

 Navigation

 	
 index

 	
 next |

 	aduana 1.0 documentation

Welcome to aduana’s documentation!

Contents:

	Introduction
	Components

	Installation

	Python library
	Installation

	Using Scrapy/Frontera with Aduana

	Single spider backend

	Distributed spider backend

	Running the examples

	C Library
	CrawledPage

	PageInfo

	PageDB

	PageInfoList

	LinkStream

	HashInfoStream

	HashIdxStream

	DomainTemp

	Error handling

	TxnManager

	BFScheduler

	Scorer

	PageRankScorer

	Settings

	HitsScorer

	Settings

	PageRank

	Hits

	MMapArray

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2015, Aduana team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	aduana 1.0 documentation

Introduction

Aduana is a component to be used with a web crawler. It contains the
logic to decide which page to crawl next. It accepts as inputs crawled
pages and it outputs the next pages to be crawled (requests).

Aduana input/output

The main objectives of Aduana are:

	Speed: it must be able to output thousands of requests per second.

	Scalability: it must be able to consider billions of crawled pages.

	Intelligence: it must be able to direct the crawl to interesting pages.

Components

There are two main components right now: a C library
and Python bindings.

The C library does the heavy lifting. In addition it also ships with
several command line tools. It’s portable ANSI C99 code and all the
necessary dependencies are bundled with the library. Ideally you
should not concern yourself with this library unless you plan to
extend Aduana.

The Python bindings contain low-level bindings to the C library and
also:

	Frontera [https://github.com/scrapinghub/frontera]
backends. Frontera is an extension to Scrapy [http://scrapy.org/]
which allows to plug different crawl frontier backends. Aduana can
be used as a Frontera backend.

	An Aduana server, to be used when crawling using multiple spiders.

Installation

Use pip:

pip install aduana

 Copyright 2015, Aduana team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	aduana 1.0 documentation

Python library

Installation

To install just make:

pip install aduana

It will automatically compile the C library and wrap it using
CFFI [https://cffi.readthedocs.org/en/latest/]. Not all parts of
the C library are accessible from python, only the necessary ones for
the Frontera backends.

Apart from the python module it will also install two scripts:

	aduana-server.py

	aduana-server-cert.py

These scripts are to be used when using the Distributed spider backend.

Using Scrapy/Frontera with Aduana

Check the Frontera
documentation [http://frontera.readthedocs.org/en/latest/], for
general instructions about setting up Scrapy, Frontera and custom
backends. The workflow specific for Aduana is:

	Set the backend, either as:

BACKEND = 'aduana.frontera.Backend'

or if you want to make a distributed crawl with multiple spiders as:

BACKEND = 'aduana.frontera.WebBackend'

	Set additional options, for example:

PAGE_DB_PATH = 'test-crawl'
SCORER = 'HitsScorer'
USE_SCORES = True

	Run your spider:

scrapy crawl your_spider_here

Single spider backend

This backend is the easiest one to run and works by calling
directly the wrapped C library. To use it set the backend as:

BACKEND = 'aduana.frontera.Backend'

Additionally, the following setting are also used by this backend

	PAGE_DB_PATH

String with the path where you want the PageDB to be stored. Note
that Aduana will actually make two directories. One will be the one
specified by PAGE_DB_PATH and the other will add the suffix
_bfs. This second directory contains the database necessary for
the operation of the (best first) scheduler. If this settings is not
specified, of it is set to None, the directory will be generated
randomly, with suffix frontera_ and it will be automatically
deleted when the spider is closed.

	SCORER

Strategy to use to compute final page scores. Can be one of the
following:

	None

	'HitsScorer'

	'PageRankScorer'

	USE_SCORES

Set to True if you want that the scorer, in case that it was
HITS or PageRank based merges the content scores with link based
scores. Default is False.

	SOFT_CRAWL_LIMIT

When a domain reaches this limit of crawls per second Aduana
will try to make requests to other domains. Default is 0.25.

	HARD_CRAWL_LIMIT

When a domain reaches this limit of crawls per second Aduana will
stop making new requests for this domain. Default is 100.

	PAGE_RANK_DAMPING

If the scorer is PageRank then set the damping to this
value. Default is 0.85.

Distributed spider backend

This backend allows to use several spiders simultaneously, maybe at
different computers to improve CPU and network performance. It works
by having a central server and several spiders connecting to it
through a REST api.

The first thing you need to do is launch the server:

aduana-server.py --help

usage: aduana-server.py [-h] [--seeds [SEEDS]] [settings]

Start Aduana server.

positional arguments:
 settings Path to python module containing server settings

optional arguments:
 -h, --help show this help message and exit
 --seeds [SEEDS] Path to seeds file

Once the server is launched press Ctrl-C to exit.

The server settings are specified in a separate file that is passed as
a positional argument to the aduana-server.py script. The reason
is that they are settings that will be shared by all spiders that
connect to the server.

The following server settings have the same meaning as the ones in the
Single spider backend.

	PAGE_DB_PATH

	SCORER

	USE_SCORES

	SOFT_CRAWL_LIMIT

	HARD_CRAWL_LIMIT

	PAGE_RANK_DAMPING

Additionally the following settings are available:

	SEEDS

Path to the seeds file, where each line is a different URL. This
setting has no default and is mandatory. It can be
specified/overriden with the --seeds option when launching the
server.

	DEFAULT_REQS

If the client does not specify the desired number of requests
serve this number. Default number is 10.

	ADDRESS

Server will listen on this address. Default '0.0.0.0'.

	PORT

Server will listen on this port. Default 8000.

	PASSWDS

A dictionary mapping login name to password. If None then all
connections will be accepted. Notice that it uses
BasicAuth [https://en.wikipedia.org/wiki/Basic_access_authentication]
which sends login data in plain text. If security is of concern
then it is adviced to use this option along with SSL_KEY and
SSL_CERT. Default value for this setting is None.

	SSL_KEY

Path to SSL keyfile. If this setting is used then SSL_CERT
must be set too and all communications will be encrypted between
server and clients using HTTPS. Default None.

	SSL_CERT

Path to SSL certificate. Default None.

The Frontera settings to use this backend are:

BACKEND = 'aduana.frontera.WebBackend'

Additionally, the following setting are also used by this backend

	SERVER_NAME

Address of the server. Default 'localhost'

	SERVER_PORT

Server port number. Default 8000.

	SERVER_CERT

Path to server certificate. If this option is set it will try to
connecto to the server using HTTPS. Default None.

WebBackend REST API

There are two messages exchanged between the spiders and the server.

	Crawled

When a spider crawls a page it sends a POST message to
/crawled. The body is a json dictionary with the following fields:

	url: The URL of the crawled page, ASCII encoded. This is the
only mandatory field.

	score: a floating point number. If omited defaults to zero.

	links: a list links. Each element of the links is a pair made
from link URL and link score.

En example message:

{ "url" : "http://scrapinghub.com",
 "score": 0.5,
 "links": [["http://scrapinghub.com/professional-services/", 1.0],
 ["http://scrapinghub.com/platform/", 0.5],
 ["http://scrapinghub.com/pricing/", 0.8],
 ["http://scrapinghub.com/clients/", 0.9]] }

	Request

When the spider needs to know which pages to crawl next it sends a
GET message to /request. The query strings accepts an optional
parameter n with the maximum number of URLs. If not specified
the default value specified in the server settings will be used. The
response will be a json encoded list of URLs.
Example (pip install httpie):

$ http --auth test:123 --verify=no https://localhost:8000/request n==3

HTTP/1.1 200 OK
Date: Tue, 23 Jun 2015 08:40:46 GMT
content-length: 120
content-type: application/json

[
 "http://www.reddit.com/r/MachineLearning/",
 "http://www.datanami.com/",
 "http://venturebeat.com/tag/machine-learning/"
]

Running the examples

To run the single spider example just go to the example directory,
install the requirements and run the crawl:

cd example
pip install -r requirements.txt
scrapy crawl example

To run the distributed spider example we need to dance a little more:

	Go to the example directory:

cd example

	Generate a server certificate:

aduana-server-cert.py

	Launch the server:

aduana-server.py server-config.py

	Go to the example directory in another terminal and then:

scrapy crawl -s FRONTERA_SETTINGS=example.frontera.web_settings example

 Copyright 2015, Aduana team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	aduana 1.0 documentation

C Library

This section is aimed at developers that want to understand the
architecture of the library, in order to extend it.

