

Actor-Critic Reinforcement Learning

Documentation of the actor-critic repository on GitHub [https://github.com/jrobine/actor-critic].

	API Documentation

	Quickstart Guide

API Documentation

	actorcritic

	The root package.

actorcritic

The root package.

	agents

	Contains agents, which are an abstraction from environments.

	baselines

	Contains baselines, which are used to compute the advantage.

	kfac_utils

	Contains utilities that concern K-FAC.

	model

	Contains the base class of actor-critic models.

	multi_env

	Contains classes that provide the ability to run multiple environments in subprocesses.

	nn

	Contains utilities that concern TensorFlow and neural networks.

	objectives

	Contains objectives that are used to optimize actor-critic models.

	policies

	Contains policies that determine the behavior of an agent.

	envs

	Contains functions that are dedicated to certain environments.

	examples

	Contains examples of how to use this project.

actorcritic.agents

Contains agents, which are an abstraction from environments.

Functions

	transpose_list(values)

	Transposes a list of lists.

Classes

	Agent

	Takes environments and a model (containing a policy) and provides interact(), which manages operations such as selecting actions from the model and stepping in the environments.

	MultiEnvAgent(multi_env, model, num_steps)

	An agent that maintains multiple environments (via MultiEnv) and samples multiple steps.

	SingleEnvAgent(env, model, num_steps)

	An agent that maintains a single environment and samples multiple steps.

	
class actorcritic.agents.Agent

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Takes environments and a model (containing a policy) and provides interact(), which manages operations
such as selecting actions from the model and stepping in the environments.

See also

This allows to create multi-step agents, like SingleEnvAgent and MultiEnvAgent.

	
interact(session)

	Samples actions from the model, and steps in the environments.

	Parameters

	session (tf.Session) – A session that will be used to compute the actions.

	Returns

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – A tuple of (observations, actions, rewards, terminals, next_observations, infos).

All values are in batch-major format, meaning that the rows determine the batch and the columns
determine the time: [batch, time]. In our case the rows correspond to the environments and the
columns correspond to the steps: [environment, step].
The opposite is the time-major format: [time, batch] or [step, environment].

Example:

If the agent maintains 3 environments and samples for 5 steps, the result would consist of a
matrix (list [https://docs.python.org/3/library/stdtypes.html#list] of list [https://docs.python.org/3/library/stdtypes.html#list]) with shape [3, 5]:

[[step 1, step 2, step 3, step 4, step 5], # environment 1
 [step 1, step 2, step 3, step 4, step 5], # environment 2
 [step 1, step 2, step 3, step 4, step 5]] # environment 3

observations, actions, rewards, terminals, and infos are collected during sampling and have
the shape [environments, steps].

next_observations contains the observations that the agent received at last, but did not use for
selecting actions yet. These e.g. can be used to bootstrap the remaining returns. Has the shape
[environments, 1].

	
class actorcritic.agents.MultiEnvAgent(multi_env, model, num_steps)

	Bases: actorcritic.agents.Agent

An agent that maintains multiple environments (via MultiEnv) and samples multiple
steps.

	
__init__(multi_env, model, num_steps)

	
	Parameters

	
	multi_env (MultiEnv) – Multiple environments.

	model (ActorCriticModel) – A model to sample actions.

	num_steps (int [https://docs.python.org/3/library/functions.html#int]) – The number of steps to take in interact().

	
interact(session)

	Samples actions from the model, and steps in the environments.

	Parameters

	session (tf.Session) – A session that will be used to compute the actions.

	Returns

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – A tuple of (observations, actions, rewards, terminals, next_observations, infos).

All values are in batch-major format, meaning that the rows determine the batch and the columns
determine the time: [batch, time]. In our case the rows correspond to the environments and the
columns correspond to the steps: [environment, step].
The opposite is the time-major format: [time, batch] or [step, environment].

Example:

If the agent maintains 3 environments and samples for 5 steps, the result would consist of a
matrix (list [https://docs.python.org/3/library/stdtypes.html#list] of list [https://docs.python.org/3/library/stdtypes.html#list]) with shape [3, 5]:

[[step 1, step 2, step 3, step 4, step 5], # environment 1
 [step 1, step 2, step 3, step 4, step 5], # environment 2
 [step 1, step 2, step 3, step 4, step 5]] # environment 3

observations, actions, rewards, terminals, and infos are collected during sampling and have
the shape [environments, steps].

next_observations contains the observations that the agent received at last, but did not use for
selecting actions yet. These e.g. can be used to bootstrap the remaining returns. Has the shape
[environments, 1].

	
class actorcritic.agents.SingleEnvAgent(env, model, num_steps)

	Bases: actorcritic.agents.Agent

An agent that maintains a single environment and samples multiple steps.

	
__init__(env, model, num_steps)

	
	Parameters

	
	env (gym.Env) – An environment.

	model (ActorCriticModel) – A model to sample actions.

	num_steps (int [https://docs.python.org/3/library/functions.html#int]) – The number of steps to take in interact().

	
interact(session)

	Samples actions from the model and steps in the environment.

	Parameters

	session (tf.Session) – A session that will be used to compute the actions.

	Returns

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – A tuple (observations, actions, rewards, terminals, next_observations, infos).

All values are in batch-major format, meaning that the rows determine the batch and the columns
determine the time: [batch, time]. In our case we have one environment so the row corresponds to
the environment and the columns correspond to the steps: [1, step].
The opposite is the time-major format: [time, batch] or [step, 1].

observations, actions, rewards, terminals, and infos are collected during sampling and have
the shape [1, steps].

next_observations contains the observation that the agent received at last, but did not use for
selecting an action yet. This e.g. can be used to bootstrap the remaining return.
Has the shape [1, 1].

	
actorcritic.agents.transpose_list(values)

	Transposes a list of lists. Can be used to convert from time-major format to batch-major format and vice
versa.

Example

Input:

[[1, 2, 3, 4],
 [5, 6, 7, 8],
 [9, 10, 11, 12]]

Output:

[[1, 5, 9],
 [2, 6, 10],
 [3, 7, 11],
 [4, 8, 12]]

	Parameters

	values (list [https://docs.python.org/3/library/stdtypes.html#list] of list [https://docs.python.org/3/library/stdtypes.html#list]) – Values to transpose.

	Returns

	list [https://docs.python.org/3/library/stdtypes.html#list] of list [https://docs.python.org/3/library/stdtypes.html#list] – The transposed values.

actorcritic.baselines

Contains baselines, which are used to compute the advantage.

Classes

	Baseline

	A wrapper class for the baseline that is subtracted from the target values to get the advantage.

	StateValueFunction(value)

	A baseline defined by a state-value function.

	
class actorcritic.baselines.Baseline

	Bases: object [https://docs.python.org/3/library/functions.html#object]

A wrapper class for the baseline that is subtracted from the target values to get the advantage.

	
register_predictive_distribution(layer_collection, random_seed=None)

	Registers the predictive distribution of this baseline in the specified kfac.LayerCollection
(required for K-FAC).

	Parameters

	
	layer_collection (kfac.LayerCollection) – A layer collection used by the KfacOptimizer.

	random_seed (int [https://docs.python.org/3/library/functions.html#int], optional) – A random seed for sampling from the predictive distribution.

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – If this baseline does not support K-FAC.

	
value

	tf.Tensor – The output values of this baseline.

	
class actorcritic.baselines.StateValueFunction(value)

	Bases: actorcritic.baselines.Baseline

A baseline defined by a state-value function.

	
__init__(value)

	
	Parameters

	value (tf.Tensor) – The output values of this state-value function.

	
register_predictive_distribution(layer_collection, random_seed=None)

	Registers the predictive distribution (normal distribution) of this state-value function in the specified
kfac.LayerCollection (required for K-FAC).

	Parameters

	
	layer_collection (kfac.LayerCollection) – A layer collection used by the KfacOptimizer.

	random_seed (int [https://docs.python.org/3/library/functions.html#int], optional) – A random seed for sampling from the predictive distribution.

	
value

	tf.Tensor – The output values of this state-value function.

actorcritic.kfac_utils

Contains utilities that concern K-FAC.

