

AdvancedHTTPServer

AdvancedHTTPServer is a light weight module that provides a set of classes for
quickly making HTTP servers for a variety of purposes. It focuses on a light and
powerful design with an emphasis on portability. It was designed after and
builds upon Python’s standard http.server [https://docs.python.org/3/library/http.server.html#module-http.server] module module.
AdvancedHTTPServer is released under the BSD license and can be freely
distributed and packaged with other software.

Features

AdvancedHTTPServer provides out of the box support for additional commonly
needed features such as:

	Threaded request handling

	Binding to multiple interfaces

	SSL and SNI support

	Registering handler functions to HTTP resources

	A default robots.txt file

	Basic authentication

	The HTTP verbs GET, HEAD, POST, and OPTIONS

	Remote Procedure Call (RPC) over HTTP

	WebSockets

Technical Documentation

	1. Getting Started

	2. advancedhttpserver – API Reference

1. Getting Started

The AdvancedHTTPServer module is composed of two main classes which implement
the bulk of the provided functionality. These two classes are
AdvancedHTTPServer and RequestHandler. Just like
Python’s http.server [https://docs.python.org/3/library/http.server.html#module-http.server] module, the server takes a class not an
instance of a class and is responsible for responding to individual requests
at the TCP connection level. The RequestHandler instance is
initialized automatically by the server when a request is received.

The following sections outline how to accomplish common tasks using
AdvancedHTTPServer.

1.1. Binding To Interfaces

Bind to a single interface using the address (singular) keyword argument to
the AdvancedHTTPServer.__init__() method.

server = AdvancedHTTPServer(RequestHandler, address=('0.0.0.0', 8081))

Deprecated since version 2.0.12: The address keyword argument has been deprecated in favor of the addresses
keyword argument. It should not be used in new code.

Bind to one or more interfaces using the addresses (plural) keyword argument
to the AdvancedHTTPServer.__init__() method.

server = AdvancedHTTPServer(RequestHandler, addresses=(
 # address, port, use ssl
 ('0.0.0.0', 80, False),
 ('0.0.0.0', 8080, False)
))

1.2. Enabling SSL

To enable SSL, pass a PEM file path using the ssl_certfile keyword argument to
the AdvancedHTTPServer.__init__() method. This will be the default
certificate. Additional certificates can be configured with TLS’s Server Name
Indication (SNI) extension using the AdvancedHTTPServer.add_sni_cert()
method.

server = AdvancedHTTPServer(RequestHandler,
 address=('0.0.0.0', 443),
 ssl_certfile='/path/to/the/certificate.pem'
)

An insecure, self-signed certificate suitable for testing can be created using
the following openssl command:

openssl req -new -x509 -days 365 -nodes -out cert.pem -keyout cert.pem

1.3. Enabling Basic Authentication

Basic authentication can be enabled by adding credentials to a
AdvancedHTTPServer instance using its
AdvancedHTTPServer.auth_add_creds() method which takes a username and
password. The pwtype keyword argument can optionally be used to specify that
the password is a hash.

server = AdvancedHTTPServer(RequestHandler)
server.auth_add_creds('admin', 'Sup3rS3cr3t!')

1.4. Using RPC

AdvancedHTTPServer supports a custom form of RPC over HTTP using the RPC
verb. To register RPC methods in a RequestHandler they must be added
to the RequestHandler.rpc_handler_map dictionary. Unlike standard
HTTP request handlers, RPC request handlers can take arbitrary arguments and key
word arguments.

To define an RPC capable RequestHandler:

define a custom RequestHandler inheriting from the original
class RPCHandler(RequestHandler):
 def on_init(self):
 # add to rpc_handler_map instead of handler_map
 self.rpc_handler_map['/xor'] = self.rpc_xor

 def rpc_xor(self, key, data):
 return ''.join(map(lambda x: chr(ord(x) ^ key), data))

initialize the server with the custom handler
server = AdvancedHTTPServer(RPCHandler)

To call methods from an RPC capable RequestHandler:

in this case the server is running at http://localhost:8080/
rpc = RPCClient(('localhost', 8080))
rpc('xor', 1, 'test')

1.5. Passing Variables To The Request Handler

The RequestHandler instance is passed the instance of the
ServerNonThreaded which received the request. This attribute can be
used to pass forward values from the top level AdvancedHTTPServer
object.

class DemoHandler(RequestHandler):
 def do_init(self):
 # access the value from the subserver instance
 self.some_value = self.server.some_value

class DemoServer(AdvancedHTTPServer):
 def __init__(self, some_value, *args, **kwargs):
 # initialize the server first, this sets self.sub_servers
 super(DemoServer, self).__init__(*args, **kwargs)
 # iterate through self.sub_servers and set the attribute to forward
 for server in self.sub_servers:
 server.some_value = some_value

some_value = 'Hello World!'
server = DemoServer(some_value, DemoHandler)

1.6. Registering Request Handlers

AdvancedHTTPServer provides two distinct methods of registering methods to
handle either HTTP or RPC requests. These methods are provided so the user may
select the one they prefer to work with.