The library can be compiled and installed independently of the python
bindings. To build and install:

cd lib
mkdir debug
cd debug
cmake .. -DCMAKE_BUILD_TYPE=Debug
make && sudo make install

When trying to understand some code I like to start with the data
structures that make the inputs and the outputs of the
code. CrawledPage is the input of Aduana and the best
place to start.

CrawledPage

Data structures

	
struct CrawledPage

	The information that comes with a crawled page.

Public Members

	
char *url

	ASCII, null terminated string for the page URL

	
PageLinks *links

	List of links inside this page

	
double time

	Number of seconds since epoch

	
float score

	A number giving an idea of the page content’s value

	
char *content_hash

	A hash to detect content change since last crawl. Arbitrary byte sequence

	
size_t content_hash_length

	Number of byes of the content_hash

The utility of CrawledPage::url and
CrawledPage::links are quite obvious, the others need an explanation:

	CrawledPage::time: this is used to compute how often a
page changes and also it would be useful for a revisiting schedule
to know how much time has passed since the page was crawled.

	CrawledPage::score: one of the objectives of Aduana is
to guide the crawl to interesting pages. Since the definition of
interesting is application dependent each crawler can give a measure
of how interesting they found the page to be. How this number will
be exactly used depends on which scorer are we going to use. This
field is not mandatory and actually Aduana can be configured to
ignore it.

	CrawledPage::content_hash: in order to detect if a
page has changed this hash is compared with the hash previously
stored for this same page. If the hash has changed we consider that
the page has changed. Notice that the content hash is also
application dependent: some applications may consider that the page
has changed only if there are new links, others will consider a page
has changed if the body text, after stripping HTML tags, has
changed, etc... This field can be ignored too, in which case the
pages will be considered as unchanging.

C is not known for its powerful and flexible data structures. In order
to store a variable number of links per crawled page we implement this
resizable array. Each time we run out of allocated memory the size of
the reserved memory is doubled.

	
struct PageLinks

	A (resizable) array of page links.

Initially: n_links = 0 m_links = PAGE_LINKS_MIN_LINKS

Always: 0 <= n_links <= m_links

Public Members

	
LinkInfo *link_info

	Array of LinkInfo

	
size_t n_links

	Number of items inside link_info

	
size_t m_links

	Maximum number of items that can be stored inside link_info

Initially we reserve this number of links

	
PAGE_LINKS_MIN_LINKS

	Allocate at least this amount of memory for link info

Finally, each link not only carries an URL, but also a score. The
score gives an idea of how good the (maybe uncrawled) link is,
according to the web crawler. Think of the link score as an
approximation to CrawledPage::score when we have not
crawled the link yet.

	
struct LinkInfo

	The information that comes with a link inside a crawled page.

The link score is used to decide which links should be crawled next. It is application dependent and tipically computed by looking at the link surrounding text.

Public Members

	
char *url

	ASCII, null terminated string for the page URL

	
float score

	An estimated value of the link score

Constructor/Destructor

	
CrawledPage *crawled_page_new(const char *url)

	Create a new CrawledPage

url is a new copy

The following defaults are used for the different fields:
	links: no links initially. Use crawled_page_add_link to add some.

	time: current time

	score: 0. It can be setted directly.

	content_hash: NULL. Use crawled_page_set_hash to change

	Return

	NULL if failure, otherwise a newly allocated CrawledPage

	
void crawled_page_delete(CrawledPage *cp)

	Delete a Crawled Page created with crawled_page_new

Manipulate links

	
int crawled_page_add_link(CrawledPage *cp, const char *url, float score)

	Add a new link to the crawled page

	
const LinkInfo *crawled_page_get_link(const CrawledPage *cp, size_t i)

	Get a pointer to the link

	
size_t crawled_page_n_links(const CrawledPage *cp)

	Get number of links inside page

Set content hash

	
int crawled_page_set_hash(CrawledPage *cp, const char *hash, size_t hash_length)

	Set content hash

The hash is a new copy

	
int crawled_page_set_hash128(CrawledPage *cp, char *hash)

	Set content hash from a 128bit hash

	
int crawled_page_set_hash64(CrawledPage *cp, uint64_t hash)

	Set content hash from a 64bit hash

	
int crawled_page_set_hash32(CrawledPage *cp, uint32_t hash)

	Set content hash from a 32bit hash

PageInfo

Data structures

This structure contains all we know about a given page, and it’s
changed as new CrawledPage arrive.

And here it is:

	
struct PageInfo

	The information we keep about crawled and uncrawled pages

PageInfo are created at the PageDB, that’s why there are no public constructors/destructors available.

Public Members

	
char *url

	A copy of either CrawledPage::url or CrawledPage::links[i]

	
uint64_t linked_from

	The page that first linked this one

	
double first_crawl

	First time this page was crawled

	
double last_crawl

	Last time this page was crawled

	
size_t n_changes

	Number of content changes detected between first and last crawl

	
size_t n_crawls

	Number of times this page has been crawled. Can be zero if it has been observed just as a link

	
float score

	A copy of the same field at the last crawl

	
size_t content_hash_length

	Number of bytes in PageInfo::content_hash

	
char *content_hash

	Byte sequence with the hash of the last crawl

Constructor/Destructor

There is no constructor available for this structure. The reason is
that they are automatically created from the info inside
CrawledPage when page_db_add() is called.

	
void page_info_delete(PageInfo *pi)

	Destroy PageInfo if not NULL, otherwise does nothing

Functions

	
int page_info_print(const PageInfo *pi, char *out)

	Write printed representation of PageInfo.

This function is intended mainly for debugging and development. The representation is: first_crawl last_crawl n_crawls n_changes url

Each field is separated with an space. The string is null terminated. We use the following format for each field:
	first_crawl: the standard fixed size (24 bytes) as output by ctime. For example: Mon Jan 1 08:01:59 2015

	last_crawl: the same as first_crawl

	n_crawls: To ensure fixed size representation this value is converted to double and represented in exponential notation with two digits. It has therefore always 8 bytes length: 1.21e+01

	n_changes: The same as n_crawls

	url: This is the only variable length field. However, it is truncated at 512 bytes length.

	Return

	size of representation or -1 if error

	Parameters

	
	pi - The PageInfo to be printed

	out - The output buffer, which must be at least 580 bytes long

	
float page_info_rate(const PageInfo *pi)

	Estimate change rate of the given page. If no valid rate can be computed return -1.0, otherwise a valid nonnegative change rate.

PageDB

This is one of the main components of the library. Here we store all
the PageInfo and how pages are linked between them.

The first thing to understand is that there are two different ways to
refer to a given page, using either the URL hash or the index. Both
ways of addressing the page are linked in the hash2idx database.

URL hash

The URL hash is computed using the following function:

	
uint64_t page_db_hash(const char *url)

	Hash function used to convert from URL to hash.

The hash is a 64 bit number where the first 32 bits are a hash of the domain and the last 32 bits are a hash of the full URL. In this way all URLs whith the same domain get grouped together in the database. This has some good consequences:

	We can access all pages inside a domain by accessing the first of them in the database and moving sequentially.

	When streaming links this improves locality since pages in the same domain tend to have similar links.

When a new CrawledPage arrives we compute the hash of
CrawledPage::url and use this as the key inside the
hash2info database, to retrieve the associated
PageInfo. If no entry is found inside the database a new
one is created. We do the same with each one of the links inside
CrawledPage::links.

The following two functions are useful to extract the different parts
of the hash.

	
uint32_t page_db_hash_get_domain(uint64_t hash)

	Extract the domain hash from the full hash

	
uint32_t page_db_hash_get_url(uint64_t hash)

	Extract the URL hash from the full hash

Index

We could store links between pages using their URL hash, for example,
as a list of pairs of the form:

004619df1e9191ff 004619df1eb839e2
004619df1e9191ff 004619df1f1a5477
004619df01e223ae 00115773f1ea355c
...

