting the name "
 "of the kind to '{}', that already "
 "exists, but the two kinds are different!"
 " (first difference: {})".format(
 kind.name, firstdiff))

 site = Site(kind_name=kind.name, position=position)
 self.append_site(site)

 # def _set_site_type(self, new_site, reset_type_if_needed):

 # """
 # Check if the site can be added (i.e., if no other sites with the same type exist, or if
 # they exist, then they are equal) and possibly sets its type.
 #
 # Args:
 # new_site: the new site to check, must be a Site object.
 # reset_type_if_needed: if False, an exception is raised if a site with same type but different
 # properties (mass, symbols, weights, ...) is found.
 # If True, and an atom with same type but different properties is found, all the sites
 # already present in self.sites are checked to see if there is a site with the same properties.
 # Then, the same type is set. Otherwise, a new type name is chosen adding a number to the site
 # name such that the type is different from the existing ones.
 # """
 # from aiida.common.exceptions import ModificationNotAllowed
 #
 # if not self._to_be_stored:
 # raise ModificationNotAllowed("The StructureData object cannot be modified, "
 # "it has already been stored")
 #
 # type_list = self.get_types()
 # if type_list:
 # types, positions = zip(*type_list)
 # else:
 # types = []
 # positions = []
 #
 # if new_site.type not in types:
 # # There is no element with this type, OK to insert
 # return
 #
 # # I get the index of the type, and the
 # # first atom of this type (there should always be at least one!)
 # type_idx = types.index(new_site.type)
 # site_idx = positions[type_idx][0]
 #
 # # If it is of the same type, I am happy
 # is_same_type, differences_str = new_site.compare_type(self.sites[site_idx])
 # if is_same_type:
 # return
 #
 # # If I am here, the type string is the same, but they are actually of different type!
 #
 # if not reset_type_if_needed:
 # errstr = ("The site you are trying to insert is of type '{}'. However, another site already "
 # "exists with same type, but with different properties! ({})".format(
 # new_site.type, differences_str))
 # raise ValueError(errstr)
 #
 # # I check if there is a atom of the same type
 # for site in self.sites:
 # is_same_type, _ = new_site.compare_type(site)
 # if is_same_type:
 # new_site.type = site.type
 # return
 #
 # # If I am here, I didn't find any existing site which is of the same type
 # existing_type_names = [the_type for the_type in types if the_type.startswith(new_site.type)]
 #
 # append_int = 1
 # while True:
 # new_typename = "{:s}{:d}".format(new_site.type, append_int)
 # if new_typename not in existing_type_names:
 # break
 # append_int += 1
 # new_site.type = new_typename

[docs] def clear_kinds(self):
 """
 Removes all kinds for the StructureData object.

 .. note:: Also clear all sites!
 """
 from aiida.common.exceptions import ModificationNotAllowed

 if self.is_stored:
 raise ModificationNotAllowed(
 "The StructureData object cannot be modified, "
 "it has already been stored")

 self._set_attr('kinds', [])
 self._internal_kind_tags = {}
 self.clear_sites()

[docs] def clear_sites(self):
 """
 Removes all sites for the StructureData object.
 """
 from aiida.common.exceptions import ModificationNotAllowed

 if self.is_stored:
 raise ModificationNotAllowed(
 "The StructureData object cannot be modified, "
 "it has already been stored")

 self._set_attr('sites', [])

 @property
 def sites(self):
 """
 Returns a list of sites.
 """
 try:
 raw_sites = self.get_attr('sites')
 except AttributeError:
 raw_sites = []
 return [Site(raw=i) for i in raw_sites]

 @property
 def kinds(self):
 """
 Returns a list of kinds.
 """
 try:
 raw_kinds = self.get_attr('kinds')
 except AttributeError:
 raw_kinds = []
 return [Kind(raw=i) for i in raw_kinds]

[docs] def get_kind(self, kind_name):
 """
 Return the kind object associated with the given kind name.

 :param kind_name: String, the name of the kind you want to get

 :return: The Kind object associated with the given kind_name, if
 a Kind with the given name is present in the structure.

 :raise: ValueError if the kind_name is not present.
 """
 # Cache the kinds, if stored, for efficiency
 if self.is_stored:
 try:
 kinds_dict = self._kinds_cache
 except AttributeError:
 self._kinds_cache = {_.name: _ for _ in self.kinds}
 kinds_dict = self._kinds_cache
 else:
 kinds_dict = {_.name: _ for _ in self.kinds}

 # Will raise ValueError if the kind is not present
 try:
 return kinds_dict[kind_name]
 except KeyError:
 raise ValueError("Kind name '{}' unknown".format(kind_name))

[docs] def get_kind_names(self):
 """
 Return a list of kind names (in the same order of the ``self.kinds``
 property, but return the names rather than Kind objects)

 .. note:: This is NOT necessarily a list of chemical symbols! Use
 get_symbols_set for chemical symbols

 :return: a list of strings.
 """
 return [k.name for k in self.kinds]

 @property
 def cell(self):
 """
 Returns the cell shape.

 :return: a 3x3 list of lists.
 """
 return copy.deepcopy(self.get_attr('cell'))

 @cell.setter
 def cell(self, value):
 self.set_cell(value)

 def set_cell(self, value):
 from aiida.common.exceptions import ModificationNotAllowed

 if self.is_stored:
 raise ModificationNotAllowed(
 "The StructureData object cannot be modified, "
 "it has already been stored")

 the_cell = _get_valid_cell(value)
 self._set_attr('cell', the_cell)

[docs] def reset_cell(self, new_cell):
 """
 Reset the cell of a structure not yet stored to a new value.

 :param new_cell: list specifying the cell vectors

 :raises:
 ModificationNotAllowed: if object is already stored
 """
 from aiida.common.exceptions import ModificationNotAllowed

 if self.is_stored:
 raise ModificationNotAllowed()

 self._set_attr('cell', new_cell)

[docs] def reset_sites_positions(self, new_positions, conserve_particle=True):
 """
 Replace all the Site positions attached to the Structure

 :param new_positions: list of (3D) positions for every sites.

 :param conserve_particle: if True, allows the possibility of removing a site.
 currently not implemented.

 :raises ModificationNotAllowed: if object is stored already
 :raises ValueError: if positions are invalid

 .. note:: it is assumed that the order of the new_positions is
 given in the same order of the one it's substituting, i.e. the
 kind of the site will not be checked.
 """
 from aiida.common.exceptions import ModificationNotAllowed

 if self.is_stored:
 raise ModificationNotAllowed()

 if not conserve_particle:
 # TODO:
 raise NotImplementedError
 else:

 # test consistency of th enew input
 n_sites = len(self.sites)
 if n_sites != len(new_positions) and conserve_particle:
 raise ValueError(
 "the new positions should be as many as the previous structure.")

 new_sites = []
 for i in range(n_sites):
 try:
 this_pos = [float(j) for j in new_positions[i]]
 except ValueError:
 raise ValueError(
 "Expecting a list of floats. Found instead {}"
 .format(new_positions[i]))

 if len(this_pos) != 3:
 raise ValueError("Expecting a list of lists of length 3. "
 "found instead {}".format(len(this_pos)))

 # now append this Site to the new_site list.
 new_site = Site(site=self.sites[i]) # So we make a copy
 new_site.position = copy.deepcopy(this_pos)
 new_sites.append(new_site)

 # now clear the old sites, and substitute with the new ones
 self.clear_sites()
 for this_new_site in new_sites:
 self.append_site(this_new_site)

 @property
 def pbc(self):
 """
 Get the periodic boundary conditions.

 :return: a tuple of three booleans, each one tells if there are periodic
 boundary conditions for the i-th real-space direction (i=1,2,3)
 """
 # return copy.deepcopy(self._pbc)
 return (
 self.get_attr('pbc1'), self.get_attr('pbc2'), self.get_attr('pbc3'))

 @pbc.setter
 def pbc(self, value):
 self.set_pbc(value)

 def set_pbc(self, value):
 from aiida.common.exceptions import ModificationNotAllowed

 if self.is_stored:
 raise ModificationNotAllowed(
 "The StructureData object cannot be modified, "
 "it has already been stored")
 the_pbc = get_valid_pbc(value)

 # self._pbc = the_pbc
 self._set_attr('pbc1', the_pbc[0])
 self._set_attr('pbc2', the_pbc[1])
 self._set_attr('pbc3', the_pbc[2])

 @property
 def cell_lengths(self):
 """
 Get the lengths of cell lattice vectors in angstroms.
 """
 import numpy

 cell = self.cell
 return [
 numpy.linalg.norm(cell[0]),
 numpy.linalg.norm(cell[1]),
 numpy.linalg.norm(cell[2]),
]

 @cell_lengths.setter
 def cell_lengths(self, value):
 self.set_cell_lengths(value)

 def set_cell_lengths(self, value):
 raise NotImplementedError("Modification is not implemented yet")

 @property
 def cell_angles(self):
 """
 Get the angles between the cell lattice vectors in degrees.
 """
 import numpy

 cell = self.cell
 lengths = self.cell_lengths
 return [float(numpy.arccos(x) / numpy.pi * 180) for x in [
 numpy.vdot(cell[1], cell[2]) / lengths[1] / lengths[2],
 numpy.vdot(cell[0], cell[2]) / lengths[0] / lengths[2],
 numpy.vdot(cell[0], cell[1]) / lengths[0] / lengths[1],
]]

 @cell_angles.setter
 def cell_angles(self, value):
 self.set_cell_angles(value)

 def set_cell_angles(self, value):
 raise NotImplementedError("Modification is not implemented yet")

[docs] def is_alloy(self):
 """
 To understand if there are alloys in the structure.

 :return: a boolean, True if at least one kind is an alloy
 """
 return any(s.is_alloy() for s in self.kinds)

[docs] def has_vacancies(self):
 """
 To understand if there are vacancies in the structure.

 :return: a boolean, True if at least one kind has a vacancy
 """
 return any(s.has_vacancies() for s in self.kinds)

[docs] def get_cell_volume(self):
 """
 Returns the cell volume in Angstrom^3.

 :return: a float.
 """
 return calc_cell_volume(self.cell)

 def _get_cif(self, converter='ase', store=False, **kwargs):
 """
 Creates :py:class:`aiida.orm.data.cif.CifData`.

 :param converter: specify the converter. Default 'ase'.
 :param store: If True, intermediate calculation gets stored in the
 AiiDA database for record. Default False.
 :return: :py:class:`aiida.orm.data.cif.CifData` node.
 """
 from aiida.orm.data.parameter import ParameterData
 import structure # This same module

 param = ParameterData(dict=kwargs)
 try:
 conv_f = getattr(structure, '_get_cif_{}_inline'.format(converter))
 except AttributeError:
 raise ValueError(
 "No such converter '{}' available".format(converter))
 ret_dict = conv_f(struct=self, parameters=param, store=store)
 return ret_dict['cif']

 def _get_object_phonopyatoms(self):
 """
 Converts StructureData to PhonopyAtoms

 :return: a PhonopyAtoms object
 """
 from phonopy.structure.atoms import Atoms as PhonopyAtoms

 atoms = PhonopyAtoms(symbols=[_.kind_name for _ in self.sites])
 # Phonopy internally uses scaled positions, so you must store cell first!
 atoms.set_cell(self.cell)
 atoms.set_positions([_.position for _ in self.sites])

 return atoms

 def _get_object_ase(self):
 """
 Converts
 :py:class:`StructureData <aiida.orm.data.structure.StructureData>`
 to ase.Atoms

 :return: an ase.Atoms object
 """
 import ase

 asecell = ase.Atoms(cell=self.cell, pbc=self.pbc)
 _kinds = self.kinds

 for site in self.sites:
 asecell.append(site.get_ase(kinds=_kinds))
 return asecell

 def _get_object_pymatgen(self):
 """
 Converts
 :py:class:`StructureData <aiida.orm.data.structure.StructureData>`
 to pymatgen object

 :return: a pymatgen Structure for structures with periodic boundary
 conditions (in three dimensions) and Molecule otherwise

 .. note:: Requires the pymatgen module (version >= 3.0.13, usage
 of earlier versions may cause errors).
 """
 if self.pbc == (True, True, True):
 return self._get_object_pymatgen_structure()
 else:
 return self._get_object_pymatgen_molecule()

 def _get_object_pymatgen_structure(self):
 """
 Converts
 :py:class:`StructureData <aiida.orm.data.structure.StructureData>`
 to pymatgen Structure object

 :return: a pymatgen Structure object corresponding to this
 :py:class:`StructureData <aiida.orm.data.structure.StructureData>`
 object
 :raise ValueError: if periodic boundary conditions does not hold
 in at least one dimension of real space

 .. note:: Requires the pymatgen module (version >= 3.0.13, usage
 of earlier versions may cause errors)
 """
 from pymatgen.core.structure import Structure

 if self.pbc != (True, True, True):
 raise ValueError("Periodic boundary conditions must apply in "
 "all three dimensions of real space")

 species = []
 for s in self.sites:
 k = self.get_kind(s.kind_name)
 species.append({s: w for s, w in zip(k.symbols, k.weights)})

 positions = [list(x.position) for x in self.sites]
 return Structure(self.cell, species, positions,
 coords_are_cartesian=True)

 def _get_object_pymatgen_molecule(self):
 """
 Converts
 :py:class:`StructureData <aiida.orm.data.structure.StructureData>`
 to pymatgen Molecule object

 :return: a pymatgen Molecule object corresponding to this
 :py:class:`StructureData <aiida.orm.data.structure.StructureData>`
 object.

 .. note:: Requires the pymatgen module (version >= 3.0.13, usage
 of earlier versions may cause errors)
 """
 from pymatgen.core.structure import Molecule

 species = []
 for s in self.sites:
 k = self.get_kind(s.kind_name)
 species.append({s: w for s, w in zip(k.symbols, k.weights)})

 positions = [list(x.position) for x in self.sites]
 return Molecule(species, positions)

[docs]class Kind(object):
 """
 This class contains the information about the species (kinds) of the system.

 It can be a single atom, or an alloy, or even contain vacancies.
 """

[docs] def __init__(self, **kwargs):
 """
 Create a site.
 One can either pass:

 :param raw: the raw python dictionary that will be converted to a
 Kind object.
 :param ase: an ase Atom object
 :param kind: a Kind object (to get a copy)

 Or alternatively the following parameters:

 :param symbols: a single string for the symbol of this site, or a list
 of symbol strings
 :param weights (optional): the weights for each atomic species of
 this site.
 If only a single symbol is provided, then this value is
 optional and the weight is set to 1.
 :param mass (optional): the mass for this site in atomic mass units.
 If not provided, the mass is set by the
 self.reset_mass() function.
 :param name: a string that uniquely identifies the kind, and that
 is used to identify the sites.
 """
 # Internal variables
 self._mass = None
 self._symbols = None
 self._weights = None
 self._name = None

 # It will be remain to None in general; it is used to further
 # identify this species. At the moment, it is used only when importing
 # from ASE, if the species had a tag (different from zero).
 ## NOTE! This is not persisted on DB but only used while the class
 # is loaded in memory (i.e., it is not output with the get_raw() method)
 self._internal_tag = None

 # Logic to create the site from the raw format
 if 'raw' in kwargs:
 if len(kwargs) != 1:
 raise ValueError("If you pass 'raw', then you cannot pass "
 "any other parameter.")

 raw = kwargs['raw']

 try:
 self.set_symbols_and_weights(raw['symbols'], raw['weights'])
 except KeyError:
 raise ValueError("You didn't specify either 'symbols' or "
 "'weights' in the raw site data.")
 try:
 self.mass = raw['mass']
 except KeyError:
 raise ValueError("You didn't specify the site mass in the "
 "raw site data.")

 try:
 self.name = raw['name']
 except KeyError:
 raise ValueError("You didn't specify the name in the "
 "raw site data.")

 elif 'kind' in kwargs:
 if len(kwargs) != 1:
 raise ValueError("If you pass 'kind', then you cannot pass "
 "any other parameter.")
 oldkind = kwargs['kind']

 try:
 self.set_symbols_and_weights(oldkind.symbols, oldkind.weights)
 self.mass = oldkind.mass
 self.name = oldkind.name
 self._internal_tag = oldkind._internal_tag
 except AttributeError:
 raise ValueError("Error using the Kind object. Are you sure "
 "it is a Kind object? [Introspection says it is "
 "{}]".format(str(type(oldkind))))

 elif 'ase' in kwargs:
 aseatom = kwargs['ase']
 if len(kwargs) != 1:
 raise ValueError("If you pass 'ase', then you cannot pass "
 "any other parameter.")

 try:
 import numpy
 self.set_symbols_and_weights([aseatom.symbol], [1.])
 # ASE sets mass to numpy.nan for unstable species
 if not numpy.isnan(aseatom.mass):
 self.mass = aseatom.mass
 else:
 self.reset_mass()
 except AttributeError:
 raise ValueError("Error using the aseatom object. Are you sure "
 "it is a ase.atom.Atom object? [Introspection says it is "
 "{}]".format(str(type(aseatom))))
 if aseatom.tag != 0:
 self.set_automatic_kind_name(tag=aseatom.tag)
 self._internal_tag = aseatom.tag
 else:
 self.set_automatic_kind_name()
 else:
 if 'symbols' not in kwargs:
 raise ValueError("'symbols' need to be "
 "specified (at least) to create a Site object. Otherwise, "
 "pass a raw site using the 'raw' parameter.")
 weights = kwargs.pop('weights', None)
 self.set_symbols_and_weights(kwargs.pop('symbols'), weights)
 try:
 self.mass = kwargs.pop('mass')
 except KeyError:
 self.reset_mass()
 try:
 self.name = kwargs.pop('name')
 except KeyError:
 self.set_automatic_kind_name()
 if kwargs:
 raise ValueError("Unrecognized parameters passed to Kind "
 "constructor: {}".format(kwargs.keys()))

[docs] def get_raw(self):
 """
 Return the raw version of the site, mapped to a suitable dictionary.
 This is the format that is actually used to store each kind of the
 structure in the DB.

 :return: a python dictionary with the kind.
 """
 return {
 'symbols': self.symbols,
 'weights': self.weights,
 'mass': self.mass,
 'name': self.name,
 }

 # def get_ase(self):

 # """
 # Return a ase.Atom object for this kind, setting the position to
 # the origin.
 #
 # Note: If any site is an alloy or has vacancies, a ValueError is
 # raised (from the site.get_ase() routine).
 # """
 # import ase
 # if self.is_alloy() or self.has_vacancies():
 # raise ValueError("Cannot convert to ASE if the site is an alloy "
 # "or has vacancies.")
 # aseatom = ase.Atom(position=[0.,0.,0.], symbol=self.symbols[0],
 # mass=self.mass)
 # return aseatom

[docs] def reset_mass(self):
 """
 Reset the mass to the automatic calculated value.

 The mass can be set manually; by default, if not provided,
 it is the mass of the constituent atoms, weighted with their
 weight (after the weight has been normalized to one to take
 correctly into account vacancies).

 This function uses the internal _symbols and _weights values and
 thus assumes that the values are validated.

 It sets the mass to None if the sum of weights is zero.
 """
 w_sum = sum(self._weights)

 if abs(w_sum) < _sum_threshold:
 self._mass = None
 return

 normalized_weights = (i / w_sum for i in self._weights)
 element_masses = (_atomic_masses[sym] for sym in self._symbols)
 # Weighted mass
 self._mass = sum([i * j for i, j in
 zip(normalized_weights, element_masses)])

 @property
 def name(self):
 """
 Return the name of this kind.
 The name of a kind is used to identify the species of a site.

 :return: a string
 """
 return self._name

 @name.setter
 def name(self, value):
 """
 Set the name of this site (a string).
 """
 self._name = unicode(value)

[docs] def set_automatic_kind_name(self, tag=None):
 """
 Set the type to a string obtained with the symbols appended one
 after the other, without spaces, in alphabetical order;
 if the site has a vacancy, a X is appended at the end too.
 """
 sorted_symbol_list = list(set(self.symbols))
 sorted_symbol_list.sort() # In-place sort
 name_string = "".join(sorted_symbol_list)
 if self.has_vacancies():
 name_string += "X"
 if tag is None:
 self.name = name_string
 else:
 self.name = "{}{}".format(name_string, tag)

[docs] def compare_with(self, other_kind):
 """
 Compare with another Kind object to check if they are different.

 .. note:: This does NOT check the 'type' attribute. Instead, it compares
 (with reasonable thresholds, where applicable): the mass, and the list
 of symbols and of weights. Moreover, it compares the
 ``_internal_tag``, if defined (at the moment, defined automatically
 only when importing the Kind from ASE, if the atom has a non-zero tag).
 Note that the _internal_tag is only used while the class is loaded,
 but is not persisted on the database.

 :return: A tuple with two elements. The first one is True if the two sites
 are 'equivalent' (same mass, symbols and weights), False otherwise.
 The second element of the tuple is a string,
 which is either None (if the first element was True), or contains
 a 'human-readable' description of the first difference encountered
 between the two sites.
 """
 # Check length of symbols
 if len(self.symbols) != len(other_kind.symbols):
 return (False, "Different length of symbols list")

 # Check list of symbols
 for i in range(len(self.symbols)):
 if self.symbols[i] != other_kind.symbols[i]:
 return (False, "Symbol at position {:d} are different "
 "({} vs. {})".format(
 i + 1, self.symbols[i], other_kind.symbols[i]))
 # Check weights (assuming length of weights and of symbols have same
 # length, which should be always true
 for i in range(len(self.weights)):
 if self.weights[i] != other_kind.weights[i]:
 return (False, "Weight at position {:d} are different "
 "({} vs. {})".format(
 i + 1, self.weights[i], other_kind.weights[i]))
 # Check masses
 if abs(self.mass - other_kind.mass) > _mass_threshold:
 return (False, "Masses are different ({} vs. {})"
 "".format(self.mass, other_kind.mass))

 if self._internal_tag != other_kind._internal_tag:
 return (False, "Internal tags are different ({} vs. {})"
 "".format(self._internal_tag,
 other_kind._internal_tag))

 # If we got here, the two Site objects are similar enough
 # to be considered of the same kind
 return (True, "")

 @property
 def mass(self):
 """
 The mass of this species kind.

 :return: a float
 """
 return self._mass

 @mass.setter
 def mass(self, value):
 the_mass = float(value)
 if the_mass <= 0:
 raise ValueError("The mass must be positive.")
 self._mass = the_mass

 @property
 def weights(self):
 """
 Weights for this species kind. Refer also to
 :func:validate_symbols_tuple for the validation rules on the weights.
 """
 return copy.deepcopy(self._weights)

 @weights.setter
 def weights(self, value):
 """
 If value is a number, a single weight is used. Otherwise, a list or
 tuple of numbers is expected.
 None is also accepted, corresponding to the list [1.].
 """
 weights_tuple = _create_weights_tuple(value)

 if len(weights_tuple) != len(self._symbols):
 raise ValueError("Cannot change the number of weights. Use the "
 "set_symbols_and_weights function instead.")
 validate_weights_tuple(weights_tuple, _sum_threshold)

 self._weights = weights_tuple

[docs] def get_symbols_string(self):
 """
 Return a string that tries to match as good as possible the symbols
 of this kind. If there is only one symbol (no alloy) with 100%
 occupancy, just returns the symbol name. Otherwise, groups the full
 string in curly brackets, and try to write also the composition
 (with 2 precision only).

 .. note:: If there is a vacancy (sum of weights<1), we indicate it
 with the X symbol followed by 1-sum(weights) (still with 2
 digits precision, so it can be 0.00)

 .. note:: Note the difference with respect to the symbols and the
 symbol properties!
 """
 return get_symbols_string(self._symbols, self._weights)

 @property
 def symbol(self):
 """
 If the kind has only one symbol, return it; otherwise, raise a
 ValueError.
 """
 if len(self._symbols) == 1:
 return self._symbols[0]
 else:
 raise ValueError("This kind has more than one symbol (it is an "
 "alloy): {}".format(self._symbols))

 @property
 def symbols(self):
 """
 List of symbols for this site. If the site is a single atom,
 pass a list of one element only, or simply the string for that atom.
 For alloys, a list of elements.

 .. note:: Note that if you change the list of symbols, the kind
 name remains unchanged.
 """
 return copy.deepcopy(self._symbols)

 @symbols.setter
 def symbols(self, value):
 """
 If value is a string, a single symbol is used. Otherwise, a list or
 tuple of strings is expected.

 I set a copy of the list, so to avoid that the content changes
 after the value is set.
 """
 symbols_tuple = _create_symbols_tuple(value)

 if len(symbols_tuple) != len(self._weights):
 raise ValueError("Cannot change the number of symbols. Use the "
 "set_symbols_and_weights function instead.")
 validate_symbols_tuple(symbols_tuple)

 self._symbols = symbols_tuple

[docs] def set_symbols_and_weights(self, symbols, weights):
 """
 Set the chemical symbols and the weights for the site.

 .. note:: Note that the kind name remains unchanged.
 """
 symbols_tuple = _create_symbols_tuple(symbols)
 weights_tuple = _create_weights_tuple(weights)
 if len(symbols_tuple) != len(weights_tuple):
 raise ValueError("The number of symbols and weights must coincide.")
 validate_symbols_tuple(symbols_tuple)
 validate_weights_tuple(weights_tuple, _sum_threshold)
 self._symbols = symbols_tuple
 self._weights = weights_tuple

[docs] def is_alloy(self):
 """
 To understand if kind is an alloy.

 :return: True if the kind has more than one element (i.e.,
 len(self.symbols) != 1), False otherwise.
 """
 return len(self._symbols) != 1

[docs] def has_vacancies(self):
 """
 Returns True if the sum of the weights is less than one.
 It uses the internal variable _sum_threshold as a threshold.

 :return: a boolean
 """
 return has_vacancies(self._weights)

 def __repr__(self):
 return '<{}: {}>'.format(self.__class__.__name__, str(self))

 def __str__(self):
 symbol = self.get_symbols_string()
 return "name '{}', symbol '{}'".format(self.name, symbol)

[docs]class Site(object):
 """
 This class contains the information about a given site of the system.

 It can be a single atom, or an alloy, or even contain vacancies.
 """

[docs] def __init__(self, **kwargs):
 """
 Create a site.

 :param kind_name: a string that identifies the kind (species) of this site.
 This has to be found in the list of kinds of the StructureData
 object.
 Validation will be done at the StructureData level.
 :param position: the absolute position (three floats) in angstrom
 """
 self._kind_name = None
 self._position = None

 if 'site' in kwargs:
 site = kwargs.pop('site')
 if kwargs:
 raise ValueError("If you pass 'site', you cannot pass any "
 "further parameter to the Site constructor")
 if not isinstance(site, Site):
 raise ValueError("'site' must be of type Site")
 self.kind_name = site.kind_name
 self.position = site.position
 elif 'raw' in kwargs:
 raw = kwargs.pop('raw')
 if kwargs:
 raise ValueError("If you pass 'raw', you cannot pass any "
 "further parameter to the Site constructor")
 try:
 self.kind_name = raw['kind_name']
 self.position = raw['position']
 except KeyError as e:
 raise ValueError("Invalid raw object, it does not contain any "
 "key {}".format(e.message))
 except TypeError:
 raise ValueError("Invalid raw object, it is not a dictionary")

 else:
 try:
 self.kind_name = kwargs.pop('kind_name')
 self.position = kwargs.pop('position')
 except KeyError as e:
 raise ValueError("You need to specify {}".format(e.message))
 if kwargs:
 raise ValueError("Unrecognized parameters: {}".format(
 kwargs.keys))

[docs] def get_raw(self):
 """
 Return the raw version of the site, mapped to a suitable dictionary.
 This is the format that is actually used to store each site of the
 structure in the DB.

