
adhocracy-3 Documentation
Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

...

June 14, 2017

Contents

1 What is adhocracy? 3

2 Contents 5
2.1 Concepts . 5
2.2 Development . 6
2.3 Administration . 29
2.4 Backend . 31
2.5 API . 41
2.6 Frontend . 103
2.7 Project Specific . 111
2.8 Legacy concepts . 115
2.9 Changelog . 149
2.10 Roadmap . 149
2.11 Glossary . 151

3 Indices and tables 153

i

ii

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Note: This isn’t meant for general consumption at this stage. Many expected things do not work yet!

Contents 1

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

2 Contents

CHAPTER 1

What is adhocracy?

Adhocracy 3 aims to be a:

• python framework to build a REST-API backend for cms-like applications with a focus on participation pro-
cesses and collaborative text work.

• javascript framework to build SinglePageApplication frontends.

It comes with these features out of the box:

• Generic REST-API based on the following concepts:

– Hypermedia REST API: loose coupling frontend/backend, no fixed endpoints, (only half implemented,
possible future:A3 Hypermedia REST-API)

– Supergraph: Resources are versioned and build non hierachical data structures with other Resources, Ver-
sions never change, see Concept: The Supergraph and Concept: Simulating Patches with The Supergraph.
(only half implemented, Problem: build a usable REST-API on top of this concept).

• Generic API Specifiaction to build generic frontend (see REST-API)

• Generic Admin interface (not implemented yet)

• Resource and workflow modellings for participation processes.

• SinglePageApplication frontends and backend customizations for specific participation projects

3

http://www.jokasis.de/docs/api_talk/html/

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

4 Chapter 1. What is adhocracy?

CHAPTER 2

Contents

Concepts

resource

Anything that exists in adhocracy is a resource: A proposal, a comment, but also users or individual rates.

resource type

Think of a resource type as a blueprint, and a resource as the actual building you build by fol-
lowing the blueprint. Example: The proposal “Better food in the cafeteria” would have the type
adhocracy_core.resources.proposal.IProposal. Note that all resources of the same type have the
same sheets, so there might be a lot of similar types with slightly different sheets (e.g. a simple proposal, a proposal
with a budget, a proposal with a geographical location, ...).

sheet

Sheets are the features of resources. A proposal may for example have the sheet
adhocracy_core.sheets.title.ITitle that allows it to have a title and the sheet
adhocracy_core.sheets.comment.ICommentable that allows it to be commented on. A resource
is really not much more than the sum of its sheets.

backend / frontend

The backend is the part of the software that stores the data. The frontend on the other hand is in charge of showing the
data to users. Having a clear separation between these makes development simpler and theoretically allows to have
more than one frontend, e.g. a website and a mobile app.

core / customization

Not all projects implemented with adhocracy are the same. That is why it is very easy to customize it for each
individual project. The shared functionality is called “core” while the special code is called “customization”.

5

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

process

A process resource represents a participation process. There are very different kinds of these. Idea Collections, where
users can enter proposals and get feedback, and giving feedback on prepared documents, are probaly the most common
ones.

permissions

What a user is permitted to do depends on their role. The roles a user has often depend on the context. Example:
Amelia (user) may be the creator (role) of one proposal (context) and therefore permitted to edit it (permission).
Proposals that she hasn’t created, she may not edit, but she may comment on them.

workflow states

Participation processes typically have multiple phases: For example, you may want to first publish an announcement,
then have the actual participation for some time, and display the results once that is over. This is possible by using
workflows that can have different states.

Workflows can be used with processes, but also with any other kind of resource. An important feature of workflows is
that you can change the permissions for each role based on the state.

Development

Installation

Installation

Requirements (Tested on DebianUbuntu, 64-Bit is mandatory):

1. git

2. python python-setuptools python-docutils

3. build-essential libssl-dev libbz2-dev libyaml-dev libncurses5-dev libxml2-dev libxslt-dev python3-dev

4. graphviz

5. ruby ruby-dev

6. gettext

7. libmagic1

If you don’t use the custom compiled python (see below) you need some basic dependencies to build PIL (python
image library):

8. libjpeg8-dev zlib1g-dev (http://pillow.readthedocs.org/en/latest/installation.html)

Create SSH key and upload to GitHub

ssh-keygen -t rsa -C "your_email@example.com"

Checkout source code

git clone git@github.com:liqd/adhocracy3.git
cd adhocracy3
git submodule update --init

6 Chapter 2. Contents

http://pillow.readthedocs.org/en/latest/installation.html

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Create virtualenv

pyvenv-3.5 .

If you don’t have python 3.5 on your system, you may compile python 3.5 and Pillow instead of creating a virtualenv

cd python
python ./bootstrap.py
./bin/buildout
./bin/install-links
cd ..

Install adhocracy

./bin/pip install -r requirements.txt

./bin/python ./bootstrap.py

./bin/buildout -N

Update your shell environment:

source ./source_env

Run the application

Start supervisor (which manages the ZODB database, the Pyramid application and the Autobahn websocket server):

./bin/supervisord

./bin/supervisorctl start adhocracy:*

Check that everything is running smoothly:

./bin/supervisorctl status

Get information about the current workflow:

./bin/ad_set_workflow_state --info etc/development.ini <path-to-process>
Example
./bin/ad_set_workflow_state --info etc/development.ini /mercator

Change the workflow state (most actions are not allowed for a normal user in the initial ‘draft’ state):

./bin/ad_set_workflow_state etc/development.ini <path-to-process> <states-to-transition>
Example
./bin/ad_set_workflow_state etc/development.ini /mercator announce participate

Open the javascript front-end with your web browser:

xdg-open http://localhost:6551/

Shutdown everything nicely:

./bin/supervisorctl shutdown

Troubleshooting

If you encounter this error when starting adhocracy

Problem connecting to WebSocket server: ConnectionRefusedError: [Errno 111] Connection refused

delete the var/WS_SERVER.pid file and retry again. This happens when the Websocket server is not shutdown properly.

2.2. Development 7

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Development Tasks

General Remarks

When changing the api, the frontend needs to re-generate the TypeScript modules providing the resource classes. This
may trigger compiler errors that have to be resolved manually. For more details, see comment in the beginning of
mkResources.ts.

Frontend wokflow

Run buildout once after switching project or the git branch. For changes to the TypeScript code it will now be sufficient
to use bin/tsc or bin/tsc –watch (see tsconfig.json for settings used).

Running the Testsuite

frontend unit tests:

1. In node:

bin/polytester jsunit

2. In browser:

bin/supervisorctl start adhocracy:frontend
xdg-open http://localhost:6551/static/test.html

Note: For debugging, it helps to disable blanket.

Note: Running JS unit test in the browser with blanket enabled is currently broken.

protractor acceptance tests:

bin/polytester acceptance

Note: You need to have chrome/chromium installed in order to run the acceptance tests.

run backend functional tests:

bin/polytester pyfunc

run backend unit tests and show python test code coverage:

bin/polytester pyunit
xdg-open ./htmlcov/index.html

run all test:

bin/polytester

to display console output:

8 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

bin/polytester -v

modify test config:

tests.ini (run all tests with polytester) pytest.ini (python/jasmin tests with pytest) etc/protractorConf (ac-
ceptantance tests with protractor)

delete database (works best on development systems without valuable data!):

rm -f ./var/Data.*
bin/supervisorctl restart adhocracy:*

If you are using the supervisor group adhocracy_test:*, you don’t have to delete anything. The database is in-memory
and will die with the test_zodb service.

Generate html documentation

Recreate api documentation source files:

bin/ad_build_api_rst_files

Generate html documentation:

bin/ad_build_doc

Open html documentation:

xdg-open docs/build/html/index.html

Create scaffold for extension packages

1. Run the following commands:

bin/pcreate -s adhocracy adhocracy_xx
bin/pcreate -s adhocracy_frontend xx

In the current repository layout, you then need to move the generated directories (adhocracy_xx/ and xx/)
to src/.

2. Add the new paths to develop and eggs in base.cfg.

3. Create buildout-xx.cfg

4. Add src/adhocracy_xx to .coveragerc

5. Add src/xx/xx/build to .gitignore

You may then want to run bin/buildout -c buildout-xx.cfg to check that everything works fine.

Update packages

python

Check whether new Python versions exist:

bin/requires.io update-site -t a54831113b039e9edbb2d26c2d2f9a9c99887437 -r adhocracy3
xdg-open https://requires.io/github/liqd/adhocracy3/requirements/?branch=master

You may then update the pinned Python versions in versions.cfg if appropriate.

2.2. Development 9

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

ruby

bin/gem outdated # binary may also be called bin/gem1.9.1 or bin/gem2.1

node.js

bin/npm --prefix node_modules --depth 0 outdated

bower

cd .../lib # where bower installs the libraries
bower list

Release Adhocracy

Adhocracy uses semantic versions with one extra rule:

Versions 0.0.* are considered alpha and do not have to follow the major-minor-patch rules of semantic
versioning.

Git tag and setup.py-version must be the same string.

In order to create a new version, first make sure that:

1. you are on master. (this rule is motivated by the fact that rebasing tags is really nothing we want to have to deal
with.)

2. the last commit contains everything you want to release and nothing else.

3. you have git-pushed everything to origin.

Then, to upgrade to version 0.0.3, carry out the following steps:

4. update setup.py to the new version (search for name=... and version=...). Commit this change.

5. git tag -a 0.0.3 -m ‘...’. The commit comment can be literally ‘...’ if there is nothing special to say about this
release, or something like e.g. Presentation <customer> <date>.

6. git push –tags (I think git push and git fetch treat tags and commits separately these days; for the convoluted
details, consult the man pages).

Browse existing tags and check out a specific release:

git tag
git checkout 1.8.19

Apply a hotfix to an old release:

git checkout -b 1.8.19-hotfix-remote-root-exploit 1.8.19
... # (edit)
git commit ...
git tag -a 1.8.20 -m 'Fix: remote-root exploit'

There is more to tags, such as deleting and signing. See git tag –help.

10 Chapter 2. Contents

http://semver.org/

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Update translations backend

create new language:

bin/ad_i18n en

extract message ids, update po and create mo files:

bin/ad_i18n

compile custom po file in extension package:

cd src/adhocracy_meinberlin/adhocracy_meinberlin/locale/en/LC_MESSAGES/
msgfmt --statistics -o adhocracy.mo adhocracy.po

#TODO helper script that updates/compiles all po files

Coding Style Guides

General coding style definitions.

Example Vim config according to coding guideline:

https://github.com/liqd/vim_config

Python

Test Driven Development

• 100% unit test coverage (must)

• use pytest fixtures to mock/create dependencies, functional tests have the functional marker, integration are
using a fixture called integration.

• Test driven development with functional/integration and unit test (should)

concept: http://en.wikipedia.org/wiki/Test-driven_development

1. write function/integration test

2. write unit test (simplest statement first)

3. switch between writing code and change/extend tests until all test pass

4. refactor

Refactor towards Clean Code

see (Refactoring & Clean Code)

Imports

• one import per line

• don’t use * to import everything from a module

• don’t use relative import paths

2.2. Development 11

http://pytest.org/
http://en.wikipedia.org/wiki/Test-driven_development

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• dont catch ImportError to detect wheter a package is available or not, as it might hide circular im-
port errors. Instead use pkgresources.getdistribution and catch DistributionNotFound.
(http://do3.cc/blog/2010/08/20/do-not-catch-import-errors,-use-pkg_resources/)

Code formatting

• 4 spaces instead of tabs (must)

• no trailing white space (must)

• pep8 (must)

• pyflakes (must)

• pylint (should)

• mcabe (should)

• Advances String Formatting pep3101 (must)

• Single Quotes for strings except for docstrings (must)

Docstring formatting

• pep257 (must, bei tests und zope.Interface classes should)

• python 3 type annotation (must) according to https://pypi.python.org/pypi/sphinx_typesafe

• javadoc-style parameter descriptions, see http://sphinx-doc.org/domains.html#info-field-lists (should)

• example:

def methodx(self, a: dict, flag=False) -> str:
"""Do something.

:param a: description for a
:param flag: description for flag
:return: something special
:raise ValueError: if a is invalid
"""

JavaScript

General considerations

• this document is split in multiple sections

– general JavaScript

– TypeScript

– Angular

* Angular templates

– Adhocracy 3

– Tests

• We prefer conventions set by 3rd party tools (e.g. tslint) over our own preferences.

12 Chapter 2. Contents

http://do3.cc/blog/2010/08/20/do-not-catch-import-errors,-use-pkg_resources/
http://legacy.python.org/dev/peps/pep-0008/
http://legacy.python.org/dev/peps/pep-3101/
https://pypi.python.org/pypi/sphinx_typesafe
http://sphinx-doc.org/domains.html#info-field-lists
https://github.com/palantir/tslint

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• We try to be consistent with other guidelines from the adhocracy3 project

General JavaScript

We follow most rules proposed by tslint (see tslint config for details). However, there are some rules we want to adhere
to that can not (yet) be checked with tslint.

• Use strict mode everywhere

– There seem to be multiple issues with strict mode and TypeScript

* http://typescript.codeplex.com/workitem/2003

* http://typescript.codeplex.com/workitem/2176

• No implicit boolean conversions: if (typeof x === "undefined") instead of if (!x)

• Chaining is to be preferred.

– If chain elements are many lines long, it is ok to avoid chaining. In this case, if chaining is used anyway,
newlines and comments between chain elements are encouraged.

– Layout: Each function (also the first one) starts a new line. The first line (without a .) is indented at n+0,
all functions at n+1 (4 spaces deeper).

Example:

adhHttp.get(url)
.then(update)
.then(exit);

• Each new identifier has its own var. (rationale: git diff / conflicts)

Example:

// bad
var someVariable

someOtherVariable;

// good
var someVariable;
var someOtherVariable;

• No whitespace immediately inside parentheses, brackets or braces (this includes empty blocks):

Yes: spam(ham[1], {eggs: 2})
No: spam(ham[1], { eggs: 2 })

• Do not align your code. Use the following indentation rules instead (single-line option is always allowed if
reasonably short):

– objects:

foo = {
a: 1,
boeifj: 2,
cfhe: 3

}

– lists:

2.2. Development 13

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions_and_function_scope/Strict_mode
http://typescript.codeplex.com/workitem/2003
http://typescript.codeplex.com/workitem/2176

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

foo = [
138,
281128

]

– function definitions:

var foo(a : number) : number => a + 1;

var foo = (arg : number) : void => {
return;

};

var foo = (
arg : number,
otherarg : Class

) : void => {
return;

};

• The last item in a list or in function parameters may be split across multiple lines:

app.directive('myDirective', ["$q", "$http", ($q, $http) => {
...

}]);

• Do not use named functions. Assign anonymous functions to variables instead. This is less confusing. Further
reading

• If you need an alias for this, always use self (as in knockout) or _self (in TypeScript classes). (_this is
used by TypeScript in compiled code and is disallowed in typescript source in e.g. class instance methods.)

If more than one nested self is needed, re-assign outer selfs locally.

TypeScript

• imports at top

– standard libs first (if such a thing ever exists), then external modules, then a3-internal modules.

– only import from lower level. (FIXME: “lower level” does not mean file directory hierarchy, but something
to be clarified. This rule is to be re-evaluated at some point.)

• imported adhocracy modules must be prefixed with “Adh”.

• nested generic types are allowed up to 2 levels (Foo<Bar<Baz>>). Fewer is to be preferred where possible.

• Type functions, not the variables they are assigned to.

• Use type[] rather than Array<type>.

• A colon used for types must always be surrounded by single spaces:

// bad
var x: number;
var y:number;

// good
var x : number;

14 Chapter 2. Contents

http://kangax.github.io/nfe/#expr-vs-decl
http://kangax.github.io/nfe/#expr-vs-decl

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Lambdas TypeScript has its own lambda syntax. It has two differences from JavaScript’s functions:

• The result of the final statement is returned automatically.

• this is the this from the enclosing scope.

Example:

var lambda = () => {
var nested_fn = function() {

return this;
};
var nested_lambda = () => this;

}

var fn = function() {
var nested_fn = function() {

return this;
};
var nested_lambda = () => this;

}

is compiled to:

var _this = this;
var lambda = function () {

var nested_fn = function () {
return this;

};
var nested_lambda = function () {

return _this;
};

};

var fn = function () {
var _this = this;
var nested_fn = function () {

return this;
};
var nested_lambda = function () {

return _this;
};

};

These lambdas should always be preferred over functions because they avoid common mistakes like this:

class Greeter {
greeting = "Hello";

greet = function() {
alert(this.greeting);

};
}

var greeter = new Greeter();
setTimeout(greeter.greet, 1000); // will alert 'undefined'

Still you should not use this behaviour extensively. Prefer to use the explicit aliases _self and _class in class
methods:

2.2. Development 15

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

class Greeter {
public static greeting = "Hello";

constructor(public name) {}

greet = function() {
var _self = this;
var _class = (<any>_self).constructor;

setTimeout(() => {
console.log(_class.greeting + " " + _self.name + "!");

}, 1000);
}

}

Angular

• prefer isolated scope in directives and pass in variables explicitly.

• direct DOM manipulation/jQuery is only allowed inside directives.

• dependency injection

– always use ["$q", function($q) {...}] style

• do not use $ in your variable names (leave it to angular).

• all directives, filters and services are prefixed with “adh”.

Note: In the future, this prefix may be split up in several ones, making refactoring necessary. Client-
specific prefixes may be added without the need for refactoring.

• angular scopes should be typed with interfaces.

link vs. controller When writing directives, link and controller do mostly the same:

var linkDirective = (service) => {
return {

link: (scope, element) => {
scope.foo = "bar";
service.something();

}
};

};

var ctrlDirective = () => {
return {

controller: ["$scope", "$element", "service", ($scope, $element, service) => {
$scope.foo = "bar";
service.something();

}]
};

};

Note that dependency injection happens in different places in the two examples.

16 Chapter 2. Contents

https://docs.angularjs.org/guide/directive#isolating-the-scope-of-a-directive

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

In general, link is to be preferred. There is one case where controller must be used. See Creating Directives
that Communicate in the angular docs for an in depth discussion. In that case, the controller should not be defined
inline but as a separate class:

class FooController {
constructor(private depedency) {}

public something() {
...

}
}

var ctrlDirective = () => {
return {

controller: ["dependency", FooController]
};

};

var subDirective = (service) => {
return {

require: "^ctrlDirective",
link: (scope, element, attrs, ctrl) => {

ctrl.something();
}

};
};

Template

• write polyglot HTML5.

– prefix any angular-specific attributes with data-:

– Exception: The preferred way to use angular directives is the element syntax:

<adh-proposal data-path="/adhocracy/proposal/1"></adh-proposal>

* This needs special care in IE8 and below. See https://docs.angularjs.org/guide/ie

• prefer {{...}} over ngBind (except for root template).

FIXME: when to apply which classes (should be in balance with CSS)

• apply classes w/o a specific need/by default?

• CSS and JavaScript are not allowed in templates. This includes ngStyle.

• Since templates (1) ideally are to be maintained by designers rather than software developers, and (2) are not
type-checked by typescript, they must contain as little code as possible.

Documentation

• Use JSDoc-style comments in your code.

– Currently, no tool seems to be available to include JSDoc comments in sphinx.

– TypeScript has only limited JSDoc support

2.2. Development 17

https://docs.angularjs.org/guide/directive#creating-directives-that-communicate
https://docs.angularjs.org/guide/directive#creating-directives-that-communicate
http://dev.w3.org/html5/html-author/#polyglot-documents
https://docs.angularjs.org/guide/ie
https://docs.angularjs.org/api/ng/directive/ngStyle
http://usejsdoc.org/
http://typescript.codeplex.com/workitem/504

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

CSS

Preface

In recent years, methodologies like OOCSS, SMACSS, BEM, SUIT, Pattern driven Design, and Atomic Design have
shifted the focus from designing pages to designing systems.

The best known application of this is probably bootstrap. But as one of bootstraps main developers said: You are
encouraged to build your own bootstrap. This document describes the details of how we create our own design system
for adhocracy3.

Common Terminology

To work together it is important to share a common language. Unfortunately, JavaScript programmers, CSS developers,
and graphic designers sometimes have very different angles on the same things. The following terminology is therefore
based on the tried and tested systems mentioned above.

Base Styling Base styling is the styling that applies to HTML elements when no additional classes are added. It sets
the prevailing mood for a product. This involves general text styling as well as links, headings, and input boxes.

Layout The layout defines the position of elements on a page. It is typically based on a grid system.

Components There are many synonyms for this in the different methodologies: Object (OOCSS), module (Smacss),
block (BEM), atom/molecule/organism (Atomic Design), or pattern (pattern driven design).

Components are independent of their context and can be reused throughout the UI. A typical component is a button or
a login dialog. The rule of thumb is: If in doubt, it is a component.

Element An element is a part of a component that can not be used on its own. A typical example is a menu item
(always part of a menu component).

States Components may have different states (e.g. hover, active, or hidden). States are always bound to specific
components (e.g. there is no general active state).

Modifiers Components can have derived, modified versions. For example, there could be a button and a call-to-
action button. In this case, call-to-action would be a modifier. (If you know about object oriented programming: this
is similar to a subclass).

Modifiers are very similar to states because both modify a component. The rule of thumb to distinguish the two is that
whereas the state of a component usually changes over time, modifiers don’t.

Variables A variable can be used to define a value in a single place and then use it wherever we want. We could for
example define the variable primary-color and use it throughout the UI. This allows us to change that color in a
single place which makes theming easy.

Core and Themes The project may create multiple CSS-themes for the software. All themes share a common core.
Themes can theoretically overwrite every aspect of the core. Since overwrites have maintenance cost, they should be
kept at a minimum.

18 Chapter 2. Contents

https://github.com/stubbornella/oocss/wiki
http://smacss.com
http://bem.info/method/definitions/
https://github.com/suitcss/suit/
http://www.patterndrivendesign.com/
http://patternlab.io/about.html
https://getbootstrap.com/
https://speakerdeck.com/mdo/build-your-own-bootstrap

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

CSS and Design

This section describes the collaboration between designers and frontend developers. All the rules apply to core and
any additional themes.

• UI designers . . .

– must mark any components, states, modifiers, and variables in wireframes.

– may request new components, states, . . . from the team.

* They must decide whether the new component, state, . . . should be part of core or theme.

* They must provide semantically rich names for all new features. (e.g. “light-foreground” instead of
“grey”; see Robert C Martin, Clean Code, Chapter 2)

* Variables are mandatory for all colors and font sizes.

– must provide the contents of a view in a linearized and thus prioritized sequence in addition to the layout
structure. This is needed e.g. for screen readers (assistive technology for the blind) and web crawlers.

• Graphic designers . . .

– must provide values for all variables.

– must provide designs for all components, states, . . .

– They must provide all necessary information and files as soon as possible (to avoid delays, preliminary
dummy files may be provided). This includes:

* fonts

* icons

* background images/logos

* FIXME: define file formats, image resolution, . . .

• CSS developers . . .

– must provide a living style guide (breakdown of all existing components, states, . . .).

– must report implementation issues as soon as possible.

– must implement features as requested.

CSS, HTML, and JavaScript

This section describes the collaboration between CSS developers and JavaScript programmers.

• JavaScript does not set any CSS on elements. Instead it adds/removes states.

• Some CSS testing should be done in browser tests, i.e. CSS and JavaScript developers should work together on
this.

Selectors This section describes which selectors must be used for different types. All classes are lowercase and
hyphen-separated.

• component: class (no prefix)

• layout: class (prefix: l-)

• element: class (prefix: component name)

2.2. Development 19

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• state: pseudo-class, attribute, class (prefix: is- or has-)

• modifier: class (prefix: m-)

CSS Specifics

Preprocessor CSS preprocessors help a great deal in writing modular, maintainable CSS code by offering features
like variables, imports, nesting, and mixins. Major contenders are Sass, Less and Stylus. We had good experiences
with Sass so we will stick with it. CSS developers must read the Sass documentation.

Documentation and Style Guide A style guide in (web)design is an overview of all available colors, fonts, and
components used in a product. In the context of CSS it can be generated from source code comments. In some way
this is similar to doctests in python.

There is a long list of style guide generators. We chose to use hologram because it integrates well with our existing
CSS tools.

Hologram is automatically installed when running buildout. You can use bin/buildout install
styleguide to build the style guide to docs/styleguide/.

All variables, components, base styles, states, and modifiers must be documented (including HTML examples). Vari-
ables also need documentation and examples. As these do not expose selectors which could be used in examples it
might be necessary to create styleguide-*-classes.

Common Terminology Considerations These are some CSS/SCSS specific thoughts on the common language
terms defined above.

Modules A module is a SCSS file. Each component should have its own module including its states and modifiers.
Several base styles may be included in a single module if they are closely related. The same goes for layout, variables,
and mixins.

Variables

• Do not add variable definitions like $color-default: blue !default; to your modules because this
may hide errors. Define all global variables in a central place instead.

• You should use local variables if you need to use the same value multiple times. Still in most cases it is possible
to avoid these situations by grouping selectors or similar.

Bad:

$padding: 2em;

.box1 {
padding: $padding;

}
.box2 {

padding: $padding;
}

Worse:

.box1 {
padding: 2em;

}
.box2 {

20 Chapter 2. Contents

http://sass-lang.com/
http://lesscss.org/
http://learnboost.github.io/stylus/
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://vinspee.me/style-guide-guide/
http://trulia.github.io/hologram/

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

padding: 2em;
}

Good:

.box1,

.box2 {
padding: 2em;

}

States and Modifiers States and modifiers are always specific to a component. They have to be defined within the
scope of the component.

Mixins There are two ways to implement mixins in Sass: @mixin and @extend. There are basically three differ-
ences:

• a @mixin, once defined, can be used everywhere. @extends are are compiled into selector groups, which
may not be possible depending on what you are trying to do.

• @mixin allows parameters and content blocks.

• @extend may produce more efficient (less redundant) CSS.

There is no rule about which one is preferred. As @mixin is simpler to use you might by tempted to use it exclusively.
Always stop and also consider @extend.

Formatting We have a pre-commit hook with most of the sass-lint linters with their default settings, except for the
following modifications:

• 4 space indentation.

• Include leading zero.

• Double quotes instead of single quotes.

• Comma-separated selectors need not be on their own lines. Still this is a must for composite selectors.

• A strict property sort order is not enforced. Still the properties should appear in roughly the following order:

– content (only used on pseudo-selectors)

– box – display, float, position, left, top,

– border height, width, margin, padding

– text – font-family, font-size, line-height, text-transform, letter-spacing, . . .

– color – background, color

– other

The following additional rules apply:

• similar to pep8

– only one property per line;

– no trailing whitespace

– two spaces between rule and comment, one after comment initialiser (good: color: white; //
foo; bad: color: white; //foo)

– prefer lines < 80 chars if possible

2.2. Development 21

https://github.com/sasstools/sass-lint/tree/master/docs/rules
http://legacy.python.org/dev/peps/pep-0008/

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

– spaces around binary operators

• opening bracket at the end of the last selector line

• closing bracket in its own line

• avoid vendor specific prefixes/hacks in your code. You may however use mixins that create compatible code for
exactly one thing (e.g. border-radius mixin by compass)

Units This gives an order of preference for the units that must be used with different types of values starting from
preferred.

• length:

– layout: %

– distances relative to element font-size em

– else: rem

– for thin lines or in the context of images, px may be used to avoid low-quality rescaling

• font-size: variable, rem, %

• 0 length: no unit

• line-height: no unit, em, rem

– see explanation by Eric Meyer.

• color: keyword, short hex, long hex, rgba, hsla

• generally prefer variables to keywords to numeric values

– keywords are easier to apprehend when skipping through the code

Note: For all rem units the rem() mixin should be used, e.g.:

@include rem(margin, 10px 5px);
@include rem(margin-bottom, 2rem);
@include rem(border, 3px solid $color-function-positive);

This automatically calculates rem units with a px fallback for older browsers.

Accessibility

• Be careful about hiding things (hidden vs. visually-hidden) (see http://a11yproject.com/posts/how-to-
hide-content/).

• Use fluid and responsive design (relative units like %, em, and rem).

• Prefer to define foreground and background colors in the same spot. Use color-contrast by sass-planifolia.

• While no support for IE < 9 is planned, do not introduce incapabilities where not needed (robust).

Icons You should avoid using pixel images as they are inflexible in size. If possible, prefer iconfonts. You can use
Font Custom to easily generate an icon font from SVG files.

22 Chapter 2. Contents

http://meyerweb.com/eric/thoughts/2006/02/08/unitless-line-heights/
http://a11yproject.com/posts/how-to-hide-content/
http://a11yproject.com/posts/how-to-hide-content/
http://alistapart.com/article/responsive-web-design
https://xi.github.io/sass-planifolia/#contrast
http://fontcustom.com

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Context One of the most complicated issues in CSS in general is whether styles should change depending on context.
On the one hand we talk about responsive design, on the other, components should be decoupled (Law of Demeter) to
keep the code maintainable.

It is important to understand that there are two different kinds of context awareness involved here:

1. Elements inherit CSS rules from their context (e.g. font-family is shared across the whole document if set
on the html element).

2. CSS code can apply additional styling to an element if it appears in a specific context (e.g. #sidebar h2
{color: red;}).

Inheritance is hard to avoid and does little damage. So we should embrace it.

I am not so sure about child selectors: OOCSS and SMACSS both recommend to avoid them. Still it is a powerful
feature. This is still an open question.

Restructured Text (RST)

• 4 spaces instead of tabs (must)

• no trailing white space (must)

• Headline hierarchy: ===== —– +++++ ~~~~~~~ ** (must)

Refactoring & Clean Code

Introduction

After changing code (or tests) it must be better than before to ensure Extensibility and Maintainability in the long run.

You should:

• Extract ClassMethodFunction

• MoveReuseRenameRemove

• Replace condition with polymorphism/Strategy

with the clean code principals in mind.

Clean Code summary

We follow mostly the rules from the chapter “Smells and hints” from the book “Clean Code” by Robert C. Martin,
2008. It should be read by every new developer. For a short summary you can read this document or have a look at
the cheat sheet: http://www.planetgeek.ch/wp-content/uploads/2014/11/Clean-Code-V2.4.pdf.

Common Principles:

• Single Responsibility Principle (SRP): only one reason to change behavior/code

• Open Closed Principle (OCP): open for extensions (new classes,..), closed for modification

• Don’t Repeat Yourself (DRY)

• Separation of Concern

• follow/create standards for naming, code structure and styles

2.2. Development 23

http://en.wikipedia.org/wiki/Law_Of_Demeter
https://github.com/stubbornella/oocss/wiki#separate-container-and-content
http://smacss.com/book/type-module#subclassing
http://www.planetgeek.ch/wp-content/uploads/2014/11/Clean-Code-V2.4.pdf

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• You ain’t gonna need it (YAGNI)

Readability:

• easy to understand and extend by others

• readable code instead of comments

• less code

• good placed and clear responsibility (place code where the reader expects it)

Variable naming:

• explicit, show intention and maybe context information

• no misleading names

• distinction between concepts (get, append, add,..)

Additional guidelines:

• do not translate names and terms from the problem domain; do translate everything else

• do use singular

• do convert umlauts to ae, ue, . . .

Variables:

• define close to where there are uses

Function name/arguments:

• verb with nouns (explain abstraction level and if possible arguments)

• name shouldn’t be too long; using expressive named (keyword) arguments might help making an overly long
name unnecessary

• prefer 0 or 1 arguments, at most 3

• Use kwargs for optional arguments, never use them like positional arguments (omitting the name)

Functions:

• short

• max 2 indention level

• do only “one thing”

– one level of abstraction (can you divide it into sections? or extract a helper function with different name?)

