

The Affect software package

Exodus databases

Analysis data from unstructured finite element or finite volume models are accessed through the Exodus II library. The
affect.exodus module provides a Python interface for input and output of Exodus II databases.

Exodus II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing
(problem definition), postprocessing (results visualization), as well as code to code data transfer.
An Exodus II data file is a random access, machine independent, binary file. The ExodusII file format and API is
based on the NetCDF and HDF5 formats and API’s, respectively.

—EXODUS II: A Finite Element Data Model [http://gsjaardema.github.io/seacas/exodusII-new.pdf], Gregory D.
Sjaardema, et al. (Documentation for ExodusII database files, including the C/C++ and FORTRAN API.)

The affect.exodus module maintains compact representation of the array data accessed by
direct access through Numpy array objects [https://docs.scipy.org/doc/numpy/reference/arrays.html].

See the overview and examples in the guide to Exodus to get started calling the API.

Analysis Tools

Tools for analyzing structural dynamics are contained in affect.dynamics.

Connectivity Tools

Procedures for constructing neighbor, and boundary entries for a mesh are in affect.connect.

Indices and tables

	Index

	Module Index

	Search Page

	Glossary
	Exodus Database

Guide to using Exodus

The affect.exodus module provides a Numpy array representation of the
data from an Exodus database.

	Calculation on all timesteps by block

Calculation on all timesteps by block

Here is a relatively larger example where you want to perform a operation on
every time step, on all element blocks, involving all the nodal fields in the
database. Suppose your calculation is performed in the function
my_block_calculation. Just for the sake of this example, we suppose that
the result of the block calculation is a scalar, and that these are summed into
a global result, which is further summed over time steps.

Outline

The general idea of the procedure is,

	
	open the database

	
	get the node coordinates

	
	for each block

	
	get the element-to-node connectivity and keep in memory

	
	for each time step

	
	get global field values

	
	for each block

	
	gather the field values to local values on the block

	perform your calculation

Here since we want to operate on all the nodal fields block-by-block, for each
time step first read in all the nodal field arrays. Following that, as we loop
over blocks, we create an indexed local field array for a block.

Our strategy uses extra memory for local copies of the field values as we
operate on a block, but makes the calculation efficient in terms of speed. The
memory for the arrays storing the local copies of field values for one block
can be garbage collected as you proceed to work on the next block.

Keeping local connectivities

The local connectivities (element-to-node ID connectivity for a block) are
kept in compressed form in memory until the point at which they are needed.
This is handled transparently by the
affect.exodus.LocalConnectivity and using the compress=True
option passed to affect.exodus.Blocks.connectivity_local_all(),
emphasized below. After the connectivity is used in uncompressed form, the
uncompressed copy can be garbage collected.

Copying fields from global to local

The local indexed copying of the nodal coordinates and other nodal field arrays
are created by using the numpy.ndarray.take() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.take.html#numpy.ndarray.take], emphasized below.

block_by_block_calculation_example.py

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	with exodus.DatabaseFile('/tmp/myExodusFile.exo') as e:

 num_times = e.globals.num_times() # read number of time steps

 nodal = e.nodal # get the nodal object
 fields = exodus.Fields(nodal) # ordered dictionary of field info
 coordinates = nodal.coordinates() # read array for all nodes

 # Read the block local connectivities and store in a dictionary.
 # And the same for node coordinates, since they don't change with
 # time step.
 local_connectivities = OrderedDict() # maintain block order
 local_coordinates = dict()
 local_iterator = e.element_blocks.connectivity_local_all(compress=True)
 for block_id, block, local in local_iterator:
 local_connectivities[block_id] = local
 # We use the take function to select the
 # global nodes to copy into our local array
 local_coordinates[block_id] = coordinates.take(local.global_nodes,
 axis=0)

 all_times_result = 0.0

 for time_step in range(num_times): # loop over time steps

 # Read the value of all nodal field arrays on global nodes at this
 # time step. Here you may decide to select only the subset of
 # fields you need for your calculation by name.
 global_arrays = dict() # to hold the field arrays
 for name, field in fields:
 global_arrays[name] = nodal.field(field, time_step) # read

 all_blocks_result = 0.0

 for block_id, local in local_connectivities: # each block

 if local is None:
 continue # skip blocks without any nodes

 # Copy relevant node field values from global to
 # local arrays for this block.
 local_fields = dict()
 # Add the local coordinates first, which we already have.
 local_fields['coordinate'] = local_coordinates[block_id]
 for name, array in global_arrays:
 local_fields[name] = array.take(local.global_nodes, axis=0)

 # Perform our calculation on local_fields arrays on this block.
 block_result = my_block_calculation(block_id,
 local.local_nodes, local_fields)

 all_blocks_result += block_result

 all_times_result += all_blocks_result

So all the arrays passed to my_block_calculation are in local form
specific to a single block at a time.