 :return: a python dictionary with the site.
 """
 return {
 'position': self.position,
 'kind_name': self.kind_name,
 }

[docs] def get_ase(self, kinds):
 """
 Return a ase.Atom object for this site.

 :param kinds: the list of kinds from the StructureData object.

 .. note:: If any site is an alloy or has vacancies, a ValueError
 is raised (from the site.get_ase() routine).
 """
 from collections import defaultdict
 import ase

 # I create the list of tags
 tag_list = []
 used_tags = defaultdict(list)
 for k in kinds:
 # Skip alloys and vacancies
 if k.is_alloy() or k.has_vacancies():
 tag_list.append(None)
 # If the kind name is equal to the specie name,
 # then no tag should be set
 elif unicode(k.name) == unicode(k.symbols[0]):
 tag_list.append(None)
 else:
 # Name is not the specie name
 if k.name.startswith(k.symbols[0]):
 try:
 new_tag = int(k.name[len(k.symbols[0])])
 tag_list.append(new_tag)
 used_tags[k.symbols[0]].append(new_tag)
 continue
 except ValueError:
 pass
 tag_list.append(k.symbols[0]) # I use a string as a placeholder

 for i in range(len(tag_list)):
 # If it is a string, it is the name of the element,
 # and I have to generate a new integer for this element
 # and replace tag_list[i] with this new integer
 if isinstance(tag_list[i], basestring):
 # I get a list of used tags for this element
 existing_tags = used_tags[tag_list[i]]
 if existing_tags:
 new_tag = max(existing_tags) + 1
 else: # empty list
 new_tag = 1
 # I store it also as a used tag!
 used_tags[tag_list[i]].append(new_tag)
 # I update the tag
 tag_list[i] = new_tag

 found = False
 for k, t in zip(kinds, tag_list):
 if k.name == self.kind_name:
 kind = k
 tag = t
 found = True
 break
 if not found:
 raise ValueError("No kind '{}' has been found in the list of kinds"
 "".format(self.kind_name))

 if kind.is_alloy() or kind.has_vacancies():
 raise ValueError("Cannot convert to ASE if the kind represents "
 "an alloy or it has vacancies.")
 aseatom = ase.Atom(position=self.position,
 symbol=str(kind.symbols[0]),
 mass=kind.mass)
 if tag is not None:
 aseatom.tag = tag
 return aseatom

 @property
 def kind_name(self):
 """
 Return the kind name of this site (a string).

 The type of a site is used to decide whether two sites are identical
 (same mass, symbols, weights, ...) or not.
 """
 return self._kind_name

 @kind_name.setter
 def kind_name(self, value):
 """
 Set the type of this site (a string).
 """
 self._kind_name = unicode(value)

 @property
 def position(self):
 """
 Return the position of this site in absolute coordinates,
 in angstrom.
 """
 return copy.deepcopy(self._position)

 @position.setter
 def position(self, value):
 """
 Set the position of this site in absolute coordinates,
 in angstrom.
 """
 try:
 internal_pos = tuple(float(i) for i in value)
 if len(internal_pos) != 3:
 raise ValueError
 # value is not iterable or elements are not floats or len != 3
 except (ValueError, TypeError):
 raise ValueError("Wrong format for position, must be a list of "
 "three float numbers.")
 self._position = internal_pos

 def __repr__(self):
 return '<{}: {}>'.format(self.__class__.__name__, str(self))

 def __str__(self):
 return "kind name '{}' @ {},{},{}".format(self.kind_name,
 self.position[0],
 self.position[1],
 self.position[2])

[docs]def get_structuredata_from_qeinput(filepath=None, text=None):
 """
 Function that receives either
 :param filepath: the filepath storing **or**
 :param text: the string of a standard QE-input file.
 An instance of :func:`StructureData` is initialized with kinds, positions and cell
 as defined in the input file.
 This function can deal with ibrav being set different from 0 and the cell being defined
 with celldm(n) or A,B,C, cosAB etc.
 """
 import re
 import numpy as np
 from aiida.common.constants import bohr_to_ang
 from aiida.common.exceptions import InputValidationError
 from aiida.common.utils import get_fortfloat

 # This regular expression finds the block where Atomic positions are defined:
 pos_block_regex = re.compile(r"""
 ^ \s* ATOMIC_POSITIONS \s* # Atomic positions start with that string
 [{(]? \s* (?P<units>\S+?)? \s* [)}]? \s* $\n # The units are after the string in optional brackets
 (?P<positions> # This is the block of positions
 (
 (
 \s* # White space in front of the element spec is ok
 (
 [A-Za-z]+[A-Za-z0-9]{0,2} # Element spec
 (
 \s+ # White space in front of the number
 [-|+]? # Plus or minus in front of the number (optional)
 (
 (
 \d* # optional decimal in the beginning .0001 is ok, for example
 [\.] # There has to be a dot followed by
 \d+ # at least one decimal
)
 | # OR
 (
 \d+ # at least one decimal, followed by
 [\.]? # an optional dot (both 1 and 1. are fine)
 \d* # And optional number of decimals (1.00001)
) # followed by optional decimals
)
 ([E|e|d|D][+|-]?\d+)? # optional exponents E+03, e-05
){3} # I expect three float values
 ((\s+[0-1]){3}\s*)? # Followed by optional ifpos
 \s* # Followed by optional white space
 |
 \#.* # If a line is commented out, that is also ok
 |
 \!.* # Comments also with excl. mark in fortran
)
 | # OR
 \s* # A line only containing white space
)
 [\n] # line break at the end
)+ # A positions block should be one or more lines
)
 """, re.X | re.M)

 # This regular expression finds the each position in a block of positions:
 # Matches eg: Li 0.21212e-3 2.d0 -23312.
 pos_regex = re.compile(r"""
 ^ # Linestart
 [\t]* # Optional white space
 (?P<sym>[A-Za-z]+[A-Za-z0-9]{0,2})\s+ # get the symbol, max 3 chars, starting with a char
 (?P<x> # Get x
 [\-|\+]?(\d*[\.]\d+ | \d+[\.]?\d*)
 ([E|e|d|D][+|-]?\d+)?
)
 [\t]+
 (?P<y> # Get y
 [\-|\+]?(\d*[\.]\d+ | \d+[\.]?\d*)
 ([E|e|d|D][+|-]?\d+)?
)
 [\t]+
 (?P<z> # Get z
 [\-|\+]?(\d*[\.]\d+ | \d+[\.]?\d*)
 ([E|e|d|D][+|-]?\d+)?
)
 """, re.X | re.M)
 # Find the block for the cell
 cell_block_regex = re.compile(r"""
 ^ [\t]*
 CELL_PARAMETERS [\t]*
 [{(]? \s* (?P<units>[a-z]*) \s* [)}]? \s* [\n]
 (?P<cell>
 (
 (
 \s* # White space in front of the element spec is ok
 (
 (
 \s+ # White space in front of the number
 [-|+]? # Plus or minus in front of the number (optional)
 (\d* # optional decimal in the beginning .0001 is ok, for example
 [\.] # There has to be a dot followed by
 \d+) # at least one decimal
 | # OR
 (\d+ # at least one decimal, followed by
 [\.]? # an optional dot
 \d*) # followed by optional decimals
 ([E|e|d|D][+|-]?\d+)? # optional exponents E+03, e-05, d0, D0
){3} # I expect three float values
 |
 \#
 |
 ! # If a line is commented out, that is also ok
)
 .* # I do not care what is after the comment or the vector
 | # OR
 \s* # A line only containing white space
)
 [\n] # line break at the end
){3} # I need exactly 3 vectors
)
 """, re.X | re.M)

 # Matches each vector inside the cell block
 cell_vector_regex = re.compile(r"""
 ^ # Linestart
 [\t]* # Optional white space
 (?P<x> # Get x
 [\-|\+]? (\d*[\.]\d+ | \d+[\.]?\d*)
 ([E|e|d|D][+|-]?\d+)?
)
 [\t]+
 (?P<y> # Get y
 [\-|\+]? (\d*[\.]\d+ | \d+[\.]?\d*)
 ([E|e|d|D][+|-]?\d+)?
)
 [\t]+
 (?P<z> # Get z
 [\-|\+]? (\d*[\.]\d+ | \d+[\.]?\d*)
 ([E|e|d|D][+|-]?\d+)?
)
 """, re.X | re.M)

 # Finds the ibrav
 ibrav_regex = re.compile(
 'ibrav [\t]* \= [\t]*(?P<ibrav>\-?[\t]* \d{1,2})', re.X)

 # Match the block where atomic species are defined:
 atomic_species_block_regex = re.compile("""
 ATOMIC_SPECIES \s+ # Prepended by ATOMIC_SPECIES
 (?P<block>
 ([\t]* # Space at line beginning
 [A-Za-z0-9]+ # tag for atom, max 3 characters
 [\t]+ # Space
 (\d*[\.]\d+ | \d+[\.]?\d*)
 ([D|d|E|e][+|-]?\d+)? # Mass
 [\t]+ # Space
 \S+ \.(UPF | upf) # Pseudofile
 \s+)+
)
 """, re.X | re.M)

 # Matches each atomic species inside the atomic specis block:
 atomic_species_regex = re.compile("""
 ^[\t]* # Space at line beginning
 (?P<tag>
 [A-Za-z0-9]+ # tag for atom, max 3 characters
)
 [\t]+ # Space
 (?P<mass> # Mass
 (\d*[\.]\d+ | \d+[\.]?\d*)
 ([D|d|E|e][+|-]?\d+)?
)
 [\t]+ # Space
 (?P<pseudo>
 \S+ \.(UPF | upf) # Pseudofile
)
 """, re.X | re.M)

 valid_elements_regex = re.compile("""
 (?P<ele>
H | He |
Li | Be | B | C | N | O | F | Ne |
Na | Mg | Al | Si | P | S | Cl | Ar |
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr |
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe |
Cs | Ba | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn |
Fr | Ra | Rf | Db | Sg | Bh | Hs | Mt |

La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | Lu | # Lanthanides
Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No | Lr | # Actinides
)
 [^a-z] # Any specification of an element is followed by some number
 # or capital letter or special character.
 """, re.X)
 # I need either a valid filepath or the text of the qeinput file:
 if filepath:
 with open(filepath) as f:
 txt = f.read()
 elif text:
 txt = text
 else:
 raise InputValidationError(
 'Provide either a filepath or text to be parsed'
)

 ######### THE CELL ################

 # get ibrav and check if it is valid
 ibrav = int(ibrav_regex.search(txt).group('ibrav'))
 valid_ibravs = range(15) + [-5, -9, -12]
 if ibrav not in valid_ibravs:
 raise InputValidationError(
 'I found ibrav = {} in input, \n'
 'but it is not among the valid values\n'
 '{}'.format(ibrav, valid_ibravs))

 # First case, ibrav is 0
 if ibrav == 0:
 # The cell is defined explicitly in a block CELL_PARAMETERS
 # Match the cell block using the regex defined above:
 match = cell_block_regex.search(txt)
 if match is None:
 raise InputValidationError(
 'ibrav was found to be 0\n',
 'but I did not find the necessary block of CELL_PARAMETERS\n'
 'in the file'
)
 valid_cell_units = ('angstrom', 'bohr', 'alat')

 # Check if unit was matched, default is bohr (a.u.)
 cell_unit = match.group('units').lower() or 'bohr'
 if cell_unit not in valid_cell_units:
 raise InputValidationError(
 '{} is not a valid cell unit.\n'
 'Valid cell units are: {}'.format(cell_unit, valid_cell_units)
)
 # cell was matched, transform to np.array:
 cell = np.array(
 [
 [float(match.group(i).replace('D', 'e').replace('d', 'e'))
 for i in ('x', 'y', 'z')
]
 for match
 in cell_vector_regex.finditer(match.group('cell'))
]
)

 # Now, we do the convert the cell to the right units (we want angstrom):
 if cell_unit == 'angstrom':
 conversion = 1.
 elif cell_unit == 'bohr':
 conversion = bohr_to_ang
 elif cell_unit == 'alat':
 # Cell units are defined with respect to atomic lattice
 # defined either under key A or celldm(1),
 celldm1 = get_fortfloat('celldm\(1\)', txt)
 a = get_fortfloat('A', txt)
 # Check that not both were specified
 if celldm1 and a:
 raise InputValidationError('Both A and celldm(1) specified')
 if a:
 conversion = a
 elif celldm1:
 conversion = bohr_to_ang * celldm1
 else:
 raise InputValidationError(
 'You have to define lattice vector'
 'celldm(1) or A'
)
 cell = conversion * cell

 # Ok, user was not nice and used ibrav > 0 to define cell using
 # either the keys celldm(n) n = 1,2,...,6 (celldm - system)
 # or A,B,C, cosAB, cosAC, cosBC (ABC-system)
 # to define the necessary cell geometry factors
 else:
 # The user should define exclusively in celldm or ABC-system
 # NOT both
 # I am only going to this for the important first lattice vector
 celldm1 = get_fortfloat('celldm\(1\)', txt)
 a = get_fortfloat('A', txt)
 if celldm1 and a:
 raise InputValidationError(
 'Both A and celldm(1) specified'
)
 elif not (celldm1 or a):
 raise Exception('You have to define lattice vector'
 'celldm(1) or A'
)
 # So, depending on what is defined for the first lattice vector,
 # I define the keys that I will look for to find the other
 # geometry definitions
 try:
 if celldm1:
 keys_in_qeinput = (
 'celldm\(2\)',
 'celldm\(3\)',
 'celldm\(4\)',
 'celldm\(5\)',
 'celldm\(6\)',
)
 # I will do all my calculations in ABC-system and
 # therefore need a conversion factor
 # if celldm system is chosen:
 a = bohr_to_ang * celldm1
 length_conversion = a
 else:
 keys_in_qeinput = (
 'B',
 'C',
 'cosAB',
 'cosAC',
 'cosBC',
)
 length_conversion = 1.
 # Not all geometry definitions are needs,
 # but some are necessary depending on ibrav
 # and will be matched here:
 if abs(ibrav) > 7:
 i = 0
 b = length_conversion * get_fortfloat(keys_in_qeinput[i], txt)
 if abs(ibrav) > 3 and ibrav not in (-5, 5):
 i = 1
 c = length_conversion * get_fortfloat(keys_in_qeinput[i], txt)
 if ibrav in (12, 13, 14):
 i = 2
 cosg = get_fortfloat(keys_in_qeinput[i], txt)
 sing = np.sqrt(1. - cosg ** 2)
 if ibrav in (-12, 14):
 i = 3
 cosb = get_fortfloat(keys_in_qeinput[i], txt)
 sinb = np.sqrt(1. - cosb ** 2)
 if ibrav in (5, 14):
 i = 4
 cosa = 1. * get_fortfloat(keys_in_qeinput[i], txt)
 # The multiplication with 1.
 # raises Exception here if None was returned by get_fortfloat
 except Exception as e:
 raise InputValidationError(
 '\nException {} raised when searching for\n'
 'key {} in qeinput, necessary when ibrav = {}'.format(
 e, keys_in_qeinput[i], ibrav
)
)
 # Calculating the cell according to ibrav.
 # The comments in each case are taken from
 # http://www.quantum-espresso.org/wp-content/uploads/Doc/INPUT_PW.html#ibrav
 if ibrav == 1:
 # 1 cubic P (sc)
 # v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,1)
 cell = np.diag([a, a, a])
 elif ibrav == 2:
 # 2 cubic F (fcc)
 # v1 = (a/2)(-1,0,1), v2 = (a/2)(0,1,1), v3 = (a/2)(-1,1,0)
 cell = 0.5 * a * np.array([
 [-1., 0., 1.],
 [0., 1., 1.],
 [-1., 1., 0.],
])
 elif ibrav == 3:
 # cubic I (bcc)
 # v1 = (a/2)(1,1,1), v2 = (a/2)(-1,1,1), v3 = (a/2)(-1,-1,1)
 cell = 0.5 * a * np.array([
 [1., 1., 1.],
 [-1., 1., 1.],
 [-1., -1., 0.],
])
 elif ibrav == 4:
 # 4 Hexagonal and Trigonal P celldm(3)=c/a
 # v1 = a(1,0,0), v2 = a(-1/2,sqrt(3)/2,0), v3 = a(0,0,c/a)
 cell = a * np.array([
 [1., 0., 0.],
 [-0.5, 0.5 * np.sqrt(3.), 0.],
 [0., 0., c / a]
])
 elif ibrav == 5:
 # 5 Trigonal R, 3fold axis c celldm(4)=cos(alpha)
 # The crystallographic vectors form a three-fold star around
 # the z-axis, the primitive cell is a simple rhombohedron:
 # v1 = a(tx,-ty,tz), v2 = a(0,2ty,tz), v3 = a(-tx,-ty,tz)
 # where c=cos(alpha) is the cosine of the angle alpha between
 # any pair of crystallographic vectors, tx, ty, tz are:
 # tx=sqrt((1-c)/2), ty=sqrt((1-c)/6), tz=sqrt((1+2c)/3)
 tx = np.sqrt((1. - cosa) / 2.)
 ty = np.sqrt((1. - cosa) / 6.)
 tz = np.sqrt((1. + 2. * cosa) / 3.)
 cell = a * np.array([
 [tx, -ty, tz],
 [0., 2 * ty, tz],
 [-tx, -ty, tz]
])
 elif ibrav == -5:
 # -5 Trigonal R, 3fold axis <111> celldm(4)=cos(alpha)
 # The crystallographic vectors form a three-fold star around
 # <111>. Defining a' = a/sqrt(3) :
 # v1 = a' (u,v,v), v2 = a' (v,u,v), v3 = a' (v,v,u)
 # where u and v are defined as
 # u = tz - 2*sqrt(2)*ty, v = tz + sqrt(2)*ty
 # and tx, ty, tz as for case ibrav=5
 # Note: if you prefer x,y,z as axis in the cubic limit,
 # set u = tz + 2*sqrt(2)*ty, v = tz - sqrt(2)*ty
 # See also the note in flib/latgen.f90
 tx = np.sqrt((1. - c) / 2.)
 ty = np.sqrt((1. - c) / 6.)
 tz = np.sqrt((1. + 2. * c) / 3.)
 u = tz - 2. * np.sqrt(2.) * ty
 v = tz + np.sqrt(2.) * ty
 cell = a / np.sqrt(3.) * np.array([
 [u, v, v],
 [v, u, v],
 [v, v, u]
])
 elif ibrav == 6:
 # 6 Tetragonal P (st) celldm(3)=c/a
 # v1 = a(1,0,0), v2 = a(0,1,0), v3 = a(0,0,c/a)
 cell = a * np.array([
 [1., 0., 0.],
 [0., 1., 0.],
 [0., 0., c / a]
])
 elif ibrav == 7:
 # 7 Tetragonal I (bct) celldm(3)=c/a
 # v1=(a/2)(1,-1,c/a), v2=(a/2)(1,1,c/a), v3=(a/2)(-1,-1,c/a)
 cell = 0.5 * a * np.array([
 [1., -1., c / a],
 [1., 1., c / a],
 [-1., -1., c / a]
])
 elif ibrav == 8:
 # 8 Orthorhombic P celldm(2)=b/a
 # celldm(3)=c/a
 # v1 = (a,0,0), v2 = (0,b,0), v3 = (0,0,c)
 cell = np.diag([a, b, c])
 elif ibrav == 9:
 # 9 Orthorhombic base-centered(bco) celldm(2)=b/a
 # celldm(3)=c/a
 # v1 = (a/2, b/2,0), v2 = (-a/2,b/2,0), v3 = (0,0,c)
 cell = np.array([
 [0.5 * a, 0.5 * b, 0.],
 [-0.5 * a, 0.5 * b, 0.],
 [0., 0., c]
])
 elif ibrav == -9:
 # -9 as 9, alternate description
 # v1 = (a/2,-b/2,0), v2 = (a/2,-b/2,0), v3 = (0,0,c)
 cell = np.array([
 [0.5 * a, 0.5 * b, 0.],
 [0.5 * a, -0.5 * b, 0.],
 [0., 0., c]
])
 elif ibrav == 10:
 # 10 Orthorhombic face-centered celldm(2)=b/a
 # celldm(3)=c/a
 # v1 = (a/2,0,c/2), v2 = (a/2,b/2,0), v3 = (0,b/2,c/2)
 cell = np.array([
 [0.5 * a, 0., 0.5 * c],
 [0.5 * a, 0.5 * b, 0.],
 [0., 0.5 * b, 0.5 * c]
])
 elif ibrav == 11:
 # 11 Orthorhombic body-centered celldm(2)=b/a
 # celldm(3)=c/a
 # v1=(a/2,b/2,c/2), v2=(-a/2,b/2,c/2), v3=(-a/2,-b/2,c/2)
 cell = np.array([
 [0.5 * a, 0.5 * b, 0.5 * c],
 [-0.5 * a, 0.5 * b, 0.5 * c],
 [-0.5 * a, -0.5 * b, 0.5 * c]
])
 elif ibrav == 12:
 # 12 Monoclinic P, unique axis c celldm(2)=b/a
 # celldm(3)=c/a,
 # celldm(4)=cos(ab)
 # v1=(a,0,0), v2=(b*cos(gamma),b*sin(gamma),0), v3 = (0,0,c)
 # where gamma is the angle between axis a and b.
 cell = np.array([
 [a, 0., 0.],
 [b * cosg, b * sing, 0.],
 [0., 0., c]
])
 elif ibrav == -12:
 # -12 Monoclinic P, unique axis b celldm(2)=b/a
 # celldm(3)=c/a,
 # celldm(5)=cos(ac)
 # v1 = (a,0,0), v2 = (0,b,0), v3 = (c*cos(beta),0,c*sin(beta))
 # where beta is the angle between axis a and c
 cell = np.array([
 [a, 0., 0.],
 [0., b, 0.],
 [c * cosb, 0., c * sinb]
])
 elif ibrav == 13:
 # 13 Monoclinic base-centered celldm(2)=b/a
 # celldm(3)=c/a,
 # celldm(4)=cos(ab)
 # v1 = (a/2, 0, -c/2),
 # v2 = (b*cos(gamma), b*sin(gamma), 0),
 # v3 = (a/2, 0, c/2),
 # where gamma is the angle between axis a and b
 cell = np.array([
 [0.5 * a, 0., -0.5 * c],
 [b * cosg, b * sing, 0.],
 [0.5 * a, 0., 0.5 * c]
])
 elif ibrav == 14:
 # 14 Triclinic celldm(2)= b/a,
 # celldm(3)= c/a,
 # celldm(4)= cos(bc),
 # celldm(5)= cos(ac),
 # celldm(6)= cos(ab)
 # v1 = (a, 0, 0),
 # v2 = (b*cos(gamma), b*sin(gamma), 0)
 # v3 = (c*cos(beta), c*(cos(alpha)-cos(beta)cos(gamma))/sin(gamma),
 # c*sqrt(1 + 2*cos(alpha)cos(beta)cos(gamma)
 # - cos(alpha)^2-cos(beta)^2-cos(gamma)^2)/sin(gamma))
 # where alpha is the angle between axis b and c
 # beta is the angle between axis a and c
 # gamma is the angle between axis a and b
 cell = np.array([
 [a, 0., -0.5 * c],
 [b * cosg, b * sing, 0.],
 [
 c * cosb,
 c * (cosa - cosb * cosg) / sing,
 c * np.sqrt(
 1. + 2. * cosa * cosb * cosg - cosa ** 2 - cosb ** 2 - cosg ** 2) / sing
]
])

 # Ok, I have a valid cell, so let's initialize a structuredata
 # instance and set the cell
 structuredata = StructureData()
 structuredata._set_attr('cell', cell.tolist())

 ################# KINDS ##########################

 atomic_species = atomic_species_block_regex.search(txt).group('block')
 for match in atomic_species_regex.finditer(atomic_species):
 try:
 symbols = valid_elements_regex.search(
 match.group('pseudo')
).group('ele')
 except Exception as e:
 raise InputValidationError(
 'I could not read an element name in {}'.format(match.group(0))
)
 name = match.group('tag')
 mass = match.group('mass')
 structuredata.append_kind(Kind(
 name=name,
 symbols=symbols,
 mass=mass,
))

 ################## POSITIONS #######################

 atom_block_match = pos_block_regex.search(txt)
 valid_atom_units = ('alat', 'bohr', 'angstrom', 'crystal', 'crystal_sg')
 atom_unit = atom_block_match.group('units') or 'alat'
 atom_unit = atom_unit.lower()

 if atom_unit not in valid_atom_units:
 raise InputValidationError(
 '\nFound atom unit {}, which is not\n'
 'among the valid units: {}'.format(
 atom_unit, ', '.join(valid_atom_units)
)
)

 if atom_unit == 'crystal_sg':
 raise NotImplementedError('crystal_sg is not implemented')
 position_block = atom_block_match.group('positions')

 if not position_block:
 raise InputValidationError('Could not read CARD POSITIONS')

 symbols, positions = [], []

 for atom_match in pos_regex.finditer(position_block):
 symbols.append(atom_match.group('sym'))
 try:
 positions.append(
 [
 float(
 atom_match.group(c).replace('D', 'e').replace('d', 'e'))
 for c in ('x', 'y', 'z')
]
)
 except Exception as e:
 raise InputValidationError(
 'I could not get position in\n'
 '{}\n'
 '({})'.format(atom_match.group(0), e)
)
 positions = np.array(positions)

 if atom_unit == 'bohr':
 positions = bohr_to_ang * positions
 elif atom_unit == 'crystal':
 positions = np.dot(positions, cell)
 elif atom_unit == 'alat':
 positions = np.linalg.norm(cell[0]) * positions

 ######### DEFINE SITES ######################

 positions = positions.tolist()
 [structuredata.append_site(Site(kind_name=sym, position=pos,))
 for sym, pos in zip(symbols, positions)]
 return structuredata

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/data/singlefile.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.orm.data »

 Source code for aiida.orm.data.singlefile

-*- coding: utf-8 -*-
"""
Implement subclass for a single file in the permanent repository
files = [one_single_file]
jsons = {}

methods:
* get_content
* get_path
* get_aiidaurl (?)
* get_md5
* ...

To discuss: do we also need a simple directory class for full directories
in the perm repo?
"""
import os

from aiida.orm.data import Data

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class SinglefileData(Data):
 """
 Pass as input a file parameter with the (absolute) path of a file
 on the hard drive.
 It will get copied inside the node.