However the hashing would spoil one interesting property of links:
locality. Locality means that pages usually link to pages inside their
same domain. For example, here are the first links extracted from the
front page of Wikipedia [https://en.wikipedia.org/wiki/Main_Page]:

https://en.wikipedia.org/wiki/Main_Page#mw-head
https://en.wikipedia.org/wiki/Main_Page#p-search
https://en.wikipedia.org/wiki/Wikipedia
https://en.wikipedia.org/wiki/Free_content
https://en.wikipedia.org/wiki/Encyclopedia
https://en.wikipedia.org/wiki/Wikipedia:Introduction
https://en.wikipedia.org/wiki/Special:Statistics
https://en.wikipedia.org/wiki/English_language

Locality can also happen when there are several links outgoing to the
same domain, but a different one of the originating page. For example,
from among the 135 links at the front page of Hacker News [https://news.ycombinator.com/] more than 100 remained on the same
domain but there were also the following groups:

http://www.ycombinator.com/
http://www.ycombinator.com/apply/

https://github.com/blog/2024-read-only-deploy-keys
https://github.com/whamtet/Excel-REPL
https://github.com/tadast/switching-to-contracting-uk/blob/master/README.md
https://github.com/HackerNews/API

Instead of storing links using the URL hash we instead assign each
page an integer, that starts at zero with the first page and it’s
automatically incremented when a new page is added to the
database. Links are stored then as lists where the first element is
the originating page index and the rest of the elements are the
indices of the outoging links. For example, taken from a real crawl:

7 1243 1245 1251 1254 1260 1262 1263
 1264 1267 1269 1271 1274 1275 1276
 1277 1280 1283 1286 1289 1291 1295
 1309 1311 ...

Since we want be able to perform big crawls with billions of pages we
use 64 bit integers for the indices, which means they still take as
much space as the URL hashes. However, these links are delta-encoded:
starting at the second element of the list we substract the previous one:

7 2 6 3 6 2 1 1 3 2 2 3 1 1 1 3 3 3 3 2 4 14 2 ...

Finally we use varint encoding [https://developers.google.com/protocol-buffers/docs/encoding#varints]
for each integer. As you can see in the above example each link
requires just 8 bits, instead of the 64 bits (or 32 bits if somehow we
could reuse the domain part of the hash) URL hashing would.

Having indices instead of hashes is also convenient for the PageRank
and HITS algorithms. They can store the pages scores using arrays
where the position of each page inside those arrays are just their
index. Having fast O(1) access time greatly improves the speed of the
computation when using billions of pages. Besides, locality also helps
access speed, even when working in-memory.

The index for a given page is automatically created when
page_db_add() is called.

Data structures

	
struct PageDB

	Page database.

We are really talking about 4 diferent key/value databases:
	info: contains fixed size information about the whole database. Right now it just contains the number of pages stored.

	hash2idx: maps URL hash to index. Indices are consecutive identifier for every page. This allows to map pages to elements inside arrays.

	hash2info: maps URL hash to a PageInfo structure.

	links: maps URL index to links indices. This allows us to make a fast streaming of all links inside a database.

Public Members

	
char *path

	Path to the database directory

	
TxnManager *txn_manager

	The transaction manager counts the number of read and write transactions active and is capable of safely performing a database resize

	
DomainTemp *domain_temp

	Track the most crawled domains

	
int persist

	If true, do not delete files after deleting object

	
enum PageDBError

	Values:

	
page_db_error_ok = 0

	No error

	
page_db_error_memory

	Error allocating memory

	
page_db_error_invalid_path

	File system error

	
page_db_error_internal

	Unexpected error

	
page_db_error_no_page

	A page was requested but could not be found

Constructor/Destructor

	
PageDBError page_db_new(PageDB **db, const char *path)

	Creates a new database and stores data inside path

	Return

	0 if success, otherwise the error code

	Parameters

	
	db - In case of page_db_error_memory *db could be NULL. In case of other failures it is nevertheles allocated memory so that the error code and message can be accessed.

	path - Path to directory. In case it doesn’t exist it will created. If it exists and a database is already present operations will resume with the existing database. Note that you must have read, write and execute permissions for the directory.

	
PageDBError page_db_delete(PageDB *db)

	Close database

Close database, delete files if it should not be persisted, and free memory

Add page

	
PageDBError page_db_add(PageDB *db, const CrawledPage *page, PageInfoList **page_info_list)

	Update PageDB with a new crawled page

It performs the following actions:
	Compute page hash

	If the page is not already into the database:
	It generates a new ID and stores it in hash2idx

	It creates a new PageInfo and stores it in hash2info

	If already present if updates the PageInfo inside hash2info

	For each link:
	Compute hash

	If already present in the database just retrieves the ID

	If not present:
	Generate new ID and store it in hash2idx

	Creates a new PageInfo and stores it in hash2info

	Create or overwrite list of Page ID -> Links ID mapping inside links database

	Return

	0 if success, otherwise the error code

	Parameters

	
	db - The database to update

	page - The information of the crawled page

	page_info_list - If not NULL this function will allocate and populate a new PageInfoList which contains the PageInfo of the updated pages. It is your responsability to call when you no longer need this structure.

Get info from database

	
PageDBError page_db_get_info(PageDB *db, uint64_t hash, PageInfo **pi)

	Retrieve the PageInfo stored inside the database.

Beware that if not found it will signal success but the PageInfo will be NULL

	
PageDBError page_db_get_idx(PageDB *db, uint64_t hash, uint64_t *idx)

	Get index for the given URL

	
PageDBError page_db_get_scores(PageDB *db, MMapArray **scores)

	Build a MMapArray with all the scores

	
float page_db_get_domain_crawl_rate(PageDB *db, uint32_t domain_hash)

	Get crawl rate for the given domain

Database settings

	
void page_db_set_persist(PageDB *db, int value)

	Set persist option for database

	
PageDBError page_db_set_domain_temp(PageDB *db, size_t n_domains, float window)

	Set domain temperature tracking options

Export database

This functions are used by the page_db_dump command line utility.

	
PageDBError page_db_info_dump(PageDB *db, FILE *output)

	Dump database to file in human readable format

	
PageDBError page_db_links_dump(PageDB *db, FILE *output)

	Dump database to file in human readable format

PageInfoList

This structure exists just because page_db_add() needs a way
of returning which pages had their info created/modified. This
information is necessary for schedulers. It’s just a linked list so we
are not going to make more comments about it.

Data structures

	
struct PageInfoList

	A linked list of PageInfo (and hash), to be returned by page_db_add

Public Members

	
uint64_t hash

	Hash inside the hash2info database

	
PageInfo *page_info

	Info inside the hash2info database

	
struct PageInfoList *next

	A pointer to the next element, or NULL

Constructor/Destructor

	
PageInfoList *page_info_list_new(PageInfo *pi, uint64_t hash)

	Create a new PageInfoList, with just one element.

	Return

	A pointer to the first element of the list, or NULL if failure

	Parameters

	
	pi - The PageInfo to add. From this point it is the property of the list, so deleting the list deletes this element.

	hash -

	
void page_info_list_delete(PageInfoList *pil)

	Deletes the list and all its contents

Functions

	
PageInfoList *page_info_list_cons(PageInfoList *pil, PageInfo *pi, uint64_t hash)

	Add a new element to the head of the list.
	Return

	A pointer to the first element of the list, or NULL if failure

	Parameters

	
	pi - The PageInfo to add. From this point it is the property of the list, so deleting the list deletes this element.

	hash -

LinkStream

Maybe the most interesting stream going out of PageDB is
the link stream, because it’s the main interface between
PageDB and the different scorers like PageRank and
HITS. This stream outputs a list of Link, which are just
pairs of from and to indices. Right now, because of the way links
are stored inside the database the stream groups together all the
links with the same from index, however this could change in the
future and it’s actually not necessary for the current PageRank or
HITS implementations.

The reason for using a link stream is that when billions of pages are
crawled the size of the links database can grow to several hundreds of
megabytes.

Data structures

	
struct PageDBLinkStream

	
Public Members

	
MDB_cursor *cur

	PageDB where links database is stored Cursor to the links database

	
uint64_t from

	Current page

	
uint64_t *to

	A list of links

	
size_t n_to

	Number of links

	
size_t i_to

	Current position inside to

	
size_t m_to

	Allocated memory for to. It must be that n_to <= m_to.

	
size_t n_diff

	Number of out domain links

	
int only_diff_domain

	If true only links that go to a different domain will be streamed

	
struct Link

	

Constructor/Destructor

	
void page_db_link_stream_delete(PageDBLinkStream *es)

	Delete link stream and free any transaction hold inside the database.

Functions

The signature of these functions use void because they must agree
with the following interfaces:

	
typedef StreamState(LinkStreamNextFunc)(void *state, Link *link)

	

for

	
StreamState page_db_link_stream_next(void *es, Link *link)

	Get next element inside stream.

