
ActivityWatch Documentation
Release 0.1.1

Erik Bjäreholt and contributors

Apr 10, 2017

User documentation

1 Introduction 3
1.1 What ActivityWatch is . 3
1.2 What ActivityWatch isn’t . 3
1.3 Reason for existence . 3
1.4 Data philosophy . 4
1.5 Security . 4

2 Getting started 5
2.1 Installation . 5
2.2 Usage . 5
2.3 Best practice . 5

3 Storing data 7

4 User Interface 9
4.1 Tray icon . 9
4.2 Web Interface . 9

5 Pausing logging 11

6 Filtering data 13

7 Development 15

8 Modules 17
8.1 Server . 17
8.2 Watchers/Clients . 17
8.3 Libraries . 17

9 API 19
9.1 Security . 19
9.2 Buckets API . 19
9.3 Events API . 20
9.4 Heartbeat API . 20

10 Indices and tables 21

i

ii

ActivityWatch Documentation, Release 0.1.1

Note: ActivityWatch is currently under development and should not be considered stable software, yet.

User documentation 1

ActivityWatch Documentation, Release 0.1.1

2 User documentation

CHAPTER 1

Introduction

ActivityWatch is a bundle of software that provides storage for life-logging data such as what you do on your computer.

What the system does is handle collection and retrieval of all kinds of logging data (relating to your life, your computer
or any type of record of an event). aw-server provides a safe repository where you store your data, it is not a place for
modification (providing data integrity), once a record is created, it is intended to be immutable.

What ActivityWatch is

• A set of watchers (i.e. afk-watcher, window-watchers) that record relevant information about what you do and
what happens on your computer

• A way of storing data collected from a wide variety of sources in an immutable manner: Events added are
persistent and the stored data cannot be changed unless it’s first copied.

• Provides a common dataformat accomodating most needs in a flexible yet simple manner

What ActivityWatch isn’t

• A tool for doing advanced data analysis

• A full-fledged data visualization tool

Reason for existence

There are plenty of companies offering services which do collection of Quantified Self data with goals ranging from
increasing personal producivity to understanding the people that managers manage (organizational productivity). How-
ever, all known services suffer from a significant disadvantage, the users data is in the hands of the service providers
which leads to the problem of trust. Every customer of these companies have their data in hands they are forced to
trust if they want to use their service.

3

ActivityWatch Documentation, Release 0.1.1

This is a significant problem, but the true reason that we decided to do something about it was that existing solutions
were inadequate. They focused on short-term insight, a goal worthy in itself, but we also want long-term understand-
ing. Making the software completely free and open source so anyone can {use, audit, improve, extend} it seemed like
the only reasonable alternative.

Data philosophy

Raw data is always the most valuable data.

QS data doesn’t take much space by todays standards, but when you are a service having thousand of customers, every
megabyte per user counts.

For the users however, every megabyte of data is worth it. It is therefore of importance that we collect and store data
in the highest reasonable resolution such that we later don’t have to “fill the gaps” in incomplete or aggregated data
with heuristics and trickery.

Many services doing collection and analysis of QS data today don’t actually store the raw data but instead store only
summaries or low-resolution data (such as summarizing all time within an interval, instead of storing the individual
intervals). This is a problem today with existing services: they store summarized data instead of the raw data.

This is indicative of that they actually lack a long-term plan. They want to provide a certain type of analysis today,
which is fine, but we expect to want to do some unknown analysis in the future, and for that we might need the raw
data. And we suspect that we would rather choose how detailed our analysis should be then rather than saving a bit of
space by reducing the data resolution and detail before storing it.

Simply put: it is of importance that we start collecting the raw data now, before it disappears into the aether.

Security

One of the reasons this project was started was due to the fact that we were missing security in how our Quantified
Self data was stored. Data needs to be collected on many devices, and be stored at a central and secure location or
distributed for redundancy.

Since we want to be able to provide a safe storage service for initial users who do not have the time to run a server of
their own, we will provide a feature such that we will only have the users encrypted data, without information of the
contents (with exception for some relatively unimportant metadata such as allocated storage space, sessions, clients,
and number of entries).

NOTE: Security features discussed here are all considered work in progress and this software is not yet fit for exposure
to the internet. Only allow connections from localhost!

4 Chapter 1. Introduction

CHAPTER 2

Getting started

Short introductory text should go here.

Content from aw-server/README.md should be moved here.

Installation

Nothing here yet.

Usage

Nothing here yet.

Best practice

Nothing here yet.

5

ActivityWatch Documentation, Release 0.1.1

6 Chapter 2. Getting started

CHAPTER 3

Storing data

The server part of ActivityWatch, aw-server, by default comes with a few methods of storing data. As of 0.1.1 the
default is the JSON store which simply stores each bucket in it’s own JSON file.