 Internally must have a single file, and stores as internal attribute
 the filename in the 'filename' attribute.
 """

 @property
 def filename(self):
 """
 Returns the name of the file stored
 """
 return self.get_attr('filename')

[docs] def get_file_abs_path(self):
 """
 Return the absolute path to the file in the repository
 """
 return os.path.join(self._get_folder_pathsubfolder.abspath, self.filename)

[docs] def set_file(self, filename):
 """
 Add a file to the singlefiledata
 :param filename: absolute path to the file
 """
 self.add_path(filename)

[docs] def del_file(self, filename):
 """
 Remove a file from SingleFileData
 :param filename: name of the file stored in the DB
 """
 self.remove_path(filename)

[docs] def add_path(self, src_abs, dst_filename=None):
 """
 Add a single file
 """
 old_file_list = self.get_folder_list()

 if not os.path.isabs(src_abs):
 raise ValueError("Pass an absolute path for src_abs")

 if not os.path.isfile(src_abs):
 raise ValueError("src_abs must exist and must be a single file")

 if dst_filename is None:
 final_filename = os.path.split(src_abs)[1]
 else:
 final_filename = dst_filename

 try:
 # I remove the 'filename' from the list of old files:
 # if I am overwriting the file, I don't want to delete if afterwards
 old_file_list.remove(dst_filename)
 except ValueError:
 # filename is not there: no problem, it simply means I don't have
 # to delete it
 pass

 super(SinglefileData, self).add_path(src_abs, final_filename)

 for delete_me in old_file_list:
 self.remove_path(delete_me)

 self._set_attr('filename', final_filename)

 def remove_path(self, filename):
 if filename == self.get_attr('filename', None):
 try:
 self._del_attr('filename')
 except AttributeError:
 ## There was not file set
 pass

 def _validate(self):
 from aiida.common.exceptions import ValidationError

 super(SinglefileData, self)._validate()

 try:
 filename = self.filename
 except AttributeError:
 raise ValidationError("attribute 'filename' not set.")

 if [filename] != self.get_folder_list():
 raise ValidationError("The list of files in the folder does not "
 "match the 'filename' attribute. "
 "_filename='{}', content: {}".format(
 filename, self.get_folder_list()))

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/data/parameter.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.orm.data »

 Source code for aiida.orm.data.parameter

-*- coding: utf-8 -*-
from aiida.orm import Data

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class ParameterData(Data):
 """
 Pass as input in the init a dictionary, and it will get stored as internal
 attributes.

 Usual rules for attribute names apply (in particular, keys cannot start with
 an underscore). If this is the case, a ValueError will be raised.

 You can then change/delete/add more attributes before storing with the
 usual methods of aiida.orm.Node
 """

[docs] def set_dict(self, dict):
 """
 Replace the current dictionary with another one.

 :param dict: The dictionary to set.
 """
 import copy
 from aiida.common.exceptions import ModificationNotAllowed

 old_dict = copy.deepcopy(self.get_dict())

 try:
 # Delete existing attributes
 self._del_all_attrs()
 # I set the keys
 self.update_dict(dict)
 except ModificationNotAllowed:
 # I reraise here to avoid to go in the generic 'except' below,
 # that would raise again the same exception
 raise
 except:
 # Try to restore the old data
 self._del_all_attrs()
 self.update_dict(old_dict)
 raise

[docs] def update_dict(self, dict):
 """
 Update the current dictionary with the keys provided in the dictionary.

 :param dict: a dictionary with the keys to substitute. It works like
 dict.update(), adding new keys and overwriting existing keys.
 """
 for k, v in dict.iteritems():
 self._set_attr(k, v)

[docs] def get_dict(self):
 """
 Return a dict with the parameters
 """
 return dict(self.iterattrs())

[docs] def keys(self):
 """
 Iterator of valid keys stored in the ParameterData object
 """
 for k in self.attrs():
 yield k

 def add_path(self, *args, **kwargs):
 from aiida.common.exceptions import ModificationNotAllowed

 raise ModificationNotAllowed(
 "Cannot add files or directories to a ParameterData object")

 # def validate(self):
 # # There should be nothing specific to check
 # super(ParameterData,self).validate()

 @property
 def dict(self):
 """
 To be used to get direct access to the underlying dictionary with the
 syntax node.dict.key or node.dict['key'].

 :return: an instance of the AttributeResultManager.
 """
 from aiida.orm.node import AttributeManager

 return AttributeManager(self)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/data/upf.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.orm.data »

 Source code for aiida.orm.data.upf

-*- coding: utf-8 -*-
"""
This module manages the UPF pseudopotentials in the local repository.
"""
import re

from aiida.orm.data.singlefile import SinglefileData
from aiida.common.utils import classproperty

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

UPFGROUP_TYPE = 'data.upf.family'

_upfversion_regexp = re.compile(
 r"""
 \s*<UPF\s+version\s*="
 (?P<version>.*)">
 """, re.VERBOSE)

_element_v1_regexp = re.compile(
 r"""
 ^
 \s*
 (?P<element_name>[a-zA-Z]{1,2})
 \s+
 Element
 \s*
 $
 """, re.VERBOSE)

_element_v2_regexp = re.compile(
 r"""
 \s*
 element\s*=\s*(?P<quote_symbol>['"])\s*
 (?P<element_name>[a-zA-Z]{1,2})\s*
 (?P=quote_symbol).*
 """, re.VERBOSE)

[docs]def get_pseudos_from_structure(structure, family_name):
 """
 Given a family name (a UpfFamily group in the DB) and a AiiDA
 structure, return a dictionary associating each kind name with its
 UpfData object.

 :raise MultipleObjectsError: if more than one UPF for the same element is
 found in the group.
 :raise NotExistent: if no UPF for an element in the group is
 found in the group.
 """
 from aiida.common.exceptions import NotExistent, MultipleObjectsError

 family_pseudos = {}
 family = UpfData.get_upf_group(family_name)
 for node in family.nodes:
 if isinstance(node, UpfData):
 if node.element in family_pseudos:
 raise MultipleObjectsError(
 "More than one UPF for element {} found in "
 "family {}".format(node.element, family_name))
 family_pseudos[node.element] = node

 pseudo_list = {}
 for kind in structure.kinds:
 symbol = kind.symbol
 try:
 pseudo_list[kind.name] = family_pseudos[symbol]
 except KeyError:
 raise NotExistent("No UPF for element {} found in family {}".format(
 symbol, family_name))

 return pseudo_list

[docs]def upload_upf_family(folder, group_name, group_description,
 stop_if_existing=True):
 """
 Upload a set of UPF files in a given group.

 :param folder: a path containing all UPF files to be added.
 Only files ending in .UPF (case-insensitive) are considered.
 :param group_name: the name of the group to create. If it exists and is
 non-empty, a UniquenessError is raised.
 :param group_description: a string to be set as the group description.
 Overwrites previous descriptions, if the group was existing.
 :param stop_if_existing: if True, check for the md5 of the files and,
 if the file already exists in the DB, raises a MultipleObjectsError.
 If False, simply adds the existing UPFData node to the group.
 """
 import os

 import aiida.common
 from aiida.common import aiidalogger
 from aiida.orm import Group
 from aiida.common.exceptions import UniquenessError, NotExistent
 from aiida.backends.utils import get_automatic_user
 from aiida.orm import QueryBuilder
 if not os.path.isdir(folder):
 raise ValueError("folder must be a directory")

 # only files, and only those ending with .upf or .UPF;
 # go to the real file if it is a symlink
 files = [os.path.realpath(os.path.join(folder, i))
 for i in os.listdir(folder) if
 os.path.isfile(os.path.join(folder, i)) and
 i.lower().endswith('.upf')]

 nfiles = len(files)

 try:
 group = Group.get(name=group_name, type_string=UPFGROUP_TYPE)
 group_created = False
 except NotExistent:
 group = Group(name=group_name, type_string=UPFGROUP_TYPE,
 user=get_automatic_user())
 group_created = True

 if group.user != get_automatic_user():
 raise UniquenessError("There is already a UpfFamily group with name {}"
 ", but it belongs to user {}, therefore you "
 "cannot modify it".format(group_name,
 group.user.email))

 # Always update description, even if the group already existed
 group.description = group_description

 # NOTE: GROUP SAVED ONLY AFTER CHECKS OF UNICITY

 pseudo_and_created = []

 for f in files:
 md5sum = aiida.common.utils.md5_file(f)
 qb = QueryBuilder()
 qb.append(UpfData, filters={'attributes.md5':{'==':md5sum}})
 existing_upf = qb.first()

 #~ existing_upf = UpfData.query(dbattributes__key="md5",
 #~ dbattributes__tval=md5sum)

 if existing_upf is None:
 # return the upfdata instances, not stored
 pseudo, created = UpfData.get_or_create(f, use_first=True,
 store_upf=False)
 # to check whether only one upf per element exists
 # NOTE: actually, created has the meaning of "to_be_created"
 pseudo_and_created.append((pseudo, created))
 else:
 if stop_if_existing:
 raise ValueError(
 "A UPF with identical MD5 to "
 " {} cannot be added with stop_if_existing"
 "".format(f)
)
 existing_upf = existing_upf[0]
 pseudo_and_created.append((existing_upf, False))

 # check whether pseudo are unique per element
 elements = [(i[0].element, i[0].md5sum) for i in pseudo_and_created]
 # If group already exists, check also that I am not inserting more than
 # once the same element
 if not group_created:
 for aiida_n in group.nodes:
 # Skip non-pseudos
 if not isinstance(aiida_n, UpfData):
 continue
 elements.append((aiida_n.element, aiida_n.md5sum))

 elements = set(elements) # Discard elements with the same MD5, that would
 # not be stored twice
 elements_names = [e[0] for e in elements]

 if not len(elements_names) == len(set(elements_names)):
 duplicates = set([x for x in elements_names
 if elements_names.count(x) > 1])
 duplicates_string = ", ".join(i for i in duplicates)
 raise UniquenessError("More than one UPF found for the elements: " +
 duplicates_string + ".")

 # At this point, save the group, if still unstored
 if group_created:
 group.store()

 # save the upf in the database, and add them to group
 for pseudo, created in pseudo_and_created:
 if created:
 pseudo.store()

 aiidalogger.debug("New node {} created for file {}".format(
 pseudo.uuid, pseudo.filename))
 else:
 aiidalogger.debug("Reusing node {} for file {}".format(
 pseudo.uuid, pseudo.filename))

 # Add elements to the group all togetehr
 group.add_nodes(pseudo for pseudo, created in pseudo_and_created)

 nuploaded = len([_ for _, created in pseudo_and_created if created])

 return nfiles, nuploaded

[docs]def parse_upf(fname, check_filename=True):
 """
 Try to get relevant information from the UPF. For the moment, only the
 element name. Note that even UPF v.2 cannot be parsed with the XML minidom!
 (e.g. due to the & characters in the human-readable section).

 If check_filename is True, raise a ParsingError exception if the filename
 does not start with the element name.
 """
 import os

 from aiida.common.exceptions import ParsingError
 from aiida.common import aiidalogger
 # TODO: move these data in a 'chemistry' module
 from aiida.orm.data.structure import _valid_symbols

 parsed_data = {}

 with open(fname) as f:
 first_line = f.readline().strip()
 match = _upfversion_regexp.match(first_line)
 if match:
 version = match.group('version')
 aiidalogger.debug("Version found: {} for file {}".format(
 version, fname))
 else:
 aiidalogger.debug("Assuming version 1 for file {}".format(fname))
 version = "1"

 parsed_data['version'] = version
 try:
 version_major = int(version.partition('.')[0])
 except ValueError:
 # If the version string does not start with a dot, fallback
 # to version 1
 aiidalogger.debug("Falling back to version 1 for file {}, "
 "version string '{}' unrecognized".format(
 fname, version))
 version_major = 1

 element = None
 if version_major == 1:
 for l in f:
 match = _element_v1_regexp.match(l.strip())
 if match:
 element = match.group('element_name')
 break
 else: # all versions > 1
 for l in f:
 match = _element_v2_regexp.match(l.strip())
 if match:
 element = match.group('element_name')
 break

 if element is None:
 raise ParsingError("Unable to find the element of UPF {}".format(
 fname))
 element = element.capitalize()
 if element not in _valid_symbols:
 raise ParsingError("Unknown element symbol {} for file {}".format(
 element, fname))
 if check_filename:
 if not os.path.basename(fname).lower().startswith(
 element.lower()):
 raise ParsingError("Filename {0} was recognized for element "
 "{1}, but the filename does not start "
 "with {1}".format(fname, element))

 parsed_data['element'] = element

 return parsed_data

def test_parser(folder):
import os
from aiida.common.exceptions import ParsingError

for fn in os.listdir(folder):
if os.path.isfile(fn) and fn.lower().endswith('.upf'):
try:
data = parse_upf(os.path.join(folder, fn))
except ParsingError as e:
print ">>>>>>>>>>>>>>>> ERROR: %s" % e.message

[docs]class UpfData(SinglefileData):
 """
 Function not yet documented.
 """

 @classmethod
[docs] def get_or_create(cls, filename, use_first=False, store_upf=True):
 """
 Pass the same parameter of the init; if a file with the same md5
 is found, that UpfData is returned.

 :param filename: an absolute filename on disk
 :param use_first: if False (default), raise an exception if more than \
 one potential is found.\
 If it is True, instead, use the first available pseudopotential.
 :param bool store_upf: If false, the UpfData objects are not stored in
 the database. default=True.
 :return (upf, created): where upf is the UpfData object, and create is either\
 True if the object was created, or False if the object was retrieved\
 from the DB.
 """
 import aiida.common.utils
 import os

 if not os.path.abspath(filename):
 raise ValueError("filename must be an absolute path")
 md5 = aiida.common.utils.md5_file(filename)

 pseudos = cls.from_md5(md5)
 if len(pseudos) == 0:
 if store_upf:
 instance = cls(file=filename).store()
 return (instance, True)
 else:
 instance = cls(file=filename)
 return (instance, True)
 else:
 if len(pseudos) > 1:
 if use_first:
 return (pseudos[0], False)
 else:
 raise ValueError("More than one copy of a pseudopotential "
 "with the same MD5 has been found in the "
 "DB. pks={}".format(
 ",".join([str(i.pk) for i in pseudos])))
 else:
 return (pseudos[0], False)

 @classproperty
 def upffamily_type_string(cls):
 return UPFGROUP_TYPE

[docs] def store(self, *args, **kwargs):
 """
 Store the node, reparsing the file so that the md5 and the element
 are correctly reset.
 """
 from aiida.common.exceptions import ParsingError, ValidationError
 import aiida.common.utils

 upf_abspath = self.get_file_abs_path()
 if not upf_abspath:
 raise ValidationError("No valid UPF was passed!")

 parsed_data = parse_upf(upf_abspath)
 md5sum = aiida.common.utils.md5_file(upf_abspath)

 try:
 element = parsed_data['element']
 except KeyError:
 raise ParsingError("No 'element' parsed in the UPF file {};"
 " unable to store".format(self.filename))

 self._set_attr('element', str(element))
 self._set_attr('md5', md5sum)

 return super(UpfData, self).store(*args, **kwargs)

 @classmethod
[docs] def from_md5(cls, md5):
 """
 Return a list of all UPF pseudopotentials that match a given MD5 hash.

 Note that the hash has to be stored in a _md5 attribute, otherwise
 the pseudo will not be found.
 """
 queryset = cls.query(dbattributes__key='md5', dbattributes__tval=md5)
 return list(queryset)

[docs] def set_file(self, filename):
 """
 I pre-parse the file to store the attributes.
 """
 from aiida.common.exceptions import ParsingError
 import aiida.common.utils

 parsed_data = parse_upf(filename)
 md5sum = aiida.common.utils.md5_file(filename)

 try:
 element = parsed_data['element']
 except KeyError:
 raise ParsingError("No 'element' parsed in the UPF file {};"
 " unable to store".format(self.filename))

 super(UpfData, self).set_file(filename)

 self._set_attr('element', str(element))
 self._set_attr('md5', md5sum)

[docs] def get_upf_family_names(self):
 """
 Get the list of all upf family names to which the pseudo belongs
 """
 from aiida.orm import Group

 return [_.name for _ in Group.query(nodes=self,
 type_string=self.upffamily_type_string)]

 @property
 def element(self):
 return self.get_attr('element', None)

 @property
 def md5sum(self):
 return self.get_attr('md5', None)

 def _validate(self):
 from aiida.common.exceptions import ValidationError, ParsingError
 import aiida.common.utils

 super(UpfData, self)._validate()

 upf_abspath = self.get_file_abs_path()
 if not upf_abspath:
 raise ValidationError("No valid UPF was passed!")

 try:
 parsed_data = parse_upf(upf_abspath)
 except ParsingError:
 raise ValidationError("The file '{}' could not be "
 "parsed".format(upf_abspath))
 md5 = aiida.common.utils.md5_file(upf_abspath)

 try:
 element = parsed_data['element']
 except KeyError:
 raise ValidationError("No 'element' could be parsed in the UPF "
 "file {}".format(upf_abspath))

 try:
 attr_element = self.get_attr('element')
 except AttributeError:
 raise ValidationError("attribute 'element' not set.")

 try:
 attr_md5 = self.get_attr('md5')
 except AttributeError:
 raise ValidationError("attribute 'md5' not set.")

 if attr_element != element:
 raise ValidationError("Attribute 'element' says '{}' but '{}' was "
 "parsed instead.".format(
 attr_element, element))

 if attr_md5 != md5:
 raise ValidationError("Attribute 'md5' says '{}' but '{}' was "
 "parsed instead.".format(
 attr_md5, md5))

 @classmethod
[docs] def get_upf_group(cls, group_name):
 """
 Return the UpfFamily group with the given name.
 """
 from aiida.orm import Group

 return Group.get(name=group_name, type_string=cls.upffamily_type_string)

 @classmethod
[docs] def get_upf_groups(cls, filter_elements=None, user=None):
 """
 Return all names of groups of type UpfFamily, possibly with some filters.

 :param filter_elements: A string or a list of strings.
 If present, returns only the groups that contains one Upf for
 every element present in the list. Default=None, meaning that
 all families are returned.
 :param user: if None (default), return the groups for all users.
 If defined, it should be either a DbUser instance, or a string
 for the username (that is, the user email).
 """
 from aiida.orm import Group

 group_query_params = {"type_string": cls.upffamily_type_string}

 if user is not None:
 group_query_params['user'] = user

 if isinstance(filter_elements, basestring):
 filter_elements = [filter_elements]

 if filter_elements is not None:
 actual_filter_elements = {_.capitalize() for _ in filter_elements}

 group_query_params['node_attributes'] = {
 'element': actual_filter_elements}

 all_upf_groups = Group.query(**group_query_params)

 groups = [(g.name, g) for g in all_upf_groups]
 # Sort by name
 groups.sort()
 # Return the groups, without name
 return [_[1] for _ in groups]

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/data/remote.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.orm.data »

 Source code for aiida.orm.data.remote

-*- coding: utf-8 -*-
from aiida.orm import Data

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class RemoteData(Data):
 """
 Store a link to a file or folder on a remote machine.

 Remember to pass a computer!
 """

 def get_dbcomputer(self):
 return self.dbnode.dbcomputer

 def get_remote_path(self):
 return self.get_attr('remote_path')

 def set_remote_path(self, val):
 self._set_attr('remote_path', val)

[docs] def add_path(self, src_abs, dst_filename=None):
 """
 Disable adding files or directories to a RemoteData
 """
 from aiida.common.exceptions import ModificationNotAllowed

 raise ModificationNotAllowed("Cannot add files or directories to a RemoteData object")

[docs] def is_empty(self):
 """
 Check if remote folder is empty
 """
 from aiida.execmanager import get_authinfo

 authinfo = get_authinfo(computer=self.get_computer(),
 aiidauser=self.get_user())
 t = authinfo.get_transport()

 with t:
 try:
 t.chdir(self.get_remote_path())
 except IOError as e:
 if e.errno == 2: # directory not existing
 return True # is indeed empty, i.e. unusable
 return not t.listdir()

 def _clean(self):
 """
 Remove all content of the remote folder on the remote computer
 """
 from aiida.execmanager import get_authinfo
 import os

 authinfo = get_authinfo(computer=self.get_computer(),
 aiidauser=self.get_user())
 t = authinfo.get_transport()

 remote_dir = self.get_remote_path()
 pre, post = os.path.split(remote_dir)

 with t:
 try:
 t.chdir(pre)
 t.rmtree(post)
 except IOError as e:
 if e.errno == 2: # directory not existing
 pass

 def _validate(self):
 from aiida.common.exceptions import ValidationError

 super(RemoteData, self)._validate()

 try:
 self.get_remote_path()
 except AttributeError:
 raise ValidationError("attribute 'remote_path' not set.")

 computer = self.get_computer()
 if computer is None:
 raise ValidationError("Remote computer not set.")

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/implementation/general/calculation.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.orm.implementation.general.calculation

-*- coding: utf-8 -*-

import collections

from aiida.common.utils import classproperty
from aiida.common.links import LinkType
from aiida.orm.mixins import SealableWithUpdatableAttributesMixin

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

def _parse_single_arg(function_name, additional_parameter,
 args, kwargs):
 """
 Verifies that a single additional argument has been given (or no
 additional argument, if additional_parameter is None). Also
 verifies its name.

 :param function_name: the name of the caller function, used for
 the output messages
 :param additional_parameter: None if no additional parameters
 should be passed, or a string with the name of the parameter
 if one additional parameter should be passed.

 :return: None, if additional_parameter is None, or the value of
 the additional parameter
 :raise TypeError: on wrong number of inputs
 """
 # Here all the logic to check if the parameters are correct.
 if additional_parameter is not None:
 if len(args) == 1:
 if kwargs:
 raise TypeError("{}() received too many args".format(
 function_name))
 additional_parameter_data = args[0]
 elif len(args) == 0:
 kwargs_copy = kwargs.copy()
 try:
 additional_parameter_data = kwargs_copy.pop(
 additional_parameter)
 except KeyError:
 if kwargs_copy:
 raise TypeError("{}() got an unexpected keyword "
 "argument '{}'".format(
 function_name, kwargs_copy.keys()[0]))
 else:
 raise TypeError("{}() requires more "
 "arguments".format(function_name))
 if kwargs_copy:
 raise TypeError("{}() got an unexpected keyword "
 "argument '{}'".format(
 function_name, kwargs_copy.keys()[0]))
 else:
 raise TypeError("{}() received too many args".format(
 function_name))
 return additional_parameter_data
 else:
 if kwargs:
 raise TypeError("{}() got an unexpected keyword "
 "argument '{}'".format(
 function_name, kwargs.keys()[0]))
 if len(args) != 0:
 raise TypeError("{}() received too many args".format(
 function_name))

 return None

[docs]class AbstractCalculation(SealableWithUpdatableAttributesMixin):
 """
 This class provides the definition of an "abstract" AiiDA calculation.
 A calculation in this sense is any computation that converts data into data.

 You will typically use one of its subclasses, often a JobCalculation for
 calculations run via a scheduler.
 """
 # A tuple with attributes that can be updated even after
 # the call of the store() method

 # Nodes that can be added as input using the use_* methods
 @classproperty
 def _use_methods(cls):
 """
 Return the list of valid input nodes that can be set using the
 use_* method.

 For each key KEY of the return dictionary, the 'use_KEY' method is
 exposed.
 Each value must be a dictionary, defining the following keys:
 * valid_types: a class, or tuple of classes, that will be used to
 validate the parameter using the isinstance() method
 * additional_parameter: None, if no additional parameters can be passed
 to the use_KEY method beside the node, or the name of the additional
 parameter (a string)
 * linkname: the name of the link to create (a string if
 additional_parameter is None, or a callable if additional_parameter is
 a string. The value of the additional parameter will be passed to the
 callable, and it should return a string.
 * docstring: a docstring for the function

 .. note:: in subclasses, always extend the parent class, do not
 substitute it!
 """
 from aiida.orm.code import Code
 return {
 "code": {
 'valid_types': Code,
 'additional_parameter': None,
 'linkname': 'code',
 'docstring': "Choose the code to use",
 },
 }

 @property
 def logger(self):
 """
 Get the logger of the Calculation object, so that it also logs to the
 DB.

 :return: LoggerAdapter object, that works like a logger, but also has
 the 'extra' embedded
 """
 import logging
 from aiida.utils.logger import get_dblogger_extra

 return logging.LoggerAdapter(logger=self._logger,
 extra=get_dblogger_extra(self))

 def __dir__(self):
 """
 Allow to list all valid attributes, adding also the use_* methods
 """
 return sorted(dir(type(self)) + list(['use_{}'.format(k)
 for k in
 self._use_methods.iterkeys()]))

 def __getattr__(self, name):
 """
 Expand the methods with the use_* calls. Note that this method only
 gets called if 'name' is not already defined as a method. Returning
 None will then automatically raise the standard AttributeError
 exception.
 """

 class UseMethod(object):
 """
 Generic class for the use_* methods. To know which use_* methods
 exist, use the ``dir()`` function. To get help on a specific method,
 for instance use_code, use::
 ``print use_code.__doc__``
 """

 def __init__(self, node, actual_name, data):
 self.node = node
 self.actual_name = actual_name
 self.data = data
 try:
 self.__doc__ = data['docstring']
 except KeyError:
 # Forgot to define the docstring! Use the default one
 pass

 def __call__(self, parent_node, *args, **kwargs):
 # Not really needed, will be checked in get_linkname
 # But I do anyway in order to raise an exception as soon as
 # possible, with the most intuitive caller function name
 additional_parameter = _parse_single_arg(
 function_name='use_{}'.format(self.actual_name),
 additional_parameter=self.data['additional_parameter'],
 args=args, kwargs=kwargs)

 # Type check
 if not isinstance(parent_node, self.data['valid_types']):
 if isinstance(self.data['valid_types'],
 collections.Iterable):
 valid_types_string = ",".join([_.__name__ for _ in
 self.data[
 'valid_types']])
 else:
 valid_types_string = self.data['valid_types'].__name__

 raise TypeError("The given node is not of the valid type "
 "for use_{}. Valid types are: {}, while "
 "you provided {}".format(
 self.actual_name, valid_types_string,
 parent_node.__class__.__name__))

 # Get actual link name
 actual_linkname = self.node.get_linkname(actual_name, *args,
 **kwargs)
 # Checks that such an argument exists have already been
 # made inside actual_linkname

 # Here I do the real job
 self.node._replace_link_from(parent_node, actual_linkname)

 prefix = 'use_'
 valid_use_methods = list(['{}{}'.format(prefix, k)
 for k in self._use_methods.iterkeys()])

 if name in valid_use_methods:
 actual_name = name[len(prefix):]
 return UseMethod(node=self, actual_name=actual_name,
 data=self._use_methods[actual_name])
 else:
 raise AttributeError("'{}' object has no attribute '{}'".format(
 self.__class__.__name__, name))

[docs] def get_linkname(self, link, *args, **kwargs):
 """
 Return the linkname used for a given input link

 Pass as parameter "NAME" if you would call the use_NAME method.
 If the use_NAME method requires a further parameter, pass that
 parameter as the second parameter.
 """
 try:
 data = self._use_methods[link]
 except KeyError:
 raise ValueError("No '{}' link is defined for this "
 "calculation".format(link))

 # Raises if the wrong # of parameters is passed
 additional_parameter = _parse_single_arg(
 function_name='get_linkname',
 additional_parameter=data['additional_parameter'],
 args=args, kwargs=kwargs)

 if data['additional_parameter'] is not None:
 # Call the callable to get the proper linkname
 actual_linkname = data['linkname'](additional_parameter)
 else:
 actual_linkname = data['linkname']

 return actual_linkname

 def _linking_as_output(self, dest, link_type):
 """
 An output of a calculation can only be a data.

 :param dest: a Data object instance of the database
 :raise: ValueError if a link from self to dest is not allowed.
 """
 from aiida.orm.data import Data

 if link_type is LinkType.CREATE or link_type is LinkType.RETURN:
 if not isinstance(dest, Data):
 raise ValueError(
 "The output of a calculation node can only be a data node")
 elif link_type is LinkType.CALL:
 if not isinstance(dest, AbstractCalculation):
 raise ValueError("Call links can only link two calculations.")
 else:
 raise ValueError(
 "Calculation cannot have links of type {} as output".format(
 link_type))

 return super(AbstractCalculation, self)._linking_as_output(
 dest, link_type)

[docs] def add_link_from(self, src, label=None, link_type=LinkType.INPUT):
 """
 Add a link with a code as destination.