1.6.1. Modifying The Handler Map

The RequestHandler class initializes the empty dictionaries for
RequestHandler.handler_map and
RequestHandler.rpc_handler_map. Both are keyed by a regular
expression which is applied to the path of the HTTP request to find a valid
handler method. These maps can be set by overriding the
RequestHandler.on_init() method hook. The method must take a single
argument (in addition to the standard class method self argument which goes
first) which is the parsed query string.

class DemoHandler(RequestHandler):
 def on_init(self):
 # over ride on_init and add a generic http request handler method
 # this references a method which is defined later
 self.handler_map['^hello-world$'] = self.res_hello_world

 def res_hello_world(self, query):
 # ...
 return

1.6.2. Using RegisterPath

The RegisterPath class can be used as a decorator to allow handler
methods to be registered in the handler map. This approach does not require
writing a RequestHandler class and the handlers can be simple
functions. The functions must take two arguments, the first is the active
RequestHandler instance and the second is the parsed query string.

The handler keyword argument to RegisterPath.__init__() specifies an
optional RequestHandler to register the handler method with. By
default, the handler is treated as a global handler and is registered for all
RequestHandler instances. Alternatively, a specific handler can be
specified either by a reference to the class or by the class’s name.

register a global handler for all RequestHandler instances
@RegisterPath('^register-path-global$')
def register_path_global(server, query):
 # ...
 return

register a handler only for DemoHandler by it's name
@RegisterPath('^register-path-name$', 'DemoHandler')
def register_path_name(server, query):
 # ...
 return
register a handler only for DemoHandler by it's class reference
@RegisterPath('^register-path-class$', DemoHandler)
def register_path_class(server, query):
 # ...
 return

1.6.2.1. Stacking RegisterPath

Since RegisterPath does not modify or wrap the handler method it is
possible to “stack” the decorators to register a single handler for multiple
paths.

@RegisterPath('^register-path-class-double$', DemoHandler)
@RegisterPath('^register-path-class$', DemoHandler)
def register_path_class(server, query):
 # ...
 return

1.7. Handling Requests

HTTP requests (and RPC requests) are dispatched to handlers defined by the
RequestHandler. Two dictionaries exist, one for dispatching HTTP
requests and another specifically for RPC requests. Both dictionaries use
regular expressions as keys and functions to be called as value.

Standard HTTP requests such as GET and POST use the following standard function
signature:

def some_http_handler(self, query):
 message = b'Hello World!\r\n\r\n'
 self.send_response(200)
 self.send_header('Content-Type', 'text/plain')
 self.send_header('Content-Length', len(message))
 self.end_headers()
 self.wfile.write(message)
 return

RPC requests use an arbitrary function signature supporting both positional
(required) and keyword (optional) arguments. The caller must then specify these
arguments as necessary following the standard Python rules. The value returned
by an RPC handler is returned to the remote caller.

define an RPC handler method accepting two arguments
def some_rpc_handler(self, arg1, kwarg1=None):
 # return None to the caller
 return

1.7.1. Accessing Headers

Request headers can be accessed from both standard HTTP and RPC handlers through
the RequestHandler.headers attribute. Header strings are case
insensitive.

def some_http_handler(self, query):
 # get the Accept header if it exists, otherwise an empty string
 accept_header = self.headers.get('Accept', '')
 message = b'Accept Header: ' + accept_header.encode('utf-8')
 self.send_response(200)
 self.send_header('Content-Type', 'text/plain')
 self.send_header('Content-Length', len(message))
 self.end_headers()
 self.wfile.write(message)
 return

1.7.2. Accessing Query Parameters

HTTP requests are passed the parsed query parameters in the query argument to
the registered handler. This parameter is a dictionary keyed by the field name
with a list of the values defined for the field name.

