

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	active_subspaces 0.1.1 documentation

Welcome to active_subspaces’s documentation!

Python utilities for working with active subspaces.

Guide

	Code Documentation
	Domains

	Gradients

	Integrals

	Optimizers

	Response Surfaces

	Subspaces

	Utils
	Designs

	Misc

	Plotters

	QP Solver

	Quadrature

	Response Surfaces (Utils)

	Simrunners

	Contact

	LICENSE

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

Code Documentation

	Domains

	Gradients

	Integrals

	Optimizers

	Response Surfaces

	Subspaces

	Utils
	Designs

	Misc

	Plotters

	QP Solver

	Quadrature

	Response Surfaces (Utils)

	Simrunners

This is the init file.

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

Domains

Utilities for building the domains and maps for active variables.

	
class active_subspaces.domains.ActiveVariableDomain

	A base class for the domain of functions of active variables.

	
subspaces

	Subspaces

subspaces that define the domain

	
m

	int

the dimension of the simulation inputs

	
n

	int

the dimension of the active subspace

	
vertY

	ndarray

n-dimensional vertices that define the boundary of the domain when the
m-dimensional space is a hypercube

	
vertX

	ndarray

corners of the m-dimensional hypercube that map to the points vertY

	
convhull

	scipy.spatial.ConvexHull

the ConvexHull object defined by the vertices vertY

	
constraints

	dict

a dictionary of linear inequality constraints conforming to the
specifications used in the scipy.optimizer library

Notes

Attributes vertY, vertX, convhull, and constraints are None when the
m-dimensional parameter space is unbounded.

	
class active_subspaces.domains.ActiveVariableMap(domain)

	A base class for the map between active/inactive and original variables.

	
domain

	ActiveVariableDomain

an ActiveVariableDomain object

See also

domains.UnboundedActiveVariableMap, domains.BoundedActiveVariableMap

	
forward(X)

	Map full variables to active variables.

Map the points in the original input space to the active and inactive
variables.

	Parameters:	X (ndarray) – an M-by-m matrix, each row of X is a point in the original
parameter space

	Returns:	
	Y (ndarray) –
M-by-n matrix that contains points in the space of active variables.
Each row of Y corresponds to a row of X.

	Z (ndarray) –
M-by-(m-n) matrix that contains points in the space of inactive
variables. Each row of Z corresponds to a row of X.

	
inverse(Y, N=1)

	Find points in full space that map to active variable points.

Map the points in the active variable space to the original parameter
space.

	Parameters:	
	Y (ndarray) – M-by-n matrix that contains points in the space of active variables

	N (int, optional) – the number of points in the original parameter space that are
returned that map to the given active variables (default 1)

	Returns:	
	X (ndarray) –
(M*N)-by-m matrix that contains points in the original parameter
space

	ind (ndarray) –
(M*N)-by-1 matrix that contains integer indices. These indices
identify which rows of X map to which rows of Y.

Notes

The inverse map depends critically on the regularize_z function.

	
regularize_z(Y, N)

	Pick inactive variables associated active variables.

Find points in the space of inactive variables to complete the inverse
map.

	Parameters:	
	Y (ndarray) – M-by-n matrix that contains points in the space of active variables

	N (int) – The number of points in the original parameter space that are
returned that map to the given active variables

	Returns:	Z –
(M)-by-(m-n)-by-N matrix that contains values of the inactive
variables

	Return type:	ndarray

Notes

The base class does not implement regularize_z. Specific
implementations depend on whether the original variables are bounded or
unbounded. They also depend on what the weight function is on the
original parameter space.

	
class active_subspaces.domains.BoundedActiveVariableDomain(subspaces)

	Domain of functions with bounded domains (uniform on hypercube).

An class for the domain of functions of active variables when the space
of simulation parameters is bounded.

Notes

Using this class assumes that the space of simulation inputs is equipped
with a uniform weight function. And the space itself is a hypercube.

	
compute_boundary()

	Compute and set the boundary of the domain.

Notes

This function computes the boundary of the active variable range, i.e.,
the domain of a function of the active variables, and it sets the
attributes to the computed components. It is called when the
BoundedActiveVariableDomain is initialized. If the dimension of the
active subspaces is manually changed, then this function must be called
again to recompute the boundary of the domain.

	
class active_subspaces.domains.BoundedActiveVariableMap(domain)

	Class for mapping between active and bounded full variables.

A class for the map between active/inactive and original variables when the
original variables are bounded by a hypercube with a uniform density.

See also

domains.UnboundedActiveVariableMap

	
regularize_z(Y, N)

	Pick inactive variables associated active variables.

Find points in the space of inactive variables to complete the inverse
map.

	Parameters:	
	Y (ndarray) – M-by-n matrix that contains points in the space of active variables

	N (int) – The number of points in the original parameter space that are
returned that map to the given active variables

	Returns:	Z –
(M)-by-(m-n)-by-N matrix that contains values of the inactive
variables

	Return type:	ndarray

Notes

This implementation of regularize_z uses the function sample_z to
randomly sample values of the inactive variables to complement the
given values of the active variables.

	
class active_subspaces.domains.UnboundedActiveVariableDomain(subspaces)

	Domain of functions with unbounded domains (Gaussian weight).

An class for the domain of functions of active variables when the space
of simulation parameters is unbounded.

Notes

Using this class assumes that the space of simulation inputs is equipped
with a Gaussian weight function.

	
class active_subspaces.domains.UnboundedActiveVariableMap(domain)

	Class for mapping between active and unbounded full variables.

A class for the map between active/inactive and original variables when the
original variables are ubbounded and the space is equipped with a standard
Gaussian density.

See also

domains.BoundedActiveVariableMap

	
regularize_z(Y, N)

	Pick inactive variables associated active variables.

Find points in the space of inactive variables to complete the inverse
map.

	Parameters:	
	Y (ndarray) – M-by-n matrix that contains points in the space of active variables

	N (int) – The number of points in the original parameter space that are
returned that map to the given active variables

	Returns:	Z –
(M)-by-(m-n)-by-N matrix that contains values of the inactive
variables

	Return type:	ndarray

Notes

This implementation of regularize_z samples the inactive variables
from a standard (m-n)-variate Gaussian distribution.

	
active_subspaces.domains.hit_and_run_z(N, y, W1, W2)

	A hit and run method for sampling the inactive variables from a polytope.

See also

domains.sample_z()

	
active_subspaces.domains.interval_endpoints(W1)

	Compute the range of a 1d active variable.

	Parameters:	W1 (ndarray) – m-by-1 matrix that contains the eigenvector that defines the first
active variable

	Returns:	
	Y (ndarray) –
2-by-1 matrix that contains the endpoints of the interval defining the
range of the 1d active variable

	X (ndarray) –
2-by-m matrix that contains the corners of the m-dimensional hypercube
that map to the active variable endpoints

	
active_subspaces.domains.nzv(m, n)

	Number of zonotope vertices.

Compute the number of zonotope vertices for a linear map from R^m to R^n.

	Parameters:	
	m (int) – the dimension of the hypercube

	n (int) – the dimension of the low-dimesional subspace

	Returns:	N –
the number of vertices defining the zonotope

	Return type:	int

	
active_subspaces.domains.random_walk_z(N, y, W1, W2)

	A random walk method for sampling from a polytope.

See also

domains.sample_z()

	
active_subspaces.domains.rejection_sampling_z(N, y, W1, W2)

	A rejection sampling method for sampling the from a polytope.

See also

domains.sample_z()

	
active_subspaces.domains.sample_z(N, y, W1, W2)

	Sample inactive variables.

Sample values of the inactive variables for a fixed value of the active
variables when the original variables are bounded by a hypercube.

	Parameters:	
	N (int) – the number of inactive variable samples

	y (ndarray) – the value of the active variables

	W1 (ndarray) – m-by-n matrix that contains the eigenvector bases of the n-dimensional
active subspace

	W2 (ndarray) – m-by-(m-n) matrix that contains the eigenvector bases of the
(m-n)-dimensional inactive subspace

	Returns:	Z –
N-by-(m-n) matrix that contains values of the active variable that
correspond to the given y

	Return type:	ndarray

Notes

The trick here is to sample the inactive variables z so that
-1 <= W1*y + W2*z <= 1,
where y is the given value of the active variables. In other words, we need
to sample z such that it respects the linear equalities
W2*z <= 1 - W1*y, -W2*z <= 1 + W1*y.
These inequalities define a polytope in R^(m-n). We want to sample N
points uniformly from the polytope.

This function first tries a simple rejection sampling scheme, which (i)
finds a bounding hyperbox for the polytope, (ii) draws points uniformly from
the bounding hyperbox, and (iii) rejects points outside the polytope.

If that method does not return enough samples, the method tries a “hit and
run” method for sampling from the polytope.

If that doesn’t work, it returns an array with N copies of a feasible
point computed as the Chebyshev center of the polytope. Thanks to David
Gleich for showing me Chebyshev centers.

	
active_subspaces.domains.unique_rows(S)

	Return the unique rows from ndarray

	Parameters:	S (ndarray) – array with rows to reduces

	Returns:	T –
version of S with unique rows

	Return type:	ndarray

Notes

http://stackoverflow.com/questions/16970982/find-unique-rows-in-numpy-array

	
active_subspaces.domains.zonotope_vertices(W1, Nsamples=10000, maxcount=100000)

	Compute the vertices of the zonotope.