 You can use the parameters of the base Node class, in particular the
 label parameter to label the link.

 :param src: a node of the database. It cannot be a Calculation object.
 :param str label: Name of the link. Default=None
 :param link_type: The type of link, must be one of the enum values form
 :class:`~aiida.common.links.LinkType`
 """
 from aiida.orm.data import Data
 from aiida.orm.code import Code

 if link_type is LinkType.INPUT:
 if not isinstance(src, (Data, Code)):
 raise ValueError(
 "Nodes entering calculation as input link can only be of "
 "type data or code")
 elif link_type is LinkType.CALL:
 if not isinstance(src, AbstractCalculation):
 raise ValueError("Call links can only link two calculations.")
 else:
 raise ValueError(
 "Calculation cannot have links of type {} as input".format(
 link_type))

 return super(AbstractCalculation, self).add_link_from(
 src, label, link_type)

 def _replace_link_from(self, src, label, link_type=LinkType.INPUT):
 """
 Replace a link.

 :param src: a node of the database. It cannot be a Calculation object.
 :param str label: Name of the link.
 """
 from aiida.orm.data import Data
 from aiida.orm.code import Code

 if not isinstance(src, (Data, Code)):
 raise ValueError("Nodes entering in calculation can only be of "
 "type data or code")

 return super(AbstractCalculation, self)._replace_link_from(
 src, label, link_type)

[docs] def get_code(self):
 """
 Return the code for this calculation, or None if the code
 was not set.
 """
 from aiida.orm.code import Code
 return dict(self.get_inputs(node_type=Code, also_labels=True)).get(
 self._use_methods['code']['linkname'], None)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/implementation/general/computer.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.orm.implementation.general.computer

-*- coding: utf-8 -*-
from abc import abstractmethod, abstractproperty

import logging
import os

from aiida.transport import Transport, TransportFactory
from aiida.scheduler import Scheduler, SchedulerFactory

from aiida.common.exceptions import (
 ConfigurationError, DbContentError,
 MissingPluginError, ValidationError)

from aiida.common.utils import classproperty

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class AbstractComputer(object):
 """
 Base class to map a node in the DB + its permanent repository counterpart.

 Stores attributes starting with an underscore.

 Caches files and attributes before the first save, and saves everything only on store().
 After the call to store(), in general attributes cannot be changed, except for those
 listed in the self._updatable_attributes tuple (empty for this class, can be
 extended in a subclass).

 Only after storing (or upon loading from uuid) metadata can be modified
 and in this case they are directly set on the db.

 In the plugin, also set the _plugin_type_string, to be set in the DB in the 'type' field.
 """
 _logger = logging.getLogger(__name__)

 @classproperty
 def _conf_attributes(self):
 """
 Return the configuration attributes to be used in the 'setup' phase.

 The return value is a list of tuples. Each tuple has three elements:
 1. an internal name (used to find the
 _set_internalname_string, and get_internalname_string methods)
 2. a short human-readable name
 3. A long human-readable description
 4. True if it is a multi-line input, False otherwise

 For the implementation, see in aiida.cmdline.computer

 .. note: you can define a ``_shouldcall_internalname`` method that returns
 either True or False if the specific configuration option has to be
 called or not. If such a method is not found, the option is always
 asked to the user. In this case, you typically also want to define a
 ``_cleanup_internalname`` method to remove any previous configuration
 associated to internalname, in case ``_shouldcall_internalname``
 returns False.

 .. note: IMPORTANT! For each entry, remember to define the
 ``_set_internalname_string`` and ``get_internalname_string`` methods.
 Moreover, the ``_set_internalname_string`` method should also
 immediately validate the value.

 ..note: Defining it as a property increases the overall execution
 of the code because it does not require to calculate
 Transport.get_valid_transports() at each load of this class.
 """

 return [
 ("hostname",
 "Fully-qualified hostname",
 "The fully qualified host-name of this computer",
 False,
),
 ("description",
 "Description",
 "A human-readable description of this computer",
 False,
),
 ("enabled_state",
 "Enabled",
 "True or False; if False, the computer is disabled and calculations\n"
 "associated with it will not be submitted",
 False,
),
 ("transport_type",
 "Transport type",
 "The name of the transport to be used. Valid names are: {}".format(
 ",".join(Transport.get_valid_transports())),
 False,
),
 ("scheduler_type",
 "Scheduler type",
 "The name of the scheduler to be used. Valid names are: {}".format(
 ",".join(Scheduler.get_valid_schedulers())),
 False,
),
 ("workdir",
 "AiiDA work directory",
 "The absolute path of the directory on the computer where AiiDA will\n"
 "run the calculations (typically, the scratch of the computer). You\n"
 "can use the {username} replacement, that will be replaced by your\n"
 "username on the remote computer",
 False,
),
 # Must be called after the scheduler!
 ("mpirun_command",
 "mpirun command",
 "The mpirun command needed on the cluster to run parallel MPI\n"
 "programs. You can use the {tot_num_mpiprocs} replacement, that will be \n"
 "replaced by the total number of cpus, or the other scheduler-dependent\n"
 "replacement fields (see the scheduler docs for more information)",
 False,
),
 ("default_mpiprocs_per_machine",
 "Default number of CPUs per machine",
 "Enter here the default number of CPUs per machine (node) that \n"
 "should be used if nothing is otherwise specified. Leave empty \n"
 "if you do not want to provide a default value.\n",
 False,
),
 ("prepend_text",
 "Text to prepend to each command execution",
 "This is a multiline string, whose content will be prepended inside\n"
 "the submission script before the real execution of the job. It is\n"
 "your responsibility to write proper bash code!",
 True,
),
 ("append_text",
 "Text to append to each command execution",
 "This is a multiline string, whose content will be appended inside\n"
 "the submission script after the real execution of the job. It is\n"
 "your responsibility to write proper bash code!",
 True,
),
]

 def __int__(self):
 """
 Convert the class to an integer. This is needed to allow querying with Django.
 Be careful, though, not to pass it to a wrong field! This only returns the
 local DB principal key value.
 """
 return self.pk

 @abstractproperty
 def uuid(self):
 """
 Return the UUID in the DB.
 """
 pass

 @abstractproperty
 def pk(self):
 """
 Return the principal key in the DB.
 """
 pass

 @abstractproperty
 def id(self):
 """
 Return the principal key in the DB.
 """
 pass

 @abstractmethod
 def __init__(self, **kwargs):
 pass

 @abstractmethod
 def set(self, **kwargs):
 pass

 @classmethod
 @abstractmethod
[docs] def list_names(cls):
 """
 Return a list with all the names of the computers in the DB.
 """
 pass

 @abstractproperty
 def full_text_info(self):
 """
 Return a (multiline) string with a human-readable detailed information
 on this computer.
 """
 pass

 @abstractproperty
 def to_be_stored(self):
 pass

 @classmethod
 @abstractmethod
[docs] def get(cls, computer):
 """
 Return a computer from its name (or from another Computer or DbComputer instance)
 """
 pass

 @property
 def logger(self):
 return self._logger

 @classmethod
 def _name_validator(cls, name):
 """
 Validates the name.
 """
 if not name.strip():
 raise ValidationError("No name specified")

 def _get_hostname_string(self):
 return self.get_hostname()

 def _set_hostname_string(self, string):
 """
 Set the hostname starting from a string.
 """
 self._hostname_validator(string)
 self.set_hostname(string)

 @classmethod
 def _hostname_validator(cls, hostname):
 """
 Validates the hostname.
 """
 if not hostname.strip():
 raise ValidationError("No hostname specified")

 def _get_default_mpiprocs_per_machine_string(self):
 """
 Get the default number of CPUs per machine (node) as a string
 """
 def_cpus_per_machine = self.get_default_mpiprocs_per_machine()
 if def_cpus_per_machine is None:
 return ""
 else:
 return str(def_cpus_per_machine)

 def _set_default_mpiprocs_per_machine_string(self, string):
 """
 Set the default number of CPUs per machine (node) from a string (set to
 None if the string is empty)
 """
 if not string:
 def_cpus_per_machine = None
 else:
 try:
 def_cpus_per_machine = int(string)
 except ValueError:
 raise ValidationError("Invalid value for default_mpiprocs_per_machine, "
 "must be a positive integer, or an empty "
 "string if you do not want to provide a "
 "default value.")

 self._default_mpiprocs_per_machine_validator(def_cpus_per_machine)

 self.set_default_mpiprocs_per_machine(def_cpus_per_machine)

 def _default_mpiprocs_per_machine_validator(self, def_cpus_per_machine):
 """
 Validates the default number of CPUs per machine (node)
 """
 if def_cpus_per_machine is None:
 return

 if not isinstance(def_cpus_per_machine, (
 int, long)) or def_cpus_per_machine <= 0:
 raise ValidationError("Invalid value for default_mpiprocs_per_machine, "
 "must be a positive integer, or an empty "
 "string if you do not want to provide a "
 "default value.")

 def _shouldcall_default_mpiprocs_per_machine(self):
 """
 Return True if the scheduler can accept 'default_mpiprocs_per_machine',
 False otherwise.

 If there is a problem in determining the scheduler, return True to
 avoid exceptions.
 """
 try:
 SchedulerClass = SchedulerFactory(self.get_scheduler_type())
 except MissingPluginError:
 # Return True if the Scheduler was not found...
 return True

 JobResourceClass = SchedulerClass._job_resource_class
 if JobResourceClass is None:
 # Odd situation...
 return False

 return JobResourceClass.accepts_default_mpiprocs_per_machine()

 def _cleanup_default_mpiprocs_per_machine(self):
 """
 Called by the command line utility in case the _shouldcall_ routine
 returns False, to remove possible values that were previously set
 (e.g. if one used before a pbspro scheduler and set the
 default_mpiprocs_per_machine, and then switches to sge, the question is
 not asked, but the value should also be removed from the DB.
 """
 self.set_default_mpiprocs_per_machine(None)

 def _get_enabled_state_string(self):
 return "True" if self.is_enabled() else "False"

 def _set_enabled_state_string(self, string):
 """
 Set the enabled state starting from a string.
 """
 upper_string = string.upper()
 if upper_string in ['YES', 'Y', 'T', 'TRUE']:
 enabled_state = True
 elif upper_string in ['NO', 'N', 'F', 'FALSE']:
 enabled_state = False
 else:
 raise ValidationError("Invalid value '{}' for the enabled state, must "
 "be a boolean".format(string))

 self._enabled_state_validator(enabled_state)

 self.set_enabled_state(enabled_state)

 @classmethod
 def _enabled_state_validator(cls, enabled_state):
 """
 Validates the hostname.
 """
 if not isinstance(enabled_state, bool):
 raise ValidationError("Invalid value '{}' for the enabled state, must "
 "be a boolean".format(str(enabled_state)))

 def _get_description_string(self):
 return self.get_description()

 def _set_description_string(self, string):
 """
 Set the description starting from a string.
 """
 self._description_validator(string)
 self.set_description(string)

 @classmethod
 def _description_validator(cls, description):
 """
 Validates the description.
 """
 # The description is always valid
 pass

 def _get_transport_type_string(self):
 return self.get_transport_type()

 def _set_transport_type_string(self, string):
 """
 Set the transport_type starting from a string.
 """
 self._transport_type_validator(string)
 self.set_transport_type(string)

 @classmethod
 def _transport_type_validator(cls, transport_type):
 """
 Validates the transport string.
 """
 if transport_type not in Transport.get_valid_transports():
 raise ValidationError("The specified transport is not a valid one")

 def _get_scheduler_type_string(self):
 return self.get_scheduler_type()

 def _set_scheduler_type_string(self, string):
 """
 Set the scheduler_type starting from a string.
 """
 self._scheduler_type_validator(string)
 self.set_scheduler_type(string)

 @classmethod
 def _scheduler_type_validator(cls, scheduler_type):
 """
 Validates the transport string.
 """
 if scheduler_type not in Scheduler.get_valid_schedulers():
 raise ValidationError("The specified scheduler is not a valid one")

 def _get_prepend_text_string(self):
 return self.get_prepend_text()

 def _set_prepend_text_string(self, string):
 """
 Set the prepend_text starting from a string.
 """
 self._prepend_text_validator(string)
 self.set_prepend_text(string)

 @classmethod
 def _prepend_text_validator(cls, prepend_text):
 """
 Validates the prepend text string.
 """
 # no validation done
 pass

 def _get_append_text_string(self):
 return self.get_append_text()

 def _set_append_text_string(self, string):
 """
 Set the append_text starting from a string.
 """
 self._append_text_validator(string)
 self.set_append_text(string)

 @classmethod
 def _append_text_validator(cls, append_text):
 """
 Validates the append text string.
 """
 # no validation done
 pass

 def _get_workdir_string(self):
 return self.get_workdir()

 def _set_workdir_string(self, string):
 """
 Set the workdir starting from a string.
 """
 self._workdir_validator(string)
 self.set_workdir(string)

 @classmethod
 def _workdir_validator(cls, workdir):
 """
 Validates the transport string.
 """
 if not workdir.strip():
 raise ValidationError("No workdir specified")

 try:
 convertedwd = workdir.format(username="test")
 except KeyError as e:
 raise ValidationError("In workdir there is an unknown replacement "
 "field '{}'".format(e.message))
 except ValueError as e:
 raise ValidationError("Error in the string: '{}'".format(e.message))

 if not os.path.isabs(convertedwd):
 raise ValidationError("The workdir must be an absolute path")

 def _get_mpirun_command_string(self):
 return " ".join(self.get_mpirun_command())

 def _set_mpirun_command_string(self, string):
 """
 Set the mpirun command string (from a string to a list).
 """
 converted_cmd = str(string).strip().split(" ")
 if converted_cmd == ['']:
 converted_cmd = []
 self._mpirun_command_validator(converted_cmd)
 self.set_mpirun_command(converted_cmd)

 def _mpirun_command_validator(self, mpirun_cmd):
 """
 Validates the mpirun_command variable. MUST be called after properly
 checking for a valid scheduler.
 """
 if not isinstance(mpirun_cmd, (tuple, list)) or not (
 all(isinstance(i, basestring) for i in mpirun_cmd)):
 raise ValidationError("the mpirun_command must be a list of strings")

 try:
 job_resource_keys = self.get_scheduler()._job_resource_class.get_valid_keys()
 except MissingPluginError:
 raise ValidationError("Unable to load the scheduler for this computer")

 subst = {i: 'value' for i in job_resource_keys}
 subst['tot_num_mpiprocs'] = 'value'

 try:
 for arg in mpirun_cmd:
 arg.format(**subst)
 except KeyError as e:
 raise ValidationError("In workdir there is an unknown replacement "
 "field '{}'".format(e.message))
 except ValueError as e:
 raise ValidationError("Error in the string: '{}'".format(e.message))

[docs] def validate(self):
 """
 Check if the attributes and files retrieved from the DB are valid.
 Raise a ValidationError if something is wrong.

 Must be able to work even before storing: therefore, use the get_attr and similar methods
 that automatically read either from the DB or from the internal attribute cache.

 For the base class, this is always valid. Subclasses will reimplement this.
 In the subclass, always call the super().validate() method first!
 """
 if not self.get_name().strip():
 raise ValidationError("No name specified")

 self._hostname_validator(self.get_hostname())

 self._description_validator(self.get_description())

 self._enabled_state_validator(self.is_enabled())

 self._transport_type_validator(self.get_transport_type())

 self._scheduler_type_validator(self.get_scheduler_type())

 self._workdir_validator(self.get_workdir())

 try:
 mpirun_cmd = self.get_mpirun_command()
 except DbContentError:
 raise ValidationError("Error in the DB content of the transport_params")

 # To be called AFTER the validation of the scheduler
 self._mpirun_command_validator(mpirun_cmd)

 @abstractmethod
[docs] def copy(self):
 """
 Return a copy of the current object to work with, not stored yet.
 """
 pass

 @abstractproperty
 def dbcomputer(self):
 pass

 @abstractmethod
[docs] def store(self):
 """
 Store the computer in the DB.

 Differently from Nodes, a computer can be re-stored if its properties
 are to be changed (e.g. a new mpirun command, etc.)
 """
 pass

 @abstractproperty
 def name(self):
 pass

 @abstractproperty
 def description(self):
 pass

 @abstractproperty
 def hostname(self):
 pass

 @abstractmethod
 def _get_metadata(self):
 pass

 @abstractmethod
 def _set_metadata(self, metadata_dict):
 """
 Set the metadata.

 .. note: You still need to call the .store() method to actually save
 data to the database! (The store method can be called multiple
 times, differently from AiiDA Node objects).
 """
 pass

 def _del_property(self, k, raise_exception=True):
 olddata = self._get_metadata()
 try:
 del olddata[k]
 except KeyError:
 if raise_exception:
 raise AttributeError("'{}' property not found".format(k))
 else:
 # Do not reset the metadata, it is not necessary
 return
 self._set_metadata(olddata)

 def _set_property(self, k, v):
 olddata = self._get_metadata()
 olddata[k] = v
 self._set_metadata(olddata)

 def _get_property(self, k, *args):
 if len(args) > 1:
 raise TypeError("_get_property expected at most 2 arguments")
 olddata = self._get_metadata()
 try:
 return olddata[k]
 except KeyError:
 if len(args) == 0:
 raise AttributeError("'{}' property not found".format(k))
 elif len(args) == 1:
 return args[0]

 def get_prepend_text(self):
 return self._get_property("prepend_text", "")

 def set_prepend_text(self, val):
 self._set_property("prepend_text", unicode(val))

 def get_append_text(self):
 return self._get_property("append_text", "")

 def set_append_text(self, val):
 self._set_property("append_text", unicode(val))

[docs] def get_mpirun_command(self):
 """
 Return the mpirun command. Must be a list of strings, that will be
 then joined with spaces when submitting.

 I also provide a sensible default that may be ok in many cases.
 """
 return self._get_property("mpirun_command",
 ["mpirun", "-np", "{tot_num_mpiprocs}"])

[docs] def set_mpirun_command(self, val):
 """
 Set the mpirun command. It must be a list of strings (you can use
 string.split() if you have a single, space-separated string).
 """
 if not isinstance(val, (tuple, list)) or not (
 all(isinstance(i, basestring) for i in val)):
 raise TypeError("the mpirun_command must be a list of strings")
 self._set_property("mpirun_command", val)

[docs] def get_default_mpiprocs_per_machine(self):
 """
 Return the default number of CPUs per machine (node) for this computer,
 or None if it was not set.
 """
 return self._get_property("default_mpiprocs_per_machine",
 None)

[docs] def set_default_mpiprocs_per_machine(self, def_cpus_per_machine):
 """
 Set the default number of CPUs per machine (node) for this computer.
 Accepts None if you do not want to set this value.
 """
 if def_cpus_per_machine is None:
 self._del_property("default_mpiprocs_per_machine", raise_exception=False)
 else:
 if not isinstance(def_cpus_per_machine, (int, long)):
 raise TypeError("def_cpus_per_machine must be an integer (or None)")
 self._set_property("default_mpiprocs_per_machine", def_cpus_per_machine)

 @abstractmethod
 def get_transport_params(self):
 pass

 @abstractmethod
 def set_transport_params(self, val):
 pass

 @abstractmethod
 def get_workdir(self):
 pass

 @abstractmethod
 def set_workdir(self, val):
 pass

 @abstractmethod
 def get_name(self):
 pass

 @abstractmethod
 def set_name(self, val):
 pass

 def get_hostname(self):
 pass

 @abstractmethod
 def set_hostname(self, val):
 pass

 @abstractmethod
 def get_description(self):
 pass

 @abstractmethod
 def set_description(self, val):
 pass

 @abstractmethod
 def get_calculations_on_computer(self):
 pass

 @abstractmethod
 def is_enabled(self):
 pass

 @abstractmethod
[docs] def get_dbauthinfo(self, user):
 """
 Return the aiida.backends.djsite.db.models.DbAuthInfo instance for the
 given user on this computer, if the computer
 is not configured for the given user.

 :param user: a DbUser instance.
 :return: a aiida.backends.djsite.db.models.DbAuthInfo instance
 :raise NotExistent: if the computer is not configured for the given
 user.
 """
 pass

 @abstractmethod
[docs] def is_user_configured(self, user):
 """
 Return True if the computer is configured for the given user,
 False otherwise.

 :param user: a DbUser instance.
 :return: a boolean.
 """
 pass

 @abstractmethod
[docs] def is_user_enabled(self, user):
 """
 Return True if the computer is enabled for the given user (looking only
 at the per-user setting: the computer could still be globally disabled).

 :note: Return False also if the user is not configured for the computer.

 :param user: a DbUser instance.
 :return: a boolean.
 """
 pass

 @abstractmethod
 def set_enabled_state(self, enabled):
 pass

 @abstractmethod
 def get_scheduler_type(self):
 pass

 @abstractmethod
 def set_scheduler_type(self, val):
 pass

 @abstractmethod
 def get_transport_type(self):
 pass

 @abstractmethod
 def set_transport_type(self, val):
 pass

 def get_transport_class(self):
 try:
 # I return the class, not an instance
 return TransportFactory(self.get_transport_type())
 except MissingPluginError as e:
 raise ConfigurationError('No transport found for {} [type {}], message: {}'.format(
 self.name, self.get_transport_type(), e.message))

 def get_scheduler(self):
 try:
 ThisPlugin = SchedulerFactory(self.get_scheduler_type())
 # I call the init without any parameter
 return ThisPlugin()
 except MissingPluginError as e:
 raise ConfigurationError('No scheduler found for {} [type {}], message: {}'.format(
 self.name, self.get_scheduler_type(), e.message))

 def __repr__(self):
 return '<{}: {}>'.format(self.__class__.__name__, str(self))

 def __str__(self):
 if self.is_enabled():
 return "{} ({}), pk: {}".format(self.name, self.hostname,
 self.pk)
 else:
 return "{} ({}) [DISABLED], pk: {}".format(self.name, self.hostname,
 self.pk)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/implementation/general/code.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.orm.implementation.general.code

-*- coding: utf-8 -*-
import os
from abc import abstractmethod
from aiida.orm.implementation import Node
from aiida.common.exceptions import (ValidationError, MissingPluginError)
from aiida.common.links import LinkType
from aiida.orm.mixins import SealableWithUpdatableAttributesMixin

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class AbstractCode(SealableWithUpdatableAttributesMixin, Node):
 """
 A code entity.
 It can either be 'local', or 'remote'.

 * Local code: it is a collection of files/dirs (added using the add_path() method), where one \
 file is flagged as executable (using the set_local_executable() method).

 * Remote code: it is a pair (remotecomputer, remotepath_of_executable) set using the \
 set_remote_computer_exec() method.

 For both codes, one can set some code to be executed right before or right after
 the execution of the code, using the set_preexec_code() and set_postexec_code()
 methods (e.g., the set_preexec_code() can be used to load specific modules required
 for the code to be run).
 """

 def _init_internal_params(self):
 """
 This function is called by the init method
 """
 self._updatable_attributes = \
 ('input_plugin', 'append_text', 'prepend_text', 'hidden')

 self._set_incompatibilities = [
 ('remote_computer_exec', 'local_executable')]

 def _hide(self):
 """
 Hide the code (prevents from showing it in the verdi code list)
 """
 self._set_attr("hidden", True)

 def _reveal(self):
 """
 Reveal the code (allows to show it in the verdi code list)
 By default, it is revealed
 """
 self._set_attr("hidden", False)

 def _is_hidden(self):
 """
 Determines whether the Code is hidden or not
 """
 return self.get_attr('hidden', False)

[docs] def set_files(self, files):
 """
 Given a list of filenames (or a single filename string),
 add it to the path (all at level zero, i.e. without folders).
 Therefore, be careful for files with the same name!

 :todo: decide whether to check if the Code must be a local executable
 to be able to call this function.
 """

 if isinstance(files, basestring):
 files = [files]
 for f in files:
 self.add_path(f, os.path.split(f)[1])

 def __str__(self):
 local_str = "Local" if self.is_local() else "Remote"
 if self.is_local():
 computer_str = "repository"
 else:
 if self.get_computer() is not None:
 computer_str = self.get_computer().name
 else:
 computer_str = "[unknown]"

 return "{} code '{}' on {}, pk: {}, uuid: {}".format(local_str,
 self.label,
 computer_str,
 self.pk, self.uuid)

 @classmethod
 @abstractmethod
[docs] def get(cls, label, computername=None, useremail=None):
 """
 Get a code from its label.

 :param label: the code label
 :param computername: filter only codes on computers with this name
 :param useremail: filter only codes belonging to a user with this
 email

 :raise NotExistent: if no matches are found
 :raise MultipleObjectsError: if multiple matches are found. In this case
 you may want to pass the additional parameters to filter the codes,
 or relabel the codes.
 """
 pass

 @classmethod
 @abstractmethod
[docs] def get_from_string(cls, code_string):
 """
 Get a Computer object with given identifier string, that can either be
 the numeric ID (pk), or the label (if unique); the label can either
 be simply the label, or in the format label@machinename. See the note
 below for details on the string detection algorithm.

 .. note:: If a string that can be converted to an integer is given,
 the numeric ID is verified first (therefore, is a code A with a
 label equal to the ID of another code B is present, code A cannot
 be referenced by label). Similarly, the (leftmost) '@' symbol is
 always used to split code and computername. Therefore do not use
 '@' in the code name if you want to use this function
 ('@' in the computer name are instead valid).

 :param code_string: the code string identifying the code to load

 :raise NotExistent: if no code identified by the given string is found
 :raise MultipleObjectsError: if the string cannot identify uniquely
 a code
 """
 from aiida.common.exceptions import NotExistent, MultipleObjectsError
 from aiida.orm.utils import load_node

 try:
 code_int = int(code_string)
 try:
 return load_node(code_int, parent_class=cls)
 except NotExistent:
 raise ValueError() # Jump to the following section
 # to check if a code with the given
 # label exists.
 except MultipleObjectsError:
 raise MultipleObjectsError("More than one code in the DB "
 "with pk='{}'!".format(code_string))
 except ValueError:
 # Before dying, try to see if the user passed a (unique) label.
 # split with the leftmost '@' symbol (i.e. code names cannot
 # contain '@' symbols, computer names can)
 codename, sep, computername = code_string.partition('@')
 if sep:
 codes = cls.query(label=codename, dbcomputer__name=computername)
 else:
 codes = cls.query(label=codename)

 if len(codes) == 0:
 raise NotExistent("'{}' is not a valid code "
 "ID or label.".format(code_string))
 elif len(codes) > 1:
 retstr = (
 "There are multiple codes with label '{}', having IDs: "
 "".format(code_string))
 retstr += ", ".join(sorted([str(c.pk) for c in codes])) + ".\n"
 retstr += ("Relabel them (using their ID), or refer to them "
 "with their ID.")
 raise MultipleObjectsError(retstr)
 else:
 return codes[0]

 @classmethod
 @abstractmethod
[docs] def list_for_plugin(cls, plugin, labels=True):
 """
 Return a list of valid code strings for a given plugin.