	Return

	::link_stream_state_next if success

and

	
typedef StreamState(LinkStreamResetFunc)(void *state)

	

for

	
StreamState page_db_link_stream_reset(void *es)

	Rewind stream to the beginning

HashInfoStream

Data structures

This is used by the command line utility page_db_find, which
iterates over all the pages and returns which ones have their URL
matching some regexp.

	
struct HashInfoStream

	Stream over HashInfo inside PageDB

Public Members

	
MDB_cursor *cur

	Cursor to info database

Constructor/Destructor

	
PageDBError hashinfo_stream_new(HashInfoStream **st, PageDB *db)

	Create a new stream

	
void hashinfo_stream_delete(HashInfoStream *st)

	Free stream

Functions

	
StreamState hashinfo_stream_next(HashInfoStream *st, uint64_t *hash, PageInfo **pi)

	Get next element in stream

HashIdxStream

This is used in two different places. The first one is the command
line utility page_db_links which returns which pages link or are
linked from other page.

The other more important use case is inside schedulers, which after
pages scores are updated, need to iterate over all of them to see
which ones have changed enough to be rescheduled.

Data structures

	
struct HashIdxStream

	Stream over hash/index pairs inside PageDB

Public Members

	
MDB_cursor *cur

	Cursor to the hash2idx database

Constructor/Destructor

	
PageDBError hashidx_stream_new(HashIdxStream **st, PageDB *db)

	Create a new stream

	
void hashidx_stream_delete(HashIdxStream *st)

	Free stream

Functions

	
StreamState hashidx_stream_next(HashIdxStream *st, uint64_t *hash, size_t *idx)

	Get next element in stream

DomainTemp

This is used inside PageDB to track how many times the
most often domains are crawled. This information will in turn be used
by the scheduler, which will try to not serve requests for the most
crawled domains.

Ideally, for each domain we would store a (growing) list of timestamps when
some page in the domain has been crawled. With this list in hand
we could answer questions like How many times the domain has been
crawled in the last 60 seconds?. Instead of that we make the
following approximation: imagine that we store only how many times the
domain has been crawled in the last \(T\) seconds. We don’t know
how the crawls have been distributed in that time, it could be that
thay are distributed all at the beginning:

or maybe following some strange pattern:

Instead we will assume they are evenly distributed:

Now, if some time \(t\) is elapsed without any more crawled, how
many crawls remain in the time window?

The answer is that since there are \(n\) crawls evenly distributed then there
are \(n/T\) crawls per second, and then \(n\frac{t}{T}\) have
moved out of the time window.

\[n(t_0 + t) - n(t_0) = n(t_0)\frac{t}{T}\]

If \(t \to dt\) then we have the following differential equation:

\[\frac{dn}{dt} = -\frac{1}{T}n\]

The solution of the above equation is obviously:

\[n(t) = n(0)e^{-\frac{t}{T}}\]

And \(n\) would evolve following some similar shape to:

The above figure has a time window of just 2 seconds and there are
crawls at instants 1, 2.5, 2.6, 2.7, 4 and 5.

Data structures

	
struct DomainTemp

	Tracks how “hot” are the most crawled domains.

We want to avoid crawling the same domain repeatedly. For this purpose this structure tracks how many times a domain has been crawled in the specified time window. For performance reasons an approximation of the actual number of crawls is maintained. Under certain assumptions it can be shown that if ‘n’ is the number of crawled for a domain it follows the following (cool down) differential equation:
\[\frac{dn}{dt} = -\frac{1}{T}n \]

where \(T\) is the time window.

Public Members

	
DomainTempEntry *table

	An array of domain/temperature pairs

	
size_t length

	Length of DomainTemp::table

	
float time

	Last time temperatures were updated

	
float window

	Time window to consider in the cooldown

	
struct DomainTempEntry

	Associate a domain hash with a temperature

Public Members

	
uint32_t hash

	Domain hash

	
float temp

	Domain temperature: an estimation of how many times the domain has been crawled in the time window

Constructor/Destructor

	
DomainTemp *domain_temp_new(size_t length, float window)

	Create a new domain temp tracking structure

	Return

	A pointer to the new struct of NULL if failure

	Parameters

	
	length - Maximum number of domains to track

	window - Time window

	
void domain_temp_delete(DomainTemp *dh)

	Free memory

Functions

	
void domain_temp_update(DomainTemp *dh, float t)

	Updates temp up to current time t

	
void domain_temp_heat(DomainTemp *dh, uint32_t hash)

	Adds another count to domain.

If the domain already in already tracked its counter is incremented. If the domain is not present then we try to initialize it in an empty slot. If not empty slot is available then the domain with fewest crawls is replaced with the new domain if its counter is below 1.

	
float domain_temp_get(DomainTemp *dh, uint32_t hash)

	Gets domain temp

Error handling

Errors are signaled in the following ways:

	For functions not returning pointers 0 means success and any other
value some kind of failure. Usually an enumeration of error codes
is defined, otherwise -1 is used as failure code.

	For functions returning pointers failure is signaled returning a
null pointer.

	If the causes of error are varied enough the structures inside this
library have an Error structure, which contains the
error code and an error message. The error message usually resembles
an stack trace to aid debugging the problem.

Data structures

	
MAX_ERROR_LENGTH

	Maximum length of error message

	
struct Error

	
Public Members

	
pthread_mutex_t mtx

	Make operations on errors atomic.

If an error is produced dealing with this mutex it will be silently ignored

	
int code

	Error code, depends on the application but 0 always signals no error

	
char message[MAX_ERROR_LENGTH+1]

	A descriptive message associated with the error code. If no error then it contains “NO ERROR”

Constructor/Destructor

	
void error_init(Error *error)

	Initialize structure.

Error code is set to 0 and message to “NO ERROR”.

	
void error_destroy(Error *error)

	Clean up. Will NOT free error

	
Error *error_new(void)

	Allocate and initialize a new error structure

	
void error_delete(Error *error)

	Destroy and free an error structure

Functions

	
void error_set(Error *error, int code, const char *msg)

	Set error.

If an error is already present then do nothing. If you want to overwrite an already existing error then first call error_clean

	
void error_clean(Error *error)

	Clean error.

Error code is set to 0 and the message to NO ERROR.

	
void error_add(Error *error, const char *msg)

	Add a description message to the existing message and leaves as is the error code

	
const char *error_message(const Error *error)

	Return error message if error, otherwise NULL

	
int error_code(const Error *error)

	Return error code

TxnManager

Data structures

	
struct TxnManager

	Transaction Manager.

LMDB has several restrictions in the operations it allows in multiple threads, but some of these restrictions must be imposed in the application code. In particular:

	Some operations require that no transactions in the same process are active, for example mdb_env_set_mapsize

	Some operations require that no write transactions are active. For example it is not documented, but it seems to happen that, mdb_env_info crashes if write transactions are active.

This structure tracks the number of read and write transactions active inside the process and allows blocking until all of them are aborted or commited.

Public Members

	
MDB_env *env

	LMDB environment where transactions happen

	
InvSemaphore txn_counter_read

	Counter of read transactions

	
InvSemaphore txn_counter_write

	Counter of write transactions

	
struct InvSemaphore

	Inverse Semaphore.

An inverse semaphore blocks when the count is greater than zero (a regular semaphore blocks when the count is at zero).

	
enum TxnManagerError

	Values:

	
txn_manager_error_ok = 0

	No error

	
txn_manager_error_internal

	Unexpected error

	
txn_manager_error_memory

	Error allocating new memory

	
txn_manager_error_thread

	Error inside pthreads

	
txn_manager_error_mdb

	Error inside LMDB

Constructor/Destructor

	
TxnManagerError txn_manager_new(TxnManager **tm, MDB_env *env)

	Allocate a new TxnManager

	Return

	0 if success, otherwise error code.

	Parameters

	
	tm - The new transaction manager.

	env - The LMDB environment where transactions will be opened, aborted or commited.

	
TxnManagerError txn_manager_delete(TxnManager *tm)

	Destroy and free manager

Functions

The following functions are wrappers around the corresponding ones in
LMDB. They will increment/decrement automatically the read and write
transactions counters.

	
TxnManagerError txn_manager_begin(TxnManager *tm, int flags, MDB_txn **txn)

	Begin a new transaction.

	Return

	0 if success, otherwise error code.