– one down story of to paragraphs (TO X do a, TO X do b,.. X == function name)

– just one return statement (or several ones, but close together)

– no switch statement (or at most one for each functionality/class, if unavoidable)

24 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

– Command Query Separation (no side effects, use descriptive naming):

* change state object

* query information

* change/return argument

* create object

– separate error handling (easier to read and to extend)

• prefer not to change the argument objects, never mutate default kwargs

Class names:

• show responsibility

• explicit distinction of generic “concepts”, if needed domain specific concepts

• no context information (for example domain specific suffix (“Adhocracy”) or type (“String”)

Classes:

• SRP, OCP

• high cohesion: all methods should share the class variables, if not split class

• small

• private functions below first public function that depends on it

Objects:

• data structures: direct access to variables

• objects: hide data structure, present public “behavior” methods for this objects

• procedural:

– easy to add new functions

– difficult to add new data structures (every functions need to check datatype, maybe Open/Close Principle
violated

• OO with polymorphic methods:

– easy to add new data structures

– difficult to add new functions (need to extend all subclasses/implementer)

• Law of Demeter:

– own variables / methods: ok

– foreign data structures: ok

– foreign object: use only public methods

– no train wrecks: call().call()

2.2. Development 25

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Exceptions:

• do not return/accept None without need or accept wrong arguments (exeption: ease unit tests) (makes it hard to
find/debug errors)

• do not use Exception to handle special cases (use Wrapper Classes or throw exception)

• exception class should make it easy for the caller to handle exception, give contect information, hide third party
errors

Third party code:

• make Facade to access, catch errors

• Learning Test to play around and test new versions

Unit Tests:

• first draft +> test success +> refactor code and tests

• first test with simplest statement +> code +> more tests +> code,.. (only what is needed to pass test)

• clean code, Domain Specific Test+API

• structure: Given When Then

• assert one thing

System:

• Separation of concern

• Split Creation (factories, start application) , Running (assume every thing is alread created)

Contribute Code with Git

make usefull commits

Git commits serve different purposes:

• Allow reviewers to quickly go through your changes.

• Help developers in the future to understand the intention of your change using git blame.

• Use the break of writing a commit message as an opportunity to reflect on what you have just coded.

• Backup what you did and allow reverting to an earlier state, if necessary.

These goals may be in conflict with other goals (such as “have more time for writing tests and code”), and sometimes
even with each other (“small commits” vs. “test suite always works”). Therefore, this section does not contain any
strict rules, but suggestions. The reader is encouraged to decide in which contexts they make sense. (In particular,
“should” is not the RFC-all-caps “SHOULD”, but something to consider.)

Suggestions:

26 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• Aim at making small commits containing only one semantic change.

In order to do that, you may want to use helper tools such as tig, git-cola or plain git add --interactive
or git add --patch, allowing for easy line-by-line staging. Interactive rebasing (git rebase -i) may
help with cleaning up history in retrospect, i.e. splitting / combining / reordering commits. Be aware of not
pushing published non-volatile branches (as described in Code Review Process).

• The test suite should run through successfully on every commit. Test coverage doesn’t necessarily need to be
100% on each commit, as some developers may want to split commits in functional code and testing code and
write the latter later. Of course writing the tests first is preferred.

• For the actual commit message, we follow the rules, which are codified as an example by tpope:

Capitalized, short (50 chars or less) summary

More detailed explanatory text, if necessary. Wrap it to about 72 characters or so. In some contexts,
the first line is treated as the subject of an email and the rest of the text as the body. The blank line
separating the summary from the body is critical (unless you omit the body entirely); tools like rebase
can get confused if you run the two together.

Write your commit message in the imperative: “Fix bug” and not “Fixed bug” or “Fixes bug.” This
convention matches up with commit messages generated by commands like git merge and git revert.

Further paragraphs come after blank lines.

1. Bullet points are okay, too

2. Typically a hyphen or asterisk is used for the bullet, preceded by a single space, with blank lines
in between, but conventions vary here

3. Use a hanging indent

• Referring to other commits can be done by using their hash ID. Be aware that the hash ID changes on rebase.

Descriptive summary prefix keywords are encouraged, but there is no strict rule as to which keywords exist and where
to use them. Here is a list of options:

• Refactor (optionaly followed by a commit hash)

• Fixup (optionally followed by a commit hash to squash this one into; defaults to previous commit):

Fixup a93bhd34: typo

• Gardening (for changes that do not significantly change the meaning or structure of the code, such as style guide
fixes)

Note that there’s already standard messages for commits created by git (Revert ”...”) and conventions for review
commits ([R] prefix) as described in the Code Review Process.

Add feature branch

Terminology

If branch A is branched from branch B, then B is called A’s base branch.

A branch is called published if it has been pushed to a repository that is accessed by more than one user. Usually, this
means the project-specific central upstream repository, but a branch is also considered published if one developer has
pushed changes to another developer’s laptop.)

2.2. Development 27

https://redmine.liqd.net/issues/1184
https://git-cola.github.io/
http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Branch types

Branch naming follows a pattern that makes it easier to process branch lists automatically. The pattern consists of
year (YYYY), month (MM), a developer name shortcut (DEV), keywords (small letter words), and descriptive free text
([-a-z]+).

The following branch types exist:

Story branches (YYYY-MM-story-[-a-z]+) For each user story, there is a story branch that must be based on
master. Story branches may sprout personalized or volatile branches (see below).

Fix branches (YYYY-MM-fix-[-a-z]+) For each bug on the story board, a fix branch is created. It must be based
on master.

Personalized branches (YYYY-MM-DEV-[-a-z]+) Developers create personalized branches in order to work on
tasks. Personalized branches may be based anywhere. It is not allowed to push --force a personalized
branch.

Volatile branches (YYYY-MM-_DEV-[-a-z]+) Personalized branches with push --force option. The devel-
oper must announce that this branch may change arbitrarily by adding an underscore mark before the developer
name shortcut in the branch name. Volatile branches may be based anywhere.

Finding branch points

For the processes defined in this document, it is interesting to find the points in the repository where a branch branched
off other branches in the past. We call these points branch points.

Note that the information at which point a branch branched off its direct base branch is not maintained by git. This
does not make the question of the direct base branch any less meaningful, but it makes it tricky to answer.

If the base branch is master, then you can get a reference to the branch point of the current branch like this:

export BRANCHPOINT=`git rev-list HEAD ^master --topo-order | tail -n 1`~1
git show $BRANCHPOINT

(git show-branch yields more relevant data, but in a less machine-readable form.)

Rebase and +n-branch logic

To keep the code history clean, a personalized branch may be rebased before it is merged into its base. (Volatile
branches may always be rebased, because there is no guarantee that they behave in any way as branches should.)

Rebasing has two advantages:

• You can move your branch to the HEAD of the base branch as an alternative to merging. This way you keep a
near-linear commit history;

• with the -i option, rebasing allows to re-order and clean up individual commits, and thus make the life of the
reviewer (and anyone else looking at the history) easier.

In order to avoid that rebase changes repository state destructively (instead of just adding additional commits), the
rebase must happen according to +n-branch logic:

(complete work on branch, say, 2014-05-mf-bleep based on, say, master)
(make sure that upstream is set to origin/2014-05-mf-bleep)
git push -v
git checkout -b 2014-05-mf-bleep+1
git rebase master
git push -v origin 2014-05-mf-bleep+1

28 Chapter 2. Contents

http://stackoverflow.com/questions/17581026/branch-length-where-does-a-branch-start-in-git

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Remarks:

• the un-rebased branch has no +n suffix, the first rebase has ‘+1’, the second ‘+2’ and so on.

• if you call rebase with argument -i, you can do a lot of rebase magic (squashing and dropping and reordering
and all that). This feature is quite self-explanatory – just try it! [FIXME: there was an oddity when you are in
the editor and want to cancel. @nidi, can you fill that in here? i think you’ve explained this to me once.]

• if you call git rebase -i $BRANCHPOINT, you can do rebase magic without actually changing the
branch point.

Dos and Don’ts

1. push --force is forbidden. The only exception are volatile branches.

2. rebase is generally forbidden on published branches. Exceptions: rebase is allowed in volatile branches;
rebase with +n-branch logic is allowed in personalized branches and allowed-but-discouraged in story
branches.

3. Always use git merge with --no-ff when merging a branch into its base branch.

(When merging the base branch into a story or personalized branch to benefit from code recently added else-
where, fast-forward is usually not possible since the histories of two merged branches have diverged. --no-ff
usually does not apply in this case.)

If you want to make --no-ff the default (you can still explicitly enable it with --ff):

git config --global merge.ff true

4. Merging ancestor branches into a current branch is ok. This makes it feasible to keep up to date with changes in
a base branch in long-living story or personalized branches. The merge commit will be eliminated if the current
branch is rebased on the ancestor branch HEAD at any point in time after the merge.

5. Fixes to trivial issues may be committed by a developer directly to master without branching. The commit
must be at least mentioned to one more developer, who must check whether the issue qualifies as trivial and the
commit is sound.

Merge feature branch to master branch

Before merging your feature branch please check:

• code follows general coding style guidelines and specific development hints in backend, frontend.

• all test pass and code coverage backend stays at 100%

• travis test builds should pass (github hook)

• new features are documented

• style checks pass (or let the git after commit hook do its work):

bin/ad_check_code -a src/adhocracy src/adhocracy_sample

• code reviewed by other developer

Administration

Several console scripts are provided to facilitate the administration of Adhocracy 3.

2.3. Administration 29

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Importing Resources

User, Groups and normal Resources can be imported with the ad_fixtures script. You choose between fixtures regis-
tered in adhocracy python packages:

./bin/ad_fixtures etc/development.ini -c adhocracy_core:test_fixtures

Or from an absolute file system path:

./bin/ad_fixtures etc/development.ini -c /home/user/adhocracy_core/test_fixtures

The -h flag can be used to see a full description of the options:

Traceback (most recent call last):
File "/home/docs/checkouts/readthedocs.org/user_builds/adhocracy3/envs/latest/lib/python3.5/site-packages/pkg_resources/__init__.py", line 651, in _build_master
ws.require(__requires__)

File "/home/docs/checkouts/readthedocs.org/user_builds/adhocracy3/envs/latest/lib/python3.5/site-packages/pkg_resources/__init__.py", line 952, in require
needed = self.resolve(parse_requirements(requirements))

File "/home/docs/checkouts/readthedocs.org/user_builds/adhocracy3/envs/latest/lib/python3.5/site-packages/pkg_resources/__init__.py", line 844, in resolve
raise VersionConflict(dist, req).with_context(dependent_req)

pkg_resources.ContextualVersionConflict: (pyramid 1.5.2 (/home/docs/checkouts/readthedocs.org/user_builds/adhocracy3/envs/latest/lib/python3.5/site-packages), Requirement.parse('pyramid>1.6a2'), {'pyramid-bpython'})

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "/home/docs/checkouts/readthedocs.org/user_builds/adhocracy3/envs/latest/bin/ad_fixtures", line 5, in <module>
from pkg_resources import load_entry_point

File "/home/docs/checkouts/readthedocs.org/user_builds/adhocracy3/envs/latest/lib/python3.5/site-packages/pkg_resources/__init__.py", line 3084, in <module>
@_call_aside

File "/home/docs/checkouts/readthedocs.org/user_builds/adhocracy3/envs/latest/lib/python3.5/site-packages/pkg_resources/__init__.py", line 3070, in _call_aside
f(*args, **kwargs)

File "/home/docs/checkouts/readthedocs.org/user_builds/adhocracy3/envs/latest/lib/python3.5/site-packages/pkg_resources/__init__.py", line 3097, in _initialize_master_working_set
working_set = WorkingSet._build_master()

File "/home/docs/checkouts/readthedocs.org/user_builds/adhocracy3/envs/latest/lib/python3.5/site-packages/pkg_resources/__init__.py", line 653, in _build_master
return cls._build_from_requirements(__requires__)

File "/home/docs/checkouts/readthedocs.org/user_builds/adhocracy3/envs/latest/lib/python3.5/site-packages/pkg_resources/__init__.py", line 666, in _build_from_requirements
dists = ws.resolve(reqs, Environment())

File "/home/docs/checkouts/readthedocs.org/user_builds/adhocracy3/envs/latest/lib/python3.5/site-packages/pkg_resources/__init__.py", line 844, in resolve
raise VersionConflict(dist, req).with_context(dependent_req)

pkg_resources.ContextualVersionConflict: (pyramid 1.5.2 (/home/docs/checkouts/readthedocs.org/user_builds/adhocracy3/envs/latest/lib/python3.5/site-packages), Requirement.parse('pyramid>1.6a2'), {'pyramid-bpython'})

Import Badges

Badges can be imported with the ad_import_resources script:

./bin/ad_import_resources etc/development.ini src/adhocracy_core/adhocracy_core/resources/user_badges_sample.json

Badges can be assigned to resources with the ad_assign_badges script:

./bin/ad_assign_badges etc/development.ini ./src/adhocracy_core/adhocracy_core/scripts/user_badge_assignments_sample.json

Set Workflow state

The state of the workflow can be changed with the set_workflow_state command. The -h flag can be used to see a full
description of the options:

Command ‘set_workflow_state -h’ failed: [Errno 2] No such file or directory: ‘set_workflow_state’

30 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Show Auditlog

The entries of the auditlog can be shown with the ad_auditlog command. The -h flag can be used to see a full
description of the options:

Command ‘set_workflow_state -h’ failed: [Errno 2] No such file or directory: ‘set_workflow_state’

Backend

Overview

The adhocracy backend is a python framework to build a REST-API backend for cms-like applications.

It was developed with the use cases and limitations of the policy drafing and decision making tool adhocracy2 and
the Concept: The Supergraph concept in mind. The main focus lies on being extensible, allow modelling complex
participation workflows and graph data structures , and ensure privacy and data integrity.

Note:

The implementation is largely based on `substanced D`_, but has a lot
of customization. One possible refactoring would be to make it a
nice behaving REST-API extension.

You can work with the following concepts.

Resource Handling

resource tree to ease working with hierarchical data

URL Routing supports both, url dispatch (fixed endpoints) and resource hierarchy traversal .

Fine grained security system:

• permission protect operations (like ‘view’ a resource, sheet or field)

• granted to role s, which in turn are granted to principal s.

• local permission and roles: grants can be modified for every resource and its ancestors in the resource tree .

Workflows:

• Finite State machine for resources

• change local permissions or run scripts on phase transition

Resources:

• composed by a set of sheets (see Concept: Modelling a Simple Use-Case with The Supergraph)

• runtime adding/removing of sheets possible

• open/close principal for resource modelling

Sheets:

• interface for a specific resource behaviour:

– api methods

– data structure (colander.Schema) with following field types

* data

2.4. Backend 31

https://github.com/liqd/adhocracy
https://substanced.readthedocs.org/en/latest/glossary.html#term-resource-tree
http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-url-dispatch
http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-traversal
https://substanced.readthedocs.org/en/latest/glossary.html#term-resource-tree
https://en.wikipedia.org/wiki/Finite-state_machine
https://en.wikipedia.org/wiki/Open/closed_principle
http://colander.readthedocs.org/en/latest/api.html#colander.Schema

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

* metadata

* computed data

* references

* backreferences

– encapsulate data/reference storage

TODO:: Here it would be great to have a small overview of what sheets do and how they work. Maybe give a concrete
example of how they are used in combination with Colander for the JSON serialization and how they are used by the
object factory. Also explain the link between resources and sheets and how they reference each other could be explain
(with a diagram?).

Versioned Resources:

• lineare history or allow forking and merging (not implemented)

• data fields do never change

References:

• allow complex non hierachical data structures

• references (unidirectional) and backreferences (computed) between resource sheets

Reference Update policies if referenced Resource has new version:

• No Update

• Auto Update (new Version is created / reference is updated)

• Optional Update, User has to comfirm (examle “like reference”) (not implemented)

Data Storage

Auditing:

• every data/reference change is logged

• no lost data for versioned Resources

Optimistic Concurency Control, atomic requests

• no manual data lock or transaction handling needed

Object database for persistence storage and search

• no sync problems, easy to debug

alternative storages for sheet data/references/search indexes (not implemented)

• support databases with more sophisticaed reference graph/search features

import/export scripts

Code

Type hinting

• play nice with code autocompletion (and static type checks).

Extensible:

• Pyramid extensibility

32 Chapter 2. Contents

http://docs.pylonsproject.org/projects/pyramid/en/latest/designdefense.html#apps-are-extensible

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• Resource/Sheet concept, type definitions are easy to customize in extension packages

Softwarestack

• Python 3 (programming language)

• Pyramid (web framework)

• substance D (application server)

• hypatia (search)

• ZODB (object database)

• colander schema (data structures and validation)

• Autobahn|Python (websocket server)

• Varnish (http proxy cache server)

• buildout (build system)

History

We started 2012 with the plan to port adhocracy2 to pyramid. This become a long discussion how to build a framework
for particpation processes based on fancy graph data structures Legacy concepts. Mid 2013 we started serious efforts
to start developing. We compared multiple framework - database combinations to find the right technical base that
allows to start quickly but does not stand in they way if the project grows. Doing this we had the following in mind:

• python 3 support

• active community and good documentation

• good extensibility -> zope component style like architecture

• fast references to resources and complex reference queries

• one system to search & store python objects and references

• ACID transactions

• resource tree, url traversal

• workflows, local permissions

We did two prototypes to play with the neo4j graph database and dropped it mainly due to cutting edge python support
and transaction features. So we came to the ZODB database. It is stable and can do python object references in a
very simple way because it is an object database. That lead to using pyramid and substanced as small framework that
matched many of our requirements.

Evaluated framework - database combinations

(restored version from mid 2013, original evaluation report is lost)

General

2.4. Backend 33

https://www.python.org
http://pylonsproject.org
http://docs.pylonsproject.org/projects/substanced/en/latest
https://github.com/Pylons/hypatia
http://zodb.org
http://docs.pylonsproject.org/projects/colander/en/latest/
http://autobahn.ws/python/
https://www.varnish-cache.org/
http://www.buildout.org/en/latest/

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

feature: python
3

active
devel-
oped

doc-
u-
men-
ta-
tion

full-
stack

sim-
ple
code

ad-
min
inter-
face

high
level
api

REST-
API

extensibility (every behaviour
can be extendend/replaces
without changing the core
code)

cubicweb
- sql

- + + ++ - + ++ ++ +

django -
sql

- + + ++ - + ++ + +-

pyra-
mid/kotti
- sql

+ + + ++ + + + - +

pyra-
mid/bulbflow
- neo4j

+ - + - + - + - -

pyramid -
rexster/neo4j

+ +- + - - - + + +-

pyramid -
ZODB

+ + - + - – - - +

pyra-
mid/substanced
- ZODB

+ +- + ++ + ++ + - +

Zope2/Plone
- ZODB

– +- - ++ – + ++ – ++

ZTK/Grok
- ZODB

+- - + ++ – +- + – ++

References

feature: complex queries/graph traversal fast scalibility
cubicweb/sql ++ +- ++
django - sql - +- +
pyramid/kotti - sql - +- +
pyramid/bulbflow - neo4j ++ - ++
pyramid - rexter/neo4j ++ – ++
pyramid - ZODB - ++ ++
pyramid/substanced - ZODB - + ++
Zope2/Plone - ZODB + +- +-
ZTK/Grok - ZODB - ++ ++

Resources

feature: “sheets” resource
tree

local
permissions

traver-
sal

work-
flow

ACID
transactions

cubicweb/sql + - - - - +
django - sql - - +- - ? +
pyramid/kotti - sql - + + + + +
pyramid/bulbflow -
neo4j

- - - - - +

pyramid - rexter/neo4j - - - - - -
pyramid - ZODB - + + + - +
pyramid/substanced -
ZODB

+ + + + + +

Zope2/Plone - ZODB + + + + ++ +
ZTK/Grok - ZODB + + + + + +

34 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Search

feature: checks
permissions

full text
index

attribute
index

same transaction like
resources

cubicweb/sql - ++ + -
django - sql - ++ + -
pyramid/kotti - sql + ++ + -
pyramid/bulbflow -
neo4j

- - + -

pyramid - rexter/neo4j - - + -
pyramid - ZODB - - - -
pyramid/substanced -
ZODB

+ + + +

Zope2/Plone - ZODB + + ++ +
ZTK/Grok - ZODB + + + +

Notes

cubicweb SemanticWeb web framework
django full stack web framework
pyramid micro web framework, internally based on zope components
pyramid / kotti small cms project
pyramid / bulbflow -
neo4j

Resource Modelling for graph database neo4j

pyramid - rexter /
neo4j

REST-API for graph database neo4j

pyramid /
substanced

small application server project

Zope2 / Plone Big cms project/full stack framework based on zope components, permission checks
enforced in application code

ZTK (ZopeToolkit)
/ Grok

full stack framework based on zope components, not active anymore, permission checks
enforced in application code

Other evaluated frameworks without ZODB: pyramid - cubicweb database, pyramid - rdflib, pyra-
mid/repoze.workflow/plone.behavior - neo4j

Others with ZODB: w20e.pycms, Karl Project, pyramid/repoze.workflow/plone.behavior,
Zope2/repoze.workflow/plone.dexterity

More recent frameworks not considered

If we start a rewrite we would focus on full-stack frameworks for REST-APIs, standards, and simplified requirements.
The following more recent projects are look promising.

• http://ramses.tech/

– full stack solution for REST-APIs

– easy prototyping/api specification

– good ElasticSearch “frontend” to handle all kind of requests

• http://morepath.readthedocs.org/

– flexible micro framework for REST-API/HTML rendering

– combine/extend small application (like processXY, document management, user management, ...)

• django rest framework v3 / (or json-api extension) http://www.django-rest-framework.org/

2.4. Backend 35

http://ramses.tech/
http://morepath.readthedocs.org/
http://www.django-rest-framework.org/

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

– full stack solution for REST-APIs

• json-api https://py-jsonapi.readthedocs.org/en/latest/

– full stack solution for REST-APIs

• http://pythonhosted.org/jsondata/

– data structure and patches based on JSON-Schema

Architecture

Software packages

The backend and frontend is released with the following python packages:

adhocracy_core framework and generic rest api, admin frontend

adhocracy_sample examples how to customize resource/sheet types

adhocracy_frontend framework for the javascript frontend

adhocracy_xyz Backend extensions for project specific application

xyz projects specific application with javascript frontend

Frontend Technical Admin Interface (substanced)

HTML Admin interface Technical admin interface (serverside rendering)
Authentication Cooky Authentication based on cookies and session id.

36 Chapter 2. Contents

https://py-jsonapi.readthedocs.org/en/latest/
http://pythonhosted.org/jsondata/

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Frontend Javascript (Single Page Application)

Javscript Frontend Single Page Application (client side rendering)
Cache Proxy Proxy to cache http requests (varnish)
Cache Headers Set http caching headers, compute etag)
Cache Purging Send purge request to Cache server when resources are updated
Authentication Token Authentication based on request header token.
REST API JSON representation of resources to Create/Read/Update/Delete.
HTML Frontend HTML representation of resources (only root, serves javascript/settings/routings)
Websockets client Send notification mesages to the websockets server when resources are updated

2.4. Backend 37

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Backend Resource Handling

The red line groups responsibility for persistence data storage (Note: all perstence data access should be done with the
sheets). For further explenations see Modules.

Modules

API and separation of responsibility

responsibility (means reason to change code if functionality changes) should lay at one single point of code (pack-
ages/modules in this case), see also Refactoring & Clean Code.

layer loosly group of modules that follow these rules: * must not import from upper layer * should not import from
same layer * may import interfaces from all layers * may import from lower layer

Application Layer

adhocracy_core Configure, add dependency packages/modules, start application.

38 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Frontend Views, Client Communication Layer

adhocracy_core.rest Configure rest api packages.
adhocracy_core.rest.views GET/POST/PUT requests processing.
adhocracy_core.rest.batchview POST batch requests processing.
adhocracy_core.rest.schemas Data structures / validation specific to rest api requests.
adhocracy_core.rest.subscriber Subscriber to modify the http response object.
adhocracy_core.rest.exceptions HTTP Exception (500, 310, 404,..) processing.
adhocracy_core.caching Adapter and helper functions to set the http response caching headers.
adhocracy_core.authentication Authentication with support for token http headers.
adhocracy_core.websockets Asynchronous client-server communication via Websockets.

Registry, Factories, Access to Metadata Layer

adhocracy_core.content Create resources, get sheets/metadata, permission checks.
adhocracy_core.changelog Transaction changelog for resources.

Resource Handling Layer

adhocracy_core.resources Resource types mapped to sheets (OpenClosePrinciple), object hierarchy.
adhocracy_core.resources.base Resource base implementation with zodb persistence.
adhocracy_core.resources.simple Basic simple type without children and non versionable.
adhocracy_core.resources.pool Basic type with children typically to create process structures.
adhocracy_core.resources.item Basic Pool for specific Itemversions typically to create process content.
adhocracy_core.resources.itemversion Basic versionable type typically for process content.
adhocracy_core.resources.root Root type to create initial object hierarchy and set global Permissions.
adhocracy_core.resources.principal Principal types (user/group) and helpers to search/get user information.
adhocracy_core.resources.subscriber Autoupdate resources.
adhocracy_core.sheets Data structures/validation, set/get for an isolated set of resource data.
adhocracy_core.catalog Configure search catalogs.
adhocracy_core.catalog.adhocracy Adhocracy catalog and index views.
adhocracy_core.catalog.subscriber Reindex subscribers.
adhocracy_core.authorization Authorization with roles/local roles mapped to adhocracy principals.
adhocracy_core.messaging Send messages to Principals.
adhocracy_core.graph Set/Get Resource References / versions graph (DAG) helpers.
adhocracy_core.workflows Finite state machines for resources.

Interfaces, Utils Layer

adhocracy_core.interfaces Interfaces for plugable dependencies, basic metadata structures.
adhocracy_core.utils Helper functions shared between modules.
adhocracy_core.events Hooks to modify runtime behavior (use ‘subscriber.py’ in you package).
adhocracy_core.schema Basic data structures and validation.
adhocracy_core.exceptions Internal Exceptions.

Other stuff

2.4. Backend 39

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

adhocracy_core.scaffolds Create scaffolds to customize or extend adhocracy.
adhocracy_core.scripts scripts.
adhocracy_core.stats Send runtime statistics to statsd <http://statsd.readthedocs.org>.
adhocracy_core.auditing Log which user modifies resources in additional ‘audit’ database.
adhocracy_core.evolution Scripts to migrate legacy objects in existing databases.
adhocracy_core.registry
adhocracy_core.renderers Additional pyramid renderers.
adhocracy_core.templates

TODO: move all scripts to adhocracy_core.scripts

Substanced dependencies

• substanced.evolution (migration, see adhocracy_core.evolution)

• substanced.catalog (search, extended by adhocracy_core.catalog)

• substanced.workflow (state machines mapped to resource types, extended by
adhocracy_core.workflows)

• substanced.content (provide content types factories, extendend by adhocracy_core.content)

• substanced.objectmap (reference resources, extented by adhocracy_core.graph)

• substanced.folder (Persistent implemention for adhocracy_core.interfaces.IPool re-
sources)

Extend/Customize

• must follow Rules for extensible pyramid apps: configuration, configuration extentensions, view/asset overrid-
ing, event subscribers. Use imperative-configuration, except for views configuration-declaration.

• may use the underlaying zope component architecture provided by the application registry directly. may not use
the global zope component registry, see also ZCA in pyramid.

• must follow rules for module layer (see above)

• make code dependencies pluggable to allow different implementations (other authentication, references storage,
data storage, search, ..) Dependencies should have an interface to describe public methods.

• override resource/sheet metadata, see adhocracy_sample

Note: You can use the script bin/ad_check_forbidden_imports to list suspicious imports

Naming conventions

• Non-versionable resources types are named resource.x.IX with a sheet named sheet.x.IX.

• Versionable resources types are named resource.x.IXVersion (inherits from IITemVersion) with a sheet named
sheet.x.IX. They belong to the container (parent) resource type called resource.x.IX (inherits from IItem).

• Resource/sheet types to express RDF like statements are named after the verb, for example: IRate.

40 Chapter 2. Contents

https://substanced.readthedocs.org/en/latest/api.html#module-substanced.evolution
https://substanced.readthedocs.org/en/latest/api.html#module-substanced.catalog
https://substanced.readthedocs.org/en/latest/api.html#module-substanced.workflow
https://substanced.readthedocs.org/en/latest/api.html#module-substanced.content
https://substanced.readthedocs.org/en/latest/api.html#module-substanced.objectmap
https://substanced.readthedocs.org/en/latest/api.html#module-substanced.folder
http://docs.pylonsproject.org/projects/pyramid/en/master/narr/extending.html
http://docs.zope.org/zope.component/narr.html
http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-application-registry
http://docs.pylonsproject.org/projects/pyramid/en/master/narr/extconfig.html

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

API

Embedding

Adhocracy 3 is designed to be “embed first”. This means that it will usually not be used on its own, but embedded in
some website, e.g. a content management system (CMS). But it should also be possible to embed individual widgets.

Terms

The following terms are used in the context of embedding:

Host The website where adhocracy is embedded.

Widget A piece of adhocracy that can be embedded on its own. Some functionality (e.g. registration) will require the
user to switch to the platform. See also CSS.

Frontend URL This is where the actual adhocracy frontend is available. Users are not supposed to interact with this
directly. Instead, the frontend should be embedded somewhere.

Platform URL This is where the full adhocracy is available (as opposed to a widget). The term platform also refers
to the complete set of functionality and navigation that sets it apart from a mere widget.

Canonical URL Content can show up in different places (i.e. with different URLs), namely at the frontend URL, the
platform URL and embedded in many more places. The canonical URL is the default URL. In most cases (but
not in all!), it will point to the platform. See also RFC6596.

Embed-API

The general idea consists of two parts: the SDK javascript code, which has to be loaded once, and widget markers in
the DOM. On initialization, the widget markers are replaced by iframes, which show the actual content.

SDK snippet

This is our JavaScript code that runs in the host page. It was carefully written to not interfere with the hosts own
JavaScript code.

• Bootstraps everything, initializes widgets

• Selects Adhocracy version to be used

• Creates window.adhocracy namespace

• Resizes widgets on the fly

Example:

<script type="text/javascript" src="https://adhocracy.lan/static/js/AdhocracySDK.js"></script>
<script type="text/javascript">

adhocracy.init('http://adhocracy.lan', function(adhocracy) {
adhocracy.embed('.adhocracy_marker');

});
</script>

2.5. API 41

https://tools.ietf.org/html/rfc6596

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Widget markers

In order to embed actual widgets, you need to add one or more markers anywhere in the document. Each marker must
define a widget and optionally one or more parameters:

<div class="adhocracy_marker"
data-widget="document-workbench">

</div>
<div class="adhocracy_marker"

data-widget="paragraph-version-detail"
data-locale="en"
data-ref="..." data-viewmode="display">

</div>

Note: Syntax should exist for both HTML5 (data- parameters) and HTML4

Parameters The available parameters depend on the respective widget. However, the following parameters are
always available:

• the special widget "plain" will embed the full platform instead of a single widget:

<div class="adhocracy_marker" data-widget="plain"></div>

• autoresize will control whether the iframe will automatically be resized to fit its contents. Defaults to
true. It is recommended to set this to false if the embedded widget contains moving columns. In that case,
an explicit height may be provided instead:

<div class="adhocracy_marker" data-widget="plain" data-autoresize="false" style="height: 400px"></div>

• locale can be used to set a locale.

• autourl: If set to true, the URL of the embedded adhocracy will be appended (and constantly updated) to
the host URL via #!. This is only possible once per host page for obvious reasons.

• nocenter: By default, the widget will be centered in the iframe. If this option is set to true, it will fill the
iframe instead.

• noheader: By default, a header will be shown above the widget. If this option is set to true, it will be
omitted.

• initial-url will set the initial URL (i.e. path, query and anchor) for the embedded platform if widget is
"plain".