Note

The parsed query data uses an array for the value to store each occurrence of
field. Usually it’s desirable to just access the first or last instance but it
is important to note that all are available.

def some_http_handler(self, query):
 # get the value of id from the query or a list containing an empty string
 # so the first member can be referenced without raising an exception
 id_value = query.get('id', [''])[0]
 message = b'id value: ' + id_value.encode('utf-8')
 self.send_response(200)
 self.send_header('Content-Type', 'text/plain')
 self.send_header('Content-Length', len(message))
 self.end_headers()
 self.wfile.write(message)
 return

2. advancedhttpserver – API Reference

2.1. Data

	
g_serializer_drivers

	

	
g_ssl_has_server_sni

	

2.2. Functions

	
build_server_from_argparser(description=None, server_klass=None, handler_klass=None)

	Build a server from command line arguments. If a ServerClass or
HandlerClass is specified, then the object must inherit from the
corresponding AdvancedHTTPServer base class.

	Parameters

	
	description (str [https://docs.python.org/3/library/stdtypes.html#str]) – Description string to be passed to the argument parser.

	server_klass (AdvancedHTTPServer) – Alternative server class to use.

	handler_klass (RequestHandler) – Alternative handler class to use.

	Returns

	A configured server instance.

	Return type

	AdvancedHTTPServer

	
build_server_from_config(config, section_name, server_klass=None, handler_klass=None)

	Build a server from a provided configparser.ConfigParser [https://docs.python.org/3/library/configparser.html#configparser.ConfigParser]
instance. If a ServerClass or HandlerClass is specified, then the
object must inherit from the corresponding AdvancedHTTPServer base
class.

	Parameters

	
	config (configparser.ConfigParser [https://docs.python.org/3/library/configparser.html#configparser.ConfigParser]) – Configuration to retrieve settings from.

	section_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The section name of the configuration to use.

	server_klass (AdvancedHTTPServer) – Alternative server class to use.

	handler_klass (RequestHandler) – Alternative handler class to use.

	Returns

	A configured server instance.

	Return type

	AdvancedHTTPServer

	
random_string(size)

	Generate a random string of size length consisting of both letters
and numbers. This function is not meant for cryptographic purposes
and should not be used to generate security tokens.

	Parameters

	size (int [https://docs.python.org/3/library/functions.html#int]) – The length of the string to return.

	Returns

	A string consisting of random characters.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
resolve_ssl_protocol_version(version=None)

	Look up an SSL protocol version by name. If version is not specified, then
the strongest protocol available will be returned.

	Parameters

	version (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the version to look up.

	Returns

	A protocol constant from the ssl [https://docs.python.org/3/library/ssl.html#module-ssl] module.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

2.3. Classes

	
class AdvancedHTTPServer(handler_klass, address=None, addresses=None, use_threads=True, ssl_certfile=None, ssl_keyfile=None, ssl_version=None)

	This is the primary server class for the AdvancedHTTPServer module.
Custom servers must inherit from this object to be compatible. When
no address parameter is specified the address ‘0.0.0.0’ is used and
the port is guessed based on if the server is run as root or not and
SSL is used.

	
__init__(handler_klass, address=None, addresses=None, use_threads=True, ssl_certfile=None, ssl_keyfile=None, ssl_version=None)

	
	Parameters

	
	handler_klass (RequestHandler) – The request handler class to use.

	address (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The address to bind to in the format (host, port).

	addresses (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The addresses to bind to in the format (host, port, ssl).

	use_threads (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to enable the use of a threaded handler.

	ssl_certfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – An SSL certificate file to use, setting this enables SSL.

	ssl_keyfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – An SSL certificate file to use.

	ssl_version – The SSL protocol version to use.

	
add_sni_cert(hostname, ssl_certfile=None, ssl_keyfile=None, ssl_version=None)

	Add an SSL certificate for a specific hostname as supported by SSL’s
Server Name Indicator (SNI) extension. See RFC 3546 [https://tools.ietf.org/html/rfc3546.html] for more details
on SSL extensions. In order to use this method, the server instance must
have been initialized with at least one address configured for SSL.

Warning

This method will raise a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] if either the SNI
extension is not available in the ssl [https://docs.python.org/3/library/ssl.html#module-ssl] module or if SSL was
not enabled at initialization time through the use of arguments to
__init__().

New in version 2.0.0.

	Parameters

	
	hostname (str [https://docs.python.org/3/library/stdtypes.html#str]) – The hostname for this configuration.

	ssl_certfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – An SSL certificate file to use, setting this enables SSL.

	ssl_keyfile (str [https://docs.python.org/3/library/stdtypes.html#str]) – An SSL certificate file to use.

	ssl_version – The SSL protocol version to use.

	
auth_add_creds(username, password, pwtype='plain')

	Add a valid set of credentials to be accepted for authentication.
Calling this function will automatically enable requiring
authentication. Passwords can be provided in either plaintext or
as a hash by specifying the hash type in the pwtype argument.