	Parameters

	
	tm -

	flags - The flags that you pass to LMDB’s mdb_txn_begin. These flags will be checked for MDB_RDONLY to decide which transaction counter to increment. This operation will block if an environment resize is in progress.

	txn - New transaction.

	
TxnManagerError txn_manager_commit(TxnManager *tm, MDB_txn *txn)

	Commit transaction.

The corresponding counter will be decremented

	
TxnManagerError txn_manager_abort(TxnManager *tm, MDB_txn *txn)

	Abort transaction.

The corresponding counter will be decremented

The following function is the main reason for the existence of
TxnManager.

	
TxnManagerError txn_manager_expand(TxnManager *tm)

	Check if the environment must be resized. If this is the case then resize it.

This call will block for sure until there are no write transactions active. This call may block until there are no read transactions active, only if a resize is necessary.

If a resize happens then creation of new read and write transactions will be blocked until it finishes.

	
MDB_MINIMUM_FREE_PAGES

	Parameter associated to txn_manager_expand.

The mmap is resized when the remaining free space is less than this amount.

BFScheduler

Data structures

	
BF_SCHEDULER_DEFAULT_SIZE

	Size of the mmap to store the schedule

	
BF_SCHEDULER_DEFAULT_PERSIST

	Default value for BFScheduler::persist

	
struct BFScheduler

	BestFirst scheduler.

As it name implies this scheduler follows a greedy strategy to decide which page is going to crawl next. It mains an ordered list of uncrawled pages. To decide the next page to be crawled this scheduler picks the highest score page and removes it from the top of the list.

The key is then to assign valid scores to the pages. If no scorer is selected this scheduler will use the score provided when the page is crawled. Additionally an alternative scorer can be set up, see for example page_rank_scorer_setup or hits_scorer_setup.

Public Members

	
PageDB *page_db

	Page database

The page database is neither created nor destroyed by the scheduler. The rationale is that the scheduler can be changed while using the same PageDB. The schedule is “attached” to the PageDB.

	
Scorer *scorer

	The scorer use to get page score.

If not set up, the PageInfo.score will be used

	
TxnManager *txn_manager

	The scheduler state is maintained inside am LMDB environment

	
char *path

	Path to the env

It is built by appending _bfs to the PageDB::path

	
int persist

	If true, do not delete files after deleting object

	
float max_soft_domain_crawl_rate

	Maximum crawls per second per domain

	
float max_hard_domain_crawl_rate

	Maximum crawls per second per domain

	
enum BFSchedulerError

	Values:

	
bf_scheduler_error_ok = 0

	No error

	
bf_scheduler_error_memory

	Error allocating memory

	
bf_scheduler_error_invalid_path

	File system error

	
bf_scheduler_error_internal

	Unexpected error

	
bf_scheduler_error_thread

	Error inside the threading library

Constructor/Destructor

	
BFSchedulerError bf_scheduler_new(BFScheduler **sch, PageDB *db)

	Allocate memory and create a new scheduler

	Return

	0 if success, otherwise the error code

	Parameters

	
	sch - Where to create it. *sch can be NULL in case of memory error

	db - PageDB to attach. Remember it will not be created nor destroyed by the scheduler

	
void bf_scheduler_delete(BFScheduler *sch)

	Delete scheduler.

It may or may not delete associated disk files depending on the BFScheduler::persist flag

Input/Output

	
BFSchedulerError bf_scheduler_add(BFScheduler *sch, const CrawledPage *page)

	Add a new crawled page

It will add the page also to the PageDB.

	Return

	0 if success, otherwise the error code

	Parameters

	
	sch -

	page -

	
BFSchedulerError bf_scheduler_request(BFScheduler *sch, size_t n_pages, PageRequest **request)

	Add a new crawled page

It will add the page also to the PageDB.

	Return

	0 if success, otherwise the error code

	Parameters

	
	sch -

	page -

Update scores

	
BF_SCHEDULER_UPDATE_BATCH_SIZE

	Size of the batch used in updating the schedule.

Updating the schedule involves starting a write transaction. However write transactions coming from multiple threads are serialized. Since adding new pages to the schedule and returning requests also start write transactions it means that the update thread could block this more critical operations. To avoid this we avoid long write transactions and split them in batches.

	
BF_SCHEDULER_UPDATE_NUM_PAGES

	Don’t update scores until this amount of new pages has arrived

	
BF_SCHEDULER_UPDATE_PER_PAGES

	Don’t update scores until this percentage of new pages has arrived

	
BFSchedulerError bf_scheduler_update_start(BFScheduler *sch)

	Start the update thread.

The update thread will run periodically the scorer, in case there is one, to recompute page scores.

	
BFSchedulerError bf_scheduler_update_stop(BFScheduler *sch)

	Stop the update thread

Settings

	
void bf_scheduler_set_persist(BFScheduler *sch, int value)

	Set persist option for scheduler

	
BF_SCHEDULER_CRAWL_RATE_STEPS

	Number of steps to take between soft and hard crawl rate limit

	
BFSchedulerError bf_scheduler_set_max_domain_crawl_rate(BFScheduler *sch, float max_soft_crawl_rate, float max_hard_crawl_rate)

	Set BFScheduler::max_soft_domain_crawl_rate and BFScheduler::max_hard_domain_crawl_rate

Scorer

	
struct Scorer

	Scorers are responsible of computing a measure between 0 and 1 of the relevance of a given page.

In order to be used in different schedulers they must obey the following interface.

Public Members

	
void *state

	Scorer specific state

	
ScorerUpdateFunc *update

	Update scorer

	
ScorerAddFunc *add

	Add new page to scorer

	
ScorerGetFunc *get

	Get a page score

	
typedef int(ScorerUpdateFunc)(void *state)

	Scorer update function interface

	
typedef int(ScorerAddFunc)(void *state, const PageInfo *page_info, float *score)

	Scorer add page function interface

	
typedef int(ScorerGetFunc)(void *state, size_t idx, float *score_old, float *score_new)

	Scorer get page score function

To see concrete implementations have a look at
PageRankScorer and HitsScorer.

PageRankScorer

Data structures

	
PAGE_RANK_SCORER_USE_CONTENT_SCORES

	Default value for PageRankScorer::use_content_scores

	
PAGE_RANK_SCORER_PERSIST

	Default value for PageRankScorer::persist

	
struct PageRankScorer

	
Public Members

	
PageRank *page_rank

	Implementation of the PageRank algorithm

	
PageDB *page_db

	Database with crawl information

	
Error *error

	Error status

	
int persist

	If true files will not be removed by page_rank_scorer_delete

	
int use_content_scores

	If true use content scores inside PageRank algorithm

	
enum PageRankScorerError

	Values:

	
page_rank_scorer_error_ok = 0

	No error

	
page_rank_scorer_error_memory

	Error allocating memory

	
page_rank_scorer_error_internal

	Unexpected error

	
page_rank_scorer_error_precision

	Could not achieve precision in maximum number of loops

Constructor/Destructor

	
PageRankScorerError page_rank_scorer_new(PageRankScorer **prs, PageDB *db)

	Create new scorer

	
PageRankScorerError page_rank_scorer_delete(PageRankScorer *prs)

	Delete scorer.

Files will be deleted unles PageRankScorer::persist is true

Functions

	
int page_rank_scorer_add(void *state, const PageInfo *page_info, float *score)

	Add new page to scorer.

Function signature complies with Scorer::add

	
int page_rank_scorer_get(void *state, size_t idx, float *score_old, float *score_new)

	Access PageRank scorer as with page_rank_get.

Function signature complies with Scorer::get

	
int page_rank_scorer_update(void *state)

	Update scores.

Function signature complies with Scorer::update

	
void page_rank_scorer_setup(PageRankScorer *prs, Scorer *scorer)

	Given a Scorer fill its fields with the necessary info

Settings

	
void page_rank_scorer_set_persist(PageRankScorer *prs, int value)

	Sets PageRankScorer::persist

	
void page_rank_scorer_set_use_content_scores(PageRankScorer *prs, int value)

	Sets PageRankScorer::use_content_scores

	
void page_rank_scorer_set_damping(PageRankScorer *prs, float value)

	Sets PageRankScorer::page_rank::damping

HitsScorer

Data structures

	
HITS_SCORER_USE_CONTENT_SCORES

	Default value for HitsScorer::use_content_scores

	
HITS_SCORER_PERSIST

	Default value for HitsScorer::persist

	
struct HitsScorer

	
Public Members

	
Hits *hits

	Implementation of the HITS algorithm

	
PageDB *page_db

	Database with crawl information

	
Error *error

	Error status

	
int persist

	If true files will not be removed by page_rank_scorer_delete

	
int use_content_scores

	If true use content scores inside PageRank algorithm

	
enum HitsScorerError

	Values:

	
hits_scorer_error_ok = 0

	No error

	
hits_scorer_error_memory

	Error allocating memory

	
hits_scorer_error_internal

	Unexpected error

	
hits_scorer_error_precision

	Could not achieve precision in maximum number of loops

Constructor/Destructor

	
HitsScorerError hits_scorer_new(HitsScorer **hs, PageDB *db)

	Create new scorer

	
HitsScorerError hits_scorer_delete(HitsScorer *hs)

	Delete scorer.