Classes

	ColdStartPeriodicInvUpdateKfacOpt(…)

	A modified KfacOptimizer that runs the inverse operation periodically and uses a standard SGD optimizer for a few updates in the beginning, called cold updates and cold optimizer.

	
class actorcritic.kfac_utils.ColdStartPeriodicInvUpdateKfacOpt(num_cold_updates, cold_optimizer, invert_every, **kwargs)

	Bases: kfac.python.ops.optimizer.KfacOptimizer

A modified KfacOptimizer that runs the inverse operation periodically and uses a standard SGD
optimizer for a few updates in the beginning, called cold updates and cold optimizer.

This can be used to slowly initialize the parameters in the beginning before using the heavy K-FAC optimizer.
The covariances get updated every step (after the cold updates).

See also

	kfac.PeriodicInvCovUpdateKfacOpt

	The idea is taken from the original ACKTR implementation [https://github.com/openai/baselines/blob/master/baselines/acktr/kfac.py].

	
__init__(num_cold_updates, cold_optimizer, invert_every, **kwargs)

	
	Parameters

	
	num_cold_updates (int [https://docs.python.org/3/library/functions.html#int]) – The number of cold updates in the beginning before using the actual K-FAC optimizer.

	cold_optimizer (tf.train.Optimizer) – An optimizer that is used for the cold updates.

	invert_every (int [https://docs.python.org/3/library/functions.html#int]) – The inverse operation gets called every invert_every steps (after the cold updates have finished).

	
apply_gradients(grads_and_vars, global_step=None, name=None)

	Applies gradients to variables.

	Parameters

	
	grads_and_vars – List of (gradient, variable) pairs.

	*args – Additional arguments for super.apply_gradients.

	**kwargs – Additional keyword arguments for super.apply_gradients.

	Returns

	An Operation that applies the specified gradients.

actorcritic.model

Contains the base class of actor-critic models.

Classes

	ActorCriticModel(observation_space, action_space)

	Represents a model (e.g.

	
class actorcritic.model.ActorCriticModel(observation_space, action_space)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Represents a model (e.g. a neural net) that provides the functionalities required for actor-critic algorithms.
Provides a policy, a baseline (that is subtracted from the target values to compute the advantage) and the values
used for bootstrapping from next observations (ideally the values of the baseline), and the placeholders.

	
__init__(observation_space, action_space)

	
	Parameters

	
	observation_space (gym.spaces.Space) – A space that determines the shape of the observations_placeholder and the
bootstrap_observations_placeholder.

	action_space (gym.spaces.Space) – A space that determines the shape of the actions_placeholder.

	
actions_placeholder

	tf.Tensor – The placeholder for the sampled actions.

	
baseline

	Baseline – The baseline used by this model.

	
bootstrap_observations_placeholder

	tf.Tensor – The placeholder for the sampled next observations. These are used to compute the bootstrap_values.

	
bootstrap_values

	tf.Tensor – The bootstrapped values that are computed based on the observations passed to
the bootstrap_observations_placeholder.

	
observations_placeholder

	tf.Tensor – The placeholder for the sampled observations.

	
policy

	Policy – The policy used by this model.

	
register_layers(layer_collection)

	Registers the layers of this model (neural net) in the specified kfac.LayerCollection
(required for K-FAC).

	Parameters

	layer_collection (kfac.LayerCollection) – A layer collection used by the KfacOptimizer.

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – If this model does not support K-FAC.

	
register_predictive_distributions(layer_collection, random_seed=None)

	Registers the predictive distributions of the policy and the baseline in the specified
kfac.LayerCollection (required for K-FAC).

	Parameters

	
	layer_collection (kfac.LayerCollection) – A layer collection used by the KfacOptimizer.

	random_seed (int [https://docs.python.org/3/library/functions.html#int], optional) – A random seed used for sampling from the predictive distributions.

	
rewards_placeholder

	tf.Tensor – The placeholder for the sampled rewards (scalars).

	
sample_actions(observations, session)

	Samples actions from the policy based on the specified observations.

	Parameters

	
	observations – The observations that will be passed to the observations_placeholder.

	session (tf.Session) – A session that will be used to compute the values.

	Returns

	list [https://docs.python.org/3/library/stdtypes.html#list] of list [https://docs.python.org/3/library/stdtypes.html#list] – A list of lists of actions. The shape equals the shape of observations.

	
select_max_actions(observations, session)

	Selects actions from the policy that have the highest probability (mode) based on the specified observations.

	Parameters

	
	observations – The observations that will be passed to the observations_placeholder.

	session (tf.Session) – A session that will be used to compute the values.

	Returns

	list [https://docs.python.org/3/library/stdtypes.html#list] of list [https://docs.python.org/3/library/stdtypes.html#list] – A list of lists of actions. The shape equals the shape of observations.

	
terminals_placeholder

	tf.Tensor – The placeholder for the sampled terminals (booleans).

actorcritic.multi_env

Contains classes that provide the ability to run multiple environments in subprocesses.

Functions

	create_subprocess_envs(env_fns)

	Utility function that creates environments by calling the functions in env_fns and wrapping the returned environments in SubprocessEnvs.

Classes

	MultiEnv(envs)

	An environment that maintains multiple SubprocessEnvs and executes them in parallel.

	SubprocessEnv(env_fn)

	Maintains a gym.Env inside a subprocess, so it can run concurrently.

	
class actorcritic.multi_env.MultiEnv(envs)

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An environment that maintains multiple SubprocessEnvs and executes them in parallel.

The environments will be reset automatically when a terminal state is reached. That means that reset()
actually only has to be called once in the beginning.

	
__init__(envs)

	
	Parameters

	envs (list [https://docs.python.org/3/library/stdtypes.html#list] of SubprocessEnv) – The environments. The observation and action spaces must be equal across the environments.

	
action_space

	gym.spaces.Space – The action space used by all environments.

	
close()

	Closes all environments.

	
envs

	list [https://docs.python.org/3/library/stdtypes.html#list] of gym.Env – The environments.

	
observation_space

	gym.spaces.Space – The observation space used by all environments.

	
reset()

	Resets all environments.

	Returns

	list [https://docs.python.org/3/library/stdtypes.html#list] – A list of observations received from each environment.

	
step(actions)

	Proceeds one step in all environments.

	Parameters

	actions (list [https://docs.python.org/3/library/stdtypes.html#list]) – A list of actions to be executed in the environments.

	Returns

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – A tuple of (observations, rewards, terminals, infos). Each element is a list containing the
values received from the environments.

	
class actorcritic.multi_env.SubprocessEnv(env_fn)

	Bases: gym.core.Env

Maintains a gym.Env inside a subprocess, so it can run concurrently. If the subprocess ends unexpectedly,
it will be recreated automatically without interrupting the execution.

To use the subprocess start() has to be called first. After that initialize() has to be called to
retrieve the observation space and the action space from the underlying environment. The purpose of these methods is
that multiple SubprocessEnvs can be created and started in parallel without blocking the execution, which
creates the underlying gym.Env already. Afterwards start(), which blocks the execution, can be called
in parallel. See create_subprocess_envs() which implements this idea.

	
__init__(env_fn)

	
	Parameters

	env_fn (callable [https://docs.python.org/3/library/functions.html#callable]) – A function that returns a gym.Env. It will be called inside the subprocess, so watch out for
referencing variables on the main process or the like. It possibly will be called multiple times, since
the subprocess will be recreated when it unexpectedly ends.

	
action_space

	gym.spaces.Space – The action space of the underlying environment. Does not block the execution. start() and
initialize() must have been called.

	
close()

	Closes the subprocess.

	
initialize()

	Retrieves the observation space and the action space from the environment in the subprocess. This method
blocks until the execution is finished. start() must have been called.

	
observation_space

	gym.spaces.Space – The observation space of the underlying environment. Does not block the execution. start() and
initialize() must have been called.

	
render(mode='human')

	Remotely calls gym.Env.render() in the subprocess. This methods blocks until execution is finished.
start() and initialize() must have been called.

	Parameters

	mode (str [https://docs.python.org/3/library/stdtypes.html#str]) – The mode argument passed to gym.Env.render().

	Returns

	The value returned by gym.Env.render().

	
reset(**kwargs)

	Remotely calls gym.Env.reset() in the underlying environment. This method blocks until execution is
finished. start() and initialize() must have been called.