	Parameters

	
	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – The username of the credentials to be added.

	password (bytes [https://docs.python.org/3/library/stdtypes.html#bytes], str [https://docs.python.org/3/library/stdtypes.html#str]) – The password data of the credentials to be added.

	pwtype (str [https://docs.python.org/3/library/stdtypes.html#str]) – The type of the password data, (plain, md5, sha1, etc.).

	
auth_delete_creds(username=None)

	Delete the credentials for a specific username if specified or all
stored credentials.

	Parameters

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – The username of the credentials to delete.

	
auth_set(status)

	Enable or disable requiring authentication on all incoming requests.

	Parameters

	status (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to enable or disable requiring authentication.

	
remove_sni_cert(hostname)

	Remove the SSL Server Name Indicator (SNI) certificate configuration for
the specified hostname.

Warning

This method will raise a RuntimeError [https://docs.python.org/3/library/exceptions.html#RuntimeError] if either the SNI
extension is not available in the ssl [https://docs.python.org/3/library/ssl.html#module-ssl] module or if SSL was
not enabled at initialization time through the use of arguments to
__init__().

New in version 2.2.0.

	Parameters

	hostname (str [https://docs.python.org/3/library/stdtypes.html#str]) – The hostname to delete the SNI configuration for.

	
serve_files

	Whether to enable serving files or not.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
serve_files_list_directories

	Whether to list the contents of directories. This is only honored
when serve_files is True.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
serve_files_root

	The web root to use when serving files.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
serve_forever(fork=False)

	Start handling requests. This method must be called and does not
return unless the shutdown() method is called from
another thread.

	Parameters

	fork (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to fork or not before serving content.

	Returns

	The child processes PID if fork is set to True.

	Return type

	int [https://docs.python.org/3/library/functions.html#int]

	
serve_robots_txt

	Whether to serve a default robots.txt file which denies everything.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
server_started

	

	
server_version

	The server version to be sent to clients in headers.

	Type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
shutdown()

	Shutdown the server and stop responding to requests.

	
sni_certs

	
New in version 2.2.0.

	Returns

	Return a tuple of SSLSNICertificate instances for each of the certificates that are configured.

	Return type

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple]

	
sub_servers = None

	The instances of ServerNonThreaded that are responsible for listening on each configured address.

	
class RegisterPath(path, handler=None, is_rpc=False)

	Register a path and handler with the global handler map. This can be
used as a decorator. If no handler is specified then the path and
function will be registered with all RequestHandler
instances.

@RegisterPath('^test$')
def handle_test(handler, query):
 pass

	
__init__(path, handler=None, is_rpc=False)

	
	Parameters

	
	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path regex to register the function to.

	handler (str [https://docs.python.org/3/library/stdtypes.html#str]) – A specific RequestHandler class to register the handler with.

	is_rpc (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the handler is an RPC handler or not.

	
class RequestHandler(*args, **kwargs)

	This is the primary http request handler class of the
AdvancedHTTPServer framework. Custom request handlers must inherit
from this object to be compatible. Instances of this class are created
automatically. This class will handle standard HTTP GET, HEAD, OPTIONS,
and POST requests. Callback functions called handlers can be registered
to resource paths using regular expressions in the handler_map
attribute for GET HEAD and POST requests and rpc_handler_map for RPC
requests. Non-RPC handler functions that are not class methods of
the request handler instance will be passed the instance of the
request handler as the first argument.

	
basic_auth_user = None

	The name of the user if the current request is using basic authentication.

	
check_authorization()

	Check for the presence of a basic auth Authorization header and
if the credentials contained within in are valid.

	Returns

	Whether or not the credentials are valid.

	Return type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
cookie_get(name)

	Check for a cookie value by name.

	Parameters

	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Name of the cookie value to retreive.

	Returns

	Returns the cookie value if it’s set or None if it’s not found.

	
cookie_set(name, value)

	Set the value of a client cookie. This can only be called while
headers can be sent.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the cookie value to set.

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – The value of the cookie to set.

	
dispatch_handler(query=None)

	Dispatch functions based on the established handler_map. It is
generally not necessary to override this function and doing so
will prevent any handlers from being executed. This function is
executed automatically when requests of either GET, HEAD, or POST
are received.

	Parameters

	query (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Parsed query parameters from the corresponding request.

	
end_headers()

	Send the blank line ending the MIME headers.

	
get_content_type_charset(default='UTF-8')

	Inspect the Content-Type header to retrieve the charset that the client
has specified.