API Reference

The API reference provides detailed descriptions of affect’s classes and
functions.

	math — Calculations on grid and mesh fields

	connect — Connectivity Utilities

	dynamics — Structural Dynamics Analysis

	exodus — I/O of ExodusII Databases

	util — Utilities

math — Calculations on grid and mesh fields

affect.arithmetic

Usage

This module contains functions for making basic calculations on field values
associated with the nodes and cells of a mesh. For example, you may
want to compute the average of a node field in every cell.

It is not meant to contain every possible calculation that one would need in
practice. What distinguishes this module is that it includes highly optimized
and threaded functions for a few common operations.

	average_element_node_values

	

Functions

Exceptions

The exceptions thrown from this module are a part of the interface just as much as the functions and classes.
We define an Error root exception to allow you to insulate yourself from this API. All the exceptions
raised by this module inherit from it.

connect — Connectivity Utilities

affect.connect

Usage

Utilities for processing connectivity information. Often the only connectivity stored on disk is the element (cell) to
vertex, or element to node connectivity. The functions in this module determine element neighbor information and
the vertex to element connectivity.

	element_to_element

	

	vertex_to_element

	

	boundary_face_to_vertex

	

	convert_to_local_connectivity

	

Functions

Cell and Element Topology

Standard cell to vertex connectivities are identified using the CellTopology enum.

Exceptions

The exceptions thrown from this module are a part of the interface just as much as the functions and classes.
We define an Error root exception to allow you to insulate yourself from this API. All the exceptions
raised by this module inherit from it.

dynamics — Structural Dynamics Analysis

affect.dynamics

Summary

This module contains useful functions and postprocessors concerned with analyzing the behavior of physical structures
when subjected to dynamic forces. This module is useful when the applied dynamic forces result in accelerations
high enough to excite the structure’s natural frequency.

Dynamic analysis can be used to find dynamic displacements, time history, and modal analysis.

	frf

	

Frequency Response Function

Frequency response is the quantitative measure of the output spectrum of a system or device in response to a stimulus,
and is used to characterize the dynamics of the system. It is a measure of magnitude and phase of the output as a
function of frequency, in comparison to the input. The frequency response function is a transfer function used to
identify the resonant frequencies, damping and mode shapes of a physical structure.

\begin{gather*}
 \begin{split}
 & \text{Input Force} \\
 & \quad F(ω)
 \end{split} & \longrightarrow &
 \begin{split}
 & \text{Transfer Function}\\
 & \qquad H(ω)
 \end{split} & \longrightarrow &
 \begin{split}
 & \text{Displacement Response}\\
 & \qquad\quad X(ω)
 \end{split}
\end{gather*}
Here, \(F\) is the input force as a function of the frequency \(\omega\), and \(H\) is the transfer
function, while \(X\) is the displacement (or velocity or acceleration) response function.
Each function is a complex function, with real and imaginary components, which may also be represented in terms of
magnitude and phase, and thus the functions are spectral functions. For sake of computation and simplicity, we consider
each to be a Fourier transform.

Thus, in the frequency domain, the structural response X(ω) is usually expressed as the product of the frequency
response function H(ω) and the input or applied force F(ω). Usually the response X(ω) may be in terms of displacement,
velocity, or acceleration.

\[X(ω) = H(ω)⋅F(ω)\]

\[H(ω) = \frac{X(ω)}{F(ω)}\]

Using a frequency response function, the following can be observed:

	Resonances - Peaks indicate the presence of the natural frequencies of the structure under test

	Damping - Damping is proportional to the width of the peaks. The wider the peak, the heavier the damping

	Mode Shape – The amplitude and phase of multiple FRFs acquired to a common reference on a structure are used to
determine the mode shape

Nomenclature:

Various transfer functions are useful for measuring system response and these have common names:

	Quantity

	Name of Frequency Response Function

	displacement / force

	admittance, compliance, receptance

	velocity / force

	mobility

	acceleration / force

	accelerance, inertance

	force / displacement

	dynamic stiffness

	force / velocity

	mechanical impedance

	force / acceleration

	apparent mass, dynamic mass

Example:

Examine the natural frequencies in the computational results of a structural model. Find the peak values of the
accelerance frequency response function, where the response is acceleration in the z-direction given an input
stimulus of force in the z-direction.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	from affect.exodus import DatabaseFile
from affect.dynamics import frf
from scipy.signal import argrelmax

with DatabaseFile('./SRS-FRF-example/model/1/p1f-out.h') as e:
 times = e.globals.times()
 num_times = times.size
 node_vars = e.nodal.variables
 az = e.nodal.variable_at_times(node_vars['AccZ'], 0, 0, num_times)
 fz = e.nodal.variable_at_times(node_vars['AForceZ'], 1, 0, num_times)

frequency, h_transfer = frf(fz, az, times)
peaks = argrelmax(h_transfer)
for i, j in enumerate(peaks):
 print(i, frequency[j], h_transfer[j])

exodus — I/O of ExodusII Databases

affect.exodus

Usage and Data Model

The fundamental class for I/O is Database. Though it can be directly
used, there is a convenient DatabaseFile context manager.

Access to the stored values and the structure of the Database is through objects of the following classes:

	DatabaseFile

	

	Database

	

	Global

	

	Field

	

	FieldArray

	

	Fields

	

	Nodal

	

	Blocks

	

	Block

	

	Maps

	

	Map

	

	Sets

	

	Set

	

See also the Exodus data model Glossary for more information.

Array Data and Internal Memory Buffers

Wherever possible, native array data from the ExodusII C API is accessed directly without copying through a view on a
numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]. This maintains performance by eliminating copying, and it supplies
the arrays in a convenient form for computations with numpy or scipy functions.

Some methods in this module, however, require allocating a smaller temporary memory buffers for working space.
These buffers are small and the size is noted in the documentation for each method.
Typical examples of the temporary memory buffer include functions required to
translate Exodus C strings to the Python str type, or rearrange integer or floating point arrays in the correct order
before supplying them or converting them to numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray]. Internal temporary buffers are allocated on the
C/C++ heap using malloc or equivalent function. The buffer memory is released before the function returns.
If an exception occurs, we are careful that the buffer is still released.

Database Objects

Entry Types

Exceptions and Debug Messages

The exceptions thrown from this module are a part of the interface just as much as the functions and classes.
We define an Error root exception to allow you to insulate yourself from this API. All the exceptions
raised by this module inherit from it.

	Error

	

	NoMemory

	

	FileError

	

	FileExists

	

	FileNotFound

	

	FileAccess

	

	ReadWriteError

	

	InternalError

	

	InvalidEntityType

	

	ArrayTypeError

	

	ArgumentTypeError

	

	InactiveComponent

	

	InactiveEntity

	

	InactiveField

	

	InvalidSpatialDimension

	

	NotYetImplemented

	

	RangeError

	

See also

example code in Error

Global Entity

Nodal Entity

Blocks Entities

Sets Entities

Maps Entities

Fields

Local Block Connectivity

Exceptions

Utility Functions

util — Utilities

affect.util

Usage

This module provides for creating and performing operations with aligned and
compressed arrays.

	CompressedArray

	

	empty_aligned

	

	zeros_aligned

	

	byte_align

	

	is_byte_aligned

	

	take

	

	compress

	

	decompress

	

It also provides some basic functions for debugging and testing.

	arrays_share_data

	

	get_array_base

	

	ConsoleCode

	

	print_blue

	

	print_bold

	

	print_green

	

	print_yellow

	

	print_function_starting

	

	print_array_info

	

Data alignment

Data alignment for arrays means putting the data at a memory address equal to
some multiple of the word size. This is done to increase efficiency of data
loads and stores to and from the processor. Processors are designed to
efficiently move data to and from memory addresses that are on specific byte
boundaries.

In addition to creating the data on aligned boundaries (that
aligns the base pointer), the compiler is able to make optimizations when
the data access (including base-pointer plus index) is known to be aligned
by 64 bytes. Special SIMD [https://en.wikipedia.org/wiki/SIMD]
instructions can be utilized by the compiler for
certain platforms. For example, the compiler/platform may support the special
instructions on processors such as the Intel®
AVX-512 [https://en.wikipedia.org/wiki/AVX-512] instructions, which
enables processing of twice the number of data elements that
AVX/AVX2 [https://en.wikipedia.org/wiki/Advanced_Vector_Extensions#Advanced_Vector_Extensions_2]
can process with a single instruction and four times that of
SSE [https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions].