	Parameters

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict]) – Keyword arguments passed to gym.Env.reset().

	Returns

	The value returned by gym.Env.reset().

	
start()

	Starts the subprocess. Does not block. You should call initialize() afterwards.

	
step(action)

	Remotely calls gym.Env.step() in the underlying environment. This method blocks until execution is
finished. start() and initialize() must have been called.

	Parameters

	action – The action argument passed to gym.Env.step().

	Returns

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] – A tuple of (observation, reward, terminal, info). The values returned by
gym.Env.step().

	
class actorcritic.multi_env._AutoResetWrapper(env)

	Bases: gym.core.Wrapper

	
reset(**kwargs)

	Resets the state of the environment and returns an initial observation.

	Returns: observation (object): the initial observation of the

	space.

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object [https://docs.python.org/3/library/functions.html#object]) – an action provided by the environment

	Returns

	observation (object) – agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (boolean): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	
actorcritic.multi_env.create_subprocess_envs(env_fns)

	Utility function that creates environments by calling the functions in env_fns and wrapping the returned
environments in SubprocessEnvs. They will be started and initialized in parallel.

	Parameters

	env_fns (list [https://docs.python.org/3/library/stdtypes.html#list] of callable [https://docs.python.org/3/library/functions.html#callable]) – A list of functions that return a gym.Env. They should not be instances of SubprocessEnv.

	Returns

	list [https://docs.python.org/3/library/stdtypes.html#list] of SubprocessEnv – A list of the created environments.

actorcritic.nn

Contains utilities that concern TensorFlow and neural networks.

Functions

	conv2d(input, params, stride, padding)

	Creates a 2D convolutional layer with bias (without activation).

	conv2d_params(num_input_channels, …)

	Creates weights and bias variables for a 2D convolutional layer.

	flatten(input)

	Flattens inputs but keeps the batch size.

	fully_connected(input, params)

	Creates a fully connected layer with bias (without activation).

	fully_connected_params(input_size, …)

	Creates weights and bias variables for a fully connected layer.

	linear_decay(start_value, end_value, step, …)

	Applies linear decay from start_value to end_value.

Classes

	ClipGlobalNormOptimizer(optimizer, clip_norm)

	A tf.train.Optimizer that wraps around another optimizer and minimizes the loss by clipping gradients using the global norm (tf.clip_by_global_norm()).

	
class actorcritic.nn.ClipGlobalNormOptimizer(optimizer, clip_norm, name=None)

	Bases: tensorflow.python.training.optimizer.Optimizer

A tf.train.Optimizer that wraps around another optimizer and minimizes the loss by clipping gradients
using the global norm (tf.clip_by_global_norm()).

See also

	https://www.tensorflow.org/versions/r1.2/api_docs/python/tf/clip_by_global_norm

	https://stackoverflow.com/questions/36498127/how-to-apply-gradient-clipping-in-tensorflow/43486487#43486487

	
__init__(optimizer, clip_norm, name=None)

	
	Parameters

	
	optimizer (tf.train.Optimizer) – An optimizer whose gradients will be clipped.

	clip_norm (tf.Tensor or float [https://docs.python.org/3/library/functions.html#float]) – Value for the global norm (passed to tf.clip_by_global_norm()).

	name (string [https://docs.python.org/3/library/string.html#module-string], optional) – A name for this optimizer.

	
apply_gradients(grads_and_vars, global_step=None, name=None)

	Apply gradients to variables.

This is the second part of minimize(). It returns an Operation that
applies gradients.

	Parameters

	
	grads_and_vars – List of (gradient, variable) pairs as returned by
compute_gradients().

	global_step – Optional Variable to increment by one after the
variables have been updated.

	name – Optional name for the returned operation. Default to the
name passed to the Optimizer constructor.

	Returns

	An Operation that applies the specified gradients. If global_step
was not None, that operation also increments global_step.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If grads_and_vars is malformed.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – If none of the variables have gradients.

	
actorcritic.nn.conv2d(input, params, stride, padding)

	Creates a 2D convolutional layer with bias (without activation).

	Parameters

	
	input (tf.Tensor) – The input values.

	params (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of (tf.Variable, tf.Variable)) – A tuple of (weights, bias). Probably obtained by conv2d_params().

	stride (int [https://docs.python.org/3/library/functions.html#int]) – The stride of the convolution.

	padding (string [https://docs.python.org/3/library/string.html#module-string]) – The padding of the convolution. One of ‘VALID’, ‘SAME’.

	Returns

	tf.Tensor – The output values.

	
actorcritic.nn.conv2d_params(num_input_channels, num_filters, filter_extent, dtype, weights_initializer, bias_initializer)

	Creates weights and bias variables for a 2D convolutional layer. These can be used in conv2d().

	Parameters

	
	num_input_channels (int [https://docs.python.org/3/library/functions.html#int]) – The size of the input layer.

	num_filters (int [https://docs.python.org/3/library/functions.html#int]) – The output size. Number of filters to apply.

	filter_extent (int [https://docs.python.org/3/library/functions.html#int]) – The spatial extent of the filters. Determines the size of the weights.

	dtype (tf.DType) – The data type of the variables.

	weights_initializer (tf.keras.initializers.Initializer) – An initializer for the weights.

	bias_initializer (tf.keras.initializers.Initializer) – An initializer for the bias.

	Returns

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of (tf.Variable, tf.Variable) – A tuple of (weights, bias).

	
actorcritic.nn.flatten(input)

	Flattens inputs but keeps the batch size.

	Parameters

	input (tf.Tensor) – Input values of shape [batch_size, d_1, …, d_n].

	Returns

	tf.Tensor – Flattened input values of shape [batch_size, d1 * … * d_n].

	
actorcritic.nn.fully_connected(input, params)

	Creates a fully connected layer with bias (without activation).

	Parameters

	
	input (tf.Tensor) – The input values.

	params (tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of (tf.Variable, tf.Variable)) – A tuple of (weights, bias). Probably obtained by fully_connected_params().

	Returns

	tf.Tensor – The output values.

	
actorcritic.nn.fully_connected_params(input_size, output_size, dtype, weights_initializer, bias_initializer)

	Creates weights and bias variables for a fully connected layer. These can be used in fully_connected().

	Parameters

	
	input_size (int [https://docs.python.org/3/library/functions.html#int]) – The size of the input layer.

	output_size (int [https://docs.python.org/3/library/functions.html#int]) – The output size. Number of units.

	dtype (tf.DType) – The data type of the variables.

	weights_initializer (tf.keras.initializers.Initializer) – An initializer for the weights.

	bias_initializer (tf.keras.initializers.Initializer) – An initializer for the bias.

	Returns

	tuple [https://docs.python.org/3/library/stdtypes.html#tuple] of (tf.Variable, tf.Variable) – A tuple of (weights, bias).

	
actorcritic.nn.linear_decay(start_value, end_value, step, total_steps, name=None)

	Applies linear decay from start_value to end_value. The value at a specific step is computed as:

value = (start_value - end_value) * (1 - step / total_steps) + end_value

	Parameters

	
	start_value (tf.Tensor or float [https://docs.python.org/3/library/functions.html#float]) – The start value.

	end_value (tf.Tensor or float [https://docs.python.org/3/library/functions.html#float]) – The end value.

	step (tf.Tensor) – The current step (e.g. global_step).

	total_step (int [https://docs.python.org/3/library/functions.html#int] or tf.Tensor) – The total number of steps. Steps to reach end_value.

	name (string [https://docs.python.org/3/library/string.html#module-string], optional) – A name for the operation.

	Returns

	tf.Tensor – The linear decayed value.

actorcritic.objectives

Contains objectives that are used to optimize actor-critic models.

Classes

	A2CObjective(model[, discount_factor, …])

	An objective that defines the loss of the policy and the baseline according to the A3C and A2C/ACKTR papers.

	ActorCriticObjective

	An objective takes an ActorCriticModel and determines how it is optimized.

	
class actorcritic.objectives.A2CObjective(model, discount_factor=0.99, entropy_regularization_strength=0.01, name=None)

	Bases: actorcritic.objectives.ActorCriticObjective

An objective that defines the loss of the policy and the baseline according to the A3C and A2C/ACKTR papers.