	Parameters:	
	W1 (ndarray) – m-by-n matrix that contains the eigenvector bases of the n-dimensional
active subspace

	Nsamples (int, optional) – number of samples per iteration to check (default 1e4)

	maxcount (int, optional) – maximum number of iterations (default 1e5)

	Returns:	
	Y (ndarray) –
nzv-by-n matrix that contains the zonotope vertices

	X (ndarray) –
nzv-by-m matrix that contains the corners of the m-dimensional hypercube
that map to the zonotope vertices

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

Gradients

Utilities for approximating gradients.

	
active_subspaces.gradients.finite_difference_gradients(X, fun, h=1e-06)

	Compute finite difference gradients with a given interface.

	Parameters:	
	X (ndarray) – M-by-m matrix that contains the points to estimate the gradients with
finite differences

	fun (function) – function that returns the simulation’s quantity of interest given inputs

	h (float, optional) – the finite difference step size (default 1e-6)

	Returns:	df –
M-by-m matrix that contains estimated partial derivatives approximated
by finite differences

	Return type:	ndarray

	
active_subspaces.gradients.local_linear_gradients(X, f, p=None, weights=None)

	Estimate a collection of gradients from input/output pairs.

Given a set of input/output pairs, choose subsets of neighboring points and
build a local linear model for each subset. The gradients of these local
linear models comprise estimates of sampled gradients.

	Parameters:	
	X (ndarray) – M-by-m matrix that contains the m-dimensional inputs

	f (ndarray) – M-by-1 matrix that contains scalar outputs

	p (int, optional) – how many nearest neighbors to use when constructing the local linear
model (default 1)

	weights (ndarray, optional) – M-by-1 matrix that contains the weights for each observation (default
None)

	Returns:	df –
M-by-m matrix that contains estimated partial derivatives approximated
by the local linear models

	Return type:	ndarray

Notes

If p is not specified, the default value is floor(1.7*m).

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

Integrals

Utilities for exploiting active subspaces when estimating integrals.

	
active_subspaces.integrals.av_integrate(avfun, avmap, N)

	Approximate the integral of a function of active variables.

	Parameters:	
	avfun (function) – a function of the active variables

	avmap (ActiveVariableMap) – a domains.ActiveVariableMap

	N (int) – the number of points in the quadrature rule

	Returns:	mu –
an estimate of the integral

	Return type:	float

Notes

This function is usually used when one has already constructed a response
surface on the active variables and wants to estimate its integral.

	
active_subspaces.integrals.av_quadrature_rule(avmap, N)

	Get a quadrature rule on the space of active variables.

	Parameters:	
	avmap (ActiveVariableMap) – a domains.ActiveVariableMap

	N (int) – the number of quadrature nodes in the active variables

	Returns:	
	Yp (ndarray) –
quadrature nodes on the active variables

	Yw (ndarray) –
quadrature weights on the active variables

See also

integrals.quadrature_rule()

	
active_subspaces.integrals.integrate(fun, avmap, N, NMC=10)

	Approximate the integral of a function of m variables.

	Parameters:	
	fun (function) – an interface to the simulation that returns the quantity of interest
given inputs as an 1-by-m ndarray

	avmap (ActiveVariableMap) – a domains.ActiveVariableMap

	N (int) – the number of points in the quadrature rule

	NMC (int, optional) – the number of points in the Monte Carlo estimates of the conditional
expectation and conditional variance (default 10)

	Returns:	
	mu (float) –
an estimate of the integral of the function computed against the weight
function on the simulation inputs

	lb (float) –
a central-limit-theorem 95% lower confidence from the Monte Carlo part
of the integration

	ub (float) –
a central-limit-theorem 95% upper confidence from the Monte Carlo part
of the integration

See also

integrals.quadrature_rule()

Notes

The CLT-based bounds lb and ub are likely poor estimators of the error.
They only account for the variance from the Monte Carlo portion. They do
not include any error from the integration rule on the active variables.

	
active_subspaces.integrals.interval_quadrature_rule(avmap, N, NX=10000)

	Quadrature rule on a one-dimensional interval.

Quadrature when the dimension of the active subspace is 1 and the
simulation parameter space is bounded.

	Parameters:	
	avmap (ActiveVariableMap) – a domains.ActiveVariableMap

	N (int) – the number of quadrature nodes in the active variables

	NX (int, optional) – the number of samples to use to estimate the quadrature weights (default
10000)

	Returns:	
	Yp (ndarray) –
quadrature nodes on the active variables

	Yw (ndarray) –
quadrature weights on the active variables

See also

integrals.quadrature_rule()

	
active_subspaces.integrals.quadrature_rule(avmap, N, NMC=10)

	Get a quadrature rule on the space of simulation inputs.

	Parameters:	
	avmap (ActiveVariableMap) – a domains.ActiveVariableMap

	N (int) – the number of quadrature nodes in the active variables

	NMC (int, optional) – the number of samples in the simple Monte Carlo over the inactive
variables (default 10)

	Returns:	
	Xp (ndarray) –
(N*NMC)-by-m matrix containing the quadrature nodes on the simulation
input space

	Xw (ndarray) –
(N*NMC)-by-1 matrix containing the quadrature weights on the simulation
input space

	ind (ndarray) –
array of indices identifies which rows of Xp correspond to the same
fixed value of the active variables

See also

integrals.av_quadrature_rule()

Notes

This quadrature rule uses an integration rule on the active variables and
simple Monte Carlo on the inactive variables.

If the simulation inputs are bounded, then the quadrature nodes on the
active variables is constructed with a Delaunay triangulation of a
maximin design. The weights are computed by sampling the original variables,
mapping them to the active variables, and determining which triangle the
active variables fall in. These samples are used to estimate quadrature
weights. Note that when the dimension of the active subspace is
one-dimensional, this reduces to operations on an interval.

If the simulation inputs are unbounded, the quadrature rule on the active
variables is given by a tensor product Gauss-Hermite quadrature rule.

	
active_subspaces.integrals.zonotope_quadrature_rule(avmap, N, NX=10000)

	Quadrature rule on a zonotope.

Quadrature when the dimension of the active subspace is greater than 1 and
the simulation parameter space is bounded.

	Parameters:	
	avmap (ActiveVariableMap) – a domains.ActiveVariableMap

	N (int) – the number of quadrature nodes in the active variables

	NX (int, optional) – the number of samples to use to estimate the quadrature weights (default
10000)

	Returns:	
	Yp (ndarray) –
quadrature nodes on the active variables

	Yw (ndarray) –
quadrature weights on the active variables

See also

integrals.quadrature_rule()

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

Optimizers

Utilities for exploiting active subspaces when optimizing.

	
class active_subspaces.optimizers.BoundedMinVariableMap(domain)

	This subclass is a MinVariableMap for bounded simulation inputs.

See also

optimizers.MinVariableMap, optimizers.UnboundedMinVariableMap

	
regularize_z(Y, N=1)

	Train the global quadratic for the regularization.

	Parameters:	
	Y (ndarray) – N-by-n matrix of points in the space of active variables

	N (int, optional) – merely there satisfy the interface of regularize_z. It should not
be anything other than 1

	Returns:	Z –
N-by-(m-n)-by-1 matrix that contains a value of the inactive
variables for each value of the inactive variables

	Return type:	ndarray

Notes

In contrast to the regularize_z in BoundedActiveVariableMap and
UnboundedActiveVariableMap, this implementation of regularize_z uses
a quadratic program to find a single value of the inactive variables
for each value of the active variables.

	
class active_subspaces.optimizers.MinVariableMap(domain)

	ActiveVariableMap for optimization

This subclass is an domains.ActiveVariableMap specifically for optimization.

See also

optimizers.BoundedMinVariableMap, optimizers.UnboundedMinVariableMap

Notes

This class’s train function fits a global quadratic surrogate model to the
n+2 active variables—two more than the dimension of the active subspace.
This quadratic surrogate is used to map points in the space of active
variables back to the simulation parameter space for minimization.

	
train(X, f)

	Train the global quadratic for the regularization.

	Parameters:	
	X (ndarray) – input points used to train a global quadratic used in the
regularize_z function

	f (ndarray) – simulation outputs used to train a global quadratic in the
regularize_z function

	
class active_subspaces.optimizers.UnboundedMinVariableMap(domain)

	This subclass is a MinVariableMap for unbounded simulation inputs.

See also

optimizers.MinVariableMap, optimizers.BoundedMinVariableMap

	
regularize_z(Y, N=1)

	Train the global quadratic for the regularization.

	Parameters:	
	Y (ndarray) – N-by-n matrix of points in the space of active variables

	N (int, optional) – merely there satisfy the interface of regularize_z. It should not
be anything other than 1

	Returns:	Z –
N-by-(m-n)-by-1 matrix that contains a value of the inactive
variables for each value of the inactive variables

	Return type:	ndarray

Notes

In contrast to the regularize_z in BoundedActiveVariableMap and
UnboundedActiveVariableMap, this implementation of regularize_z uses
a quadratic program to find a single value of the inactive variables
for each value of the active variables.

	
active_subspaces.optimizers.av_minimize(avfun, avdom, avdfun=None)

	Minimize a response surface on the active variables.