Files will be deleted unles HitsScorer::persist is true

Functions

	
int hits_scorer_add(void *state, const PageInfo *page_info, float *score)

	Add new page to scorer.

Function signature complies with Scorer::add

	
int hits_scorer_get(void *state, size_t idx, float *score_old, float *score_new)

	Access HITS scorer as with hits_get_authority.

Function signature complies with Scorer::get

	
int hits_scorer_update(void *state)

	Update scores.

Function signature complies with Scorer::update

	
void hits_scorer_setup(HitsScorer *hs, Scorer *scorer)

	Given a Scorer fill its fields with the necessary info

Settings

	
void hits_scorer_set_persist(HitsScorer *hs, int value)

	Sets HitsScorer::persist

	
void hits_scorer_set_use_content_scores(HitsScorer *hs, int value)

	Sets HitsScorer::use_content_scores

PageRank

Data structures

	
PAGE_RANK_DEFAULT_DAMPING

	Default PageRank::damping

	
PAGE_RANK_DEFAULT_MAX_LOOPS

	Default PageRank::max_loops

	
PAGE_RANK_DEFAULT_PRECISION

	Default PageRank::precision

	
PAGE_RANK_DEFAULT_PERSIST

	Default PageRank::persist

	
struct PageRank

	Implementation of the PageRank algorithm.

See for example Wikipedia [http://en.wikipedia.org/wiki/PageRank].

Additionally, it allows to merge the pure link based original algorithm with page content scores.

Public Members

	
MMapArray *out_degree

	Number of outgoing links.

If page content scores are used then this array is actually the aggregated scores of all the outgoing links.

	
MMapArray *value1

	PageRank value, old iteration

	
MMapArray *value2

	PageRank value, new iteration

	
size_t n_pages

	Number of pages

	
char *path_out_degree

	Path to the out degree mmap array file

	
char *path_pr

	Path to page rank mmap array file

	
Error *error

	Error status

	
float damping

	Probability of making a random page jump: 1.0 - damping

	
MMapArray *scores

	External computed scores associated with the pages

	
float total_score

	Total score

	
size_t max_loops

	If greater than 0 stop computation even if precision was not achieved

	
float precision

	Stop iteration when the the largest change in any page score is below this threshold

	
int persist

	If true, do not delete files after deleting

	
enum PageRankError

	Values:

	
page_rank_error_ok = 0

	No error

	
page_rank_error_memory

	Error allocating memory

	
page_rank_error_internal

	Unexpected error

	
page_rank_error_precision

	Could not achieve precision in maximum number of loops

Constructor/Destructor

	
PageRankError page_rank_new(PageRank **pr, const char *path, size_t max_vertices)

	Create a new structure.

	Return

	0 if success, otherwise an error code.

	Parameters

	
	pr - The new structure is returned here. NULL if memory error.

	path - Directory where all files will be stored.

	max_vertices - Initial hint of the number of pages.

	
PageRankError page_rank_delete(PageRank *pr)

	Free memory and close associated resources.

Files will be deleted or not depending on the value of PageRank::persist.

Functions

	
PageRankError page_rank_set_n_pages(PageRank *pr, size_t n_pages)

	Reserve memory for the specified number of pages

	
PageRankError page_rank_compute(PageRank *pr, void *link_stream_state, LinkStreamNextFunc *link_stream_next, LinkStreamResetFunc *link_stream_reset)

	Compute PageRank score for all pages.

The algorithm makes random access of pages scores and sequential access of the links.

	Return

	0 if success, otherwise an error code.

	Parameters

	
	pr -

	link_stream_state - For example PageDBLinkStream

	link_stream_next - For example page_db_link_stream_next

	link_stream_reset - For example page_db_link_stream_reset

	
PageRankError page_rank_get(const PageRank *pr, size_t idx, float *score_old, float *score_new)

	Get PageRank score associated to a given page.

	Return

	0 if success, otherwise an error code.

	Parameters

	
	pr -

	idx - Page index.

	score_old - Score on the previous call to page_rank_compute.

	score_new - Score on the last call to page_rank_compute.

	
void page_rank_set_persist(PageRank *pr, int value)

	Set value of PageRank::persist

Hits

Data structures

	
HITS_DEFAULT_MAX_LOOPS

	Default Hits::max_loops

	
HITS_DEFAULT_PRECISION

	Default Hits::precision

	
HITS_DEFAULT_PERSIST

	Default Hits::persist

	
struct Hits

	Implementation of the HITS algorithm.

See for example Wikipedia [http://en.wikipedia.org/wiki/HITS_algorithm].

Additionally, it allows to merge the pure link based original algorithm with page content scores. The idea is that the authority scores are distributed back to the hub according to the content score. For example imagine that page A links to B, C and D and the content/authority scores are:

-B: 0.5 / 0.1 -C: 0.1 / 1.0 -D: 0.9 / 0.5

Then the hub score of A would be computed as:

Hub(A) = 0.5*0.1 + 0.1*1.0 + 0.9*0.5

Public Members

	
MMapArray *h1

	Hub score, previous iteration

	
MMapArray *h2

	Hub score, current iteration

	
MMapArray *a1

	Authority score, previous iteration

	
MMapArray *a2

	Authority score, current iteration

	
char *path_h1

	Path to mmap file of Hits::h1

	
char *path_h2

	Path to mmap file of Hits::h2

	
size_t n_pages

	Number of pages

	
Error *error

	Error status

	
MMapArray *scores

	External computed scores associated with the pages

	
size_t max_loops

	If greater than 0 stop computation even if precision was not achieved

	
float precision

	Stop iteration when the the largest change in any page score is below this threshold

	
int persist

	If true, do not delete files after deleting object

	
enum HitsError

	Values:

	
hits_error_ok = 0

	No error

	
hits_error_memory

	Error allocating memory

	
hits_error_internal

	Unexpected error

	
hits_error_precision

	Could not achieve precision in maximum number of loops

Constructor/Destructor

	
HitsError hits_new(Hits **hits, const char *path, size_t max_vertices)

	Create a new structure.

	Return

	0 if success, otherwise an error code.

	Parameters

	
	pr - The new structure is returned here. NULL if memory error.

	path - Directory where all files will be stored.

	max_vertices - Initial hint of the number of pages.

	
HitsError hits_delete(Hits *hits)

	Free memory and close associated resources.

Files will be deleted or not depending on the value of Hits::persist.

Functions

	
HitsError hits_set_n_pages(Hits *hits, size_t n_pages)

	Reserve memory for the specified number of pages

	
HitsError hits_compute(Hits *hits, void *link_stream_state, LinkStreamNextFunc *link_stream_next, LinkStreamResetFunc *link_stream_reset)

	Compute HITS score for all pages.

The algorithm makes random access of pages scores and sequential access of the links.

	Return

	0 if success, otherwise an error code.

	Parameters

	
	pr -

	link_stream_state - For example PageDBLinkStream

	link_stream_next - For example page_db_link_stream_next

	link_stream_reset - For example page_db_link_stream_reset

	
HitsError hits_get_hub(const Hits *pr, size_t idx, float *score_old, float *score_new)

	Get hub score associated to a given page.

	Return

	0 if success, otherwise an error code.

	Parameters

	
	pr -

	idx - Page index.

	score_old - Score on the previous call to hits_compute.

	score_new - Score on the last call to hits_compute.

	
HitsError hits_get_authority(const Hits *pr, size_t idx, float *score_old, float *score_new)

	Get authority score associated to a given page.

	Return

	0 if success, otherwise an error code.