 :param plugin: The string of the plugin.
 :param labels: if True, return a list of code names, otherwise
 return the code PKs (integers).
 :return: a list of string, with the code names if labels is True,
 otherwise a list of integers with the code PKs.
 """
 pass

 def _validate(self):

 super(AbstractCode, self)._validate()

 if self.is_local() is None:
 raise ValidationError("You did not set whether the code is local "
 "or remote")

 if self.is_local():
 if not self.get_local_executable():
 raise ValidationError(
 "You have to set which file is the local executable "
 "using the set_exec_filename() method")
 # c[1] is True if the element is a file
 if self.get_local_executable() not in self.get_folder_list():
 raise ValidationError(
 "The local executable '{}' is not in the list of "
 "files of this code".format(self.get_local_executable()))
 else:
 if self.get_folder_list():
 raise ValidationError(
 "The code is remote but it has files inside")
 if not self.get_remote_computer():
 raise ValidationError("You did not specify a remote computer")
 if not self.get_remote_exec_path():
 raise ValidationError("You did not specify a remote executable")

 def add_link_from(self, src, label=None, link_type=LinkType.UNSPECIFIED):
 raise ValueError("A code node cannot have any input nodes")

 def _linking_as_output(self, dest, link_type):
 """
 Raise a ValueError if a link from self to dest is not allowed.

 An output of a code can only be a calculation
 """
 from aiida.orm.calculation import Calculation

 if not isinstance(dest, Calculation):
 raise ValueError(
 "The output of a code node can only be a calculation")

 return super(AbstractCode, self)._linking_as_output(dest, link_type)

[docs] def set_prepend_text(self, code):
 """
 Pass a string of code that will be put in the scheduler script before the
 execution of the code.
 """
 self._set_attr('prepend_text', unicode(code))

[docs] def get_prepend_text(self):
 """
 Return the code that will be put in the scheduler script before the
 execution, or an empty string if no pre-exec code was defined.
 """
 return self.get_attr('prepend_text', u"")

[docs] def set_input_plugin_name(self, input_plugin):
 """
 Set the name of the default input plugin, to be used for the automatic
 generation of a new calculation.
 """
 if input_plugin is None:
 self._set_attr('input_plugin', None)
 else:
 self._set_attr('input_plugin', unicode(input_plugin))

[docs] def get_input_plugin_name(self):
 """
 Return the name of the default input plugin (or None if no input plugin
 was set.
 """
 return self.get_attr('input_plugin', None)

[docs] def set_append_text(self, code):
 """
 Pass a string of code that will be put in the scheduler script after the
 execution of the code.
 """
 self._set_attr('append_text', unicode(code))

[docs] def get_append_text(self):
 """
 Return the postexec_code, or an empty string if no post-exec code was defined.
 """
 return self.get_attr('append_text', u"")

[docs] def set_local_executable(self, exec_name):
 """
 Set the filename of the local executable.
 Implicitly set the code as local.
 """
 self._set_local()
 self._set_attr('local_executable', exec_name)

 def get_local_executable(self):
 return self.get_attr('local_executable', u"")

 @abstractmethod
[docs] def set_remote_computer_exec(self, remote_computer_exec):
 """
 Set the code as remote, and pass the computer on which it resides
 and the absolute path on that computer.

 Args:
 remote_computer_exec: a tuple (computer, remote_exec_path), where
 computer is a aiida.orm.Computer or an
 aiida.backends.djsite.db.models.DbComputer object, and
 remote_exec_path is the absolute path of the main executable on
 remote computer.
 """
 pass

 def get_remote_exec_path(self):
 if self.is_local():
 raise ValueError("The code is local")
 return self.get_attr('remote_exec_path', "")

 def get_remote_computer(self):
 if self.is_local():
 raise ValueError("The code is local")

 return self.get_computer()

 @abstractmethod
 def _set_local(self):
 """
 Set the code as a 'local' code, meaning that all the files belonging to the code
 will be copied to the cluster, and the file set with set_exec_filename will be
 run.

 It also deletes the flags related to the local case (if any)
 """
 pass

 def _set_remote(self):
 """
 Set the code as a 'remote' code, meaning that the code itself has no files attached,
 but only a location on a remote computer (with an absolute path of the executable on
 the remote computer).

 It also deletes the flags related to the local case (if any)
 """
 self._set_attr('is_local', False)
 try:
 self._del_attr('local_executable')
 except AttributeError:
 pass

[docs] def is_local(self):
 """
 Return True if the code is 'local', False if it is 'remote' (see also documentation
 of the set_local and set_remote functions).
 """
 return self.get_attr('is_local', None)

 @abstractmethod
[docs] def can_run_on(self, computer):
 """
 Return True if this code can run on the given computer, False otherwise.

 Local codes can run on any machine; remote codes can run only on the machine
 on which they reside.

 TODO: add filters to mask the remote machines on which a local code can run.
 """
 pass

[docs] def get_execname(self):
 """
 Return the executable string to be put in the script.
 For local codes, it is ./LOCAL_EXECUTABLE_NAME
 For remote codes, it is the absolute path to the executable.
 """
 if self.is_local():
 return u"./{}".format(self.get_local_executable())
 else:
 return self.get_remote_exec_path()

[docs] def new_calc(self, *args, **kwargs):
 """
 Create and return a new Calculation object (unstored) with the correct
 plugin subclass, as obtained by the self.get_input_plugin_name() method.

 Parameters are passed to the calculation __init__ method.

 :note: it also directly creates the link to this code (that will of
 course be cached, since the new node is not stored yet).

 :raise MissingPluginError: if the specified plugin does not exist.
 :raise ValueError: if no plugin was specified.
 """
 from aiida.orm.utils import CalculationFactory
 plugin_name = self.get_input_plugin_name()
 if plugin_name is None:
 raise ValueError("You did not specify an input plugin "
 "for this code")

 try:
 C = CalculationFactory(plugin_name)

 except MissingPluginError:
 raise MissingPluginError("The input_plugin name for this code is "
 "'{}', but it is not an existing plugin"
 "name".format(plugin_name))

 # For remote codes, automatically set the computer,
 # unless explicitly set by the user
 if not self.is_local():
 if 'computer' not in kwargs:
 kwargs['computer'] = self.get_remote_computer()

 new_calc = C(*args, **kwargs)
 # I link to the code
 new_calc.use_code(self)
 return new_calc

 @property
 def full_text_info(self):
 """
 Return a (multiline) string with a human-readable detailed information
 on this computer.
 """

 ret_lines = []
 ret_lines.append(" * PK: {}".format(self.pk))
 ret_lines.append(" * UUID: {}".format(self.uuid))
 ret_lines.append(" * Label: {}".format(self.label))
 ret_lines.append(" * Description: {}".format(self.description))
 ret_lines.append(" * Default plugin: {}".format(
 self.get_input_plugin_name()))
 ret_lines.append(" * Used by: {} calculations".format(
 len(self.get_outputs())))
 if self.is_local():
 ret_lines.append(" * Type: {}".format("local"))
 ret_lines.append(
 " * Exec name: {}".format(self.get_execname()))
 ret_lines.append(" * List of files/folders:")
 for fname in self._get_folder_pathsubfolder.get_content_list():
 ret_lines.append(" * [{}] {}".format(" dir" if
 self._get_folder_pathsubfolder.isdir(
 fname) else "file",
 fname))
 else:
 ret_lines.append(" * Type: {}".format("remote"))
 ret_lines.append(" * Remote machine: {}".format(
 self.get_remote_computer().name))
 ret_lines.append(" * Remote absolute path: ")
 ret_lines.append(" " + self.get_remote_exec_path())

 ret_lines.append(" * prepend text:")
 if self.get_prepend_text().strip():
 for l in self.get_prepend_text().split('\n'):
 ret_lines.append(" {}".format(l))
 else:
 ret_lines.append(" # No prepend text.")
 ret_lines.append(" * append text:")
 if self.get_append_text().strip():
 for l in self.get_append_text().split('\n'):
 ret_lines.append(" {}".format(l))
 else:
 ret_lines.append(" # No append text.")

 return "\n".join(ret_lines)

 @classmethod
 def setup(cls, **kwargs):
 # raise NotImplementedError
 from aiida.cmdline.commands.code import CodeInputValidationClass
 code = CodeInputValidationClass().set_and_validate_from_code(kwargs)

 try:
 code.store()
 except ValidationError as e:
 raise ValidationError(
 "Unable to store the computer: {}.".format(e.message))
 return code

[docs]def delete_code(code):
 """
 Delete a code from the DB.
 Check before that there are no output nodes.

 NOTE! Not thread safe... Do not use with many users accessing the DB
 at the same time.

 Implemented as a function on purpose, otherwise complicated logic would be
 needed to set the internal state of the object after calling
 computer.delete().
 """
 raise NotImplementedError

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/implementation/general/workflow.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 Source code for aiida.orm.implementation.general.workflow

-*- coding: utf-8 -*-
import os
import sys
import traceback
import inspect
import logging

from abc import abstractmethod, abstractproperty

from aiida.common.exceptions import (InternalError, AiidaException,
 InvalidOperation, RemoteOperationError)
from aiida.common.datastructures import (wf_states, wf_exit_call,
 wf_default_call, calc_states)
from aiida.common.utils import str_timedelta
from aiida.common import aiidalogger
from aiida.orm.implementation.calculation import JobCalculation

from aiida.backends.utils import get_automatic_user

from aiida.utils import timezone
from aiida.utils.logger import get_dblogger_extra

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

logger = aiidalogger.getChild('Workflow')

[docs]class WorkflowKillError(AiidaException):
 """
 An exception raised when a workflow failed to be killed.
 The error_message_list attribute contains the error messages from
 all the subworkflows.
 """

 def __init__(self, *args, **kwargs):
 # Call the base class constructor with the parameters it needs
 super(WorkflowKillError, self).__init__(*args)

 self.error_message_list = kwargs.pop('error_message_list', [])
 if kwargs:
 raise ValueError("Unknown parameters passed to WorkflowKillError")

[docs]class WorkflowUnkillable(AiidaException):
 """
 Raised when a workflow cannot be killed because it is in the FINISHED or
 ERROR state.
 """
 pass

[docs]class AbstractWorkflow(object):
 """
 Base class to represent a workflow. This is the superclass of any workflow implementations,
 and provides all the methods necessary to interact with the database.

 The typical use case are workflow stored in the aiida.workflow packages, that are initiated
 either by the user in the shell or by some scripts, and that are monitored by the aiida daemon.

 Workflow can have steps, and each step must contain some calculations to be executed. At the
 end of the step's calculations the workflow is reloaded in memory and the next methods is called.

 .. todo: verify if there are other places (beside label and description) where
 the _increment_version_number_db routine needs to be called to increase
 the nodeversion after storing
 """
 # Name to be used for the repository section
 _section_name = 'workflow'

 # The name of the subfolder in which to put the files/directories added with add_path
 _path_subfolder_name = 'path'

 @abstractmethod
 def __init__(self, **kwargs):
 """
 Initializes the Workflow super class, store the instance in the DB and in case
 stores the starting parameters.

 If initialized with an uuid the Workflow is loaded from the DB, if not a new
 workflow is generated and added to the DB following the stack frameworks. This
 means that only modules inside aiida.workflows are allowed to implements
 the workflow super calls and be stored. The caller names, modules and files are
 retrieved from the stack.

 :param uuid: a string with the uuid of the object to be loaded.
 :param params: a dictionary of storable objects to initialize the specific workflow
 :raise: NotExistent: if there is no entry of the desired workflow kind with
 the given uuid.
 """
 pass

 def __repr__(self):
 return '<{}: {}>'.format(self.__class__.__name__, str(self))

 def __str__(self):
 if self._to_be_stored:
 return "uuid: {} (unstored)".format(self.uuid)
 else:
 return "uuid: {} (pk: {})".format(self.uuid, self.pk)

 @abstractproperty
 def dbworkflowinstance(self):
 """
 Get the DbWorkflow object stored in the super class.

 :return: DbWorkflow object from the database
 """
 pass

 @abstractmethod
 def _get_dbworkflowinstance(self):
 pass

 @abstractproperty
 def label(self):
 """
 Get the label of the workflow.

 :return: a string
 """
 pass

 @label.setter
 @abstractmethod
 def label(self, label):
 """
 Set the label of the workflow.

 :param label: a string
 """
 pass

 @abstractmethod
 def _update_db_label_field(self, field_value):
 """
 Safety method to store the label of the workflow

 :return: a string
 """
 pass

 @abstractproperty
 def description(self):
 """
 Get the description of the workflow.

 :return: a string
 """
 pass

 @description.setter
 @abstractmethod
 def description(self, desc):
 """
 Set the description of the workflow

 :param desc: a string
 """
 pass

 @abstractmethod
 def _update_db_description_field(self, field_value):
 """
 Safety method to store the description of the workflow

 :return: a string
 """
 pass

 @abstractmethod
 def _increment_version_number_db(self):
 """
 This function increments the version number in the DB.
 This should be called every time you need to increment the version (e.g. on adding a
 extra or attribute).
 """
 pass

 @property
 def repo_folder(self):
 """
 Get the permanent repository folder.
 Use preferentially the current_folder method.

 :return: the permanent RepositoryFolder object
 """
 return self._repo_folder

 @property
 def current_folder(self):
 """
 Get the current repository folder,
 whether the temporary or the permanent.

 :return: the RepositoryFolder object.
 """
 if self._to_be_stored:
 return self.get_temp_folder()
 else:
 return self.repo_folder

 @property
 def _get_folder_pathsubfolder(self):
 """
 Get the subfolder in the repository.

 :return: a Folder object.
 """
 return self.current_folder.get_subfolder(
 self._path_subfolder_name, reset_limit=True)

[docs] def get_folder_list(self, subfolder='.'):
 """
 Get the the list of files/directory in the repository of the object.

 :param str,optional subfolder: get the list of a subfolder
 :return: a list of strings.
 """
 return self._get_folder_pathsubfolder.get_subfolder(subfolder).get_content_list()

[docs] def get_temp_folder(self):
 """
 Get the folder of the Node in the temporary repository.

 :return: a SandboxFolder object mapping the node in the repository.
 """
 if self._temp_folder is None:
 raise InternalError("The temp_folder was asked for node {}, but it is "
 "not set!".format(self.uuid))
 return self._temp_folder

[docs] def remove_path(self, path):
 """
 Remove a file or directory from the repository directory.

 Can be called only before storing.
 """
 if not self._to_be_stored:
 raise ValueError("Cannot delete a path after storing the node")

 if os.path.isabs(path):
 raise ValueError("The destination path in remove_path must be a relative path")
 self._get_folder_pathsubfolder.remove_path(path)

[docs] def add_path(self, src_abs, dst_path):
 """
 Copy a file or folder from a local file inside the repository directory.
 If there is a subpath, folders will be created.

 Copy to a cache directory if the entry has not been saved yet.
 src_abs: the absolute path of the file to copy.
 dst_filename: the (relative) path on which to copy.
 """
 if not self._to_be_stored:
 raise ValueError("Cannot insert a path after storing the node")

 if not os.path.isabs(src_abs):
 raise ValueError("The source path in add_path must be absolute")
 if os.path.isabs(dst_path):
 raise ValueError("The destination path in add_path must be a filename without any subfolder")
 self._get_folder_pathsubfolder.insert_path(src_abs, dst_path)

[docs] def get_abs_path(self, path, section=None):
 """
 TODO: For the moment works only for one kind of files, 'path' (internal files)
 """
 if section is None:
 section = self._path_subfolder_name

 if os.path.isabs(path):
 raise ValueError("The path in get_abs_path must be relative")
 return self.current_folder.get_subfolder(section, reset_limit=True).get_abs_path(path, check_existence=True)

 @classmethod
 @abstractmethod
[docs] def query(cls, *args, **kwargs):
 """
 Map to the aiidaobjects manager of the DbWorkflow, that returns
 Workflow objects instead of DbWorkflow entities.

 """
 pass

 @property
 def logger(self):
 """
 Get the logger of the Workflow object, so that it also logs to the
 DB.

 :return: LoggerAdapter object, that works like a logger, but also has
 the 'extra' embedded
 """
 return logging.LoggerAdapter(logger=self._logger,
 extra=get_dblogger_extra(self))

 @abstractmethod
[docs] def store(self):
 """
 Stores the DbWorkflow object data in the database
 """
 pass

 @abstractproperty
 def uuid(self):
 """
 Returns the DbWorkflow uuid
 """
 pass

 @abstractproperty
 def pk(self):
 """
 Returns the DbWorkflow pk
 """
 pass

 @abstractmethod
[docs] def info(self):
 """
 Returns an array with all the informations about the modules, file, class to locate
 the workflow source code
 """
 pass

 @abstractmethod
[docs] def set_params(self, params, force=False):
 """
 Adds parameters to the Workflow that are both stored and used every time
 the workflow engine re-initialize the specific workflow to launch the new methods.
 """
 pass

 @abstractmethod
[docs] def get_parameters(self):
 """
 Get the Workflow paramenters
 :return: a dictionary of storable objects
 """
 pass

 @abstractmethod
[docs] def get_parameter(self, _name):
 """
 Get one Workflow paramenter
 :param name: a string with the parameters name to retrieve
 :return: a dictionary of storable objects
 """
 pass

 @abstractmethod
[docs] def get_attributes(self):
 """
 Get the Workflow attributes
 :return: a dictionary of storable objects
 """
 pass

 @abstractmethod
[docs] def get_attribute(self, _name):
 """
 Get one Workflow attribute
 :param name: a string with the attribute name to retrieve
 :return: a dictionary of storable objects
 """
 pass

 @abstractmethod
[docs] def add_attributes(self, _params):
 """
 Add a set of attributes to the Workflow. If another attribute is present with the same name it will
 be overwritten.
 :param name: a string with the attribute name to store
 :param value: a storable object to store
 """
 pass

 @abstractmethod
[docs] def add_attribute(self, _name, _value):
 """
 Add one attributes to the Workflow. If another attribute is present with the same name it will
 be overwritten.
 :param name: a string with the attribute name to store
 :param value: a storable object to store
 """
 pass

 @abstractmethod
[docs] def get_results(self):
 """
 Get the Workflow results
 :return: a dictionary of storable objects
 """
 pass

 @abstractmethod
[docs] def get_result(self, _name):
 """
 Get one Workflow result
 :param name: a string with the result name to retrieve
 :return: a dictionary of storable objects
 """
 pass

 @abstractmethod
[docs] def add_results(self, _params):
 """
 Add a set of results to the Workflow. If another result is present with the same name it will
 be overwritten.
 :param name: a string with the result name to store
 :param value: a storable object to store
 """
 pass

 @abstractmethod
[docs] def add_result(self, _name, _value):
 """
 Add one result to the Workflow. If another result is present with the same name it will
 be overwritten.
 :param name: a string with the result name to store
 :param value: a storable object to store
 """
 pass

 @abstractmethod
[docs] def get_state(self):
 """
 Get the Workflow's state
 :return: a state from wf_states in aiida.common.datastructures
 """
 pass

 @abstractmethod
[docs] def set_state(self, state):
 """
 Set the Workflow's state
 :param name: a state from wf_states in aiida.common.datastructures
 """
 pass

 @abstractmethod
[docs] def is_new(self):
 """
 Returns True is the Workflow's state is CREATED
 """
 pass

 @abstractmethod
[docs] def is_running(self):
 """
 Returns True is the Workflow's state is RUNNING
 """
 pass

 @abstractmethod
[docs] def has_finished_ok(self):
 """
 Returns True is the Workflow's state is FINISHED
 """
 pass

 @abstractmethod
[docs] def has_failed(self):
 """
 Returns True is the Workflow's state is ERROR
 """
 pass

 @abstractmethod
[docs] def is_subworkflow(self):
 """
 Return True is this is a subworkflow (i.e., if it has a parent),
 False otherwise.
 """
 pass

 @abstractmethod
[docs] def get_step(self, step_method):

 """
 Retrieves by name a step from the Workflow.
 :param step_method: a string with the name of the step to retrieve or a method
 :raise: ObjectDoesNotExist: if there is no step with the specific name.
 :return: a DbWorkflowStep object.
 """
 pass

 @abstractmethod
[docs] def get_steps(self, state=None):
 """
 Retrieves all the steps from a specific workflow Workflow with the possibility to limit the list
 to a specific step's state.
 :param state: a state from wf_states in aiida.common.datastructures
 :return: a list of DbWorkflowStep objects.
 """
 pass

[docs] def has_step(self, step_method):
 """
 Return if the Workflow has a step with a specific name.
 :param step_method: a string with the name of the step to retrieve or a method
 """
 return not self.get_step(step_method) == None

 @classmethod
[docs] def step(cls, fun):
 """
 This method is used as a decorator for workflow steps, and handles the method's execution,
 the state updates and the eventual errors.

 The decorator generates a wrapper around the input function to execute, adding with the correct
 step name and a utility variable to make it distinguishable from non-step methods.

 When a step is launched, the wrapper tries to run the function in case of error the state of
 the workflow is moved to ERROR and the traceback is stored in the report. In general the input
 method is a step obtained from the Workflow object, and the decorator simply handles a controlled
 execution of the step allowing the code not to break in case of error in the step's source code.

 The wrapper also tests not to run two times the same step, unless a Workflow is in ERROR state, in this
 case all the calculations and subworkflows of the step are killed and a new execution is allowed.

 :param fun: a methods to wrap, making it a Workflow step
 :raise: AiidaException: in case the workflow state doesn't allow the execution
 :return: the wrapped methods,
 """
 wrapped_method = fun.__name__

 # This function gets called only if the method is launched with the execution brackets ()
 # Otherwise, when the method is addressed in a next() call this never gets called and only the
 # attributes are added
 def wrapper(cls, *args, **kwargs):
 # Store the workflow at the first step executed
 if cls._to_be_stored:
 cls.store()

 if len(args) > 0:
 raise AiidaException("A step method cannot have any argument, use add_attribute to the workflow")

 # If a method is launched and the step is RUNNING or INITIALIZED we should stop
 if cls.has_step(wrapped_method) and \
 not (cls.get_step(wrapped_method).state == wf_states.ERROR or \
 cls.get_step(wrapped_method).state == wf_states.SLEEP or \
 cls.get_step(wrapped_method).nextcall == wf_default_call or \
 cls.get_step(wrapped_method).nextcall == wrapped_method \
 #cls.has_step(wrapped_method) \
):
 raise AiidaException(
 "The step {0} has already been initialized, cannot change this outside the parent workflow !".format(
 wrapped_method))

 # If a method is launched and the step is halted for ERROR, then clean the step and re-launch
 if cls.has_step(wrapped_method) and \
 (cls.get_step(wrapped_method).state == wf_states.ERROR or \
 cls.get_step(wrapped_method).state == wf_states.SLEEP):

 for w in cls.get_step(wrapped_method).get_sub_workflows(): w.kill()
 cls.get_step(wrapped_method).remove_sub_workflows()

 for c in cls.get_step(wrapped_method).get_calculations(): c.kill()
 cls.get_step(wrapped_method).remove_calculations()

 #self.get_steps(wrapped_method).set_nextcall(wf_exit_call)

 method_step, created = cls.dbworkflowinstance.steps.get_or_create(name=wrapped_method,
 user=get_automatic_user())

 try:
 fun(cls)
 except:
 exc_type, exc_value, exc_traceback = sys.exc_info()
 cls.append_to_report(
 "ERROR ! This workflow got an error in the {0} method, we report down the stack trace".format(
 wrapped_method))
 cls.append_to_report("full traceback: {0}".format(traceback.format_exc()))
 method_step.set_state(wf_states.ERROR)
 return None

 out = wrapper
 wrapper.is_wf_step = True
 wrapper.wf_step_name = fun.__name__

 return wrapper

[docs] def next(self, next_method):
 """
 Adds the a new step to be called after the completion of the caller method's calculations and subworkflows.

 This method must be called inside a Workflow step, otherwise an error is thrown. The
 code finds the caller method and stores in the database the input next_method as the next
 method to be called. At this point no execution in made, only configuration updates in the database.

 If during the execution of the caller method the user launched calculations or subworkflows, this
 method will add them to the database, making them available to the workflow manager to be launched.
 In fact all the calculation and subworkflow submissions are lazy method, really executed by this call.

 :param next_method: a Workflow step method to execute after the caller method
 :raise: AiidaException: in case the caller method cannot be found or validated
 :return: the wrapped methods, decorated with the correct step name
 """

 md5 = self.dbworkflowinstance.script_md5
 script_path = self.dbworkflowinstance.script_path

 # TODO: in principles, the file containing the workflow description
 # should be copied in a repository, and, on that file, the workflow
 # should check to be sure of loading the same description of the
 # workflow. At the moment, this is not done and is checking the source
 # in aiida/workflows/... resulting essentially in the impossibility of
 # developing a workflow without rendering most of the trial run
 # unaccessible. I comment these lines for this moment.

 #if md5 != md5_file(script_path):
 # raise ValidationError("Unable to load the original workflow module from {}, MD5 has changed".format(script_path))

 # ATTENTION: Do not move this code outside or encapsulate it in a function
 curframe = inspect.currentframe()
 calframe = inspect.getouterframes(curframe, 2)
 caller_method = calframe[1][3]

 if next_method is None:
 raise AiidaException("The next method is None, probably you passed a method with parenthesis ??")

 if not self.has_step(caller_method):
 raise AiidaException("The caller method is either not a step or has not been registered as one")

 if not next_method.__name__ == wf_exit_call:
 try:
 is_wf_step = getattr(next_method, "is_wf_step", None)
 except AttributeError:
 raise AiidaException("Cannot add as next call a method not decorated as Workflow method")

 # TODO SP: abstract this, this depends on the DB. The better would be
 # to add a method to the DbWorkflow from SQLA and Django to get steps
 # with particular filters, in order to avoid repetition of all the code
 # arround

 # Retrieve the caller method
 method_step = self.dbworkflowinstance.steps.get(name=caller_method, user=get_automatic_user())

 # Attach calculations
 if caller_method in self.attach_calc_lazy_storage:
 for c in self.attach_calc_lazy_storage[caller_method]:
 method_step.add_calculation(c)

 # Attach sub-workflows
 if caller_method in self.attach_subwf_lazy_storage:
 for w in self.attach_subwf_lazy_storage[caller_method]:
 method_step.add_sub_workflow(w)

 # Set the next method
 if not next_method.__name__ == wf_exit_call:
 next_method_name = next_method.wf_step_name
 else:
 next_method_name = wf_exit_call

 #logger.info("Adding step {0} after {1} in {2}".format(next_method_name, caller_method, self.uuid))
 method_step.set_nextcall(next_method_name)
 #
 self.dbworkflowinstance.set_state(wf_states.RUNNING)
 method_step.set_state(wf_states.RUNNING)

[docs] def attach_calculation(self, calc):
 """
 Adds a calculation to the caller step in the database. This is a lazy call, no
 calculations will be launched until the ``next`` method gets called. For a step to be
 completed all the calculations linked have to be in RETRIEVED state, after which the next
 method gets called from the workflow manager.
 :param calc: a JobCalculation object
 :raise: AiidaException: in case the input is not of JobCalculation type
 """

 if (not issubclass(calc.__class__, JobCalculation) and not isinstance(calc, JobCalculation)):
 raise AiidaException("Cannot add a calculation not of type JobCalculation")

 for node in calc.get_inputs():
 if node.pk is None:
 raise AiidaException("Cannot add a calculation with "
 "unstored inputs")

 # if calc.pk is None:
 # raise AiiDAException("Cannot add an unstored calculation")

 curframe = inspect.currentframe()
 calframe = inspect.getouterframes(curframe, 2)
 caller_funct = calframe[1][3]

 if not caller_funct in self.attach_calc_lazy_storage:
 self.attach_calc_lazy_storage[caller_funct] = []
 self.attach_calc_lazy_storage[caller_funct].append(calc)

[docs] def attach_workflow(self, sub_wf):
 """
 Adds a workflow to the caller step in the database. This is a lazy call, no
 workflow will be started until the ``next`` method gets called. For a step to be
 completed all the workflows linked have to be in FINISHED state, after which the next
 method gets called from the workflow manager.
 :param next_method: a Workflow object
 """
 curframe = inspect.currentframe()
 calframe = inspect.getouterframes(curframe, 2)
 caller_funct = calframe[1][3]

 if not caller_funct in self.attach_subwf_lazy_storage:
 self.attach_subwf_lazy_storage[caller_funct] = []
 self.attach_subwf_lazy_storage[caller_funct].append(sub_wf)

[docs] def get_step_calculations(self, step_method, calc_state=None):
 """
 Retrieves all the calculations connected to a specific step in the database. If the step
 is not existent it returns None, useful for simpler grammatic in the workflow definition.
 :param next_method: a Workflow step (decorated) method
 :param calc_state: a specific state to filter the calculations to retrieve
 :return: a list of JobCalculations objects
 """
 if not getattr(step_method, "is_wf_step"):
 raise AiidaException("Cannot get step calculations from a method not decorated as Workflow method")

 step_method_name = step_method.wf_step_name

 try:
 stp = self.get_step(step_method_name)
 return stp.get_calculations(state=calc_state)
 except:
 raise AiidaException("Cannot retrieve step's calculations")

[docs] def get_step_workflows(self, step_method):
 """
 Retrieves all the workflows connected to a specific step in the database. If the step
 is not existent it returns None, useful for simpler grammatic in the workflow definition.
 :param next_method: a Workflow step (decorated) method
 """
 if not getattr(step_method, "is_wf_step"):
 raise AiidaException("Cannot get step calculations from a method not decorated as Workflow method")

 step_method_name = step_method.wf_step_name

 stp = self.get_step(step_method_name)
 return stp.get_sub_workflows()

[docs] def kill_step_calculations(self, step):
 """
 Calls the ``kill`` method for each Calculation linked to the step method passed as argument.
 :param step: a Workflow step (decorated) method
 """
 counter = 0
 for c in step.get_calculations():
 if c._is_new() or c._is_running():
 try:
 c.kill()
 except (InvalidOperation, RemoteOperationError) as e:
 counter += 1
 self.logger.error(e.message)

 if counter:
 raise InvalidOperation("{} step calculation{} could not be killed"
 "".format(counter, "" if counter == 1 else "s"))

[docs] def kill(self, verbose=False):
 """
 Stop the Workflow execution and change its state to FINISHED.