	Parameters:	
	avfun (function) – a function of the active variables

	avdom (ActiveVariableDomain) – information about the domain of avfun

	avdfun (function) – returns the gradient of avfun

	Returns:	
	ystar (ndarray) –
the estimated minimizer of avfun

	fstar (float) –
the estimated minimum of avfun

See also

optimizers.interval_minimize(), optimizers.zonotope_minimize(), optimizers.unbounded_minimize()

	
active_subspaces.optimizers.interval_minimize(avfun, avdom)

	Minimize a response surface defined on an interval.

	Parameters:	
	avfun (function) – a function of the active variables

	avdom (ActiveVariableDomain) – contains information about the domain of avfun

	Returns:	
	ystar (ndarray) –
the estimated minimizer of avfun

	fstar (float) –
the estimated minimum of avfun

See also

optimizers.av_minimize()

Notes

This function wraps the scipy.optimize function fminbound.

	
active_subspaces.optimizers.minimize(asrs, X, f)

	Minimize a response surface constructed with the active subspace.

	Parameters:	
	asrs (ActiveSubspaceResponseSurface) – a trained response_surfaces.ActiveSubspaceResponseSurface

	X (ndarray) – input points used to train the MinVariableMap

	f (ndarray) – simulation outputs used to train the MinVariableMap

	Returns:	
	xstar (ndarray) –
the estimated minimizer of the function modeled by the
ActiveSubspaceResponseSurface asrs

	fstar (float) –
the estimated minimum of the function modeled by asrs

Notes

This function has two stages. First it uses the scipy.optimize package to
minimize the response surface of the active variables. Then it trains
a MinVariableMap with the given input/output pairs, which it uses to map
the minimizer back to the space of simulation inputs.

This is very heuristic.

	
active_subspaces.optimizers.unbounded_minimize(avfun, avdom, avdfun)

	Minimize a response surface defined on an unbounded domain.

	Parameters:	
	avfun (function) – a function of the active variables

	avdom (ActiveVariableDomain) – contains information about the domain of avfun

	avdfun (function) – returns the gradient of avfun

	Returns:	
	ystar (ndarray) –
the estimated minimizer of avfun

	fstar (float) –
the estimated minimum of avfun

See also

optimizers.av_minimize()

Notes

If the gradient avdfun is None, this function wraps the scipy.optimize
implementation of SLSQP. Otherwise, it wraps BFGS.

	
active_subspaces.optimizers.zonotope_minimize(avfun, avdom, avdfun)

	Minimize a response surface defined on a zonotope.

	Parameters:	
	avfun (function) – a function of the active variables

	avdom (ActiveVariableDomain) – contains information about the domain of avfun

	avdfun (function) – returns the gradient of avfun

	Returns:	
	ystar (ndarray) –
the estimated minimizer of avfun

	fstar (float) –
the estimated minimum of avfun

See also

optimizers.av_minimize()

Notes

This function wraps the scipy.optimize implementation of SLSQP with linear
inequality constraints derived from the zonotope.

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

Response Surfaces

Utilities for exploiting active subspaces in response surfaces.

	
class active_subspaces.response_surfaces.ActiveSubspaceResponseSurface(avmap, respsurf=None)

	A class for using active subspace with response surfaces.

	
respsurf

	ResponseSurface

respsurf is a utils.response_surfaces.ResponseSurface

	
avmap

	ActiveVariableMap

a domains.ActiveVariableMap

Notes

This class has several convenient functions for training and using a
response surface with active subspaces. Note that the avmap must be
given. This means that the active subspace must be computed already.

	
gradient(X)

	Gradient of the response surface.

A convenience function for computing the gradient of the response
surface with respect to the simulation inputs.

	Parameters:	X (ndarray) – M-by-m matrix containing points in the space of simulation inputs

	Returns:	df –
contains the response surface gradient at the given X

	Return type:	ndarray

	
gradient_av(Y)

	Compute the gradient with respect to the active variables.

A convenience function for computing the gradient of the response
surface with respect to the active variables.

	Parameters:	Y (ndarray) – M-by-n matrix containing points in the range of active variables to
evaluate the response surface gradient

	Returns:	df –
contains the response surface gradient at the given Y

	Return type:	ndarray

	
predict(X, compgrad=False)

	Evaluate the response surface at full space points.

Compute the value of the response surface given values of the simulation
variables.

	Parameters:	
	X (ndarray) – M-by-m matrix containing points in simulation’s parameter space

	compgrad (bool, optional) – determines if the gradient of the response surface is computed and
returned (default False)

	Returns:	
	f (ndarray) –
contains the response surface values at the given X

	dfdx (ndarray) –
an ndarray of shape M-by-m that contains the estimated gradient at
the given X. If compgrad is False, then dfdx is None.

	
predict_av(Y, compgrad=False)

	Evaluate response surface at active variable.

Compute the value of the response surface given values of the active
variables.

	Parameters:	
	Y (ndarray) – M-by-n matrix containing points in the range of active variables to
evaluate the response surface

	compgrad (bool, optional) – determines if the gradient of the response surface with respect to
the active variables is computed and returned (default False)

	Returns:	
	f (ndarray) –
contains the response surface values at the given Y

	df (ndarray) –
contains the response surface gradients at the given Y. If
compgrad is False, then df is None.

	
train_with_data(X, f, v=None)

	Train the response surface with input/output pairs.

	Parameters:	
	X (ndarray) – M-by-m matrix with evaluations of the simulation inputs

	f (ndarray) – M-by-1 matrix with corresponding simulation quantities of interest

	v (ndarray, optional) – M-by-1 matrix that contains the regularization (i.e., errors)
associated with f (default None)

Notes

The training methods exploit the eigenvalues from the active subspace
analysis to determine length scales for each variable when tuning
the parameters of the radial bases.

The method sets attributes of the object for further use.

	
train_with_interface(fun, N, NMC=10)

	Train the response surface with input/output pairs.

	Parameters:	
	fun (function) – a function that returns the simulation quantity of interest given a
point in the input space as an 1-by-m ndarray

	N (int) – the number of points used in the design-of-experiments for
constructing the response surface

	NMC (int, optional) – the number of points used to estimate the conditional expectation
and conditional variance of the function given a value of the active
variables

Notes

The training methods exploit the eigenvalues from the active subspace
analysis to determine length scales for each variable when tuning
the parameters of the radial bases.

The method sets attributes of the object for further use.

The method uses the response_surfaces.av_design function to get the
design for the appropriate avmap.

	
active_subspaces.response_surfaces.av_design(avmap, N, NMC=10)

	Design on active variable space.

A wrapper that returns the design for the response surface in the space of
the active variables.

	Parameters:	
	avmap (ActiveVariableMap) – a domains.ActiveVariable map that includes the active variable domain,
which includes the active and inactive subspaces

	N (int) – the number of points used in the design-of-experiments for constructing
the response surface

	NMC (int, optional) – the number of points used to estimate the conditional expectation and
conditional variance of the function given a value of the active
variables (Default is 10)

	Returns:	
	Y (ndarray) –
N-by-n matrix that contains the design points in the space of active
variables

	X (ndarray) –
(N*NMC)-by-m matrix that contains points in the simulation input space
to run the simulation

	ind (ndarray) –
indices that map points in X to points in Y

See also

utils.designs.gauss_hermite_design(), utils.designs.interval_design(), utils.designs.maximin_design()

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

Subspaces

Utilities for computing active and inactive subspaces.

	
class active_subspaces.subspaces.Subspaces

	A class for computing active and inactive subspaces.

	
eigenvals

	ndarray

m-by-1 matrix of eigenvalues

	
eigenvecs

	ndarray

m-by-m matrix, eigenvectors oriented column-wise

	
W1

	ndarray

m-by-n matrix, basis for the active subspace

	
W2

	ndarray

m-by-(m-n) matrix, basis for the inactive subspace

	
e_br

	ndarray

m-by-2 matrix, bootstrap ranges for the eigenvalues

	
sub_br

	ndarray

m-by-3 matrix, bootstrap ranges (first and third column) and the
mean (second column) of the error in the estimated active subspace
approximated by bootstrap

Notes

The attributes W1 and W2 are convenience variables. They are identical
to the first n and last (m-n) columns of eigenvecs, respectively.

	
compute(X=None, f=None, df=None, weights=None, sstype='AS', ptype='EVG', nboot=0)

	Compute the active and inactive subspaces.

Given input points and corresponding outputs, or given samples of the
gradients, estimate an active subspace. This method has four different
algorithms for estimating the active subspace: ‘AS’ is the standard
active subspace that requires gradients, ‘OLS’ uses a global linear
model to estimate a one-dimensional active subspace, ‘QPHD’ uses a
global quadratic model to estimate subspaces, and ‘OPG’ uses a set of
local linear models computed from subsets of give input/output pairs.

The function also sets the dimension of the active subspace (and,
consequently, the dimenison of the inactive subspace). There are three
heuristic choices for the dimension of the active subspace. The default
is the largest gap in the eigenvalue spectrum, which is ‘EVG’. The other
two choices are ‘RS’, which estimates the error in a low-dimensional
response surface using the eigenvalues and the estimated subspace
errors, and ‘LI’ which is a heuristic from Bing Li on order
determination.

Note that either df or X and f must be given, although formally
all are optional.