Other methods include:

• MongoDB

• In-memory (non-persistent, useful in testing)

7

ActivityWatch Documentation, Release 0.1.1

8 Chapter 3. Storing data

CHAPTER 4

User Interface

Tray icon

In order to ensure stability and user-awareness a tray icon is planned to get developed.

This may contain a way to monitor the status of the server as well as watchers.

Web Interface

In order to achieve user-friendlyness, ActivityWatch will in the future come with a web interface allowing for overview,
monitoring and configuration.

This interface is likely to provide basic graphs, but more advanced and configurable visualization (such as the ones
found in Zenobase and RescueTime) is not a priority and is unlikely to get implemented as a part of the core Activity-
Watch project.

Before we can start work on an interface we need the core system functionality down, so this wont become a priority
until then.

9

ActivityWatch Documentation, Release 0.1.1

10 Chapter 4. User Interface

CHAPTER 5

Pausing logging

Feature status: Planned

The possibility to pause logging is a low-tech solution to filter sensitive data. It could most easily be implemented by
instructing a watcher to simply stop logging, such functionality might be made universal to the client libraries which
would in turn filter out all events from the pause command to the resume command.

11

ActivityWatch Documentation, Release 0.1.1

12 Chapter 5. Pausing logging

CHAPTER 6

Filtering data

Feature: Planned

ActivityWatch was born out of a frustration with the privacy issues of existing life logging solutions. We feel that
it’s important that nothing gets logged that shouldn’t be logged. This way the cost of data breach is bounded, and the
barrier to sharing your own data for scientific purposes uses will hopefully become smaller.

This is expected to be almost impossible to perfect since what someone considers sensitive might not be for someone
else (due to e.g. culture and law). But the basics are easy to get right: such as not logging private browser tabs by
default.

For the ones who believe they can adequately protect their data, the option should will course be available to disable
this filter.

Pausing logging is likely to get implemented before this, so if it’s available and this feature isn’t: Use it until we get
this done.

13

ActivityWatch Documentation, Release 0.1.1

14 Chapter 6. Filtering data

CHAPTER 7

Development

Nothing here yet.

15

ActivityWatch Documentation, Release 0.1.1

16 Chapter 7. Development

CHAPTER 8

Modules

Server

Known as aw-server, it handles storage and retrieval of all activities/entries in buckets. Usually there exists one bucket
per client.

Watchers/Clients

Since aw-server doesn’t do any data collection on it’s own, we need watchers that observe the world and sent the data
off to aw-server for storage.

Libraries

Since all watchers need a common set of client functionality, such as calling the APIs and handling when a server is
unavailable, this behavior has been extracted to a set of client libraries.

Currently the primary client library is written in Python, and known simply as aw-client, but a client library written in
JavaScript is on the way and will have the same level of support in the future.

17

ActivityWatch Documentation, Release 0.1.1

18 Chapter 8. Modules

CHAPTER 9

API

ActivityWatch uses a REST API that binds together aw-server and it’s clients. Most applications should never need to
access the API directly but should instead use the client libraries available for the language the application is written
in. If no such library yet exists for a given language, this document is meant to provide enough specification to create
one.

Warning: The API is currently under development, and is subject to change. It will be documented in better
detail when first version has been frozen.

Security

Clients might in the future be able to have read-only or append-only access to buckets, providing additional security
and preventing compromised clients from being able to cause a severe security breach. All clients should have a
symmetric key used for encrypting data in transit, since we can’t guarantee that hosts can provide valid SSL certificates.

Security is something we shouldn’t dare to mess up, so the implementation is likely to be following a KISS approach
awaiting further review and proposals of more sophisticated security schemes.

Buckets API

The most common API used by ActivityWatch clients is the API providing read and append access buckets. Buckets
are data containers used to group data together which shares some metadata (such as client type, hostname or location).

The basic API endpoints are as follows:

19

ActivityWatch Documentation, Release 0.1.1

Get bucket

GET /api/0/buckets/<bucket_id>

Create bucket

POST /api/0/buckets/<bucket_id>

Events API

The most common API used by ActivityWatch clients is the API providing read and append access buckets. Buckets
are data containers used to group data together which shares some metadata (such as client type, hostname or location).

The basic API endpoints are as follows:

Get events

GET /api/0/buckets/<bucket_id>/events

Create event

POST /api/0/buckets/<bucket_id>/events

Heartbeat API

Warning: Experimental API, not yet ready for use.

20 Chapter 9. API

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

21

	Introduction
	What ActivityWatch is
	What ActivityWatch isn't
	Reason for existence
	Data philosophy
	Security

	Getting started
	Installation
	Usage
	Best practice

	Storing data
	User Interface
	Tray icon
	Web Interface

	Pausing logging
	Filtering data
	Development
	Modules
	Server
	Watchers/Clients
	Libraries

	API
	Security
	Buckets API
	Events API
	Heartbeat API

	Indices and tables