What happens internally

Say we use the following marker:

<div class="adhocracy_marker" data-widget="proposal-workbench" data-content="/proposal"></div>

This will be converted to the following URL for the iframe:

//example.com/embed/proposal-workbench?content=/proposal

The template inside of that iframe will look roughly like this:

42 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

<adh-proposal-workbench data-content="/proposal"></adh-proposal-workbench>

Allowing a directive to be embedded

Not every directive is allowed to be embedded. You need to register it with the embed provider:

import * as AdhEmbed from "../Embed/Embed";

export var myDirective = () => {
// your directive's code

};

export var moduleName = "adhMyModule";

export var register = (angular) => {
angular

.module(moduleName, [
AdhEmbed.moduleName

])
.config(["adhEmbedProvider", (adhEmbedProvider : AdhEmbed.Provider) => {

adhEmbedProvider.registerEmbeddableDirectives(["my-directive"]);
}])
.directive("adhMyDirective", [myDirective]);

};

Embed Widget for testing

As a side effect, the embed API can be used to develop and test functionalities of frontend widgets in an isolated way.

Say you have registered a directive as described in the previous section. Now you can see your widget under:

/embed/my-directive

Maybe you would also like to add data to your directive using attributes. As there is no surrounding scope to your
directive, this needs to be mocked. You can do that by appending some GET parameters to your URL:

/embed/my-directive?variable1=1&variable2=2

The HTML element that is added to the embed page will look like this:

<adh-my-directive data-variable1="1" data-variable2="2" ></adh-my-directive>

In your directive you can now for example use this like this:

export var myDirective = () => {
return {

scope: {
variable1: "@",
variable2: "@"

},
// more code

};
};

2.5. API 43

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

General notes

• Accout activation (after registration) and password reset require that the backend sends a URL to the user via
email. So the backend needs to know canonical URLs for that.

• If a feature is not available in an embedded widget, all aspects of that widget that rely on that feature need to be
modified. For example, whenever a user is referenced, we include a link to their profile page. If profile pages
are not available in an embedded widget, these links either need to be removed or point to the platform instead.

doctest: +ELLIPSIS # doctest: +NORMALIZE_WHITESPACE

User Registration and Login

Prerequisites

Some imports to work with rest api calls:

>>> from copy import copy
>>> from pprint import pprint
>>> from adhocracy_core.testing import broken_header

Start adhocracy app and log in some users:

>>> anonymous = getfixture('app_anonymous')
>>> participant = getfixture('app_participant')
>>> moderator = getfixture('app_moderator')
>>> admin = getfixture('app_admin')

Test that the relevant resources and sheets exist:

>>> resp = anonymous.get('/meta_api').json
>>> 'adhocracy_core.sheets.versions.IVersions' in resp['sheets']
True
>>> 'adhocracy_core.sheets.principal.IUserBasic' in resp['sheets']
True
>>> 'adhocracy_core.sheets.principal.IUserExtended' in resp['sheets']
True
>>> 'adhocracy_core.sheets.principal.IPasswordAuthentication' in resp['sheets']
True

User Creation (Registration)

A new user is registered by creating a user object under the /principals/users pool. On success, the response
contains the path of the new user:

>>> data = {'content_type': 'adhocracy_core.resources.principal.IUser',
... 'data': {
... 'adhocracy_core.sheets.principal.IUserBasic': {
... 'name': 'Anna Müller'},
... 'adhocracy_core.sheets.principal.IUserExtended': {
... 'email': 'anna@example.org'},
... 'adhocracy_core.sheets.principal.IPasswordAuthentication': {
... 'password': 'EckVocUbs3'}}}
>>> resp = anonymous.post('/principals/users', data).json
>>> resp['content_type']
'adhocracy_core.resources.principal.IUser'
>>> user_path = resp['path']

44 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> user_path
'.../principals/users/00...

The “name” field in the “IUserBasic” schema is a non-empty string that can contain any characters except ‘@’ (to
make user names distinguishable from email addresses). The username must not contain any whitespace except single
spaces, preceded and followed by non-whitespace (no whitespace at begin or end, multiple subsequent spaces are
forbidden, tabs and newlines are forbidden).

The “email” field in the “IUserExtended” sheet must be a valid email address.

Creating a new user will not automatically log them in. First, the backend will send a registration message to the
specified email address. Once the user has clicked on the activation link in the message, the user account is ready to
be used (see “Account Activation” below).

On failure, the backend responds with status code 400 and an error message. E.g. when we try to register a user with
an empty password:

>>> data = {'content_type': 'adhocracy_core.resources.principal.IUser',
... 'data': {
... 'adhocracy_core.sheets.principal.IUserBasic': {
... 'name': 'Other User'},
... 'adhocracy_core.sheets.principal.IUserExtended': {
... 'email': 'annina@example.org'},
... 'adhocracy_core.sheets.principal.IPasswordAuthentication': {
... 'password': ''}}}
>>> resp = anonymous.post('/principals/users', data)
>>> resp.status_code
400
>>> pprint(resp.json)
{'errors': [{'description': 'Required',

'location': 'body',
'name': 'data.adhocracy_core.sheets.principal.IPasswordAuthentication.password'}],

'status': 'error'}

<errors> is a list of errors. The above error indicates that a required field (the password field) is missing or empty. The
following other error conditions can occur:

• username does already exist

• email does already exist

• email is invalid (doesn’t look like an email address)

• couldn’t send a registration mail to the email address (description starts with ‘Cannot send registration mail’)

• password is too short (less than 6 chars)

• password is too long (more than 100 chars)

• internal error: something went wrong in the backend

For example, if we try to register a user whose email address is already registered:

>>> data = {'content_type': 'adhocracy_core.resources.principal.IUser',
... 'data': {
... 'adhocracy_core.sheets.principal.IUserBasic': {
... 'name': 'New user with old email'},
... 'adhocracy_core.sheets.principal.IUserExtended': {
... 'email': 'anna@example.org'},
... 'adhocracy_core.sheets.principal.IPasswordAuthentication': {
... 'password': 'EckVocUbs3'}}}
>>> resp = anonymous.post('/principals/users', data)

2.5. API 45

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> resp.status_code
400
>>> pprint(resp.json)
{'errors': [{'description': 'The user login email is not unique',

'location': 'body',
'name': 'data.adhocracy_core.sheets.principal.IUserExtended.email'}],

'status': 'error'}

Note: in the future, the registration request may contain additional personal data for the user. This data will probably
be added to the “IUserBasic” sheets, if it’s generally public, to the “IUserExtended” sheet otherwise (or maybe it’ll be
store in additional new sheets); e.g.:

'data': {
'adhocracy_core.sheets.principal.IUserBasic': {

'name': 'Anna Müller',
'forename': '...',
'surname': '...'},

'adhocracy_core.sheets.principal.IPasswordAuthentication': {
'password': '...'},

'adhocracy_core.sheets.principal.IUserExtended': {
'email': 'anna@example.org',
'day_of_birth': '...',
'street': '...',
'town': '...',
'postcode': '...',
'gender': '...'

}
}

Account Activation

Before they have confirmed their email address, new users are invisible (hidden). They won’t show up in user listings,
and retrieving information about them manually leads to a 410 Gone response (see Deleting Resources):

>>> resp = anonymous.get(user_path)
>>> resp.status_code
410
>>> resp.json['reason']
'hidden'

On user registration, the backend sends a mail with an activation link to the specified email address and sends a 2xx
HTTP response to the frontend, so the frontend can tell the user to expect an email. The user has to click on the
activation link to activate their account. The path component of all such links starts with /activate/. Once the
frontend receives a click on such a link, it must post a JSON request containing the path to the activate_account
endpoint of the backend:

>>> newest_activation_path = getfixture('newest_activation_path')
>>> data = {'path': newest_activation_path}
>>> resp = anonymous.post('/activate_account', data).json
>>> pprint(resp)
{'status': 'success',
'user_path': '.../principals/users/...',
'user_token': '...'}

The backend responds with either response code 200 and ‘status’: ‘success’ and ‘user_path’ and ‘user_token’, just like
after a successful login request (see next section). This means that the user account has been activated and the user is
now logged in.

46 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> data = {'path': '/activate/blahblah'}
>>> resp = anonymous.post('/activate_account', data)
>>> resp.status_code
400
>>> pprint(resp.json)
{'errors': [{'description': 'Unknown or expired activation path',

'location': 'body',
'name': 'path'}],

'status': 'error'}

Or it responds with response code 400 and ‘status’: ‘error’. Usually the error description will be one of:

• ‘String does not match expected pattern’ if the path doesn’t start with ‘/activate/’

• ‘Unknown or expired activation path’ if the activation path is unknown to the backend or if it has expired because
it was generated more than 7 days ago. Note that activation links are deleted from the backend once the account
has been successfully activated, and expired links may also be deleted. Therefore we don’t know whether the
activation link was never valid (the user mistyped it or just tried to guess one), or it used to be valid but has
expired. The message displayed to the user should explain that.

If the link is expired, user activation is no longer possible for security reasons and the user has to call support or
register again, using a different email. (More user-friendly options are planned but haven’t been implemented yet!)

Since the user account has been activated, the public part of the user information is now visible to everybody:

>>> resp = anonymous.get(user_path).json
>>> resp['data']['adhocracy_core.sheets.principal.IUserBasic']['name']
'Anna Müller'

Like every resource, the user has a metadata sheet with creation information. In the case of users, the creator is the
user themselves:

>>> resp_metadata = resp['data']['adhocracy_core.sheets.metadata.IMetadata']
>>> resp_metadata['creator']
'.../principals/users/00...
>>> resp_metadata['creator'] == user_path
True

User Login

To log-in an existing and activated user via password, the frontend posts a JSON request to the URL
login_username with a user name and password:

>>> data = {'name': 'Anna Müller',
... 'password': 'EckVocUbs3'}
>>> resp = anonymous.post('/login_username', data).json
>>> pprint(resp)
{'status': 'success',
'user_path': '.../principals/users/...',
'user_token': '...'}

>>> user_path = resp['user_path']
>>> user_token_via_username = resp['user_token']
>>> headers = {'X-User-Token': user_token_via_username}
>>> user = copy(anonymous)
>>> user.header = headers

Or to login_email, specifying the user’s email address instead of name:

2.5. API 47

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> data = {'email': 'anna@example.org',
... 'password': 'EckVocUbs3'}
>>> resp = anonymous.post('/login_email', data).json
>>> pprint(resp)
{'status': 'success',
'user_path': '.../principals/users/...',
'user_token': '...'}

>>> user_token_via_email = resp['user_token']

On success, the backend sends back the path to the object representing the logged-in user and a token that must be
used to authorize additional requests by the user.

An error is returned if the specified user name or email doesn’t exist or if the wrong password is specified. For security
reasons, the same error message (referring to the password) is given in all these cases:

>>> data = {'name': 'No such user',
... 'password': 'EckVocUbs3'}
>>> resp = anonymous.post('/login_username', data)
>>> resp.status_code
400
>>> pprint(resp.json)
{'errors': [{'description': "User doesn't exist or password is wrong",

'location': 'body',
'name': 'password'}],

'status': 'error'}

A different error message is given if username and password are valid but the user account hasn’t been activated yet:

{'description': 'User account not yet activated',
'location': 'body',
'name': 'name'}

User Authentication

Once the user is logged in, the backend must add add header field to all HTTP requests made for the user: “X-User-
Token”. Its value is the received “user_token”, respectively. The backend validates the token. If it’s valid and not
expired, the requested action is performed in the name and with the rights of the logged-in user.

Without authentication we may not post anything:

>>> resp = anonymous.options('/').json
>>> 'POST' not in resp
True

With authentication instead we may::

>>> resp = admin.options('/').json
>>> pprint(resp['POST']['request_body'])
[...'adhocracy_core.resources.organisation.IOrganisation',...]

If the token is not valid or expired the backend responds with an error status that identifies the “X-User-Token” header
as source of the problem:

>>> broken = copy(anonymous)
>>> broken.header = broken_header
>>> resp = broken.get('/meta_api')
>>> resp.status_code
400
>>> sorted(resp.json.keys())

48 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

['errors', 'status']
>>> resp.json['status']
'error'
>>> resp.json['errors'][0]['location']
'header'
>>> resp.json['errors'][0]['name']
'X-User-Token'
>>> resp.json['errors'][0]['description']
'Invalid user token'
>>> anonymous.header = {}

Tokens will usually expire after some time. (In the current implementation, they expire by default after 30 days, but
configurations may change this.) Once they are expired, they will be considered as invalid so any further requests
made by the user will lead to errors. To resolve this, the user must log in again.

Viewing Users

Without authorization, only very limited information on each user is visible:

>>> resp = anonymous.get(user_path).json
>>> resp['data']['adhocracy_core.sheets.principal.IUserBasic']
{'name': 'Anna Müller'}
>>> 'adhocracy_core.sheets.principal.IUserExtended' in resp['data']
False
>>> 'adhocracy_core.sheets.principal.IPermissions' in resp['data']
False

Only admins and the user herself can view extended information such as her email address:

>>> resp = admin.get(user_path).json
>>> pprint(resp['data']['adhocracy_core.sheets.principal.IUserExtended'])
{'email': 'anna@example.org', 'tzname': 'UTC'}
>>> 'adhocracy_core.sheets.principal.IPermissions' in resp['data']
True
>>> resp = user.get(user_path).json
>>> 'adhocracy_core.sheets.principal.IUserExtended' in resp['data']
True
>>> 'adhocracy_core.sheets.principal.IPermissions' in resp['data']
True

Other users, even if logged in, cannot:

>>> resp = participant.get(user_path).json
>>> 'adhocracy_core.sheets.principal.IUserExtended' in resp['data']
False
>>> 'adhocracy_core.sheets.principal.IPermissions' in resp['data']
False

Editing Users

User can edit their own data:

>>> headers = {'X-User-Token': user_token_via_username}
>>> user = copy(anonymous)
>>> user.header = headers
>>> data = {'data': {'adhocracy_core.sheets.principal.IUserBasic': {'name': 'edited_name'}}}
>>> resp = user.put(user_path, data).json

2.5. API 49

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> len(resp['updated_resources']['modified'])
1

If they want to edit security-related information they need to pass their passwords in a custom header:

>>> headers = {'X-User-Token': user_token_via_username,
... 'X-User-Password': 'EckVocUbs3'}
>>> user = copy(anonymous)
>>> user.header = headers
>>> data = {'data': {'adhocracy_core.sheets.principal.IPasswordAuthentication': {'password': 'edited_password'}}}
>>> resp = user.put(user_path, data).json
>>> len(resp['updated_resources']['modified'])
1

If the header is missing the change is silently dropped:

>>> headers = {'X-User-Token': user_token_via_username}
>>> user = copy(anonymous)
>>> user.header = headers
>>> data = {'data': {'adhocracy_core.sheets.principal.IPasswordAuthentication': {'password': 'edited_password'}}}
>>> resp = user.put(user_path, data).json
>>> len(resp['updated_resources']['modified'])
0

Password Reset

If users forget their passwords, they can request a reset email:

>>> data = {'email': 'anna@example.org'}
>>> resp = anonymous.post('/create_password_reset', data).json
>>> resp['status']
'success'

The email contains a link that will allow them to enter a new password. Password reset also returns the credentials so
that a user can login directly:

>>> newest_reset_path = getfixture('newest_reset_path')
>>> data = {'path': newest_reset_path(),
... 'password': 'new_password'}
>>> resp = anonymous.post('/password_reset', data).json
>>> pprint(resp)
{'status': 'success',
'user_path': '.../principals/users/...',
'user_token': '...'}

Security Considerations

• The password-reset mechanism allows attackers that have access to a user’s email address to take over an ac-
count.

• The password-edit mechanism allows attackers that have access to a user’s session and password to change the
password. However, the user receives an email informing them about the change and about ways to recover their
password (i.e. password-reset).

• In the future we may want to allow users to change their email address. In this case attackers with access to a
user’s session and password would be able to take over an account.

50 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• Once an account has been compromised it is not possible to recover. Legitimate users have no way to prove
their legitimacy.

doctest: +ELLIPSIS # doctest: +NORMALIZE_WHITESPACE

REST-API

Prerequisites

Some imports to work with rest api calls:

>>> import copy
>>> from functools import reduce
>>> from operator import itemgetter
>>> import os
>>> import requests
>>> from pprint import pprint

Start Adhocracy testapp and login admin:

>>> log = getfixture('log')
>>> app_admin = getfixture('app_admin')
>>> rest_url = getfixture('rest_url')
>>> rest_url
'http://localhost/api'

Resource structure

Resources have one content interface to set its type, like “adhocracy_core.resources.organisation.IOrganisation”.

Terminology: we refer to content interfaces and the objects specified by content interfaces as “resources”; resources
consist of “sheets” which are based on the substance-d concept of property sheet interfaces.

Every Resource has multiple sheets that define schemata to set/get data.

There are 5 base types of resources:

• Pool: folder in the resource hierarchy, can contain other Pools of any kind.

• Item: container Pool for ItemVersions of a specific type that belong to the same DAG Sub-Items that are closely
related (e.g. Sections within Documents)

• ItemVersion: a specific version of an item (SectionVersion, DocumentVersion)

• Simple: Anything that is neither versionable/item nor a pool.

To model the application domain we have some frequently use derived types with semantics:

• Organisation: a subtype of Pool to do basic structuring for the Resource tree. Typical subtypes are other
Organisations or Process.

• Process: a subtype of Pool to add configuration and resources for a specific participation process. Typical
subtypes are Proposal.

• Proposal: a subtype of Item, this is normally content created by participants during a paticipation process.

Example resource tree:

2.5. API 51

https://substanced.readthedocs.org/en/latest/glossary.html#term-resource-tree
https://substanced.readthedocs.org/en/latest/glossary.html#term-resource-tree

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Pool: locations
Simple: locations/berlin

Pool: proposals
Item: proposals/proposal1
ItemVersion: proposals/proposal1/v1

Item: proposals/proposal1/document1
ItemVersion: proposals/proposal1/document1/v1

Meta-API

The backend needs to answer to kinds of questions:

1. Globally: What resources (content types) exist? What sheets may or must they contain? (What parts of) what
sheets are read-only? mandatory? optional?

2. In the context of a given session and URL: What HTTP methods are allowed? With what resource objects in the
body? What are the authorizations (display / edit / vote-on / ...)?

The second kind is implemented with the OPTIONS method on the existing URLs. The first is implemented with the
GET method on a dedicated URL.

Global Info

The dedicated prefix defaults to “/meta_api/”, but can be customized. The result is a JSON object with two main keys,
“resources” and “sheets”:

>>> resp_data = app_admin.get('/meta_api/').json
>>> sorted(resp_data.keys())
['resources', 'sheets', 'workflows']

The “resources” key points to an object whose keys are all the resources (content types) defined by the system:

>>> sorted(resp_data['resources'].keys())
[...'adhocracy_core.resources.organisation.IOrganisation'...]

Each of these keys points to an object describing the resource. If the resource implements sheets (and a resource that
doesn’t would be rather useless!), the object will have a “sheets” key whose value is a list of the sheets implemented
by the resource:

>>> organisation_desc = resp_data['resources']['adhocracy_core.resources.organisation.IOrganisation']
>>> sorted(organisation_desc['sheets'])
['adhocracy_core.sheets.asset.IHasAssetPool', 'adhocracy_core.sheets.description.IDescription'...]

In addition we get the listing of resource super types (excluding IResource):

>>> document_desc = resp_data['resources']['adhocracy_core.resources.document.IDocument']
>>> sorted(document_desc['super_types'])
['adhocracy_core.interfaces.IItem', 'adhocracy_core.interfaces.IPool']

If the resource is an item, it will also have a “item_type” key whose value is the type of versions managed by this item
(e.g. a Section will manage SectionVersions as main element type):

>>> document_desc['item_type']
'adhocracy_core.resources.document.IDocumentVersion'

52 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

If the resource is a pool or item that can contain resources, it will also have an “element_types” key whose value is
the list of all resources the pool/item can contain (including the “item_type” if it’s an item). For example, a pool can
contain other pools; a document can contain tags.

>>> organisation_desc['element_types']
[...adhocracy_core.resources.process.IProcess...
>>> sorted(document_desc['element_types'])
[...'adhocracy_core.resources.paragraph.IParagraph']

The “sheets” key points to an object whose keys are all the sheets implemented by any of the resources:

>>> sorted(resp_data['sheets'].keys())
[...'adhocracy_core.sheets.name.IName', ...'adhocracy_core.sheets.pool.IPool'...]

Each of these keys points to an object describing the resource. Each of these objects has a “fields” key whose value is
a list of objects describing the fields defined by the sheet:

>>> pprint(resp_data['sheets']['adhocracy_core.sheets.name.IName']['fields'][0])
{'creatable': True,
'create_mandatory': True,
'editable': False,
'name': 'name',
'readable': True,
'valuetype': 'adhocracy_core.schema.Name'}

Each field definition has the following keys:

name The field name

create_mandatory Flag specifying whether the field must be set if the sheet is created (post requests).

readable Flag specifying whether the field can be read (get requests).

editable Flag specifying whether the field can be set to edit an existing sheet (put requests).

creatable Flag specifying whether the field can be set if the sheet is created (post requests).

valuetype The type of values stored in the field, either a basic type (as defined by Colander) such as “String” or
“Integer”, or a custom-defined type such as “adhocracy_core.schema.AbsolutePath”

There also are some optional keys:

containertype Only present if the field can store multiple values (each of the type specified by the “valuetype” at-
tribute). If present, the value of this attribute is either “list” (a list of values: order matters, duplicates are
allowed) or “set” (a set of values: unordered, no duplicates).

targetsheet Only present if “valuetype” is a path (“adhocracy_core.schema.AbsolutePath”). If present, it gives the
name of the sheet that all pointed-to resources will implement (they might possibly be of different types, but
they will always implement the given sheet or they wouldn’t be valid link targets).

For example, the ‘subdocuments’ field of IDocument is an ordered list pointing to other IDocument’s:

>>> secfields = resp_data['sheets']['adhocracy_core.sheets.document.IDocument']['fields']
>>> for field in secfields:
... if field['name'] == 'elements':
... pprint(field)
... break
{'containertype': 'list',
'creatable': True,
'create_mandatory': False,
'editable': True,
'name': 'elements',
'readable': True,

2.5. API 53

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

'targetsheet': 'adhocracy_core.sheets.document.ISection',
'valuetype': 'adhocracy_core.schema.AbsolutePath'}

The ‘follows’ field of IVersionable is an unordered set pointing to other IVersionable’s:

... >>> verfields = resp_data[’sheets’][’adhocracy_core.sheets.versions.IVersionable’][’fields’] ... >>> for field in
verfields: if field[’name’] == ‘follows’: pprint(field) break ... {‘containertype’: ‘set’, ... ‘creatable’:
True, ... ‘create_mandatory’: False, ... ‘name’: ‘follows’, ... ‘editable’: True, ... ‘readable’: True, ... ‘targetsheet’:
‘adhocracy_core.sheets.versions.IVersionable’, ... ‘valuetype’: ‘adhocracy_core.schema.AbsolutePath’}

In addition we get the listing of sheet super types (excluding ISheet):

>>> pprint(resp_data['sheets']['adhocracy_core.sheets.comment.IComment']['super_types'])
['adhocracy_core.interfaces.ISheetReferenceAutoUpdateMarker']

OPTIONS

Returns possible methods for this resource, example request/response data structures and available interfaces with
resource data. The result is a JSON object that has the allowed request methods as keys:

>>> resp_data = app_admin.options('/').json
>>> sorted(resp_data.keys())
['DELETE', 'GET', 'HEAD', 'OPTIONS', 'POST', 'PUT']

If a GET, POST, or PUT request is allowed, the corresponding key will point to an object that contains at least
“request_body” and “response_body” as keys:

>>> sorted(resp_data['GET'].keys())
[...'request_body', ...'response_body'...]
>>> sorted(resp_data['POST'].keys())
[...'request_body', ...'response_body'...]

The “response_body” sub-key returned for a GET request gives a stub view of the actual response body that will be
returned:

>>> pprint(resp_data['GET']['response_body'])
{'content_type': '',
'data': {...'adhocracy_core.sheets.name.IName': {}...},
'path': ''}

“content_type” and “path” will be filled in responses returned by an actual GET request. “data” points to an object
whose keys are the property sheets that are part of the returned resource. The corresponding values will be filled during
actual GET requests; the stub contains just empty objects (‘{}’) instead.

If the current user has the right to post new versions of the resource or add new details to it, the “request_body” sub-key
returned for POST points to a array of stub views of allowed requests:

>>> data_post_pool = {'content_type': 'adhocracy_core.resources.organisation.IOrganisation',
... 'data': {'adhocracy_core.sheets.metadata.IMetadata': {},
... 'adhocracy_core.sheets.title.ITitle': {},
... 'adhocracy_core.sheets.name.IName': {},
... 'adhocracy_core.sheets.description.IDescription': {},
... 'adhocracy_core.sheets.image.IImageReference': {},
... 'adhocracy_core.sheets.workflow.IWorkflowAssignment': {}}}
>>> data_post_pool in resp_data['POST']['request_body']
True

The “response_body” sub-key again gives a stub view of the response body:

54 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> pprint(resp_data['POST']['response_body'])
{'content_type': '', 'path': ''}

If the current user has the right to modify the resource in-place, the “request_body” sub-key returned for PUT gives a
stub view of how the actual request should look like:

.. >>> pprint(resp_data['PUT']['request_body'])

.. {'data': {...'adhocracy_core.sheets.name.IName': {}...}}

FIXME: PUT is missing, because the current test pool resource type has not editable sheet.

The “response_body” sub-key gives, as usual, a stub view of the resulting response body:

.. >>> pprint(resp_data['PUT']['response_body'])

.. {'content_type': '', 'path': ''}

Basic calls

We can use the following http verbs to work with resources.

HEAD

Returns only http headers:

>>> resp = app_admin.head('/adhocracy')
>>> resp.headerlist
[...('Content-Type', 'application/json; charset=UTF-8'), ...
>>> resp.text
''

The caching headers are set to no-cache to ease testing:

>>> resp.headers['X-Caching-Mode']
'no_cache'

GET

Returns resource and child elements meta data and all sheet with data:

>>> resp_data = app_admin.get('/').json
>>> pprint(resp_data['data'])
{...'adhocracy_core.sheets.metadata.IMetadata': ...

POST

Create a new resource

>>> prop = {'content_type': 'adhocracy_core.resources.process.IProcess',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'Documents'}}}
>>> resp_data = app_admin.post('/', prop).json
>>> resp_data['content_type']
'adhocracy_core.resources.process.IProcess'

The response object has 3 top-level entries:

2.5. API 55

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• The content type and the path of the new resource:

>>> resp_data['content_type']
'adhocracy_core.resources.process.IProcess'
>>> resp_data['path']
'.../Documents/'

• A listing of resources affected by the transaction:

>>> sorted(resp_data['updated_resources'])
['changed_descendants', 'created', 'modified', 'removed']

The subkey ‘created’ lists any resources that have been created by the transaction:

>>> sorted(resp_data['updated_resources']['created'])
['.../', '.../Documents/assets/', '.../Documents/badges/']

The subkey ‘modified’ lists any resources that have been modified:

>>> sorted(resp_data['updated_resources']['modified'])
['...', '.../principals/users/00...']

Modifications also include that case that a reference from another resource has been added or removed, since
references are often exposed in both directions (the reserve direction is called “backreference”). In this case, the
user is shown as modified since the new resource contains a reference to its creator.

The subkey ‘removed’ lists any resources that have been removed by marking them as hidden (see Deleting
Resources):

>>> resp_data['updated_resources']['removed']
[]

A resource will be shown it at most one of the ‘created’, ‘modified’, or ‘removed’ lists, never in two or more of
them.

The subkey ‘changed_descendants’ lists the parent (and grandparent etc.) pools of all the resources that have
been created, modified, or removed. Any query to such pools may have become outdated as a result of the
transaction (see “Filtering Pools” document below):

>>> sorted(resp_data['updated_resources']['changed_descendants'])
['...', '.../principals/', '.../principals/users/']

PUT

Modify data of an existing resource

FIXME: disable because IName.name is not editable. use another example!
FIXME: what we do here is a `patch` actually, so we should rename this.

... >>> data = {‘content_type’: ‘adhocracy_core.resources.pool.IBasicPool’, ‘data’:
{‘adhocracy_core.sheets.name.IName’: {‘name’: ‘youdidntexpectthis’}}} ... >>> resp_data =
app_admin.put_json(‘/Documents’, data).json ... >>> pprint(resp_data) ... {‘content_type’: ‘adhoc-
racy_core.resources.pool.IBasicPool’, ... ‘path’: ‘/Documents’}

Check the changed resource

... >>> resp_data = app_admin.get('/Documents').json

... >>> resp_data['data']['adhocracy_core.sheets.name.IName']['name']

... 'youdidntexpectthis'

56 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

FIXME: write test cases for attributes with “create_mandatory”, “editable”, etc. (those work the same in PUT and
POST, and on any attribute in the json tree.)

PUT responses have the same fields as POST responses.

Note: When putting multiple sheets in a request some changes might be currently dropped when the request does not
have sufficient permissions, e.g. cannot be edit by the user or requires an additional header.

ERROR Handling

FIXME: ... is not working anymore in this doctest

The normal return code is 200

>>> data = {'content_type': 'adhocracy_core.resources.process.IProcess',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'Documents'}}}

If you submit invalid data the return error code is 400

>>> data = {'content_type': 'adhocracy_core.resources.pool.IBasicPool',
... 'data': {'adhocracy_core.sheets.example.WRONGINTERFACE': {'name': 'Documents'}}}

and you get data with a detailed error description:

{
'status': 'error',
'errors': errors.

}

With errors being a JSON dictionary with the keys “location”, “name” and “description”.

location is the location of the error. It can be “querystring”, “header” or “body” name is the eventual name of the value
that caused problems description is a description of the problem encountered.

If all goes wrong the return code is 500.

Create and Update Versionable Resources

Introduction and Motivation

This section explains updates to resources with version control. Two sheets are central to version control in adhocracy:
IDAG and IVersion. IVersion is in all resources that support version control, and IDAG is a container that manages all
versions of a particular content element in a directed acyclic graph.

IDAGs as well as IVersions need to be created explicitly by the frontend.

The server supports updating a resource that implements IVersion by letting you post a content element with missing
IVersion sheet to the DAG (IVersion is read-only and managed by the server), and passing a list of parent versions
in the post parameters of the request. If there is only one parent version, the new version either forks off an existing
branch or just continues a linear history. If there are several parent versions, we have a merge commit.

Example: If a new versionable content element has been created by the user, the front-end first posts an IDAG. The
IDAG works a little like an IPool in that it allows posting versions to it. The front-end will then simply post the initial
version into the IDAG with an empty predecessor version list.

IDAGs may also implement the IPool sheet for containing further IDAGs for sub-structures of structured versionable
content types. Example: A document may consist of a title, description, and a list of references to sections. There is

2.5. API 57

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

a DAG for each document and each such dag contains one DAG for each document that occurs in any version of the
document. Section refs in the document object point to specific versions in those DAGs.

When posting updates to nested sub-structures, the front-end must decide for which parent objects it wants to trigger
an update. To stay in the example above: If we have a document with two sections, and update a section, the post
request must contain both the parent version(s) of the section, but also the parent version(s) of the document that it is
supposed to update.

To see why, consider the following situation:

Doc v0 v1 v2
/ /

Par1 v0 v1 /
/

Par2 v0 v1

>-----> time >-------->

We want Doc to be available in 3 versions that are linearly dependent on each other. But when the update to Par2 is
posted, the server has no way of knowing that it should update v1 of Doc, BUT NOT v0!