	Parameters:	
	X (ndarray, optional) – M-by-m matrix of samples of inputs points, arranged as rows (default
None)

	f (ndarray, optional) – M-by-1 matrix of outputs corresponding to rows of X (default None)

	df (ndarray, optional) – M-by-m matrix of samples of gradients, arranged as rows (default
None)

	weights (ndarray, optional) – M-by-1 matrix of weights associated with rows of X

	sstype (str, optional) – defines subspace type to compute. Default is ‘AS’ for active
subspace, which requires df. Other options are OLS for a global
linear model, QPHD for a global quadratic model, and OPG for
local linear models. The latter three require X and f.

	ptype (str, optional) – defines the partition type. Default is ‘EVG’ for largest
eigenvalue gap. Other options are ‘RS’, which is an estimate of the
response surface error, and ‘LI’, which is a heuristic proposed by
Bing Li based on subspace errors and eigenvalue decay.

	nboot (int, optional) – number of bootstrap samples used to estimate the error in the
estimated subspace (default 0 means no bootstrap estimates)

Notes

Partition type ‘RS’ and ‘LI’ require nboot to be greater than 0 (and
probably something more like 100) to get bootstrap estimates of the
subspace error.

	
partition(n)

	Partition the eigenvectors to define the active subspace.

A convenience function for partitioning the full set of eigenvectors to
separate the active from inactive subspaces.

	Parameters:	n (int) – the dimension of the active subspace

	
active_subspaces.subspaces.active_subspace(df, weights)

	Compute the active subspace.

	Parameters:	
	df (ndarray) – M-by-m matrix containing the gradient samples oriented as rows

	weights (ndarray) – M-by-1 weight vector, corresponds to numerical quadrature rule used to
estimate matrix whose eigenspaces define the active subspace

	Returns:	
	e (ndarray) –
m-by-1 vector of eigenvalues

	W (ndarray) –
m-by-m orthogonal matrix of eigenvectors

	
active_subspaces.subspaces.eig_partition(e)

	Partition the active subspace according to largest eigenvalue gap.

	Parameters:	e (ndarray) – m-by-1 vector of eigenvalues

	Returns:	
	n (int) –
dimension of active subspace

	ediff (float) –
largest eigenvalue gap

	
active_subspaces.subspaces.errbnd_partition(e, sub_err)

	Partition the active subspace according to response surface error.

Uses an a priori estimate of the response surface error based on the
eigenvalues and subspace error to determine the active subspace dimension.

	Parameters:	e (ndarray) – m-by-1 vector of eigenvalues

	Returns:	
	n (int) –
dimension of active subspace

	errbnd (float) –
estimate of error bound

Notes

The error bound should not be used as an estimated error. The bound is only
used to estimate the subspace dimension.

	
active_subspaces.subspaces.ladle_partition(e, li_F)

	Partition the active subspace according to Li’s criterion.

Uses a criterion proposed by Bing Li that combines estimates of the subspace
with estimates of the eigenvalues.

	Parameters:	
	e (ndarray) – m-by-1 vector of eigenvalues

	li_F (float) – measures error in the subspace

	Returns:	
	n (int) –
dimension of active subspace

	G (ndarray) –
metrics used to determine active subspace dimension

	
active_subspaces.subspaces.ols_subspace(X, f, weights)

	Estimate one-dimensional subspace with global linear model.

	Parameters:	
	X (ndarray) – M-by-m matrix of input samples, oriented as rows

	f (ndarray) – M-by-1 vector of output samples corresponding to the rows of X

	weights (ndarray) – M-by-1 weight vector, corresponds to numerical quadrature rule used to
estimate matrix whose eigenspaces define the active subspace

	Returns:	
	e (ndarray) –
m-by-1 vector of eigenvalues

	W (ndarray) –
m-by-m orthogonal matrix of eigenvectors

Notes

Although the method returns a full set of eigenpairs (to be consistent with
the other subspace functions), only the first eigenvalue will be nonzero,
and only the first eigenvector will have any relationship to the input
parameters. The remaining m-1 eigenvectors are only orthogonal to the first.

	
active_subspaces.subspaces.opg_subspace(X, f, weights)

	Estimate active subspace with local linear models.

This approach is related to the sufficient dimension reduction method known
sometimes as the outer product of gradient method. See the 2001 paper
‘Structure adaptive approach for dimension reduction’ from Hristache, et al.

	Parameters:	
	X (ndarray) – M-by-m matrix of input samples, oriented as rows

	f (ndarray) – M-by-1 vector of output samples corresponding to the rows of X

	weights (ndarray) – M-by-1 weight vector, corresponds to numerical quadrature rule used to
estimate matrix whose eigenspaces define the active subspace

	Returns:	
	e (ndarray) –
m-by-1 vector of eigenvalues

	W (ndarray) –
m-by-m orthogonal matrix of eigenvectors

	
active_subspaces.subspaces.qphd_subspace(X, f, weights)

	Estimate active subspace with global quadratic model.

This approach is similar to Ker-Chau Li’s approach for principal Hessian
directions based on a global quadratic model of the data. In contrast to
Li’s approach, this method uses the average outer product of the gradient
of the quadratic model, as opposed to just its Hessian.

	Parameters:	
	X (ndarray) – M-by-m matrix of input samples, oriented as rows

	f (ndarray) – M-by-1 vector of output samples corresponding to the rows of X

	weights (ndarray) – M-by-1 weight vector, corresponds to numerical quadrature rule used to
estimate matrix whose eigenspaces define the active subspace

	Returns:	
	e (ndarray) –
m-by-1 vector of eigenvalues

	W (ndarray) –
m-by-m orthogonal matrix of eigenvectors

	
active_subspaces.subspaces.sorted_eigh(C)

	Compute eigenpairs and sort.

	Parameters:	C (ndarray) – matrix whose eigenpairs you want

	Returns:	
	e (ndarray) –
vector of sorted eigenvalues

	W (ndarray) –
orthogonal matrix of corresponding eigenvectors

Notes

Eigenvectors are unique up to a sign. We make the choice to normalize the
eigenvectors so that the first component of each eigenvector is positive.
This normalization is very helpful for the bootstrapping.

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

Utils

	Designs

	Misc

	Plotters

	QP Solver

	Quadrature

	Response Surfaces (Utils)

	Simrunners

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

 	Utils

Designs

Utilities for constructing design-of-experiments.

	
active_subspaces.utils.designs.gauss_hermite_design(N)

	Tensor product Gauss-Hermite quadrature points.

	Parameters:	N (int[]) – contains the number of points per dimension in the tensor product design

	Returns:	design –
N-by-m matrix that contains the design points

	Return type:	ndarray

	
active_subspaces.utils.designs.interval_design(a, b, N)

	Equally spaced points on an interval.

	Parameters:	
	a (float) – the left endpoint of the interval

	b (float) – the right endpoint of the interval

	N (int) – the number of points in the design

	Returns:	N-by-1 matrix that contains the design points in the interval. It does
not contain the endpoints.

	Return type:	design, ndarray

	
active_subspaces.utils.designs.maximin_design(vert, N)

	Multivariate maximin design constrained by a polytope.

	Parameters:	
	vert (ndarray) – the vertices that define the m-dimensional polytope. The shape of vert
is M-by-m, where M is the number of vertices.

	N (int) – the number of points in the design

	Returns:	design –
N-by-m matrix that contains the design points in the polytope. It does
not contain the vertices.

	Return type:	ndarray

Notes

The objective function used to find the design is the negative of the
minimum distance between points in the design and the given vertices. The
routine uses the scipy.minimize function with the SLSQP method to minimize
the function. The constraints are given by the polytope defined by the
vertices. The scipy.spatial packages turns the vertices into a set of
linear inequality constraints.

The optimization is nonlinear and nonconvex with many local minima. Any
reasonable local minima is likely to give a good design. However, to
increase robustness, we use three random starting points in the
minimization and use the design with the lowest objective value.

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

 	Utils

Misc

Miscellaneous utilities.

	
class active_subspaces.utils.misc.BoundedNormalizer(lb, ub)

	A class for normalizing bounded inputs.

	
lb

	ndarray

a matrix of size m-by-1 that contains lower bounds on the simulation
inputs

	
ub

	ndarray

a matrix of size m-by-1 that contains upper bounds on the simulation
inputs

See also

utils.misc.UnboundedNormalizer

	
normalize(X)

	Return corresponding points shifted and scaled to [-1,1]^m.

	Parameters:	X (ndarray) – contains all input points one wishes to normalize. The shape of X
is M-by-m. The components of each row of X should be between lb
and ub.

	Returns:	X_norm –
contains the normalized inputs corresponding to X. The components
of each row of X_norm should be between -1 and 1.

	Return type:	ndarray

	
unnormalize(X)

	Return corresponding points shifted and scaled to [-1,1]^m.

	Parameters:	X (ndarray) – contains all input points one wishes to unnormalize. The shape of
X is M-by-m. The components of each row of X should be between
-1 and 1.

	Returns:	X_unnorm –
contains the unnormalized inputs corresponding to X. The
components of each row of X_unnorm should be between lb and
ub.

	Return type:	ndarray

	
class active_subspaces.utils.misc.Normalizer

	An abstract class for normalizing inputs.

	
class active_subspaces.utils.misc.UnboundedNormalizer(mu, C)

	A class for normalizing unbounded, Gaussian inputs to standard normals.

	
mu

	ndarray

a matrix of size m-by-1 that contains the mean of the Gaussian
simulation inputs

	
L

	ndarray

a matrix size m-by-m that contains the Cholesky factor of the covariance
matrix of the Gaussian simulation inputs.

