io-client-python Library Documentation
Release 2.0

Tony DiCola, Justin Cooper, Adam Bachman, Todd Treece, Brent |

Jul 09, 2018

Contents

1 Documentation

2 Contributing

3 Table of Contents

3.1
32
33
34

35

3.6

3.7

Quickstart e e e e e e e e e e
Basic Client Usage o o v it e e e e e e
Error Handling o . e e e e e e e
Feeds . . . o o e e e e e
341 FeedCreation o v v i i e e e e e e e e e e e
3.42 FeedRetrieval e e e e e e
343 FeedDeletion 0 e e e e e e e e e
Data. . . . o e e e e
350 DataCreation v v v it e
3,52 DataRetrieval L e e e e e e
353 DataDeletion e e e e e e
Data Helpermethods o e e
3.6.1 SendData e e e e e e e e e e
3.6.2 SendBatchData e e e e e
3.63 ReceiveData e e e e e
3.64 NextValue e e e e e
3.6.5 Previous Value e e e e e
3.6.6 Publishing and Subscribing
GIOUPS & v v o o e
37.10 0 Group Creation v v vt e e e e e e e e e e e e e e e e e
372 GroupRetrieval oL e
373 GroupUpdating e
374 GroupDeletion

4 Indices and tables

O O O 0 000 I

io-client-python Library Documentation, Release 2.0

N\

A Python client and examples for use with io.adafruit.com.

Compatible with Python 3.6+

Contents 1

https://discord.gg/nBQh6qu
https://travis-ci.org/adafruit/io-client-python
https://io.adafruit.com

io-client-python Library Documentation, Release 2.0

2 Contents

CHAPTER 1

Documentation

Documentation for this project is available on the ReadTheDocs.

https://adafruit-io-python-client.readthedocs.io/en/latest/

io-client-python Library Documentation, Release 2.0

4 Chapter 1. Documentation

CHAPTER 2

Contributing

Contributions are welcome! Please read our Code of Conduct before contributing to help this project stay welcoming.

https://github.com/adafruit/CircuitPython_io-client-python/blob/master/CODE_OF_CONDUCT.md

io-client-python Library Documentation, Release 2.0

6 Chapter 2. Contributing

CHAPTER 3

Table of Contents

3.1 Quickstart

Here’s a short example of how to send a new value to a feed (creating the feed if it doesn’t exist), and how to read the
most recent value from the feed. This example uses the REST API.

Import library and create instance of REST client.
from Adafruit_ IO import Client
aio = Client ('YOUR ADAFRUIT IO KEY'")

Send the value 100 to a feed called 'Foo'.
aio.send('Foo', 100)

Retrieve the most recent value from the feed 'Foo'.

Access the value by reading the ‘value ' property on the returned Data object.

Note that all values retrieved from IO are strings so you might need to convert
them to an int or numeric type 1if you expect a number.

data = aio.receive ('Foo'")

print ('Received value: {0}'.format (data.value))

If you want to be notified of feed changes immediately without polling, consider using the MQTT client. See the
examples/mgtt_client.py for an example of using the MQTT client.

3.2 Basic Client Usage

You must have an Adafruit 10 key to use this library and the Adafruit IO service. Your API key will be provided to
the python library so it can authenticate your requests against the Adafruit IO service.

At a high level the Adafruit IO python client provides two interfaces to the service:

* A thin wrapper around the REST-based API. This is good for simple request and response applications like
logging data.

io-client-python Library Documentation, Release 2.0

* A MQTT client (based on paho-mqtt) which can publish and subscribe to feeds so it is immediately alerted of
changes. This is good for applications which need to know when something has changed as quickly as possible.

To use either interface you’ll first need to import the python client by adding an import such as the following at the top
of your program:

’from Adafruit_IO import =«

Then a REST API client can be created with code like:

aio = Client ('"xxxxxxxxxxxx')

Where 'xxxxxxxxxxxx' is your Adafruit IO API key.