	Parameters

	default (str [https://docs.python.org/3/library/stdtypes.html#str]) – The default charset to return if none exists.

	Returns

	The charset of the request.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
get_query(name, default=None)

	Get a value from the query data that was sent to the server.

	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the query value to retrieve.

	default – The value to return if name is not specified.

	Returns

	The value if it exists, otherwise default will be returned.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
guess_mime_type(path)

	Guess an appropriate MIME type based on the extension of the
provided path.

	Parameters

	path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The of the file to analyze.

	Returns

	The guessed MIME type of the default if non are found.

	Return type

	str [https://docs.python.org/3/library/stdtypes.html#str]

	
handler_map = None

	The dictionary object which maps regular expressions of resources to the functions which should handle them.

	
headers_active = None

	Whether or not the request is in the sending headers phase.

	
log_error(msg_format, *args)

	Log an error.

This is called when a request cannot be fulfilled. By
default it passes the message on to log_message().

Arguments are the same as for log_message().

XXX This should go to the separate error log.

	
log_message(msg_format, *args)

	Log an arbitrary message.

This is used by all other logging functions. Override
it if you have specific logging wishes.

The first argument, FORMAT, is a format string for the
message to be logged. If the format string contains
any % escapes requiring parameters, they should be
specified as subsequent arguments (it’s just like
printf!).

The client ip address and current date/time are prefixed to every
message.

	
on_init()

	This method is meant to be over ridden by custom classes. It is
called as part of the __init__ method and provides an opportunity
for the handler maps to be populated with entries or the config to be
customized.

	
query_data = None

	The parameter data that has been passed to the server parsed as a dict.

	
raw_query_data = None

	The raw data that was parsed into the query_data attribute.

	
respond_file(file_path, attachment=False, query=None)

	Respond to the client by serving a file, either directly or as
an attachment.

	Parameters

	
	file_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path to the file to serve, this does not need to be in the web root.

	attachment (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to serve the file as a download by setting the Content-Disposition header.

	
respond_list_directory(dir_path, query=None)

	Respond to the client with an HTML page listing the contents of
the specified directory.

	Parameters

	dir_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – The path of the directory to list the contents of.

	
respond_not_found()

	Respond to the client with a default 404 message.

	
respond_redirect(location='/')

	Respond to the client with a 301 message and redirect them with
a Location header.

	Parameters

	location (str [https://docs.python.org/3/library/stdtypes.html#str]) – The new location to redirect the client to.

	
respond_server_error(status=None, status_line=None, message=None)

	Handle an internal server error, logging a traceback if executed
within an exception handler.

	Parameters

	
	status (int [https://docs.python.org/3/library/functions.html#int]) – The status code to respond to the client with.

	status_line (str [https://docs.python.org/3/library/stdtypes.html#str]) – The status message to respond to the client with.

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – The body of the response that is sent to the client.

	
respond_unauthorized(request_authentication=False)

	Respond to the client that the request is unauthorized.

	Parameters

	request_authentication (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to request basic authentication information by sending a WWW-Authenticate header.

	
rpc_handler_map = None

	The dictionary object which maps regular expressions of RPC functions to their handlers.

	
send_response(*args, **kwargs)

	Send the response header and log the response code.

Also send two standard headers with the server software
version and the current date.

	
stock_handler_respond_not_found(query)

	This method provides a handler suitable to be used in the handler_map.

	
stock_handler_respond_unauthorized(query)

	This method provides a handler suitable to be used in the handler_map.

	
version_string()

	Return the server software version string.

	
web_socket_handler = None

	An optional class to handle Web Sockets. This class must be derived from WebSocketHandler.

	
class RPCClient(address, use_ssl=False, username=None, password=None, uri_base='/', ssl_context=None)

	This object facilitates communication with remote RPC methods as
provided by a RequestHandler instance.
Once created this object can be called directly, doing so is the same
as using the call method.

This object uses locks internally to be thread safe. Only one thread
can execute a function at a time.

	
__init__(address, use_ssl=False, username=None, password=None, uri_base='/', ssl_context=None)

	
	Parameters

	
	address (tuple [https://docs.python.org/3/library/stdtypes.html#tuple]) – The address of the server to connect to as (host, port).

	use_ssl (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to connect with SSL or not.

	username (str [https://docs.python.org/3/library/stdtypes.html#str]) – The username to authenticate with.

	password (str [https://docs.python.org/3/library/stdtypes.html#str]) – The password to authenticate with.

	uri_base (str [https://docs.python.org/3/library/stdtypes.html#str]) – An optional prefix for all methods.

	ssl_context – An optional SSL context to use for SSL related options.

	
call(method, *args, **kwargs)

	Issue a call to the remote end point to execute the specified
procedure.