The rewards are discounted and the policy loss uses entropy regularization. The baseline is optimized using a
squared error loss.

The policy objective uses entropy regularization:

J(theta) = log(policy(state, action | theta)) * (target_values - baseline) + beta * entropy(policy)

where beta determines the strength of the entropy regularization.

See also

	https://arxiv.org/pdf/1602.01783.pdf (A3C)

	https://arxiv.org/pdf/1708.05144.pdf (A2C/ACKTR)

	
__init__(model, discount_factor=0.99, entropy_regularization_strength=0.01, name=None)

	
	Parameters

	
	model (ActorCriticModel) – A model that provides the policy and the baseline that will be optimized.

	discount_factor (float [https://docs.python.org/3/library/functions.html#float]) – Used for discounting the rewards. Should be between [0, 1].

	entropy_regularization_strength (float [https://docs.python.org/3/library/functions.html#float] or tf.Tensor) – Determining the strength of the entropy regularization. Corresponds to the beta parameter in A3C.

	name (string [https://docs.python.org/3/library/string.html#module-string], optional) – A name for this objective.

	
baseline_loss

	tf.Tensor – The current loss of the baseline of the model.

	
mean_entropy

	tf.Tensor – The current mean entropy of the policy of the model.

	
policy_loss

	tf.Tensor – The current loss of the policy of the model.

	
class actorcritic.objectives.ActorCriticObjective

	Bases: object [https://docs.python.org/3/library/functions.html#object]

An objective takes an ActorCriticModel and determines how it is optimized. It defines
the loss of the policy and the loss of the baseline, and can create train operations based on these losses.

	
baseline_loss

	tf.Tensor – The current loss of the baseline of the model.

	
optimize_separate(policy_optimizer, baseline_optimizer, policy_kwargs=None, baseline_kwargs=None)

	Creates an operation that minimizes the policy loss and the baseline loss separately. This means that it
minimizes the losses using two different optimizers.

	Parameters

	
	policy_optimizer (tf.train.Optimizer) – An optimizer that is used for the policy loss.

	baseline_optimizer (tf.train.Optimizer) – An optimizer that is used for the baseline loss.

	policy_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments passed to the minimize() method of the policy_optimizer.

	baseline_kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments passed to the minimize() method of the baseline_optimizer.

	Returns

	tf.Operation – An operation that updates both the policy and the baseline.

	
optimize_shared(optimizer, baseline_loss_weight=0.5, **kwargs)

	Creates an operation that minimizes both the policy loss and the baseline loss using the same optimizer. This
is used for models that share parameters between the policy and the baseline. The shared loss is defined as:

shared_loss = policy_loss + baseline_loss_weight * baseline_loss

where baseline_loss_weight determines the ‘learning rate’ relative to the policy loss.

	Parameters

	
	optimizer (tf.train.Optimizer) – An optimizer that is used for both the policy loss and the baseline loss.

	baseline_loss_weight (float [https://docs.python.org/3/library/functions.html#float] or tf.Tensor) – Determines the relative ‘learning rate’.

	kwargs (dict [https://docs.python.org/3/library/stdtypes.html#dict], optional) – Keyword arguments passed to the minimize() method of the optimizer.

	Returns

	tf.Operation – An operation that updates both the policy and the baseline.

	
policy_loss

	tf.Tensor – The current loss of the policy of the model.

actorcritic.policies

Contains policies that determine the behavior of an agent.

Classes

	DistributionPolicy(distribution, actions[, …])

	Base class for stochastic policies that follow a concrete tf.distributions.Distribution.

	Policy

	Base class for stochastic policies.

	SoftmaxPolicy(logits, actions[, …])

	A stochastic policy that follows a categorical distribution.

	
class actorcritic.policies.DistributionPolicy(distribution, actions, random_seed=None)

	Bases: actorcritic.policies.Policy

Base class for stochastic policies that follow a concrete tf.distributions.Distribution. Implements the
required methods based on this distribution.

	
__init__(distribution, actions, random_seed=None)

	
	Parameters

	
	distribution (tf.distributions.Distribution) – The distribution.

	actions (tf.Tensor) – The input actions used to compute the log-probabilities. Must have the same shape as the inputs.

	random_seed (int [https://docs.python.org/3/library/functions.html#int], optional) – A random seed used for sampling.

	
entropy

	tf.Tensor – Computes the entropy of this policy based on the inputs that are provided for computing the probabilities.
The shape equals the shape of the inputs.

	
log_prob

	tf.Tensor – Computes the log-probability of the given actions based on the inputs that are provided for computing the
probabilities. The shape equals the shape of the actions and the inputs.

	
mode

	tf.Tensor – Selects actions from this policy which have the highest probability (mode) based on the inputs that are
provided for computing the probabilities. The shape equals the shape of the inputs.

	
sample

	tf.Tensor – Samples actions from this policy based on the inputs that are provided for computing the probabilities. The
shape equals the shape of the inputs.

	
class actorcritic.policies.Policy

	Bases: object [https://docs.python.org/3/library/functions.html#object]

Base class for stochastic policies.

	
entropy

	tf.Tensor – Computes the entropy of this policy based on the inputs that are provided for computing the probabilities.
The shape equals the shape of the inputs.

	
log_prob

	tf.Tensor – Computes the log-probability of the given actions based on the inputs that are provided for computing the
probabilities. The shape equals the shape of the actions and the inputs.

	
mode

	tf.Tensor – Selects actions from this policy which have the highest probability (mode) based on the inputs that are
provided for computing the probabilities. The shape equals the shape of the inputs.

	
register_predictive_distribution(layer_collection, random_seed=None)

	Registers the predictive distribution of this policy in the specified kfac.LayerCollection
(required for K-FAC).

	Parameters

	
	layer_collection (kfac.LayerCollection) – A layer collection used by the KfacOptimizer.

	random_seed (int [https://docs.python.org/3/library/functions.html#int], optional) – A random seed for sampling from the predictive distribution.

	Raises

	NotImplementedError [https://docs.python.org/3/library/exceptions.html#NotImplementedError] – If this policy does not support K-FAC.

	
sample

	tf.Tensor – Samples actions from this policy based on the inputs that are provided for computing the probabilities. The
shape equals the shape of the inputs.

	
class actorcritic.policies.SoftmaxPolicy(logits, actions, random_seed=None, name=None)

	Bases: actorcritic.policies.DistributionPolicy

A stochastic policy that follows a categorical distribution.

	
__init__(logits, actions, random_seed=None, name=None)

	
	Parameters

	
	logits (tf.Tensor) – The input logits (or ‘scores’) used to compute the probabilities.

	actions (tf.Tensor) – The input actions used to compute the log-probabilities. Must have the same shape as logits.

	random_seed (int [https://docs.python.org/3/library/functions.html#int], optional) – A random seed used for sampling.

	name (string [https://docs.python.org/3/library/string.html#module-string], optional) – A name for this policy.

	
register_predictive_distribution(layer_collection, random_seed=None)

	Registers the predictive distribution of this policy in the specified kfac.LayerCollection
(required for K-FAC).

	Parameters

	
	layer_collection (kfac.LayerCollection) – A layer collection used by the KfacOptimizer.

	random_seed (int [https://docs.python.org/3/library/functions.html#int], optional) – A random seed for sampling from the predictive distribution.

actorcritic.envs

Contains functions that are dedicated to certain environments.

	atari

	Contains functions that are dedicated to Atari environments.

actorcritic.envs.atari

Contains functions that are dedicated to Atari environments.

	model

	An implementation of an actor-critic model that is aimed at Atari games.

	wrappers

	Contains wrappers that can wrap around environments to modify their functionality.

actorcritic.envs.atari.model

An implementation of an actor-critic model that is aimed at Atari games.

Classes

	AtariModel(observation_space, action_space)

	An ActorCriticModel that follows the A3C and ACKTR paper.

	
class actorcritic.envs.atari.model.AtariModel(observation_space, action_space, conv3_num_filters=64, random_seed=None, name=None)

	Bases: actorcritic.model.ActorCriticModel

An ActorCriticModel that follows the A3C and ACKTR paper.