Alternatively an MQTT client can be created with code like:

’mqtt = MQTTClient ('xXxXXXXXXXXxxX'")

Again where 'xxxxxxxxxxxx' is your Adafruit IO API key.

Your program can use either or both the REST API client and MQTT client, depending on your needs.

3.3 Error Handling

The python client library will raise an exception if it runs into an error it cannot handle. You should be prepared to catch
explicit exceptions you know how to handle, or bubble them up to the user as an error. Adafruit IO exceptions generally
are children of the base exception type AdafruitlOError. There are also three sub-exceptions to handle, depending on
which if you’re using the REST API or MQTT Client: MQTTError (for the MQTT Client), RequestError (REST
Client), and ThrottlingError (REST Client).

3.4 Feeds

Feeds are the core of the Adafruit IO system. The feed holds metadata about data that gets pushed, and you will have
one feed for each type of data you send to the system. You can have separate feeds for each sensor in a project, or you
can use one feed to contain JSON encoded data for all of your sensors.

3.4.1 Feed Creation

Create a feed by constructing a Feed instance with at least a name specified, and then pass it to the
create_feed (feed) function:

Import library and create instance of REST client.
from Adafruit_ IO import Client, Feed
aio = Client ('YOUR ADAFRUIT IO KEY'")

Create Feed object with name 'Foo'.
feed = Feed(name='Foo'")

Send the Feed to IO to create.
The returned object will contain all the details about the created feed.

result = aio.create_feed (feed)

Note that you can use the send function to create a feed and send it a new value in a single call. It’s recommended that
you use send instead of manually constructing feed instances.

8 Chapter 3. Table of Contents

io-client-python Library Documentation, Release 2.0

3.4.2 Feed Retrieval

You can get a list of your feeds by using the feeds () method which will return a list of Feed instances:

Import library and create instance of REST client.
from Adafruit_IO import Client
aio = Client ('YOUR ADAFRUIT IO KEY')

Get list of feeds.
feeds = aio.feeds ()

Print out the feed names:
for f in feeds:
print ('Feed: {0}'.format (f.name))

Alternatively you can retrieve the metadata for a single feed by calling feeds (feed) and passing the name, ID, or
key of a feed to retrieve:

Import library and create instance of REST client.
from Adafruit_ IO import Client
aio = Client ('YOUR ADAFRUIT IO KEY'")

Get feed 'Foo'
feed = aio.feeds ('Foo')

Print out the feed metadata.
print (feed)

3.4.3 Feed Deletion

You can delete a feed by ID, key, or name by calling delete_feed (feed). ALL data in the feed will be deleted
after calling this API!

Import library and create instance of REST client.
from Adafruit_ IO import Client
aio = Client ('YOUR ADAFRUIT IO USERNAME', 'YOUR ADAFRUIT IO KEY')

Delete the feed with name 'Test'.
aio.delete_feed('Test')

3.5 Data

Data represents the data contained in feeds. You can read, add, modify, and delete data. There are also a few convenient
methods for sending data to feeds and selecting certain pieces of data.

3.5.1 Data Creation

Data can be created after you create a feed, by using the create_data (feed, data) method and passing it a
new Data instance a value.

3.5. Data 9

io-client-python Library Documentation, Release 2.0

Import library and create instance of REST client.
from Adafruit_ IO import Client, Data
aio = Client ('YOUR ADAFRUIT IO USERNAME', 'YOUR ADAFRUIT IO KEY')

Create a data item with value 10 in the 'Test' feed.
data = Data(value=10)
aio.create_data('Test', data)

3.5.2 Data Retrieval

You can get all of the data for a feed by using the data (feed) method. The result will be an array of all feed data,
each returned as an instance of the Data class. Use the value property on each Data instance to get the data value,
and remember values are always returned as strings (so you might need to convert to an int or number if you expect a
numeric value).