	Parameters

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the remote procedure to execute.

	Returns

	The return value from the remote function.

	
decode(data)

	Decode data with the configured serializer.

	
encode(data)

	Encode data with the configured serializer.

	
headers = None

	An optional dictionary of headers to include with each RPC request.

	
lock = None

	A threading.Lock [https://docs.python.org/3/library/threading.html#threading.Lock] instance used to synchronize operations.

	
reconnect()

	Reconnect to the remote server.

	
serializer = None

	The Serializer instance to use for encoding RPC data to the server.

	
set_serializer(serializer_name, compression=None)

	Configure the serializer to use for communication with the server.
The serializer specified must be valid and in the
g_serializer_drivers map.

	Parameters

	
	serializer_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the serializer to use.

	compression (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of a compression library to use.

	
class RPCClientCached(*args, **kwargs)

	This object builds upon RPCClient and
provides additional methods for cacheing results in memory.

	
cache_call(method, *options)

	Call a remote method and store the result locally. Subsequent
calls to the same method with the same arguments will return the
cached result without invoking the remote procedure. Cached results are
kept indefinitely and must be manually refreshed with a call to
cache_call_refresh().

	Parameters

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the remote procedure to execute.

	Returns

	The return value from the remote function.

	
cache_call_refresh(method, *options)

	Call a remote method and update the local cache with the result
if it already existed.

	Parameters

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the remote procedure to execute.

	Returns

	The return value from the remote function.

	
cache_clear()

	Purge the local store of all cached function information.

	
class Serializer(name, charset='UTF-8', compression=None)

	This class represents a serilizer object for use with the RPC system.

	
__init__(name, charset='UTF-8', compression=None)

	
	Parameters

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the serializer to use.

	charset (str [https://docs.python.org/3/library/stdtypes.html#str]) – The name of the encoding to use.

	compression (str [https://docs.python.org/3/library/stdtypes.html#str]) – The compression library to use.

	
dumps(data)

	Serialize a python data type for transmission or storage.

	Parameters

	data – The python object to serialize.

	Returns

	The serialized representation of the object.

	Return type

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]

	
classmethod from_content_type(content_type)

	Build a serializer object from a MIME Content-Type string.

	Parameters

	content_type (str [https://docs.python.org/3/library/stdtypes.html#str]) – The Content-Type string to parse.

	Returns

	A new serializer instance.

	Return type

	Serializer

	
loads(data)

	Deserialize the data into it’s original python object.

	Parameters

	data (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The serialized object to load.

	Returns

	The original python object.

	
class ServerNonThreaded(*args, **kwargs)

	This class is used internally by AdvancedHTTPServer and
is not intended for use by other classes or functions. It is responsible for
listening on a single address, TCP port and SSL combination.

	
finish_request(request, client_address)

	Finish one request by instantiating RequestHandlerClass.

	
get_request()

	Get the request and client address from the socket.

May be overridden.

	
handle_request()

	Handle one request, possibly blocking.

Respects self.timeout.

	
server_bind(*args, **kwargs)

	Override server_bind to store the server name.

	
shutdown(*args, **kwargs)

	Stops the serve_forever loop.

Blocks until the loop has finished. This must be called while
serve_forever() is running in another thread, or it will
deadlock.

	
class ServerTestCase(*args, **kwargs)

	A base class for unit tests with AdvancedHTTPServer derived classes.

	
assertHTTPStatus(http_response, status)

	Check an HTTP response object and ensure the status is correct.

	Parameters

	
	http_response (http.client.HTTPResponse [https://docs.python.org/3/library/http.client.html#http.client.HTTPResponse]) – The response object to check.

	status (int [https://docs.python.org/3/library/functions.html#int]) – The status code to expect for http_response.

	
handler_class

	The RequestHandler class to use as the request handler, this can be overridden by subclasses.

alias of RequestHandler

	
http_request(resource, method='GET', headers=None)

	Make an HTTP request to the test server and return the response.

	Parameters

	
	resource (str [https://docs.python.org/3/library/stdtypes.html#str]) – The resource to issue the request to.

	method (str [https://docs.python.org/3/library/stdtypes.html#str]) – The HTTP verb to use (GET, HEAD, POST etc.).

	headers (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – The HTTP headers to provide in the request.

	Returns

	The HTTP response object.