See also

utils.misc.BoundedNormalizer

Notes

A simulation with unbounded inputs is assumed to have a Gaussian weight
function associated with the inputs. The covariance of the Gaussian weight
function should be full rank.

	
normalize(X)

	Return points transformed to a standard normal distribution.

	Parameters:	X (ndarray) – contains all input points one wishes to normalize. The shape of X
is M-by-m. The components of each row of X should be a draw from a
Gaussian with mean mu and covariance C.

	Returns:	X_norm –
contains the normalized inputs corresponding to X. The components
of each row of X_norm should be draws from a standard multivariate
normal distribution.

	Return type:	ndarray

	
unnormalize(X)

	Transform points to original Gaussian.

Return corresponding points transformed to draws from a Gaussian
distribution with mean mu and covariance C.

	Parameters:	X (ndarray) – contains all input points one wishes to unnormalize. The shape of
X is M-by-m. The components of each row of X should be draws
from a standard multivariate normal.

	Returns:	X_unnorm –
contains the unnormalized inputs corresponding to X. The
components of each row of X_unnorm should represent draws from a
multivariate normal with mean mu and covariance C.

	Return type:	ndarray

	
active_subspaces.utils.misc.atleast_2d(A, oned_as='row')

	Ensures the array A is at least two dimensions.

	Parameters:	
	A (ndarray) – matrix

	oned_as (str, optional) – should be either ‘row’ or ‘col’. It determines whether the array A
should be expanded as a 2d row or 2d column (default ‘row’)

	
active_subspaces.utils.misc.atleast_2d_col(A)

	Return the input A as a 2d column array.

Thanks to Trent Lukaczyk for these functions!

	
active_subspaces.utils.misc.atleast_2d_row(A)

	Return the input A as a 2d row array.

	
active_subspaces.utils.misc.conditional_expectations(f, ind)

	Compute conditional expectations and variances for given function values.

	Parameters:	
	f (ndarray) – an ndarry of function evaluations

	ind (ndarray[int]) – index array that tells which values of f correspond to the same value
for the active variable.

	Returns:	
	Ef (ndarray) –
an ndarray containing the conditional expectations

	Vf (ndarray) –
an ndarray containing the conditional variances

Notes

This function computes the mean and variance for all values in the ndarray
f that have the same index in ind. The indices in ind correspond to
values of the active variables.

	
active_subspaces.utils.misc.process_inputs(X)

	Check a matrix of input values for the right shape.

	Parameters:	X (ndarray) – contains input points. The shape of X should be M-by-m.

	Returns:	
	X (ndarray) –
the same as the input

	M (int) –
number of rows in X

	m (int) –
number of columns in X

	
active_subspaces.utils.misc.process_inputs_outputs(X, f)

	Check matrix of input values and a vector of outputs for correct shapes.

	Parameters:	
	X (ndarray) – contains input points. The shape of X should be M-by-m.

	f (ndarray) – M-by-1 matrix

	Returns:	
	X (ndarray) –
the same as the input

	f (ndarray) –
the same as the output

	M (int) –
number of rows in X

	m (int) –
number of columns in X

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

 	Utils

Plotters

Utilities for plotting quantities computed in active subspaces.

	
active_subspaces.utils.plotters.eigenvalues(e, e_br=None, out_label=None, opts=None)

	Plot the eigenvalues with bootstrap ranges.

	Parameters:	
	e (ndarray) – k-by-1 matrix that contains the estimated eigenvalues

	e_br (ndarray, optional) – lower and upper bounds for the estimated eigenvalues. These are
typically computed with a bootstrap. (default None)

	out_label (str, optional) – a label for the quantity of interest (default None)

	opts (dict, optional) – a dictionary with some plot options (default None)

See also

utils.plotters.eigenvectors(), utils.plotters.subspace_errors()

	
active_subspaces.utils.plotters.eigenvectors(W, W_br=None, in_labels=None, out_label=None, opts=None)

	Plot the estimated eigenvectors with optional bootstrap ranges.

	Parameters:	
	W (ndarray) – m-by-k matrix that contains k of the estimated eigenvectors from the
active subspace analysis.

	W_br (ndarray, optional) – m-by-(2*k) matrix that contains estimated upper and lower bounds on the
components of the eigenvectors (default None)

	in_labels (str[], optional) – list of labels for the simulation’s inputs (default None)

	out_label (str, optional) – a label for the quantity of interest (default None)

	opts (dict, optional) – a dictionary with some plot options (default None)

See also

utils.plotters.subspace_errors(), utils.plotters.eigenvalues()

Notes

This function will plot at most the first four eigevectors in a four-subplot
figure. In other words, it only looks at the first four columns of W.

	
active_subspaces.utils.plotters.plot_opts(savefigs=True, figtype='.eps')

	A few options for the plots.

	Parameters:	
	savefigs (bool) – save figures into a separate figs director

	figtype (str) – a file extention for the type of image to save

	Returns:	opts –
the chosen options. The keys in the dictionary are figtype,
savefigs, and font. The font is a dictionary that sets the font
properties of the figures.

	Return type:	dict

	
active_subspaces.utils.plotters.subspace_errors(sub_br, out_label=None, opts=None)

	Plot the estimated subspace errors with bootstrap ranges.

	Parameters:	
	sub_br (ndarray) – (k-1)-by-3 matix that contains the lower bound, mean, and upper bound of
the subspace errors for each dimension of subspace.

	out_label (str, optional) – a label for the quantity of interest (default None)

	opts (dict, optional) – a dictionary with some plot options (default None)

See also

utils.plotters.eigenvectors(), utils.plotters.eigenvalues()

	
active_subspaces.utils.plotters.sufficient_summary(y, f, out_label=None, opts=None)

	Make a summary plot with the given predictors and responses.

	Parameters:	
	y (ndarray) – M-by-1 or M-by-2 matrix that contains the values of the predictors for
the summary plot.

	f (ndarray) – M-by-1 matrix that contains the corresponding responses

	out_label (str, optional) – a label for the quantity of interest (default None)

	opts (dict, optional) – a dictionary with some plot options (default None)

Notes

If y.shape[1] is 1, then this function produces only the univariate
summary plot. If y.shape[1] is 2, then this function produces both the
univariate and the bivariate summary plot, where the latter is a scatter
plot with the first column of y on the horizontal axis, the second
column of y on the vertical axis, and the color corresponding to f.

	
active_subspaces.utils.plotters.zonotope_2d_plot(vertices, design=None, y=None, f=None, out_label=None, opts=None)

	A utility for plotting (m,2) zonotopes with designs and quadrature rules.

	Parameters:	
	vertices (ndarray) – M-by-2 matrix that contains the vertices that define the zonotope

	design (ndarray, optional) – N-by-2 matrix that contains a design-of-experiments on the zonotope. The
plot will contain the Delaunay triangulation of the points in design
and vertices. (default None)

	y (ndarray, optional) – K-by-2 matrix that contains points to be plotted inside the zonotope. If
y is given, then f must be given, too. (default None)

	f (ndarray, optional) – K-by-1 matrix that contains a color value for the associated points in
y. This is useful for plotting function values or quadrature rules
with the zonotope. If f is given, then y must be given, too.
(default None)

	out_label (str, optional) – a label for the quantity of interest (default None)

	opts (dict, optional) – a dictionary with some plot options (default None)

Notes

This function makes use of the scipy.spatial routines for plotting the
zonotopes.

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

 	Utils

QP Solver

Solvers for the linear and quadratic programs in active subspaces.

	
class active_subspaces.utils.qp_solver.QPSolver(solver='GUROBI')

	A class for solving linear and quadratic programs.

	
solver

	str

identifies which linear program software to use

Notes

The class checks to see if Gurobi is present. If it is, it uses Gurobi to
solve the linear and quadratic programs. Otherwise, it uses scipy
implementations to solve the linear and quadratic programs.

	
linear_program_eq(c, A, b, lb, ub)

	Solves an equality constrained linear program with variable bounds.

This method returns the minimizer of the following linear program.

minimize c^T x
subject to A x = b
lb <= x <= ub

	Parameters:	
	c (ndarray) – m-by-1 matrix for the linear objective function

	A (ndarray) – M-by-m matrix that contains the coefficients of the linear equality
constraints

	b (ndarray) – M-by-1 matrix that is the right hand side of the equality
constraints

	lb (ndarray) – m-by-1 matrix that contains the lower bounds on the variables

	ub (ndarray) – m-by-1 matrix that contains the upper bounds on the variables

	Returns:	x –
m-by-1 matrix that is the minimizer of the linear program

	Return type:	ndarray

	
linear_program_ineq(c, A, b)

	Solves an inequality constrained linear program.

This method returns the minimizer of the following linear program.

minimize c^T x
subject to A x >= b

	Parameters:	
	c (ndarray) – m-by-1 matrix for the linear objective function

	A (ndarray) – M-by-m matrix that contains the coefficients of the linear equality
constraints

	b (ndarray) – size M-by-1 matrix that is the right hand side of the equality
constraints

	Returns:	x –
m-by-1 matrix that is the minimizer of the linear program

	Return type:	ndarray

	
quadratic_program_bnd(c, Q, lb, ub)

	Solves a quadratic program with variable bounds.