 This method calls the ``kill`` method for each Calculation and each
 subworkflow linked to each RUNNING step.

 :param verbose: True to print the pk of each subworkflow killed
 :raise InvalidOperation: if some calculations cannot be killed (the
 workflow will be also put to SLEEP so that it
 can be killed later on)
 """
 if self.get_state() not in [wf_states.FINISHED, wf_states.ERROR]:

 # put in SLEEP state first
 self.dbworkflowinstance.set_state(wf_states.SLEEP)

 error_messages = []
 for s in self.get_steps(state=wf_states.RUNNING):

 try:
 self.kill_step_calculations(s)
 except InvalidOperation as e:
 error_message = ("'{}' for workflow with pk= {}"
 "".format(e.message, self.pk))
 error_messages.append(error_message)

 for w in s.get_sub_workflows():
 if verbose:
 print "Killing workflow with pk: {}".format(w.pk)

 try:
 w.kill(verbose=verbose)
 except WorkflowKillError as e:
 #self.logger.error(e.message)
 error_messages.extend(e.error_message_list)
 except WorkflowUnkillable:
 # A subwf cannot be killed, skip
 pass

 if self.get_steps(state=wf_states.CREATED):
 error_messages.append("Workflow with pk= {} cannot be killed "
 "because some steps are in {} state"
 "".format(self.pk, wf_states.CREATED))

 if error_messages:
 raise WorkflowKillError("Workflow with pk= {} cannot be "
 "killed and was put to {} state instead; "
 "try again later".format(self.pk, wf_states.SLEEP),
 error_message_list=error_messages)
 else:
 self.dbworkflowinstance.set_state(wf_states.FINISHED)
 else:
 raise WorkflowUnkillable("Cannot kill a workflow in {} or {} state"
 "".format(wf_states.FINISHED, wf_states.ERROR))

[docs] def get_all_calcs(self, calc_class=JobCalculation,calc_state=None,depth=15):
 """
 Get all calculations connected with this workflow and all its subworflows up to a given depth.
 The list of calculations can be restricted to a given calculation type and state
 :param calc_class: the calculation class to which the calculations should belong (default: JobCalculation)

 :param calc_state: a specific state to filter the calculations to retrieve

 :param depth: the maximum depth level the recursion on sub-workflows will
 try to reach (0 means we stay at the step level and don't go
 into sub-workflows, 1 means we go down to one step level of
 the sub-workflows, etc.)

 :return: a list of JobCalculation objects
 """

 all_calcs = []
 for st in self.get_steps():
 all_calcs += [c for c in st.get_calculations(state=calc_state) if isinstance(c,calc_class)]
 if depth>0:
 for subw in st.get_sub_workflows():
 all_calcs += subw.get_all_calcs(calc_state=calc_state,calc_class=calc_class,depth=depth-1)
 return all_calcs

[docs] def sleep(self):
 """
 Changes the workflow state to SLEEP, only possible to call from a Workflow step decorated method.
 """
 # ATTENTION: Do not move this code outside or encapsulate it in a function
 curframe = inspect.currentframe()
 calframe = inspect.getouterframes(curframe, 2)
 caller_method = calframe[1][3]

 if not self.has_step(caller_method):
 raise AiidaException("The caller method is either not a step or has not been registered as one")

 self.get_step(caller_method).set_state(wf_states.SLEEP)

 @abstractmethod
[docs] def get_report(self):
 """
 Return the Workflow report.

 :note: once, in case the workflow is a subworkflow of any other Workflow this method
 calls the parent ``get_report`` method.
 This is not the case anymore.
 :return: a list of strings
 """
 pass

 @abstractmethod
[docs] def clear_report(self):
 """
 Wipe the Workflow report. In case the workflow is a subworflow of any other Workflow this method
 calls the parent ``clear_report`` method.
 """
 pass

 @abstractmethod
[docs] def append_to_report(self, text):
 """
 Adds text to the Workflow report.

 :note: Once, in case the workflow is a subworkflow of any other Workflow this method
 calls the parent ``append_to_report`` method; now instead this is not the
 case anymore
 """
 pass

 @classmethod
 @abstractmethod
[docs] def get_subclass_from_dbnode(cls, wf_db):
 """
 Loads the workflow object and reaoads the python script in memory with the importlib library, the
 main class is searched and then loaded.
 :param wf_db: a specific DbWorkflowNode object representing the Workflow
 :return: a Workflow subclass from the specific source code
 """
 pass

 @classmethod
 @abstractmethod
[docs] def get_subclass_from_pk(cls, pk):
 """
 Calls the ``get_subclass_from_dbnode`` selecting the DbWorkflowNode from
 the input pk.
 :param pk: a primary key index for the DbWorkflowNode
 :return: a Workflow subclass from the specific source code
 """
 pass

 @classmethod
 @abstractmethod
[docs] def get_subclass_from_uuid(cls, uuid):
 """
 Calls the ``get_subclass_from_dbnode`` selecting the DbWorkflowNode from
 the input uuid.
 :param uuid: a uuid for the DbWorkflowNode
 :return: a Workflow subclass from the specific source code
 """
 pass

[docs] def exit(self):
 """
 This is the method to call in ``next`` to finish the Workflow. When exit is the next method,
 and no errors are found, the Workflow is set to FINISHED and removed from the execution manager
 duties.
 """
 pass

def revive(self):
#
from aiida.common.utils import md5_file
md5 = self.dbworkflowinstance.script_md5
script_path = self.dbworkflowinstance.script_path
#
md5_check = md5_file(script_path)
#
MD5 Check before revive
if md5 != md5_check:
logger.info("The script has changed, MD5 is now updated")
self.dbworkflowinstance.set_script_md5(md5_check)
#
Clear all the erroneous steps
err_steps = self.get_steps(state=wf_states.ERROR)
for s in err_steps:
#
for w in s.get_sub_workflows(): w.kill()
s.remove_sub_workflows()
#
for c in s.get_calculations(): c.kill()
s.remove_calculations()
#
s.set_state(wf_states.INITIALIZED)
#
self.set_state(wf_states.RUNNING)

[docs]def kill_all():
 """
 Kills all the workflows not in FINISHED state running the ``kill_from_uuid``
 method in a loop.

 :param uuid: the UUID of the workflow to kill
 """

 raise NotImplementedError

[docs]def kill_from_pk():
 """
 Kills a workflow from its pk.

 :param pk: the Pkof the workflow to kill
 """

 raise NotImplementedError

[docs]def get_workflow_info(w, tab_size=2, short=False, pre_string="",
 depth=16):
 """
 Return a string with all the information regarding the given workflow and
 all its calculations and subworkflows.
 This is a recursive function (to print all subworkflows info as well).

 :param w: a DbWorkflow instance
 :param tab_size: number of spaces to use for the indentation
 :param short: if True, provide a shorter output (only total number of
 calculations, rather than the state of each calculation)
 :param pre_string: string appended at the beginning of each line
 :param depth: the maximum depth level the recursion on sub-workflows will
 try to reach (0 means we stay at the step level and don't go
 into sub-workflows, 1 means we go down to one step level of
 the sub-workflows, etc.)

 :return lines: list of lines to be outputed
 """
 # Note: pre_string becomes larger at each call of get_workflow_info on the
 # subworkflows: pre_string -> pre_string + "|" + " "*(tab_size-1))
 # TODO SP: abstract the dependence on DbWorkflow

 from aiida.backends.djsite.db.models import DbWorkflow

 if tab_size < 2:
 raise ValueError("tab_size must be > 2")

 now = timezone.now()

 lines = []

 if w.label:
 wf_labelstring = "'{}', ".format(w.label)
 else:
 wf_labelstring = ""

 lines.append(pre_string) # put an empty line before any workflow
 lines.append(pre_string + "+ Workflow {} ({}pk: {}) is {} [{}]".format(
 w.module_class, wf_labelstring, w.pk, w.state, str_timedelta(
 now - w.ctime, negative_to_zero=True)))

 # print information on the steps only if depth is higher than 0
 if depth > 0:

 # order all steps by time and get all the needed values
 steps_and_subwf_pks = w.steps.all().order_by('time', 'sub_workflows__ctime',
 'calculations__ctime').values_list('pk',
 'sub_workflows__pk',
 'calculations', 'name',
 'nextcall', 'state')
 # get the list of step pks (distinct), preserving the order
 steps_pk = []
 for item in steps_and_subwf_pks:
 if item[0] not in steps_pk:
 steps_pk.append(item[0])

 # build a dictionary with all the infos for each step pk
 subwfs_of_steps = {}
 for step_pk, subwf_pk, calc_pk, name, nextcall, state in steps_and_subwf_pks:
 if step_pk not in subwfs_of_steps.keys():
 subwfs_of_steps[step_pk] = {'name': name,
 'nextcall': nextcall,
 'state': state,
 'subwf_pks': [],
 'calc_pks': [],
 }
 if subwf_pk:
 subwfs_of_steps[step_pk]['subwf_pks'].append(subwf_pk)
 if calc_pk:
 subwfs_of_steps[step_pk]['calc_pks'].append(calc_pk)

 # TODO SP: abstract this
 # get all subworkflows for all steps
 wflows = DbWorkflow.objects.filter(parent_workflow_step__in=steps_pk) #.order_by('ctime')
 # dictionary mapping pks into workflows
 workflow_mapping = {_.pk: _ for _ in wflows}

 # get all calculations for all steps
 calcs = JobCalculation.query(workflow_step__in=steps_pk) #.order_by('ctime')
 # dictionary mapping pks into calculations
 calc_mapping = {_.pk: _ for _ in calcs}

 for step_pk in steps_pk:
 lines.append(pre_string + "|" + '-' * (tab_size - 1) +
 "* Step: {0} [->{1}] is {2}".format(
 subwfs_of_steps[step_pk]['name'],
 subwfs_of_steps[step_pk]['nextcall'],
 subwfs_of_steps[step_pk]['state']))

 calc_pks = subwfs_of_steps[step_pk]['calc_pks']

 # print calculations only if it is not short
 if short:
 lines.append(pre_string + "|" + " " * (tab_size - 1) +
 "| [{0} calculations]".format(len(calc_pks)))
 else:
 for calc_pk in calc_pks:
 c = calc_mapping[calc_pk]
 calc_state = c.get_state()
 if c.label:
 labelstring = "'{}', ".format(c.label)
 else:
 labelstring = ""

 if calc_state == calc_states.WITHSCHEDULER:
 sched_state = c.get_scheduler_state()
 if sched_state is None:
 remote_state = "(remote state still unknown)"
 else:
 last_check = c._get_scheduler_lastchecktime()
 if last_check is not None:
 when_string = " {}".format(
 str_timedelta(now - last_check, short=True,
 negative_to_zero=True))
 verb_string = "was "
 else:
 when_string = ""
 verb_string = ""
 remote_state = " ({}{}{})".format(verb_string,
 sched_state, when_string)
 else:
 remote_state = ""
 lines.append(pre_string + "|" + " " * (tab_size - 1) +
 "| Calculation ({}pk: {}) is {}{}".format(
 labelstring, calc_pk, calc_state, remote_state))

 ## SubWorkflows
 for subwf_pk in subwfs_of_steps[step_pk]['subwf_pks']:
 subwf = workflow_mapping[subwf_pk]
 lines.extend(get_workflow_info(subwf,
 short=short, tab_size=tab_size,
 pre_string=pre_string + "|" + " " * (tab_size - 1),
 depth=depth - 1))

 lines.append(pre_string + "|")

 return lines

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/orm/implementation/general/calculation/job.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.orm.implementation.general.calculation »

 Source code for aiida.orm.implementation.general.calculation.job

-*- coding: utf-8 -*-

from abc import abstractmethod
import datetime

from aiida.utils import timezone
from aiida.common.utils import str_timedelta
from aiida.common.datastructures import calc_states
from aiida.common.exceptions import ModificationNotAllowed, MissingPluginError
from aiida.common.links import LinkType
from aiida.backends.utils import get_automatic_user
from aiida.common.pluginloader import from_type_to_pluginclassname

TODO: set the following as properties of the Calculation
'email',
'email_on_started',
'email_on_terminated',
'rerunnable',
'resourceLimits',

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

_input_subfolder = 'raw_input'

[docs]class AbstractJobCalculation(object):
 """
 This class provides the definition of an AiiDA calculation that is run
 remotely on a job scheduler.
 """

 @classmethod
 def process(cls):
 from aiida.workflows2.legacy.job_process import JobProcess
 return JobProcess.build(cls)

 def _init_internal_params(self):
 """
 Define here internal parameters that should be defined
 right after the __init__. This function is actually called
 by the __init__.

 :note: if you inherit this function, ALWAYS remember to
 call super()._init_internal_params() as the first thing
 in your inherited function.
 """
 # By default, no output parser
 self._default_parser = None
 # Set default for the link to the retrieved folder (after calc is done)
 self._linkname_retrieved = 'retrieved'

 self._updatable_attributes = (
 'state', 'job_id', 'scheduler_state',
 'scheduler_lastchecktime',
 'last_jobinfo', 'remote_workdir', 'retrieve_list',
 'retrieve_singlefile_list'
)

 # Files in which the scheduler output and error will be stored.
 # If they are identical, outputs will be joined.
 self._SCHED_OUTPUT_FILE = '_scheduler-stdout.txt'
 self._SCHED_ERROR_FILE = '_scheduler-stderr.txt'

 # Files that should be shown by default
 # Set it to None if you do not have a default file
 # Used, e.g., by 'verdi calculation inputshow/outputshow
 self._DEFAULT_INPUT_FILE = None
 self._DEFAULT_OUTPUT_FILE = None

 @property
 def _set_defaults(self):
 """
 Return the default parameters to set.
 It is done as a property so that it can read the default parameters
 defined in _init_internal_params.

 :note: It is a property because in this way, e.g. the
 parser_name is taken from the actual subclass of calculation,
 and not from the parent Calculation class
 """
 parent_dict = super(AbstractJobCalculation, self)._set_defaults

 parent_dict.update({
 "parser_name": self._default_parser,
 "_linkname_retrieved": self._linkname_retrieved})

 return parent_dict

[docs] def store(self, *args, **kwargs):
 """
 Override the store() method to store also the calculation in the NEW
 state as soon as this is stored for the first time.
 """
 super(AbstractJobCalculation, self).store(*args, **kwargs)

 # I get here if the calculation was successfully stored.
 self._set_state(calc_states.NEW)

 # Important to return self to allow the one-liner
 # c = Calculation().store()
 return self

 def _validate(self):
 """
 Verify if all the input nodes are present and valid.

 :raise: ValidationError: if invalid parameters are found.
 """
 from aiida.common.exceptions import MissingPluginError, ValidationError

 super(AbstractJobCalculation, self)._validate()

 if self.get_computer() is None:
 raise ValidationError("You did not specify any computer")

 if self.get_state() not in calc_states:
 raise ValidationError("Calculation state '{}' is not valid".format(
 self.get_state()))

 try:
 _ = self.get_parserclass()
 except MissingPluginError:
 raise ValidationError(
 "No valid plugin found for the parser '{}'. "
 "Set the parser to None if you do not need an automatic "
 "parser.".format(self.get_parser_name())
)

 computer = self.get_computer()
 s = computer.get_scheduler()
 try:
 _ = s.create_job_resource(**self.get_resources(full=True))
 except (TypeError, ValueError) as e:
 raise ValidationError("Invalid resources for the scheduler of the "
 "specified computer: {}".format(e.message))

 if not isinstance(self.get_withmpi(), bool):
 raise ValidationError(
 "withmpi property must be boolean! It in instead {}"
 "".format(str(type(self.get_withmpi())))
)

 def _linking_as_output(self, dest, link_type):
 """
 An output of a JobCalculation can only be set
 when the calculation is in the SUBMITTING or RETRIEVING or
 PARSING state.
 (during SUBMITTING, the execmanager adds a link to the remote folder;
 all other links are added while in the retrieving phase).

 :note: Further checks, such as that the output data type is 'Data',
 are done in the super() class.

 :param dest: a Data object instance of the database
 :raise: ValueError if a link from self to dest is not allowed.
 """
 valid_states = [
 calc_states.SUBMITTING,
 calc_states.RETRIEVING,
 calc_states.PARSING,
]

 if self.get_state() not in valid_states:
 raise ModificationNotAllowed(
 "Can add an output node to a calculation only if it is in one "
 "of the following states: {}, it is instead {}".format(
 valid_states, self.get_state()))

 return super(AbstractJobCalculation, self)._linking_as_output(dest,
 link_type)

 def _store_raw_input_folder(self, folder_path):
 """
 Copy the content of the folder internally, in a subfolder called
 'raw_input'

 :param folder_path: the path to the folder from which the content
 should be taken
 """
 # This function can be called only if the state is SUBMITTING
 if self.get_state() != calc_states.SUBMITTING:
 raise ModificationNotAllowed(
 "The raw input folder can be stored only if the "
 "state is SUBMITTING, it is instead {}".format(
 self.get_state()))

 # get subfolder and replace with copy
 _raw_input_folder = self.folder.get_subfolder(
 _input_subfolder, create=True)
 _raw_input_folder.replace_with_folder(
 folder_path, move=False, overwrite=True)

 @property
 def _raw_input_folder(self):
 """
 Get the input folder object.

 :return: the input folder object.
 :raise: NotExistent: if the raw folder hasn't been created yet
 """
 from aiida.common.exceptions import NotExistent

 return_folder = self.folder.get_subfolder(_input_subfolder)
 if return_folder.exists():
 return return_folder
 else:
 raise NotExistent("_raw_input_folder not created yet")

[docs] def set_queue_name(self, val):
 """
 Set the name of the queue on the remote computer.

 :param str val: the queue name
 """
 if val is None:
 self._set_attr('queue_name', None)
 else:
 self._set_attr('queue_name', unicode(val))

[docs] def set_import_sys_environment(self, val):
 """
 If set to true, the submission script will load the system
 environment variables.

 :param bool val: load the environment if True
 """
 self._set_attr('import_sys_environment', bool(val))

[docs] def get_import_sys_environment(self):
 """
 To check if it's loading the system environment
 on the submission script.

 :return: a boolean. If True the system environment will be load.
 """
 return self.get_attr('import_sys_environment', True)

[docs] def set_environment_variables(self, env_vars_dict):
 """
 Set a dictionary of custom environment variables for this calculation.

 Both keys and values must be strings.

 In the remote-computer submission script, it's going to export
 variables as ``export 'keys'='values'``
 """
 if not isinstance(env_vars_dict, dict):
 raise ValueError("You have to pass a "
 "dictionary to set_environment_variables")

 for k, v in env_vars_dict.iteritems():
 if not isinstance(k, basestring) or not isinstance(v, basestring):
 raise ValueError(
 "Both the keys and the values of the "
 "dictionary passed to set_environment_variables must be "
 "strings."
)

 return self._set_attr('custom_environment_variables', env_vars_dict)

[docs] def get_environment_variables(self):
 """
 Return a dictionary of the environment variables that are set
 for this calculation.

 Return an empty dictionary if no special environment variables have
 to be set for this calculation.
 """
 return self.get_attr('custom_environment_variables', {})

[docs] def set_priority(self, val):
 """
 Set the priority of the job to be queued.

 :param val: the values of priority as accepted by the cluster scheduler.
 """
 self._set_attr('priority', unicode(val))

[docs] def set_max_memory_kb(self, val):
 """
 Set the maximum memory (in KiloBytes) to be asked to the scheduler.

 :param val: an integer. Default=None
 """
 self._set_attr('max_memory_kb', int(val))

[docs] def get_max_memory_kb(self):
 """
 Get the memory (in KiloBytes) requested to the scheduler.

 :return: an integer
 """
 return self.get_attr('max_memory_kb', None)

[docs] def set_max_wallclock_seconds(self, val):
 """
 Set the wallclock in seconds asked to the scheduler.

 :param val: An integer. Default=None
 """
 self._set_attr('max_wallclock_seconds', int(val))

[docs] def get_max_wallclock_seconds(self):
 """
 Get the max wallclock time in seconds requested to the scheduler.

 :return: an integer
 """
 return self.get_attr('max_wallclock_seconds', None)

[docs] def set_resources(self, resources_dict):
 """
 Set the dictionary of resources to be used by the scheduler plugin,
 like the number of nodes, cpus, ...
 This dictionary is scheduler-plugin dependent. Look at the documentation
 of the scheduler.
 (scheduler type can be found with
 calc.get_computer().get_scheduler_type())
 """
 # Note: for the time being, resources are only validated during the
 # 'store' because here we are not sure that a Computer has been set
 # yet (in particular, if both computer and resources are set together
 # using the .set() method).
 self._set_attr('jobresource_params', resources_dict)

[docs] def set_withmpi(self, val):
 """
 Set the calculation to use mpi.

 :param val: A boolean. Default=True
 """
 self._set_attr('withmpi', val)

[docs] def get_withmpi(self):
 """
 Get whether the job is set with mpi execution.

 :return: a boolean. Default=True.
 """
 return self.get_attr('withmpi', True)

[docs] def get_resources(self, full=False):
 """
 Returns the dictionary of the job resources set.

 :param full: if True, also add the default values, e.g.
 ``default_mpiprocs_per_machine``

 :return: a dictionary
 """
 resources_dict = self.get_attr('jobresource_params', {})

 if full:
 computer = self.get_computer()
 def_cpus_machine = computer.get_default_mpiprocs_per_machine()
 if def_cpus_machine is not None:
 resources_dict[
 'default_mpiprocs_per_machine'] = def_cpus_machine

 return resources_dict

[docs] def get_queue_name(self):
 """
 Get the name of the queue on cluster.

 :return: a string or None.
 """
 return self.get_attr('queue_name', None)

[docs] def get_priority(self):
 """
 Get the priority, if set, of the job on the cluster.

 :return: a string or None
 """
 return self.get_attr('priority', None)

[docs] def get_prepend_text(self):
 """
 Get the calculation-specific prepend text,
 which is going to be prepended in the scheduler-job script, just before
 the code execution.
 """
 return self.get_attr("prepend_text", "")

[docs] def set_prepend_text(self, val):
 """
 Set the calculation-specific prepend text,
 which is going to be prepended in the scheduler-job script, just before
 the code execution.

 See also ``set_custom_scheduler_commands``

 :param val: a (possibly multiline) string
 """
 self._set_attr("prepend_text", unicode(val))

[docs] def get_append_text(self):
 """
 Get the calculation-specific append text,
 which is going to be appended in the scheduler-job script, just after
 the code execution.
 """
 return self.get_attr("append_text", "")

[docs] def set_append_text(self, val):
 """
 Set the calculation-specific append text,
 which is going to be appended in the scheduler-job script, just after
 the code execution.

 :param val: a (possibly multiline) string
 """
 self._set_attr("append_text", unicode(val))

[docs] def set_custom_scheduler_commands(self, val):
 """
 Set a (possibly multiline) string with the commands that the user
 wants to manually set for the scheduler.

 The difference of this method with respect to the set_prepend_text
 is the position in the scheduler submission file where such text is
 inserted: with this method, the string is inserted before any
 non-scheduler command.
 """
 self._set_attr("custom_scheduler_commands", unicode(val))

[docs] def get_custom_scheduler_commands(self):
 """
 Return a (possibly multiline) string with the commands that the user
 wants to manually set for the scheduler.
 See also the documentation of the corresponding
 ``set_`` method.

 :return: the custom scheduler command, or an empty string if no
 custom command was defined.
 """
 return self.get_attr("custom_scheduler_commands", "")

[docs] def get_mpirun_extra_params(self):
 """
 Return a list of strings, that are the extra params to pass to the
 mpirun (or equivalent) command after the one provided in
 computer.mpirun_command.
 Example: mpirun -np 8 extra_params[0] extra_params[1] ... exec.x

 Return an empty list if no parameters have been defined.
 """
 return self.get_attr("mpirun_extra_params", [])

[docs] def set_mpirun_extra_params(self, extra_params):
 """
 Set the extra params to pass to the
 mpirun (or equivalent) command after the one provided in
 computer.mpirun_command.
 Example: mpirun -np 8 extra_params[0] extra_params[1] ... exec.x

 :param extra_params: must be a list of strings, one for each
 extra parameter
 """
 if extra_params is None:
 try:
 self._del_attr("mpirun_extra_params")
 except AttributeError:
 # it was not saved, yet
 pass
 return

 if not isinstance(extra_params, (list, tuple)):
 raise ValueError("You must pass a list of strings to "
 "set_mpirun_extra_params")
 for param in extra_params:
 if not isinstance(param, basestring):
 raise ValueError("You must pass a list of strings to "
 "set_mpirun_extra_params")

 self._set_attr("mpirun_extra_params", list(extra_params))

[docs] def add_link_from(self, src, label=None, link_type=LinkType.INPUT):
 """
 Add a link with a code as destination. Add the additional
 contraint that this is only possible if the calculation
 is in state NEW.

 You can use the parameters of the base Node class, in particular the
 label parameter to label the link.