The observations are sent to three convolutional layers followed by a fully connected layer, each using rectifier
activation functions (ReLU). The policy and the baseline use fully connected layers built on top of the last hidden
fully connected layer separately. The policy layer has one unit for each action and its outputs are used as logits
for a categorical distribution (softmax). The baseline layer has only one unit which represents its value.

The weights of the layers are orthogonally initialized.

Detailed network architecture:

	Conv2D: 32 filters 8x8, stride 4

	ReLU

	Conv2D: 64 filters 4x4, stride 2

	ReLU

	Conv2D: 64 filters 3x3, stride 1 (number of filters based on argument conv3_num_filters)

	Flatten

	Fully connected: 512 units

	ReLU

	Fully connected (policy): units = number of actions / Fully connected (baseline): 1 unit

A2C uses 64 filters in the third convolutional layer. ACKTR uses 32.

The policy is a SoftmaxPolicy.
The baseline is a StateValueFunction.

See also

This network architecture was originally used in: https://www.nature.com/articles/nature14236

	
__init__(observation_space, action_space, conv3_num_filters=64, random_seed=None, name=None)

	
	Parameters

	
	observation_space (gym.spaces.Space) – A space that determines the shape of the observations_placeholder and the
bootstrap_observations_placeholder.

	action_space (gym.spaces.Space) – A space that determines the shape of the actions_placeholder.

	conv3_num_filters (int [https://docs.python.org/3/library/functions.html#int], optional) – Number of filters used for the third convolutional layer, defaults to 64. ACKTR uses 32.

	random_seed (int [https://docs.python.org/3/library/functions.html#int], optional) – A random seed used for sampling from the ~actorcritic.policies.SoftmaxPolicy.

	name (string [https://docs.python.org/3/library/string.html#module-string], optional) – A name for this model.

	
register_layers(layer_collection)

	Registers the layers of this model (neural net) in the specified kfac.LayerCollection
(required for K-FAC).

	Parameters

	layer_collection (kfac.LayerCollection) – A layer collection used by the KfacOptimizer.

actorcritic.envs.atari.wrappers

Contains wrappers that can wrap around environments to modify their functionality.

The implementations of these wrappers are adopted from
OpenAI [https://github.com/openai/baselines/blob/master/baselines/common/atari_wrappers.py].

Classes

	AtariClipRewardWrapper(env)

	A wrapper that clips the rewards between -1 and 1.

	AtariEpisodicLifeWrapper(env)

	A wrapper that ends episodes (returns terminal = True) after a life in the Atari game has been lost.

	AtariFireResetWrapper(env)

	A wrapper that executes the ‘FIRE’ action after the environment has been reset.

	AtariFrameskipWrapper(env, frameskip)

	A wrapper that skips frames.

	AtariInfoClearWrapper(env)

	A wrapper that removes unnecessary data in the info returned by gym.Env.step().

	AtariNoopResetWrapper(env, noop_max)

	A wrapper that executes a random number of ‘NOOP’ actions.

	AtariPreprocessFrameWrapper(env)

	A wrapper that scales the observations from 210x160 down to 84x84 and converts from RGB to grayscale by extracting the luminance.

	EpisodeInfoWrapper(env)

	A wrapper that stores episode information in the info returned by gym.Env.step() at the end of an episode.

	FrameStackWrapper(env, num_stacked_frames)

	A wrapper that stacks the last observations.

	RenderWrapper(env[, fps])

	A wrapper that calls gym.Env.render() every step.

	
class actorcritic.envs.atari.wrappers.AtariClipRewardWrapper(env)

	Bases: gym.core.RewardWrapper

A wrapper that clips the rewards between -1 and 1.

	
__init__(env)

	
	Parameters

	env (gym.Env) – An environment that will be wrapped.

	
class actorcritic.envs.atari.wrappers.AtariEpisodicLifeWrapper(env)

	Bases: gym.core.Wrapper

A wrapper that ends episodes (returns terminal = True) after a life in the Atari game has been lost.

	
__init__(env)

	
	Parameters

	env (gym.Env) – An environment that will be wrapped.

	
reset(**kwargs)

	Resets the state of the environment and returns an initial observation.

	Returns: observation (object): the initial observation of the

	space.

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object [https://docs.python.org/3/library/functions.html#object]) – an action provided by the environment

	Returns

	observation (object) – agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (boolean): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	
class actorcritic.envs.atari.wrappers.AtariFireResetWrapper(env)

	Bases: gym.core.Wrapper

A wrapper that executes the ‘FIRE’ action after the environment has been reset.

	
__init__(env)

	
	Parameters

	env (gym.Env) – An environment that will be wrapped.

	
reset(**kwargs)

	Resets the state of the environment and returns an initial observation.

	Returns: observation (object): the initial observation of the

	space.

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object [https://docs.python.org/3/library/functions.html#object]) – an action provided by the environment

	Returns

	observation (object) – agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (boolean): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	
class actorcritic.envs.atari.wrappers.AtariFrameskipWrapper(env, frameskip)

	Bases: gym.core.Wrapper

A wrapper that skips frames.

	
__init__(env, frameskip)

	
	Parameters

	
	env (gym.Env) – An environment that will be wrapped.

	frameskip (int [https://docs.python.org/3/library/functions.html#int]) – Every frameskip-th frame is used. The remaining frames are skipped.

	
reset(**kwargs)

	Resets the state of the environment and returns an initial observation.

	Returns: observation (object): the initial observation of the

	space.

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object [https://docs.python.org/3/library/functions.html#object]) – an action provided by the environment

	Returns

	observation (object) – agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (boolean): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	
class actorcritic.envs.atari.wrappers.AtariInfoClearWrapper(env)

	Bases: gym.core.Wrapper

A wrapper that removes unnecessary data in the info returned by gym.Env.step(). This reduces the amount
of inter-process data.

Warning

AtariEpisodicLifeWrapper does not work afterwards, so it should be used before.

	
__init__(env)

	
	Parameters

	env (gym.Env) – An environment that will be wrapped.

	
reset(**kwargs)

	Resets the state of the environment and returns an initial observation.

	Returns: observation (object): the initial observation of the

	space.

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object [https://docs.python.org/3/library/functions.html#object]) – an action provided by the environment

	Returns

	observation (object) – agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (boolean): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	
class actorcritic.envs.atari.wrappers.AtariNoopResetWrapper(env, noop_max)

	Bases: gym.core.Wrapper

A wrapper that executes a random number of ‘NOOP’ actions.

	
__init__(env, noop_max)

	
	Parameters

	
	env (gym.Env) – An environment that will be wrapped.

	noop_max (int [https://docs.python.org/3/library/functions.html#int]) – The maximum number of ‘NOOP’ actions. The number is selected randomly between 1 and noop_max.

	
reset(**kwargs)

	Resets the state of the environment and returns an initial observation.

	Returns: observation (object): the initial observation of the

	space.

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object [https://docs.python.org/3/library/functions.html#object]) – an action provided by the environment

	Returns

	observation (object) – agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (boolean): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	
class actorcritic.envs.atari.wrappers.AtariPreprocessFrameWrapper(env)

	Bases: gym.core.ObservationWrapper

A wrapper that scales the observations from 210x160 down to 84x84 and converts from RGB to grayscale by
extracting the luminance.

	
__init__(env)

	
	Parameters

	env (gym.Env) – An environment that will be wrapped.

	
class actorcritic.envs.atari.wrappers.EpisodeInfoWrapper(env)

	Bases: gym.core.Wrapper

A wrapper that stores episode information in the info returned by gym.Env.step() at the end of an
episode. More specifically, if an episode is terminal, info will contain the key ‘episode’ which has a
dict [https://docs.python.org/3/library/stdtypes.html#dict] value containing the ‘total_reward’, which is the cumulative reward of the episode.

Note

If you want to get the cumulative reward of the entire episode, AtariEpisodicLifeWrapper should be used
after this wrapper.

	
__init__(env)

	
	Parameters

	env (gym.Env) – An environment that will be wrapped.

	
static get_episode_rewards_from_info_batch(infos)

	Utility function that extracts the episode rewards, that are inserted by the EpisodeInfoWrapper, out
of the infos.