This method returns the minimizer of the following linear program.

minimize c^T x + x^T Q x
subject to lb <= x <= ub

	Parameters:	
	c (ndarray) – m-by-1 matrix that contains the coefficients of the linear term in
the objective function

	Q (ndarray) – m-by-m matrix that contains the coefficients of the quadratic term
in the objective function

	lb (ndarray) – m-by-1 matrix that contains the lower bounds on the variables

	ub (ndarray) – m-by-1 matrix that contains the upper bounds on the variables

	Returns:	x –
m-by-1 matrix that is the minimizer of the quadratic program

	Return type:	ndarray

	
quadratic_program_ineq(c, Q, A, b)

	Solves an inequality constrained quadratic program.

This method returns the minimizer of the following quadratic program.

minimize c^T x + x^T Q x
subject to A x >= b

	Parameters:	
	c (ndarray) – m-by-1 matrix that contains the coefficients of the linear term in
the objective function

	Q (ndarray) – m-by-m matrix that contains the coefficients of the quadratic term
in the objective function

	A (ndarray) – M-by-m matrix that contains the coefficients of the linear equality
constraints

	b (ndarray) – M-by-1 matrix that is the right hand side of the equality
constraints

	Returns:	x –
m-by-1 matrix that is the minimizer of the quadratic program.

	Return type:	ndarray

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

 	Utils

Quadrature

Gaussian quadrature utilities for use with the Python Active-subspaces Utility
Library.

	
active_subspaces.utils.quadrature.g1d(N, quadtype)

	One-dimensional Gaussian quadrature rule.

	Parameters:	
	N (int) – number of nodes in the quadrature rule

	quadtype (str) – type of quadrature rule {‘Legendre’, ‘Hermite’}

	Returns:	
	x (ndarray) –
N-by-1 array of quadrature nodes

	w (ndarray) –
N-by-1 array of quadrature weights

See also

utils.quadrature.gauss_hermite()

Notes

This computation is inspired by Walter Gautschi’s code at
https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html.

	
active_subspaces.utils.quadrature.gauss_hermite(N)

	Tensor product Gauss-Hermite quadrature rule.

	Parameters:	N (int[]) – number of nodes in each dimension of the quadrature rule

	Returns:	
	x (ndarray) –
N-by-1 array of quadrature nodes

	w (ndarray) –
N-by-1 array of quadrature weights

Notes

This computation is inspired by Walter Gautschi’s code at
https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html.

	
active_subspaces.utils.quadrature.gauss_legendre(N)

	Tensor product Gauss-Legendre quadrature rule.

	Parameters:	N (int[]) – number of nodes in each dimension of the quadrature rule

	Returns:	
	x (ndarray) –
N-by-1 array of quadrature nodes

	w (ndarray) –
N-by-1 array of quadrature weights

Notes

This computation is inspired by Walter Gautschi’s code at
https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html.

	
active_subspaces.utils.quadrature.gh1d(N)

	One-dimensional Gauss-Hermite quadrature rule.

	Parameters:	N (int) – number of nodes in the quadrature rule

	Returns:	
	x (ndarray) –
N-by-1 array of quadrature nodes

	w (ndarray) –
N-by-1 array of quadrature weights

See also

utils.quadrature.gauss_hermite()

Notes

This computation is inspired by Walter Gautschi’s code at
https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html.

	
active_subspaces.utils.quadrature.gl1d(N)

	One-dimensional Gauss-Legendre quadrature rule.

	Parameters:	N (int) – number of nodes in the quadrature rule

	Returns:	
	x (ndarray) –
N-by-1 array of quadrature nodes

	w (ndarray) –
N-by-1 array of quadrature weights

See also

utils.quadrature.gauss_legendre()

Notes

This computation is inspired by Walter Gautschi’s code at
https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html.

	
active_subspaces.utils.quadrature.jacobi_matrix(ab)

	Tri-diagonal Jacobi matrix of recurrence coefficients.

	Parameters:	ab (ndarray) – N-by-2 array of recurrence coefficients

	Returns:	J –
(N-1)-by-(N-1) symmetric, tridiagonal Jacobi matrix associated with the
orthogonal polynomials

	Return type:	ndarray

See also

utils.quadrature.r_hermite(), utils.quadrature.gauss_hermite()

Notes

This computation is inspired by Walter Gautschi’s code at
https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html.

	
active_subspaces.utils.quadrature.r_hermite(N)

	Recurrence coefficients for the Hermite orthogonal polynomials.

	Parameters:	N (int) – the number of recurrence coefficients

	Returns:	ab –
an N-by-2 array of the recurrence coefficients

	Return type:	ndarray

See also

utils.quadrature.jacobi_matrix(), utils.quadrature.gauss_hermite()

Notes

This computation is inspired by Walter Gautschi’s code at
https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html.

	
active_subspaces.utils.quadrature.r_jacobi(N, l, r, a, b)

	Recurrence coefficients for the Legendre orthogonal polynomials.

	Parameters:	
	N (int) – the number of recurrence coefficients

	l (float) – the left endpoint of the interval

	r (float) – the right endpoint of the interval

	a (float) – Jacobi weight parameter

	b (float) – Jacobi weight parameter

	Returns:	ab –
an N-by-2 array of the recurrence coefficients

	Return type:	ndarray

See also

utils.quadrature.jacobi_matrix(), utils.quadrature.gauss_legendre()

Notes

This computation is inspired by Walter Gautschi’s code at
https://www.cs.purdue.edu/archives/2002/wxg/codes/OPQ.html.

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

 	Utils

Response Surfaces (Utils)

Utilities for building response surface approximations.

	
class active_subspaces.utils.response_surfaces.PolynomialApproximation(N=2)

	Least-squares-fit, global, multivariate polynomial approximation.

	
poly_weights

	ndarray

an ndarray of coefficients for the polynomial approximation in the
monomial basis

	
g

	ndarray

contains the m coefficients corresponding to the degree 1 monomials in
the polynomial approximation

	
H

	ndarray

an ndarray of shape m-by-m that contains the coefficients of the degree
2 monomials in the approximation

See also

utils.response_surfaces.RadialBasisApproximation

Notes

All attributes besides the degree N are set when the class’s train
method is called.

	
predict(X, compgrad=False)

	Evaluate least-squares-fit polynomial approximation at new points.

	Parameters:	
	X (ndarray) – an ndarray of points to evaluate the polynomial approximation. The
shape is M-by-m, where m is the number of dimensions.

	compgrad (bool, optional) – a flag to decide whether or not to compute the gradient of the
polynomial approximation at the points X. (default False)

	Returns:	
	f (ndarray) –
an ndarray of predictions from the polynomial approximation. The
shape of f is M-by-1.

	df (ndarray) –
an ndarray of gradient predictions from the polynomial
approximation. The shape of df is M-by-m.

	
train(X, f, weights=None)

	Train the least-squares-fit polynomial approximation.

	Parameters:	
	X (ndarray) – an ndarray of training points for the polynomial approximation. The
shape is M-by-m, where m is the number of dimensions.

	f (ndarray) – an ndarray of function values used to train the polynomial
approximation. The shape of f is M-by-1.

	weights (ndarray, optional) – an ndarray of weights for the least-squares. (default is None, which
means uniform weights)

Notes

This method sets all the attributes of the class for use in the
predict method.

	
class active_subspaces.utils.response_surfaces.RadialBasisApproximation(N=2)

	Approximate a multivariate function with a radial basis.

A class for global, multivariate radial basis approximation with anisotropic
squared-exponential radial basis and a weighted-least-squares-fit monomial
basis.

	
radial_weights

	ndarray

an ndarray of coefficients radial basis functions in the model

	
poly_weights

	poly_weights

an ndarray of coefficients for the polynomial approximation in the
monomial basis

	
K

	ndarray

an ndarray of shape M-by-M that contains the matrix of radial basis
functions evaluated at the training points

	
ell

	ndarray

an ndarray of shape m-by-1 that contains the characteristic length
scales along each of the inputs

See also

utils.response_surfaces.PolynomialApproximation

Notes

All attributes besides the degree N are set when the class’s train
method is called.

	
predict(X, compgrad=False)

	Evaluate the radial basis approximation at new points.

	Parameters:	
	X (ndarray) – an ndarray of points to evaluate the polynomial approximation. The
shape is M-by-m, where m is the number of dimensions.

	compgrad (bool, optional) – a flag to decide whether or not to compute the gradient of the
polynomial approximation at the points X. (default False)

	Returns:	
	f (ndarray) –
an ndarray of predictions from the polynomial approximation. The
shape of f is M-by-1.

	df (ndarray) –
an ndarray of gradient predictions from the polynomial
approximation. The shape of df is M-by-m.

Notes

I’ll tell you what. I just refactored this code to use terminology from
radial basis functions instead of Gaussian processes, and I feel so
much better about it. Now I don’t have to compute that silly
prediction variance and try to pretend that it has anything to do with
the actual error in the approximation. Also, computing that variance
requires another system solve, which might be expensive. So it’s both
expensive and of dubious value. So I got rid of it. Sorry, Gaussian
processes.

	
train(X, f, v=None, e=None)

	Train the radial basis approximation.

	Parameters:	
	X (ndarray) – an ndarray of training points for the polynomial approximation. The
shape is M-by-m, where m is the number of dimensions.

	f (ndarray) – an ndarray of function values used to train the polynomial
approximation. The shape of f is M-by-1.

	v (ndarray, optional) – contains the regularization parameters that model error in the
function values (default None)

	e (ndarray, optional) – an ndarray containing the eigenvalues from the active subspace
analysis. If present, the radial basis uses it to determine the
appropriate anisotropy in the length scales. (default None)

Notes

The approximation uses an multivariate, squared exponential radial
basis. If e is not None, then the radial basis is anisotropic with
length scales determined by e. Otherwise, the basis is isotropic.
The length scale parameters (i.e., the rbf shape parameters) are
determined with a maximum likelihood heuristic inspired by
techniques for fitting a Gaussian process model.