 :param src: a node of the database. It cannot be a Calculation object.
 :param str label: Name of the link. Default=None
 :param link_type: The type of link, must be one of the enum values form
 :class:`~aiida.common.links.LinkType`
 """
 valid_states = [calc_states.NEW]

 if self.get_state() not in valid_states:
 raise ModificationNotAllowed(
 "Can add an input link to a JobCalculation only if it is in "
 "one of the following states: {}, it is instead {}".format(
 valid_states, self.get_state()))

 return super(AbstractJobCalculation, self).add_link_from(src, label,
 link_type)

 def _replace_link_from(self, src, label, link_type=LinkType.INPUT):
 """
 Replace a link. Add the additional constratint that this is
 only possible if the calculation is in state NEW.

 :param src: a node of the database. It cannot be a Calculation object.
 :param str label: Name of the link.
 """
 valid_states = [calc_states.NEW]

 if self.get_state() not in valid_states:
 raise ModificationNotAllowed(
 "Can replace an input link to a Jobalculation only if it is in "
 "one of the following states: {}, it is instead {}".format(
 valid_states, self.get_state()))

 return super(AbstractJobCalculation, self)._replace_link_from(src,
 label,
 link_type)

 def _remove_link_from(self, label):
 """
 Remove a link. Only possible if the calculation is in state NEW.

 :param str label: Name of the link to remove.
 """
 valid_states = [calc_states.NEW]

 if self.get_state() not in valid_states:
 raise ModificationNotAllowed(
 "Can remove an input link to a calculation only if it is in one "
 "of the following states:\n {}\n it is instead {}".format(
 valid_states, self.get_state()))

 return super(AbstractJobCalculation, self)._remove_link_from(label)

 @abstractmethod
 def _set_state(self, state):
 """
 Set the state of the calculation.

 Set it in the DbCalcState to have also the uniqueness check.
 Moreover (except for the IMPORTED state) also store in the 'state'
 attribute, useful to know it also after importing, and for faster
 querying.

 .. todo:: Add further checks to enforce that the states are set
 in order?

 :param state: a string with the state. This must be a valid string,
 from ``aiida.common.datastructures.calc_states``.
 :raise: ModificationNotAllowed if the given state was already set.
 """
 pass

 @abstractmethod
[docs] def get_state(self, from_attribute=False):
 """
 Get the state of the calculation.

 .. note:: the 'most recent' state is obtained using the logic in the
 ``aiida.common.datastructures.sort_states`` function.

 .. todo:: Understand if the state returned when no state entry is found
 in the DB is the best choice.

 :param from_attribute: if set to True, read it from the attributes
 (the attribute is also set with set_state, unless the state is set
 to IMPORTED; in this way we can also see the state before storing).

 :return: a string. If from_attribute is True and no attribute is found,
 return None. If from_attribute is False and no entry is found in the
 DB, also return None.
 """
 pass

 def _get_state_string(self):
 """
 Return a string, that is correct also when the state is imported
 (in this case, the string will be in the format IMPORTED/ORIGSTATE
 where ORIGSTATE is the original state from the node attributes).
 """
 state = self.get_state(from_attribute=False)
 if state == calc_states.IMPORTED:
 attribute_state = self.get_state(from_attribute=True)
 if attribute_state is None:
 attribute_state = "NOTFOUND"
 return 'IMPORTED/{}'.format(attribute_state)
 else:
 return state

 def _is_new(self):
 """
 Get whether the calculation is in the NEW status.

 :return: a boolean
 """
 return self.get_state() in [calc_states.NEW, None]

 def _is_running(self):
 """
 Get whether the calculation is in a running state,
 i.e. one of TOSUBMIT, SUBMITTING, WITHSCHEDULER,
 COMPUTED, RETRIEVING or PARSING.

 :return: a boolean
 """
 return self.get_state() in [
 calc_states.TOSUBMIT,
 calc_states.SUBMITTING,
 calc_states.WITHSCHEDULER,
 calc_states.COMPUTED,
 calc_states.RETRIEVING,
 calc_states.PARSING
]

[docs] def has_finished_ok(self):
 """
 Get whether the calculation is in the FINISHED status.

 :return: a boolean
 """
 return self.get_state() in [calc_states.FINISHED]

[docs] def has_failed(self):
 """
 Get whether the calculation is in a failed status,
 i.e. SUBMISSIONFAILED, RETRIEVALFAILED, PARSINGFAILED or FAILED.

 :return: a boolean
 """
 return self.get_state() in [calc_states.SUBMISSIONFAILED,
 calc_states.RETRIEVALFAILED,
 calc_states.PARSINGFAILED,
 calc_states.FAILED]

 def _set_remote_workdir(self, remote_workdir):
 if self.get_state() != calc_states.SUBMITTING:
 raise ModificationNotAllowed(
 "Cannot set the remote workdir if you are not "
 "submitting the calculation (current state is "
 "{})".format(self.get_state()))
 self._set_attr('remote_workdir', remote_workdir)

 def _get_remote_workdir(self):
 """
 Get the path to the remote (on cluster) scratch
 folder of the calculation.

 :return: a string with the remote path
 """
 return self.get_attr('remote_workdir', None)

 def _set_retrieve_list(self, retrieve_list):
 if self.get_state() not in (calc_states.SUBMITTING,
 calc_states.NEW):
 raise ModificationNotAllowed(
 "Cannot set the retrieve_list for a calculation "
 "that is neither NEW nor SUBMITTING (current state is "
 "{})".format(self.get_state()))

 # accept format of: ['remotename',
 # ['remotepath','localpath',0]]
 # where the last number is used
 # to decide the localname, see CalcInfo or execmanager

 if not (isinstance(retrieve_list, (tuple, list))):
 raise ValueError("You should pass a list/tuple")
 for item in retrieve_list:
 if not isinstance(item, basestring):
 if (not (isinstance(item, (tuple, list))) or
 len(item) != 3):
 raise ValueError(
 "You should pass a list containing either "
 "strings or lists/tuples"
)
 if (not (isinstance(item[0], basestring)) or
 not (isinstance(item[1], basestring)) or
 not (isinstance(item[2], int))):
 raise ValueError(
 "You have to pass a list (or tuple) of "
 "lists, with remotepath(string), "
 "localpath(string) and depth (integer)"
)

 self._set_attr('retrieve_list', retrieve_list)

 def _get_retrieve_list(self):
 """
 Get the list of files/directories to be retrieved on the cluster.
 Their path is relative to the remote workdirectory path.

 :return: a list of strings for file/directory names
 """
 return self.get_attr('retrieve_list', None)

 def _set_retrieve_singlefile_list(self, retrieve_singlefile_list):
 """
 Set the list of information for the retrieval of singlefiles
 """
 if self.get_state() not in (calc_states.SUBMITTING,
 calc_states.NEW):
 raise ModificationNotAllowed(
 "Cannot set the retrieve_singlefile_list for a calculation "
 "that is neither NEW nor SUBMITTING (current state is "
 "{})".format(self.get_state()))

 if not isinstance(retrieve_singlefile_list, (tuple, list)):
 raise ValueError("You have to pass a list (or tuple) of lists of "
 "strings as retrieve_singlefile_list")
 for j in retrieve_singlefile_list:
 if (not (isinstance(j, (tuple, list))) or
 not (all(isinstance(i, basestring) for i in j))):
 raise ValueError("You have to pass a list (or tuple) of lists "
 "of strings as retrieve_singlefile_list")
 self._set_attr('retrieve_singlefile_list', retrieve_singlefile_list)

 def _get_retrieve_singlefile_list(self):
 """
 Get the list of files to be retrieved from the cluster and stored as
 SinglefileData's (or subclasses of it).
 Their path is relative to the remote workdirectory path.

 :return: a list of lists of strings for 1) linknames,
 2) Singlefile subclass name 3) file names
 """
 return self.get_attr('retrieve_singlefile_list', None)

 def _set_job_id(self, job_id):
 """
 Always set as a string
 """
 if self.get_state() != calc_states.SUBMITTING:
 raise ModificationNotAllowed(
 "Cannot set the job id if you are not "
 "submitting the calculation (current state is "
 "{})".format(self.get_state())
)

 return self._set_attr('job_id', unicode(job_id))

[docs] def get_job_id(self):
 """
 Get the scheduler job id of the calculation.

 :return: a string
 """
 return self.get_attr('job_id', None)

 def _set_scheduler_state(self, state):
 # I don't do any test here on the possible valid values,
 # I just convert it to a string
 from aiida.utils import timezone

 self._set_attr('scheduler_state', unicode(state))
 self._set_attr('scheduler_lastchecktime', timezone.now())

[docs] def get_scheduler_state(self):
 """
 Return the status of the calculation according to the cluster scheduler.

 :return: a string.
 """
 return self.get_attr('scheduler_state', None)

 def _get_scheduler_lastchecktime(self):
 """
 Return the time of the last update of the scheduler state by the daemon,
 or None if it was never set.

 :return: a datetime object.
 """
 return self.get_attr('scheduler_lastchecktime', None)

 def _set_last_jobinfo(self, last_jobinfo):
 import pickle

 self._set_attr('last_jobinfo', last_jobinfo.serialize())

 def _get_last_jobinfo(self):
 """
 Get the last information asked to the scheduler
 about the status of the job.

 :return: a JobInfo object (that closely resembles a dictionary) or None.
 """
 import pickle
 from aiida.scheduler.datastructures import JobInfo

 last_jobinfo_serialized = self.get_attr('last_jobinfo', None)
 if last_jobinfo_serialized is not None:
 jobinfo = JobInfo()
 jobinfo.load_from_serialized(last_jobinfo_serialized)
 return jobinfo
 else:
 return None

 @classmethod
 def _list_calculations(
 cls, states=None, past_days=None, group=None,
 group_pk=None, all_users=False, pks=tuple(),
 relative_ctime=True, with_scheduler_state=False,
 order_by=None, limit=None):
 """
 Print a description of the AiiDA calculations.

 :param states: a list of string with states. If set, print only the
 calculations in the states "states", otherwise shows all.
 Default = None.
 :param past_days: If specified, show only calculations that were
 created in the given number of past days.
 :param group: If specified, show only calculations belonging to a
 user-defined group with the given name.
 Can use colons to separate the group name from the type,
 as specified in :py:meth:`aiida.orm.group.Group.get_from_string`
 method.
 :param group_pk: If specified, show only calculations belonging to a
 user-defined group with the given PK.
 :param pks: if specified, must be a list of integers, and only
 calculations within that list are shown. Otherwise, all
 calculations are shown.
 If specified, sets state to None and ignores the
 value of the ``past_days`` option.")
 :param relative_ctime: if true, prints the creation time relative from now.
 (like 2days ago). Default = True
 :param all_users: if True, list calculation belonging to all users.
 Default = False

 :return: a string with description of calculations.
 """

 from aiida.orm.querybuilder import QueryBuilder
 from aiida.daemon.timestamps import get_last_daemon_timestamp
 from tabulate import tabulate

 now = timezone.now()

 # Let's check the states:
 if states:
 for state in states:
 if state not in calc_states:
 return "Invalid state provided: {}.".format(state)

 # Let's check if there is something to order_by:
 valid_order_parameters = (None, 'id', 'ctime')
 assert order_by in valid_order_parameters, \
 "invalid order by parameter {}\n" \
 "valid parameters are:\n".format(order_by, valid_order_parameters)

 # Limit:
 if limit is not None:
 assert isinstance(limit, int), \
 "Limit (set to {}) has to be an integer or None".format(limit)

 # get the last daemon check:
 try:
 last_daemon_check = \
 get_last_daemon_timestamp('updater', when='stop')
 except ValueError:
 last_check_string = (
 "# Last daemon state_updater check: "
 "(Error while retrieving the information)"
)
 else:
 if last_daemon_check is None:
 last_check_string = "# Last daemon state_updater check: (Never)"
 else:
 last_check_string = (
 "# Last daemon state_updater check: "
 "{} ({})".format(
 str_timedelta(
 timezone.delta(last_daemon_check, now),
 negative_to_zero=True
),
 timezone.localtime(
 last_daemon_check
).strftime("at %H:%M:%S on %Y-%m-%d")
)
)
 print last_check_string

 calculation_filters = {}

 # filter for calculation pks:
 if pks:
 calculation_filters['id'] = {'in': pks}
 group_filters = None
 else:
 # The wanted behavior:
 # You know what you're looking for and specify pks,
 # Otherwise the other filters apply.
 # Open question: Is that the best way?

 # filter for states:
 if states:
 calculation_filters['state'] = {'in': states}

 # Filter on the users, if not all users
 if not all_users:
 user_id = get_automatic_user().id
 calculation_filters['user_id'] = {'==': user_id}

 if past_days is not None:
 n_days_ago = now - datetime.timedelta(days=past_days)
 calculation_filters['ctime'] = {'>': n_days_ago}

 # Filter on the group, either name or by pks
 if group:
 group_filters = {'name': {'like': '%{}%'.format(group)}}
 elif group_pk:
 group_filters = {'id': {'==': group_pk}}
 else:
 group_filters = None

 calculation_projections = [
 'id', 'state', 'attributes.state', 'ctime', 'type',
 'attributes.scheduler_state'
]
 calc_list_header = ['PK', 'State', 'Creation', 'Sched. state',
 'Computer', 'Type']
 calc_list_data = []
 qb = QueryBuilder()
 qb.append(
 cls,
 filters=calculation_filters,
 project=calculation_projections,
 tag='calculation'
)
 if group_filters is not None:
 qb.append(type="group", filters=group_filters,
 group_of="calculation")
 qb.append(type="computer", computer_of='calculation',
 project=['name'], tag='computer')

 # ORDER
 if order_by is not None:
 qb.order_by({'calculation': [order_by]})

 # LIMIT
 if limit is not None:
 qb.limit(limit)
 # I have removed order_by since it slows query down
 # qb.order_by({'calculation':['ctime']})

 results_generator = qb.iterdict()

 counter = 0
 while True:
 try:
 for i in range(100):
 res = results_generator.next()
 counter += 1
 ctime = res['calculation']['ctime']
 if relative_ctime:
 calc_ctime = str_timedelta(
 timezone.delta(ctime, now), negative_to_zero=True,
 max_num_fields=1)
 else:
 calc_ctime = " ".join([
 timezone.localtime(ctime).isoformat().split('T')[0],
 timezone.localtime(ctime).isoformat().split('T')[
 1].split('.')[0].rsplit(":", 1)[0]])
 state = str(res['calculation']['state'])
 if state == calc_states.IMPORTED:
 attrstate = res['calculation']['attributes.state']
 if attrstate is None:
 attrstate = 'UNKNOWN'
 state = '{}/{}'.format(state, attrstate)

 calc_list_data.append([
 str(res['calculation']['id']),
 state,
 str(calc_ctime),
 str(res['calculation']['attributes.scheduler_state']),
 str(res['computer']['name']),
 from_type_to_pluginclassname(
 res['calculation']['type']
).rsplit(".", 1)[0].lstrip('calculation.job.')
])

 print(tabulate(calc_list_data, headers=calc_list_header))
 calc_list_data = []
 except StopIteration:
 print(tabulate(calc_list_data, headers=calc_list_header))
 break

 print "\nNumber of rows: {}\n".format(counter)

 @classmethod
 def _get_all_with_state(
 cls, state, computer=None, user=None,
 only_computer_user_pairs=False,
 only_enabled=True, limit=None
):
 """
 Filter all calculations with a given state.

 Issue a warning if the state is not in the list of valid states.

 :param string state: The state to be used to filter (should be a string among
 those defined in aiida.common.datastructures.calc_states)
 :param computer: a Django DbComputer entry, or a Computer object, of a
 computer in the DbComputer table.
 A string for the hostname is also valid.
 :param user: a Django entry (or its pk) of a user in the DbUser table;
 if present, the results are restricted to calculations of that
 specific user
 :param bool only_computer_user_pairs: if False (default) return a queryset
 where each element is a suitable instance of Node (it should
 be an instance of Calculation, if everything goes right!)
 If True, return only a list of tuples, where each tuple is
 in the format
 ('dbcomputer__id', 'user__id')
 [where the IDs are the IDs of the respective tables]
 :param int limit: Limit the number of rows returned

 :return: a list of calculation objects matching the filters.
 """
 # I assume that calc_states are strings. If this changes in the future,
 # update the filter below from dbattributes__tval to the correct field.
 from aiida.orm.computer import Computer
 from aiida.orm.user import User
 from aiida.orm.querybuilder import QueryBuilder

 if state not in calc_states:
 cls.logger.warning("querying for calculation state='{}', but it "
 "is not a valid calculation state".format(state))

 calcfilter = {'state': {'==': state}}
 computerfilter = {"enabled": {'==': True}}
 userfilter = {}

 if computer is None:
 pass
 elif isinstance(computer, int):
 # An ID was provided
 computerfilter.update({'id': {'==': computer}})
 elif isinstance(computer, Computer):
 computerfilter.update({'id': {'==': computer.pk}})
 else:
 try:
 computerfilter.update({'id': {'==': computer.id}})
 except AttributeError as e:
 raise Exception(
 "{} is not a valid computer\n{}".format(computer, e)
)

 if user is None:
 pass
 elif isinstance(user, int):
 userfilter.update({'id': {'==': user}})
 else:
 try:
 userfilter.update({'id': {'==': int(user.id)}})
 # Is that safe?
 except:
 raise Exception("{} is not a valid user".format(user))

 qb = QueryBuilder()
 qb.append(type="computer", tag='computer', filters=computerfilter)
 qb.append(cls, filters=calcfilter, tag='calc', has_computer='computer')
 qb.append(type="user", tag='user', filters=userfilter,
 creator_of="calc")

 if only_computer_user_pairs:
 qb.add_projection("computer", "*")
 qb.add_projection("user", "*")
 returnresult = qb.distinct().all()
 else:
 qb.add_projection("calc", "*")
 if limit is not None:
 qb.limit(limit)
 returnresult = qb.all()
 returnresult = zip(*returnresult)[0]
 return returnresult

 def _prepare_for_submission(self, tempfolder, inputdict):
 """
 This is the routine to be called when you want to create
 the input files and related stuff with a plugin.

 Args:
 tempfolder: a aiida.common.folders.Folder subclass where
 the plugin should put all its files.
 inputdict: A dictionary where
 each key is an input link name and each value an AiiDA
 node, as it would be returned by the
 self.get_inputs_dict() method (with the Code!).
 The advantage of having this explicitly passed is that this
 allows to choose outside which nodes to use, and whether to
 use also unstored nodes, e.g. in a test_submit phase.

 TODO: document what it has to return (probably a CalcInfo object)
 and what is the behavior on the tempfolder
 """
 raise NotImplementedError

 def _get_authinfo(self):
 from aiida.backends.utils import get_authinfo
 from aiida.common.exceptions import NotExistent

 computer = self.get_computer()
 if computer is None:
 raise NotExistent("No computer has been set for this calculation")

 return get_authinfo(computer=computer._dbcomputer,
 aiidauser=self.dbnode.user)

 def _get_transport(self):
 """
 Return the transport for this calculation.
 """
 return self._get_authinfo().get_transport()

[docs] def submit(self):
 """
 Puts the calculation in the TOSUBMIT status.

 Actual submission is performed by the daemon.
 """
 from aiida.common.exceptions import InvalidOperation

 current_state = self.get_state()
 if current_state != calc_states.NEW:
 raise InvalidOperation("Cannot submit a calculation not in {} "
 "state (the current state is {})"
 .format(calc_states.NEW, current_state))

 self._set_state(calc_states.TOSUBMIT)

[docs] def set_parser_name(self, parser):
 """
 Set a string for the output parser
 Can be None if no output plugin is available or needed.

 :param parser: a string identifying the module of the parser.
 Such module must be located within the folder 'aiida/parsers/plugins'
 """
 self._set_attr('parser', parser)

[docs] def get_parser_name(self):
 """
 Return a string locating the module that contains
 the output parser of this calculation, that will be searched
 in the 'aiida/parsers/plugins' directory. None if no parser is needed/set.

 :return: a string.
 """
 from aiida.parsers import ParserFactory

 return self.get_attr('parser', None)

[docs] def get_parserclass(self):
 """
 Return the output parser object for this calculation, or None
 if no parser is set.

 :return: a Parser class.
 :raise: MissingPluginError from ParserFactory no plugin is found.
 """
 from aiida.parsers import ParserFactory

 parser_name = self.get_parser_name()

 if parser_name is not None:
 return ParserFactory(parser_name)
 else:
 return None

 def _set_linkname_retrieved(self, linkname):
 """
 Set the linkname of the retrieved data folder object.

 :param linkname: a string.
 """
 self._set_attr('linkname_retrieved', linkname)

 def _get_linkname_retrieved(self):
 """
 Get the linkname of the retrieved data folder object.

 :return: a string
 """
 return self.get_attr('linkname_retrieved')

[docs] def get_retrieved_node(self):
 """
 Return the retrieved data folder, if present.

 :return: the retrieved data folder object, or None if no such output
 node is found.

 :raise MultipleObjectsError: if more than one output node is found.
 """
 from aiida.common.exceptions import MultipleObjectsError
 from aiida.orm.data.folder import FolderData

 outputs = self.get_outputs(also_labels=True)

 retrieved_node = None
 retrieved_linkname = self._get_linkname_retrieved()

 for label, node in outputs:
 if label == retrieved_linkname:
 if retrieved_node is None:
 retrieved_node = node
 else:
 raise MultipleObjectsError("More than one output node "
 "with label '{}' for calc with pk= {}".format(
 retrieved_linkname, self.pk))

 if retrieved_node is None:
 return None

 if not isinstance(retrieved_node, FolderData):
 raise TypeError("The retrieved node of calc with pk= {} is not of "
 "type FolderData".format(self.pk))

 return retrieved_node

[docs] def kill(self):
 """
 Kill a calculation on the cluster.

 Can only be called if the calculation is in status WITHSCHEDULER.

 The command tries to run the kill command as provided by the scheduler,
 and raises an exception is something goes wrong.
 No changes of calculation status are done (they will be done later by
 the calculation manager).

 .. todo: if the status is TOSUBMIT, check with some lock that it is not
 actually being submitted at the same time in another thread.
 """
 # TODO: Check if we want to add a status "KILLED" or something similar.
 from aiida.common.exceptions import (InvalidOperation,
 RemoteOperationError)

 old_state = self.get_state()

 if (old_state == calc_states.NEW or old_state == calc_states.TOSUBMIT):
 self._set_state(calc_states.FAILED)
 self.logger.warning(
 "Calculation {} killed by the user "
 "(it was in {} state)".format(self.pk, old_state))
 return

 if old_state != calc_states.WITHSCHEDULER:
 raise InvalidOperation("Cannot kill a calculation in {} state"
 .format(old_state))

 # I get the scheduler plugin class and initialize it with the correct
 # transport
 computer = self.get_computer()
 t = self._get_transport()
 s = computer.get_scheduler()
 s.set_transport(t)

 # And I call the proper kill method for the job ID of this calculation
 with t:
 retval = s.kill(self.get_job_id())

 # Raise error is something went wrong
 if not retval:
 raise RemoteOperationError(
 "An error occurred while trying to kill "
 "calculation {} (jobid {}), see log "
 "(maybe the calculation already finished?)"
 .format(self.pk, self.get_job_id()))
 else:
 # Do not set the state, but let the parser do its job
 # self._set_state(calc_states.FAILED)
 self.logger.warning(
 "Calculation {} killed by the user "
 "(it was {})".format(self.pk,
 calc_states.WITHSCHEDULER))

 def _presubmit(self, folder, use_unstored_links=False):
 """
 Prepares the calculation folder with all inputs, ready to be copied to the cluster
 :param folder: a SandboxFolder, empty in input, that will be filled with
 calculation input files and the scheduling script.
 :param use_unstored_links: if set to True, it will the presubmit will
 try to launch the calculation using also unstored nodes linked to the
 Calculation only in the cache.