	Parameters

	
	pr -

	idx - Page index.

	score_old - Score on the previous call to hits_compute.

	score_new - Score on the last call to hits_compute.

	
void hits_set_persist(Hits *hits, int value)

	Set value of Hits::persist

MMapArray

Data structures

	
struct MMapArray

	A memory mapped array

Public Members

	
char *mem

	Pointer to data

	
int fd

	File descriptor for data

	
char *path

	Path to data file

	
size_t n_elements

	Number of elements

	
size_t element_size

	Size of each element

	
int persist

	If true, do not delete files after deleting object

	
enum MMapArrayError

	Values:

	
mmap_array_error_ok = 0

	No error

	
mmap_array_error_memory

	Error allocation memory

	
mmap_array_error_internal

	Unexpected error

	
mmap_array_error_mmap

	Error with a mmap operation (creation, unmapping, advise...)

	
mmap_array_error_file

	Error manipulating the file system

	
mmap_array_error_out_of_bounds

	Tried to access array past boundaries

Constructor/Destructor

	
MMapArrayError mmap_array_new(MMapArray **marr, const char *path, size_t n_elements, size_t element_size)

	Create a new MMapArray

	Return

	0 if success, otherwise the error code (also available in marr if not NULL)

	Parameters

	
	marr - Will be changed to point to the newly allocated structure, or NULL if failure

	path - Path to the associated file. Can be NULL in which case the mapping is made anonymous.

	n_elements - Number of elements (can be changed later with mmap_array_resize)

	element_size - Number of bytes of each element

	
MMapArrayError mmap_array_delete(MMapArray *marr)

	Delete MMapArray

If the structure cannot be deleted, the memory will not be freed

	Return

	0 if success, otherwise the error code (also available in marr)

Functions

	
MMapArrayError mmap_array_advise(MMapArray *marr, int flag)

	Advise memory use pattern

It accepts any flag that madvise accepts

	Return

	0 if success, otherwise the error code (also available in marr)

	
MMapArrayError mmap_array_sync(MMapArray *marr, int flag)

	Force memory-disk syncronization

It accepts any flag that msync accepts

	Return

	0 if success, otherwise the error code (also available in marr)

	
void *mmap_array_idx(MMapArray *marr, size_t n)

	Returns pointer to the array element

	Return

	In case of failure it will return NULL. The error code is available in marr

	
MMapArrayError mmap_array_set(MMapArray *marr, size_t n, const void *x)

	Set array element value

	Return

	0 if success, otherwise the error code (also available in marr)

	
void mmap_array_zero(MMapArray *marr)

	Set all elements of array to zero

	
MMapArrayError mmap_array_resize(MMapArray *marr, size_t n_elements)

	Change number of elements

The new memort is initialized to 0

	Return

	0 if success, otherwise the error code (also available in marr)

 Copyright 2015, Aduana team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	aduana 1.0 documentation

Index

 B
 | C
 | D
 | E
 | H
 | I
 | L
 | M
 | P
 | S
 | T

B

 	

 	bf_scheduler_add (C++ function)

 	BF_SCHEDULER_CRAWL_RATE_STEPS (C macro)

 	BF_SCHEDULER_DEFAULT_PERSIST (C macro)

 	BF_SCHEDULER_DEFAULT_SIZE (C macro)

 	bf_scheduler_delete (C++ function)

 	bf_scheduler_error_internal (C++ class)

 	bf_scheduler_error_invalid_path (C++ class)

 	bf_scheduler_error_memory (C++ class)

 	bf_scheduler_error_ok (C++ class)

 	bf_scheduler_error_thread (C++ class)

 	bf_scheduler_new (C++ function)

 	bf_scheduler_request (C++ function)

 	bf_scheduler_set_max_domain_crawl_rate (C++ function)

 	bf_scheduler_set_persist (C++ function)

 	

 	BF_SCHEDULER_UPDATE_BATCH_SIZE (C macro)

 	BF_SCHEDULER_UPDATE_NUM_PAGES (C macro)

 	BF_SCHEDULER_UPDATE_PER_PAGES (C macro)

 	bf_scheduler_update_start (C++ function)

 	bf_scheduler_update_stop (C++ function)

 	BFScheduler (C++ class)

 	BFScheduler::max_hard_domain_crawl_rate (C++ member)

 	BFScheduler::max_soft_domain_crawl_rate (C++ member)

 	BFScheduler::page_db (C++ member)

 	BFScheduler::path (C++ member)

 	BFScheduler::persist (C++ member)

 	BFScheduler::scorer (C++ member)

 	BFScheduler::txn_manager (C++ member)

 	BFSchedulerError (C++ type)

C

 	

 	crawled_page_add_link (C++ function)

 	crawled_page_delete (C++ function)

 	crawled_page_get_link (C++ function)

 	crawled_page_n_links (C++ function)

 	crawled_page_new (C++ function)

 	crawled_page_set_hash (C++ function)

 	crawled_page_set_hash128 (C++ function)

 	crawled_page_set_hash32 (C++ function)

 	

 	crawled_page_set_hash64 (C++ function)

 	CrawledPage (C++ class)

 	CrawledPage::content_hash (C++ member)

 	CrawledPage::content_hash_length (C++ member)

 	CrawledPage::links (C++ member)

 	CrawledPage::score (C++ member)

 	CrawledPage::time (C++ member)

 	CrawledPage::url (C++ member)

D

 	

 	domain_temp_delete (C++ function)

 	domain_temp_get (C++ function)

 	domain_temp_heat (C++ function)

 	domain_temp_new (C++ function)

 	domain_temp_update (C++ function)

 	DomainTemp (C++ class)

 	DomainTemp::length (C++ member)

 	

 	DomainTemp::table (C++ member)

 	DomainTemp::time (C++ member)

 	DomainTemp::window (C++ member)

 	DomainTempEntry (C++ class)

 	DomainTempEntry::hash (C++ member)

 	DomainTempEntry::temp (C++ member)

E

 	

 	Error (C++ class)

 	Error::code (C++ member)

 	Error::message (C++ member)

 	Error::mtx (C++ member)

 	error_add (C++ function)

 	error_clean (C++ function)

 	error_code (C++ function)

 	

 	error_delete (C++ function)

 	error_destroy (C++ function)

 	error_init (C++ function)

 	error_message (C++ function)

 	error_new (C++ function)

 	error_set (C++ function)

H

 	

 	hashidx_stream_delete (C++ function)

 	hashidx_stream_new (C++ function)

 	hashidx_stream_next (C++ function)

 	HashIdxStream (C++ class)

 	HashIdxStream::cur (C++ member)

 	hashinfo_stream_delete (C++ function)

 	hashinfo_stream_new (C++ function)

 	hashinfo_stream_next (C++ function)

 	HashInfoStream (C++ class)

 	HashInfoStream::cur (C++ member)

 	Hits (C++ class)

 	Hits::a1 (C++ member)

 	Hits::a2 (C++ member)

 	Hits::error (C++ member)

 	Hits::h1 (C++ member)

 	Hits::h2 (C++ member)

 	Hits::max_loops (C++ member)

 	Hits::n_pages (C++ member)

 	Hits::path_h1 (C++ member)

 	Hits::path_h2 (C++ member)

 	Hits::persist (C++ member)

 	Hits::precision (C++ member)

 	Hits::scores (C++ member)

 	hits_compute (C++ function)

 	HITS_DEFAULT_MAX_LOOPS (C macro)

 	HITS_DEFAULT_PERSIST (C macro)

 	HITS_DEFAULT_PRECISION (C macro)

 	hits_delete (C++ function)

 	hits_error_internal (C++ class)

 	hits_error_memory (C++ class)

 	

 	hits_error_ok (C++ class)

 	hits_error_precision (C++ class)

 	hits_get_authority (C++ function)

 	hits_get_hub (C++ function)

 	hits_new (C++ function)

 	hits_scorer_add (C++ function)

 	hits_scorer_delete (C++ function)

 	hits_scorer_error_internal (C++ class)

 	hits_scorer_error_memory (C++ class)

 	hits_scorer_error_ok (C++ class)

 	hits_scorer_error_precision (C++ class)

 	hits_scorer_get (C++ function)

 	hits_scorer_new (C++ function)

 	HITS_SCORER_PERSIST (C macro)

 	hits_scorer_set_persist (C++ function)

 	hits_scorer_set_use_content_scores (C++ function)

 	hits_scorer_setup (C++ function)

 	hits_scorer_update (C++ function)