The approximation also includes a monomial basis with monomials of
total degree up to order N. These are fit with weighted least-squares,
where the weight matrix is the inverse of the matrix of radial basis
functions evaluated at the training points.

This method sets all the attributes of the class for use in the
predict method.

	
class active_subspaces.utils.response_surfaces.ResponseSurface(N=2)

	An abstract class for response surfaces.

	
N

	int

maximum degree of global polynomial in the response surface

	
Rsqr

	float

the R-squared coefficient for the response surface

	
X

	ndarray

an ndarray of training points for the response surface. The shape is
M-by-m, where m is the number of dimensions.

	
f

	ndarray

an ndarray of function values used to train the response surface. The
shape of f is M-by-1.

See also

utils.response_surfaces.PolynomialApproximation, utils.response_surfaces.RadialBasisApproximation

	
active_subspaces.utils.response_surfaces.exponential_squared(X1, X2, sigma, ell)

	Compute the matrix of radial basis functions.

	Parameters:	
	X1 (ndarray) – contains the centers of the radial functions

	X2 (ndarray) – the evaluation points of the radial functions

	sigma (float) – scales the radial functions

	ell (ndarray) – contains the length scales of each dimension

	Returns:	C –
the matrix of radial functions centered at X1 and evaluated at X2.
The shape of C is X1.shape[0]-by-X2.shape[0].

	Return type:	ndarray

	
active_subspaces.utils.response_surfaces.grad_exponential_squared(X1, X2, sigma, ell)

	Compute the matrices of radial basis function gradients.

	Parameters:	
	X1 (ndarray) – contains the centers of the radial functions

	X2 (ndarray) – the evaluation points of the radial functions

	sigma (float) – scales the radial functions

	ell (ndarray) – contains the length scales of each dimension

	Returns:	dC –
the matrix of radial function gradients centered at X1 and evaluated
at X2. The shape of dC is X1.shape[0]-by-X2.shape[0]-by-m. dC
is a three-dimensional ndarray. The third dimension indexes the partial
derivatives in each gradient.

	Return type:	ndarray

	
active_subspaces.utils.response_surfaces.grad_polynomial_bases(X, N)

	Compute the gradients of the monomial bases.

	Parameters:	
	X (ndarray) – contains the points to evaluate the monomials

	N (int) – the maximum degree of the monomial basis

	Returns:	dB –
contains the gradients of the monomials evaluate at X. dB is a
three-dimensional ndarray. The third dimension indexes the partial
derivatives in each gradient.

	Return type:	ndarray

	
active_subspaces.utils.response_surfaces.index_set(n, d)

	Enumerate multi-indices for a total degree of order n in d variables.

	Parameters:	
	n (int) – degree of polynomial

	d (int) – number of variables, dimension

	Returns:	I –
multi-indices ordered as columns

	Return type:	ndarray

	
active_subspaces.utils.response_surfaces.polynomial_bases(X, N)

	Compute the monomial bases.

	Parameters:	
	X (ndarray) – contains the points to evaluate the monomials

	N (int) – the maximum degree of the monomial basis

	Returns:	
	B (ndarray) –
contains the monomial evaluations

	I (ndarray) –
contains the multi-indices that tell the degree of each univariate
monomial term in the multivariate monomial

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

 	Code Documentation

 	Utils

Simrunners

Utilities for running several simulations at different inputs.

	
class active_subspaces.utils.simrunners.SimulationGradientRunner(dfun)

	Evaluates gradients at several input values.

A class for running several simulations at different input values that
return the gradients of the quantity of interest.

	
dfun

	function

a function that runs the simulation for a fixed value of the input
parameters, given as an ndarray. It returns the gradient of the quantity
of interest at the given input.

See also

utils.simrunners.SimulationRunner

Notes

The function dfun should take an ndarray of size 1-by-m and return an
ndarray of shape 1-by-m. This ndarray is the gradient of the quantity of
interest from the simulation. Often, the function is a wrapper to a larger
simulation code.

	
run(X)

	Run at several input values.

Run the simulation at several input values and return the gradients of
the quantity of interest.

	Parameters:	X (ndarray) – contains all input points where one wishes to run the simulation.
If the simulation takes m inputs, then X must have shape M-by-m,
where M is the number of simulations to run.

	Returns:	dF –
contains the gradient of the quantity of interest at each given
input point. The shape of dF is M-by-m.

	Return type:	ndarray

Notes

In principle, the simulation calls can be executed independently and in
parallel. Right now this function uses a sequential for-loop. Future
development will take advantage of multicore architectures to
parallelize this for-loop.

	
class active_subspaces.utils.simrunners.SimulationRunner(fun)

	A class for running several simulations at different input values.

	
fun

	function

runs the simulation for a fixed value of the input parameters, given as
an ndarray

See also

utils.simrunners.SimulationGradientRunner

Notes

The function fun should take an ndarray of size 1-by-m and return a float.
This float is the quantity of interest from the simulation. Often, the
function is a wrapper to a larger simulation code.

	
run(X)

	Run the simulation at several input values.

	Parameters:	X (ndarray) – contains all input points where one wishes to run the simulation. If
the simulation takes m inputs, then X must have shape M-by-m,
where M is the number of simulations to run.

	Returns:	F –
contains the simulation output at each given input point. The shape
of F is M-by-1.

	Return type:	ndarray

Notes

In principle, the simulation calls can be executed independently and in
parallel. Right now this function uses a sequential for-loop. Future
development will take advantage of multicore architectures to
parallelize this for-loop.

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	active_subspaces 0.1.1 documentation

Contact

Questions or comments?

paul.constantine@mines.edu

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	active_subspaces 0.1.1 documentation

LICENSE

The MIT License (MIT)

Copyright (c) 2015 Paul Constantine

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	active_subspaces 0.1.1 documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 active_subspaces	

 	
 	
 active_subspaces.domains	

 	
 	
 active_subspaces.gradients	

 	
 	
 active_subspaces.integrals	

 	
 	
 active_subspaces.optimizers	

 	
 	
 active_subspaces.response_surfaces	

 	
 	
 active_subspaces.subspaces	

 	
 	
 active_subspaces.utils.designs	

 	
 	
 active_subspaces.utils.misc	

 	
 	
 active_subspaces.utils.plotters	

 	
 	
 active_subspaces.utils.qp_solver	

 	
 	
 active_subspaces.utils.quadrature	

 	
 	
 active_subspaces.utils.response_surfaces	

 	
 	
 active_subspaces.utils.simrunners	

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	active_subspaces 0.1.1 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 | Z

A

 	

 	active_subspace() (in module active_subspaces.subspaces)

 	active_subspaces (module)

 	active_subspaces.domains (module)

 	active_subspaces.gradients (module)

 	active_subspaces.integrals (module)

 	active_subspaces.optimizers (module)

 	active_subspaces.response_surfaces (module)

 	active_subspaces.subspaces (module)

 	active_subspaces.utils.designs (module)

 	active_subspaces.utils.misc (module)

 	active_subspaces.utils.plotters (module)

 	active_subspaces.utils.qp_solver (module)

 	active_subspaces.utils.quadrature (module)

 	

 	active_subspaces.utils.response_surfaces (module)

 	active_subspaces.utils.simrunners (module)

 	ActiveSubspaceResponseSurface (class in active_subspaces.response_surfaces)

 	ActiveVariableDomain (class in active_subspaces.domains)

 	ActiveVariableMap (class in active_subspaces.domains)

 	atleast_2d() (in module active_subspaces.utils.misc)

 	atleast_2d_col() (in module active_subspaces.utils.misc)

 	atleast_2d_row() (in module active_subspaces.utils.misc)

 	av_design() (in module active_subspaces.response_surfaces)

 	av_integrate() (in module active_subspaces.integrals)

 	av_minimize() (in module active_subspaces.optimizers)

 	av_quadrature_rule() (in module active_subspaces.integrals)

 	avmap (active_subspaces.response_surfaces.ActiveSubspaceResponseSurface attribute)

B

 	

 	BoundedActiveVariableDomain (class in active_subspaces.domains)

 	BoundedActiveVariableMap (class in active_subspaces.domains)

 	

 	BoundedMinVariableMap (class in active_subspaces.optimizers)

 	BoundedNormalizer (class in active_subspaces.utils.misc)

C

 	

 	compute() (active_subspaces.subspaces.Subspaces method)

 	compute_boundary() (active_subspaces.domains.BoundedActiveVariableDomain method)

 	conditional_expectations() (in module active_subspaces.utils.misc)

 	

 	constraints (active_subspaces.domains.ActiveVariableDomain attribute)

 	convhull (active_subspaces.domains.ActiveVariableDomain attribute)

D

 	

 	dfun (active_subspaces.utils.simrunners.SimulationGradientRunner attribute)

 	

 	domain (active_subspaces.domains.ActiveVariableMap attribute)