 :return calcinfo: the CalcInfo object containing the information
 needed by the daemon to handle operations.
 :return script_filename: the name of the job scheduler script
 """
 import os
 import StringIO
 import json

 from aiida.common.exceptions import (NotExistent,
 PluginInternalError,
 ValidationError)
 from aiida.scheduler.datastructures import JobTemplate
 from aiida.common.utils import validate_list_of_string_tuples
 from aiida.orm.computer import Computer
 from aiida.orm import DataFactory
 from aiida.common.datastructures import CodeInfo, code_run_modes
 from aiida.orm.code import Code
 from aiida.orm.utils import load_node

 computer = self.get_computer()
 inputdict = self.get_inputs_dict(
 only_in_db=not use_unstored_links, link_type=LinkType.INPUT)

 codes = [_ for _ in inputdict.itervalues() if isinstance(_, Code)]

 calcinfo = self._prepare_for_submission(folder, inputdict)
 s = computer.get_scheduler()

 for code in codes:
 if code.is_local():
 if code.get_local_executable() in folder.get_content_list():
 raise PluginInternalError(
 "The plugin created a file {} that is also "
 "the executable name!".format(
 code.get_local_executable()))

 # I create the job template to pass to the scheduler
 job_tmpl = JobTemplate()
 ## TODO: in the future, allow to customize the following variables
 job_tmpl.submit_as_hold = False
 job_tmpl.rerunnable = False
 job_tmpl.job_environment = {}
 # 'email', 'email_on_started', 'email_on_terminated',
 job_tmpl.job_name = 'aiida-{}'.format(self.pk)
 job_tmpl.sched_output_path = self._SCHED_OUTPUT_FILE
 if self._SCHED_ERROR_FILE == self._SCHED_OUTPUT_FILE:
 job_tmpl.sched_join_files = True
 else:
 job_tmpl.sched_error_path = self._SCHED_ERROR_FILE
 job_tmpl.sched_join_files = False

 # Set retrieve path, add also scheduler STDOUT and STDERR
 retrieve_list = (calcinfo.retrieve_list
 if calcinfo.retrieve_list is not None
 else [])
 if (job_tmpl.sched_output_path is not None and
 job_tmpl.sched_output_path not in retrieve_list):
 retrieve_list.append(job_tmpl.sched_output_path)
 if not job_tmpl.sched_join_files:
 if (job_tmpl.sched_error_path is not None and
 job_tmpl.sched_error_path not in retrieve_list):
 retrieve_list.append(job_tmpl.sched_error_path)
 self._set_retrieve_list(retrieve_list)

 retrieve_singlefile_list = (calcinfo.retrieve_singlefile_list
 if calcinfo.retrieve_singlefile_list is not None
 else [])
 # a validation on the subclasses of retrieve_singlefile_list
 SinglefileData = DataFactory('singlefile')
 for _, subclassname, _ in retrieve_singlefile_list:
 FileSubclass = DataFactory(subclassname)
 if not issubclass(FileSubclass, SinglefileData):
 raise PluginInternalError("[presubmission of calc {}] "
 "retrieve_singlefile_list subclass problem: "
 "{} is not subclass of SinglefileData".format(
 self.pk, FileSubclass.__name__))
 self._set_retrieve_singlefile_list(retrieve_singlefile_list)

 # the if is done so that if the method returns None, this is
 # not added. This has two advantages:
 # - it does not add too many \n\n if most of the prepend_text are empty
 # - most importantly, skips the cases in which one of the methods
 # would return None, in which case the join method would raise
 # an exception
 job_tmpl.prepend_text = "\n\n".join(_ for _ in
 [computer.get_prepend_text(),
 code.get_prepend_text(),
 calcinfo.prepend_text,
 self.get_prepend_text()] if _)

 job_tmpl.append_text = "\n\n".join(_ for _ in
 [self.get_append_text(),
 calcinfo.append_text,
 code.get_append_text(),
 computer.get_append_text()] if _)

 # Set resources, also with get_default_mpiprocs_per_machine
 resources_dict = self.get_resources(full=True)
 job_tmpl.job_resource = s.create_job_resource(**resources_dict)

 subst_dict = {'tot_num_mpiprocs':
 job_tmpl.job_resource.get_tot_num_mpiprocs()}

 for k, v in job_tmpl.job_resource.iteritems():
 subst_dict[k] = v
 mpi_args = [arg.format(**subst_dict) for arg in
 computer.get_mpirun_command()]
 extra_mpirun_params = self.get_mpirun_extra_params() # this is the same for all codes in the same calc

 ##
 # if self.get_withmpi():
 # job_tmpl.argv = (mpi_args + extra_mpirun_params +
 # [code.get_execname()] +
 # (calcinfo.cmdline_params if
 # calcinfo.cmdline_params is not None else []))
 # else:
 # job_tmpl.argv = [code.get_execname()] + (
 # calcinfo.cmdline_params if
 # calcinfo.cmdline_params is not None else [])
 # job_tmpl.stdin_name = calcinfo.stdin_name
 # job_tmpl.stdout_name = calcinfo.stdout_name

 # set the codes_info
 if not isinstance(calcinfo.codes_info, (list, tuple)):
 raise PluginInternalError("codes_info passed to CalcInfo must be a "
 "list of CalcInfo objects")

 codes_info = []
 for code_info in calcinfo.codes_info:

 if not isinstance(code_info, CodeInfo):
 raise PluginInternalError("Invalid codes_info, must be a list "
 "of CodeInfo objects")

 if code_info.code_uuid is None:
 raise PluginInternalError("CalcInfo should have "
 "the information of the code "
 "to be launched")
 this_code = load_node(code_info.code_uuid, parent_class=Code)

 this_withmpi = code_info.withmpi # to decide better how to set the default
 if this_withmpi is None:
 if len(calcinfo.codes_info) > 1:
 raise PluginInternalError("For more than one code, it is "
 "necessary to set withmpi in "
 "codes_info")
 else:
 this_withmpi = self.get_withmpi()

 if this_withmpi:
 this_argv = (mpi_args + extra_mpirun_params +
 [this_code.get_execname()] +
 (code_info.cmdline_params if
 code_info.cmdline_params is not None else []))
 else:
 this_argv = [this_code.get_execname()] + (
 code_info.cmdline_params if
 code_info.cmdline_params is not None else [])

 this_stdin_name = code_info.stdin_name
 this_stdout_name = code_info.stdout_name
 this_stderr_name = code_info.stderr_name
 this_join_files = code_info.join_files

 # overwrite the old cmdline_params and add codename and mpirun stuff
 code_info.cmdline_params = this_argv

 codes_info.append(code_info)
 job_tmpl.codes_info = codes_info

 # set the codes execution mode

 if len(codes) > 1:
 try:
 job_tmpl.codes_run_mode = calcinfo.codes_run_mode
 except KeyError:
 raise PluginInternalError("Need to set the order of the code "
 "execution (parallel or serial?)")
 else:
 job_tmpl.codes_run_mode = code_run_modes.SERIAL
 ##

 custom_sched_commands = self.get_custom_scheduler_commands()
 if custom_sched_commands:
 job_tmpl.custom_scheduler_commands = custom_sched_commands

 job_tmpl.import_sys_environment = self.get_import_sys_environment()

 job_tmpl.job_environment = self.get_environment_variables()

 queue_name = self.get_queue_name()
 if queue_name is not None:
 job_tmpl.queue_name = queue_name
 priority = self.get_priority()
 if priority is not None:
 job_tmpl.priority = priority
 max_memory_kb = self.get_max_memory_kb()
 if max_memory_kb is not None:
 job_tmpl.max_memory_kb = max_memory_kb
 max_wallclock_seconds = self.get_max_wallclock_seconds()
 if max_wallclock_seconds is not None:
 job_tmpl.max_wallclock_seconds = max_wallclock_seconds
 max_memory_kb = self.get_max_memory_kb()
 if max_memory_kb is not None:
 job_tmpl.max_memory_kb = max_memory_kb

 # TODO: give possibility to use a different name??
 script_filename = '_aiidasubmit.sh'
 script_content = s.get_submit_script(job_tmpl)
 folder.create_file_from_filelike(
 StringIO.StringIO(script_content), script_filename)

 subfolder = folder.get_subfolder('.aiida', create=True)
 subfolder.create_file_from_filelike(
 StringIO.StringIO(json.dumps(job_tmpl)), 'job_tmpl.json')
 subfolder.create_file_from_filelike(
 StringIO.StringIO(json.dumps(calcinfo)), 'calcinfo.json')

 if calcinfo.local_copy_list is None:
 calcinfo.local_copy_list = []

 if calcinfo.remote_copy_list is None:
 calcinfo.remote_copy_list = []

 # Some validation
 this_pk = self.pk if self.pk is not None else "[UNSTORED]"
 local_copy_list = calcinfo.local_copy_list
 try:
 validate_list_of_string_tuples(local_copy_list,
 tuple_length=2)
 except ValidationError as e:
 raise PluginInternalError(
 "[presubmission of calc {}] "
 "local_copy_list format problem: {}".format(this_pk, e.message))

 remote_copy_list = calcinfo.remote_copy_list
 try:
 validate_list_of_string_tuples(remote_copy_list,
 tuple_length=3)
 except ValidationError as e:
 raise PluginInternalError(
 "[presubmission of calc {}] "
 "remote_copy_list format problem: {}".
 format(this_pk, e.message))

 for (remote_computer_uuid, remote_abs_path,
 dest_rel_path) in remote_copy_list:
 try:
 remote_computer = Computer(uuid=remote_computer_uuid)
 except NotExistent:
 raise PluginInternalError(
 "[presubmission of calc {}] "
 "The remote copy requires a computer with UUID={}"
 "but no such computer was found in the "
 "database".format(this_pk, remote_computer_uuid))
 if os.path.isabs(dest_rel_path):
 raise PluginInternalError(
 "[presubmission of calc {}] "
 "The destination path of the remote copy "
 "is absolute! ({})".format(this_pk, dest_rel_path))

 return calcinfo, script_filename

 @property
 def res(self):
 """
 To be used to get direct access to the parsed parameters.

 :return: an instance of the CalculationResultManager.

 :note: a practical example on how it is meant to be used: let's say that there is a key 'energy'
 in the dictionary of the parsed results which contains a list of floats.
 The command `calc.res.energy` will return such a list.
 """
 return CalculationResultManager(self)

[docs] def submit_test(self, folder=None, subfolder_name=None):
 """
 Test submission, creating the files in a local folder.

 :note: this submit_test function does not require any node
 (neither the calculation nor the input links) to be stored yet.

 :param folder: A Folder object, within which each calculation files
 are created; if not passed, a subfolder 'submit_test' of the current
 folder is used.
 :param subfolder_name: the name of the subfolder to use for this
 calculation (within Folder). If not passed, a unique string
 starting with the date and time in the format ``yymmdd-HHMMSS-``
 is used.
 """
 import os
 import errno
 from aiida.utils import timezone

 from aiida.transport.plugins.local import LocalTransport
 from aiida.orm.computer import Computer
 from aiida.common.folders import Folder
 from aiida.common.exceptions import NotExistent

 if folder is None:
 folder = Folder(os.path.abspath('submit_test'))

 # In case it is not created yet
 folder.create()

 if subfolder_name is None:
 subfolder_basename = timezone.localtime(timezone.now()).strftime(
 '%Y%m%d')
 else:
 subfolder_basename = subfolder_name

 ## Find a new subfolder.
 ## I do not user tempfile.mkdtemp, because it puts random characters
 # at the end of the directory name, therefore making difficult to
 # understand the order in which directories where stored
 counter = 0
 while True:
 counter += 1
 subfolder_path = os.path.join(folder.abspath,
 "{}-{:05d}".format(subfolder_basename,
 counter))
 # This check just tried to avoid to try to create the folder
 # (hoping that a test of existence is faster than a
 # test and failure in directory creation)
 # But it could be removed
 if os.path.exists(subfolder_path):
 continue

 try:
 # Directory found, and created
 os.mkdir(subfolder_path)
 break
 except OSError as e:
 if e.errno == errno.EEXIST:
 # The directory has been created in the meantime,
 # retry with a new one...
 continue
 # Some other error: raise, so we avoid infinite loops
 # e.g. if we are in a folder in which we do not have write
 # permissions
 raise

 subfolder = folder.get_subfolder(
 os.path.relpath(subfolder_path, folder.abspath),
 reset_limit=True)

 # I use the local transport where possible, to be as similar
 # as possible to a real submission
 t = LocalTransport()
 with t:
 t.chdir(subfolder.abspath)

 calcinfo, script_filename = self._presubmit(
 subfolder, use_unstored_links=True)

 code = self.get_code()

 if code.is_local():
 # Note: this will possibly overwrite files
 for f in code.get_folder_list():
 t.put(code.get_abs_path(f), f)
 t.chmod(code.get_local_executable(), 0755) # rwxr-xr-x

 local_copy_list = calcinfo.local_copy_list
 remote_copy_list = calcinfo.remote_copy_list
 remote_symlink_list = calcinfo.remote_symlink_list

 for src_abs_path, dest_rel_path in local_copy_list:
 t.put(src_abs_path, dest_rel_path)

 if remote_copy_list:
 with open(os.path.join(subfolder.abspath,
 '_aiida_remote_copy_list.txt'),
 'w') as f:
 for (remote_computer_uuid, remote_abs_path,
 dest_rel_path) in remote_copy_list:
 try:
 remote_computer = Computer(
 uuid=remote_computer_uuid)
 except NotExistent:
 remote_computer = "[unknown]"
 f.write("* I WOULD REMOTELY COPY "
 "FILES/DIRS FROM COMPUTER {} (UUID {}) "
 "FROM {} TO {}\n".format(remote_computer.name,
 remote_computer_uuid,
 remote_abs_path,
 dest_rel_path))

 if remote_symlink_list:
 with open(os.path.join(subfolder.abspath,
 '_aiida_remote_symlink_list.txt'),
 'w') as f:
 for (remote_computer_uuid, remote_abs_path,
 dest_rel_path) in remote_symlink_list:
 try:
 remote_computer = Computer(
 uuid=remote_computer_uuid)
 except NotExistent:
 remote_computer = "[unknown]"
 f.write("* I WOULD PUT SYMBOLIC LINKS FOR "
 "FILES/DIRS FROM COMPUTER {} (UUID {}) "
 "FROM {} TO {}\n".format(remote_computer.name,
 remote_computer_uuid,
 remote_abs_path,
 dest_rel_path))

 return subfolder, script_filename

[docs] def get_scheduler_output(self):
 """
 Return the output of the scheduler output (a string) if the calculation
 has finished, and output node is present, and the output of the
 scheduler was retrieved.

 Return None otherwise.
 """
 from aiida.common.exceptions import NotExistent

 # Shortcut if no error file is set
 if self._SCHED_OUTPUT_FILE is None:
 return None

 retrieved_node = self.get_retrieved_node()
 if retrieved_node is None:
 return None

 try:
 outfile_content = retrieved_node.get_file_content(
 self._SCHED_OUTPUT_FILE)
 except (NotExistent):
 # Return None if no file is found
 return None

 return outfile_content

[docs] def get_scheduler_error(self):
 """
 Return the output of the scheduler error (a string) if the calculation
 has finished, and output node is present, and the output of the
 scheduler was retrieved.

 Return None otherwise.
 """
 from aiida.common.exceptions import NotExistent

 # Shortcut if no error file is set
 if self._SCHED_ERROR_FILE is None:
 return None

 retrieved_node = self.get_retrieved_node()
 if retrieved_node is None:
 return None

 try:
 errfile_content = retrieved_node.get_file_content(
 self._SCHED_ERROR_FILE)
 except (NotExistent):
 # Return None if no file is found
 return None

 return errfile_content

[docs]class CalculationResultManager(object):
 """
 An object used internally to interface the calculation object with the Parser
 and consequentially with the ParameterData object result.
 It shouldn't be used explicitely by a user.
 """

[docs] def __init__(self, calc):
 """
 :param calc: the calculation object.
 """
 # Import parser base class
 from aiida.parsers import Parser

 # Possibly add checks here
 self._calc = calc
 try:
 ParserClass = calc.get_parserclass()
 if ParserClass is None:
 # raise AttributeError("No output parser is attached to the calculation")
 self._parser = Parser(calc)
 else:
 self._parser = ParserClass(calc)
 except MissingPluginError:
 self._parser = Parser(calc) # Use base class

 def __dir__(self):
 """
 Allow to list all valid attributes
 """
 from aiida.common.exceptions import UniquenessError

 try:
 calc_attributes = self._parser.get_result_keys()
 except UniquenessError:
 calc_attributes = []

 return sorted(set(list(dir(type(self))) + list(calc_attributes)))

 def __iter__(self):
 from aiida.common.exceptions import UniquenessError

 try:
 calc_attributes = self._parser.get_result_keys()
 except UniquenessError:
 calc_attributes = []

 for k in calc_attributes:
 yield k

 def _get_dict(self):
 """
 Return a dictionary of all results
 """
 return self._parser.get_result_dict()

 def __getattr__(self, name):
 """
 interface to get to the parser results as an attribute.

 :param name: name of the attribute to be asked to the parser results.
 """
 try:
 return self._parser.get_result(name)
 except AttributeError:
 raise AttributeError("Parser '{}' did not provide a result '{}'"
 .format(self._parser.__class__.__name__, name))

 def __getitem__(self, name):
 """
 interface to get to the parser results as a dictionary.

 :param name: name of the attribute to be asked to the parser results.
 """
 try:
 return self._parser.get_result(name)
 except AttributeError:
 raise KeyError("Parser '{}' did not provide a result '{}'"
 .format(self._parser.__class__.__name__, name))

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbimporters/plugins/pcod.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.tools.dbimporters »

 Source code for aiida.tools.dbimporters.plugins.pcod

-*- coding: utf-8 -*-

from aiida.tools.dbimporters.plugins.cod import (CodDbImporter,
 CodSearchResults, CodEntry)

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class PcodDbImporter(CodDbImporter):
 """
 Database importer for Predicted Crystallography Open Database.
 """

 def _int_clause(self, *args, **kwargs):
 return super(PcodDbImporter, self)._int_clause(*args, **kwargs)

 def _composition_clause(self, *args, **kwargs):
 return super(PcodDbImporter, self)._composition_clause(*args, **kwargs)

 def _formula_clause(self, *args, **kwargs):
 return super(PcodDbImporter, self)._formula_clause(*args, **kwargs)

 def _volume_clause(self, *args, **kwargs):
 return super(PcodDbImporter, self)._volume_clause(*args, **kwargs)

 def _str_exact_clause(self, *args, **kwargs):
 return super(PcodDbImporter, self)._str_exact_clause(*args, **kwargs)

 def _length_clause(self, *args, **kwargs):
 return super(PcodDbImporter, self)._length_clause(*args, **kwargs)

 def _angle_clause(self, *args, **kwargs):
 return super(PcodDbImporter, self)._angle_clause(*args, **kwargs)

 def _str_fuzzy_clause(self, *args, **kwargs):
 return super(PcodDbImporter, self)._str_fuzzy_clause(*args, **kwargs)

 _keywords = {'id': ['file', _int_clause],
 'element': ['element', _composition_clause],
 'number_of_elements': ['nel', _int_clause],
 'formula': ['formula', _formula_clause],
 'volume': ['vol', _volume_clause],
 'spacegroup': ['sg', _str_exact_clause],
 'a': ['a', _length_clause],
 'b': ['b', _length_clause],
 'c': ['c', _length_clause],
 'alpha': ['alpha', _angle_clause],
 'beta': ['beta', _angle_clause],
 'gamma': ['gamma', _angle_clause],
 'text': ['text', _str_fuzzy_clause]}

 def __init__(self, **kwargs):
 super(PcodDbImporter, self).__init__(**kwargs)
 self._db_parameters = {'host': 'www.crystallography.net',
 'user': 'pcod_reader',
 'passwd': '',
 'db': 'pcod'}
 self.setup_db(**kwargs)

[docs] def query_sql(self, **kwargs):
 """
 Forms a SQL query for querying the PCOD database using
 ``keyword = value`` pairs, specified in ``kwargs``.

 :return: string containing a SQL statement.
 """
 sql_parts = []
 for key in self._keywords.keys():
 if key in kwargs.keys():
 values = kwargs.pop(key)
 if not isinstance(values, list):
 values = [values]
 sql_parts.append(\
 "(" + self._keywords[key][1](self, \
 self._keywords[key][0], \
 key, \
 values) + \
 ")")
 if len(kwargs.keys()) > 0:
 raise NotImplementedError(\
 "search keyword(s) '" + \
 "', '".join(kwargs.keys()) + "' " + \
 "is(are) not implemented for PCOD")
 return "SELECT file FROM data WHERE " + \
 " AND ".join(sql_parts)

[docs] def query(self, **kwargs):
 """
 Performs a query on the PCOD database using ``keyword = value`` pairs,
 specified in ``kwargs``.

 :return: an instance of
 :py:class:`aiida.tools.dbimporters.plugins.pcod.PcodSearchResults`.
 """
 query_statement = self.query_sql(**kwargs)
 self._connect_db()
 results = []
 try:
 self._cursor.execute(query_statement)
 self._db.commit()
 for row in self._cursor.fetchall():
 results.append({'id': str(row[0])})
 finally:
 self._disconnect_db()

 return PcodSearchResults(results)

[docs]class PcodSearchResults(CodSearchResults):
 """
 Results of the search, performed on PCOD.
 """
 _base_url = "http://www.crystallography.net/pcod/cif/"

 def __init__(self, results):
 super(PcodSearchResults, self).__init__(results)
 self._return_class = PcodEntry

 def _get_url(self, result_dict):
 """
 Returns an URL of an entry CIF file.

 :param result_dict: dictionary, describing an entry in the results.
 """
 return self._base_url + \
 result_dict['id'][0] + "/" + \
 result_dict['id'][0:3] + "/" + \
 result_dict['id'] + ".cif"

[docs]class PcodEntry(CodEntry):
 """
 Represents an entry from PCOD.
 """
 _license = 'CC0'

 def __init__(self, uri,
 db_name='Predicted Crystallography Open Database',
 db_uri='http://www.crystallography.net/pcod', **kwargs):
 """
 Creates an instance of
 :py:class:`aiida.tools.dbimporters.plugins.pcod.PcodEntry`, related
 to the supplied URI.
 """
 super(PcodEntry, self).__init__(db_name=db_name,
 db_uri=db_uri,
 uri=uri,
 **kwargs)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbimporters/plugins/nninc.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.tools.dbimporters »

 Source code for aiida.tools.dbimporters.plugins.nninc

-*- coding: utf-8 -*-

from aiida.tools.dbimporters.baseclasses import (DbImporter, DbSearchResults,
 UpfEntry)

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class NnincDbImporter(DbImporter):
 """
 Database importer for NNIN/C Pseudopotential Virtual Vault.
 """

 def _str_clause(self, key, alias, values):
 """
 Returns part of HTTP GET query for querying string fields.
 """
 if not isinstance(values, basestring):
 raise ValueError("incorrect value for keyword '{}' -- only "
 "strings and integers are accepted".format(alias))
 return "{}={}".format(key, values)

 _keywords = {'xc_approximation': ['frmxcprox', _str_clause],
 'xc_type': ['frmxctype', _str_clause],
 'pseudopotential_class': ['frmspclass', _str_clause],
 'element': ['element', None]}

 def __init__(self, **kwargs):
 self._query_url = "http://nninc.cnf.cornell.edu/dd_search.php"
 self.setup_db(**kwargs)

[docs] def query_get(self, **kwargs):
 """
 Forms a HTTP GET query for querying the NNIN/C Pseudopotential
 Virtual Vault.

 :return: a string with HTTP GET statement.
 """
 get_parts = []
 for key in self._keywords.keys():
 if key in kwargs.keys():
 values = kwargs.pop(key)
 if self._keywords[key][1] is not None:
 get_parts.append(
 self._keywords[key][1](self,
 self._keywords[key][0],
 key,
 values))

 if kwargs.keys():
 raise NotImplementedError("search keyword(s) '"
 "', '".join(kwargs.keys()) + \
 "' is(are) not implemented for NNIN/C")

 return self._query_url + '?' + "&".join(get_parts)

[docs] def query(self, **kwargs):
 """
 Performs a query on the NNIN/C Pseudopotential Virtual Vault using
 ``keyword = value`` pairs, specified in ``kwargs``.

 :return: an instance of
 :py:class:`aiida.tools.dbimporters.plugins.nninc.NnincSearchResults`.
 """
 import urllib2
 import re

 query = self.query_get(**kwargs)
 response = urllib2.urlopen(query).read()
 results = re.findall("psp_files/([^']+)\.UPF", response)

 elements = kwargs.get('element', None)
 if elements and not isinstance(elements, list):
 elements = [elements]

 if elements:
 results_now = set()
 for psp in results:
 for element in elements:
 if psp.startswith("{}.".format(element)):
 results_now = results_now | set([psp])
 results = list(results_now)

 return NnincSearchResults([{"id": x} for x in results])

[docs] def setup_db(self, query_url=None, **kwargs):
 """
 Changes the database connection details.
 """
 if query_url:
 self._query_url = query_url

 if kwargs.keys():
 raise NotImplementedError(\
 "unknown database connection parameter(s): '" + \
 "', '".join(kwargs.keys()) + \
 "', available parameters: 'query_url'")

[docs] def get_supported_keywords(self):
 """
 Returns the list of all supported query keywords.

 :return: list of strings
 """
 return self._keywords.keys()

[docs]class NnincSearchResults(DbSearchResults):
 """
 Results of the search, performed on NNIN/C Pseudopotential Virtual
 Vault.
 """
 _base_url = "http://nninc.cnf.cornell.edu/psp_files/"

 def __init__(self, results):
 super(NnincSearchResults, self).__init__(results)
 self._return_class = NnincEntry

 def __len__(self):
 return len(self._results)

 def _get_source_dict(self, result_dict):
 """
 Returns a dictionary, which is passed as kwargs to the created
 DbEntry instance, describing the source of the entry.

 :param result_dict: dictionary, describing an entry in the results.
 """
 return {'id': result_dict['id']}

 def _get_url(self, result_dict):
 """
 Returns an URL of an entry CIF file.

 :param result_dict: dictionary, describing an entry in the results.
 """
 return self._base_url + result_dict['id'] + ".UPF"

[docs]class NnincEntry(UpfEntry):
 """
 Represents an entry from NNIN/C Pseudopotential Virtual Vault.
 """

 def __init__(self, uri, **kwargs):
 """
 Creates an instance of
 :py:class:`aiida.tools.dbimporters.plugins.nninc.NnincEntry`, related
 to the supplied URI.
 """
 super(NnincEntry, self).__init__(db_name='NNIN/C Pseudopotential Virtual Vault',
 db_uri='http://nninc.cnf.cornell.edu',
 uri=uri,
 **kwargs)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

_modules/aiida/tools/dbimporters/plugins/oqmd.html

 Navigation

 		
 index

 		
 modules |

 		AiiDA 0.7.0 documentation »

 		Module code »

 		aiida.tools.dbimporters »

 Source code for aiida.tools.dbimporters.plugins.oqmd

-*- coding: utf-8 -*-

from aiida.tools.dbimporters.baseclasses import (DbImporter, DbSearchResults,
 CifEntry)

__copyright__ = u"Copyright (c), This file is part of the AiiDA platform. For further information please visit http://www.aiida.net/. All rights reserved."
__license__ = "MIT license, see LICENSE.txt file."
__version__ = "0.7.0"
__authors__ = "The AiiDA team."

[docs]class OqmdDbImporter(DbImporter):
 """
 Database importer for Open Quantum Materials Database.
 """

 def _str_clause(self, key, alias, values):
 """
 Returns part of HTTP GET query for querying string fields.
 """
 if not isinstance(values, basestring) and not isinstance(values, int):
 raise ValueError("incorrect value for keyword '" + alias + \
 "' -- only strings and integers are accepted")
 return "{}={}".format(key, values)

 _keywords = {'element': ['element', None]}

 def __init__(self, **kwargs):
 self._query_url = "http://oqmd.org"
 self.setup_db(**kwargs)

[docs] def query_get(self, **kwargs):
 """
 Forms a HTTP GET query for querying the OQMD database.

 :return: a strings for HTTP GET statement.
 """
 elements = []
 if 'element' in kwargs.keys():
 elements = kwargs.pop('element')
 if not isinstance(elements, list):
 elements = [elements]

 return "{}/materials/composition/{}".format(self._query_url, "".join(elements))

[docs] def query(self, **kwargs):
 """
 Performs a query on the OQMD database using ``keyword = value`` pairs,
 specified in ``kwargs``.

 :return: an instance of
 :py:class:`aiida.tools.dbimporters.plugins.oqmd.OqmdSearchResults`.
 """
 import urllib2
 import re

 query_statement = self.query_get(**kwargs)
 response = urllib2.urlopen(query_statement).read()
 entries = re.findall("(/materials/entry/\d+)", response)

 results = []
 for entry in entries:
 response = urllib2.urlopen("{}{}".format(self._query_url,
 entry)).read()
 structures = re.findall("/materials/export/conventional/cif/(\d+)",
 response)
 for struct in structures:
 results.append({"id": struct})

 return OqmdSearchResults(results)

[docs] def setup_db(self, query_url=None, **kwargs):
 """
 Changes the database connection details.
 """
 if query_url:
 self._query_url = query_url

 if kwargs.keys():
 raise NotImplementedError(\
 "unknown database connection parameter(s): '" + \
 "', '".join(kwargs.keys()) + \
 "', available parameters: 'query_url'")

[docs] def get_supported_keywords(self):
 """
 Returns the list of all supported query keywords.

 :return: list of strings
 """
 return self._keywords.keys()

[docs]class OqmdSearchResults(DbSearchResults):
 """
 Results of the search, performed on OQMD.
 """
 _base_url = "http://oqmd.org/materials/export/conventional/cif/"

 def __init__(self, results):
 super(OqmdSearchResults, self).__init__(results)
 self._return_class = OqmdEntry

 def __len__(self):
 return len(self._results)

 def _get_source_dict(self, result_dict):
 """
 Returns a dictionary, which is passed as kwargs to the created
 DbEntry instance, describing the source of the entry.

 :param result_dict: dictionary, describing an entry in the results.
 """
 return {'id': result_dict['id']}

 def _get_url(self, result_dict):
 """
 Returns an URL of an entry CIF file.

 :param result_dict: dictionary, describing an entry in the results.
 """
 return self._base_url + result_dict['id']

[docs]class OqmdEntry(CifEntry):
 """
 Represents an entry from OQMD.
 """

 def __init__(self, uri, **kwargs):
 """
 Creates an instance of
 :py:class:`aiida.tools.dbimporters.plugins.oqmd.OqmdEntry`, related
 to the supplied URI.
 """
 super(OqmdEntry, self).__init__(db_name='Open Quantum Materials Database',
 db_uri='http://oqmd.org',
 uri=uri,
 **kwargs)

 © Copyright 2015, ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (NCCR MARVEL)), Switzerland and ROBERT BOSCH LLC, USA. All rights reserved.
 Created using Sphinx 1.3.5.