	Parameters

	infos (list [https://docs.python.org/3/library/stdtypes.html#list] of list [https://docs.python.org/3/library/stdtypes.html#list]) – A batch-major list of infos as returned by interact().

	Returns

	numpy.ndarray – A batch-major array with the same shape as infos. It contains the episode reward of an info at the
corresponding position. If no episode reward was in an info, the result will contain
numpy.nan respectively.

	
reset(**kwargs)

	Resets the state of the environment and returns an initial observation.

	Returns: observation (object): the initial observation of the

	space.

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object [https://docs.python.org/3/library/functions.html#object]) – an action provided by the environment

	Returns

	observation (object) – agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (boolean): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	
class actorcritic.envs.atari.wrappers.FrameStackWrapper(env, num_stacked_frames)

	Bases: gym.core.Wrapper

A wrapper that stacks the last observations. The observations returned by this wrapper consist of the last
frames.

	
__init__(env, num_stacked_frames)

	
	Parameters

	
	env (gym.Env) – An environment that will be wrapped.

	num_stacked_frames (int [https://docs.python.org/3/library/functions.html#int]) – The number of frames that will be stacked.

	
reset(**kwargs)

	Resets the state of the environment and returns an initial observation.

	Returns: observation (object): the initial observation of the

	space.

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object [https://docs.python.org/3/library/functions.html#object]) – an action provided by the environment

	Returns

	observation (object) – agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (boolean): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

	
class actorcritic.envs.atari.wrappers.RenderWrapper(env, fps=None)

	Bases: gym.core.Wrapper

A wrapper that calls gym.Env.render() every step.

	
__init__(env, fps=None)

	
	Parameters

	
	env (gym.Env) – An environment that will be wrapped.

	fps (int [https://docs.python.org/3/library/functions.html#int], float [https://docs.python.org/3/library/functions.html#float], optional) – If it is not None, the steps will be slowed down to run at the specified frames per second by waiting
1.0/fps seconds every step.

	
reset(**kwargs)

	Resets the state of the environment and returns an initial observation.

	Returns: observation (object): the initial observation of the

	space.

	
step(action)

	Run one timestep of the environment’s dynamics. When end of
episode is reached, you are responsible for calling reset()
to reset this environment’s state.

Accepts an action and returns a tuple (observation, reward, done, info).

	Parameters

	action (object [https://docs.python.org/3/library/functions.html#object]) – an action provided by the environment

	Returns

	observation (object) – agent’s observation of the current environment
reward (float) : amount of reward returned after previous action
done (boolean): whether the episode has ended, in which case further step() calls will return undefined results
info (dict): contains auxiliary diagnostic information (helpful for debugging, and sometimes learning)

actorcritic.examples

Contains examples of how to use this project.

	atari

	Contains examples that deal with Atari environments.

actorcritic.examples.atari

Contains examples that deal with Atari environments.

	a2c_acktr

	An example of how to use A2C and ACKTR to learn to play an Atari game.

actorcritic.examples.atari.a2c_acktr

An example of how to use A2C and ACKTR to learn to play an Atari game.

Functions

	create_environments(env_id, num_envs)

	Creates multiple Atari environments that run in subprocesses.

	create_optimizer(acktr, model, learning_rate)

	Creates an optimizer based on whether ACKTR or A2C is used.

	load_model(saver, checkpoint_path, session)

	Loads the latest model checkpoint (with the neural network parameters) from a directory.

	make_atari_env(env_id, render)

	Creates a gym.Env and wraps it with all Atari wrappers in actorcritic.envs.atari.wrappers.

	save_model(saver, checkpoint_path, …)

	Saves a model checkpoint to a directory.

	train_a2c_acktr(acktr, env_id, num_envs, …)

	Trains an Atari model using A2C or ACKTR.

	
actorcritic.examples.atari.a2c_acktr.create_environments(env_id, num_envs)

	Creates multiple Atari environments that run in subprocesses.

	Parameters

	
	env_id (string [https://docs.python.org/3/library/string.html#module-string]) – An id passed to gym.make() to create the environments.

	num_envs (int [https://docs.python.org/3/library/functions.html#int]) – The number of environments (and subprocesses) that will be created.

	Returns

	list [https://docs.python.org/3/library/stdtypes.html#list] of gym.Wrapper – The environments.

	
actorcritic.examples.atari.a2c_acktr.create_optimizer(acktr, model, learning_rate)

	Creates an optimizer based on whether ACKTR or A2C is used. A2C uses the RMSProp optimizer, ACKTR uses
the K-FAC optimizer. This function is not restricted to Atari models and can be used generally.

	Parameters

	
	acktr (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether to use the optimizer of ACKTR or A2C.

	model (ActorCriticModel) – A model that is needed for K-FAC to register the neural network layers and the predictive distributions.

	learning_rate (float [https://docs.python.org/3/library/functions.html#float] or tf.Tensor) – A learning rate for the optimizer.

	
actorcritic.examples.atari.a2c_acktr.load_model(saver, checkpoint_path, session)

	Loads the latest model checkpoint (with the neural network parameters) from a directory.

	Parameters

	
	saver (tf.train.Saver) – A saver object to restore the model.

	checkpoint_path (string [https://docs.python.org/3/library/string.html#module-string]) – A directory where the checkpoint is loaded from.

	session (tf.Session) – A session which will contain the loaded variable values.

	
actorcritic.examples.atari.a2c_acktr.make_atari_env(env_id, render)

	Creates a gym.Env and wraps it with all Atari wrappers in actorcritic.envs.atari.wrappers.

	Parameters

	
	env_id (string [https://docs.python.org/3/library/string.html#module-string]) – An id passed to gym.make().

	render (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether this environment should be rendered.

	Returns

	gym.Env – The environment.

	
actorcritic.examples.atari.a2c_acktr.save_model(saver, checkpoint_path, model_name, step, session)

	Saves a model checkpoint to a directory.

	Parameters

	
	saver (tf.train.Saver) – A saver object to save the model.

	checkpoint_path (string [https://docs.python.org/3/library/string.html#module-string]) – A directory where the model checkpoint will be saved.

	model_name (string [https://docs.python.org/3/library/string.html#module-string]) – A name of the model. The checkpoint file in the checkpoint_path directory will have this name.

	step (int [https://docs.python.org/3/library/functions.html#int] or tf.Tensor) – A number that is appended to the checkpoint file name.

	session (tf.Session) – A session whose variables will be saved.

	
actorcritic.examples.atari.a2c_acktr.train_a2c_acktr(acktr, env_id, num_envs, num_steps, checkpoint_path, model_name, summary_path=None)

	Trains an Atari model using A2C or ACKTR. Automatically saves and loads the trained model.

	Parameters

	
	acktr (bool [https://docs.python.org/3/library/functions.html#bool]) – Whether the ACKTR or the A2C algorithm should be used. A2C uses the RMSProp optimizer and 64 filters
in the third convolutional layer of the neural network. ACKTR uses the K-FAC optimizer and 32 filters.

	env_id (string [https://docs.python.org/3/library/string.html#module-string]) – An id passed to gym.make() to create the environments.

	num_envs (int [https://docs.python.org/3/library/functions.html#int]) – The number of environments that will be used (so num_envs subprocesses will be created).
A2C normally uses 16. ACKTR normally uses 32.

	num_steps (int [https://docs.python.org/3/library/functions.html#int]) – The number of steps to take in each iteration. A2C normally uses 5. ACKTR normally uses 20.

	checkpoint_path (string [https://docs.python.org/3/library/string.html#module-string]) – A directory where the model’s checkpoints will be loaded and saved.

	model_name (string [https://docs.python.org/3/library/string.html#module-string]) – A name of the model. The files in the checkpoint_path directory will have this name.

	summary_path (string [https://docs.python.org/3/library/string.html#module-string], optional) – A directory where the TensorBoard summaries will be saved. If not specified, no summaries will be saved.

Quickstart Guide

The basic idea of reinforcement learning is to find a behavior for an agent inside an environment that leads to a
maximal reward. Such a behavior is called a policy and it decides what action to take based on the current
observation (also called state).