	Return type

	http.client.HTTPResponse [https://docs.python.org/3/library/http.client.html#http.client.HTTPResponse]

	
server_class

	The AdvancedHTTPServer class to use as the server, this can be overridden by subclasses.

alias of AdvancedHTTPServer

	
setUp()

	Hook method for setting up the test fixture before exercising it.

	
tearDown()

	Hook method for deconstructing the test fixture after testing it.

	
test_resource = None

	A resource which has a handler set to it which will respond with
a 200 status code and the message ‘Hello World!’

	
class ServerThreaded(*args, **kwargs)

	This class is used internally by AdvancedHTTPServer and
is not intended for use by other classes or functions. It is responsible for
listening on a single address, TCP port and SSL combination.

	
class SSLSNICertificate(hostname, certfile, keyfile)

	The information for a certificate used by SSL’s Server Name Indicator (SNI)
extension.

New in version 2.2.0.

	
hostname

	The hostname string for requests which should use this certificate information.

	
certfile

	The path to the SSL certificate file on disk to use for the hostname.

	
keyfile

	The path to the SSL key file on disk to use for the hostname.

	
class WebSocketHandler(handler)

	A handler for web socket connections.

	
close()

	Close the web socket connection and stop processing results. If the
connection is still open, a WebSocket close message will be sent to the
peer.

	
on_closed()

	A method that can be over ridden and is called after the web socket is
closed.

	
on_connected()

	A method that can be over ridden and is called after the web socket is
connected.

	
on_message(opcode, message)

	The primary dispatch function to handle incoming WebSocket messages.

	Parameters

	
	opcode (int [https://docs.python.org/3/library/functions.html#int]) – The opcode of the message that was received.

	message (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The data contained within the message.

	
on_message_binary(message)

	A method that can be over ridden and is called when a binary message is
received from the peer.

	Parameters

	message (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message data.

	
on_message_text(message)

	A method that can be over ridden and is called when a text message is
received from the peer.

	Parameters

	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – The message data.

	
send_message(opcode, message)

	Send a message to the peer over the socket.

	Parameters

	
	opcode (int [https://docs.python.org/3/library/functions.html#int]) – The opcode for the message to send.

	message (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – The message data to send.

2.4. Exceptions

	
exception RPCError(message, status=None, remote_exception=None)

	This class represents an RPC error either local or remote. Any errors
in routines executed on the server will raise this error.

	
is_remote_exception

	This is true if the represented error resulted from an exception on the
remote server.

	Type

	bool [https://docs.python.org/3/library/functions.html#bool]

	
exception RPCConnectionError(message, status=None, remote_exception=None)

	An exception raised when there is a connection-related error encountered by
the RPC client.

New in version 2.1.0.

 Python Module Index

 a

 		 	

 		
 a	

 	
 	
 advancedhttpserver	
 API Reference

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | O
 | Q
 | R
 | S
 | T
 | V
 | W

_

 	
 	__init__() (AdvancedHTTPServer method)

 	(RPCClient method)

 	(RegisterPath method)

 	(Serializer method)

A

 	
 	add_sni_cert() (AdvancedHTTPServer method)

 	AdvancedHTTPServer (class in advancedhttpserver)

 	advancedhttpserver (module)

 	
 	assertHTTPStatus() (ServerTestCase method)

 	auth_add_creds() (AdvancedHTTPServer method)

 	auth_delete_creds() (AdvancedHTTPServer method)

 	auth_set() (AdvancedHTTPServer method)

B

 	
 	basic_auth_user (RequestHandler attribute)

 	
 	build_server_from_argparser() (in module advancedhttpserver)

 	build_server_from_config() (in module advancedhttpserver)

C

 	
 	cache_call() (RPCClientCached method)

 	cache_call_refresh() (RPCClientCached method)

 	cache_clear() (RPCClientCached method)

 	call() (RPCClient method)

 	
 	certfile (SSLSNICertificate attribute)

 	check_authorization() (RequestHandler method)

 	close() (WebSocketHandler method)

 	cookie_get() (RequestHandler method)

 	cookie_set() (RequestHandler method)

D

 	
 	decode() (RPCClient method)

 	
 	dispatch_handler() (RequestHandler method)

 	dumps() (Serializer method)

E

 	
 	encode() (RPCClient method)

 	
 	end_headers() (RequestHandler method)

F

 	
 	finish_request() (ServerNonThreaded method)

 	
 	from_content_type() (advancedhttpserver.Serializer class method)