Create

Create a Document (a subclass of Item which pools DocumentVersions)

>>> pdag = {'content_type': 'adhocracy_core.resources.document.IDocument',
... 'data': {},
... }
>>> resp = app_admin.post('/Documents', pdag)
>>> pdag_path = resp.json['path']
>>> pdag_path
'.../Documents/document_0000000/'

The return data has the new attribute ‘first_version_path’ to get the path first Version:

>>> pvrs0_path = resp.json['first_version_path']
>>> pvrs0_path
'.../Documents/document_0000000/VERSION_0000000/'

Version IDs are numeric and assigned by the server. The front-end has no control over them, and they are not supposed
to be human-memorable. For human-memorable version pointers that also allow for complex update behavior (fixed-
commit, always-newest, ...), consider sheet ITags.

The Document has the IVersions and ITags interfaces to work with Versions:

>>> resp = app_admin.get(pdag_path)
>>> resp.json['data']['adhocracy_core.sheets.versions.IVersions']['elements']
['.../Documents/document_0000000/VERSION_0000000/']

>>> resp.json['data']['adhocracy_core.sheets.tags.ITags']['LAST']
'.../Documents/document_0000000/VERSION_0000000/'

>>> resp.json['data']['adhocracy_core.sheets.tags.ITags']['FIRST']
'.../Documents/document_0000000/VERSION_0000000/'

Update

Fetch the first Document version, it is empty

58 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> resp = app_admin.get(pvrs0_path)
>>> pprint(resp.json['data']['adhocracy_core.sheets.document.IDocument'])
{'elements': []}

>>> pprint(resp.json['data']['adhocracy_core.sheets.versions.IVersionable'])
{'follows': []}

but owned by the Document item creator:

Create a new version of the proposal that follows the first version

>>> pvrs = {'content_type': 'adhocracy_core.resources.document.IDocumentVersion',
... 'data': {'adhocracy_core.sheets.document.IDocument': {
... 'elements': []},
... 'adhocracy_core.sheets.versions.IVersionable': {
... 'follows': [pvrs0_path]}},
... 'root_versions': [pvrs0_path]}
>>> resp = app_admin.post(pdag_path, pvrs)
>>> pvrs1_path = resp.json['path']
>>> pvrs1_path != pvrs0_path
True

Add and update child resource

We expect certain Versionable fields for the rest of this test suite to work

>>> resp = app_admin.get('/meta_api')
>>> vers_fields = resp.json['sheets']['adhocracy_core.sheets.versions.IVersionable']['fields']
>>> pprint(sorted(vers_fields, key=itemgetter('name')))
[{'containertype': 'list',

'creatable': True,
'create_mandatory': False,
'editable': True,
'name': 'follows',
'readable': True,
'targetsheet': 'adhocracy_core.sheets.versions.IVersionable',
'valuetype': 'adhocracy_core.schema.AbsolutePath'}]

The ‘follows’ element must be set by the client when it creates a new version that is the successor of one or several
earlier versions.

Create a Section item inside the Document item

>>> sdag = {'content_type': 'adhocracy_core.resources.paragraph.IParagraph',
... 'data': {}
... }
>>> resp = app_admin.post(pdag_path, sdag)
>>> sdag_path = resp.json['path']
>>> svrs0_path = resp.json['first_version_path']

and a second Section

>>> sdag = {'content_type': 'adhocracy_core.resources.paragraph.IParagraph',
... 'data': {}
... }
>>> resp = app_admin.post(pdag_path, sdag)
>>> s2dag_path = resp.json['path']
>>> s2vrs0_path = resp.json['first_version_path']

2.5. API 59

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Create a third Document version and add the two Sections in their initial versions

>>> pvrs = {'content_type': 'adhocracy_core.resources.document.IDocumentVersion',
... 'data': {'adhocracy_core.sheets.document.IDocument': {
... 'elements': [svrs0_path, s2vrs0_path]},
... 'adhocracy_core.sheets.versions.IVersionable': {
... 'follows': [pvrs1_path],}
... },
... 'root_versions': [pvrs1_path]}
>>> resp = app_admin.post(pdag_path, pvrs)
>>> pvrs2_path = resp.json['path']

If we create a second version of kapitel1

>>> svrs = {'content_type': 'adhocracy_core.resources.paragraph.IParagraphVersion',
... 'data': {
... 'adhocracy_core.sheets.document.IParagraph': {
... 'title': 'Kapitel Überschrift Bla',
... 'elements': []},
... 'adhocracy_core.sheets.versions.IVersionable': {
... 'follows': [svrs0_path]
... }
... },
... 'root_versions': [pvrs2_path]
... }
>>> resp = app_admin.post(sdag_path, svrs)
>>> svrs1_path = resp.json['path']
>>> svrs1_path != svrs0_path
True

Whenever a IVersionable contains ‘follows’ link(s) to preceding versions, there should be a top-level ‘root_versions’
element listing the version of their root elements. ‘root_versions’ is a set, which means that order doesn’t matter and
duplicates are ignored. In this case, it points to the proposal version containing the document to update.

The ‘root_versions’ set allows automatical updates of items that embedding or otherwise linking to the updated item.
In this case, a fourth Document version is automatically created along with the updated Section version:

>>> resp = app_admin.get(pdag_path)
>>> pprint(resp.json['data']['adhocracy_core.sheets.versions.IVersions'])
{'count': '4',
'elements': ['.../Documents/document_0000000/VERSION_0000000/',

'.../Documents/document_0000000/VERSION_0000001/',
'.../Documents/document_0000000/VERSION_0000002/',
'.../Documents/document_0000000/VERSION_0000003/']}

>>> resp = app_admin.get('/Documents/document_0000000/VERSION_0000003')
>>> pvrs3_path = resp.json['path']

>>> s2vrs1_path = resp.json['path']
>>> s2vrs1_path != s2vrs0_path
True

More interestingly, if we try to create a second version of kapitel2 we get an error because this would automatically
create two new version for pvrs3 and pvrs2 (both contain s2vrs0_path):

>>> svrs = {'content_type': 'adhocracy_core.resources.paragraph.IParagraphVersion',
... 'data': {
... 'adhocracy_core.sheets.document.IParagraph': {
... 'title': 'on the hardness of version control',
... 'elements': []},

60 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

... 'adhocracy_core.sheets.versions.IVersionable': {

... 'follows': [s2vrs0_path]

... }

... },

... 'root_versions': []

... }
>>> resp = app_admin.post(s2dag_path, svrs)
>>> pprint(resp.json['errors'][0])
{'description': 'No fork allowed - The auto update ...

But if we set the root_version to the last Document version (pvrs3)::

>>> svrs = {'content_type': 'adhocracy_core.resources.paragraph.IParagraphVersion',
... 'data': {
... 'adhocracy_core.sheets.document.IParagraph': {
... 'title': 'on the hardness of version control',
... 'elements': []},
... 'adhocracy_core.sheets.versions.IVersionable': {
... 'follows': [s2vrs0_path]
... }
... },
... 'root_versions': [pvrs3_path]
... }
>>> resp = app_admin.post(s2dag_path, svrs)

a new version pvrs4 is automatically created following only pvrs3, not pvrs2:

>>> resp = app_admin.get(pdag_path)
>>> pprint(resp.json['data']['adhocracy_core.sheets.versions.IVersions'])
{'count': '5',
'elements': ['.../Documents/document_0000000/VERSION_0000000/',

'.../Documents/document_0000000/VERSION_0000001/',
'.../Documents/document_0000000/VERSION_0000002/',
'.../Documents/document_0000000/VERSION_0000003/',
'.../Documents/document_0000000/VERSION_0000004/']}

>>> resp = app_admin.get('/Documents/document_0000000/VERSION_0000004')
>>> pvrs4_path = resp.json['path']
>>> resp.json['data']['adhocracy_core.sheets.versions.IVersionable']['follows']
[.../Documents/document_0000000/VERSION_0000003/']

>>> resp = app_admin.get('/Documents/document_0000000/VERSION_0000003')
>>> resp.json['data']['adhocracy_core.sheets.versions.IVersionable']['follows']
[.../Documents/document_0000000/VERSION_0000002/']

FIXME: If two frontends post competing documents simultaneously, neither knows which proposal version belongs
to whom. Proposed solution: the post response must tell the frontend the changed root_version.

Tags

Each Versionable has a FIRST tag that points to the initial version:

>>> resp = app_admin.get('/Documents/document_0000000')
>>> pprint(resp.json['data']['adhocracy_core.sheets.tags.ITags']['FIRST'])
'.../Documents/document_0000000/VERSION_0000000/'

It also has a LAST tag that points to the newest versions – any versions that aren’t ‘followed_by’ any later version:

2.5. API 61

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> pprint(resp.json['data']['adhocracy_core.sheets.tags.ITags']['LAST'])
'.../Documents/document_0000000/VERSION_0000004/'

Forks and forkability

This api has been designed to allow implementation of complex merge conflict resolution, both automatic and with
user-involvement. Many resource types, however, only supports a simplified version control strategy with a linear
history: If any version that is not head is used as a predecessor, the backend responds with an error. The frontend has
to handle these errors, as they can always occur in race conditions with other users.

Current and potential future conflict resolution strategies are:

1. If a race condition is reported by the backend, the frontend updates the predecessor version to head and tries
again. (In the unlikely case where lots of post activity is going on, it may be necessary to repeat this several
times.)

Example: IRatingVersion can only legally be modified by one user and should not experience any race condi-
tions. If it does, the second post wins and silently reverts the previous one.

2. (Future work) Like 1., but the frontend posts two new versions on top of HEAD. If this is the situation of the
conflict:

Doc v0----v1
\
-----v1'

>-----> time >-------->

Then it is resolved as follows (by the frontend of the author of v1’):

Doc v0----v1
\
-----v0'----v1'

>-----> time >-------->

v0’ is a copy of v0 that differs only in its predecessor. It is called a ‘revert’ version. (FIXME: is there a way to
enrich the data with a ‘is_revert’ flag?)

This must be done in a batch request (a transaction) in order to avoid that only the revert is successfully posted,
but the actual change fails. Again, it is possible that this batch request fails, and has to be attempted several
times.

Example: IDocumentVersion can be modified by many users concurrently.

3. (Future work) Both authors of the conflict are notified (email, dashboard, ...), and explained how they can inspect
the situation and add new versions. (The email should probably contain a warning that it’s best to get on the
phone and talk it through before generating more merge conflicts.)

4. (Future work) Ideally, the user would to be notified that there is a conflict, display the differences between the
three versions, and allow the user to merge his changes into the current HEAD.

5. (Future work) It is allowed to have multiple heads in the DAG, e.g. different preferred versions by different
principals. This however still requires a lot of UX work to be done.

To give an example, Comments only allow a linear version history (just a single heads). Lets create a comment with
an initial version (see below for more on comments and post pools):

62 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> resp = app_admin.get('/Documents/document_0000000/VERSION_0000004')
>>> commentable = resp.json['data']['adhocracy_core.sheets.comment.ICommentable']
>>> post_pool_path = commentable['post_pool']
>>> comment = {'content_type': 'adhocracy_core.resources.comment.IComment',
... 'data': {}}
>>> resp = app_admin.post(post_pool_path, comment)
>>> comment_path = resp.json['path']
>>> first_commvers_path = resp.json['first_version_path']
>>> first_commvers_path
'.../Documents/document_0000000/comments/comment_000.../VERSION_0000000/'

We can create a second version that refers to the first (auto-created) version as predecessor:

>>> commvers = {'content_type': 'adhocracy_core.resources.comment.ICommentVersion',
... 'data': {
... 'adhocracy_core.sheets.comment.IComment': {
... 'refers_to': pvrs4_path,
... 'content': 'Bla bla bla!'},
... 'adhocracy_core.sheets.versions.IVersionable': {
... 'follows': [first_commvers_path]}},
... 'root_versions': [first_commvers_path]}
>>> resp = app_admin.post(comment_path, commvers)
>>> snd_commvers_path = resp.json['path']
>>> snd_commvers_path
'.../Documents/document_0000000/comments/comment_000.../VERSION_0000001/'

However, if we try to add another version that also gives the first version (no longer head) as predecessor, we get an
error:

>>> resp_data = app_admin.post(comment_path, commvers).json
>>> pprint(resp_data)
{'errors': [{'description': 'No fork allowed ...

'location': 'body',
'name': 'data.adhocracy_core.sheets.versions.IVersionable.follows'}],

'status': 'error'}

The description of the error will always be ‘No fork allowed’. This allows distinguishing this error from other kinds
of errors.

Only resources that implement the adhocracy_core.sheets.versions.IForkableVersionable sheet (instead of adhoc-
racy_core.sheets.versions.IVersionable) allow forking (multiple heads). For now, none of our standard resource types
does this.

Resources with PostPool, example Comments

To give another example of a versionable content type, we can write comments about proposals. The proposal has a
commentable sheet:

>>> resp = app_admin.get(pvrs4_path)
>>> commentable = resp.json['data']['adhocracy_core.sheets.comment.ICommentable']

This sheet has a special field post_pool referencing a pool:

>>> post_pool_path = commentable['post_pool']

We can post comments to this pool only:

2.5. API 63

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> comment = {'content_type': 'adhocracy_core.resources.comment.IComment',
... 'data': {}}
>>> resp = app_admin.post(post_pool_path, comment)
>>> comment_path = resp.json['path']
>>> comment_path
'.../Documents/document_0000000/comments/comment_000...'
>>> first_commvers_path = resp.json['first_version_path']
>>> first_commvers_path
'.../Documents/document_0000000/comments/comment_000.../VERSION_0000000/'

The first comment version is empty (as with all versionables), so lets add another version to say something meaningful.
A comment contains content (arbitrary text) and refers_to a specific version of a proposal.

>>> commvers = {'content_type': 'adhocracy_core.resources.comment.ICommentVersion',
... 'data': {
... 'adhocracy_core.sheets.comment.IComment': {
... 'refers_to': pvrs4_path,
... 'content': 'Gefällt mir, toller Vorschlag!'},
... 'adhocracy_core.sheets.versions.IVersionable': {
... 'follows': [first_commvers_path]}},
... 'root_versions': [first_commvers_path]}
>>> resp = app_admin.post(comment_path, commvers)
>>> snd_commvers_path = resp.json['path']
>>> snd_commvers_path
'.../Documents/document_0000000/comments/comment_000.../VERSION_0000001/'

Comments can be about any versionable that allows posting comments. Hence it’s also possible to write a comment
about another comment:

>>> metacomment = {'content_type': 'adhocracy_core.resources.comment.IComment',
... 'data': {}}
>>> resp = app_admin.post(post_pool_path, metacomment)
>>> metacomment_path = resp.json['path']
>>> metacomment_path
'.../Documents/document_0000000/comments/comment_000...'
>>> comment_path != metacomment_path
True
>>> first_metacommvers_path = resp.json['first_version_path']
>>> first_metacommvers_path
'.../Documents/document_0000000/comments/comment_000.../VERSION_0000000/'

As usual, we have to add another version to actually say something:

>>> metacommvers = {'content_type': 'adhocracy_core.resources.comment.ICommentVersion',
... 'data': {
... 'adhocracy_core.sheets.comment.IComment': {
... 'refers_to': snd_commvers_path,
... 'content': 'Find ich nicht!'},
... 'adhocracy_core.sheets.versions.IVersionable': {
... 'follows': [first_metacommvers_path]}},
... 'root_versions': [first_metacommvers_path]}
>>> resp = app_admin.post(metacomment_path, metacommvers)
>>> snd_metacommvers_path = resp.json['path']
>>> snd_metacommvers_path
'.../Documents/document_0000000/comments/comment_000.../VERSION_0000001/'

Let view all the comments referring to the proposal with a query on the comments pool:

64 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> resp_data = app_admin.get(post_pool_path,
... params={'content_type': 'adhocracy_core.resources.comment.ICommentVersion',
... 'depth': 2}).json
>>> commvers = resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements']
>>> snd_commvers_path in commvers
True

Since comments can refer to other comments, we can also find out which other comments refer to this comment
version:

>>> resp_data = app_admin.get(post_pool_path,
... params={'content_type': 'adhocracy_core.resources.comment.ICommentVersion',
... 'adhocracy_core.sheets.comment.IComment:refers_to': snd_commvers_path,
... 'depth': 2}).json
>>> comlist = resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements']
>>> comlist == [snd_metacommvers_path]
True

Rates

We can rate objects that provide the adhocracy_core.sheets.rate.IRateable sheet (or a subclass of it), e.g. comment
versions. Rateables have their own post pool, so we ask the comment where to send rates about it:

>>> resp = app_admin.get(snd_commvers_path)
>>> rateable_post_pool = resp.json['data']['adhocracy_core.sheets.rate.IRateable']['post_pool']

IRate objects are versionable too, so we first have to create a IRate resource and then post a IRateVersion resource
below it:

>>> rate = {'content_type': 'adhocracy_core.resources.rate.IRate',
... 'data': {}}
>>> resp = app_admin.post(rateable_post_pool, rate)
>>> rate_path = resp.json['path']
>>> first_ratevers_path = resp.json['first_version_path']
>>> ratevers = {'content_type': 'adhocracy_core.resources.rate.IRateVersion',
... 'data': {
... 'adhocracy_core.sheets.rate.IRate': {
... 'subject': app_admin.user_path,
... 'object': snd_commvers_path,
... 'rate': '1'},
... 'adhocracy_core.sheets.versions.IVersionable': {
... 'follows': [first_ratevers_path]}},
... 'root_versions': [first_ratevers_path]}
>>> resp = app_admin.post(rate_path, ratevers)
>>> snd_ratevers_path = resp.json['path']
>>> snd_ratevers_path
'...Documents/document_0000000/rates/rate_0000000/VERSION_0000001/'

If we want to change our rate, we can post a new version:

>>> ratevers['data']['adhocracy_core.sheets.rate.IRate']['rate'] = '0'
>>> ratevers['data']['adhocracy_core.sheets.versions.IVersionable']['follows'] = [snd_ratevers_path]
>>> ratevers['root_versions'] = [snd_ratevers_path]
>>> resp = app_admin.post(rate_path, ratevers)
>>> third_ratevers_path = resp.json['path']
>>> third_ratevers_path != snd_ratevers_path
True

2.5. API 65

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

But creating a second rate is not allowed to prevent people from voting multiple times:

>>> resp = app_admin.post(rateable_post_pool, rate)
>>> rate2_path = resp.json['path']
>>> first_rate2vers_path = resp.json['first_version_path']
>>> ratevers['data']['adhocracy_core.sheets.versions.IVersionable']['follows'] = [first_rate2vers_path]
>>> ratevers['root_versions'] = [first_rate2vers_path]
>>> resp_data = app_admin.post(rate2_path, ratevers).json
>>> resp_data['errors'][0]['name']
'data.adhocracy_core.sheets.rate.IRate.object'
>>> resp_data['errors'][0]['description']
'; Another rate by the same user already exists'

...TODO: remove ';' suffix of error description, :mod:`colander` bug

The subject of a rate must always be the user that is currently logged in – it’s not possible to vote for other users:

>>> ratevers['data']['adhocracy_core.sheets.rate.IRate']['subject'] = '/principals/users/0000005/'
>>> ratevers['data']['adhocracy_core.sheets.versions.IVersionable']['follows'] = [third_ratevers_path]
>>> ratevers['root_versions'] = [third_ratevers_path]
>>> resp_data = app_admin.post(rate_path, ratevers).json
>>> resp_data['errors'][0]['name']
'data.adhocracy_core.sheets.rate.IRate.subject'
>>> resp_data['errors'][0]['description']
'; Must be the currently logged-in user'

Batch requests

The following URL accepts batch requests

>>> batch_url = '/batch'

A batch request a POST request with a json array in the body that contains certain HTTP requests encoded in a certain
way.

A success response contains in its body an array of encoded HTTP responses. This way, the client can see what
happened to the individual POSTS, and collect all the paths of the individual resources that were posted.

Batch requests are processed as a transaction. By this, we mean that either all encoded HTTP requests succeed and
the response to the batch request is a success response, or any one of them fails, the database state is rolled back to the
beginning of the request, and the response is an error, explaining which request failed for which reason.

Things that are different in individual requests

Forks and multiple versions

During one Batch request you can create only one new version. The first version created (with an explicit post request
or auto updated) is used to store all modifications.

Preliminary resource paths: motivation and general idea.

All requests with methods POST, GET, PUT as allowed in the rest of this document are allowed in batch requests.
POST differs in that it yields preliminary resource paths. To understand what that is, consider this example: In step 4
of a batch request, the front-end wants to post to the path that resulted from posting the parent resource in step 3 of the
same request, so batch requests need to allow for an abstraction over the resource paths resulting from POST requests.
POST yields preliminary paths instead of actual ones, and POST, GET, and PUT are all allowed to use preliminary
paths in addition to the “normal” ones. Apart from this, nothing changes in the individual requests.

66 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Preliminary resource paths: implementation.

The encoding of a request consist of an object with attributes for method (aka HTTP verb), path, and body. A further
attribute, ‘result_path’, defines a name for the preliminary path of the object created by the request. The preliminary
path is like an AbsolutePath, but it starts with ‘@’ instead of ‘/’. If the preliminary name will not be used, this attribute
can be omitted or left empty.

>>> encoded_request_with_name = {
... 'method': 'POST',
... 'path': '/Proposal/document_0000000',
... 'body': { 'content_type': 'adhocracy_core.resources.sample_paragraph.IParagraph' },
... 'result_path': '@par1_item',
... 'result_first_version_path': '@par1_item/v1'
... }

Preliminary paths can be used anywhere in subsequent requests, either in the ‘path’ item of the request itself, or
anywhere in the json data in the body where the schemas expect to find resource paths. It must be prefixed with “@”
in order to mark it as preliminary. Right before executing the request, the backend will traverse the request object and
replace all preliminary paths with the actual ones that will be available by then.

In order to post the first real item version, we must use ‘first_version_path’ as the predecessor version, but we can’t
know its value before the post of the item version. This would not be a problem if the item would be created empty.

FIXME: change the api accordingly so that this problem goes away!

In order to work around you can set the optional field ‘result_first_version_path’ with a preliminary resource path.

Examples

Let’s add some more paragraphs to the second document above

>>> document_item = s2dag_path
>>> batch = [{
... 'method': 'POST',
... 'path': pdag_path,
... 'body': {
... 'content_type': 'adhocracy_core.resources.paragraph.IParagraph',
... 'data': {}
... },
... 'result_path': '@par1_item',
... 'result_first_version_path': '@par1_item/v1'
... },
... {
... 'method': 'POST',
... 'path': '@par1_item',
... 'body': {
... 'content_type': 'adhocracy_core.resources.paragraph.IParagraphVersion',
... 'data': {
... 'adhocracy_core.sheets.versions.IVersionable': {
... 'follows': ['@par1_item/v1']
... },
... 'adhocracy_core.sheets.document.IParagraph': {
... 'text': 'sein blick ist vom vorüberziehn der stäbchen'
... }
... },
... },
... 'result_path': '@par1_item/v2'
... },
... {

2.5. API 67

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

... 'method': 'GET',

... 'path': '@par1_item/v2'

... },

...]

The batch response is a dictionary with two fields:

>>> batch_resp = app_admin.post(batch_url, batch).json
>>> sorted(batch_resp)
['responses', 'updated_resources']

‘responses’ is an array of the individual responses.

‘updated_resources’ lists all the resources affected by the POST and PUT requests in the batch request. If the batch
requests doesn’t contain any such requests (only GET etc.), all of its sub-entries will be empty.

>>> updated_resources = batch_resp['updated_resources']
>>> rest_url + '/Documents/' in updated_resources['changed_descendants']
True
>>> rest_url + '/Documents/document_0000000/PARAGRAPH_0000002/' in updated_resources['created']
True

Lets inspect some of the responses. The ‘code’ field contains the HTTP status code. The ‘body’ field contains the
JSON dict that would normally be sent as body of the request, except that its ‘updated_resources’ field (if any) is
omitted:

>>> len(batch_resp['responses'])
3
>>> pprint(batch_resp['responses'][0])
{'body': {'content_type': 'adhocracy_core.resources.paragraph.IParagraph',

'first_version_path': '.../Documents/document_0000000/PARAGRAPH_0000002/VERSION_0000000/',
'path': '.../Documents/document_0000000/PARAGRAPH_0000002/'},

'code': 200}
>>> pprint(batch_resp['responses'][1])
{'body': {'content_type': 'adhocracy_core.resources.paragraph.IParagraphVersion',

'path': '.../Documents/document_0000000/PARAGRAPH_0000002/VERSION_0000000/'},
'code': 200}

>>> pprint(batch_resp['responses'][2])
{'body': {'content_type': 'adhocracy_core.resources.paragraph.IParagraphVersion',

'data': {...},
'path': '.../Documents/document_0000000/PARAGRAPH_0000002/VERSION_0000000/'},

'code': 200}
>>> batch_resp['responses'][2]['body']['data']['adhocracy_core.sheets.document.IParagraph']['text']
'sein blick ist vom vorüberziehn der stäbchen'

New Versions are only created once within one batch request. That means the second subrequest does not create a
second version, but updates the existing first version:

>>> v0 = batch_resp['responses'][0]['body']['first_version_path']
>>> v0_again = batch_resp['responses'][1]['body']['path']
>>> v0 == v0_again
True

The follow reference points to None:

>>> batch_resp['responses'][2]['body']['data']['adhocracy_core.sheets.versions.IVersionable']['follows']
[]

The LAST tag should point to the last version we created within the batch request:

68 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> resp_data = app_admin.get('/Documents/document_0000000/PARAGRAPH_0000002').json
>>> resp_data['data']['adhocracy_core.sheets.tags.ITags']['LAST']
'.../Documents/document_0000000/PARAGRAPH_0000002/VERSION_0000000/'

All creation and modification dates are equal for one batch request:

>>> pdag_metadata = app_admin.get(pdag_path).json['data']['adhocracy_core.sheets.metadata.IMetadata']
>>> pv0_path = batch_resp['responses'][0]['body']['first_version_path']
>>> pv0_metadata = app_admin.get(pv0_path).json['data']['adhocracy_core.sheets.metadata.IMetadata']
>>> pv1_path = batch_resp['responses'][0]['body']['path']
>>> pv1_metadata = app_admin.get(pv1_path).json['data']['adhocracy_core.sheets.metadata.IMetadata']
>>> pv0_metadata['creation_date'] \
... == pv0_metadata['modification_date']\
... == pv1_metadata['creation_date']\
... == pv1_metadata['modification_date']
True

Post another paragraph item and a version. If the version post fails, the paragraph will not be present in the database

>>> invalid_batch = [{
... 'method': 'POST',
... 'path': pdag_path,
... 'body': {
... 'content_type': 'adhocracy_core.resources.paragraph.IParagraph',
... 'data': {}
... },
... 'result_path': '@par2_item'
... },
... {
... 'method': 'POST',
... 'path': '@par2_item',
... 'body': {
... 'content_type': 'NOT_A_CONTENT_TYPE_AT_ALL',
... 'data': {
... 'adhocracy_core.sheets.versions.IVersionable': {
... 'follows': ['@par2_item/v1']
... },
... 'adhocracy_core.sheets.document.IParagraph': {
... 'content': 'das wird eh nich gepostet'
... }
... }
... },
... 'result_path': '@par2_item/v2'
... }
...]
>>> invalid_batch_resp = app_admin.post(batch_url, invalid_batch).json
>>> pprint(sorted(invalid_batch_resp['updated_resources']))
['changed_descendants', 'created', 'modified', 'removed']
>>> pprint(invalid_batch_resp['responses'])
[{'body': {'content_type': 'adhocracy_core.resources.paragraph.IParagraph',

'first_version_path': '...',
'path': '...'},

'code': 200},
{'body': {'errors': [...],

'status': 'error'},
'code': 400}]

>>> get_nonexistent_obj = app_admin.get(invalid_batch_resp['responses'][0]['body']['path'])
>>> get_nonexistent_obj.status
'404 Not Found'

2.5. API 69

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Note that the response will contain embedded responses for all successful encoded requests (if any) and also for the
first failed encoded request (if any), but not for any further failed requests. The backend stops processing encoded
requests once the first of them has failed, since further processing would probably only lead to further errors.

Filtering Pools / Search

By default resources with IPool sheets do not list the child elements but only the count:

>>> resp_data = app_admin.get('/Documents/document_0000000/comments/').json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool'])
{'count': '3', 'elements': []}

Note: due to limitations of our (de)serialization library (Colander), -the count is returned as a string, though it is
actually a number.

To list child elements you have to do a search query with elements=paths (see below for more detailed examples):

>>> resp_data = app_admin.get('/Documents/document_0000000/comments',
... params={'elements': 'paths'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool'])
{'count': '3',
'elements': ['http://...]}

It is possible to filter and aggregate the elements listed in the IPool sheet by additional GET parameters. For example,
we can only retrieve children that have specific resource type (content_type):

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'content_type': 'adhocracy_core.resources.paragraph.IParagraph'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/document_0000000/PARAGRAPH_0000000/',
'.../Documents/document_0000000/PARAGRAPH_0000001/',
'.../Documents/document_0000000/PARAGRAPH_0000002/']

Note that multiple filters are combined by AND. If we specify a content_type filter and a sheet filter, only the elements
matched by both filters will be returned. The same applies to all other filters as well.

For more sophisticated queries you can add various comparator suffix to your parameter value. The available com-
parators depend on the choosedn filter.

eq ‘equal to’ is the default comparator we already used implicit:

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'content_type': '["eq", "adhocracy_core.resources.paragraph.IParagraph"]'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/document_0000000/PARAGRAPH_0000000/'...

noteq not equal to:

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'content_type': '["noteq", "adhocracy_core.resources.paragraph.IParagraph"]'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/document_0000000/VERSION_0000000/',...

gt greater then:

>>> resp_data = app_admin.get('/Documents/document_0000000/rates/',
... params={'name': '["gt", "rate_0000000"]'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/document_0000000/rates/rate_0000001/']

70 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

ge greater or equal to:

>>> resp_data = app_admin.get('/Documents/document_0000000/rates/',
... params={'name': '["ge", "rate_0000000"]'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/document_0000000/rates/rate_0000000/',
'.../Documents/document_0000000/rates/rate_0000001/']

lt lower then:

>>> resp_data = app_admin.get('/Documents/document_0000000/rates/',
... params={'name': '["lt", "rate_0000001"]'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/document_0000000/rates/rate_0000000/']

le lower or equal to:

>>> resp_data = app_admin.get('/Documents/document_0000000/rates/',
... params={'name': '["le", "rate_0000001"]'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/document_0000000/rates/rate_0000000/',
'.../Documents/document_0000000/rates/rate_0000001/']

Some comparators can handle a list of query values.

any:

>>> resp_data = app_admin.get('/Documents/document_0000000/rates/',
... params={'name': '["any", ["rate_0000000", "rate_0000001"]]'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/document_0000000/rates/rate_0000000/',
'.../Documents/document_0000000/rates/rate_0000001/']

notany:

>>> resp_data = app_admin.get('/Documents/document_0000000/rates/',
... params={'name': '["notany", ["rate_0000000", "rate_0000001"]]'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
[]

By default, only direct children of a pool are listed as elements, i.e. the standard depth is 1. Setting the depth filter
to a higher value allows also including grandchildren (depth=2) or even great-grandchildren (depth=3) etc. Allowed
values are arbitrary positive numbers and all. all can be used to get nested elements of arbitrary nesting depth:

>>> resp_data = app_admin.get('/Documents',
... params={'content_type': 'adhocracy_core.resources.document.IDocumentVersion',
... 'depth': 'all'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
[...'.../Documents/document_0000000/VERSION_0000001/'...]

>>> resp_data = app_admin.get('/Documents',
... params={'content_type': 'adhocracy_core.resources.document.IDocumentVersion',
... 'depth': '2'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
[...'.../Documents/document_0000000/VERSION_0000001/'...]