For example, the environment can be an Atari game. In this case the reward is the score, the actions are the controller
actions, and the current frame/image of the game is an observation.

The gym library [https://gym.openai.com/] (GitHub [https://github.com/openai/gym]) by OpenAI provides several
types of environments. A basic reinforcement learning setup to learn a policy for the Breakout environment could look
like this:

import gym

create the environment
env = gym.make('BreakoutNoFrameskip-v4')

receive an initial observation (frame) to select the first action
observation = env.reset()

while True:
 # let the current policy select an action
 action = policy(observation)

 # execute the action and take one step in the environment (go to next frame)
 next_observation, reward, terminal, info = env.step(action)

 # improve the policy based on this experience
 improve_policy(observation, action, reward, terminal, next_observation)

 observation = next_observation

 if terminal:
 observation = env.reset()

terminal indicates whether the game ended, so the game has to be reset. reward is just a number that
represents the points that were achieved in this step. info contains debug information (the current number of
lives).

A2C and ACKTR actually use multiple environments at once by running them in multiple subprocesses. This means that
we can improve the policy faster, since we simply have more observations and rewards available.
For that reason there is MultiEnv:

from actorcritic.multi_env import MultiEnv

envs = create_environments() # create multiple environments
multi_env = MultiEnv(envs)

Yet the crucial parts are policy(observation) and
improve_policy(observation, action, reward, next_observation). We need to know how to define a policy and
especially how to improve it.

Actor-critic methods define the policy as a probability distribution, such that it computes the probability of
every action based on the current observation. Then these probabilities are used to sample one of the actions.
For example, if the ball approaches the bottom in Breakout, the probability to move the paddle towards the ball should
be high.

We typically use a neural network to compute these probabilities. Then the observations (frames) are sent into the
network, which produces a score for every action. These scores can be passed in the softmax function to obtain
probabilities. AtariModel provides a neural network and a policy made for Atari
environments:

from actorcritic.envs.atari.model import AtariModel

observation_space and action_space define the type and shape of the observations and actions
e.g. the size of the frames
model = AtariModel(multi_env.observation_space, multi_env.action_space)

Additionally A2C and ACKTR do not take one step only and improve the policy immediately. Instead they take multiple
steps and use all the experienced observations and rewards to improve the policy.
A MultiEnvAgent simplifies this process. It takes the neural network and the policy
(the ‘model’), and the environments. Then we just have to call interact() and
it uses the policy to take multiple steps:

from actorcritic.agents import MultiEnvAgent

agent = MultiEnvAgent(multi_env, model, num_steps=5)

while True:
 # take 5 steps in all environments
 # session is a tf.Session used to compute the values of the neural network
 observations, actions, rewards, terminals, next_observations, infos = agent.interact(session)

 # improve the policy based on this experience
 improve_policy(observations, actions, rewards, terminals, next_observations)

In actor-critic methods we do not define a loss function directly, but a policy objective function to optimize the
neural network. It needs the observations, the actions, and the rewards that the agent experienced. Then we can learn
through the policy objective, which looks at the rewards in order to decide whether the actions were good or not.

Furthermore we need a baseline function that enhances the policy objective. It should express how much reward
we can expect if we would follow our policy proceeding from the observations we just have seen. This helps the policy to
decide whether the actions it has taken actually were better or worse than expected. This baseline function is the
‘critic’ of actor-critic (the policy is the ‘actor’). It distinguishes actor-critic methods from policy gradient
methods which just have an ‘actor’.

Unfortunately we do not have such a baseline function. That is why we will learn the baseline, too, at the same time
as the policy. Therefore an ActorCriticModel like the
AtariModel has to provide a baseline. A2C and ACKTR use the
state-value function which indeed tells us how much reward we can expect from a given observation.

It can be beneficial to use the same neural network as the policy for the baseline.
AtariModel does exactly this.

In summary we need a ActorCriticObjective. The policy objective of A2C and ACKTR is
implemented in A2CObjective. It discounts the rewards and uses
entropy regularization (see A2CObjective).

from actorcritic.objectives import A2CObjective

objective = A2CObjective(model, discount_factor=0.99, entropy_regularization_strength=0.01)

Next we need an optimizer for our neural network:

import tensorflow as tf

A2C uses the RMSProp optimizer
optimizer = tf.train.RMSPropOptimizer(learning_rate=0.0007)

create an 'optimize' operation that we can call
use optimize_shared() since we share the network between the policy and the baseline
optimize_op = objective.optimize_shared(optimizer)

That is all. We can use all variables defined above to run the A2C algorithm:

while True:
 # take multiple steps in all environments
 observations, actions, rewards, terminals, next_observations, infos = agent.interact(session)

 # improve the policy and the baseline
 session.run(optimize_op, feed_dict={
 model.observations_placeholder: observations,
 model.bootstrap_observations_placeholder: next_observations,
 model.actions_placeholder: actions,
 model.rewards_placeholder: rewards,
 model.terminals_placeholder: terminals
 })

bootstrap_observations_placeholder is needed to compute the
bootstrap_values, which are used in the policy objective.

In order to use ACKTR we just have to change the optimizer to a kfac.KfacOptimizer.

See a2c_acktr.py [https://github.com/jrobine/actor-critic/blob/master/actorcritic/examples/atari/a2c_acktr.py] for a
full implementation, especially how to implement create_environments() and how to use the K-FAC optimizer.

 Python Module Index

 a

 		 	

 		
 a	

 	[image: -]
 	
 actorcritic	

 	
 	
 actorcritic.agents	

 	
 	
 actorcritic.baselines	

 	
 	
 actorcritic.envs	

 	
 	
 actorcritic.envs.atari	

 	
 	
 actorcritic.envs.atari.model	

 	
 	
 actorcritic.envs.atari.wrappers	

 	
 	
 actorcritic.examples	

 	
 	
 actorcritic.examples.atari	

 	
 	
 actorcritic.examples.atari.a2c_acktr	

 	
 	
 actorcritic.kfac_utils	

 	
 	
 actorcritic.model	

 	
 	
 actorcritic.multi_env	

 	
 	
 actorcritic.nn	

 	
 	
 actorcritic.objectives	

 	
 	
 actorcritic.policies	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | V

_

 	
 	__init__() (actorcritic.agents.MultiEnvAgent method)

 	(actorcritic.agents.SingleEnvAgent method)

 	(actorcritic.baselines.StateValueFunction method)

 	(actorcritic.envs.atari.model.AtariModel method)

 	(actorcritic.envs.atari.wrappers.AtariClipRewardWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariEpisodicLifeWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariFireResetWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariFrameskipWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariInfoClearWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariNoopResetWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariPreprocessFrameWrapper method)

 	(actorcritic.envs.atari.wrappers.EpisodeInfoWrapper method)

 	(actorcritic.envs.atari.wrappers.FrameStackWrapper method)

 	(actorcritic.envs.atari.wrappers.RenderWrapper method)

 	(actorcritic.kfac_utils.ColdStartPeriodicInvUpdateKfacOpt method)

 	(actorcritic.model.ActorCriticModel method)

 	(actorcritic.multi_env.MultiEnv method)

 	(actorcritic.multi_env.SubprocessEnv method)

 	(actorcritic.nn.ClipGlobalNormOptimizer method)

 	(actorcritic.objectives.A2CObjective method)

 	(actorcritic.policies.DistributionPolicy method)

 	(actorcritic.policies.SoftmaxPolicy method)

 	
 	_AutoResetWrapper (class in actorcritic.multi_env)

A

 	
 	A2CObjective (class in actorcritic.objectives)

 	action_space (actorcritic.multi_env.MultiEnv attribute)

 	(actorcritic.multi_env.SubprocessEnv attribute)

 	actions_placeholder (actorcritic.model.ActorCriticModel attribute)

 	actorcritic (module)

 	actorcritic.agents (module)

 	actorcritic.baselines (module)

 	actorcritic.envs (module)

 	actorcritic.envs.atari (module)

 	actorcritic.envs.atari.model (module)

 	actorcritic.envs.atari.wrappers (module)

 	actorcritic.examples (module)

 	actorcritic.examples.atari (module)

 	actorcritic.examples.atari.a2c_acktr (module)

 	actorcritic.kfac_utils (module)

 	actorcritic.model (module)

 	
 	actorcritic.multi_env (module)

 	actorcritic.nn (module)

 	actorcritic.objectives (module)

 	actorcritic.policies (module)