By default, the compiler cannot know nor assume data is aligned
inside loops without some help from the programmer. Thus, you must also inform
the compiler of this alignment via a combination of pragmas (C/C++) or
keywords, clauses, or attributes so that compilers can generate optimal code.

For the
Intel® Many Integrated Core Architecture such (Intel® Xeon Phi™ Coprocessor [https://en.wikipedia.org/wiki/Xeon_Phi]), memory movement is optimal when
the data starting address lies on 64 byte boundaries. Thus, by default, at
least at the time of this writing it is optimal to create data objects with
starting addresses that are modulo 64 bytes. For slightly less ambitious
modern architectures, such as Intel® Skylake, 32 byte aligned addresses may be
recommended.

Aligned arrays

These functions create and perform other operations on
numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] objects. All arrays created by calls to affect,
and those used internally in affect, are aligned. The two main
functions used to created aligned arrays are empty_aligned() and
zeros_aligned() that behave similarly to numpy.empty() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.empty.html#numpy.empty] and
numpy.zeros() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html#numpy.zeros], respectively.

For now this module defaults to using a 64 byte boundary. To align the data
of numpy.ndarray [https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray] to the word boundaries, during allocation it may
be necessary to insert some unused bytes at the start of the block, this is
data padding.

Array compression

The method of array compression is multithreaded and fast and can usually
compress an array of integers to around a fourth of the original size. It does
not compress arrays of floating point values as efficiently.

Printing, Debugging, Testing

Most of these functions are used internally for testing, but you may find them
of value for regular use.

Exceptions

The exceptions thrown from this module are a part of the interface just as
much as the functions and classes. We define an Error root exception to allow
you to insulate yourself from this API. All the exceptions raised by this
module inherit from it.

	Error

	

	IllegalArgumentError

	

	UnsupportedArrayType

	

Glossary

Exodus Database

Conceptual data model of the ExodusII database and affect.exodus module.

	attributes

	Optional floating point numbers that can be assigned to each and every entry in a Nodal, Set,
or Block entity. Every entry in an entity must have the same number of attributes, but the attribute
values vary among the entries. Attributes are accessed through the member functions of an entity, for example,
Set.num_attributes(), Set.attribute_names(), Set.attribute(), and Set.attributes().

	block

	A association of entries with the same topology containing node connectivity information. For example, an
element Block is an association of element entries and the nodes connected to each element.

	blocks

	A dictionary-like container of the Block instances of a certain EntityType in a
Database. The dictionaries of different types of blocks are accessible through the following attributes:
Database.edge_blocks,
Database.face_blocks, or
Database.element_blocks.

	coordinates

	A special field associated with the Nodal entity storing the spatial coordinates of every node entry in
the Database.

	database

	File storage for a mesh data model, a Database contains all the mesh entities and their corresponding
entries, and the temporal Field variables.

	distribution factors

	Optional floating point values associated with every entry and every Set of a certain type, if they
exist. Distribution factors are typically used in the simulation as a multiplier on an external load.
Distribution factors are accessed through
Sets.num_distribution_factors_all(),
Set.num_distribution_factors(), and
Set.distribution_factors().

	entity

	An association of a subset of entries of a certain type (elements, faces, sides, edges, nodes). An entity is
either the single Global or Nodal entity of the Database, or one of the possible
multiple members of the Blocks, Sets, or Maps entities of the Database.

	entity ID

	An integer associated with each existing entity in the Database, the integer is unique to each entity
of the same EntityType. The entity ID’s are used as the keys used to access the dictionary-like
containers Blocks, Sets, and Maps.

	entity Type

	One of the values of the enum EntityType, including
NODAL,
NODE_SET,
EDGE_BLOCK,
EDGE_SET,
FACE_BLOCK,
FACE_SET,
ELEM_BLOCK,
ELEM_SET,
SIDE_SET,
ELEM_MAP,
NODE_MAP,
EDGE_MAP,
FACE_MAP,
GLOBAL, and
COORDINATE.

	entry

	Entries are the fundamental building blocks of the grid or mesh of a database. Entries refer to nodes, edges,
faces, and elements of the Database mesh. Entries are not represented by their own Python objects,
entry IDs, but they correspond to the first index of the FieldArrays.