Without specifying a deeper depth, the above query for IDocumentVersions wouldn’t have found anything, since they
are children of children of the pool:

>>> resp_data = app_admin.get('/Documents',
... params={'content_type': 'adhocracy_core.resources.document.IDocumentVersion'

2.5. API 71

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

... }).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
[]

If you specify sort you can set a <custom> filter (see below) that supports sorting to sort the result:

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'sort': 'name'}).json
>>> resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements']
['.../Documents/document_0000000/PARAGRAPH_0000000/',...

Note All resource in the result set must have a value in the chosen sort filter. For example if you use rates you have to
limit the result to resources with adhocracy_core.sheets.rate.IRateable sheet.

Not supported filters cannot be used for sorting:

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'sort': 'path'}).json
>>> resp_data['errors'][0]['description']
'"path" is not one of content_type, name, text,...

If reverse is set to True the sorting will be reversed:

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'sort': 'name', 'reverse': True}).json
>>> resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements']
['.../Documents/document_0000000/rates/',...

You can also specifiy a limit and an offset for pagination:

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'sort': 'name', 'limit': 1, 'offset': 0}).json
>>> resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements']
['.../Documents/document_0000000/PARAGRAPH_0000000/']

The count is not affected by limit:

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'count': 'true', 'limit': 1}).json
>>> child_count = resp_data['data']['adhocracy_core.sheets.pool.IPool']['count']
>>> assert int(child_count) >= 10

The elements parameter allows controlling how matching element are returned. By default, ‘elements’ in the IPool
sheet contains nothing. This corresponds to setting elements=omit

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'content_type': 'adhocracy_core.resources.document.IDocumentVersion',
... 'elements': 'omit'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
[]

Setting elements=paths will yield a response with a listing of resource paths.

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'content_type': 'adhocracy_core.resources.document.IDocumentVersion',
... 'elements': 'paths'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/document_0000000/VERSION_0000000/',...

Setting elements=content will instead return the complete contents of all matching elements – what you would get by
making a GET request on each of their paths:

72 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'content_type': 'adhocracy_core.resources.document.IDocumentVersion',
... 'elements': 'content'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool'])
{'count': '5',
'elements': [{'content_type': 'adhocracy_core.resources.document.IDocumentVersion',

'data': ...

sheet filter resources with a specific sheet type:

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'content_type': 'adhocracy_core.sheets.document.IDocument'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/document_0000000/VERSION_0000000/',...

Valid query comparables: ‘eq’, ‘noteq’, ‘lt’, ‘le’, ‘gt’, ‘ge’, ‘any’, ‘notany’

tag is a filter that allows filtering only resources with a specific tag. Often we are only interested in the newest versions
of Versionables. We can get them by setting tag=LAST. Let’s find the latest versions of all documents:

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'content_type': 'adhocracy_core.resources.paragraph.IParagraphVersion',
... 'depth': 'all', 'tag': 'LAST'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/document_0000000/PARAGRAPH_0000000/VERSION_0000001/',
'.../Documents/document_0000000/PARAGRAPH_0000001/VERSION_0000001/',
'.../Documents/document_0000000/PARAGRAPH_0000002/VERSION_0000000/']

Valid query comparables: ‘eq’, ‘noteq’, ‘any’, ‘notany’

<custom> filter: depending on the backend configuration there are additional custom filters:

• rate the rate value of resources with adhocracy_core.sheets.rate.IRate sheet. This is mostly useful
for the requests with the aggregated filter. Supports sorting. Valid query comparable: ‘eq’, ‘noteq’, ‘lt’, ‘le’,
‘gt’, ‘ge’, ‘any’, ‘notany’

• rates the aggregated value of all adhocracy_core.sheets.rate.IRate resources referencing a re-
source with adhocracy_core.sheets.rate.IRateable. Only the LAST version of each rate is
counted. Supports sorting. Valid query comparable: ‘eq’, ‘noteq’, ‘lt’, ‘le’, ‘gt’, ‘ge’, ‘any’, ‘notany’

• controversiality controversy metrics based on rates and number of comments for all commentable and rateable
resources. Supports sorting. Valid query comparable: ‘eq’, ‘noteq’, ‘lt’, ‘le’, ‘gt’, ‘ge’, ‘any’, ‘notany’

• name the identifier value of all resources (last part in the resource url). This is the same value like the name in
the adhocracy_core.sheets.name.IName sheet. Valid query comparable: ‘eq’, ‘noteq’, ‘lt’, ‘le’, ‘gt’,
‘ge’, ‘any’, ‘notany’ Supports sorting.

• creator the userid of the resource creator. This is the path of the user resource url. Valid query comparable: ‘eq’
Supports sorting.

>>> resp_data = app_admin.get('/Documents', params={'creator': '/principals/users/0000003'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/badges/',
'.../Documents/document_0000000/']

• item_creation_date the the item_creation_date value of resources with
adhocracy_core.sheets.metadata.IMetadata. Valid query comparable: ‘eq’, ‘noteq’, ‘lt’,
‘le’, ‘gt’, ‘ge’, ‘any’, ‘notany’

• workflow_state workflow state, see Workflows, the state of versions is the same as for its item. Valid query
comparable: ‘eq’, ‘noteq’, ‘lt’, ‘le’, ‘gt’, ‘ge’, ‘any’, ‘notany’

2.5. API 73

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• badge the badge names of resources with adhocracy_core.sheets.badge.IBadgeable sheet. Valid
query comparable: ‘eq’, ‘noteq’, ‘any’, ‘notany’

• title the title of resources with adhocracy_core.sheets.title.ITitle sheet. Valid query compara-
ble: ‘eq’, ‘noteq’, ‘lt’, ‘le’, ‘gt’, ‘ge’, ‘any’, ‘notany’

• user_name the login name of users. Valid query comparable: ‘eq’, ‘noteq’, ‘lt’, ‘le’, ‘gt’, ‘ge’, ‘any’, ‘notany’

<package.sheets.sheet.ISheet:FieldName> filters: you can add arbitrary custom filters that refer to sheet fields with
references. The key is the name of the isheet plus the field name separated by ‘:’ The value is the wanted reference
target.

First we create more paragraphs versions:

>>> pvrs0_path = '/Documents/document_0000000/PARAGRAPH_0000002/VERSION_0000000/'
>>> pvrs = {'content_type': 'adhocracy_core.resources.paragraph.IParagraphVersion',
... 'data': {'adhocracy_core.sheets.versions.IVersionable': {
... 'follows': [pvrs0_path]}},
... 'root_versions': [pvrs0_path]}
>>> resp = app_admin.post('/Documents/document_0000000/PARAGRAPH_0000002',
... pvrs)
>>> pvrs1_path = resp.json['path']

Now we can search references:: def get(self, path: str, params={}, extra_headers={}) -> TestResponse:

“”“Send get request to the backend rest server.”“” url = self._build_url(path) headers =
copy(self.header) headers.update(extra_headers) resp = self.app.get(url,

headers=headers, params=params, expect_errors=True)

return resp

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'content_type': 'adhocracy_core.resources.paragraph.IParagraphVersion',
... 'adhocracy_core.sheets.versions.IVersionable:follows':
... '/Documents/document_0000000/PARAGRAPH_0000002/VERSION_0000000/',
... 'depth': 'all', 'tag': 'LAST'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../Documents/document_0000000/PARAGRAPH_0000002/VERSION_0000001/']

Valid query comparable: ‘eq’

If the specified sheet or field doesn’t exist or if the field exists but is not a reference field, the backend responds with
an error:

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'adhocracy_core.sheets.NoSuchSheet:nowhere':
... '.../Documents/document_0000000/PARAGRAPH_0000002/VERSION_0000000/'}).json
>>> resp_data['errors'][0]['description']
'No such sheet or field'
>>> resp_data['errors'][0]['location']
'querystring'

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'adhocracy_core.sheets.name.IName:name':
... '.../Documents/document_0000000/kapitel2/VERSION_0000000/'}).json
>>> resp_data['errors'][0]['description']
'Not a reference node'
>>> resp_data['errors'][0]['name']
'adhocracy_core.sheets.name.IName:name'

You’ll also get an error if you try to filter by a catalog that doesn’t exist:

74 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'content_type': 'adhocracy_core.resources.paragraph.IParagraphVersion',
... 'foocat': 'whatever'}).json
>>> resp_data['errors'][0]['description']
'Unrecognized keys in mapping: "{\'foocat\': \'whatever\'}"'

aggregateby allows you to add the additional field aggregateby with aggregated index values of all result resources.
You have to set the value to an existing filter like aggregateby=tag. Only index values that exist in the query result
will be reported, i.e. the count reported for each value will be 1 or higher.

>>> resp_data = app_admin.get('/Documents/document_0000000',
... params={'content_type': 'adhocracy_core.resources.paragraph.IParagraphVersion',
... 'depth': 'all', 'aggregateby': 'tag'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['aggregateby'])
{'tag': {'FIRST': 3, 'LAST': 3}}

Asynchronous Backend-Frontend Communication Via Web Sockets

The basic idea is very simple: clients need to be able to subscribe and unsubscribe to (changes of) a given object. If
an object changes and a client is subscribed to it, that client will receive a notification.

We implement this by opening one web-socket per client (= frontend) at the beginning of a session. Subscribe and
unsubscribe requests are sent from client to server (= backend), and change notifications are sent from server to client.
The client is responsible to handle and dispatch each particular change to the parts of the GUI that care about it.

Client Messages

Both client and server send messages in JSON format.

Client messages have the following structure:

{ "action": "ACTION", "resource": "RESOURCE_PATH" }

ACTION is one of:

• “subscribe” to start receiving updates about a resource. If the client has already sent an earlier subscribe request
for that resource, the new request is silently ignored.

• “unsubscribe” to stop receiving updates about a resource. If the client is not currently subscribed to that resource,
the request is silently ignored.

For example:

{ "action": "subscribe", "resource": "/adhocracy/prop1/" }

And later:

{ "action": "unsubscribe", "resource": "/adhocracy/prop1/" }

Server Messages

Responses to Client Messages

Status Confirmations If a client request was processed successfully by the server, it sends a status confirmation:

2.5. API 75

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

{ "status": "STATUS", "action": "ACTION", "resource": "RESOURCE_PATH" }

STATUS is either:

• “ok” if the request was processed successfully and changed the internal state of the server.

• “redundant” if the request was unnecessary since it already corresponded to internal state of the server (the client
tried to subscribe to a resource it has already subscribed or to unsubscribe from a resource it hasn’t subscribed).

The “action” and “resource” fields repeat the corresponding values from the client request.

Error Messages Otherwise, if the server didn’t understand a request sent by the client or could not handle it, it
responds with an error message:

{ "error": "ERROR_CODE", "details": "DETAILS" }

ERROR_CODE will be one of the following:

• “unknown_action” if the client asked for an action that the server doesn’t understand (neither “subscribe” nor
“unsubscribe”). DETAILS contains the unknown action.

• “unknown_resource” if a client specified a resource path that is unknown to the server. DETAILS contains the
unknown resource path.

• “malformed_message” if the client sent a message that cannot be parsed as JSON. DETAILS contains a parsing
error message.

• “invalid_json” if the client sent a message that is JSON but doesn’t contain the expected information (for exam-
ple, if it’s a JSON array instead of a JSON object or if “action” or “resource” keys are missing or their values
aren’t strings). DETAILS contains a short description of the problem.

• “internal_error” if an internal error occurred at the server. DETAILS contains a short description of the problem.
In an ideal world, this will never happen.

Note that it is not always possible to provide action and resource of the respective request (e.g. with “invalid_jason”).
The client needs to keep track of the order in which it sends the requests, and has to associate the responses with that
list. Responses (errors or not) are guaranteed to be sent to the frontend in the same order as requests are sent to the
backend.

Notifications

Whenever one of the subscribed resources is changed, the server sends a message to the client. Which messages are
sent depends on the type of the resource that has been subscribed.

• If resource is a Simple (e.g. a Tag):

– If the value of the Simple has changed:

{ "event": "modified", "resource": "RESOURCE_PATH" }

– If the Simple has been removed:

{ "event": "removed", "resource": "RESOURCE_PATH" }

In practice this usually means that the resource has been deleted or marked hidden (see Deleting Re-
sources).

• If resource is a Pool:

– If some of the Pool’s metadata has changed (e.g. its title):

76 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

{ "event": "modified", "resource": "RESOURCE_PATH" }

(Same as with Simples.)

– If the Pool has been removed:

{ "event": "removed", "resource": "RESOURCE_PATH" }

(Same as with Simples.)

– If a new child (sub-Pool or Item) is added to the Pool:

{ "event": "new_child",
"resource": "RESOURCE_PATH",
"child": "CHILD_RESOURCE_PATH" }

– If a child (sub-Pool or Item) is removed from the Pool:

{ "event": "removed_child",
"resource": "RESOURCE_PATH",
"child": "CHILD_RESOURCE_PATH" }

In practice this usually means that the resource has been deleted or marked as hidden (see Deleting Re-
sources).

– If a child (sub-Pool or Item) in the Pool is modified:

{ "event": "modified_child",
"resource": "RESOURCE_PATH",
"child": "CHILD_RESOURCE_PATH" }

(Rationale for modify: a pool is probably rendered as a table of contents, and if the title of an object
changes, the table of contents must be re-rendered.)

– If anything that lies below the pool (children, grandchildren etc.) has been added, removed, or modified:

{ "event": "changed_descendants", "resource": "RESOURCE_PATH" }

This event is sent only once per transaction and pool, even if multiple of its descendants have been modi-
fied. It tells the frontend that any queries previously sent to the pool should now be considered outdated,
as query results can refer to grandchildren and other resources that lie below the pool, but aren’t its direct
children.

• If resource is an Item (e.g. a Proposal):

– If a new sub-Item is added to the Item (e.g. a Section):

{ "event": "new_child",
"resource": "RESOURCE_PATH",
"child": "CHILD_RESOURCE_PATH" }

(Same as with Pool.)

– If a new ItemVersion is added to the Item:

{ "event": "new_version",
"resource": "RESOURCE_PATH",
"version": "VERSION_RESOURCE_PATH" }

– The other events sent as the same as for Pools, since all Items are also pools: “modified”, “removed”,
“removed_child”, “modified_child”, “changed_descendant”. The “modified_child” and “removed_child”
events don’t distinguish between sub-Items and ItemVersions – both are considered children.

2.5. API 77

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• If resource is an ItemVersion:

– If a backreference in the version has changed:

{ "event": "modified", "resource": "RESOURCE_PATH" }

This happens e.g. if a successor version has been created that refers to the subscribed version as its
predecessor.

Otherwise, versions are immutable, so updated backreferences (the reverse direction for a reference from
another resource to this one) are the only thing that can trigger a “modified” event.

A note about resource removal: if a resource is removed (deleted or hidden), any subscribers to it will automatically
be unsubscribed, so they won’t receive further updates about this resource, even if it later “revealed” (unhidden) again.
Subscribers to the parent pool will receive a “new_child” or “new_version” message notifying them about the revealed
resource just as if it had been newly created.

Re-Connects

There is no way to recover the state of a broken connection. The backend handles every disconnect by discarding all
subscriptions.

Therefore, if the WS connection ends for any reason, the frontend must re-connect, flush its cache, and reload and
re-subscribe to every resource that is still relevant.

(POSSIBLE FUTURE WORK: If WS connections prove to be unstable enough to make the above approach cause too
much overhead, the backend may maintain the session for a configurable amount of time. If the frontend re-connects
in that time window and presents a session key, it will receive a list of change notifications that it missed during the
broken connection, and it won’t have to flush its cache. The session key could either be negotiated over the WS, or
there may be some token provided by substance_d / angular / somebody that can be used for this.)

Permission system

Principals

There are two types of principals users and groups (principal). On the technical level, roles are also called principles.

groups (set of users):

• authenticated (all authenticated users)

• system.Everyone (all authenticated and anonymous users, standard group)

• gods (initial custom group, no permission checks)

• admins (custom group)

• managers (custom group)

• ...

users:

• god (initial user)

• ...

Principals are mapped to a set of global permissions(role) and local permissions for a specific context (local role)

78 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Roles (mapping to permissions)

Roles with example permission mapping:

• reader: can view: view the proposal

• annotator: can add content metadata/annotations add comment to the proposal add voting to the proposal
add rating to the proposal add tag to the proposal

• contributor: can add content: add proposal

• editor: can edit content: edit proposal

• creator: edit meta stuff: permissions, transition to workflow states, ...: edit proposal change workflow state
to draft change permissions

• reviewer: do transition to specific workflow states: change workflow state to accepted/denied

• manager: delete, edit meta stuff: permissions, transition to workflow states, ...: ‘delete’ illegal content
change workflow state .. change permissions

• admin: create an configure the participation process, manage principals: add participation process set
workflow manage principals

TODO the role definition is outdated

Mappings of principals to local roles are associate with resources and are inherited within the object hierarchy in the
database. The creator is the principal who created the local context. The creator role is automatically set for a specific
local context and is not inherited.

Permission mappings for roles with high priority override those with lower priorty. The order is determined by
adhocracy_core.schema.ROLE_PRINCIPALS from left (low) right (high).

ACL (Access Control List)

List with ACEs (Access Control Entry): [<Action>, <Principal>, <Permission>]

Action: Allow | Deny Principal: UserId | group:GroupID | role:RoleID Permission: view, edit, add, ...

Every resource in the object hierarchy has a local ACL.

To check permission all ACEs are searched starting with the ACL of the requested resource, and then searching the
parent’s ACLs recursively. The Action of the first ACE with matching permission is returned.

Customizing

1. map users to group

2. map roles to principals

3. use workflow system to locally add roles to principals.

4. locally add local role s (change permission to allow others to edit)

5. map permissions to roles:

• use only configuration for this

• default mapping should just work for most use cases

2.5. API 79

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Questions

What is the difference (conceptually) between a role and a group?

• For the basic pyramid authorization system there are only principals, no matter if you call them user/group or
role. On our conceptual level we have a different semantic for user, group and role. You can see roles as groups
with a default set of permissions.

is there multiple inheritance?

• no

does “inheritance” always mean “content type inheritance”?

• in this context inheritance means inheritance from parent to child in the object hierarchy

can groups be members of groups?

• no. but it would be easy to implement that.

Do we need workflows at all? or can we assume ACLs and roles don’t change at run time?

• For the year 2014: ACL won’t change during runtime and workflows are not needed

API

The user object must contain a list of roles and a list of groups she is a member of. This is necessary because the UI
looks different for different roles (at the very least, we want to see a different icon for every role in the login widget).

If the FE sends a request to the BE that it has no authorization for, it will receive an error (depending on the situation
either 4xx to conceal the existence of secret resources, or 3xx to explicitly deny access).

There are (at least) four approaches to implement an API that the FE can use to query BE about permissions without
actually performing an access operation an observing the response:

1. OPTIONS protocol. This is expressive enough to decide if user is allowed to edit a resource or not, but not
enough to inspect or edit permissions of self (by ordinary users) or other users (by admin).

2. (future work) Add permission object to meta API (CAVEAT: this makes version resources change unexpectedly).

3. (future work) Change HTTP response to contain not only the resource but also permission information in a
larger JSON object.

4. (future work) New HTTP end-point for permission requests.

doctest: +ELLIPSIS # doctest: +NORMALIZE_WHITESPACE

Default permissions

Basic functional tests for roles and default permission settings.

Prerequisites

Some imports to work with rest api calls:

>>> from pprint import pprint
>>> from adhocracy_core.resources.document import IDocument
>>> from adhocracy_core.resources.document import IDocumentVersion
>>> from adhocracy_core.resources.organisation import IOrganisation

80 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Start adhocracy app and log in some users:

>>> anonymous = getfixture('app_anonymous')
>>> participant = getfixture('app_participant')
>>> participant2 = getfixture('app_participant2')
>>> moderator = getfixture('app_moderator')
>>> initiator = getfixture('app_initiator')
>>> admin = getfixture('app_admin')
>>> god = getfixture('app_god')

Create participation process structure by god (sysadmin) (like adhocracy_core.interfaces.IPool sub-
types)

>>> prop = {'content_type': 'adhocracy_core.resources.organisation.IOrganisation',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'organisation'}}}
>>> resp = god.post('/', prop).json
>>> prop = {'content_type': 'adhocracy_core.resources.process.IProcess',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'process'}}}
>>> resp = god.post('/organisation', prop)

Create participation process content by participant:

>>> prop = {'content_type': 'adhocracy_core.resources.document.IDocument',
... 'data': {}}
>>> resp = participant.post('/organisation/process', prop).json
>>> participant_proposal = resp['path']
>>> participant_proposal_comments = resp['path'] + 'comments'
>>> participant_proposal_rates = resp['path'] + 'rates'

>>> prop = {'content_type': 'adhocracy_core.resources.document.IDocumentVersion',
... 'data': {}}
>>> resp = participant.post(participant_proposal, prop).json

Create content annotations by participant:

>>> prop = {'content_type': 'adhocracy_core.resources.comment.IComment',
... 'data': {}}
>>> resp = participant.post(participant_proposal_comments, prop).json
>>> participant_comment = resp['path']
>>> prop = {'content_type': 'adhocracy_core.resources.comment.ICommentVersion',
... 'data': {'adhocracy_core.sheets.comment.IComment': {'comment': 'com'}}}
>>> resp = participant.post(participant_comment, prop)

>>> prop = {'content_type': 'adhocracy_core.resources.rate.IRate', 'data': {}}
>>> resp = participant.post(participant_proposal_rates, prop).json
>>> participant_rate = resp['path']

Anonymous

Can read resources and normal sheets:

>>> resp = anonymous.options('/organisation').json
>>> pprint(resp['GET']['response_body']['data'])
{...'adhocracy_core.sheets.metadata.IMetadata': {}...}

Cannot create comments annotations for participation process content:

>>> 'POST' in anonymous.options(participant_proposal_comments).json
False

2.5. API 81

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Cannot create rate annotations for participation process content:

>>> 'POST' in anonymous.options(participant_proposal_rates).json
False

Cannot edit annotations for participation process content:

>>> 'POST' in anonymous.options(participant_comment).json
False

Cannot create process content:

>>> 'POST' in anonymous.options('/organisation/process').json
False

Cannot edit process content:

>>> 'POST' in anonymous.options(participant_proposal).json
False

Cannot create process structure:

>>> 'POST' in anonymous.options('/organisation/process').json
False

Cannot edit process structure:

>>> 'PUT' in anonymous.options('/organisation/process').json
False

Participant

Can read resources and normal sheets:

>>> resp = participant.options('/organisation').json
>>> pprint(resp['GET']['response_body']['data'])
{...'adhocracy_core.sheets.metadata.IMetadata': {}...}

Can create comments annotations for participation process content:

>>> resp = participant.options(participant_proposal_comments).json
>>> pprint(sorted([r['content_type'] for r in resp['POST']['request_body']]))
['adhocracy_core.resources.comment.IComment']

Can create rate annotations for participation process content:

>>> resp = participant.options(participant_proposal_rates).json
>>> pprint(sorted([r['content_type'] for r in resp['POST']['request_body']]))
['adhocracy_core.resources.rate.IRate']

Can edit his own annotations:

>>> resp = participant.options(participant_comment).json
>>> pprint(sorted([r['content_type'] for r in resp['POST']['request_body']]))
['adhocracy_core.resources.comment.ICommentVersion']

Cannot edit annotations:

>>> 'POST' in participant2.options(participant_comment).json
False

82 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Can create process content:

>>> resp = participant.options('/organisation/process').json
>>> pprint(sorted([r['content_type'] for r in resp['POST']['request_body']]))
['adhocracy_core.resources.document.IDocument',
'adhocracy_core.resources.document.IGeoDocument',
'adhocracy_core.resources.external_resource.IExternalResource',
'adhocracy_core.resources.proposal.IGeoProposal',
'adhocracy_core.resources.proposal.IProposal',
'adhocracy_core.resources.relation.IPolarization']

Can edit his own process content:

>>> resp = participant.options(participant_proposal).json
>>> pprint(sorted([r['content_type'] for r in resp['POST']['request_body']]))
['adhocracy_core.resources.document.IDocumentVersion',
'adhocracy_core.resources.paragraph.IParagraph']

Cannot edit process content:

>>> 'POST' in participant2.options(participant_proposal).json
False

Cannot create process structure:

>>> 'POST' in participant.options('/organisation').json
False

Cannot edit process structure:

>>> 'PUT' in participant.options('/organisation').json
False

Moderator

Can create comments annotations for participation process content:

>>> resp = moderator.options(participant_proposal_comments).json
>>> pprint(sorted([r['content_type'] for r in resp['POST']['request_body']]))
['adhocracy_core.resources.comment.IComment']

#Cannot create rate annotations for participation process content:: # # >>> ‘POST’ in modera-
tor.options(participant_proposal_rates).json # False

Cannot edit annotations for participation process content:

>>> 'POST' in moderator.options(participant_comment).json
False

#Cannot create process content:: # # >>> ‘POST’ in moderator.options(‘/organisation/process’).json # False

Cannot edit process content:

>>> 'POST' in moderator.options(participant_proposal).json
False

Can hide process content

>>> resp = moderator.options(participant_proposal).json
>>> 'adhocracy_core.sheets.metadata.IMetadata' \

2.5. API 83

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

... in resp['PUT']['request_body']['data']
True

Initiator

Cannot create process structure organisation:

>>> resp = initiator.options('/organisation').json
>>> postables = sorted([r['content_type'] for r in resp['POST']['request_body']])
>>> IOrganisation.__identifier__ not in postables
True

Cannot edit process structure organisation (except the workflow state):

>>> pprint(sorted([r for r in resp['PUT']['request_body']['data']]))
['adhocracy_core.sheets.workflow.IWorkflowAssignment']

Can create process structure process:

>>> resp = initiator.options('/organisation').json
>>> pprint(sorted([r['content_type'] for r in resp['POST']['request_body']]))
['adhocracy_core.resources.document_process.IDocumentProcess',
'adhocracy_core.resources.process.IProcess']

Admin

Cannot create rate annotations for participation process content:

>>> 'POST' in admin.options(participant_proposal_rates).json
False

Can edit annotations for participation process content:

>>> 'POST' in admin.options(participant_comment).json
True

Can create process structure:

>>> resp = admin.options('/organisation').json
>>> pprint(sorted([r['content_type'] for r in resp['POST']['request_body']]))
['adhocracy_core.resources.document_process.IDocumentProcess',
'adhocracy_core.resources.organisation.IOrganisation',
'adhocracy_core.resources.process.IProcess']

Cannot edit process structure:

>>> 'PUT' in admin.options('/organisation').json
True

>>> 'PUT' in admin.options('/organisation/process').json
True

Can create groups:

>>> resp = admin.options('/principals/groups').json
>>> pprint(sorted([r['content_type'] for r in resp['POST']['request_body']]))
['adhocracy_core.resources.principal.IGroup']

84 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Can create users:

>>> resp = admin.options('/principals/users').json
>>> pprint(sorted([r['content_type'] for r in resp['POST']['request_body']]))
['adhocracy_core.resources.principal.IUser']

Can assign users to groups, and roles to users:

>>> god_user = '/principals/users/0000000'
>>> resp = admin.options(god_user).json
>>> pprint(sorted([s for s in resp['PUT']['request_body']['data']]))
[...'adhocracy_core.sheets.principal.IPasswordAuthentication',
'adhocracy_core.sheets.principal.IPermissions',
'adhocracy_core.sheets.principal.IUserBasic',
'adhocracy_core.sheets.principal.IUserExtended',
'adhocracy_core.sheets.rate.ICanRate'...]

Workflows

Preliminaries

Some imports to work with rest api calls:

>>> from pprint import pprint
>>> from adhocracy_core.resources.process import IProcess
>>> from adhocracy_core.resources.document import IDocument

Start adhocracy app and log in some users:

>>> app_god = getfixture('app_god')
>>> app_god.base_path = '/'

Lets create some content:

>>> data = {'adhocracy_core.sheets.name.IName': {'name': 'process'}}
>>> resp = app_god.post_resource('/', IProcess, data)
>>> data = {}
>>> resp = app_god.post_resource('/process', IDocument, data)

Workflows

Workflows are finite state machines assigned to a resource. States can set the local permissions. States can have
metadata (title, date,...). State transitions can have a callable to execute arbitrary tasks.

The MetaAPI gives us the states and transitions metadata for each workflow:

>>> resp = app_god.get('/meta_api').json
>>> workflow = resp['workflows']['sample']

State metadata contains a human readable title:

>>> state = workflow['states']['participate']
>>> state['title']
'Participate'

a description:

2.5. API 85

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> state['description']
'This phase is...

a local ACM (see doc:glossary) that is set when entering this state:

>>> state['acm']['principals']
['participant', ...
>>> state['acm']['permissions']
[['create_proposal',...

a hint for the frontend if displaying this state in listing should be restricted:

>>> state['display_only_to_roles']
[]

The initial workflow state:

>>> workflow['initial_state']
'participate'

Transition metadata determines the possible state flow and can provide a callable to execute arbitrary tasks:

>>> transition = workflow['transitions']['to_frozen']
>>> pprint(transition)
{'callback': None,
'from_state': 'participate',
'permission': 'do_transition',
'to_state': 'frozen'}

Workflow Assignment

Pool have a WorkflowAssignment sheet to get the registered workflow:

>>> resp = app_god.get('/process/').json
>>> workflow_data = resp['data']['adhocracy_core.sheets.workflow.IWorkflowAssignment']
>>> workflow_data['workflow']
'sample'

and get the current state:

>>> workflow_data['workflow_state']
'participate'

in addition it can have custom metadata for specific workflow states:

>>> workflow_data['state_data']
[]

this metadata can be set:

>>> data = {'data': {'adhocracy_core.sheets.workflow.IWorkflowAssignment': {'state_data':
... [{'name': 'participate', 'description': 'new',
... 'start_date': '2015-05-26T12:40:49.638293+00:00'}]
... }}}
>>> resp = app_god.put('/process', data)
>>> resp.status_code
200

>>> resp = app_god.get('/process').json

86 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> workflow_data = resp['data']['adhocracy_core.sheets.workflow.IWorkflowAssignment']
>>> pprint(workflow_data['state_data'][0])
{'description': 'new',
'name': 'participate',
'start_date': '2015-05-26T12:40:49.638293+00:00'}

Workflow transition to states

We can also modify the state if the workflow has a suitable transition. First we check the available next states:

>>> resp = app_god.options('/process').json
>>> resp['PUT']['request_body']['data']['adhocracy_core.sheets.workflow.IWorkflowAssignment']
{'workflow_state': ['frozen']}

Then we can put the wanted next state:

>>> data = {'data': {'adhocracy_core.sheets.workflow.IWorkflowAssignment': {'workflow_state': 'frozen'}}}
>>> resp = app_god.put('/process', data)
>>> resp.status_code
200

>>> resp = app_god.get('/process').json
>>> resp['data']['adhocracy_core.sheets.workflow.IWorkflowAssignment']['workflow_state']
'frozen'

NOTE: The available next states depend on the workflow transitions and user permissions. NOTE: To make this work
every state may have only one transition to another state.

Workflow State filtering

Filtering Pools allow to search for resource with specific workflow state:

>>> resp_data = app_god.get('/', {'workflow_state': 'WRONG'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
[]

>>> resp_data = app_god.get('/', {'workflow_state': 'frozen'}).json
>>> pprint(resp_data['data']['adhocracy_core.sheets.pool.IPool']['elements'])
['.../process/']

Assets and Images

Introduction

Assets are files of arbitrary type that can be uploaded to and downloaded from the backend. From the viewpoint of the
backend, they are just “blobs” – binary objects without any specific semantic.

Images are a subtype of assets; they can be resized and cropped to different target formats.

To manage assets, the backend has the adhocracy_core.resources.asset.IAsset resource type, which is a special kind
of Pool.