Import library and create instance of REST client.
from Adafruit_ IO import Client
aio = Client ('YOUR ADAFRUIT IO USERNAME', 'YOUR ADAFRUIT IO KEY')

Get an array of all data from feed 'Test'
data = aio.data('Test")

Print out all the results.
for d in data:
print ('Data value: {0}'.format (d.value))

You can also get a specific value by ID by using the feeds (feed, data_id) method. This will return a single
piece of feed data with the provided data ID if it exists in the feed. The returned object will be an instance of the Data
class.

3.5.3 Data Deletion

Values can be deleted by using the delete (feed, data_id) method:

Import library and create instance of REST client.
from Adafruit_IO import Client
aio = Client ('YOUR ADAFRUIT IO USERNAME', 'YOUR ADAFRUIT IO KEY')

Delete a data value from feed 'Test' with ID 1.
data = aio.delete('Test', 1)

3.6 Data Helper methods
There are a few helper methods that can make interacting with data a bit easier.

3.6.1 Send Data

You can use the send_data (feed_name, value) method to append a new value to a feed. This is the recom-
mended way to send data to Adafruit IO from the Python REST client.

10 Chapter 3. Table of Contents

io-client-python Library Documentation, Release 2.0

Import library and create instance of REST client.
from Adafruit_ IO import Client
aio = Client ('YOUR ADAFRUIT IO USERNAME', 'YOUR ADAFRUIT IO KEY')

Add the value 98.6 to the feed 'Temperature'.
test = aio.feeds('test')
aio.send_data (test.key, 98.6)

3.6.2 Send Batch Data

Data can be created after you create a feed, by using the send_batch_data (feed, data_list) method and
passing it a new Data list.

Import library and create instance of REST client.
from Adafruit IO import Client, Data
aio = Client ('YOUR ADAFRUIT IO USERNAME', 'YOUR ADAFRUIT IO KEY')

Create a data items in the 'Test' feed.
data_list = [Data(value=10), Data(value=11)]
aio.create_data('Test', data)

3.6.3 Receive Data

You can get the last inserted value by using the receive (feed) method.

3.6.4 Next Value

You can get the first inserted value that has not been processed (read) by using the receive_next (feed) method.

Import library and create instance of REST client.
from Adafruit_ IO import Client
aio = Client ('YOUR ADAFRUIT IO USERNAME', 'YOUR ADAFRUIT IO KEY')

Get next unread value from feed 'Test'.
data = aio.receive_next ('Test')

Print the value.
print ('Data value: {0}'.format (data.value))

3.6.5 Previous Value

You can get the last record that has been processed (read) by using the receive_previous (feed) method.

Import library and create instance of REST client.
from Adafruit_ IO import Client
aio = Client ('YOUR ADAFRUIT IO USERNAME', 'YOUR ADAFRUIT IO KEY')

Get previous read value from feed 'Test'.
data = aio.receive_previous ('Test')

(continues on next page)

3.6. Data Helper methods 11

io-client-python Library Documentation, Release 2.0

(continued from previous page)

Print the value.
print ('Data value: {0}'.format (data.value))

3.6.6 Publishing and Subscribing

You can get a readable stream of live data from your feed using the included MQTT client class:

Example of using the MQTT client class to subscribe to a feed and print out
any changes made to the feed. Edit the variables below to configure the key,
username, and feed to subscribe to for changes.

Import standard python modules.
import sys

Import Adafruit IO MQTT client.
from Adafruit_ IO import MQTTClient

Set to your Adafruit IO key.

Remember, your key 1is a secret,

so make sure not to publish it when you publish this code!
ADAFRUIT_IO_KEY = 'YOUR_ATIO_KEY'

Set to your Adafruit IO username.
(go to https://accounts.adafruit.com to find your username)
ADAFRUIT_IO_USERNAME = 'YOUR_ATIO_USERNAME'

Set to the ID of the feed to subscribe to for updates.
FEED_ID = 'DemoFeed'