 	HITS_SCORER_USE_CONTENT_SCORES (C macro)

 	hits_set_n_pages (C++ function)

 	hits_set_persist (C++ function)

 	HitsError (C++ type)

 	HitsScorer (C++ class)

 	HitsScorer::error (C++ member)

 	HitsScorer::hits (C++ member)

 	HitsScorer::page_db (C++ member)

 	HitsScorer::persist (C++ member)

 	HitsScorer::use_content_scores (C++ member)

 	HitsScorerError (C++ type)

I

 	

 	InvSemaphore (C++ class)

L

 	

 	Link (C++ class)

 	LinkInfo (C++ class)

 	

 	LinkInfo::score (C++ member)

 	LinkInfo::url (C++ member)

M

 	

 	MAX_ERROR_LENGTH (C macro)

 	MDB_MINIMUM_FREE_PAGES (C macro)

 	mmap_array_advise (C++ function)

 	mmap_array_delete (C++ function)

 	mmap_array_error_file (C++ class)

 	mmap_array_error_internal (C++ class)

 	mmap_array_error_memory (C++ class)

 	mmap_array_error_mmap (C++ class)

 	mmap_array_error_ok (C++ class)

 	mmap_array_error_out_of_bounds (C++ class)

 	mmap_array_idx (C++ function)

 	mmap_array_new (C++ function)

 	

 	mmap_array_resize (C++ function)

 	mmap_array_set (C++ function)

 	mmap_array_sync (C++ function)

 	mmap_array_zero (C++ function)

 	MMapArray (C++ class)

 	MMapArray::element_size (C++ member)

 	MMapArray::fd (C++ member)

 	MMapArray::mem (C++ member)

 	MMapArray::n_elements (C++ member)

 	MMapArray::path (C++ member)

 	MMapArray::persist (C++ member)

 	MMapArrayError (C++ type)

P

 	

 	page_db_add (C++ function)

 	page_db_delete (C++ function)

 	page_db_error_internal (C++ class)

 	page_db_error_invalid_path (C++ class)

 	page_db_error_memory (C++ class)

 	page_db_error_no_page (C++ class)

 	page_db_error_ok (C++ class)

 	page_db_get_domain_crawl_rate (C++ function)

 	page_db_get_idx (C++ function)

 	page_db_get_info (C++ function)

 	page_db_get_scores (C++ function)

 	page_db_hash (C++ function)

 	page_db_hash_get_domain (C++ function)

 	page_db_hash_get_url (C++ function)

 	page_db_info_dump (C++ function)

 	page_db_link_stream_delete (C++ function)

 	page_db_link_stream_next (C++ function)

 	page_db_link_stream_reset (C++ function)

 	page_db_links_dump (C++ function)

 	page_db_new (C++ function)

 	page_db_set_domain_temp (C++ function)

 	page_db_set_persist (C++ function)

 	page_info_delete (C++ function)

 	page_info_list_cons (C++ function)

 	page_info_list_delete (C++ function)

 	page_info_list_new (C++ function)

 	page_info_print (C++ function)

 	page_info_rate (C++ function)

 	PAGE_LINKS_MIN_LINKS (C macro)

 	page_rank_compute (C++ function)

 	PAGE_RANK_DEFAULT_DAMPING (C macro)

 	PAGE_RANK_DEFAULT_MAX_LOOPS (C macro)

 	PAGE_RANK_DEFAULT_PERSIST (C macro)

 	PAGE_RANK_DEFAULT_PRECISION (C macro)

 	page_rank_delete (C++ function)

 	page_rank_error_internal (C++ class)

 	page_rank_error_memory (C++ class)

 	page_rank_error_ok (C++ class)

 	page_rank_error_precision (C++ class)

 	page_rank_get (C++ function)

 	page_rank_new (C++ function)

 	page_rank_scorer_add (C++ function)

 	page_rank_scorer_delete (C++ function)

 	page_rank_scorer_error_internal (C++ class)

 	page_rank_scorer_error_memory (C++ class)

 	page_rank_scorer_error_ok (C++ class)

 	page_rank_scorer_error_precision (C++ class)

 	page_rank_scorer_get (C++ function)

 	page_rank_scorer_new (C++ function)

 	PAGE_RANK_SCORER_PERSIST (C macro)

 	page_rank_scorer_set_damping (C++ function)

 	page_rank_scorer_set_persist (C++ function)

 	page_rank_scorer_set_use_content_scores (C++ function)

 	page_rank_scorer_setup (C++ function)

 	page_rank_scorer_update (C++ function)

 	PAGE_RANK_SCORER_USE_CONTENT_SCORES (C macro)

 	page_rank_set_n_pages (C++ function)

 	

 	page_rank_set_persist (C++ function)

 	PageDB (C++ class)

 	PageDB::domain_temp (C++ member)

 	PageDB::path (C++ member)

 	PageDB::persist (C++ member)

 	PageDB::txn_manager (C++ member)

 	PageDBError (C++ type)

 	PageDBLinkStream (C++ class)

 	PageDBLinkStream::cur (C++ member)

 	PageDBLinkStream::from (C++ member)

 	PageDBLinkStream::i_to (C++ member)

 	PageDBLinkStream::m_to (C++ member)

 	PageDBLinkStream::n_diff (C++ member)

 	PageDBLinkStream::n_to (C++ member)

 	PageDBLinkStream::only_diff_domain (C++ member)

 	PageDBLinkStream::to (C++ member)

 	PageInfo (C++ class)

 	PageInfo::content_hash (C++ member)

 	PageInfo::content_hash_length (C++ member)

 	PageInfo::first_crawl (C++ member)

 	PageInfo::last_crawl (C++ member)

 	PageInfo::linked_from (C++ member)

 	PageInfo::n_changes (C++ member)

 	PageInfo::n_crawls (C++ member)

 	PageInfo::score (C++ member)

 	PageInfo::url (C++ member)

 	PageInfoList (C++ class)

 	PageInfoList::hash (C++ member)

 	PageInfoList::next (C++ member)

 	PageInfoList::page_info (C++ member)

 	PageLinks (C++ class)

 	PageLinks::link_info (C++ member)

 	PageLinks::m_links (C++ member)

 	PageLinks::n_links (C++ member)

 	PageRank (C++ class)

 	PageRank::damping (C++ member)

 	PageRank::error (C++ member)

 	PageRank::max_loops (C++ member)

 	PageRank::n_pages (C++ member)

 	PageRank::out_degree (C++ member)

 	PageRank::path_out_degree (C++ member)

 	PageRank::path_pr (C++ member)

 	PageRank::persist (C++ member)

 	PageRank::precision (C++ member)

 	PageRank::scores (C++ member)

 	PageRank::total_score (C++ member)

 	PageRank::value1 (C++ member)

 	PageRank::value2 (C++ member)

 	PageRankError (C++ type)

 	PageRankScorer (C++ class)

 	PageRankScorer::error (C++ member)

 	PageRankScorer::page_db (C++ member)

 	PageRankScorer::page_rank (C++ member)

 	PageRankScorer::persist (C++ member)

 	PageRankScorer::use_content_scores (C++ member)

 	PageRankScorerError (C++ type)

S

 	

 	Scorer (C++ class)

 	Scorer::add (C++ member)

 	Scorer::get (C++ member)

 	

 	Scorer::state (C++ member)

 	Scorer::update (C++ member)

T

 	

 	txn_manager_abort (C++ function)

 	txn_manager_begin (C++ function)

 	txn_manager_commit (C++ function)

 	txn_manager_delete (C++ function)

 	txn_manager_error_internal (C++ class)

 	txn_manager_error_mdb (C++ class)

 	txn_manager_error_memory (C++ class)

 	txn_manager_error_ok (C++ class)

 	

 	txn_manager_error_thread (C++ class)

 	txn_manager_expand (C++ function)

 	txn_manager_new (C++ function)

 	TxnManager (C++ class)

 	TxnManager::env (C++ member)

 	TxnManager::txn_counter_read (C++ member)

 	TxnManager::txn_counter_write (C++ member)

 	TxnManagerError (C++ type)

 Copyright 2015, Aduana team.
 Created using Sphinx 1.3.1.

 _static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/ajax-loader.gif

_static/minus.png

_static/comment.png

_static/comment-close.png

_static/plus.png

search.html

 Navigation

 		
 index

 		aduana 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Aduana team.
 Created using Sphinx 1.3.1.

_static/up.png

_static/comment-bright.png

_static/file.png