Assets can be uploaded to an asset pool. Resources that provide an asset pool implement the adhoc-
racy_core.sheets.asset.IHasAssetPool sheet, which has a single field:

asset_pool path to the asset pool where assets can be posted

2.5. API 87

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

The adhocracy_core.resources.asset.IAsset resource type provides three sheets:

• adhocracy_core.sheets.metadata.IMetadata: provided by all resources, automatically created and updated by
the backend

• adhocracy_core.sheets.asset.IAssetMetadata with only readonly fields:

mime_type the MIME type of the asset; The mime_type provided by the uploaded asset file will
be sanity-check. The backend rejects the asset in case of a detectable mismatch (e.g. if the
frontend posts a Word file the image mimetype “image/jpeg” is given). Not all mismatches will
be detectable, e.g. different “text/” subtypes can be hard to distinguish.

size the size of the asset (in bytes)

filename the name of the file uploaded by the frontend (in the backend, the asset will have a different,
auto-generated path)

attached_to a list of backreferences pointing to resources that refer to the asset

• adhocracy_core.sheets.asset.IAssetData with a single field:

data the binary data of the asset (“blob”)

This sheet is POST/PUT-only, see below on how to download/view the binary data.

For testing, we import the needed stuff and start the Adhocracy app:

>>> from pprint import pprint
>>> log = getfixture('log')
>>> admin = getfixture('app_admin_filestorage')
>>> rest_url = getfixture('rest_url')

And an http server to test image download:

>>> import os
>>> import adhocracy_core
>>> httpserver = getfixture('httpserver')
>>> base_path = adhocracy_core.__path__[0]
>>> test_image_path = os.path.join(base_path, '../', 'docs', 'test_image.png')
>>> httpserver.serve_content(open(test_image_path, 'rb').read())
>>> httpserver.headers['Content-Type'] = 'image/png'
>>> test_image_url = httpserver.url

We need a pool with an asset pool:

>>> data = {'content_type': 'adhocracy_core.resources.process.IProcess',
... 'data': {'adhocracy_core.sheets.name.IName': {
... 'name': 'process'}}}
>>> resp_data = admin.post('/', data).json
>>> proposal_pool_path = resp_data['path']
>>> proposal_pool_path
'.../process/'

We can ask the pool for the location of the asset pool:

>>> resp_data = admin.get(proposal_pool_path).json
>>> asset_pool_path = resp_data['data'][
... 'adhocracy_core.sheets.asset.IHasAssetPool']['asset_pool']
>>> asset_pool_path
'.../process/assets/'

88 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Asset Subtypes, MIME Type Validators, resizing

Note: this section is mostly backend-specific.

The generic adhocracy_core.sheets.asset.IAssetMetadata sheet doesn’t limit the MIME type of assets. Since this is
rarely desirable, it is considered abstract and cannot be instantiated – only subclasses that provide a MIME Type
Validator can. Check out the adhocracy_core.sheets.image module for an example of how to do that.

To prevent confusing the frontend, you should also define a subclass of the adhocracy_core.resources.asset.IAsset
resource type that uses the subclassed sheet instead of the generic one. See adhocracy_core.resources.image for an
example.

In the examples that follow, we will use the subclassed example resource type and sheet.

The image will be automatically resized to all of the specified sizes. If the target aspect ratio is different from the
original aspect ratio, the size that is wider/higher is cropped so that only the middle part of it remains. For example,
if the original image has 1500x500 pixel and the target size is 500x250 (‘detail’ size in the above example), it will be
scaled to 50% (750x250 pixel) and then 125 pixel to the left and 125 to the right will be cropped to reach the target
size.

Uploading Assets

Assets are uploaded (POST) and updated (PUT) in a special way. Instead of sending a JSON document, the field
names and values are flattened into key/value pairs that are sent as a “multipart/form-data” request. Hence, the request
will have keys similar to the following:

content_type the type of the resource that shall be created, e.g. “adhoc-
racy_core.resources.image.IImage”

data:adhocracy_core.sheets.asset.IAssetData:data the binary data of the uploaded file, as per the
HTML <input type=”file” name=”asset”> tag.

But note that a concrete subsheet must be used instead of the generic IAssetMetadata sheet, matching the given
resource type.

For example, lets upload a little picture and create a proposal version that references it. But first we have to create a
proposal:

>>> prop_data = {'content_type': 'adhocracy_core.resources.document.IDocument',
... 'data': {}}
>>> resp = admin.post(proposal_pool_path, prop_data)
>>> prop_path = resp.json['path']
>>> prop_v0_path = resp.json['first_version_path']

Now we can upload a sample picture:

>>> upload_files = [('data:adhocracy_core.sheets.asset.IAssetData:data',
... 'python.jpg', open('docs/_static/python.jpg', 'rb').read())]
>>> request_body = {'content_type': 'adhocracy_core.resources.image.IImage'}
>>> resp_data = admin.post(asset_pool_path, request_body,
... upload_files=upload_files).json

In response, the backend sends a JSON document with the resource type and path of the new resource (just as with
other resource types). The resource name is generated randomly:

>>> resp_data['content_type']
'adhocracy_core.resources.image.IImage'
>>> pic_path = resp_data['path']
>>> pic_path
'.../process/assets/.../'

2.5. API 89

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

If the frontend tries to upload an asset that is overly large (more than 16 MB), the backend responds with an error.
Stricter size limits may be appropriate for some asset types, but they are left to the frontend.

Downloading Assets

Assets can be downloaded in different ways:

• As a JSON document containing just the metadata

• In case of images, in one of the cropped sizes defined by the ImageSizeMapper

The frontend can retrieve the JSON metadata by GETting the resource path of the asset:

>>> resp_data = admin.get(pic_path).json
>>> resp_data['content_type']
'adhocracy_core.resources.image.IImage'
>>> resp_data['data']['adhocracy_core.sheets.metadata.IMetadata']['modification_date']
'20...'
>>> resp_image_meta = resp_data['data']['adhocracy_core.sheets.image.IImageMetadata']
>>> pprint(resp_image_meta)
{'attached_to': [],
'detail': '.../process/assets/.../0000000/',
'filename': 'python.jpg',
'mime_type': 'image/jpeg',
'size': '159041',
'thumbnail': '.../process/assets/.../0000001/'}

The actual binary data is not part of that JSON document:

>>> 'adhocracy_core.sheets.asset.IAssetData' in resp_data['data']
False

In case of images, it can retrieve the image binary data in one of the predefined cropped sizes by asking for one of the
keys defined by the ImageSizeMapper as child element:

>>> resp_data = admin.get(resp_image_meta['detail'])
>>> resp_data.content_type
'image/jpeg'
>>> detail_size = len(resp_data.body)

>>> resp_data = admin.get(resp_image_meta['thumbnail'])
>>> thumbnail_size = len(resp_data.body)
>>> thumbnail_size > 2000
True
>>> thumbnail_size < detail_size
True

Referring to Assets

Sheets can have fields that refer to assets of a specific type. This is done in the usual way be setting the type of the
field to Reference (to refer to a single asset) or UniqueReferences (to refer to a list of assets) and defining a suitable
reftype (e.g. with target_isheet = IImageMetadata).

Lets post a new proposal version that refers to the image:

>>> vers_data = {'content_type': 'adhocracy_core.resources.document.IDocumentVersion',
... 'data': {'adhocracy_core.sheets.document.IDocument': {
... 'title': 'We need more pics!',

90 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

... 'description': 'Or maybe just nicer ones?',

... 'elements': []},

... 'adhocracy_core.sheets.image.IImageReference': {

... 'picture': pic_path},

... 'adhocracy_core.sheets.versions.IVersionable': {

... 'follows': [prop_v0_path]}},

... 'root_versions': [prop_v0_path]}
>>> resp = admin.post(prop_path, vers_data)
>>> prop_v1_path = resp.json['path']
>>> prop_v1_path
'...0/VERSION_0000001/'

If we re-download the image metadata, we see that it is now attached to the proposal version:

>>> resp_data = admin.get(pic_path).json
>>> resp_data['data']['adhocracy_core.sheets.image.IImageMetadata']['attached_to']
[...0/VERSION_0000001/']

Replacing Assets

To upload a new version of an asset, the frontend sends a PUT request with enctype=”multipart/form-data” to the asset
URL. The PUT request may contain the same keys as a POST request used to create a new asset.

The data:adhocracy_core.sheets.asset.IAssetData:data key is required, since the only use case for a PUT request is
uploading a new version of the binary data (everything else is just metadata).

If the content_type key is given, it must be identical to the current content type of the asset (changing the type of
resources is generally not allowed).

Only those who have editor rights for an asset can PUT a replacement asset. If an image is replaced, all its cropped
sizes will be automatically updated as well.

Since assets aren’t versioned, the old binary “blob” will be physically and irreversibly discarded once a replacement
blob is uploaded.

Lets replace the uploaded python with another one:

>>> upload_files = [('data:adhocracy_core.sheets.asset.IAssetData:data',
... 'python2.jpg', open('docs/_static/python2.jpg', 'rb').read())]
>>> request_body = {'content_type': 'adhocracy_core.resources.image.IImage'}
>>> resp_data = admin.put(pic_path, request_body,
... upload_files=upload_files).json

As usual, the response lists the resources affected by the transaction:

>>> updated_resources = resp_data['updated_resources']
>>> sorted(updated_resources)
['changed_descendants', 'created', 'modified', 'removed']
>>> resp_data['updated_resources']['modified']
['.../process/assets/.../']
>>> rest_url + '/process/' in updated_resources['changed_descendants']
True

If we download the image metadata again, we see that filename and size have changed accordingly:

>>> resp_data = admin.get(pic_path).json
>>> resp_data['data']['adhocracy_core.sheets.image.IImageMetadata']['size']
'112107'

2.5. API 91

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Predefined scaled+cropped views are automatically updated as well:

>>> thumbnail = resp_data['data']['adhocracy_core.sheets.image.IImageMetadata']['thumbnail']
>>> resp_data = admin.get(thumbnail)
>>> len(resp_data.body) > 2000
True
>>> len(resp_data.body) == thumbnail_size
False

Deleting and Hiding Assets

Assets can be deleted or censored (“hidden”) in the usual way, see Deleting Resources.

Referring to external images

The image reference sheet also allows to refer to an external image url.

>>> resp = admin.get(prop_v1_path).json
>>> resp['data']['adhocracy_core.sheets.image.IImageReference']['picture']
'.../process/assets/.../'
>>> resp['data']['adhocracy_core.sheets.image.IImageReference']['external_picture_url']
''

If we set this field

>>> vers_data = {'content_type': 'adhocracy_core.resources.document.IDocumentVersion',
... 'data': {'adhocracy_core.sheets.image.IImageReference': {
... 'external_picture_url': test_image_url},
... 'adhocracy_core.sheets.versions.IVersionable': {
... 'follows': [prop_v1_path]}}}
>>> resp = admin.post(prop_path, vers_data)
>>> prop_v2_path = resp.json["path"]
>>> resp = admin.get(prop_v2_path).json
>>> resp['data']['adhocracy_core.sheets.image.IImageReference']['external_picture_url']
'http:/...

the backend downloads and references the given image url. The old picture reference is replaced with the newly
created image.

>>> resp['data']['adhocracy_core.sheets.image.IImageReference']['picture']
'.../process/assets/.../'

Caching strategy

Caching is realized on different levels:

• Caching of static resources (javascript, html, css, images)

• Caching of content resources

Caching static resources

The rough idea is to cache static resources (javascript, HTML, CSS, images) forever by adding a timestamp or check-
sum to a query string to each static resource file, which changes each time the file has changed. This allows both
browser and proxy (e.g. varnish) caching.

92 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Two mechanisms are used for static file caching at the moment:

• HTML template files are joined together as a Javascript module, which can be used to prefill the angular template
cache.

• JS and CSS files are cached through pyramid_cachebust and custom code in adhocracy_frontend/__init__.py.
This adds a query string with a timestamp (frontend webserver start time) to each resource to be loaded.

Pyramid 1.6 will contain native cachebusting functionality, so some things might be implemented differently
then.

In the future, we may want to add individual checksums for each file instead of one timestamp for all to allow more fine-
grained caching and decrease load after server restarts. However this would require a more sophisticated RequireJS
setup, or concatenation of all Javascript files.

Caching content resources

Both backend and frontend cache content resources. Both caches are manually invalidated, triggered by the backend.

Backend resource caching (Varnish)

To be described.

Frontend resource caching

To be described.

Deleting Resources

Anyone with the delete_resource permission can delete it by using the HTTP DELETE verb. Deleted resources can
not be recovered.

Deleting an existing resource is only possible for updatable resources like Simple, Pools, Items, i.e. not for Versions
as this would mess up the version DAG and not for AssetDownloads.

The effect of deleting is as follows:

• All child/descendant resources (whose resource path includes the path of the deleted ancestor as prefix) are also
deleted.

• Deleted resources are no longer listed in parent pools or search queries.

• If the frontend attempts to retrieve a deleted resource via GET, the backend responds with HTTP status code
404 Not Found, just as if the resource had never existed.

• Deleted resources may not be referenced from other resources. If the frontend follows an outdated references
it must therefore be prepared to encounter 404 Not Found responses and deal with them appropriately (e.g. by
silently skipping them or by showing an explanation such as “Comment deleted”).

• DELETE http method is idempotent

2.5. API 93

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Hiding Resources

Apart from physically deleting a resource, it can also be marked as “hidden” using a boolean field (flag) defined in
the adhocracy_core.sheets.metadata.IMetadata sheet. It default to false. If this sheet is omitted when POSTing new
resources, the default value is used.

The usecase for deleting is that users want to withdraw some content. The usecase for hiding is that moderators want
to hide unapproriate content.

Hiding an existing resource is only possible for updatable resources, i.e. not for Versions (which are immutable and
hence don’t allow PUT).

Anyone with the hide permission (typically granted to the manager role) can hide a resource by PUTting an update
with IMetadata { hidden: true }. Likewise they can un-hide a hidden resource by PUTting an update with IMetadata
{ hidden: false }. Nobody else can change the value of the hidden field.

The effect of these flags is as follows:

• A positive value of the hidden flags is inherited by child/descendant resources (whose resource path includes
the path of the hidden ancestor as prefix). Hence a hidden resource is one that has its own hidden flag set to true
or that has an ancestor whose hidden flag is true.

• Normally, only resources that are not hidden are listed in parent pools and search queries.

• FIXME Not implemented yet, since the frontend doesn’t yet need it: The parameter include=hidden can be used
to include hidden resources in pool listings and other search queries. If its value is hidden, resources will be
found regardless of the value of their hidden flag. However, only those with hide permission are ever able to
view the contents of hidden resources. It’s also possible to set include=visible to get only non-hidden resources,
but it’s not necessary since that is the default.

• If the frontend attempts to retrieve a hidden resource via GET, the backend normally responds with HTTP status
code 410 Gone. FIXME Not implemented yet, since the frontend doesn’t yet need it: The frontend can override
this by adding the parameter include=hidden to the GET request, just as in search queries. Managers (those
with hide permission) can view hidden resources in this way. Those without this permission will still get a 410
Gone if the resource is hidden.

• The body of the 410 Gone is a small JSON document that explains why the resource is gone (for future use if
there may be other reasons than hidden). It also shows who made the last change to the resource and when:

{ 'reason': 'hidden',
'modified_by': '<path-to-user>',
'modification_date': '<timestamp>'}

Often the last modification will have been the hiding of the resource, but there is no guarantee that this is always
the case. Especially, the resource may be marked as hidden because one of its ancestors was hidden (as that
status is inherited). In that case, the person who last modified the child resource likely has nothing to do with
the person who hid the ancestor resource.

• Hidden resources may still be referenced from other resources. If the frontend follows such references it must
therefore be prepared to encounter 410 Gone responses and deal with them appropriately (e.g. by silently
skipping them or by showing an explanation such as “Comment deleted”).

• FIXME Not implemented yet, since the frontend doesn’t yet need it. Hidden resources will normally not be
shown in backreferences, which are calculated on demand. The include=hidden parameter can be used to
change that and include backreferences to hidden resources. The same restrictions apply, i.e. normal users can
use this parameter to find out whether hidden backreferences exist, but they won’t be able to see their contents.
In any case the frontend should be prepared to deal with 410 Gone when following backreferences in the same
way as when following forward reference – even if it didn’t explicitly ask to include them, they might show up
due to caching.

94 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

FIXME We should extend the Meta API to expose the distinction between references and backreferences to the fron-
tend, currently only the backend knows this.

Notes:

• This document is about deletion of resources (JSON documents). Deletion of uploaded assets (images, PDFs
etc.) is outside its current scope.

• Currently, the hidden status of resources isn’t treated as special by the Websocket server. So, if an resource is
flagged as hidden, a “modified” event is sent to subscribers of that resource and a “modified_child” event is sent
to subscribers of the parent pool. FIXME At same point in the future, we might want to change that and send
“removed”/”removed_item” messages instead.

A Censorship Example

Lets put the above theory into practice by hiding (censoring) some content!

Some imports to work with rest api calls:

>>> from pprint import pprint

Start adhocracy app and log in some users:

>>> log = getfixture('log')
>>> anonymous = getfixture('app_anonymous')
>>> participant = getfixture('app_participant')
>>> moderator = getfixture('app_moderator')
>>> admin = getfixture('app_admin')
>>> rest_url = getfixture('rest_url')

Lets create some content:

>>> data = {'content_type': 'adhocracy_core.resources.organisation.IOrganisation',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'pool2'}}}
>>> resp = admin.post('/', data)
>>> data = {'content_type': 'adhocracy_core.resources.process.IProcess',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'child'}}}
>>> resp = admin.post('/pool2', data)
>>> data = {'content_type': 'adhocracy_core.resources.organisation.IOrganisation',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'pool1'}}}
>>> resp = admin.post('/', data)
>>> data = {'content_type': 'adhocracy_core.resources.process.IProcess',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'child'}}}
>>> resp = admin.post('/pool1', data)
>>> data = {'content_type': 'adhocracy_core.resources.document.IDocument',
... 'data': {}}
>>> resp = participant.post('/pool1/child', data)
>>> document_creator = participant.user_path
>>> document_item = resp.json['path']
>>> document_first_version = resp.json['first_version_path']

As expected, we can retrieve the pool and its child:

>>> resp = anonymous.get('/pool2').json
>>> 'data' in resp
True
>>> resp = anonymous.get('/pool2/child').json
>>> 'data' in resp
True

2.5. API 95

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Both pools show up in the pool sheet:

>>> resp = anonymous.get('/', params={'elements': 'paths'}).json
>>> pprint(sorted(resp['data']['adhocracy_core.sheets.pool.IPool']
... ['elements']))
['.../pool1/',.../pool2/'...

Lets check whether we have the permission to delete resources. The person who has created a resource (creator role)
has the right to delete it:

>>> resp = participant.options(document_item).json
>>> 'DELETE' in resp
True

But they cannot hide it:

>>> 'PUT' not in resp
True

– that special right is reserved to managers:

>>> resp = moderator.options(document_item).json
>>> 'adhocracy_core.sheets.metadata.IMetadata' \
... in resp['PUT']['request_body']['data']
True

Note: normally the sheets listed in the OPTIONS response are just mapped to empty dictionaries, the contained fields
are not listed. But IMetadata is a special case since not everybody who can delete a resource can hide it. Therefore,
the presence of the ‘deleted’ and/or ‘hidden’ fields indicates that PUTting a new value for this field is allowed. Once
more, the corresponding value is just a stub (the empty string) and doesn’t have any meaning.

Lets hide pool2:

>>> data = {'content_type': 'adhocracy_core.resources.pool.IBasicPool',
... 'data': {'adhocracy_core.sheets.metadata.IMetadata':
... {'hidden': True}}}
>>> resp = admin.put('/pool2', data).json

Inspecting the ‘updated_resources’ listing in the response, we see that pool2 was removed:

>>> resp['updated_resources']['removed']
['.../pool2/']

Now we get an error message when trying to retrieve the pool2:

>>> resp = anonymous.get('/pool2')
>>> resp.status_code
410
>>> resp.json['reason']
'hidden'
>>> resp.json['modified_by']
'.../principals/users/000...'
>>> 'modification_date' in resp.json
True

Nested resources inherit the hidden flag from their ancestors. Hence the child of the pool2 is now hidden too:

>>> resp = anonymous.get('/pool2/child')
>>> resp.status_code
410
>>> resp.json['reason']
'hidden'

96 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Only the pool1 is still visible in the pool:

>>> resp = anonymous.get('/', params={'elements': 'paths'}).json
>>> rest_url + '/pool1/' in resp['data']['adhocracy_core.sheets.pool.IPool']['elements']
True
>>> rest_url + '/pool2/' in resp['data']['adhocracy_core.sheets.pool.IPool']['elements']
False

Sanity check: internally, the backend uses a private_visibility index to keep track of the visibility/deletion status of
resources. But this filter is private and cannot be directly queried from the frontend:

>>> resp = anonymous.get('/', {'private_visibility': 'hidden'})
>>> resp.status_code
400
>>> resp.json['errors'][0]['description']
'Unrecognized keys in mapping: "{\'private_visibility\': \'hidden\'}"'

Lets hide an item with referenced resources. Prior to doing so, lets check that there actually is a listed version:

>>> resp = anonymous.get(document_item)
>>> document_creator == resp.json['data']['adhocracy_core.sheets.metadata.IMetadata']['creator']
True

Now we hide the item:

>>> data = {'content_type': 'adhocracy_core.resources.document.IDocumentItem',
... 'data': {'adhocracy_core.sheets.metadata.IMetadata':
... {'hidden': True}}}
>>> resp = moderator.put(document_item, data)
>>> resp.status
'200 OK'

The referenced user resource is affected by this change since its back references have changed. Therefore, it shows up
in the list of modified resources:

>>> document_creator in resp.json['updated_resources']['modified']
True

In the end we can cleanup with some real deletion:

>>> resp = admin.delete("/pool1")
>>> resp.status_code
200

>>> resp.json['updated_resources']['removed']
['.../pool1...

>>> resp = admin.get("/pool1")
>>> resp.status_code
404

doctest: +ELLIPSIS # doctest: +NORMALIZE_WHITESPACE

Messaging

Prerequisites

Some imports to work with rest api calls:

2.5. API 97

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> from adhocracy_core import testing

Start Adhocracy testapp

>>> log = getfixture('log')
>>> anonymous = getfixture('app_anonymous')
>>> participant = getfixture('app_participant')
>>> moderator = getfixture('app_moderator')
>>> admin = getfixture('app_admin')
>>> rest_url = getfixture('rest_url')

Message to a User

The end point ‘/message_user’ can be used to send messages from a user to another user or a group of users:

>>> data = {'recipient': rest_url + '/principals/users/0000000',
... 'title': 'Important notice regarding your Adhocracy account',
... 'text': '''Everything is fine.
... Thank you for your attention and have a nice day.'''}
>>> resp = participant.post('/message_user', data)
>>> resp.status_code
200
>>> resp.text
'""'

The fields are all required and have the following semantics:

recipient the name of a user (.../principals/users/...)

title the title (subject) of the message. An installation dependent prefix or suffix may be added to the
subject (e.g. “Adhocracy Notification: ...”).

text

the plain-text body of the message. An installation dependent prefix and/or suffix may be
added to the text.

The backend checks that the user has sufficient permissions to send the message – only users with
the message_to_user permission (typically granted

to the contributor role) may do so. If this is the case, it sends the message per e-mail to the specified user, or to every
user in the specified group.

On success, the backend just sends an empty string back to the frontend. Otherwise (e.g. if the user is not allowed to
send messages), an error message is sent back.

If a user doesn’t have the necessary permissions (e.g. because they are not logged in), the backend responds with 403
Forbidden:

>>> data= {'recipient': rest_url + '/principals/users/0000000',
... 'title': 'Important notice regarding your Adhocracy account',
... 'text': '''Everything is fine.
... Thanks you for your attention and have a nice day.'''}
>>> resp = anonymous.post('/message_user', data)
>>> resp.status_code
403

98 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Message to a Group of User

FIXME In the future, it’ll be possible to send messages to groups of users, using the end point ‘/message_group’. The
end point works just like ‘/message_user’, except that the recipient is a group (.../principals/groups/...) instead of a
single user. This requires the message_to_group permission, typically granted to the manager role. The message is
sent per e-mail to every user in the specified group. This is not yet implemented because we haven’t needed it yet.

Messages to All

FIXME The following is not implemented yet. Also, it will probably be implemented via an internal messaging system
rather then by sending mails to anonymous.

The end point ‘/message_all’ can be used to send messages from a user to everybody:

>> data = {'title': 'Call for participation',
... 'text': 'With great power comes great responsibility!'}
>> resp = moderator.post('/message_all', data)
>> resp.status_code
200
>> resp.text
'""'

The fields are both required and have the same semantics as above.

The backend checks that the user has sufficient permissions to send the message – only users with the message_to_all
permission (typically granted to the admin role) may do so. If this is the case, it sends the message per e-mail to all
users registered at the Adhocracy installation, so this function should really be used with care!

The backend responds with an empty string or an error message, as above.

...>>> data = {‘title’: ‘Call for participation’, ‘text’: ‘With great power comes great responsibility!’}

...>>> resp = moderator.post(‘./../message_all’, data) ...>>> resp.text ...403

doctest: +ELLIPSIS # doctest: +NORMALIZE_WHITESPACE

Badges

Badges are resources that can be badged to mark special process content.

Prerequisites

Some imports to work with rest api calls:

>>> from pprint import pprint
>>> from adhocracy_core.resources.document import IDocument
>>> from adhocracy_core.resources.document import IDocumentVersion

Start adhocracy app and log in some users:

>>> participant = getfixture('app_participant')
>>> moderator = getfixture('app_moderator')
>>> admin = getfixture('app_admin')
>>> log = getfixture('log')

Create participation process structure/content to get started:

2.5. API 99

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> prop = {'content_type': 'adhocracy_core.resources.organisation.IOrganisation',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'organisation'}}}
>>> resp = admin.post('/', prop).json
>>> prop = {'content_type': 'adhocracy_core.resources.process.IProcess',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'process'}}}
>>> resp = admin.post('/organisation', prop)

>>> prop = {'content_type': 'adhocracy_core.resources.document.IDocument',
... 'data': {}}
>>> resp = participant.post('/organisation/process', prop).json
>>> proposal_item = resp['path']
>>> proposal_version = resp['first_version_path']

>>> prop = {'content_type': 'adhocracy_core.resources.document.IDocument',
... 'data': {}}
>>> resp = participant.post('/organisation/process', prop).json
>>> proposal2_version = resp['first_version_path']

Create Badge

Badges can be created in badges pools. The IHasBadgesPool sheet of the process gives us the right pool:

>>> resp = moderator.get('/organisation/process').json
>>> badges_pool = resp['data']['adhocracy_core.sheets.badge.IHasBadgesPool']['badges_pool']

Now we can create a Badge:

>>> prop = {'content_type': 'adhocracy_core.resources.badge.IBadge',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'badge1'},
... 'adhocracy_core.sheets.title.ITitle': {'title': 'Badge 1'},
... 'adhocracy_core.sheets.description.IDescription': {'description': 'This is 1'},
... },
... }
>>> resp = moderator.post(badges_pool, prop).json
>>> badge = resp['path']

To add a badge to a badge group we first create the group:

>>> prop = {'content_type': 'adhocracy_core.resources.badge.IBadgeGroup',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'group1'},
... },
... }
>>> resp = moderator.post(badges_pool, prop).json
>>> group = resp['path']

then create the badge inside this group:

>>> prop = {'content_type': 'adhocracy_core.resources.badge.IBadge',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'badge1'},
... },
... }
>>> resp = moderator.post(group, prop).json
>>> badge_with_group = resp['path']

The badge groups hierarchy is also shown with the badge sheet:

100 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> resp = moderator.get(badge_with_group).json
>>> resp['data']['adhocracy_core.sheets.badge.IBadge']
{'groups': [.../group1/']}

Assign badges to process content

To assign badges we have to post a badge assignment between user, content and badge.

First we need the pool to post badge assignments to:

>>> resp = moderator.get(proposal_version).json
>>> post_pool = resp['data']['adhocracy_core.sheets.badge.IBadgeable']['post_pool']

To get assignable badges we send an options request to this post pool:

>>> resp = moderator.options(post_pool).json
>>> resp['POST']['request_body'][0]['data']['adhocracy_core.sheets.badge.IBadgeAssignment']['badge']
[.../process/badges/badge1/',.../process/badges/group1/badge1/']

The user is typically the current logged in user:

>>> user = moderator.user_path

Now we can post the assignment to a proposal version:

>>> prop = {'content_type': 'adhocracy_core.resources.badge.IBadgeAssignment',
... 'data': {'adhocracy_core.sheets.badge.IBadgeAssignment':
... {'subject': user,
... 'badge': badge,
... 'object': proposal_version}
... }}
>>> resp = moderator.post(post_pool, prop)
>>> resp.status_code
200

or proposal item:

>>> prop = {'content_type': 'adhocracy_core.resources.badge.IBadgeAssignment',
... 'data': {'adhocracy_core.sheets.badge.IBadgeAssignment':
... {'subject': user,
... 'badge': badge,
... 'object': proposal_item}
... }}
>>> resp = moderator.post(post_pool, prop)
>>> resp.status_code
200

Now the badged content shows the back reference targeting the badge assignment:

>>> resp = participant.get(proposal_version).json
>>> resp['data']['adhocracy_core.sheets.badge.IBadgeable']['assignments']
[...0/badge_assignments/0000000/']

It is not possible to assign twice the same badge:

>>> prop = {'content_type': 'adhocracy_core.resources.badge.IBadgeAssignment',
... 'data': {'adhocracy_core.sheets.badge.IBadgeAssignment':
... {'subject': user,
... 'badge': badge,

2.5. API 101

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

... 'object': proposal_version}

... }}
>>> resp = moderator.post(post_pool, prop).json
>>> resp['errors'][0]['description']
'Badge already assigned'

We can also use the filtering pool api to search for content with specific badge names:

>>> prop = {'badge': 'badge1',
... 'depth': 'all'}
>>> resp = moderator.get('/organisation/process', params=prop).json
>>> resp['data']['adhocracy_core.sheets.pool.IPool']['elements']
['...document_0000000/',...document_0000000/VERSION_0000000/']

In addition we can search for versions that have an item with a specific badge:

>>> prop = {'item_badge': 'badge1',
... 'depth': 'all'}
>>> resp = moderator.get('/organisation/process', params=prop).json
>>> resp['data']['adhocracy_core.sheets.pool.IPool']['elements']
['...0/']

PostPool and Assignable validation

If we use the wrong post_pool we get an error:

>>> resp = moderator.get(proposal2_version).json
>>> wrong_post_pool = resp['data']['adhocracy_core.sheets.badge.IBadgeable']['post_pool']

>>> prop = {'content_type': 'adhocracy_core.resources.badge.IBadgeAssignment',
... 'data': {'adhocracy_core.sheets.badge.IBadgeAssignment':
... {'subject': user,
... 'badge': badge,
... 'object': proposal_version}
... }}
>>> resp = moderator.post(wrong_post_pool, prop).json
>>> resp
{...'You can only add references inside ...0/badge_assignments...

TODO add validators for subject (assignable?) TODO add options to make badges from one group exclusive

User Badges

Badges can be assigned to users the same way as process content. The principals pool gives us the badges pool:

>>> resp = moderator.get('/principals').json
>>> badges_pool = resp['data']['adhocracy_core.sheets.badge.IHasBadgesPool']['badges_pool']

There the admin can create badges:

>>> prop = {'content_type': 'adhocracy_core.resources.badge.IBadge',
... 'data': {'adhocracy_core.sheets.name.IName': {'name': 'userbadge'},
... },
... }
>>> resp = admin.post(badges_pool, prop).json
>>> badge = resp['path']

102 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

The user gives us the badge assignment post pool:

>>> user_with_badge = moderator.user_path
>>> resp = moderator.get(user_with_badge).json
>>> post_pool = resp['data']['adhocracy_core.sheets.badge.IBadgeable']['post_pool']

to create badge assignments:

>>> user = admin.user_path
>>> prop = {'content_type': 'adhocracy_core.resources.badge.IBadgeAssignment',
... 'data': {'adhocracy_core.sheets.badge.IBadgeAssignment':
... {'subject': user,
... 'badge': badge,
... 'object': user_with_badge}
... }}
>>> resp = admin.post(post_pool, prop).json

Now the badged content shows the back reference targeting the badge assignment:

>>> resp = participant.get(user_with_badge).json
>>> resp['data']['adhocracy_core.sheets.badge.IBadgeable']['assignments']
[.../users/badge_assignments/0000000/']

Frontend

Overview

The adhocracy 3 frontend is an opinionated web framework based on angular.js and written in TypeScript. Its main
goal is to provide all the building blocks that developers need to implement participation processes of all kinds. The
user interface should be consistent and recognizable while providing enough flexibility for a wide range of target
audiences as well as branding.