Define callback functions which will be called when certain events happen.
def connected(client):
Connected function will be called when the client is connected to Adafruit IO.
This is a good place to subscribe to feed changes. The client parameter
passed to this function is the Adafruit IO MQTT client so you can make
calls against it easily.
print ('Connected to Adafruit IO! Listening for {0} changes...'.format (FEED_ID))
Subscribe to changes on a feed named DemoFeed.
client.subscribe (FEED_ID)

def disconnected(client):
Disconnected function will be called when the client disconnects.
print ('Disconnected from Adafruit IO!'")
sys.exit (1)

def message(client, feed_id, payload, retain):
Message function will be called when a subscribed feed has a new value.
The feed _id parameter identifies the feed, and the payload parameter has
the new value.
print ('Feed {0} received new value: {1}'.format (feed_id, payload))

Create an MQTT client instance.
client = MQTTClient (ADAFRUIT_IO_USERNAME, ADAFRUIT_IO_KEY)

(continues on next page)

12 Chapter 3. Table of Contents

io-client-python Library Documentation, Release 2.0

(continued from previous page)

Setup the callback functions defined above.

client.on_connect = connected
client.on_disconnect = disconnected
client.on_message = message

Connect to the Adafruit IO server.
client.connect ()

Start a message loop that blocks forever waiting for MQTT messages to be

received. Note there are other options for running the event loop like doing
so in a background thread--see the mqgtt_client.py example to learn more.
client.loop_blocking()

3.7 Groups

Groups allow you to update and retrieve multiple feeds with one request. You can add feeds to multiple groups.

3.7.1 Group Creation

The creation of groups is now supported in API-V2, rejoyce! The process of creating a group is similar to creating
a feed. Create a group by constructing a Group instance with at least a name specified, and then pass it to the
create_group (group) function:

Import library and create instance of REST client.
from Adafruit_IO import Client, Group
aio = Client ('YOUR ADAFRUIT IO USERNAME', 'YOUR ADAFRUIT IO KEY')

Create a group instance
group = Group (name="weatherstation")

Send the group for IO to create:
The returned object will contain all the details about the created group.
group = alo.create_group (group

3.7.2 Group Retrieval

You can get a list of your groups by using the groups () method. This will return a list of Group instances. Each
Group instance has metadata about the group, including a feeds property which is a tuple of all feeds in the group.

Import library and create instance of REST client.
from Adafruit_ IO import Client
aio = Client ('YOUR ADAFRUIT IO USERNAME', 'YOUR ADAFRUIT IO KEY')

Get 1list of groups.
groups = aio.groups()

Print the group names and number of feeds in the group.
for g in groups:
print ('Group {0} has {1} feed(s).'.format (g.name, len(g.feeds)))

You can also get a specific group by ID, key, or name by using the groups (group) method:

3.7. Groups 13

io-client-python Library Documentation, Release 2.0

Import library and create instance of REST client.
from Adafruit_ IO import Client
aio = Client ('YOUR ADAFRUIT IO USERNAME', 'YOUR ADAFRUIT IO KEY')

Get group called 'GroupTest'.
group = aio.groups ('GroupTest')

Print the group name and number of feeds in the group.
print ('Group {0} has {1} feed(s).'.format (group.name, len(group.feeds)))

3.7.3 Group Updating

TODO: Test and example this

3.7.4 Group Deletion

You can delete a group by ID, key, or name by using the delete_group (group) method:

Import library and create instance of REST client.
from Adafruit_IO import Client
aio = Client ('YOUR ADAFRUIT IO USERNAME', 'YOUR ADAFRUIT IO KEY')

Delete group called 'GroupTest'.
aio.delete_group ('GroupTest")

14 Chapter 3. Table of Contents

CHAPTER 4

Indices and tables

* genindex
* modindex

e search

15

	Documentation
	Contributing
	Table of Contents
	Quickstart
	Basic Client Usage
	Error Handling
	Feeds
	Feed Creation
	Feed Retrieval
	Feed Deletion

	Data
	Data Creation
	Data Retrieval
	Data Deletion

	Data Helper methods
	Send Data
	Send Batch Data
	Receive Data
	Next Value
	Previous Value
	Publishing and Subscribing

	Groups
	Group Creation
	Group Retrieval
	Group Updating
	Group Deletion

	Indices and tables