	field

	A name for an array of values and the name of components associated with entries. The Field names are
used to access the FieldArray values stored in the Database. Each of the named components of a
Field with values in a FieldArray are a scalar variable in the Database.
A field is a grouping of ExodusII variable by common name prefix;
the suffix of the variable name (whatever follows the last underscore ‘_’ in the name) becomes a
component name of the field. See also field array.

	field array

	The actual scalar, vector and tensor values accessed in the Database by using a Field name and
components. The FieldArray is a multidimensional array, with the first index corresponding to entries.
It contains floating point values that vary in space (by entry index) and time (time step).
Entities that may have field array values: global, nodal, blocks, and sets. For fields on blocks or sets, the
field may or may not be active on all entities of that type; to find out use Block.is_field_active() or
Set.is_field_active(). The values of the field array may be accessed on all entries at a single time step,
for example see Nodal.field(); or on a range of entries at a time step, for example,
Nodal.partial_field(); or on a single entry at all existing time steps, for example,
Nodal.field_at_times().

	global

	A Global is a single top level Database entity maintaining the spatial dimension,
the number of time steps, the sums of all the entries of various types in the mesh (elements, faces, nodes)
referenced in other Database entities. It is accessed from the attribute Database.global.

	information data

	Info data is a list of optional supplementary text strings associated with a database. Typically this might be
the input file from the simulation run that was executed to create the database results. Information data is
accessed through Database.info

	internal numbering

	The internal numbering of node entries is in the range [0, Global.num_nodes()]. The internal numbering of
elements is by total subsequent entries in the Block in Database.blocks() (of
type EntityType.ELEMENT_BLOCK) and these are in the range [0, Global.num_elements()].

	map

	A Map is a container of entries with new integers representing a number other than that of the
default internal numbering for that type of entry.

	maps

	A dictionary-like container of the Map instances of a certain EntityType in a
Database.
The dictionaries of different types of maps are accessible through the following attributes:
Database.element_maps,
Database.node_maps,
Database.edge_maps, or
Database.face_maps.

	quality assurance records

	QA data are optional text strings in the Database, storing a history of application codes that modified
the Database file, including the application name, description, date and time. Quality assurance data
is accessed through Database.qa_records

	nodal

	The single entity of a Database that stores nodal coordinates, nodal fields, and nodal attributes.
The Nodal object is accessed from Database.nodal.

	properties

	Optional named integer variables associated with every entity of a certain type in the database. The types of
entities that may have properties are: Block, Map, and Set entities.
Property names are accessed through the member function of the collection of entities, for example,
Blocks.property_names().
Property values are accessed through the member functions of an entity, for example,
Block.property().

	set

	A Set entity is a container of a subset of the entries of a certain type (nodes, edges, faces, sides,
elements) in the Database. There may be multiple sets of a certain type and they may intersect. Sets
are usually used to apply boundary conditions to portions of the mesh, and sets may contain
attributes, properties and distribution factors, and multiple variable.

	sets

	A dictionary-like container of the Set instances of a certain EntityType in a
Database. The dictionaries of different types of sets are accessible through the following attributes:
Database.node_sets,
Database.edge_sets,
Database.face_sets, or
Database.side_sets. Entries of side sets are actually the pairing of an element and a local side number.

	variable

	Variables, in a Database are named scalar floating point arrays. The values of variables vary in time
and are associated with entries in the database. A single variable is one component of a
more useful multi-dimensional FieldArray, there is often no need to refer to variables
separately from a FieldArray. The suffix of a name of a Exodus variable is also the name of a
Field component. The underlying scalar variable values making up field array may be accessed
in the database in a similar way to their FieldArray counterpart.

	time step

	The discrete values of time at which the values of fields (variables) are stored in the database. The values of
time steps are accessible through the attribute Database.globals.num_times and
Database.globals.times.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | M
 | N
 | P
 | Q
 | S
 | T
 | V

A

 	
 	attributes

B

 	
 	block

 	
 	blocks

C

 	
 	coordinates

D

 	
 	database

 	
 	distribution factors

E

 	
 	entity

 	entity ID

 	
 	entity Type

 	entry

F

 	
 	field

 	
 	field array

G

 	
 	global

I

 	
 	information data

 	
 	internal numbering

M

 	
 	map

 	
 	maps

N

 	
 	nodal

P

 	
 	properties

Q

 	
 	quality assurance records

S

 	
 	set

 	
 	sets

T

 	
 	time step

V

 	
 	variable

 _static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 The Affect software package

 		
 Glossary

 		
 Exodus Database

_static/comment-bright.png

_static/ajax-loader.gif