Angular (web framework)

AngularJS is an open source JavaScript framework mainly developed by Google.

In contrast to traditional frameworks like jQuery, you do not directly interact with the DOM. Instead, you only interact
with data structures in JavaScript. The DOM is bound to these data structures and updates automatically.

Other notable features are services (singleton objects), dependency injection (a way to decouple your code), and
promise based APIs (as opposed to callbacks).

Angular is somewhat similar to other client-side rendering frameworks like ember.js or react.

TypeScript (programming language)

TypeScript is an open-source language mainly developed by Microsoft.

It contains many features of upcoming JavaScript versions (ES6/7) as well as static typing while staying compatible
with ES5. Notable features include:

• static type checking

• module system

• classes

2.6. Frontend 103

https://angularjs.org/
https://docs.angularjs.org/guide/services
https://docs.angularjs.org/guide/di
http://emberjs.com/
http://reactjs.com/
http://www.typescriptlang.org/

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• arrow functions

• default values for function arguments

In order to use static type checking with non-TypeScript code, the project DefinitelyTyped provides type definitions
for many popular JavaScript libraries.

TypeScript is similar to CoffeeScript in that it compiles to JavaScript. It is similar to Babel in that it backports many
future JavaScript features.

Sass / Compass (CSS preprocessor)

Ease writing CSS with support for nesting, mixins and variables and various helper tools.

RequireJS (module loader)

Loads javascript modules and bundles javascript/css files. You can find a comparsion with other (younger) projects
here.

Backend API

Sheets

Resources in adhocracy are composed of sheets. Each sheet describes one aspect of the resource, e.g. that it has a title
(ITitle) or that it can be rated (IRateable) or commented on (ICommentable).

Which sheets are available or required on a resource is defined by their content type. You can get a list of all content
types and their sheets from the Meta-API.

Pool queries

All resources that can contain other resources have an IPool sheet and are generally refered to as pools. Pools can
be queried for their contents. The results can be sorted and filtered by several conditions, some of which depend on
the available sheets. Example: In order to get all comments that refer to resource /my/resource, you may use the
following (simplified) query string:

?depth=all&content_type=IComment&IComment:refers_to=/my/resource&sort=creation_date

Deletion

In order to always allow users to recover from accidental actions, the backend does not physically delete content. This
is why the DELETE HTTP method is generally not available. Instead, there are ways to mark the content as deleted so
it is no longer accessible.

Batch requests

Sometimes you may want to change data in the backend, but it is not possible to do it in a single request. Doing it in
two or more requests however has the risk that you end up with an inconsistent state because one of the later requests
fails.

For this case, the adhocracy backend allows to encode several requests in a single batch request that is then processed
in a single database transaction. This way the whole batch is rolled back if a single request fails.

104 Chapter 2. Contents

http://definitelytyped.org/
http://coffeescript.org/
https://babeljs.io/
http://www.slant.co/topics/1089/compare

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Permissions

The backend has a sophisticated permission system with roles, groups and local permissions. The frontend ignores all
this and is only interested in the result: Is the current user allowed to do this action? All information required for that
can be obtained by sending an OPTIONS request to the relevant backend endpoint.

Websockets

The backend uses websockets to notify the frontend whenever a resource changes. This can be used to update the UI
automatically.

Note: Updating the UI automatically is possible, but not always the right thing to do. If everything is changing all the
time, users will only get confused.

Note: Websocket notifications are also used to do cache invalidation in the frontend. So if the websocket connection
fails, the frontend stops caching completely and may get slow.

The build directory

Adhocracy is split into several python packages. For a specific project there are typically four packages:

Core Customization
Backend Frontend Backend Frontend
adhocracy_core adhocracy_frontend adhocracy_foo foo

When bin/buildout is run, the static directories from both frontend packages are merged into a single one called
build that is located next to static in the customization package. Merging in this case means that files from both
directories are symlinked into the build directory. If a file exists in both packages, the one from the customization
overwrites the one from core.

Note: This mechanism allows the customization to replace any file from core. However, this is strongly discouraged
in most cases as it is hard to maintain the overwrites.

Independent widgets

In order to provide reusable widgets, we try to make our directives as independent as possible. In practice that means
that we always isolate the directive scope (with few exceptions) and pass a minimal number of parameters.

For example, a proposal directive would only get the path of a resource instead of relying on some parent directive
to fetch it first. This of course means that many directives may trigger the same HTTP requests. This is mitigated by
a caching system that is built into the adhHttp service.

Modules

2.6. Frontend 105

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Module Systems

The adhocracy frontend is based mainly on two technologies: TypeScript and angular.js. Both have their own module
system. These two systems are very different.

TypeScript Modules

In TypeScript, each file is a module (TypeScript does in fact offer two module systems. We use external modules). A
module example.ts can be imported like this:

import * as Example from "./example";

Static imports have the benefit of allowing to check for the existence of modules and for circular imports at compile
time. But be aware that this is only true if you actually use the module for more than type-checking. If not, the import
will be stripped after that step and no further checks will be done.

An important bit is that these imports are responsible for actually loading the required files in the browser. Without a
non-stripped import, the module will just not be available.

Angular Modules

Angular modules are the place where services, directives and filters are registered. When a module depends on another
one that means that it imports all of its services, directives and filters.

A module example that depends on module dependency is created like this:

var exampleModule = angular.module("example", ["dependency"]);

This mechanism happens at runtime and therefore missing dependencies and circular imports can only be detected at
runtime.

How we use it

Packages

In adhocracy we create what we call a package for every reusable feature. A package may contain services, directives
and filters. Each package has its own folder in Packages/.

A package may contain arbitrary TypeScript modules. These must not import any other TypeScript modules except
for type-checking. There are few exceptions to that rules, e.g. Util.

In addition, there must be a TypeScript module named Module.ts that defines an angular module by exporting a
variable moduleName and a function register. moduleName contains the name that should be used for this
module. By convention the module name is the package name in camel case prefixed with ‘adh’. register takes
angular as a first argument and registers the module with all of its services and directives.

Module.tsmust also take care of importing additional code, both from other packages and from third party libraries.
For other packages that can be done by importing Module.ts from that package and adding it as a angular module
dependency using its moduleName. This way it is also made sure that requirejs will actually load the code.

106 Chapter 2. Contents

http://www.typescriptlang.org/Handbook#modules-going-external
http://docs.angularjs.org/guide/module

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Resources

The backend defines a set of resource and sheet types and exposes them in a meta API. Matching TypeScript classes
will be generated by the mkResources.ts script that is automatically run by buildout. The resulting code can be
found in a top level folder called Resources/.

Further Reading

• Angular Best Practice for App Structure

• An AngularJS Style Guide for Closure Users at Google

Routing

As Adhocracy 3 is a single page application, the routing is done in the frontend. Unfortunately, the obvious choice
angular-route does not meet our requirements so we wrote our own router. This document gives a brief overview over
the routing system.

Basics

Adhocracy 3 consists of a backend with a rest API and a frontend with a server part and a client part (JavaScript). The
frontend server serves static files for the most part. The frontend client is a complex application that manages most of
the routing.

Routing in Adhocracy 3 relies on angular’s $location service which in turn uses the browser’s history API (or a
fallback if that is not available). This allows us to change the URL from JavaScript code without triggering a browser
redirect.

Server

The routing is done on the client. However, the server still needs to serve the frontend code on all valid URLs.
The existing rules already cover quite a lot. If you want to add another rule (basically if you want to add another
area, see below) you need to edit src/adhocracy_frontend/adhocracy_frontend/__init__.py or
the corresponding file in a customization package. Simply add a line like this to includeme():

add_frontend_route(config, name, rule)

where name is the name of this route and rule is a rule that the URL will have to match. See pyramid add_route
documentation for further details.

Top Level State

The adhTopLevelState service provides the infrastructure for routing in the Adhocracy 3 frontend. It manages
an internal flat object called the state and syncs it with the URL. So whenever the URL changes, the state is updated
and vice versa. The service provides an interface to get, set and watch the state.

The service also defines a template that is rendered by the adhView directive.

In some respects, adhTopLevelState is similar to angular-route but much more flexible.

2.6. Frontend 107

https://docs.google.com/document/d/1XXMvReO8-Awi1EZXAXS4PzDzdNvV6pGcuaF4Q9821Es/pub
https://google-styleguide.googlecode.com/svn/trunk/angularjs-google-style.html
https://docs.angularjs.org/api/ngRoute
https://developer.mozilla.org/en-US/docs/Web/API/History
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_route
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/config.html#pyramid.config.Configurator.add_route
https://docs.angularjs.org/api/ngRoute

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Areas

The actual work of syncing URL and state as well as defining the template is not done by adhTopLevelState
itself but by so called areas. This allows us to have very different routing methods in different areas.

The current area is selected by the first part of the URL path. So if the URL is
http://example.com/foo/bar/1?key=value, the area is foo.

Each area defines a function route() to convert the URL to a state object, reverse() to convert a state object to
an URL, and a template.

Currently, we use some simple areas for login related functionality, one area for embedding and (the most important)
one for resources.

Resource Area

The most important area is the resource area. URLs in this area are directly derived from backend paths. If a resource
has the path /some/path in the backend, the corresponding route in the frontend would be /r/some/path.

Much like adhTopLevelState, the resource area only provides an infrastructure. You need to configure what the
state should be based on resource type, view, process type and embed context.

While the resource type can be deduced from the path, view, process type and embed context are new concepts.
Process type and embed context will be discussed later in this document.

Views allow to have multiple routes to a single resource. So while /r/some/path might point to a detail view of
the resource, /r/some/path/@edit might point to a form where the resource can be edited. Note that the view is
prefixed with an @.

Process

While the previous concepts were frontend specific, processes also exist in the backend. A process contains a resource
subtree and defines roles and permissions for that subtree.

In the frontend it also defines which template should be used. The directive adhProcessView is used to render that
template. It is currently used in the resource area’s content space.

Note: The UI for a process is sometimes refered to as a workbench.

Embed Context

For a general discussion of embedding, see Embedding Python in Another Application.

When entering adhocracy through the embed area, an embed context is defined. This changes the frontend’s behaviour:
for example there might be a different header or different routes.

Conclusion

So here is a rough overview of what happens when I enter /r/some/path into my browser address bar:

1. The server serves an HTML bootstrap page.

2. adhTopLevelState notices a change to the URL and starts processing it. From the first part of the URL
(/r/) it knows that it has to use the resource area.

108 Chapter 2. Contents

http://docs.python.org/3.5/extending/embedding.html#embedding

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

3. The resource area converts the URL to a flat state object. This object contains information about the process
type.

4. adhView renders the area template.

5. adhProcessView renders the process template.

Note that everything except for the first step also happens when I click on a link within Adhocracy.

Translation

Whenever you want to do translation of Adhocracy content, we strongly encorage you to do the following steps:

1. if necessary: mark the content you need to translate as translatable,

2. extract translatable strings for a translation session,

3. translate the strings in transifex,

4. if necessary: update the change_german_salutation script.

1. Markup Translatable Strings

For translations in the frontend we use angular-translate. It offers several ways of marking a string as translatable, but
we mainly use the translate filter in templates:

{{ "TR__LOGIN" | translate }}
{{ "TR__USERS_PROPOSALS" | translate:{name: adhUser.name} }}

In few cases it is not possible to do translation in the template. In these cases you can also use the $translate
service. Note that this service returns a promise:

$translate("TR__LOGIN").then((translated) => {
...

});

In our code we do not use actual human language. Instead, we use technical strings (uppercase, with underscores,
prefixed with TR__).

2. String Extraction

angular-translate does not provide a script to extract translatable strings. So we hacked our own:

• bin/ad_extract_messages will output a list of all translatable strings in the current git subtree.

• You can pipe the output into bin/ad_merge_messages to update the JSON files. It takes two parameters:
The package name and a filename prefix, e.g.:

bin/ad_merge_messages adhocracy_frontend core

So in order to update the translation files in the “foo” package, you can use the following command:

cd src/foo/
../../bin/ad_extract_messages | ../../bin/ad_merge_messages foo foo

Note: Both scripts are not of good quality and may not cover all edge-cases.

2.6. Frontend 109

https://www.transifex.com/liqd/adhocracy3/
https://angular-translate.github.io

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

3. Translation with Transifex

We generally use transifex for translation. Note that new strings in the code are not automatically displayed in transifex,
and updates in transifex are not instantly reflected in either the code or any running platform.

Before you push local changes to transifex, please make sure that you will not overwrite any translations on transifex.
This can be done in several ways, one of which is the following. Assuming you want to update the project called foo:

$ cd src/foo/
$ tx pull -a --force
$ git cola

In git cola, for each line you can decide on the newer version.

Then, in order to push changes from the foo project code to transifex, the transifex-client can be used like this:

$ cd src/foo/
$ tx push -a

In order to pull changes from transifex into the foo project’s code, the transifex-client can be used like this:

$ cd src/foo/
$ tx pull -a

Note: The configuration for transifex-client is stored in src/{package_name}/.tx/config.

Warning: Transifex requires us to specify a “source language” (currently English). This has the benefit that
translators do not need to handle technical strings. But it also has several disadvantages:

• The source language can not be translated on transifex.
• All translations will be lost when the string in the source language is changed.
• Downloaded translation files will contain all keys. Any key that does not have a translation will have the

translation from the source language as a value.
An alternative could be to have a fake source language that simply has the technical strings themselves as transla-
tions and an exotic locale.

4. German Du/Sie

Adhocracy is currently used mostly in Germany, i.e. in German language. Unfortunately, there are two variants of
German, a formal (Sie) and an informal (Du) one.

All translations should use the informal variant. When necessary, we use the script
bin/change_german_salutation to convert informal translations to formal ones. Note that you will
need to extend that script whenever the translation changes. The common workflow for this is: Iteratively run the
script, check the output and add new rules until everything is fine.

Services

This section gives a brief introduction to the most important services.

adhConfig Provides access to the configuration. Basically identical with /config.json on the frontend.

adhHttp All HTTP communication should go through this services. Apart from caching it also contains abstractions
for some API features such as batch requests or OPTIONS requests.

110 Chapter 2. Contents

https://www.transifex.com/liqd/adhocracy3/

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

adhPermissions This service wraps adhHttp.options() and updates the result whenever the resource path
changes.

adhTopLevelState Basic infrastructure for routing. You will need to use this service if you want to know things about
the current route, e.g. which process you are in.

adhResourceArea Implements some more concrete aspects for routing. You will mostly use this to configure routes
for individual resource types.

Project Specific

B-PLAN API

This document specifies the API used to a manage B-Plan processes in the a3 platform.

Process

The full process of creation and management of a B-Plan:

1. Create a B-Plan process

2. Edit an unpublished B-Plan

3. Get the HTML embed code and external URL to integrate the B-Plan

4. Make a B-Plan accessible

5. Edit a published B-Plan

Data fields

The following data needs to be provided to create a B-Plan:

• organization: The organization the B-Plan belongs to

• bplan_number: Number of the BPlan

• bplan_name: Could be the same as bplan_number

• bplan_titile: Could be the same as bplan_number

• participation_kind: Kind of participation, e.g. ‘öffentliche Auslegung’

• office_worker_email: Email address to receive the B-Plan statements

• short_description: Teaser text

• description: Full description of the BPlan

• external_picture_url: External URL to the BPlan picture

• picture_description: Picture copyright notice

• start_date: Start time of the praticipation phase

• end_date: End of the participation phase, i.e. start time of the closed phase

• external_url: URL of the page where the BPlan process is embedded

2.7. Project Specific 111

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Workflows

A B-Plan process transits the following workflows:

1. draft: Initial worflow state used for editing, the B-Plan is not public

2. announce: The B-Plan information is accessible, but no statements can be send

3. participate: B-Plan participation is active, statements can be issued

4. closed: The B-Plan is not accessible anymore

The transition from the draft state to the announce state has to be done via an API call. The further transitions to
participate and closed are performed automatically by the a3 platform depending on the provided start_date and
end_date.

API Calls

The following API calls are required to implement the process:

• login

• create a B-Plan process

• get the B-Plan workflow state

• make the B-Plan accessible

• get the B-Plan embed HTML snippet and external URL

• edit a B-Plan process

Initialization

For the example API calls an organisation “orga” is created. The organization for the B-Plan needs to exist beforehand
in the a3 platform.

>>> from webtest import TestApp
>>> rest_url = 'http://localhost/api'
>>> app_router = getfixture('app_router')
>>> testapp = TestApp(app_router)
>>> resp = testapp.post_json(rest_url + '/login_username',
... {'name': 'admin', 'password': 'password'})
>>> admin_header = {'X-User-Token': resp.json['user_token']}

>>> data = {'content_type':
... 'adhocracy_core.resources.organisation.IOrganisation',
... 'data': {
... 'adhocracy_core.sheets.name.IName':
... {'name': 'orga'}
... }}
>>> resp = testapp.post_json(rest_url + '/', data, headers=admin_header)

A working image url is needed to test referencing external images.

>>> import os
>>> import adhocracy_core
>>> httpserver = getfixture('httpserver')
>>> base_path = adhocracy_core.__path__[0]
>>> test_image_path = os.path.join(base_path, '../', 'docs', 'test_image.png')
>>> httpserver.serve_content(open(test_image_path, 'rb').read())

112 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> httpserver.headers['Content-Type'] = 'image/png'
>>> test_image_url = httpserver.url

Login:

>>> data = {'name': 'god',
... 'password': 'password'}
>>> resp = testapp.post_json(rest_url + '/login_username', data)
>>> resp.status_code
200
>>> user_token = resp.json['user_token']
>>> auth_header = {'X-User-Token': user_token}

To login post the username and password. The ‘user_token’ from the response is used in a HTTP custom header in the
following communication. The username here is just an example, please use your credentials.

Create a new bplan process:

>>> data = {'content_type': 'adhocracy_meinberlin.resources.bplan.IProcess',
... 'data': {
... 'adhocracy_core.sheets.name.IName':
... {'name': '1-23'},
... 'adhocracy_core.sheets.title.ITitle':
... {'title': 'Bplan 1-23'},
... 'adhocracy_meinberlin.sheets.bplan.IProcessSettings':
... {'plan_number': '1-23',
... 'participation_kind': 'öffentliche Auslegung'},
... 'adhocracy_meinberlin.sheets.bplan.IProcessPrivateSettings':
... {'office_worker_email': 'moderator@bplan.de'},
... 'adhocracy_core.sheets.description.IDescription':
... {'description': 'Full description',
... 'short_description':'Teaser text'},
... 'adhocracy_core.sheets.image.IImageReference':
... {'picture_description': 'copyright notice',
... 'external_picture_url': test_image_url},
... 'adhocracy_core.sheets.workflow.IWorkflowAssignment':
... {'state_data':
... [{'name': 'participate', 'description': '',
... 'start_date': '2016-03-01T12:00:09'},
... {'name': 'closed', 'description': '',
... 'start_date': '2016-03-01T12:00:09'}]},
... 'adhocracy_core.sheets.embed.IEmbed':
... {'external_url': 'http://embedding-url.com'}
... }}
>>> resp = testapp.post_json(rest_url + '/orga/', data, headers=auth_header)
>>> resp.status_code
200

The creation of a bplan consist of a post request containing all the required fields.

Get the workflow state:

>>> resp = testapp.get(rest_url + '/orga/1-23/', headers=auth_header)
>>> resp.status_code
200
>>> resp.json['data'] \
... ['adhocracy_core.sheets.workflow.IWorkflowAssignment'] \
... ['workflow_state']
'draft'

2.7. Project Specific 113

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Perform a workflow state transition:

>>> data = {'content_type': 'adhocracy_meinberlin.resources.bplan.IProcess',
... 'data': {
... 'adhocracy_core.sheets.workflow.IWorkflowAssignment':
... {'workflow_state': 'announce'}
... }}
>>> resp = testapp.put_json(rest_url + '/orga/1-23/', data, headers=auth_header)
>>> resp.status_code
200
>>> resp = testapp.get(rest_url + '/orga/1-23/', headers=auth_header)
>>> resp.status_code
200
>>> resp.json['data'] \
... ['adhocracy_core.sheets.workflow.IWorkflowAssignment'] \
... ['workflow_state']
'announce'

Get the HTML code snipped to embed the bplan and its external URL:

>>> resp = testapp.get(rest_url + '/orga/1-23/', headers=auth_header)
>>> resp.status_code
200
>>> embed_code = (resp.json['data'] \
... ['adhocracy_core.sheets.embed.IEmbed'] \
... ['embed_code'])
>>> print(embed_code)

<script src="http://localhost:6551/AdhocracySDK.js"></script>
<script> adhocracy.init('http://localhost:6551',

function(adhocracy) {adhocracy.embed('.adhocracy_marker');
});

</script>
<div class="adhocracy_marker"

data-path="http://localhost/api/orga/1-23/"
data-widget="mein-berlin-bplaene-proposal-embed"
data-autoresize="false"
data-locale="en"
data-autourl="false"
data-initial-url=""
data-nocenter="true"
data-noheader="true"
style="height: 650px">

</div>

Edit a B-Plan process:

To edit a B-Plan the fields set in the initial post requests can be used.

E.g. Changing the description:

>>> data = {'content_type': 'adhocracy_meinberlin.resources.bplan.IProcess',
... 'data': {
... 'adhocracy_core.sheets.description.IDescription':
... {'description': 'Updated description'}
... }}
>>> resp = testapp.put_json(rest_url + '/orga/1-23', data, headers=auth_header)
>>> resp.status_code
200

E.g. Changing the participation dates:

114 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

>>> data = {'content_type': 'adhocracy_meinberlin.resources.bplan.IProcess',
... 'data': {
... 'adhocracy_core.sheets.workflow.IWorkflowAssignment':
... {'state_data':
... [{'name': 'participate', 'description': 'test',
... 'start_date': '2016-03-03T12:00:09'},
... {'name': 'closed', 'description': 'test',
... 'start_date': '2016-05-01T12:00:09'}]}}}
>>> resp = testapp.put_json(rest_url + '/orga/1-23', data, headers=auth_header)
>>> resp.status_code
200

Legacy concepts

This documentation is kept for historical reasons.

Concept: The Supergraph

Our Terminology

node Building blocks of Adhocracy participation processes. Examples: “document”, “user”, “likes”, “vote”, etc.
Nodes can connect to other nodes using references (see below). They are implemented as python objects.

reference A reference connects a source node to a target node. References have a specific label, like: “contains”,
“has_author”, etc. There a two basic types:

• reference-to-one: References which exist only once

• reference-to-many: References exists zero to many times

What constitutes a node and what constitutes a reference is a design decision made on the content design level.

It is often convenient to talk about nodes as vertices and references as edges in a graph.

References are implemented as python attributes containing object references. (The term “reference” exists both
on the data model level and on the implementation level.) A reference can either connect to a target node, or to
a container of target nodes (list, set, ...).

essence Some references are “essential” to a source node, and some are not. The essence of a node is the total of all
nodes in the transitive hull of all essential references (i.e. all target nodes of essential references, and all targets
of the essential references of those target nodes, and so on).

The concept of essence is important for change management and will be discussed in detail below. The idea is
that if a node Y is in the essence of node X, and Y changes, X “naturally” changes with Y.

dependents The inverse essence of a node up to reflexivity: A node X is a dependent of Y if Y is in the essence of
X, but not X itself.

content node A node that is self-contained, i.e. it has no outgoing references. (Content nodes are the leaves of
the reference graph.)

follows Change management is implemented by follows edges between nodes. A node that changes in fact is
copied into a new version that follows the previous version. follows edges are NOT references (neither on
the design level nor on the implementation level).

head A node without outgoing follows edges

fork A node with more than one outgoing follows edges.

2.8. Legacy concepts 115

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

merge A node with more than one incomming follows edges.

relation A pattern of references and nodes that have a certain meaning. (See below for examples.)

Non-Mutability

Note: This section describes rules and properties that we define for adhocracy core. They are not enforced by the
underlying db.

The properties contained in a node don’t change after creation of the node. The same goes for properties of references.
Also, created nodes and references don’t ever get deleted.

The set of outgoing references from a node is not allowed to change. The set of incoming references can change. This
also means that a reference from A to B implies that A is younger or equally old than B.

Some Intuition

Imagine you have a node, transitively follow all its outgoing references and collect all the resulting nodes. This gives
you the node’s essence. Usually, this will result in a tree of nodes. A reference means (as defined above) that the
referenced nodes are an “essential part” of the referencing node. So our tree of nodes is something like a deep-copy
and recursively includes all the essential parts of our root node.

(Cycles using references are also allowed, so you might not get a tree, but a sub-graph. This sub-graph will still be a
deep-copy in the described sense.)

Versioning

As existing nodes in the graph never change, every node modification creates a new node which is connected to the
originating node with a follows relation. (We haven’t decided how to implement this follows relation – it might be
a reference or a node. In the following example graphs the follows relation is represented by a dashed arrow.)

Example 1.0:

116 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

agrees_with

user

subject

statement

object

substatement

contains

statement'

follows

The outgoing references will be copied automatically to point to the old referred nodes.

Example 1.1:

agrees_with

user

subject

statement

object

substatement

contains

statement'

follows

contains

Incoming references have to be treated specially:

2.8. Legacy concepts 117

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Nodes that are the dependents of the modified node are marked with a pending marker.

Example 1.2:

agrees_with

user

subject

statement

object

substatement

contains

statement'

follows

contains

These nodes are notified and have three options:

• They can confirm the changeset. This means they will be copied and their outgoing references will point to the
new versions of the referred nodes. The old version will leave the pending state.

Example 1.3:

118 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

agrees_with

user

subject

statement

object

substatement

contains

agrees_with'

follows

subject statement'

object

follows

contains

• They can reject the changeset. This means, they will leave the pending state, but no new nodes nor references
get created. The outgoing references of the formerly pending node will not change and point to old versions of
nodes.

Example 1.4:

2.8. Legacy concepts 119

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

agrees_with

user

subject

statement

object

substatement

contains

statement'

follows

contains

• They can do nothing and keep the pending state. At any later point in time a node can reject or confirm a
changeset, probably triggered by some external event, e.g. user interaction.

Forking and merging

Modeling versioning in this manner also allows for forking and merging:

Example 2.0:

120 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

A'

A

follows Fork

follows

Fork'

follows

A''

follows follows

Deletion

In many cases, deletion can be represented in the graph by modifying a referring node and remove some outgoing
edges. It is not necessary to delete the referred node.

Example 3.0:

2.8. Legacy concepts 121

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Document

A

contains

B

contains

C

contains

Document'

follows

containscontains

In other cases, it might be necessary to directly delete a node. For this case a special deleted node is introduced:

Example 3.1:

Alice

likes

subject

something

object

deleted

follows

PROPOSAL: Not sure if this is already the intention, but it might be enough to have just one universal DELETED

122 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

node (or NULL node) in the whole graph. The DELETED node follows all nodes that have been deleted (multiple
predecessors). Any node that has been deleted points to the DELETED node as its successor.

History manipulation

In some cases it might be necessary to modify or delete existing nodes and references directly, bypassing the versioning
mechanism. This violates the non-mutability property and can be seen as a manipulation of the version history.

These manual modifications of the graph have to be done very carefully and could be considered as administrative
tasks.

A typical example for such an administrative task is the real deletion of a node containing illegal content.

Relations

We defined relations as a pattern of nodes and references that have a specified meaning. Here is an example of a very
simple relation:

Example 5.0:

SomeComment

A

comments

This comments relation captures the idea, that SomeComment comments on A. Also, the direction of the used
reference implies, that A is an essential part of the comment.

Here is another example of a slightly more complex relation:

Example 5.1:

2.8. Legacy concepts 123

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

likes

SomeUser

subject

B

object

This relation captures the fact, that SomeUser likes B. Again the directed references imply something about the
nodes: SomeUser and B are essential parts of this likes node.

Here is how you could model a list:

list

A

element {rank: 1}

B

element {rank: 2}

C

element {rank: 3}

The list relation allows you to store an ordered sequence of nodes. Again the direction of the used references implies
that the elements are essential parts of the list.

Modelling Data by Relations

The process of modelling your data is basically a process of defining relations. When defining a relation you always
have to think about the direction of the used references. Here’s a checklist that might help:

124 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

A

B

someReference

If you define a relation where A refers to B in some manner, then the following should hold:

• It makes sense that B is an essential part of A.

• A modification of B (creating a newer version B’) potentially leads to a newer version of A (A’) by triggering an
update notification. The class of A should know how to handle such an update notification: immediate automatic
confirmation, immediate automatic rejection or keeping the pending state and taking means to gather a manual
decision.

• No other nodes want to refer to the reference itself. If you want to be able to refer to something, you have to
model it as a node. If you want to refer to the relation between A and B in our example, you have to add an
additional node:

A

someRelation

subject

B

object

2.8. Legacy concepts 125

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

This way you still retain the idea that B is an essential part of A.

• Look out for reference cycles. If you define relations that make reference cycles very likely, you should re-
consider your modelling. The supergraph allows reference cycles, but they certainly smell bad. (See con-
joined_nodes.)

Note: Nodes and relations are the means you have to model your data. Don’t fall back on simple vertices (not nodes)
or simple edges (not relations) for this.

A Common Pitfall

If you model binary relations (something along the lines of “subject predicate object”), it’s tempting to model the
predicate as a single reference:

subject

object

predicate

However make sure this is really what you want: Is object an essential part of subject? If not, you have to change
this to:

predicate

A

subject

B

object

126 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

A non-exhaustive list of relations

Follows This is the relation used to connect nodes to its predecessor or predecessors. This might be modelled like
this (we are still undecided on this):

A'

A

follows

Deletions Node deletion is realized as a unary relation connected to the deleted node.

Deletion

A

follows

Predicates Predicates are classical subject-predicate-object relations (also called binary relations), expressible as
a verb.

2.8. Legacy concepts 127

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

predicate

A

subject

B

object

Example: comments

Collections Collections contain parts.

Implemented as a list vertex with references-to-many to parts

collection

part_1

element

part_2

element

etc...

element

Example: Set, List

Lists Ordered collections.

Implemented as a collection with ranked edges.

128 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

collection

part_1

element {rank: 1}

part_2

element {rank: 2}

etc...

element {rank: n}

Example: Document

Conjoined Nodes Nodes which essentially belong to each other. Once one node is updated, the other node has
to be updated too and vice versa - the nodes are synchronised. This can be achieved through cyclic subgraphs.

dependsOn

B

dependsOn

A

Possible examples: Translations, Binational treaties.

More complex relations Example: Some discussion leads to a set of (proposed) changes.

2.8. Legacy concepts 129

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Proposal

D

discussion

C

original

C''

newVersion

C'

follows

follows

Implementation Notes

This paragraph is a summary of the data structure discussions on Fri 2013-07-19 and before. The later sections are
obsolete to a varying extent.

Nodes are implemented as python objects, references as attributes. In addition to the attributes, there is a method:

refs(): { <attr> : <node> }

that returns a dictionary mapping python strings containing attribute names to the resp. reference target nodes. This is
interesting because not all attributes of the node object are references.