E

 	

 	e_br (active_subspaces.subspaces.Subspaces attribute)

 	eig_partition() (in module active_subspaces.subspaces)

 	eigenvals (active_subspaces.subspaces.Subspaces attribute)

 	eigenvalues() (in module active_subspaces.utils.plotters)

 	eigenvecs (active_subspaces.subspaces.Subspaces attribute)

 	

 	eigenvectors() (in module active_subspaces.utils.plotters)

 	ell (active_subspaces.utils.response_surfaces.RadialBasisApproximation attribute)

 	errbnd_partition() (in module active_subspaces.subspaces)

 	exponential_squared() (in module active_subspaces.utils.response_surfaces)

F

 	

 	f (active_subspaces.utils.response_surfaces.ResponseSurface attribute)

 	finite_difference_gradients() (in module active_subspaces.gradients)

 	

 	forward() (active_subspaces.domains.ActiveVariableMap method)

 	fun (active_subspaces.utils.simrunners.SimulationRunner attribute)

G

 	

 	g (active_subspaces.utils.response_surfaces.PolynomialApproximation attribute)

 	g1d() (in module active_subspaces.utils.quadrature)

 	gauss_hermite() (in module active_subspaces.utils.quadrature)

 	gauss_hermite_design() (in module active_subspaces.utils.designs)

 	gauss_legendre() (in module active_subspaces.utils.quadrature)

 	gh1d() (in module active_subspaces.utils.quadrature)

 	

 	gl1d() (in module active_subspaces.utils.quadrature)

 	grad_exponential_squared() (in module active_subspaces.utils.response_surfaces)

 	grad_polynomial_bases() (in module active_subspaces.utils.response_surfaces)

 	gradient() (active_subspaces.response_surfaces.ActiveSubspaceResponseSurface method)

 	gradient_av() (active_subspaces.response_surfaces.ActiveSubspaceResponseSurface method)

H

 	

 	H (active_subspaces.utils.response_surfaces.PolynomialApproximation attribute)

 	

 	hit_and_run_z() (in module active_subspaces.domains)

I

 	

 	index_set() (in module active_subspaces.utils.response_surfaces)

 	integrate() (in module active_subspaces.integrals)

 	interval_design() (in module active_subspaces.utils.designs)

 	interval_endpoints() (in module active_subspaces.domains)

 	

 	interval_minimize() (in module active_subspaces.optimizers)

 	interval_quadrature_rule() (in module active_subspaces.integrals)

 	inverse() (active_subspaces.domains.ActiveVariableMap method)

J

 	

 	jacobi_matrix() (in module active_subspaces.utils.quadrature)

K

 	

 	K (active_subspaces.utils.response_surfaces.RadialBasisApproximation attribute)

L

 	

 	L (active_subspaces.utils.misc.UnboundedNormalizer attribute)

 	ladle_partition() (in module active_subspaces.subspaces)

 	lb (active_subspaces.utils.misc.BoundedNormalizer attribute)

 	

 	linear_program_eq() (active_subspaces.utils.qp_solver.QPSolver method)

 	linear_program_ineq() (active_subspaces.utils.qp_solver.QPSolver method)

 	local_linear_gradients() (in module active_subspaces.gradients)

M

 	

 	m (active_subspaces.domains.ActiveVariableDomain attribute)

 	maximin_design() (in module active_subspaces.utils.designs)

 	minimize() (in module active_subspaces.optimizers)

 	

 	MinVariableMap (class in active_subspaces.optimizers)

 	mu (active_subspaces.utils.misc.UnboundedNormalizer attribute)

N

 	

 	n (active_subspaces.domains.ActiveVariableDomain attribute)

 	N (active_subspaces.utils.response_surfaces.ResponseSurface attribute)

 	normalize() (active_subspaces.utils.misc.BoundedNormalizer method)

 	

 	(active_subspaces.utils.misc.UnboundedNormalizer method)

 	

 	Normalizer (class in active_subspaces.utils.misc)

 	nzv() (in module active_subspaces.domains)

O

 	

 	ols_subspace() (in module active_subspaces.subspaces)

 	

 	opg_subspace() (in module active_subspaces.subspaces)

P

 	

 	partition() (active_subspaces.subspaces.Subspaces method)

 	plot_opts() (in module active_subspaces.utils.plotters)

 	poly_weights (active_subspaces.utils.response_surfaces.PolynomialApproximation attribute)

 	

 	(active_subspaces.utils.response_surfaces.RadialBasisApproximation attribute)

 	polynomial_bases() (in module active_subspaces.utils.response_surfaces)

 	PolynomialApproximation (class in active_subspaces.utils.response_surfaces)

 	

 	predict() (active_subspaces.response_surfaces.ActiveSubspaceResponseSurface method)

 	

 	(active_subspaces.utils.response_surfaces.PolynomialApproximation method)

 	(active_subspaces.utils.response_surfaces.RadialBasisApproximation method)

 	predict_av() (active_subspaces.response_surfaces.ActiveSubspaceResponseSurface method)

 	process_inputs() (in module active_subspaces.utils.misc)

 	process_inputs_outputs() (in module active_subspaces.utils.misc)

Q

 	

 	qphd_subspace() (in module active_subspaces.subspaces)

 	QPSolver (class in active_subspaces.utils.qp_solver)

 	quadratic_program_bnd() (active_subspaces.utils.qp_solver.QPSolver method)

 	

 	quadratic_program_ineq() (active_subspaces.utils.qp_solver.QPSolver method)

 	quadrature_rule() (in module active_subspaces.integrals)

R

 	

 	r_hermite() (in module active_subspaces.utils.quadrature)

 	r_jacobi() (in module active_subspaces.utils.quadrature)

 	radial_weights (active_subspaces.utils.response_surfaces.RadialBasisApproximation attribute)

 	RadialBasisApproximation (class in active_subspaces.utils.response_surfaces)

 	random_walk_z() (in module active_subspaces.domains)

 	regularize_z() (active_subspaces.domains.ActiveVariableMap method)

 	

 	(active_subspaces.domains.BoundedActiveVariableMap method)

 	(active_subspaces.domains.UnboundedActiveVariableMap method)

 	(active_subspaces.optimizers.BoundedMinVariableMap method)

 	(active_subspaces.optimizers.UnboundedMinVariableMap method)

 	

 	rejection_sampling_z() (in module active_subspaces.domains)

 	ResponseSurface (class in active_subspaces.utils.response_surfaces)

 	respsurf (active_subspaces.response_surfaces.ActiveSubspaceResponseSurface attribute)

 	Rsqr (active_subspaces.utils.response_surfaces.ResponseSurface attribute)

 	run() (active_subspaces.utils.simrunners.SimulationGradientRunner method)

 	

 	(active_subspaces.utils.simrunners.SimulationRunner method)

S

 	

 	sample_z() (in module active_subspaces.domains)

 	SimulationGradientRunner (class in active_subspaces.utils.simrunners)

 	SimulationRunner (class in active_subspaces.utils.simrunners)

 	solver (active_subspaces.utils.qp_solver.QPSolver attribute)

 	sorted_eigh() (in module active_subspaces.subspaces)

 	

 	sub_br (active_subspaces.subspaces.Subspaces attribute)

 	subspace_errors() (in module active_subspaces.utils.plotters)

 	subspaces (active_subspaces.domains.ActiveVariableDomain attribute)

 	Subspaces (class in active_subspaces.subspaces)

 	sufficient_summary() (in module active_subspaces.utils.plotters)

T

 	

 	train() (active_subspaces.optimizers.MinVariableMap method)

 	

 	(active_subspaces.utils.response_surfaces.PolynomialApproximation method)

 	(active_subspaces.utils.response_surfaces.RadialBasisApproximation method)

 	train_with_data() (active_subspaces.response_surfaces.ActiveSubspaceResponseSurface method)

 	

 	train_with_interface() (active_subspaces.response_surfaces.ActiveSubspaceResponseSurface method)

U

 	

 	ub (active_subspaces.utils.misc.BoundedNormalizer attribute)

 	unbounded_minimize() (in module active_subspaces.optimizers)

 	UnboundedActiveVariableDomain (class in active_subspaces.domains)

 	UnboundedActiveVariableMap (class in active_subspaces.domains)

 	

 	UnboundedMinVariableMap (class in active_subspaces.optimizers)

 	UnboundedNormalizer (class in active_subspaces.utils.misc)

 	unique_rows() (in module active_subspaces.domains)

 	unnormalize() (active_subspaces.utils.misc.BoundedNormalizer method)

 	

 	(active_subspaces.utils.misc.UnboundedNormalizer method)

V

 	

 	vertX (active_subspaces.domains.ActiveVariableDomain attribute)

 	

 	vertY (active_subspaces.domains.ActiveVariableDomain attribute)

W

 	

 	W1 (active_subspaces.subspaces.Subspaces attribute)

 	

 	W2 (active_subspaces.subspaces.Subspaces attribute)

X

 	

 	X (active_subspaces.utils.response_surfaces.ResponseSurface attribute)

Z

 	

 	zonotope_2d_plot() (in module active_subspaces.utils.plotters)

 	zonotope_minimize() (in module active_subspaces.optimizers)

 	

 	zonotope_quadrature_rule() (in module active_subspaces.integrals)

 	zonotope_vertices() (in module active_subspaces.domains)

 Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		active_subspaces 0.1.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Paul Constantine.
 Created using Sphinx 1.3.5.

_static/down.png

_static/comment.png

_static/up.png

_static/minus.png

_static/comment-close.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/plus.png