G

 	
 	g_serializer_drivers (in module advancedhttpserver)

 	g_ssl_has_server_sni (in module advancedhttpserver)

 	get_content_type_charset() (RequestHandler method)

 	
 	get_query() (RequestHandler method)

 	get_request() (ServerNonThreaded method)

 	guess_mime_type() (RequestHandler method)

H

 	
 	handle_request() (ServerNonThreaded method)

 	handler_class (ServerTestCase attribute)

 	handler_map (RequestHandler attribute)

 	
 	headers (RPCClient attribute)

 	headers_active (RequestHandler attribute)

 	hostname (SSLSNICertificate attribute)

 	http_request() (ServerTestCase method)

I

 	
 	is_remote_exception (RPCError attribute)

K

 	
 	keyfile (SSLSNICertificate attribute)

L

 	
 	loads() (Serializer method)

 	lock (RPCClient attribute)

 	
 	log_error() (RequestHandler method)

 	log_message() (RequestHandler method)

O

 	
 	on_closed() (WebSocketHandler method)

 	on_connected() (WebSocketHandler method)

 	on_init() (RequestHandler method)

 	
 	on_message() (WebSocketHandler method)

 	on_message_binary() (WebSocketHandler method)

 	on_message_text() (WebSocketHandler method)

Q

 	
 	query_data (RequestHandler attribute)

R

 	
 	random_string() (in module advancedhttpserver)

 	raw_query_data (RequestHandler attribute)

 	reconnect() (RPCClient method)

 	RegisterPath (class in advancedhttpserver)

 	remove_sni_cert() (AdvancedHTTPServer method)

 	RequestHandler (class in advancedhttpserver)

 	resolve_ssl_protocol_version() (in module advancedhttpserver)

 	respond_file() (RequestHandler method)

 	respond_list_directory() (RequestHandler method)

 	respond_not_found() (RequestHandler method)

 	
 	respond_redirect() (RequestHandler method)

 	respond_server_error() (RequestHandler method)

 	respond_unauthorized() (RequestHandler method)

 	
 RFC

 	RFC 3546

 	rpc_handler_map (RequestHandler attribute)

 	RPCClient (class in advancedhttpserver)

 	RPCClientCached (class in advancedhttpserver)

 	RPCConnectionError

 	RPCError

S

 	
 	send_message() (WebSocketHandler method)

 	send_response() (RequestHandler method)

 	Serializer (class in advancedhttpserver)

 	serializer (RPCClient attribute)

 	serve_files (AdvancedHTTPServer attribute)

 	serve_files_list_directories (AdvancedHTTPServer attribute)

 	serve_files_root (AdvancedHTTPServer attribute)

 	serve_forever() (AdvancedHTTPServer method)

 	serve_robots_txt (AdvancedHTTPServer attribute)

 	server_bind() (ServerNonThreaded method)

 	server_class (ServerTestCase attribute)

 	server_started (AdvancedHTTPServer attribute)

 	
 	server_version (AdvancedHTTPServer attribute)

 	ServerNonThreaded (class in advancedhttpserver)

 	ServerTestCase (class in advancedhttpserver)

 	ServerThreaded (class in advancedhttpserver)

 	set_serializer() (RPCClient method)

 	setUp() (ServerTestCase method)

 	shutdown() (AdvancedHTTPServer method)

 	(ServerNonThreaded method)

 	sni_certs (AdvancedHTTPServer attribute)

 	SSLSNICertificate (class in advancedhttpserver)

 	stock_handler_respond_not_found() (RequestHandler method)

 	stock_handler_respond_unauthorized() (RequestHandler method)

 	sub_servers (AdvancedHTTPServer attribute)

T

 	
 	tearDown() (ServerTestCase method)

 	
 	test_resource (ServerTestCase attribute)

V

 	
 	version_string() (RequestHandler method)

W

 	
 	web_socket_handler (RequestHandler attribute)

 	
 	WebSocketHandler (class in advancedhttpserver)

 nav.xhtml

 Table of Contents

 		
 AdvancedHTTPServer

 		
 Getting Started

 		
 Binding To Interfaces

 		
 Enabling SSL

 		
 Enabling Basic Authentication

 		
 Using RPC

 		
 Passing Variables To The Request Handler

 		
 Registering Request Handlers

 		
 Modifying The Handler Map

 		
 Using RegisterPath

 		
 Handling Requests

 		
 Accessing Headers

 		
 Accessing Query Parameters

 		
 advancedhttpserver – API Reference

 		
 Data

 		
 Functions

 		
 Classes

 		
 Exceptions

_static/file.png

_static/down-pressed.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