The dependents (inverse references, i.e. only direct dependents) are represented by a method:

deps(): { <node> : { <interface> : [<attr>] } }

that returns a dictionary mapping nodes to dictionaries, which in turn map interfaces to lists of reference names
(references are implemented as attributes containing python references).

This way, it is easy to ask an object which other objects are referencing it.

Alternatively dependents could be implemented as:

130 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

deps(): [(<node>, <interface>, <attr>)]

There should probably also be transitive hulls for references and dependents, e.g. trans_refs() and
trans_deps(), which can be implemented easily in terms of the above methods. (XXX: is it more pythonic to
say “function” instead of “method”?)

Change management is modelled by nodes being copied into follows nodes. There is a number of meaningful and
desirable ways in which references can react to changes in referenced and dependent nodes.

If a reference is essential, the target must notify the source of the reference. The source then has three options:

• create a new version itself, keep the old reference unchanged, and update the reference in the new version to
point to the new version of the target. Example: if a paragraph in a document has been updated, the document
should be considered updated as well.

• ask the user what to do about the change. Example: If a user “likes” a node, and the node changes, the user
should be able to decide whether she also likes the new version, or only the previous version.

• ignore the change, keep the reference pointed to the old version of the target, and do nothing. Example: Change
suggestions: a user wants to express that she would support a proposal if some changes are made. This change
suggestion refers to one version of the proposal and shouldn’t be updated to newer versions.

If a reference is not essential, things get more complicated. The source node will still be notified of any change in
any target (it always is for all references), but it has more freedom of choice in what to do, and with that comes more
confusion. Example:

topic1

doc1

touched by

doc2

touched by

topic2

touched by

doc3

touched by

doc4

touched by

If topics (in wikimedia-speak: categories) are modelled this way, neither of the options of essiential references are
desirable, because we would always create a new follower node of any topic that touches any document that has a
new version. We either want to reference only the head of each document, and always update all references whenever
documents are updated, or we want to reference all versions in the history of the document. (If we only reference
heads, then what happens if somebody keeps badges or comments or whatnot on the old version, refusing to update?
Then the old document, still referenced by the comment, falls out of the topic category. Hum. I think topic references
would need to be copied, not moved. This would cause a lot of references. Perhaps references should be modelled the
other way round, not as “touched by”, but as “touches”. But I digress.)

But if we simply keep track of the head of each document, what happens with forks? In a naive implementation, only
the head created earliest would keep the topic, and all forks would miss it, because the node from which they fork
would have passed on the reference to the follower already.

Disallowing target node forks may be sometimes an option, but in this case it is not. So there has to be another
notification event: If a node is forked (has one or more followers already, and gets another one), all follower nodes are
traversed, and all dependents of those nodes are notified of the fork.

2.8. Legacy concepts 131

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

The dependents can then decide what to do. In the topic model above, the topic node has to visit the new head and
reference it as well, without killing the old reference. In other cases, it may raise an exception and thereby disallow
forks in target nodes.

This means that some node types are forkable and others are not. Nodes therefore need an attribute:

forkable : bool

Because essential edges guarantee immutability of target nodes, they are to be preferred over non-essential nodes when
modelling application data. The following model:

likes

user doc

(Essential egdes are blue.)

has a non-essential edge, i.e. the clear update rules of essentiality do not apply when the user updates her email
address. The following model gets by with only essential edges:

user

uid

likes

doc

XXX: Isn’t change management of graph data structures a problem that somebody has figured out on a theoretical
level yet?

Concept: Modelling a Simple Use-Case with The Supergraph

1 create participation process and content Superuser Father has an Instance Hive. He adds an a participation
project “Homestuff” to discuss proposals. He creates an proposal “dishwash table” and allows other users

132 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

to access the proposal.

2a user disagrees and comments - user statement about content A user Alice looks at an existing proposal. She
states her disagreement with the proposal (using a “disagree” button). She justifies her disagreement with a
short text.

2a user agrees User Carl looks at everything, and annotates the proposal with an agreement (using an “agree” button).

3 user seconds disagreement - user statement about statement User Bob looks at the proposal, sees Alice’s reac-
tion and states that he seconds both her disagreement and the justifying text.

interfaces that are inherited from

INode: deps() : { <node> : { <interface> : [<attr>] } } refs() : { <attr> : <node> }

IAssessment(INode):

@essence uid : string

@essence object : INode

IAssessable(INode):

@not_essence assessments : [IAssessment]

concrete interfaces

IUser(INode):

name : str

uid : str

@not_essence user_assessments : [IAssessment]

IProposal(INode, IAssessable):

@essence title : str

@essence content : string

IDisagreement(IAssessment, IAssessable): (uid : str) (object : IProposal)

@essence rationale : string

IAgreement(IAssessment, IAssessable): (uid : str) (object : IProposal)

@essence rationale : string

ISeconds(IAssessment): (uid : string) (object : IAssessment)

where to put everything

IPool(INode): @not_essence contents : set(INode)

IProposalPool(IPool): (contents : set(IProposal))

IAssessmentPool(IPool): (contents : set(IAssessment))

IMyParticipationProcess(IPool): @not_essence assesments : IAssessmentPool @not_essence proposals : IPropos-
alPool

IUserPool(IPool): (contents : set(IUser))

2.8. Legacy concepts 133

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

IInstance(IPool): @not_essence contents: set(IPool) @not_essence users : IUserPool

Concept: Simulating Patches with The Supergraph

I think, we can simulate the patch ideas and interface while sticking to model everything not as patches but as document
versions in the supergraph. We need:

• to divide data into smaller structured parts (but we wanted to do that anyway),

• intelligently consider follows-edges.

Imagine, you have a Document with two paragraphs:

D

P1

1

P2

2

If someone creates a new version of P1 we get a new version of D (by essence propagation):

134 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

D

P1

1

P2

2

D'

2P1'

1

(follows-edges are blue.)

Now while looking at D’ someone modifies P2. Once again we get a new version D’’:

2.8. Legacy concepts 135

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

D

P1

1

P2

2

D'

q

2P1'

1

p

D''

1

P2'

2

r

If you now look at D and its essence you have three follows-edges to consider, labelled p, q and r. r is the
interesting one here. It should be no problem to build an interface that allows you to pull in P2’ into D and thereby
creating a new version of D (called E) that didn’t exist before:

136 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

D

P1

1

P2

2

D'

2P1'

1

D''

1

P2'

2E

1

2

This version E implicitly existed as a possibility once P2’ was created. It can be created ephemerally to be looked at
in an interface and it can be brought into existence (in the supergraph) if someone considers E relevant.

Isn’t that great?

Now here is something even darcs cannot do (in one text file):

Imagine someone changes the order of the paragraphs in D’’, (E is removed for clarity):

2.8. Legacy concepts 137

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

D

P1

1

P2

2

D'

2P1'

1

p

D''

1 P2'

2

q

D'''

2

r

1

We look at D’’’, its essence and all the follows-edges, again labelled p, q and r. Reverting r is trivial and would
just revert the change and lead to D’’ which already exists. But an interface could allow you to try out a version
where the paragraphs’ order is changed, but P2’ (for example) is reverted to P2 (via q, creating F):

138 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

D

P1

1

P2

2

D'

2P1'

1

D''

1 P2'

2

D'''

2

1

F

1

2

Concept: The Supergraph - Summary 2013-11-12

chronologisch

• vor 12 monaten:

– essenzkanten und sonst nicht viel

– pseudocode-algorithmus gibt’s in irgendeinem etherpad

2.8. Legacy concepts 139

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• jüngere geschichte:

– komplexeres / flexibleres konzept

– references (think json: “{content-type: ..., path: ...}”)

– wenn objekt aktualisiert wird, müssen eingehende referenzen benachrichtigt werden.

– welche event handler gibt es? -> hängt vom typ ab.

zum aktuellen verständnis:

• dokument zeigt auf absätze.

• watchlist: wenn sich was updatet, gibt’s eine email.

• category: either reference all DAGs or all versions. (latter case: some versions fall into a category, some don’t.)

• zentraler use-case für essenz-ding: dokumente können aufgesplittet werden, aber es gibt trotzdem eindeutige
versionen. essenz-kanten will man vielleicht als eine variante von handlern.

• vorschlag joscha: auf property-sheet-ebene essenzeigenschaft definieren: ein property-sheet ist entweder essen-
tiell oder nicht. das macht es vielleicht einfacher, einen essenzbaum eines objekts zu bauen.

• zyklen sind grundsätzlich erlaubt.

• batch-updates sind eine optimierung einer folge von http posts / puts, haben aber die gleiche semantik. aus-
nahme: event propagation findet nur einmal pro batchlauf statt. (vielleicht kann man beweisen, dass das die
gleiche semantik ist? nicht im strengen sinn, weil weniger knoten angelegt werden: man will für mehrerer
änderungen in einem batch nur eine neue version der beteiligten objekte anlegen.)

• essenzkanten können keine zyklen bilden, weil objekten in einem essenzbaum nicht destruktiv kanten wachsen
können.

• einfache muster:

– objekt hat lineare history, und ein objekt referenziert immer den head.

– objekt referenziert immer genau eine version

– objektreferenz wird immer dem user gegeben, wenn das referenzierte objekt ein update bekommt. der user
muss entscheiden.

– user A ist auf watchlist von user B. wenn user B eine neue email-adresse bekommt, will user A eine
nachricht bekommen, aber nichts entscheiden: die referenz auf der watchlist wird mitgezogen. (das ist
ein komisches beispiel, weil man eigentlich eine nicht-versionierte user-id watchen möchte und nicht das
user-metadata-objekt, aber vielleicht gibt es irgendwo ein besseres beispiel für das selbe muster.)

• propagation muss für jeden schritt ausprogrammiert werden: objekt X schickt update events an referierendes
objekt Y; objekt Y entscheidet, ob es an objekt Z, das objekt Y referiert, ein eigenes event schickt.

• generell wird es spannend zu sehen, wie teuer die event-lawinen werden.

• es gibt pyramid-events: (event-typ, geändertes objekt, interface des geänderten objekts). diese events kann man
subscriben. der event-typ enthält (von hand programmiert) die information über die natur der änderung (z.b.
welche attribute etc.).

• dieses system kann man benutzen, um events über die referenzkanten zu propagieren. die frage ist, ob man über
den referenz-event-propagation-mechanismus alles abdecken kann, oder ob es noch andere eventhandler geben
soll.

140 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

versionables

lineare objekthistorie

bedingungen:

• kein merge (immer höchstens ein vorgänger)

• kein fork (voränger muss immer aktueller head sein)

• eine version ohne vorgänger darf nur einmal auf dem leeren DAG angelegt werden.

api ist gleich wie bei den anderen versionables. (dag-versionables und linear-versionbles sind spezialisierungen
voneinander.)

implementierungsfrage / UI-frage: wie lockt man den head, falls mehrere user bearbeiten? natürlicher default: fehler-
meldung bei konflikt. alles, was eleganter und mächtiger ist, will man vielleicht auf DAGs bauen, nicht auf linearen
versionen.

variants

fork-graph, mit der einschränkung (im UI), dass nur von master gebrancht werden kann.

varianten sind immer varianten einer norm. man kann sie man gegeneinander diffen.

A2: varianten einer norm sind relevant im kontext eines proposals und können dort bewertet werden. ein beteili-
gungsprozess entscheidet, welche variante zur originalversion der nächsten version werden. gibt’s jetzt auch bei
absatzweisem kommentieren.

speziell für varianten: wir brauchen ein tag, das den head markiert, so dass die erzeugung von varianten durch forks
den head nicht verschiebt. werden tags von paragraphs an die enthaltenden proposals vererbt? wie?

zwei modi: “edit” (tag weiterschleifen), “fork” (neues tag anlegen).

sönke findet spannend: ich habe mehrere versionen, die möglicherweise inhaltlich auch gar nicht konkurrieren, und
will jetzt in einem demokratischen prozess einen merge daraus erstellen. prozesse determinieren wann welches tag
wohin verschoben wird. (achtung! UI einfach halten!)

es gibt update-metadaten wie z.b. “typo” und “inhalt”. ein like auf einem objekt kann man als user so konfigurieren,
dass es typo-updates automatisch liked, bei inhalt-updates aber auf der alten version sitzen bleibt. (das ist ein beispiel
für eine viel allgemeinere klasse von anforderungen. die lösung sollte möglichst flexibel sein. oft will man einen
moderator haben, dem man vertraut, die metadaten zu pflegen und dabei nicht zu lügen.)

Random Thoughts

object hierarchy

must be optional: when posting a new document into a pool, the server does not consider the structure of the path of
the pool, but the type of the supergraph node denoted by the path. this way, a user can decide to install an a3 instance
that has transparent rest paths or not, and someone can implement a new backend that does not support transparent
paths. rationale: there is a trade-off between data security requirements (“information must not be leaked through
URLs”) and usability requirements (“URLs must be informative”). users should be able to make different decisions.

authorisation management: a server implementation MAY require an object hierarchy for authorization management
purposes, but the protocol MUST be independent of this in the sense that it must be possible to implement a trusting
server that that allows full read/write access to the complete supergraph for everybody under unstructured paths.

2.8. Legacy concepts 141

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

lazy / bulk loading

should there be rest machinery for pulling supergraph nodes partially? no: keeping nodes atomic reduces protocol
complexity enormously. it is in the responsibility of the data model designer that nodes are never getting too large. if
there is a list of outgoing edges in a node and that list is growing too big, the model designer can choose to replace the
list by a reference, and move the actual list into the list node that reference points to.

bulk get / post: yes, we want that.

should the supergraph structure be kept intact on the client side? yes! if the client wants to submit an update, it needs
to know where nodes end and edges start, and cannot have a molten pile of nodes in one json object. (the following
client implementation approach is flawed: supergraph node references are path strings, and following a references is
implemented by ajax-getting that path and replacing the path by it in the object. this would give the client enough
information to render the GUI, but when the nodes are to be posted back to the server because they have changed, the
client has no way of knowing which attributes were originally internal to one node, and which were edges.)

marker vs. property sheet interfaces

property sheet interfaces are called e.g. “adhocracy_core.propertysheet.ILikeable”, marker interfaces e.g. “adhoc-
racy_core.content.IProposal”.

backend implementation: the goal is that schemas should be defined in a maximally concise way. colander schema,
management view, rest view, etc. are generated automatically, but not magically from that concise representation.

concise schemas can have the following forms:

• “propsheet1 = {field1: type1, field2: type2, ...}”.

• “marker1 = [propsheet1, propsheet5, propsheet2, ...]”

• inheritance for markers: “markerx = markera + markerb + {propsheet12}”.

• inheritance for propsheets: “propsheet12 = propsheet1 + {field18: type18}”.

some of this is provided by colander. ideally, the backend could be made much less redundant by using colander more
masterly.

structure of the json objects communicated over the rest api

since substance d is used as backend platform, the data model follows zope concepts and conventions. but there is
more.

usually, a rest resource corresponds to a supergraph node (there may be other resources). it has the following structure:

{ content-type: ..., path: ..., data: ... }

content-type is a string that contains the type stored under data. it may be “adhocracy_core.content.I*” or the typeof-
string-representation of a javascript primitive type. in this case, the data attribute will contain a json literal, not an
object or a list of objects. (what about ‘Object’? ‘Function’?)

path is a string that is the key of the resource.

data is everything else. it may be missing, in which case an ajax call will be triggered by the client if and when
necessary, along the lines of:

var x = { content-type: ..., path: ... };

// force: x.data = $.ajax(‘GET’, x.path).data;

142 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

once the data attribute is retrieved, it consists of an object that has one attribute for each property sheet interface
implemented by the resource. the value of each property sheet interface attribute depends entirely on the data model,
except that it may contain further lazily fetchable resources.

note now that the content-type may NOT be “adhocracy_core.propertysheet.I*”: a resource (as it’s usually a super-
graph node) implements a marker interface, and contains all data required by all property sheet interfaces subsumed in
that marker interface. marker interfaces can be viewed as property sheet interface sets. since property sheet interfaces
retrieval is never delayed like retrieval of referenced resources, there is no need to wrap them in an object containing
a content-type, a path, and a data attribute.

“content-type” is a reserved keyword in this api because of the special way it can be used to control selecting more
resources for transport over the rest api (in either direction).

the meta attribute from the prototype will go away. some of the information it contains can move to the data section
of resource objects, some is unnecessary, and content-type and path are already taken care of.

dynamic content

a resource / supergraph node is a python object. the last chapter explains how to send attributes of those python objects
to the client. what about the methods?

the rest api is indifferent towards where the json object in the GET response is coming from (specifically whether it
is from a database lookup or some on-demand computation). for the client, there is therefore no difference between
an attribute and a method: in both cases, some property sheet interface attribute contains an attribute with a content
object missing the data attribute as value. in the first case, if the path is called, a lookup will take place; in the second,
a python method will be called.

only that’s not true. there are at least two differences: methods can have arguments, but attributes can’t. and there is
no way of telling in general whether invoking a method twice yields the same return value.

rest apis do not provide any mechanism for sending functions or function calls to the server for evaluation, so there is
no way of passing arguments to a method to be invoked. (of course, there are many obvious ways: the arguments just
need to be encoded in the url somehow. but that would be rest-ish, not rest.)

Badges

This is a summary of the “badge concept” user story. The concepts are not yet implemented in Adhocracy 3.

Adhocracy 2 knows a variety of badges and similar entities. The aim is to streamline these entities into more consistent
or possibly independent concepts in Adhocracy 3. Some aspects shall not be implemented in A3.

This document can be replaced once the concepts are ready in A3.

Badge features in Adhocracy 2

The various badges, categories and tags can be categorized as the following:

Allowed targets What can be badged?

Scope Do badges exist globally or locally only?

Exclusivity Can only one badge out of a certain group be assigned to a target object?

Hierarchy Can badges be structured hierarchically?

Dedicated pages Does this badge have a dedicated page?

Create permission Who may create badges / choose available badges in a given context?

2.8. Legacy concepts 143

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Assign permission Who may assign badges to targets?

View permission Who may view badges?

Color If shown as normal badge, what color should it have?

Icon If shown as thumbnail, which icon should be shown?

Visibility Should it be shown at all in listings?

Impact Effect on mixed list sortings

Implicit user role If a user has this badged, which additional role should she have? (we should drop this)

Voteable Allow users to vote whether the assignment applies (tags in Adhocracy 1)

Behaviour Assign a certain behaviour to a badge (research project at HHU)

Badges, categories and tags in A2

Some remarkable aspects of badge-like entities in A2:

Default

• Non-exclusive

• Non-hierarchical

• No dedicated pages

• No icon

• No image

• have colour

• Can be created and assigned by moderators

• All badges can exist globally and additonally per instance

Categories

• Can be assigned by normal users

• Exclusive

• Hierarchical

• Have dedicated pages

• Have an image

Thumbnail badges

• Have an icon

User badges

• Can have optional user role assignment

Tags

• Can be created and assigned by normal users

• Have no color

144 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Requirements for badges in A3

(this is incomplete)

• Allow to define which badges can be assigned to a certain resource with which rules (see features above).

• It must be possible to freely define multiple available badge groups.

• Allow to define badges globally and locally. It should be possible to restrict and extend the available badges
locally.

• NTH: Badges can be connected through a common taxonomy, i.e. if a local process wants to call a badge
Umweltpolitik it can be connected to a global badge Umwelt.

• All badges shall be indexed and can be used in pool queries.

Example

Some proposal resource might be badged as the following:

• Badge group decision_state:

– available badges “beschlossen”, “abgelehnt”

– exclusive

– creatable by admins (not really necessary, because hardcoded)

– assignable by moderators

• Badge group topic:

– creatable by moderators

– assignable by users

– hierarchical

– non-exclusive

Code Review Process

Preface

This document describes a light-weight code review process that can be used with git alone and no other tools.

Note: Code reviews are currently done with GitHub.

TODO: add good practice how to do code review

Status of this document

This document should be read as request for comments (RFC). It will be used for a trial period of two sprints (starting
from 2014-06-10); in the sprint starting on 2014-07-21, a decision will be made on which parts of this document will
remain valid.

2.8. Legacy concepts 145

https://www.github.com

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Requirements

This section is a (hopefully complete) list of all requirements of the a3 development team as of 2014-06-02, in arbitrary
order. As some of the requirements are inconsistent, the following sections necessarily constitute a compromise (and
not necessarily the optimum in any metric).

• low-footprint, trivial to adopt.

• no need to adjust work habits to yet another new application software / UI.

• offline use (no need having IP connectivity while working).

• git repo contains all review history in the resp. branches (to the extend those branches have not been deleted).

• allow for synchronous review (talk the branch through together on the same physical display).

• allow for asynchronous review (pass comments and little fractional changes back and forth between reviewer
and reviewee through something as convenient as email or a web page).

• passing a branch back and forth between reviewer and reviewee during the review process should be trivial.

• the reviewer can make changes (e.g. small typos) herself, not only ask the reviewee to do them. (all changes by
the reviewer of course need to be double-checked by the reviewee.)

• comments can be attached to - the branch - lines in the full diff - individual commits - lines in commit diffs

• review comments can contain links into web / other code locations / other commits / ...

• review comments and code should be separated, e.g. in a file called REVIEW.txt in the root directory of the
repository that can be easily removed before the merge.

• review comments should be contained in the code as comments, probably in a special mark-up form that can be
pruned automatically before the merge.

• github-style pull requests

• email notifications for

– branches ready for review

– passing a branch back and forth between reviewer and reviewee.

emails should contain context and links.

• allow to rebase a branch (or a clone of the branch) during the review process.

Tool Candidates

Should we decide in the future to use software on top of git, this is an incomplete list of options:

• bugseverwhere

• gerrit

• gitissues

• reviewboard

• phabricator

146 Chapter 2. Contents

http://bugseverywhere.org/
https://code.google.com/p/gerrit/
https://github.com/duplys/git-issues
http://www.reviewboard.org/
https://secure.phabricator.com/book/phabricator/article/introduction/

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Code Review

Code review happens on personalized branches. Merging a story branch into master happens right after the merge of
the last necessary personalized branch, so no review process is needed there.

The merge of a story branch should be done by two persons, but this is not a strong rule.

All changes and comments that the reviewer makes are either made directly in the code (see Section ‘Markup language’
below), or in a file called REVIEW.txt located in the working copy root. Reviewer and reviewee should agree on
which option is preferred for what.

Synchronous Process

0. The author has completed a personalized branch for review.

1. The author chooses a reviewer and contacts her in person or by any means preferred by both.

All documentation of the pull request must be contained in the commit log (short and long commit messages).
Any documentation to the PR as a whole is appended to the commit log in an empty commit (git commit
--allow-empty).

2. The reviewer checks out the branch to be reviewed, and makes changes and comments in the working copy.

3. Reviewer and author go through the comments in person.

4. Once all comments and changes have been agreed on, one or more additional commits are made by the author
or by author and reviewer in pair programming mode.

5. The branch is merged into its base branch.

Asynchronous Process

0. The author has completed a personalized branch for review.

1. (create pull request) (PR) The author sends an email to a3-dev with subject [PR] bloo (audience), where
bloo is the name of the branch and audience is a description of possible reviewers (e.g. names or the name
of the subsystem).

All documentation of the pull request must be contained in the commit log (see synchronous process). The
commit log (or the last commit) may be contained in the email body.

2. (assign pull request) A reviewer sends a response to the PR on a3-dev with subject Re: [PR] ... and an
optional message in the body (e.g. “I’ll do the review tomorrow”). If several reviewers respond simultaneously,
they resolve the conflict outside this process.

3. The reviewer checks out the branch to be reviewed, makes any changes and comments in the working copy, and
adds them to the branch in one or more commits. The short commit messages must start with [R] for review.

4. (merge) If there are no more review comments or changes, the reviewer merges the branch into its base. The
branch must not be merged until all review comments are resolved.

5. (re-assign) If there are changes, the reviewer sends a response to the PR to a3-dev. Body may be empty or
contain the commit log. At this point, reviewer and author change roles, and the author becomes the reviewee.
Proceed at step 3.

2.8. Legacy concepts 147

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Recipes

As above, first do something like:

git checkout branch-to-be-reviewed
export BRANCHPOINT=... (see above)

To see which files have changed:

git diff $BRANCHPOINT --stat

If file paths are shortened you might want to specify a width like this:

git diff $BRANCHPOINT --stat=3000

To see all changes in a branch in one diff:

git diff $BRANCHPOINT

To see all changes to an individual file:

git diff $BRANCHPOINT -- <path>

To see all changes, organised by commits and enriched with commit messages:

git whatchanged -p $BRANCHPOINT..

To get a richer interface you can pipe the output of all of these commands into tig

Markup language

The file REVIEW.txt may contain any free text. (A format for what is in there may emerge in the future; there may
also be tools in the future to process it.) For example it may be useful to add commit lines that can be interpreted by
tig (see https://github.com/jonas/tig/issues/299).

The reviewer may make any changes to the code, including comments, in the hope that the author will like them and
keep them in the final branch HEAD.

In addition, the reviewer may make specially marked comments that the author needs to process. These comments
must match the regex:

^# REVIEW: .*

Depending on the language of the file under review, the # must be replaced by the respective comment lexeme (# for
python and yaml, // for javascript, typescript and SCSS, <!-- for html (with the extra --> at the end), .. for rst,
and so on).

Further lines may be added after this. Those just need to match ^# .* or corresponding. Note the space in both the
first and all following lines.

Debates may emerge as author and reviewer realize they disagree. In that case, the comment answering a REVIEW
comment may start after an empty line with:

^# REVIEW[mf]: .*

where mf is the developer shortcut of the developer that adds the comment. While this information may also be
available from git blame it is convenient to have it right there.

During the review phase, REVIEW comments may either be removed manually or transformed into helpful comments
to be imported into the base branch.

148 Chapter 2. Contents

https://github.com/jonas/tig
https://github.com/jonas/tig/issues/299

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Dos and Don’ts

A branch must not be merged as long as REVIEW comments remain.

FIXMEs are discouraged in master. For now, they are allowed, but we should find a more fancy bug tracking approach.
(redmine?)

FIXME[cs]: Personally, I mostly use FIXME for “this works as is, but it is a hack/inelegant/inefficient, so if we could
find a better solution that would be great”, NOT for bugs. For bugs and things that really need to be resolved to make
the code function as it’s supposed to, I use TODO and ensure that all TODOs are indeed handled and deleted before
merging into master.

FIXME[mf]: git notes --help may be relevant, but I haven’t looked at it yet.

FIXME[nd]: we want the commit hook to work on staged copy, not working copy. (where should we move this point?
i don’t think it belongs here.)

FIXME[mf]: line numbers! we want code line numbers everywhere! can git do line numbers in every line in diff?

FIXME[tb]: following things might be useful additions:

• what should/must be done before creating a pull request

– only one feature per pull request

* only include changes that are really needed; do refactoring in a separate pull request

* small fixes and library updates should be done in or near master, not inside of larger feature
branches. This allows everyone to profit sooner. In cases where the fix/update would have been
done in multiple branches, this also avoids merge conflicts.

– be prepared to explain every single change.

Changelog

0.0 (unreleased)

• rest api backend prototype [joka]

Roadmap

End of September 2016

Features

• process navigation

• SDI for managing processes and users

Middle of November 2016

2.9. Changelog 149

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

Goal

A3 will develop into a product for civic participation. We want to offer city administrations and other political insti-
tutions the first version of the platform adhocracy.de, which lets them run idea collection processes with or without
maps. It should get them interested in the topic of e-participation and trying it for their processes.

KPIs

• we can offer an initial set up of a new process and organization with medium effort

• all development debt is mapped as far as possible (#debt)

Features

• idea collection process with or without a map

• private and public processes

• initiators can invite new users

• users can edit their own account information

• initiators can generate embed snippets for processes

• concept for newsfeed / event-stream

• concept for notifications (users can follow processes and proposals in processes)

End of December 2016

Goal

Adhocracy should be optimized to allow processes to be administered by initiators. It also should optimize platform
features that allow users and organizations to feel more at home.

KPIs

• we can offer an initial set up of a new process and organization with little effort

• At least two persons feel comfortable configuring the adhocracy backend (#busfactor)

• we have a written strategy for onboarding of new developers (#busfactor)

• we have a strategy to tackle identified critical development debt on the go (#debt)

Features

• initiator interface to edit process info and users

• improved user profile - avatars - description - link to social media

• organization pages with organization info (short description, link, logo) to collect processes by an organization

• new process type: polls with discussion

• simple stats on landing page and for processes (number of users, number of comments, number of votes)

• better embedding

150 Chapter 2. Contents

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

• single-sign on with popular identity providers (e.g. Google, Twitter, Facebook)

• follow processes or organizations with notifications

• allow platform/organization/process initiators to communicate with participants of the plat-
form/organization/process (email/newsletter)

• user dashboard where users can see the content they created and follow

• simple subscription management (email/notification) for users

Middle of February 2017

Goal

• Adhocracy provides an attractive environment that allows users to easily setup a simple participation process.

• More complex processes can be setup easily without help from developers.

• We have a dedicated concept for trainings in adhocracy and other activities related to online participation.

KPIs

• we can offer an initial set up of a new process and organization with tiny effort

• Over 80% of all identified adhocracy development debt has been tackled (#debt)

• at least two people are able to independently further develop backend and frontend (#busfactor)

Features

• initiator interface for processes and organizations

• new process type: participatory budgeting

• better discovery of processes (recommended processes, featured processes)

• search function for comments and contents

• initiators can edit permissions in all processes

• more filtering options for processes (e.g. most activity)

Constraints/challenges which we identified

• Busfactor (at least two people should be able to operate/fix/further develop backend and frontend at any time
(#busfactor)

• development debt (#debt)

Glossary

ACM An Access Control Matrix defines the rights of a list of principals. An ACM crosses principals with per-
missions. At the intersection of a principal and a permission there is an action. The action can be either
pyramid.security.Allow, pyramid.security.Deny or None. None is a default value and does
not grant any right.

2.11. Glossary 151

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

DAG Versions of one resource that build a directed acyclic graph.

group A set of users. Can be mapped to permission role.

groupid Unique id of one group: “group:<name>”.

local role A role mapped to a principal within a local context and all his children.

post_pool A normal or service adhocracy_core.interfaces.IPool that serves as the common place
to post resources of a special type for a given context. If resource sheet field with backreferences sets a
adhocracy_core.schema.PostPool field, the referencing resources can only be postet at the post_pool.
This assumes that a post_pool exists in the lineage of the referenced resources. If a resource sheet field with
references sets this, the referenced resource type can only be posted to post_pool.

principal A principal is a string representing a userid, groupid, or roleid. It is provided by an authentication policy.
For more information about the permission system read User Registration and Login.

role A set of permissions that can be mapped to principal

roleid Unique id of one permission role: “role:<name>”.

service A resource marked as service. Services may provide special rest api end points and helper methods. You can
find them by their name with adhocracy_core.interfaces.IPool.find_service(). The service
has to be in lineage or a child of a lineage pool for a given context.

userid The unique id for one userique id of one group: “group:<name>”.

152 Chapter 2. Contents

http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-lineage
http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-authentication-policy
http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-lineage
http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-lineage
http://docs.pylonsproject.org/projects/pyramid/en/latest/glossary.html#term-context

CHAPTER 3

Indices and tables

• Glossary

• genindex

• modindex

• search

153

adhocracy-3 Documentation, Release 0.0𝑝𝑟𝑜𝑡𝑜𝑡𝑦𝑝𝑒

154 Chapter 3. Indices and tables

Index

A
ACM, 151

D
DAG, 152

G
group, 152
groupid, 152

L
local role, 152

P
post_pool, 152
principal, 152

R
role, 152
roleid, 152

S
service, 152

U
userid, 152

155

	What is adhocracy?
	Contents
	Concepts
	Development
	Administration
	Backend
	API
	Frontend
	Project Specific
	Legacy concepts
	Changelog
	Roadmap
	Glossary

	Indices and tables