 	ActorCriticModel (class in actorcritic.model)

 	ActorCriticObjective (class in actorcritic.objectives)

 	Agent (class in actorcritic.agents)

 	apply_gradients() (actorcritic.kfac_utils.ColdStartPeriodicInvUpdateKfacOpt method)

 	(actorcritic.nn.ClipGlobalNormOptimizer method)

 	AtariClipRewardWrapper (class in actorcritic.envs.atari.wrappers)

 	AtariEpisodicLifeWrapper (class in actorcritic.envs.atari.wrappers)

 	AtariFireResetWrapper (class in actorcritic.envs.atari.wrappers)

 	AtariFrameskipWrapper (class in actorcritic.envs.atari.wrappers)

 	AtariInfoClearWrapper (class in actorcritic.envs.atari.wrappers)

 	AtariModel (class in actorcritic.envs.atari.model)

 	AtariNoopResetWrapper (class in actorcritic.envs.atari.wrappers)

 	AtariPreprocessFrameWrapper (class in actorcritic.envs.atari.wrappers)

B

 	
 	baseline (actorcritic.model.ActorCriticModel attribute)

 	Baseline (class in actorcritic.baselines)

 	baseline_loss (actorcritic.objectives.A2CObjective attribute)

 	(actorcritic.objectives.ActorCriticObjective attribute)

 	
 	bootstrap_observations_placeholder (actorcritic.model.ActorCriticModel attribute)

 	bootstrap_values (actorcritic.model.ActorCriticModel attribute)

C

 	
 	ClipGlobalNormOptimizer (class in actorcritic.nn)

 	close() (actorcritic.multi_env.MultiEnv method)

 	(actorcritic.multi_env.SubprocessEnv method)

 	ColdStartPeriodicInvUpdateKfacOpt (class in actorcritic.kfac_utils)

 	
 	conv2d() (in module actorcritic.nn)

 	conv2d_params() (in module actorcritic.nn)

 	create_environments() (in module actorcritic.examples.atari.a2c_acktr)

 	create_optimizer() (in module actorcritic.examples.atari.a2c_acktr)

 	create_subprocess_envs() (in module actorcritic.multi_env)

D

 	
 	DistributionPolicy (class in actorcritic.policies)

E

 	
 	entropy (actorcritic.policies.DistributionPolicy attribute)

 	(actorcritic.policies.Policy attribute)

 	
 	envs (actorcritic.multi_env.MultiEnv attribute)

 	EpisodeInfoWrapper (class in actorcritic.envs.atari.wrappers)

F

 	
 	flatten() (in module actorcritic.nn)

 	FrameStackWrapper (class in actorcritic.envs.atari.wrappers)

 	
 	fully_connected() (in module actorcritic.nn)

 	fully_connected_params() (in module actorcritic.nn)

G

 	
 	get_episode_rewards_from_info_batch() (actorcritic.envs.atari.wrappers.EpisodeInfoWrapper static method)

I

 	
 	initialize() (actorcritic.multi_env.SubprocessEnv method)

 	interact() (actorcritic.agents.Agent method)

 	(actorcritic.agents.MultiEnvAgent method)

 	(actorcritic.agents.SingleEnvAgent method)

L

 	
 	linear_decay() (in module actorcritic.nn)

 	load_model() (in module actorcritic.examples.atari.a2c_acktr)

 	
 	log_prob (actorcritic.policies.DistributionPolicy attribute)

 	(actorcritic.policies.Policy attribute)

M

 	
 	make_atari_env() (in module actorcritic.examples.atari.a2c_acktr)

 	mean_entropy (actorcritic.objectives.A2CObjective attribute)

 	mode (actorcritic.policies.DistributionPolicy attribute)

 	(actorcritic.policies.Policy attribute)

 	
 	MultiEnv (class in actorcritic.multi_env)

 	MultiEnvAgent (class in actorcritic.agents)

O

 	
 	observation_space (actorcritic.multi_env.MultiEnv attribute)

 	(actorcritic.multi_env.SubprocessEnv attribute)

 	
 	observations_placeholder (actorcritic.model.ActorCriticModel attribute)

 	optimize_separate() (actorcritic.objectives.ActorCriticObjective method)

 	optimize_shared() (actorcritic.objectives.ActorCriticObjective method)

P

 	
 	policy (actorcritic.model.ActorCriticModel attribute)

 	Policy (class in actorcritic.policies)

 	
 	policy_loss (actorcritic.objectives.A2CObjective attribute)

 	(actorcritic.objectives.ActorCriticObjective attribute)

R

 	
 	register_layers() (actorcritic.envs.atari.model.AtariModel method)

 	(actorcritic.model.ActorCriticModel method)

 	register_predictive_distribution() (actorcritic.baselines.Baseline method)

 	(actorcritic.baselines.StateValueFunction method)

 	(actorcritic.policies.Policy method)

 	(actorcritic.policies.SoftmaxPolicy method)

 	register_predictive_distributions() (actorcritic.model.ActorCriticModel method)

 	render() (actorcritic.multi_env.SubprocessEnv method)

 	RenderWrapper (class in actorcritic.envs.atari.wrappers)

 	reset() (actorcritic.envs.atari.wrappers.AtariEpisodicLifeWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariFireResetWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariFrameskipWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariInfoClearWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariNoopResetWrapper method)

 	(actorcritic.envs.atari.wrappers.EpisodeInfoWrapper method)

 	(actorcritic.envs.atari.wrappers.FrameStackWrapper method)

 	(actorcritic.envs.atari.wrappers.RenderWrapper method)

 	(actorcritic.multi_env.MultiEnv method)

 	(actorcritic.multi_env.SubprocessEnv method)

 	(actorcritic.multi_env._AutoResetWrapper method)

 	
 	rewards_placeholder (actorcritic.model.ActorCriticModel attribute)

S

 	
 	sample (actorcritic.policies.DistributionPolicy attribute)

 	(actorcritic.policies.Policy attribute)

 	sample_actions() (actorcritic.model.ActorCriticModel method)

 	save_model() (in module actorcritic.examples.atari.a2c_acktr)

 	select_max_actions() (actorcritic.model.ActorCriticModel method)

 	SingleEnvAgent (class in actorcritic.agents)

 	SoftmaxPolicy (class in actorcritic.policies)

 	start() (actorcritic.multi_env.SubprocessEnv method)

 	StateValueFunction (class in actorcritic.baselines)

 	step() (actorcritic.envs.atari.wrappers.AtariEpisodicLifeWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariFireResetWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariFrameskipWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariInfoClearWrapper method)

 	(actorcritic.envs.atari.wrappers.AtariNoopResetWrapper method)

 	(actorcritic.envs.atari.wrappers.EpisodeInfoWrapper method)

 	(actorcritic.envs.atari.wrappers.FrameStackWrapper method)

 	(actorcritic.envs.atari.wrappers.RenderWrapper method)

 	(actorcritic.multi_env.MultiEnv method)

 	(actorcritic.multi_env.SubprocessEnv method)

 	(actorcritic.multi_env._AutoResetWrapper method)

 	
 	SubprocessEnv (class in actorcritic.multi_env)

T

 	
 	terminals_placeholder (actorcritic.model.ActorCriticModel attribute)

 	
 	train_a2c_acktr() (in module actorcritic.examples.atari.a2c_acktr)

 	transpose_list() (in module actorcritic.agents)

V

 	
 	value (actorcritic.baselines.Baseline attribute)

 	(actorcritic.baselines.StateValueFunction attribute)

 _static/minus.png

_static/plus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Actor-Critic Reinforcement Learning

 		
 API Documentation

 		
 actorcritic

 		
 actorcritic.agents

 		
 actorcritic.baselines

 		
 actorcritic.kfac_utils

 		
 actorcritic.model

 		
 actorcritic.multi_env

 		
 actorcritic.nn

 		
 actorcritic.objectives

 		
 actorcritic.policies

 		
 actorcritic.envs

 		
 actorcritic.examples

 		
 Quickstart Guide

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

